btrfs: clear __GFP_FS flag in the space cache inode
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, int *page_started,
93                                    unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96                                      struct inode *inode,  struct inode *dir)
97 {
98         int err;
99
100         err = btrfs_init_acl(trans, inode, dir);
101         if (!err)
102                 err = btrfs_xattr_security_init(trans, inode, dir);
103         return err;
104 }
105
106 /*
107  * this does all the hard work for inserting an inline extent into
108  * the btree.  The caller should have done a btrfs_drop_extents so that
109  * no overlapping inline items exist in the btree
110  */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112                                 struct btrfs_root *root, struct inode *inode,
113                                 u64 start, size_t size, size_t compressed_size,
114                                 int compress_type,
115                                 struct page **compressed_pages)
116 {
117         struct btrfs_key key;
118         struct btrfs_path *path;
119         struct extent_buffer *leaf;
120         struct page *page = NULL;
121         char *kaddr;
122         unsigned long ptr;
123         struct btrfs_file_extent_item *ei;
124         int err = 0;
125         int ret;
126         size_t cur_size = size;
127         size_t datasize;
128         unsigned long offset;
129
130         if (compressed_size && compressed_pages)
131                 cur_size = compressed_size;
132
133         path = btrfs_alloc_path();
134         if (!path)
135                 return -ENOMEM;
136
137         path->leave_spinning = 1;
138         btrfs_set_trans_block_group(trans, inode);
139
140         key.objectid = inode->i_ino;
141         key.offset = start;
142         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143         datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145         inode_add_bytes(inode, size);
146         ret = btrfs_insert_empty_item(trans, root, path, &key,
147                                       datasize);
148         BUG_ON(ret);
149         if (ret) {
150                 err = ret;
151                 goto fail;
152         }
153         leaf = path->nodes[0];
154         ei = btrfs_item_ptr(leaf, path->slots[0],
155                             struct btrfs_file_extent_item);
156         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158         btrfs_set_file_extent_encryption(leaf, ei, 0);
159         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161         ptr = btrfs_file_extent_inline_start(ei);
162
163         if (compress_type != BTRFS_COMPRESS_NONE) {
164                 struct page *cpage;
165                 int i = 0;
166                 while (compressed_size > 0) {
167                         cpage = compressed_pages[i];
168                         cur_size = min_t(unsigned long, compressed_size,
169                                        PAGE_CACHE_SIZE);
170
171                         kaddr = kmap_atomic(cpage, KM_USER0);
172                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
173                         kunmap_atomic(kaddr, KM_USER0);
174
175                         i++;
176                         ptr += cur_size;
177                         compressed_size -= cur_size;
178                 }
179                 btrfs_set_file_extent_compression(leaf, ei,
180                                                   compress_type);
181         } else {
182                 page = find_get_page(inode->i_mapping,
183                                      start >> PAGE_CACHE_SHIFT);
184                 btrfs_set_file_extent_compression(leaf, ei, 0);
185                 kaddr = kmap_atomic(page, KM_USER0);
186                 offset = start & (PAGE_CACHE_SIZE - 1);
187                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188                 kunmap_atomic(kaddr, KM_USER0);
189                 page_cache_release(page);
190         }
191         btrfs_mark_buffer_dirty(leaf);
192         btrfs_free_path(path);
193
194         /*
195          * we're an inline extent, so nobody can
196          * extend the file past i_size without locking
197          * a page we already have locked.
198          *
199          * We must do any isize and inode updates
200          * before we unlock the pages.  Otherwise we
201          * could end up racing with unlink.
202          */
203         BTRFS_I(inode)->disk_i_size = inode->i_size;
204         btrfs_update_inode(trans, root, inode);
205
206         return 0;
207 fail:
208         btrfs_free_path(path);
209         return err;
210 }
211
212
213 /*
214  * conditionally insert an inline extent into the file.  This
215  * does the checks required to make sure the data is small enough
216  * to fit as an inline extent.
217  */
218 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
219                                  struct btrfs_root *root,
220                                  struct inode *inode, u64 start, u64 end,
221                                  size_t compressed_size, int compress_type,
222                                  struct page **compressed_pages)
223 {
224         u64 isize = i_size_read(inode);
225         u64 actual_end = min(end + 1, isize);
226         u64 inline_len = actual_end - start;
227         u64 aligned_end = (end + root->sectorsize - 1) &
228                         ~((u64)root->sectorsize - 1);
229         u64 hint_byte;
230         u64 data_len = inline_len;
231         int ret;
232
233         if (compressed_size)
234                 data_len = compressed_size;
235
236         if (start > 0 ||
237             actual_end >= PAGE_CACHE_SIZE ||
238             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239             (!compressed_size &&
240             (actual_end & (root->sectorsize - 1)) == 0) ||
241             end + 1 < isize ||
242             data_len > root->fs_info->max_inline) {
243                 return 1;
244         }
245
246         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
247                                  &hint_byte, 1);
248         BUG_ON(ret);
249
250         if (isize > actual_end)
251                 inline_len = min_t(u64, isize, actual_end);
252         ret = insert_inline_extent(trans, root, inode, start,
253                                    inline_len, compressed_size,
254                                    compress_type, compressed_pages);
255         BUG_ON(ret);
256         btrfs_delalloc_release_metadata(inode, end + 1 - start);
257         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
258         return 0;
259 }
260
261 struct async_extent {
262         u64 start;
263         u64 ram_size;
264         u64 compressed_size;
265         struct page **pages;
266         unsigned long nr_pages;
267         int compress_type;
268         struct list_head list;
269 };
270
271 struct async_cow {
272         struct inode *inode;
273         struct btrfs_root *root;
274         struct page *locked_page;
275         u64 start;
276         u64 end;
277         struct list_head extents;
278         struct btrfs_work work;
279 };
280
281 static noinline int add_async_extent(struct async_cow *cow,
282                                      u64 start, u64 ram_size,
283                                      u64 compressed_size,
284                                      struct page **pages,
285                                      unsigned long nr_pages,
286                                      int compress_type)
287 {
288         struct async_extent *async_extent;
289
290         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
291         BUG_ON(!async_extent);
292         async_extent->start = start;
293         async_extent->ram_size = ram_size;
294         async_extent->compressed_size = compressed_size;
295         async_extent->pages = pages;
296         async_extent->nr_pages = nr_pages;
297         async_extent->compress_type = compress_type;
298         list_add_tail(&async_extent->list, &cow->extents);
299         return 0;
300 }
301
302 /*
303  * we create compressed extents in two phases.  The first
304  * phase compresses a range of pages that have already been
305  * locked (both pages and state bits are locked).
306  *
307  * This is done inside an ordered work queue, and the compression
308  * is spread across many cpus.  The actual IO submission is step
309  * two, and the ordered work queue takes care of making sure that
310  * happens in the same order things were put onto the queue by
311  * writepages and friends.
312  *
313  * If this code finds it can't get good compression, it puts an
314  * entry onto the work queue to write the uncompressed bytes.  This
315  * makes sure that both compressed inodes and uncompressed inodes
316  * are written in the same order that pdflush sent them down.
317  */
318 static noinline int compress_file_range(struct inode *inode,
319                                         struct page *locked_page,
320                                         u64 start, u64 end,
321                                         struct async_cow *async_cow,
322                                         int *num_added)
323 {
324         struct btrfs_root *root = BTRFS_I(inode)->root;
325         struct btrfs_trans_handle *trans;
326         u64 num_bytes;
327         u64 blocksize = root->sectorsize;
328         u64 actual_end;
329         u64 isize = i_size_read(inode);
330         int ret = 0;
331         struct page **pages = NULL;
332         unsigned long nr_pages;
333         unsigned long nr_pages_ret = 0;
334         unsigned long total_compressed = 0;
335         unsigned long total_in = 0;
336         unsigned long max_compressed = 128 * 1024;
337         unsigned long max_uncompressed = 128 * 1024;
338         int i;
339         int will_compress;
340         int compress_type = root->fs_info->compress_type;
341
342         actual_end = min_t(u64, isize, end + 1);
343 again:
344         will_compress = 0;
345         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
347
348         /*
349          * we don't want to send crud past the end of i_size through
350          * compression, that's just a waste of CPU time.  So, if the
351          * end of the file is before the start of our current
352          * requested range of bytes, we bail out to the uncompressed
353          * cleanup code that can deal with all of this.
354          *
355          * It isn't really the fastest way to fix things, but this is a
356          * very uncommon corner.
357          */
358         if (actual_end <= start)
359                 goto cleanup_and_bail_uncompressed;
360
361         total_compressed = actual_end - start;
362
363         /* we want to make sure that amount of ram required to uncompress
364          * an extent is reasonable, so we limit the total size in ram
365          * of a compressed extent to 128k.  This is a crucial number
366          * because it also controls how easily we can spread reads across
367          * cpus for decompression.
368          *
369          * We also want to make sure the amount of IO required to do
370          * a random read is reasonably small, so we limit the size of
371          * a compressed extent to 128k.
372          */
373         total_compressed = min(total_compressed, max_uncompressed);
374         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
375         num_bytes = max(blocksize,  num_bytes);
376         total_in = 0;
377         ret = 0;
378
379         /*
380          * we do compression for mount -o compress and when the
381          * inode has not been flagged as nocompress.  This flag can
382          * change at any time if we discover bad compression ratios.
383          */
384         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
385             (btrfs_test_opt(root, COMPRESS) ||
386              (BTRFS_I(inode)->force_compress) ||
387              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
388                 WARN_ON(pages);
389                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390                 BUG_ON(!pages);
391
392                 if (BTRFS_I(inode)->force_compress)
393                         compress_type = BTRFS_I(inode)->force_compress;
394
395                 ret = btrfs_compress_pages(compress_type,
396                                            inode->i_mapping, start,
397                                            total_compressed, pages,
398                                            nr_pages, &nr_pages_ret,
399                                            &total_in,
400                                            &total_compressed,
401                                            max_compressed);
402
403                 if (!ret) {
404                         unsigned long offset = total_compressed &
405                                 (PAGE_CACHE_SIZE - 1);
406                         struct page *page = pages[nr_pages_ret - 1];
407                         char *kaddr;
408
409                         /* zero the tail end of the last page, we might be
410                          * sending it down to disk
411                          */
412                         if (offset) {
413                                 kaddr = kmap_atomic(page, KM_USER0);
414                                 memset(kaddr + offset, 0,
415                                        PAGE_CACHE_SIZE - offset);
416                                 kunmap_atomic(kaddr, KM_USER0);
417                         }
418                         will_compress = 1;
419                 }
420         }
421         if (start == 0) {
422                 trans = btrfs_join_transaction(root, 1);
423                 BUG_ON(IS_ERR(trans));
424                 btrfs_set_trans_block_group(trans, inode);
425                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
426
427                 /* lets try to make an inline extent */
428                 if (ret || total_in < (actual_end - start)) {
429                         /* we didn't compress the entire range, try
430                          * to make an uncompressed inline extent.
431                          */
432                         ret = cow_file_range_inline(trans, root, inode,
433                                                     start, end, 0, 0, NULL);
434                 } else {
435                         /* try making a compressed inline extent */
436                         ret = cow_file_range_inline(trans, root, inode,
437                                                     start, end,
438                                                     total_compressed,
439                                                     compress_type, pages);
440                 }
441                 if (ret == 0) {
442                         /*
443                          * inline extent creation worked, we don't need
444                          * to create any more async work items.  Unlock
445                          * and free up our temp pages.
446                          */
447                         extent_clear_unlock_delalloc(inode,
448                              &BTRFS_I(inode)->io_tree,
449                              start, end, NULL,
450                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
451                              EXTENT_CLEAR_DELALLOC |
452                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
453
454                         btrfs_end_transaction(trans, root);
455                         goto free_pages_out;
456                 }
457                 btrfs_end_transaction(trans, root);
458         }
459
460         if (will_compress) {
461                 /*
462                  * we aren't doing an inline extent round the compressed size
463                  * up to a block size boundary so the allocator does sane
464                  * things
465                  */
466                 total_compressed = (total_compressed + blocksize - 1) &
467                         ~(blocksize - 1);
468
469                 /*
470                  * one last check to make sure the compression is really a
471                  * win, compare the page count read with the blocks on disk
472                  */
473                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
474                         ~(PAGE_CACHE_SIZE - 1);
475                 if (total_compressed >= total_in) {
476                         will_compress = 0;
477                 } else {
478                         num_bytes = total_in;
479                 }
480         }
481         if (!will_compress && pages) {
482                 /*
483                  * the compression code ran but failed to make things smaller,
484                  * free any pages it allocated and our page pointer array
485                  */
486                 for (i = 0; i < nr_pages_ret; i++) {
487                         WARN_ON(pages[i]->mapping);
488                         page_cache_release(pages[i]);
489                 }
490                 kfree(pages);
491                 pages = NULL;
492                 total_compressed = 0;
493                 nr_pages_ret = 0;
494
495                 /* flag the file so we don't compress in the future */
496                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
497                     !(BTRFS_I(inode)->force_compress)) {
498                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
499                 }
500         }
501         if (will_compress) {
502                 *num_added += 1;
503
504                 /* the async work queues will take care of doing actual
505                  * allocation on disk for these compressed pages,
506                  * and will submit them to the elevator.
507                  */
508                 add_async_extent(async_cow, start, num_bytes,
509                                  total_compressed, pages, nr_pages_ret,
510                                  compress_type);
511
512                 if (start + num_bytes < end) {
513                         start += num_bytes;
514                         pages = NULL;
515                         cond_resched();
516                         goto again;
517                 }
518         } else {
519 cleanup_and_bail_uncompressed:
520                 /*
521                  * No compression, but we still need to write the pages in
522                  * the file we've been given so far.  redirty the locked
523                  * page if it corresponds to our extent and set things up
524                  * for the async work queue to run cow_file_range to do
525                  * the normal delalloc dance
526                  */
527                 if (page_offset(locked_page) >= start &&
528                     page_offset(locked_page) <= end) {
529                         __set_page_dirty_nobuffers(locked_page);
530                         /* unlocked later on in the async handlers */
531                 }
532                 add_async_extent(async_cow, start, end - start + 1,
533                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
534                 *num_added += 1;
535         }
536
537 out:
538         return 0;
539
540 free_pages_out:
541         for (i = 0; i < nr_pages_ret; i++) {
542                 WARN_ON(pages[i]->mapping);
543                 page_cache_release(pages[i]);
544         }
545         kfree(pages);
546
547         goto out;
548 }
549
550 /*
551  * phase two of compressed writeback.  This is the ordered portion
552  * of the code, which only gets called in the order the work was
553  * queued.  We walk all the async extents created by compress_file_range
554  * and send them down to the disk.
555  */
556 static noinline int submit_compressed_extents(struct inode *inode,
557                                               struct async_cow *async_cow)
558 {
559         struct async_extent *async_extent;
560         u64 alloc_hint = 0;
561         struct btrfs_trans_handle *trans;
562         struct btrfs_key ins;
563         struct extent_map *em;
564         struct btrfs_root *root = BTRFS_I(inode)->root;
565         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566         struct extent_io_tree *io_tree;
567         int ret = 0;
568
569         if (list_empty(&async_cow->extents))
570                 return 0;
571
572
573         while (!list_empty(&async_cow->extents)) {
574                 async_extent = list_entry(async_cow->extents.next,
575                                           struct async_extent, list);
576                 list_del(&async_extent->list);
577
578                 io_tree = &BTRFS_I(inode)->io_tree;
579
580 retry:
581                 /* did the compression code fall back to uncompressed IO? */
582                 if (!async_extent->pages) {
583                         int page_started = 0;
584                         unsigned long nr_written = 0;
585
586                         lock_extent(io_tree, async_extent->start,
587                                          async_extent->start +
588                                          async_extent->ram_size - 1, GFP_NOFS);
589
590                         /* allocate blocks */
591                         ret = cow_file_range(inode, async_cow->locked_page,
592                                              async_extent->start,
593                                              async_extent->start +
594                                              async_extent->ram_size - 1,
595                                              &page_started, &nr_written, 0);
596
597                         /*
598                          * if page_started, cow_file_range inserted an
599                          * inline extent and took care of all the unlocking
600                          * and IO for us.  Otherwise, we need to submit
601                          * all those pages down to the drive.
602                          */
603                         if (!page_started && !ret)
604                                 extent_write_locked_range(io_tree,
605                                                   inode, async_extent->start,
606                                                   async_extent->start +
607                                                   async_extent->ram_size - 1,
608                                                   btrfs_get_extent,
609                                                   WB_SYNC_ALL);
610                         kfree(async_extent);
611                         cond_resched();
612                         continue;
613                 }
614
615                 lock_extent(io_tree, async_extent->start,
616                             async_extent->start + async_extent->ram_size - 1,
617                             GFP_NOFS);
618
619                 trans = btrfs_join_transaction(root, 1);
620                 BUG_ON(IS_ERR(trans));
621                 ret = btrfs_reserve_extent(trans, root,
622                                            async_extent->compressed_size,
623                                            async_extent->compressed_size,
624                                            0, alloc_hint,
625                                            (u64)-1, &ins, 1);
626                 btrfs_end_transaction(trans, root);
627
628                 if (ret) {
629                         int i;
630                         for (i = 0; i < async_extent->nr_pages; i++) {
631                                 WARN_ON(async_extent->pages[i]->mapping);
632                                 page_cache_release(async_extent->pages[i]);
633                         }
634                         kfree(async_extent->pages);
635                         async_extent->nr_pages = 0;
636                         async_extent->pages = NULL;
637                         unlock_extent(io_tree, async_extent->start,
638                                       async_extent->start +
639                                       async_extent->ram_size - 1, GFP_NOFS);
640                         goto retry;
641                 }
642
643                 /*
644                  * here we're doing allocation and writeback of the
645                  * compressed pages
646                  */
647                 btrfs_drop_extent_cache(inode, async_extent->start,
648                                         async_extent->start +
649                                         async_extent->ram_size - 1, 0);
650
651                 em = alloc_extent_map(GFP_NOFS);
652                 BUG_ON(!em);
653                 em->start = async_extent->start;
654                 em->len = async_extent->ram_size;
655                 em->orig_start = em->start;
656
657                 em->block_start = ins.objectid;
658                 em->block_len = ins.offset;
659                 em->bdev = root->fs_info->fs_devices->latest_bdev;
660                 em->compress_type = async_extent->compress_type;
661                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
662                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
663
664                 while (1) {
665                         write_lock(&em_tree->lock);
666                         ret = add_extent_mapping(em_tree, em);
667                         write_unlock(&em_tree->lock);
668                         if (ret != -EEXIST) {
669                                 free_extent_map(em);
670                                 break;
671                         }
672                         btrfs_drop_extent_cache(inode, async_extent->start,
673                                                 async_extent->start +
674                                                 async_extent->ram_size - 1, 0);
675                 }
676
677                 ret = btrfs_add_ordered_extent_compress(inode,
678                                                 async_extent->start,
679                                                 ins.objectid,
680                                                 async_extent->ram_size,
681                                                 ins.offset,
682                                                 BTRFS_ORDERED_COMPRESSED,
683                                                 async_extent->compress_type);
684                 BUG_ON(ret);
685
686                 /*
687                  * clear dirty, set writeback and unlock the pages.
688                  */
689                 extent_clear_unlock_delalloc(inode,
690                                 &BTRFS_I(inode)->io_tree,
691                                 async_extent->start,
692                                 async_extent->start +
693                                 async_extent->ram_size - 1,
694                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
695                                 EXTENT_CLEAR_UNLOCK |
696                                 EXTENT_CLEAR_DELALLOC |
697                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
698
699                 ret = btrfs_submit_compressed_write(inode,
700                                     async_extent->start,
701                                     async_extent->ram_size,
702                                     ins.objectid,
703                                     ins.offset, async_extent->pages,
704                                     async_extent->nr_pages);
705
706                 BUG_ON(ret);
707                 alloc_hint = ins.objectid + ins.offset;
708                 kfree(async_extent);
709                 cond_resched();
710         }
711
712         return 0;
713 }
714
715 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
716                                       u64 num_bytes)
717 {
718         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719         struct extent_map *em;
720         u64 alloc_hint = 0;
721
722         read_lock(&em_tree->lock);
723         em = search_extent_mapping(em_tree, start, num_bytes);
724         if (em) {
725                 /*
726                  * if block start isn't an actual block number then find the
727                  * first block in this inode and use that as a hint.  If that
728                  * block is also bogus then just don't worry about it.
729                  */
730                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
731                         free_extent_map(em);
732                         em = search_extent_mapping(em_tree, 0, 0);
733                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
734                                 alloc_hint = em->block_start;
735                         if (em)
736                                 free_extent_map(em);
737                 } else {
738                         alloc_hint = em->block_start;
739                         free_extent_map(em);
740                 }
741         }
742         read_unlock(&em_tree->lock);
743
744         return alloc_hint;
745 }
746
747 /*
748  * when extent_io.c finds a delayed allocation range in the file,
749  * the call backs end up in this code.  The basic idea is to
750  * allocate extents on disk for the range, and create ordered data structs
751  * in ram to track those extents.
752  *
753  * locked_page is the page that writepage had locked already.  We use
754  * it to make sure we don't do extra locks or unlocks.
755  *
756  * *page_started is set to one if we unlock locked_page and do everything
757  * required to start IO on it.  It may be clean and already done with
758  * IO when we return.
759  */
760 static noinline int cow_file_range(struct inode *inode,
761                                    struct page *locked_page,
762                                    u64 start, u64 end, int *page_started,
763                                    unsigned long *nr_written,
764                                    int unlock)
765 {
766         struct btrfs_root *root = BTRFS_I(inode)->root;
767         struct btrfs_trans_handle *trans;
768         u64 alloc_hint = 0;
769         u64 num_bytes;
770         unsigned long ram_size;
771         u64 disk_num_bytes;
772         u64 cur_alloc_size;
773         u64 blocksize = root->sectorsize;
774         struct btrfs_key ins;
775         struct extent_map *em;
776         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777         int ret = 0;
778
779         BUG_ON(root == root->fs_info->tree_root);
780         trans = btrfs_join_transaction(root, 1);
781         BUG_ON(IS_ERR(trans));
782         btrfs_set_trans_block_group(trans, inode);
783         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
784
785         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
786         num_bytes = max(blocksize,  num_bytes);
787         disk_num_bytes = num_bytes;
788         ret = 0;
789
790         if (start == 0) {
791                 /* lets try to make an inline extent */
792                 ret = cow_file_range_inline(trans, root, inode,
793                                             start, end, 0, 0, NULL);
794                 if (ret == 0) {
795                         extent_clear_unlock_delalloc(inode,
796                                      &BTRFS_I(inode)->io_tree,
797                                      start, end, NULL,
798                                      EXTENT_CLEAR_UNLOCK_PAGE |
799                                      EXTENT_CLEAR_UNLOCK |
800                                      EXTENT_CLEAR_DELALLOC |
801                                      EXTENT_CLEAR_DIRTY |
802                                      EXTENT_SET_WRITEBACK |
803                                      EXTENT_END_WRITEBACK);
804
805                         *nr_written = *nr_written +
806                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
807                         *page_started = 1;
808                         ret = 0;
809                         goto out;
810                 }
811         }
812
813         BUG_ON(disk_num_bytes >
814                btrfs_super_total_bytes(&root->fs_info->super_copy));
815
816         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
817         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
818
819         while (disk_num_bytes > 0) {
820                 unsigned long op;
821
822                 cur_alloc_size = disk_num_bytes;
823                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
824                                            root->sectorsize, 0, alloc_hint,
825                                            (u64)-1, &ins, 1);
826                 BUG_ON(ret);
827
828                 em = alloc_extent_map(GFP_NOFS);
829                 BUG_ON(!em);
830                 em->start = start;
831                 em->orig_start = em->start;
832                 ram_size = ins.offset;
833                 em->len = ins.offset;
834
835                 em->block_start = ins.objectid;
836                 em->block_len = ins.offset;
837                 em->bdev = root->fs_info->fs_devices->latest_bdev;
838                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
839
840                 while (1) {
841                         write_lock(&em_tree->lock);
842                         ret = add_extent_mapping(em_tree, em);
843                         write_unlock(&em_tree->lock);
844                         if (ret != -EEXIST) {
845                                 free_extent_map(em);
846                                 break;
847                         }
848                         btrfs_drop_extent_cache(inode, start,
849                                                 start + ram_size - 1, 0);
850                 }
851
852                 cur_alloc_size = ins.offset;
853                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
854                                                ram_size, cur_alloc_size, 0);
855                 BUG_ON(ret);
856
857                 if (root->root_key.objectid ==
858                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
859                         ret = btrfs_reloc_clone_csums(inode, start,
860                                                       cur_alloc_size);
861                         BUG_ON(ret);
862                 }
863
864                 if (disk_num_bytes < cur_alloc_size)
865                         break;
866
867                 /* we're not doing compressed IO, don't unlock the first
868                  * page (which the caller expects to stay locked), don't
869                  * clear any dirty bits and don't set any writeback bits
870                  *
871                  * Do set the Private2 bit so we know this page was properly
872                  * setup for writepage
873                  */
874                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
875                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
876                         EXTENT_SET_PRIVATE2;
877
878                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
879                                              start, start + ram_size - 1,
880                                              locked_page, op);
881                 disk_num_bytes -= cur_alloc_size;
882                 num_bytes -= cur_alloc_size;
883                 alloc_hint = ins.objectid + ins.offset;
884                 start += cur_alloc_size;
885         }
886 out:
887         ret = 0;
888         btrfs_end_transaction(trans, root);
889
890         return ret;
891 }
892
893 /*
894  * work queue call back to started compression on a file and pages
895  */
896 static noinline void async_cow_start(struct btrfs_work *work)
897 {
898         struct async_cow *async_cow;
899         int num_added = 0;
900         async_cow = container_of(work, struct async_cow, work);
901
902         compress_file_range(async_cow->inode, async_cow->locked_page,
903                             async_cow->start, async_cow->end, async_cow,
904                             &num_added);
905         if (num_added == 0)
906                 async_cow->inode = NULL;
907 }
908
909 /*
910  * work queue call back to submit previously compressed pages
911  */
912 static noinline void async_cow_submit(struct btrfs_work *work)
913 {
914         struct async_cow *async_cow;
915         struct btrfs_root *root;
916         unsigned long nr_pages;
917
918         async_cow = container_of(work, struct async_cow, work);
919
920         root = async_cow->root;
921         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
922                 PAGE_CACHE_SHIFT;
923
924         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
925
926         if (atomic_read(&root->fs_info->async_delalloc_pages) <
927             5 * 1042 * 1024 &&
928             waitqueue_active(&root->fs_info->async_submit_wait))
929                 wake_up(&root->fs_info->async_submit_wait);
930
931         if (async_cow->inode)
932                 submit_compressed_extents(async_cow->inode, async_cow);
933 }
934
935 static noinline void async_cow_free(struct btrfs_work *work)
936 {
937         struct async_cow *async_cow;
938         async_cow = container_of(work, struct async_cow, work);
939         kfree(async_cow);
940 }
941
942 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
943                                 u64 start, u64 end, int *page_started,
944                                 unsigned long *nr_written)
945 {
946         struct async_cow *async_cow;
947         struct btrfs_root *root = BTRFS_I(inode)->root;
948         unsigned long nr_pages;
949         u64 cur_end;
950         int limit = 10 * 1024 * 1042;
951
952         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
953                          1, 0, NULL, GFP_NOFS);
954         while (start < end) {
955                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
956                 async_cow->inode = inode;
957                 async_cow->root = root;
958                 async_cow->locked_page = locked_page;
959                 async_cow->start = start;
960
961                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
962                         cur_end = end;
963                 else
964                         cur_end = min(end, start + 512 * 1024 - 1);
965
966                 async_cow->end = cur_end;
967                 INIT_LIST_HEAD(&async_cow->extents);
968
969                 async_cow->work.func = async_cow_start;
970                 async_cow->work.ordered_func = async_cow_submit;
971                 async_cow->work.ordered_free = async_cow_free;
972                 async_cow->work.flags = 0;
973
974                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
975                         PAGE_CACHE_SHIFT;
976                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
977
978                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
979                                    &async_cow->work);
980
981                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
982                         wait_event(root->fs_info->async_submit_wait,
983                            (atomic_read(&root->fs_info->async_delalloc_pages) <
984                             limit));
985                 }
986
987                 while (atomic_read(&root->fs_info->async_submit_draining) &&
988                       atomic_read(&root->fs_info->async_delalloc_pages)) {
989                         wait_event(root->fs_info->async_submit_wait,
990                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
991                            0));
992                 }
993
994                 *nr_written += nr_pages;
995                 start = cur_end + 1;
996         }
997         *page_started = 1;
998         return 0;
999 }
1000
1001 static noinline int csum_exist_in_range(struct btrfs_root *root,
1002                                         u64 bytenr, u64 num_bytes)
1003 {
1004         int ret;
1005         struct btrfs_ordered_sum *sums;
1006         LIST_HEAD(list);
1007
1008         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1009                                        bytenr + num_bytes - 1, &list);
1010         if (ret == 0 && list_empty(&list))
1011                 return 0;
1012
1013         while (!list_empty(&list)) {
1014                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1015                 list_del(&sums->list);
1016                 kfree(sums);
1017         }
1018         return 1;
1019 }
1020
1021 /*
1022  * when nowcow writeback call back.  This checks for snapshots or COW copies
1023  * of the extents that exist in the file, and COWs the file as required.
1024  *
1025  * If no cow copies or snapshots exist, we write directly to the existing
1026  * blocks on disk
1027  */
1028 static noinline int run_delalloc_nocow(struct inode *inode,
1029                                        struct page *locked_page,
1030                               u64 start, u64 end, int *page_started, int force,
1031                               unsigned long *nr_written)
1032 {
1033         struct btrfs_root *root = BTRFS_I(inode)->root;
1034         struct btrfs_trans_handle *trans;
1035         struct extent_buffer *leaf;
1036         struct btrfs_path *path;
1037         struct btrfs_file_extent_item *fi;
1038         struct btrfs_key found_key;
1039         u64 cow_start;
1040         u64 cur_offset;
1041         u64 extent_end;
1042         u64 extent_offset;
1043         u64 disk_bytenr;
1044         u64 num_bytes;
1045         int extent_type;
1046         int ret;
1047         int type;
1048         int nocow;
1049         int check_prev = 1;
1050         bool nolock = false;
1051
1052         path = btrfs_alloc_path();
1053         BUG_ON(!path);
1054         if (root == root->fs_info->tree_root) {
1055                 nolock = true;
1056                 trans = btrfs_join_transaction_nolock(root, 1);
1057         } else {
1058                 trans = btrfs_join_transaction(root, 1);
1059         }
1060         BUG_ON(IS_ERR(trans));
1061
1062         cow_start = (u64)-1;
1063         cur_offset = start;
1064         while (1) {
1065                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1066                                                cur_offset, 0);
1067                 BUG_ON(ret < 0);
1068                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1069                         leaf = path->nodes[0];
1070                         btrfs_item_key_to_cpu(leaf, &found_key,
1071                                               path->slots[0] - 1);
1072                         if (found_key.objectid == inode->i_ino &&
1073                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1074                                 path->slots[0]--;
1075                 }
1076                 check_prev = 0;
1077 next_slot:
1078                 leaf = path->nodes[0];
1079                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1080                         ret = btrfs_next_leaf(root, path);
1081                         if (ret < 0)
1082                                 BUG_ON(1);
1083                         if (ret > 0)
1084                                 break;
1085                         leaf = path->nodes[0];
1086                 }
1087
1088                 nocow = 0;
1089                 disk_bytenr = 0;
1090                 num_bytes = 0;
1091                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1092
1093                 if (found_key.objectid > inode->i_ino ||
1094                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1095                     found_key.offset > end)
1096                         break;
1097
1098                 if (found_key.offset > cur_offset) {
1099                         extent_end = found_key.offset;
1100                         extent_type = 0;
1101                         goto out_check;
1102                 }
1103
1104                 fi = btrfs_item_ptr(leaf, path->slots[0],
1105                                     struct btrfs_file_extent_item);
1106                 extent_type = btrfs_file_extent_type(leaf, fi);
1107
1108                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1109                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1110                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1111                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1112                         extent_end = found_key.offset +
1113                                 btrfs_file_extent_num_bytes(leaf, fi);
1114                         if (extent_end <= start) {
1115                                 path->slots[0]++;
1116                                 goto next_slot;
1117                         }
1118                         if (disk_bytenr == 0)
1119                                 goto out_check;
1120                         if (btrfs_file_extent_compression(leaf, fi) ||
1121                             btrfs_file_extent_encryption(leaf, fi) ||
1122                             btrfs_file_extent_other_encoding(leaf, fi))
1123                                 goto out_check;
1124                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1125                                 goto out_check;
1126                         if (btrfs_extent_readonly(root, disk_bytenr))
1127                                 goto out_check;
1128                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1129                                                   found_key.offset -
1130                                                   extent_offset, disk_bytenr))
1131                                 goto out_check;
1132                         disk_bytenr += extent_offset;
1133                         disk_bytenr += cur_offset - found_key.offset;
1134                         num_bytes = min(end + 1, extent_end) - cur_offset;
1135                         /*
1136                          * force cow if csum exists in the range.
1137                          * this ensure that csum for a given extent are
1138                          * either valid or do not exist.
1139                          */
1140                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1141                                 goto out_check;
1142                         nocow = 1;
1143                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1144                         extent_end = found_key.offset +
1145                                 btrfs_file_extent_inline_len(leaf, fi);
1146                         extent_end = ALIGN(extent_end, root->sectorsize);
1147                 } else {
1148                         BUG_ON(1);
1149                 }
1150 out_check:
1151                 if (extent_end <= start) {
1152                         path->slots[0]++;
1153                         goto next_slot;
1154                 }
1155                 if (!nocow) {
1156                         if (cow_start == (u64)-1)
1157                                 cow_start = cur_offset;
1158                         cur_offset = extent_end;
1159                         if (cur_offset > end)
1160                                 break;
1161                         path->slots[0]++;
1162                         goto next_slot;
1163                 }
1164
1165                 btrfs_release_path(root, path);
1166                 if (cow_start != (u64)-1) {
1167                         ret = cow_file_range(inode, locked_page, cow_start,
1168                                         found_key.offset - 1, page_started,
1169                                         nr_written, 1);
1170                         BUG_ON(ret);
1171                         cow_start = (u64)-1;
1172                 }
1173
1174                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1175                         struct extent_map *em;
1176                         struct extent_map_tree *em_tree;
1177                         em_tree = &BTRFS_I(inode)->extent_tree;
1178                         em = alloc_extent_map(GFP_NOFS);
1179                         BUG_ON(!em);
1180                         em->start = cur_offset;
1181                         em->orig_start = em->start;
1182                         em->len = num_bytes;
1183                         em->block_len = num_bytes;
1184                         em->block_start = disk_bytenr;
1185                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1186                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1187                         while (1) {
1188                                 write_lock(&em_tree->lock);
1189                                 ret = add_extent_mapping(em_tree, em);
1190                                 write_unlock(&em_tree->lock);
1191                                 if (ret != -EEXIST) {
1192                                         free_extent_map(em);
1193                                         break;
1194                                 }
1195                                 btrfs_drop_extent_cache(inode, em->start,
1196                                                 em->start + em->len - 1, 0);
1197                         }
1198                         type = BTRFS_ORDERED_PREALLOC;
1199                 } else {
1200                         type = BTRFS_ORDERED_NOCOW;
1201                 }
1202
1203                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1204                                                num_bytes, num_bytes, type);
1205                 BUG_ON(ret);
1206
1207                 if (root->root_key.objectid ==
1208                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1209                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1210                                                       num_bytes);
1211                         BUG_ON(ret);
1212                 }
1213
1214                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1215                                 cur_offset, cur_offset + num_bytes - 1,
1216                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1217                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1218                                 EXTENT_SET_PRIVATE2);
1219                 cur_offset = extent_end;
1220                 if (cur_offset > end)
1221                         break;
1222         }
1223         btrfs_release_path(root, path);
1224
1225         if (cur_offset <= end && cow_start == (u64)-1)
1226                 cow_start = cur_offset;
1227         if (cow_start != (u64)-1) {
1228                 ret = cow_file_range(inode, locked_page, cow_start, end,
1229                                      page_started, nr_written, 1);
1230                 BUG_ON(ret);
1231         }
1232
1233         if (nolock) {
1234                 ret = btrfs_end_transaction_nolock(trans, root);
1235                 BUG_ON(ret);
1236         } else {
1237                 ret = btrfs_end_transaction(trans, root);
1238                 BUG_ON(ret);
1239         }
1240         btrfs_free_path(path);
1241         return 0;
1242 }
1243
1244 /*
1245  * extent_io.c call back to do delayed allocation processing
1246  */
1247 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1248                               u64 start, u64 end, int *page_started,
1249                               unsigned long *nr_written)
1250 {
1251         int ret;
1252         struct btrfs_root *root = BTRFS_I(inode)->root;
1253
1254         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1255                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1256                                          page_started, 1, nr_written);
1257         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1258                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1259                                          page_started, 0, nr_written);
1260         else if (!btrfs_test_opt(root, COMPRESS) &&
1261                  !(BTRFS_I(inode)->force_compress) &&
1262                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1263                 ret = cow_file_range(inode, locked_page, start, end,
1264                                       page_started, nr_written, 1);
1265         else
1266                 ret = cow_file_range_async(inode, locked_page, start, end,
1267                                            page_started, nr_written);
1268         return ret;
1269 }
1270
1271 static int btrfs_split_extent_hook(struct inode *inode,
1272                                    struct extent_state *orig, u64 split)
1273 {
1274         /* not delalloc, ignore it */
1275         if (!(orig->state & EXTENT_DELALLOC))
1276                 return 0;
1277
1278         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1279         return 0;
1280 }
1281
1282 /*
1283  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1284  * extents so we can keep track of new extents that are just merged onto old
1285  * extents, such as when we are doing sequential writes, so we can properly
1286  * account for the metadata space we'll need.
1287  */
1288 static int btrfs_merge_extent_hook(struct inode *inode,
1289                                    struct extent_state *new,
1290                                    struct extent_state *other)
1291 {
1292         /* not delalloc, ignore it */
1293         if (!(other->state & EXTENT_DELALLOC))
1294                 return 0;
1295
1296         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1297         return 0;
1298 }
1299
1300 /*
1301  * extent_io.c set_bit_hook, used to track delayed allocation
1302  * bytes in this file, and to maintain the list of inodes that
1303  * have pending delalloc work to be done.
1304  */
1305 static int btrfs_set_bit_hook(struct inode *inode,
1306                               struct extent_state *state, int *bits)
1307 {
1308
1309         /*
1310          * set_bit and clear bit hooks normally require _irqsave/restore
1311          * but in this case, we are only testeing for the DELALLOC
1312          * bit, which is only set or cleared with irqs on
1313          */
1314         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1315                 struct btrfs_root *root = BTRFS_I(inode)->root;
1316                 u64 len = state->end + 1 - state->start;
1317                 int do_list = (root->root_key.objectid !=
1318                                BTRFS_ROOT_TREE_OBJECTID);
1319
1320                 if (*bits & EXTENT_FIRST_DELALLOC)
1321                         *bits &= ~EXTENT_FIRST_DELALLOC;
1322                 else
1323                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1324
1325                 spin_lock(&root->fs_info->delalloc_lock);
1326                 BTRFS_I(inode)->delalloc_bytes += len;
1327                 root->fs_info->delalloc_bytes += len;
1328                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1329                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1330                                       &root->fs_info->delalloc_inodes);
1331                 }
1332                 spin_unlock(&root->fs_info->delalloc_lock);
1333         }
1334         return 0;
1335 }
1336
1337 /*
1338  * extent_io.c clear_bit_hook, see set_bit_hook for why
1339  */
1340 static int btrfs_clear_bit_hook(struct inode *inode,
1341                                 struct extent_state *state, int *bits)
1342 {
1343         /*
1344          * set_bit and clear bit hooks normally require _irqsave/restore
1345          * but in this case, we are only testeing for the DELALLOC
1346          * bit, which is only set or cleared with irqs on
1347          */
1348         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1349                 struct btrfs_root *root = BTRFS_I(inode)->root;
1350                 u64 len = state->end + 1 - state->start;
1351                 int do_list = (root->root_key.objectid !=
1352                                BTRFS_ROOT_TREE_OBJECTID);
1353
1354                 if (*bits & EXTENT_FIRST_DELALLOC)
1355                         *bits &= ~EXTENT_FIRST_DELALLOC;
1356                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1357                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1358
1359                 if (*bits & EXTENT_DO_ACCOUNTING)
1360                         btrfs_delalloc_release_metadata(inode, len);
1361
1362                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1363                     && do_list)
1364                         btrfs_free_reserved_data_space(inode, len);
1365
1366                 spin_lock(&root->fs_info->delalloc_lock);
1367                 root->fs_info->delalloc_bytes -= len;
1368                 BTRFS_I(inode)->delalloc_bytes -= len;
1369
1370                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1371                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1372                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1373                 }
1374                 spin_unlock(&root->fs_info->delalloc_lock);
1375         }
1376         return 0;
1377 }
1378
1379 /*
1380  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1381  * we don't create bios that span stripes or chunks
1382  */
1383 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1384                          size_t size, struct bio *bio,
1385                          unsigned long bio_flags)
1386 {
1387         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1388         struct btrfs_mapping_tree *map_tree;
1389         u64 logical = (u64)bio->bi_sector << 9;
1390         u64 length = 0;
1391         u64 map_length;
1392         int ret;
1393
1394         if (bio_flags & EXTENT_BIO_COMPRESSED)
1395                 return 0;
1396
1397         length = bio->bi_size;
1398         map_tree = &root->fs_info->mapping_tree;
1399         map_length = length;
1400         ret = btrfs_map_block(map_tree, READ, logical,
1401                               &map_length, NULL, 0);
1402
1403         if (map_length < length + size)
1404                 return 1;
1405         return ret;
1406 }
1407
1408 /*
1409  * in order to insert checksums into the metadata in large chunks,
1410  * we wait until bio submission time.   All the pages in the bio are
1411  * checksummed and sums are attached onto the ordered extent record.
1412  *
1413  * At IO completion time the cums attached on the ordered extent record
1414  * are inserted into the btree
1415  */
1416 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1417                                     struct bio *bio, int mirror_num,
1418                                     unsigned long bio_flags,
1419                                     u64 bio_offset)
1420 {
1421         struct btrfs_root *root = BTRFS_I(inode)->root;
1422         int ret = 0;
1423
1424         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1425         BUG_ON(ret);
1426         return 0;
1427 }
1428
1429 /*
1430  * in order to insert checksums into the metadata in large chunks,
1431  * we wait until bio submission time.   All the pages in the bio are
1432  * checksummed and sums are attached onto the ordered extent record.
1433  *
1434  * At IO completion time the cums attached on the ordered extent record
1435  * are inserted into the btree
1436  */
1437 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1438                           int mirror_num, unsigned long bio_flags,
1439                           u64 bio_offset)
1440 {
1441         struct btrfs_root *root = BTRFS_I(inode)->root;
1442         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1443 }
1444
1445 /*
1446  * extent_io.c submission hook. This does the right thing for csum calculation
1447  * on write, or reading the csums from the tree before a read
1448  */
1449 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1450                           int mirror_num, unsigned long bio_flags,
1451                           u64 bio_offset)
1452 {
1453         struct btrfs_root *root = BTRFS_I(inode)->root;
1454         int ret = 0;
1455         int skip_sum;
1456
1457         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1458
1459         if (root == root->fs_info->tree_root)
1460                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1461         else
1462                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1463         BUG_ON(ret);
1464
1465         if (!(rw & REQ_WRITE)) {
1466                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1467                         return btrfs_submit_compressed_read(inode, bio,
1468                                                     mirror_num, bio_flags);
1469                 } else if (!skip_sum) {
1470                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1471                         if (ret)
1472                                 return ret;
1473                 }
1474                 goto mapit;
1475         } else if (!skip_sum) {
1476                 /* csum items have already been cloned */
1477                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1478                         goto mapit;
1479                 /* we're doing a write, do the async checksumming */
1480                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1481                                    inode, rw, bio, mirror_num,
1482                                    bio_flags, bio_offset,
1483                                    __btrfs_submit_bio_start,
1484                                    __btrfs_submit_bio_done);
1485         }
1486
1487 mapit:
1488         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1489 }
1490
1491 /*
1492  * given a list of ordered sums record them in the inode.  This happens
1493  * at IO completion time based on sums calculated at bio submission time.
1494  */
1495 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1496                              struct inode *inode, u64 file_offset,
1497                              struct list_head *list)
1498 {
1499         struct btrfs_ordered_sum *sum;
1500
1501         btrfs_set_trans_block_group(trans, inode);
1502
1503         list_for_each_entry(sum, list, list) {
1504                 btrfs_csum_file_blocks(trans,
1505                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1506         }
1507         return 0;
1508 }
1509
1510 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1511                               struct extent_state **cached_state)
1512 {
1513         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514                 WARN_ON(1);
1515         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516                                    cached_state, GFP_NOFS);
1517 }
1518
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521         struct page *page;
1522         struct btrfs_work work;
1523 };
1524
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1526 {
1527         struct btrfs_writepage_fixup *fixup;
1528         struct btrfs_ordered_extent *ordered;
1529         struct extent_state *cached_state = NULL;
1530         struct page *page;
1531         struct inode *inode;
1532         u64 page_start;
1533         u64 page_end;
1534
1535         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1536         page = fixup->page;
1537 again:
1538         lock_page(page);
1539         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1540                 ClearPageChecked(page);
1541                 goto out_page;
1542         }
1543
1544         inode = page->mapping->host;
1545         page_start = page_offset(page);
1546         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1547
1548         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1549                          &cached_state, GFP_NOFS);
1550
1551         /* already ordered? We're done */
1552         if (PagePrivate2(page))
1553                 goto out;
1554
1555         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1556         if (ordered) {
1557                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1558                                      page_end, &cached_state, GFP_NOFS);
1559                 unlock_page(page);
1560                 btrfs_start_ordered_extent(inode, ordered, 1);
1561                 goto again;
1562         }
1563
1564         BUG();
1565         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1566         ClearPageChecked(page);
1567 out:
1568         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1569                              &cached_state, GFP_NOFS);
1570 out_page:
1571         unlock_page(page);
1572         page_cache_release(page);
1573         kfree(fixup);
1574 }
1575
1576 /*
1577  * There are a few paths in the higher layers of the kernel that directly
1578  * set the page dirty bit without asking the filesystem if it is a
1579  * good idea.  This causes problems because we want to make sure COW
1580  * properly happens and the data=ordered rules are followed.
1581  *
1582  * In our case any range that doesn't have the ORDERED bit set
1583  * hasn't been properly setup for IO.  We kick off an async process
1584  * to fix it up.  The async helper will wait for ordered extents, set
1585  * the delalloc bit and make it safe to write the page.
1586  */
1587 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1588 {
1589         struct inode *inode = page->mapping->host;
1590         struct btrfs_writepage_fixup *fixup;
1591         struct btrfs_root *root = BTRFS_I(inode)->root;
1592
1593         /* this page is properly in the ordered list */
1594         if (TestClearPagePrivate2(page))
1595                 return 0;
1596
1597         if (PageChecked(page))
1598                 return -EAGAIN;
1599
1600         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1601         if (!fixup)
1602                 return -EAGAIN;
1603
1604         SetPageChecked(page);
1605         page_cache_get(page);
1606         fixup->work.func = btrfs_writepage_fixup_worker;
1607         fixup->page = page;
1608         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1609         return -EAGAIN;
1610 }
1611
1612 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1613                                        struct inode *inode, u64 file_pos,
1614                                        u64 disk_bytenr, u64 disk_num_bytes,
1615                                        u64 num_bytes, u64 ram_bytes,
1616                                        u8 compression, u8 encryption,
1617                                        u16 other_encoding, int extent_type)
1618 {
1619         struct btrfs_root *root = BTRFS_I(inode)->root;
1620         struct btrfs_file_extent_item *fi;
1621         struct btrfs_path *path;
1622         struct extent_buffer *leaf;
1623         struct btrfs_key ins;
1624         u64 hint;
1625         int ret;
1626
1627         path = btrfs_alloc_path();
1628         BUG_ON(!path);
1629
1630         path->leave_spinning = 1;
1631
1632         /*
1633          * we may be replacing one extent in the tree with another.
1634          * The new extent is pinned in the extent map, and we don't want
1635          * to drop it from the cache until it is completely in the btree.
1636          *
1637          * So, tell btrfs_drop_extents to leave this extent in the cache.
1638          * the caller is expected to unpin it and allow it to be merged
1639          * with the others.
1640          */
1641         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1642                                  &hint, 0);
1643         BUG_ON(ret);
1644
1645         ins.objectid = inode->i_ino;
1646         ins.offset = file_pos;
1647         ins.type = BTRFS_EXTENT_DATA_KEY;
1648         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1649         BUG_ON(ret);
1650         leaf = path->nodes[0];
1651         fi = btrfs_item_ptr(leaf, path->slots[0],
1652                             struct btrfs_file_extent_item);
1653         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1654         btrfs_set_file_extent_type(leaf, fi, extent_type);
1655         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1656         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1657         btrfs_set_file_extent_offset(leaf, fi, 0);
1658         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1659         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1660         btrfs_set_file_extent_compression(leaf, fi, compression);
1661         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1662         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1663
1664         btrfs_unlock_up_safe(path, 1);
1665         btrfs_set_lock_blocking(leaf);
1666
1667         btrfs_mark_buffer_dirty(leaf);
1668
1669         inode_add_bytes(inode, num_bytes);
1670
1671         ins.objectid = disk_bytenr;
1672         ins.offset = disk_num_bytes;
1673         ins.type = BTRFS_EXTENT_ITEM_KEY;
1674         ret = btrfs_alloc_reserved_file_extent(trans, root,
1675                                         root->root_key.objectid,
1676                                         inode->i_ino, file_pos, &ins);
1677         BUG_ON(ret);
1678         btrfs_free_path(path);
1679
1680         return 0;
1681 }
1682
1683 /*
1684  * helper function for btrfs_finish_ordered_io, this
1685  * just reads in some of the csum leaves to prime them into ram
1686  * before we start the transaction.  It limits the amount of btree
1687  * reads required while inside the transaction.
1688  */
1689 /* as ordered data IO finishes, this gets called so we can finish
1690  * an ordered extent if the range of bytes in the file it covers are
1691  * fully written.
1692  */
1693 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1694 {
1695         struct btrfs_root *root = BTRFS_I(inode)->root;
1696         struct btrfs_trans_handle *trans = NULL;
1697         struct btrfs_ordered_extent *ordered_extent = NULL;
1698         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1699         struct extent_state *cached_state = NULL;
1700         int compress_type = 0;
1701         int ret;
1702         bool nolock = false;
1703
1704         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1705                                              end - start + 1);
1706         if (!ret)
1707                 return 0;
1708         BUG_ON(!ordered_extent);
1709
1710         nolock = (root == root->fs_info->tree_root);
1711
1712         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1713                 BUG_ON(!list_empty(&ordered_extent->list));
1714                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715                 if (!ret) {
1716                         if (nolock)
1717                                 trans = btrfs_join_transaction_nolock(root, 1);
1718                         else
1719                                 trans = btrfs_join_transaction(root, 1);
1720                         BUG_ON(IS_ERR(trans));
1721                         btrfs_set_trans_block_group(trans, inode);
1722                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1723                         ret = btrfs_update_inode(trans, root, inode);
1724                         BUG_ON(ret);
1725                 }
1726                 goto out;
1727         }
1728
1729         lock_extent_bits(io_tree, ordered_extent->file_offset,
1730                          ordered_extent->file_offset + ordered_extent->len - 1,
1731                          0, &cached_state, GFP_NOFS);
1732
1733         if (nolock)
1734                 trans = btrfs_join_transaction_nolock(root, 1);
1735         else
1736                 trans = btrfs_join_transaction(root, 1);
1737         BUG_ON(IS_ERR(trans));
1738         btrfs_set_trans_block_group(trans, inode);
1739         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1740
1741         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1742                 compress_type = ordered_extent->compress_type;
1743         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1744                 BUG_ON(compress_type);
1745                 ret = btrfs_mark_extent_written(trans, inode,
1746                                                 ordered_extent->file_offset,
1747                                                 ordered_extent->file_offset +
1748                                                 ordered_extent->len);
1749                 BUG_ON(ret);
1750         } else {
1751                 BUG_ON(root == root->fs_info->tree_root);
1752                 ret = insert_reserved_file_extent(trans, inode,
1753                                                 ordered_extent->file_offset,
1754                                                 ordered_extent->start,
1755                                                 ordered_extent->disk_len,
1756                                                 ordered_extent->len,
1757                                                 ordered_extent->len,
1758                                                 compress_type, 0, 0,
1759                                                 BTRFS_FILE_EXTENT_REG);
1760                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1761                                    ordered_extent->file_offset,
1762                                    ordered_extent->len);
1763                 BUG_ON(ret);
1764         }
1765         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1766                              ordered_extent->file_offset +
1767                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1768
1769         add_pending_csums(trans, inode, ordered_extent->file_offset,
1770                           &ordered_extent->list);
1771
1772         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1773         ret = btrfs_update_inode(trans, root, inode);
1774         BUG_ON(ret);
1775 out:
1776         if (nolock) {
1777                 if (trans)
1778                         btrfs_end_transaction_nolock(trans, root);
1779         } else {
1780                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1781                 if (trans)
1782                         btrfs_end_transaction(trans, root);
1783         }
1784
1785         /* once for us */
1786         btrfs_put_ordered_extent(ordered_extent);
1787         /* once for the tree */
1788         btrfs_put_ordered_extent(ordered_extent);
1789
1790         return 0;
1791 }
1792
1793 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1794                                 struct extent_state *state, int uptodate)
1795 {
1796         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1797
1798         ClearPagePrivate2(page);
1799         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1800 }
1801
1802 /*
1803  * When IO fails, either with EIO or csum verification fails, we
1804  * try other mirrors that might have a good copy of the data.  This
1805  * io_failure_record is used to record state as we go through all the
1806  * mirrors.  If another mirror has good data, the page is set up to date
1807  * and things continue.  If a good mirror can't be found, the original
1808  * bio end_io callback is called to indicate things have failed.
1809  */
1810 struct io_failure_record {
1811         struct page *page;
1812         u64 start;
1813         u64 len;
1814         u64 logical;
1815         unsigned long bio_flags;
1816         int last_mirror;
1817 };
1818
1819 static int btrfs_io_failed_hook(struct bio *failed_bio,
1820                          struct page *page, u64 start, u64 end,
1821                          struct extent_state *state)
1822 {
1823         struct io_failure_record *failrec = NULL;
1824         u64 private;
1825         struct extent_map *em;
1826         struct inode *inode = page->mapping->host;
1827         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1828         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1829         struct bio *bio;
1830         int num_copies;
1831         int ret;
1832         int rw;
1833         u64 logical;
1834
1835         ret = get_state_private(failure_tree, start, &private);
1836         if (ret) {
1837                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1838                 if (!failrec)
1839                         return -ENOMEM;
1840                 failrec->start = start;
1841                 failrec->len = end - start + 1;
1842                 failrec->last_mirror = 0;
1843                 failrec->bio_flags = 0;
1844
1845                 read_lock(&em_tree->lock);
1846                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1847                 if (em->start > start || em->start + em->len < start) {
1848                         free_extent_map(em);
1849                         em = NULL;
1850                 }
1851                 read_unlock(&em_tree->lock);
1852
1853                 if (!em || IS_ERR(em)) {
1854                         kfree(failrec);
1855                         return -EIO;
1856                 }
1857                 logical = start - em->start;
1858                 logical = em->block_start + logical;
1859                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1860                         logical = em->block_start;
1861                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1862                         extent_set_compress_type(&failrec->bio_flags,
1863                                                  em->compress_type);
1864                 }
1865                 failrec->logical = logical;
1866                 free_extent_map(em);
1867                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1868                                 EXTENT_DIRTY, GFP_NOFS);
1869                 set_state_private(failure_tree, start,
1870                                  (u64)(unsigned long)failrec);
1871         } else {
1872                 failrec = (struct io_failure_record *)(unsigned long)private;
1873         }
1874         num_copies = btrfs_num_copies(
1875                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1876                               failrec->logical, failrec->len);
1877         failrec->last_mirror++;
1878         if (!state) {
1879                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1880                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1881                                                     failrec->start,
1882                                                     EXTENT_LOCKED);
1883                 if (state && state->start != failrec->start)
1884                         state = NULL;
1885                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1886         }
1887         if (!state || failrec->last_mirror > num_copies) {
1888                 set_state_private(failure_tree, failrec->start, 0);
1889                 clear_extent_bits(failure_tree, failrec->start,
1890                                   failrec->start + failrec->len - 1,
1891                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1892                 kfree(failrec);
1893                 return -EIO;
1894         }
1895         bio = bio_alloc(GFP_NOFS, 1);
1896         bio->bi_private = state;
1897         bio->bi_end_io = failed_bio->bi_end_io;
1898         bio->bi_sector = failrec->logical >> 9;
1899         bio->bi_bdev = failed_bio->bi_bdev;
1900         bio->bi_size = 0;
1901
1902         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1903         if (failed_bio->bi_rw & REQ_WRITE)
1904                 rw = WRITE;
1905         else
1906                 rw = READ;
1907
1908         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1909                                                       failrec->last_mirror,
1910                                                       failrec->bio_flags, 0);
1911         return ret;
1912 }
1913
1914 /*
1915  * each time an IO finishes, we do a fast check in the IO failure tree
1916  * to see if we need to process or clean up an io_failure_record
1917  */
1918 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1919 {
1920         u64 private;
1921         u64 private_failure;
1922         struct io_failure_record *failure;
1923         int ret;
1924
1925         private = 0;
1926         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1927                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1928                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1929                                         start, &private_failure);
1930                 if (ret == 0) {
1931                         failure = (struct io_failure_record *)(unsigned long)
1932                                    private_failure;
1933                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1934                                           failure->start, 0);
1935                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1936                                           failure->start,
1937                                           failure->start + failure->len - 1,
1938                                           EXTENT_DIRTY | EXTENT_LOCKED,
1939                                           GFP_NOFS);
1940                         kfree(failure);
1941                 }
1942         }
1943         return 0;
1944 }
1945
1946 /*
1947  * when reads are done, we need to check csums to verify the data is correct
1948  * if there's a match, we allow the bio to finish.  If not, we go through
1949  * the io_failure_record routines to find good copies
1950  */
1951 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1952                                struct extent_state *state)
1953 {
1954         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1955         struct inode *inode = page->mapping->host;
1956         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1957         char *kaddr;
1958         u64 private = ~(u32)0;
1959         int ret;
1960         struct btrfs_root *root = BTRFS_I(inode)->root;
1961         u32 csum = ~(u32)0;
1962
1963         if (PageChecked(page)) {
1964                 ClearPageChecked(page);
1965                 goto good;
1966         }
1967
1968         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1969                 return 0;
1970
1971         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1972             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1973                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1974                                   GFP_NOFS);
1975                 return 0;
1976         }
1977
1978         if (state && state->start == start) {
1979                 private = state->private;
1980                 ret = 0;
1981         } else {
1982                 ret = get_state_private(io_tree, start, &private);
1983         }
1984         kaddr = kmap_atomic(page, KM_USER0);
1985         if (ret)
1986                 goto zeroit;
1987
1988         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1989         btrfs_csum_final(csum, (char *)&csum);
1990         if (csum != private)
1991                 goto zeroit;
1992
1993         kunmap_atomic(kaddr, KM_USER0);
1994 good:
1995         /* if the io failure tree for this inode is non-empty,
1996          * check to see if we've recovered from a failed IO
1997          */
1998         btrfs_clean_io_failures(inode, start);
1999         return 0;
2000
2001 zeroit:
2002         if (printk_ratelimit()) {
2003                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2004                        "private %llu\n", page->mapping->host->i_ino,
2005                        (unsigned long long)start, csum,
2006                        (unsigned long long)private);
2007         }
2008         memset(kaddr + offset, 1, end - start + 1);
2009         flush_dcache_page(page);
2010         kunmap_atomic(kaddr, KM_USER0);
2011         if (private == 0)
2012                 return 0;
2013         return -EIO;
2014 }
2015
2016 struct delayed_iput {
2017         struct list_head list;
2018         struct inode *inode;
2019 };
2020
2021 void btrfs_add_delayed_iput(struct inode *inode)
2022 {
2023         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2024         struct delayed_iput *delayed;
2025
2026         if (atomic_add_unless(&inode->i_count, -1, 1))
2027                 return;
2028
2029         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2030         delayed->inode = inode;
2031
2032         spin_lock(&fs_info->delayed_iput_lock);
2033         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2034         spin_unlock(&fs_info->delayed_iput_lock);
2035 }
2036
2037 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2038 {
2039         LIST_HEAD(list);
2040         struct btrfs_fs_info *fs_info = root->fs_info;
2041         struct delayed_iput *delayed;
2042         int empty;
2043
2044         spin_lock(&fs_info->delayed_iput_lock);
2045         empty = list_empty(&fs_info->delayed_iputs);
2046         spin_unlock(&fs_info->delayed_iput_lock);
2047         if (empty)
2048                 return;
2049
2050         down_read(&root->fs_info->cleanup_work_sem);
2051         spin_lock(&fs_info->delayed_iput_lock);
2052         list_splice_init(&fs_info->delayed_iputs, &list);
2053         spin_unlock(&fs_info->delayed_iput_lock);
2054
2055         while (!list_empty(&list)) {
2056                 delayed = list_entry(list.next, struct delayed_iput, list);
2057                 list_del(&delayed->list);
2058                 iput(delayed->inode);
2059                 kfree(delayed);
2060         }
2061         up_read(&root->fs_info->cleanup_work_sem);
2062 }
2063
2064 /*
2065  * calculate extra metadata reservation when snapshotting a subvolume
2066  * contains orphan files.
2067  */
2068 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2069                                 struct btrfs_pending_snapshot *pending,
2070                                 u64 *bytes_to_reserve)
2071 {
2072         struct btrfs_root *root;
2073         struct btrfs_block_rsv *block_rsv;
2074         u64 num_bytes;
2075         int index;
2076
2077         root = pending->root;
2078         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079                 return;
2080
2081         block_rsv = root->orphan_block_rsv;
2082
2083         /* orphan block reservation for the snapshot */
2084         num_bytes = block_rsv->size;
2085
2086         /*
2087          * after the snapshot is created, COWing tree blocks may use more
2088          * space than it frees. So we should make sure there is enough
2089          * reserved space.
2090          */
2091         index = trans->transid & 0x1;
2092         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2093                 num_bytes += block_rsv->size -
2094                              (block_rsv->reserved + block_rsv->freed[index]);
2095         }
2096
2097         *bytes_to_reserve += num_bytes;
2098 }
2099
2100 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2101                                 struct btrfs_pending_snapshot *pending)
2102 {
2103         struct btrfs_root *root = pending->root;
2104         struct btrfs_root *snap = pending->snap;
2105         struct btrfs_block_rsv *block_rsv;
2106         u64 num_bytes;
2107         int index;
2108         int ret;
2109
2110         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2111                 return;
2112
2113         /* refill source subvolume's orphan block reservation */
2114         block_rsv = root->orphan_block_rsv;
2115         index = trans->transid & 0x1;
2116         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2117                 num_bytes = block_rsv->size -
2118                             (block_rsv->reserved + block_rsv->freed[index]);
2119                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120                                               root->orphan_block_rsv,
2121                                               num_bytes);
2122                 BUG_ON(ret);
2123         }
2124
2125         /* setup orphan block reservation for the snapshot */
2126         block_rsv = btrfs_alloc_block_rsv(snap);
2127         BUG_ON(!block_rsv);
2128
2129         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2130         snap->orphan_block_rsv = block_rsv;
2131
2132         num_bytes = root->orphan_block_rsv->size;
2133         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2134                                       block_rsv, num_bytes);
2135         BUG_ON(ret);
2136
2137 #if 0
2138         /* insert orphan item for the snapshot */
2139         WARN_ON(!root->orphan_item_inserted);
2140         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2141                                        snap->root_key.objectid);
2142         BUG_ON(ret);
2143         snap->orphan_item_inserted = 1;
2144 #endif
2145 }
2146
2147 enum btrfs_orphan_cleanup_state {
2148         ORPHAN_CLEANUP_STARTED  = 1,
2149         ORPHAN_CLEANUP_DONE     = 2,
2150 };
2151
2152 /*
2153  * This is called in transaction commmit time. If there are no orphan
2154  * files in the subvolume, it removes orphan item and frees block_rsv
2155  * structure.
2156  */
2157 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2158                               struct btrfs_root *root)
2159 {
2160         int ret;
2161
2162         if (!list_empty(&root->orphan_list) ||
2163             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2164                 return;
2165
2166         if (root->orphan_item_inserted &&
2167             btrfs_root_refs(&root->root_item) > 0) {
2168                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2169                                             root->root_key.objectid);
2170                 BUG_ON(ret);
2171                 root->orphan_item_inserted = 0;
2172         }
2173
2174         if (root->orphan_block_rsv) {
2175                 WARN_ON(root->orphan_block_rsv->size > 0);
2176                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2177                 root->orphan_block_rsv = NULL;
2178         }
2179 }
2180
2181 /*
2182  * This creates an orphan entry for the given inode in case something goes
2183  * wrong in the middle of an unlink/truncate.
2184  *
2185  * NOTE: caller of this function should reserve 5 units of metadata for
2186  *       this function.
2187  */
2188 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2189 {
2190         struct btrfs_root *root = BTRFS_I(inode)->root;
2191         struct btrfs_block_rsv *block_rsv = NULL;
2192         int reserve = 0;
2193         int insert = 0;
2194         int ret;
2195
2196         if (!root->orphan_block_rsv) {
2197                 block_rsv = btrfs_alloc_block_rsv(root);
2198                 BUG_ON(!block_rsv);
2199         }
2200
2201         spin_lock(&root->orphan_lock);
2202         if (!root->orphan_block_rsv) {
2203                 root->orphan_block_rsv = block_rsv;
2204         } else if (block_rsv) {
2205                 btrfs_free_block_rsv(root, block_rsv);
2206                 block_rsv = NULL;
2207         }
2208
2209         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2210                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2211 #if 0
2212                 /*
2213                  * For proper ENOSPC handling, we should do orphan
2214                  * cleanup when mounting. But this introduces backward
2215                  * compatibility issue.
2216                  */
2217                 if (!xchg(&root->orphan_item_inserted, 1))
2218                         insert = 2;
2219                 else
2220                         insert = 1;
2221 #endif
2222                 insert = 1;
2223         } else {
2224                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2225         }
2226
2227         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2228                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2229                 reserve = 1;
2230         }
2231         spin_unlock(&root->orphan_lock);
2232
2233         if (block_rsv)
2234                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2235
2236         /* grab metadata reservation from transaction handle */
2237         if (reserve) {
2238                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2239                 BUG_ON(ret);
2240         }
2241
2242         /* insert an orphan item to track this unlinked/truncated file */
2243         if (insert >= 1) {
2244                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2245                 BUG_ON(ret);
2246         }
2247
2248         /* insert an orphan item to track subvolume contains orphan files */
2249         if (insert >= 2) {
2250                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2251                                                root->root_key.objectid);
2252                 BUG_ON(ret);
2253         }
2254         return 0;
2255 }
2256
2257 /*
2258  * We have done the truncate/delete so we can go ahead and remove the orphan
2259  * item for this particular inode.
2260  */
2261 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2262 {
2263         struct btrfs_root *root = BTRFS_I(inode)->root;
2264         int delete_item = 0;
2265         int release_rsv = 0;
2266         int ret = 0;
2267
2268         spin_lock(&root->orphan_lock);
2269         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2270                 list_del_init(&BTRFS_I(inode)->i_orphan);
2271                 delete_item = 1;
2272         }
2273
2274         if (BTRFS_I(inode)->orphan_meta_reserved) {
2275                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2276                 release_rsv = 1;
2277         }
2278         spin_unlock(&root->orphan_lock);
2279
2280         if (trans && delete_item) {
2281                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2282                 BUG_ON(ret);
2283         }
2284
2285         if (release_rsv)
2286                 btrfs_orphan_release_metadata(inode);
2287
2288         return 0;
2289 }
2290
2291 /*
2292  * this cleans up any orphans that may be left on the list from the last use
2293  * of this root.
2294  */
2295 int btrfs_orphan_cleanup(struct btrfs_root *root)
2296 {
2297         struct btrfs_path *path;
2298         struct extent_buffer *leaf;
2299         struct btrfs_key key, found_key;
2300         struct btrfs_trans_handle *trans;
2301         struct inode *inode;
2302         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2303
2304         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2305                 return 0;
2306
2307         path = btrfs_alloc_path();
2308         if (!path) {
2309                 ret = -ENOMEM;
2310                 goto out;
2311         }
2312         path->reada = -1;
2313
2314         key.objectid = BTRFS_ORPHAN_OBJECTID;
2315         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2316         key.offset = (u64)-1;
2317
2318         while (1) {
2319                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2320                 if (ret < 0)
2321                         goto out;
2322
2323                 /*
2324                  * if ret == 0 means we found what we were searching for, which
2325                  * is weird, but possible, so only screw with path if we didnt
2326                  * find the key and see if we have stuff that matches
2327                  */
2328                 if (ret > 0) {
2329                         ret = 0;
2330                         if (path->slots[0] == 0)
2331                                 break;
2332                         path->slots[0]--;
2333                 }
2334
2335                 /* pull out the item */
2336                 leaf = path->nodes[0];
2337                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2338
2339                 /* make sure the item matches what we want */
2340                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2341                         break;
2342                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2343                         break;
2344
2345                 /* release the path since we're done with it */
2346                 btrfs_release_path(root, path);
2347
2348                 /*
2349                  * this is where we are basically btrfs_lookup, without the
2350                  * crossing root thing.  we store the inode number in the
2351                  * offset of the orphan item.
2352                  */
2353                 found_key.objectid = found_key.offset;
2354                 found_key.type = BTRFS_INODE_ITEM_KEY;
2355                 found_key.offset = 0;
2356                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2357                 if (IS_ERR(inode)) {
2358                         ret = PTR_ERR(inode);
2359                         goto out;
2360                 }
2361
2362                 /*
2363                  * add this inode to the orphan list so btrfs_orphan_del does
2364                  * the proper thing when we hit it
2365                  */
2366                 spin_lock(&root->orphan_lock);
2367                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2368                 spin_unlock(&root->orphan_lock);
2369
2370                 /*
2371                  * if this is a bad inode, means we actually succeeded in
2372                  * removing the inode, but not the orphan record, which means
2373                  * we need to manually delete the orphan since iput will just
2374                  * do a destroy_inode
2375                  */
2376                 if (is_bad_inode(inode)) {
2377                         trans = btrfs_start_transaction(root, 0);
2378                         if (IS_ERR(trans)) {
2379                                 ret = PTR_ERR(trans);
2380                                 goto out;
2381                         }
2382                         btrfs_orphan_del(trans, inode);
2383                         btrfs_end_transaction(trans, root);
2384                         iput(inode);
2385                         continue;
2386                 }
2387
2388                 /* if we have links, this was a truncate, lets do that */
2389                 if (inode->i_nlink) {
2390                         if (!S_ISREG(inode->i_mode)) {
2391                                 WARN_ON(1);
2392                                 iput(inode);
2393                                 continue;
2394                         }
2395                         nr_truncate++;
2396                         ret = btrfs_truncate(inode);
2397                 } else {
2398                         nr_unlink++;
2399                 }
2400
2401                 /* this will do delete_inode and everything for us */
2402                 iput(inode);
2403                 if (ret)
2404                         goto out;
2405         }
2406         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2407
2408         if (root->orphan_block_rsv)
2409                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2410                                         (u64)-1);
2411
2412         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2413                 trans = btrfs_join_transaction(root, 1);
2414                 if (!IS_ERR(trans))
2415                         btrfs_end_transaction(trans, root);
2416         }
2417
2418         if (nr_unlink)
2419                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2420         if (nr_truncate)
2421                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2422
2423 out:
2424         if (ret)
2425                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2426         btrfs_free_path(path);
2427         return ret;
2428 }
2429
2430 /*
2431  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2432  * don't find any xattrs, we know there can't be any acls.
2433  *
2434  * slot is the slot the inode is in, objectid is the objectid of the inode
2435  */
2436 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2437                                           int slot, u64 objectid)
2438 {
2439         u32 nritems = btrfs_header_nritems(leaf);
2440         struct btrfs_key found_key;
2441         int scanned = 0;
2442
2443         slot++;
2444         while (slot < nritems) {
2445                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2446
2447                 /* we found a different objectid, there must not be acls */
2448                 if (found_key.objectid != objectid)
2449                         return 0;
2450
2451                 /* we found an xattr, assume we've got an acl */
2452                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2453                         return 1;
2454
2455                 /*
2456                  * we found a key greater than an xattr key, there can't
2457                  * be any acls later on
2458                  */
2459                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2460                         return 0;
2461
2462                 slot++;
2463                 scanned++;
2464
2465                 /*
2466                  * it goes inode, inode backrefs, xattrs, extents,
2467                  * so if there are a ton of hard links to an inode there can
2468                  * be a lot of backrefs.  Don't waste time searching too hard,
2469                  * this is just an optimization
2470                  */
2471                 if (scanned >= 8)
2472                         break;
2473         }
2474         /* we hit the end of the leaf before we found an xattr or
2475          * something larger than an xattr.  We have to assume the inode
2476          * has acls
2477          */
2478         return 1;
2479 }
2480
2481 /*
2482  * read an inode from the btree into the in-memory inode
2483  */
2484 static void btrfs_read_locked_inode(struct inode *inode)
2485 {
2486         struct btrfs_path *path;
2487         struct extent_buffer *leaf;
2488         struct btrfs_inode_item *inode_item;
2489         struct btrfs_timespec *tspec;
2490         struct btrfs_root *root = BTRFS_I(inode)->root;
2491         struct btrfs_key location;
2492         int maybe_acls;
2493         u64 alloc_group_block;
2494         u32 rdev;
2495         int ret;
2496
2497         path = btrfs_alloc_path();
2498         BUG_ON(!path);
2499         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2500
2501         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2502         if (ret)
2503                 goto make_bad;
2504
2505         leaf = path->nodes[0];
2506         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2507                                     struct btrfs_inode_item);
2508
2509         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2510         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2511         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2512         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2513         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2514
2515         tspec = btrfs_inode_atime(inode_item);
2516         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2517         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2518
2519         tspec = btrfs_inode_mtime(inode_item);
2520         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2521         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2522
2523         tspec = btrfs_inode_ctime(inode_item);
2524         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2525         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2526
2527         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2528         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2529         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2530         inode->i_generation = BTRFS_I(inode)->generation;
2531         inode->i_rdev = 0;
2532         rdev = btrfs_inode_rdev(leaf, inode_item);
2533
2534         BTRFS_I(inode)->index_cnt = (u64)-1;
2535         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2536
2537         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2538
2539         /*
2540          * try to precache a NULL acl entry for files that don't have
2541          * any xattrs or acls
2542          */
2543         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2544         if (!maybe_acls)
2545                 cache_no_acl(inode);
2546
2547         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2548                                                 alloc_group_block, 0);
2549         btrfs_free_path(path);
2550         inode_item = NULL;
2551
2552         switch (inode->i_mode & S_IFMT) {
2553         case S_IFREG:
2554                 inode->i_mapping->a_ops = &btrfs_aops;
2555                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2556                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2557                 inode->i_fop = &btrfs_file_operations;
2558                 inode->i_op = &btrfs_file_inode_operations;
2559                 break;
2560         case S_IFDIR:
2561                 inode->i_fop = &btrfs_dir_file_operations;
2562                 if (root == root->fs_info->tree_root)
2563                         inode->i_op = &btrfs_dir_ro_inode_operations;
2564                 else
2565                         inode->i_op = &btrfs_dir_inode_operations;
2566                 break;
2567         case S_IFLNK:
2568                 inode->i_op = &btrfs_symlink_inode_operations;
2569                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2570                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2571                 break;
2572         default:
2573                 inode->i_op = &btrfs_special_inode_operations;
2574                 init_special_inode(inode, inode->i_mode, rdev);
2575                 break;
2576         }
2577
2578         btrfs_update_iflags(inode);
2579         return;
2580
2581 make_bad:
2582         btrfs_free_path(path);
2583         make_bad_inode(inode);
2584 }
2585
2586 /*
2587  * given a leaf and an inode, copy the inode fields into the leaf
2588  */
2589 static void fill_inode_item(struct btrfs_trans_handle *trans,
2590                             struct extent_buffer *leaf,
2591                             struct btrfs_inode_item *item,
2592                             struct inode *inode)
2593 {
2594         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2595         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2596         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2597         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2598         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2599
2600         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2601                                inode->i_atime.tv_sec);
2602         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2603                                 inode->i_atime.tv_nsec);
2604
2605         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2606                                inode->i_mtime.tv_sec);
2607         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2608                                 inode->i_mtime.tv_nsec);
2609
2610         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2611                                inode->i_ctime.tv_sec);
2612         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2613                                 inode->i_ctime.tv_nsec);
2614
2615         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2616         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2617         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2618         btrfs_set_inode_transid(leaf, item, trans->transid);
2619         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2620         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2621         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2622 }
2623
2624 /*
2625  * copy everything in the in-memory inode into the btree.
2626  */
2627 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2628                                 struct btrfs_root *root, struct inode *inode)
2629 {
2630         struct btrfs_inode_item *inode_item;
2631         struct btrfs_path *path;
2632         struct extent_buffer *leaf;
2633         int ret;
2634
2635         path = btrfs_alloc_path();
2636         BUG_ON(!path);
2637         path->leave_spinning = 1;
2638         ret = btrfs_lookup_inode(trans, root, path,
2639                                  &BTRFS_I(inode)->location, 1);
2640         if (ret) {
2641                 if (ret > 0)
2642                         ret = -ENOENT;
2643                 goto failed;
2644         }
2645
2646         btrfs_unlock_up_safe(path, 1);
2647         leaf = path->nodes[0];
2648         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2649                                   struct btrfs_inode_item);
2650
2651         fill_inode_item(trans, leaf, inode_item, inode);
2652         btrfs_mark_buffer_dirty(leaf);
2653         btrfs_set_inode_last_trans(trans, inode);
2654         ret = 0;
2655 failed:
2656         btrfs_free_path(path);
2657         return ret;
2658 }
2659
2660
2661 /*
2662  * unlink helper that gets used here in inode.c and in the tree logging
2663  * recovery code.  It remove a link in a directory with a given name, and
2664  * also drops the back refs in the inode to the directory
2665  */
2666 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2667                                 struct btrfs_root *root,
2668                                 struct inode *dir, struct inode *inode,
2669                                 const char *name, int name_len)
2670 {
2671         struct btrfs_path *path;
2672         int ret = 0;
2673         struct extent_buffer *leaf;
2674         struct btrfs_dir_item *di;
2675         struct btrfs_key key;
2676         u64 index;
2677
2678         path = btrfs_alloc_path();
2679         if (!path) {
2680                 ret = -ENOMEM;
2681                 goto out;
2682         }
2683
2684         path->leave_spinning = 1;
2685         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2686                                     name, name_len, -1);
2687         if (IS_ERR(di)) {
2688                 ret = PTR_ERR(di);
2689                 goto err;
2690         }
2691         if (!di) {
2692                 ret = -ENOENT;
2693                 goto err;
2694         }
2695         leaf = path->nodes[0];
2696         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2697         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2698         if (ret)
2699                 goto err;
2700         btrfs_release_path(root, path);
2701
2702         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2703                                   inode->i_ino,
2704                                   dir->i_ino, &index);
2705         if (ret) {
2706                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2707                        "inode %lu parent %lu\n", name_len, name,
2708                        inode->i_ino, dir->i_ino);
2709                 goto err;
2710         }
2711
2712         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2713                                          index, name, name_len, -1);
2714         if (IS_ERR(di)) {
2715                 ret = PTR_ERR(di);
2716                 goto err;
2717         }
2718         if (!di) {
2719                 ret = -ENOENT;
2720                 goto err;
2721         }
2722         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2723         btrfs_release_path(root, path);
2724
2725         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2726                                          inode, dir->i_ino);
2727         BUG_ON(ret != 0 && ret != -ENOENT);
2728
2729         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2730                                            dir, index);
2731         if (ret == -ENOENT)
2732                 ret = 0;
2733 err:
2734         btrfs_free_path(path);
2735         if (ret)
2736                 goto out;
2737
2738         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2739         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2740         btrfs_update_inode(trans, root, dir);
2741 out:
2742         return ret;
2743 }
2744
2745 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2746                        struct btrfs_root *root,
2747                        struct inode *dir, struct inode *inode,
2748                        const char *name, int name_len)
2749 {
2750         int ret;
2751         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2752         if (!ret) {
2753                 btrfs_drop_nlink(inode);
2754                 ret = btrfs_update_inode(trans, root, inode);
2755         }
2756         return ret;
2757 }
2758                 
2759
2760 /* helper to check if there is any shared block in the path */
2761 static int check_path_shared(struct btrfs_root *root,
2762                              struct btrfs_path *path)
2763 {
2764         struct extent_buffer *eb;
2765         int level;
2766         u64 refs = 1;
2767
2768         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2769                 int ret;
2770
2771                 if (!path->nodes[level])
2772                         break;
2773                 eb = path->nodes[level];
2774                 if (!btrfs_block_can_be_shared(root, eb))
2775                         continue;
2776                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2777                                                &refs, NULL);
2778                 if (refs > 1)
2779                         return 1;
2780         }
2781         return 0;
2782 }
2783
2784 /*
2785  * helper to start transaction for unlink and rmdir.
2786  *
2787  * unlink and rmdir are special in btrfs, they do not always free space.
2788  * so in enospc case, we should make sure they will free space before
2789  * allowing them to use the global metadata reservation.
2790  */
2791 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2792                                                        struct dentry *dentry)
2793 {
2794         struct btrfs_trans_handle *trans;
2795         struct btrfs_root *root = BTRFS_I(dir)->root;
2796         struct btrfs_path *path;
2797         struct btrfs_inode_ref *ref;
2798         struct btrfs_dir_item *di;
2799         struct inode *inode = dentry->d_inode;
2800         u64 index;
2801         int check_link = 1;
2802         int err = -ENOSPC;
2803         int ret;
2804
2805         trans = btrfs_start_transaction(root, 10);
2806         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2807                 return trans;
2808
2809         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2810                 return ERR_PTR(-ENOSPC);
2811
2812         /* check if there is someone else holds reference */
2813         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2814                 return ERR_PTR(-ENOSPC);
2815
2816         if (atomic_read(&inode->i_count) > 2)
2817                 return ERR_PTR(-ENOSPC);
2818
2819         if (xchg(&root->fs_info->enospc_unlink, 1))
2820                 return ERR_PTR(-ENOSPC);
2821
2822         path = btrfs_alloc_path();
2823         if (!path) {
2824                 root->fs_info->enospc_unlink = 0;
2825                 return ERR_PTR(-ENOMEM);
2826         }
2827
2828         trans = btrfs_start_transaction(root, 0);
2829         if (IS_ERR(trans)) {
2830                 btrfs_free_path(path);
2831                 root->fs_info->enospc_unlink = 0;
2832                 return trans;
2833         }
2834
2835         path->skip_locking = 1;
2836         path->search_commit_root = 1;
2837
2838         ret = btrfs_lookup_inode(trans, root, path,
2839                                 &BTRFS_I(dir)->location, 0);
2840         if (ret < 0) {
2841                 err = ret;
2842                 goto out;
2843         }
2844         if (ret == 0) {
2845                 if (check_path_shared(root, path))
2846                         goto out;
2847         } else {
2848                 check_link = 0;
2849         }
2850         btrfs_release_path(root, path);
2851
2852         ret = btrfs_lookup_inode(trans, root, path,
2853                                 &BTRFS_I(inode)->location, 0);
2854         if (ret < 0) {
2855                 err = ret;
2856                 goto out;
2857         }
2858         if (ret == 0) {
2859                 if (check_path_shared(root, path))
2860                         goto out;
2861         } else {
2862                 check_link = 0;
2863         }
2864         btrfs_release_path(root, path);
2865
2866         if (ret == 0 && S_ISREG(inode->i_mode)) {
2867                 ret = btrfs_lookup_file_extent(trans, root, path,
2868                                                inode->i_ino, (u64)-1, 0);
2869                 if (ret < 0) {
2870                         err = ret;
2871                         goto out;
2872                 }
2873                 BUG_ON(ret == 0);
2874                 if (check_path_shared(root, path))
2875                         goto out;
2876                 btrfs_release_path(root, path);
2877         }
2878
2879         if (!check_link) {
2880                 err = 0;
2881                 goto out;
2882         }
2883
2884         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2885                                 dentry->d_name.name, dentry->d_name.len, 0);
2886         if (IS_ERR(di)) {
2887                 err = PTR_ERR(di);
2888                 goto out;
2889         }
2890         if (di) {
2891                 if (check_path_shared(root, path))
2892                         goto out;
2893         } else {
2894                 err = 0;
2895                 goto out;
2896         }
2897         btrfs_release_path(root, path);
2898
2899         ref = btrfs_lookup_inode_ref(trans, root, path,
2900                                 dentry->d_name.name, dentry->d_name.len,
2901                                 inode->i_ino, dir->i_ino, 0);
2902         if (IS_ERR(ref)) {
2903                 err = PTR_ERR(ref);
2904                 goto out;
2905         }
2906         BUG_ON(!ref);
2907         if (check_path_shared(root, path))
2908                 goto out;
2909         index = btrfs_inode_ref_index(path->nodes[0], ref);
2910         btrfs_release_path(root, path);
2911
2912         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2913                                 dentry->d_name.name, dentry->d_name.len, 0);
2914         if (IS_ERR(di)) {
2915                 err = PTR_ERR(di);
2916                 goto out;
2917         }
2918         BUG_ON(ret == -ENOENT);
2919         if (check_path_shared(root, path))
2920                 goto out;
2921
2922         err = 0;
2923 out:
2924         btrfs_free_path(path);
2925         if (err) {
2926                 btrfs_end_transaction(trans, root);
2927                 root->fs_info->enospc_unlink = 0;
2928                 return ERR_PTR(err);
2929         }
2930
2931         trans->block_rsv = &root->fs_info->global_block_rsv;
2932         return trans;
2933 }
2934
2935 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2936                                struct btrfs_root *root)
2937 {
2938         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2939                 BUG_ON(!root->fs_info->enospc_unlink);
2940                 root->fs_info->enospc_unlink = 0;
2941         }
2942         btrfs_end_transaction_throttle(trans, root);
2943 }
2944
2945 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2946 {
2947         struct btrfs_root *root = BTRFS_I(dir)->root;
2948         struct btrfs_trans_handle *trans;
2949         struct inode *inode = dentry->d_inode;
2950         int ret;
2951         unsigned long nr = 0;
2952
2953         trans = __unlink_start_trans(dir, dentry);
2954         if (IS_ERR(trans))
2955                 return PTR_ERR(trans);
2956
2957         btrfs_set_trans_block_group(trans, dir);
2958
2959         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2960
2961         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2962                                  dentry->d_name.name, dentry->d_name.len);
2963         BUG_ON(ret);
2964
2965         if (inode->i_nlink == 0) {
2966                 ret = btrfs_orphan_add(trans, inode);
2967                 BUG_ON(ret);
2968         }
2969
2970         nr = trans->blocks_used;
2971         __unlink_end_trans(trans, root);
2972         btrfs_btree_balance_dirty(root, nr);
2973         return ret;
2974 }
2975
2976 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2977                         struct btrfs_root *root,
2978                         struct inode *dir, u64 objectid,
2979                         const char *name, int name_len)
2980 {
2981         struct btrfs_path *path;
2982         struct extent_buffer *leaf;
2983         struct btrfs_dir_item *di;
2984         struct btrfs_key key;
2985         u64 index;
2986         int ret;
2987
2988         path = btrfs_alloc_path();
2989         if (!path)
2990                 return -ENOMEM;
2991
2992         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2993                                    name, name_len, -1);
2994         BUG_ON(!di || IS_ERR(di));
2995
2996         leaf = path->nodes[0];
2997         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2998         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2999         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3000         BUG_ON(ret);
3001         btrfs_release_path(root, path);
3002
3003         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3004                                  objectid, root->root_key.objectid,
3005                                  dir->i_ino, &index, name, name_len);
3006         if (ret < 0) {
3007                 BUG_ON(ret != -ENOENT);
3008                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3009                                                  name, name_len);
3010                 BUG_ON(!di || IS_ERR(di));
3011
3012                 leaf = path->nodes[0];
3013                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3014                 btrfs_release_path(root, path);
3015                 index = key.offset;
3016         }
3017
3018         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3019                                          index, name, name_len, -1);
3020         BUG_ON(!di || IS_ERR(di));
3021
3022         leaf = path->nodes[0];
3023         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3024         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3025         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3026         BUG_ON(ret);
3027         btrfs_release_path(root, path);
3028
3029         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3030         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3031         ret = btrfs_update_inode(trans, root, dir);
3032         BUG_ON(ret);
3033
3034         btrfs_free_path(path);
3035         return 0;
3036 }
3037
3038 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3039 {
3040         struct inode *inode = dentry->d_inode;
3041         int err = 0;
3042         struct btrfs_root *root = BTRFS_I(dir)->root;
3043         struct btrfs_trans_handle *trans;
3044         unsigned long nr = 0;
3045
3046         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3047             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3048                 return -ENOTEMPTY;
3049
3050         trans = __unlink_start_trans(dir, dentry);
3051         if (IS_ERR(trans))
3052                 return PTR_ERR(trans);
3053
3054         btrfs_set_trans_block_group(trans, dir);
3055
3056         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3057                 err = btrfs_unlink_subvol(trans, root, dir,
3058                                           BTRFS_I(inode)->location.objectid,
3059                                           dentry->d_name.name,
3060                                           dentry->d_name.len);
3061                 goto out;
3062         }
3063
3064         err = btrfs_orphan_add(trans, inode);
3065         if (err)
3066                 goto out;
3067
3068         /* now the directory is empty */
3069         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3070                                  dentry->d_name.name, dentry->d_name.len);
3071         if (!err)
3072                 btrfs_i_size_write(inode, 0);
3073 out:
3074         nr = trans->blocks_used;
3075         __unlink_end_trans(trans, root);
3076         btrfs_btree_balance_dirty(root, nr);
3077
3078         return err;
3079 }
3080
3081 #if 0
3082 /*
3083  * when truncating bytes in a file, it is possible to avoid reading
3084  * the leaves that contain only checksum items.  This can be the
3085  * majority of the IO required to delete a large file, but it must
3086  * be done carefully.
3087  *
3088  * The keys in the level just above the leaves are checked to make sure
3089  * the lowest key in a given leaf is a csum key, and starts at an offset
3090  * after the new  size.
3091  *
3092  * Then the key for the next leaf is checked to make sure it also has
3093  * a checksum item for the same file.  If it does, we know our target leaf
3094  * contains only checksum items, and it can be safely freed without reading
3095  * it.
3096  *
3097  * This is just an optimization targeted at large files.  It may do
3098  * nothing.  It will return 0 unless things went badly.
3099  */
3100 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3101                                      struct btrfs_root *root,
3102                                      struct btrfs_path *path,
3103                                      struct inode *inode, u64 new_size)
3104 {
3105         struct btrfs_key key;
3106         int ret;
3107         int nritems;
3108         struct btrfs_key found_key;
3109         struct btrfs_key other_key;
3110         struct btrfs_leaf_ref *ref;
3111         u64 leaf_gen;
3112         u64 leaf_start;
3113
3114         path->lowest_level = 1;
3115         key.objectid = inode->i_ino;
3116         key.type = BTRFS_CSUM_ITEM_KEY;
3117         key.offset = new_size;
3118 again:
3119         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3120         if (ret < 0)
3121                 goto out;
3122
3123         if (path->nodes[1] == NULL) {
3124                 ret = 0;
3125                 goto out;
3126         }
3127         ret = 0;
3128         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3129         nritems = btrfs_header_nritems(path->nodes[1]);
3130
3131         if (!nritems)
3132                 goto out;
3133
3134         if (path->slots[1] >= nritems)
3135                 goto next_node;
3136
3137         /* did we find a key greater than anything we want to delete? */
3138         if (found_key.objectid > inode->i_ino ||
3139            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3140                 goto out;
3141
3142         /* we check the next key in the node to make sure the leave contains
3143          * only checksum items.  This comparison doesn't work if our
3144          * leaf is the last one in the node
3145          */
3146         if (path->slots[1] + 1 >= nritems) {
3147 next_node:
3148                 /* search forward from the last key in the node, this
3149                  * will bring us into the next node in the tree
3150                  */
3151                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3152
3153                 /* unlikely, but we inc below, so check to be safe */
3154                 if (found_key.offset == (u64)-1)
3155                         goto out;
3156
3157                 /* search_forward needs a path with locks held, do the
3158                  * search again for the original key.  It is possible
3159                  * this will race with a balance and return a path that
3160                  * we could modify, but this drop is just an optimization
3161                  * and is allowed to miss some leaves.
3162                  */
3163                 btrfs_release_path(root, path);
3164                 found_key.offset++;
3165
3166                 /* setup a max key for search_forward */
3167                 other_key.offset = (u64)-1;
3168                 other_key.type = key.type;
3169                 other_key.objectid = key.objectid;
3170
3171                 path->keep_locks = 1;
3172                 ret = btrfs_search_forward(root, &found_key, &other_key,
3173                                            path, 0, 0);
3174                 path->keep_locks = 0;
3175                 if (ret || found_key.objectid != key.objectid ||
3176                     found_key.type != key.type) {
3177                         ret = 0;
3178                         goto out;
3179                 }
3180
3181                 key.offset = found_key.offset;
3182                 btrfs_release_path(root, path);
3183                 cond_resched();
3184                 goto again;
3185         }
3186
3187         /* we know there's one more slot after us in the tree,
3188          * read that key so we can verify it is also a checksum item
3189          */
3190         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3191
3192         if (found_key.objectid < inode->i_ino)
3193                 goto next_key;
3194
3195         if (found_key.type != key.type || found_key.offset < new_size)
3196                 goto next_key;
3197
3198         /*
3199          * if the key for the next leaf isn't a csum key from this objectid,
3200          * we can't be sure there aren't good items inside this leaf.
3201          * Bail out
3202          */
3203         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3204                 goto out;
3205
3206         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3207         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3208         /*
3209          * it is safe to delete this leaf, it contains only
3210          * csum items from this inode at an offset >= new_size
3211          */
3212         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3213         BUG_ON(ret);
3214
3215         if (root->ref_cows && leaf_gen < trans->transid) {
3216                 ref = btrfs_alloc_leaf_ref(root, 0);
3217                 if (ref) {
3218                         ref->root_gen = root->root_key.offset;
3219                         ref->bytenr = leaf_start;
3220                         ref->owner = 0;
3221                         ref->generation = leaf_gen;
3222                         ref->nritems = 0;
3223
3224                         btrfs_sort_leaf_ref(ref);
3225
3226                         ret = btrfs_add_leaf_ref(root, ref, 0);
3227                         WARN_ON(ret);
3228                         btrfs_free_leaf_ref(root, ref);
3229                 } else {
3230                         WARN_ON(1);
3231                 }
3232         }
3233 next_key:
3234         btrfs_release_path(root, path);
3235
3236         if (other_key.objectid == inode->i_ino &&
3237             other_key.type == key.type && other_key.offset > key.offset) {
3238                 key.offset = other_key.offset;
3239                 cond_resched();
3240                 goto again;
3241         }
3242         ret = 0;
3243 out:
3244         /* fixup any changes we've made to the path */
3245         path->lowest_level = 0;
3246         path->keep_locks = 0;
3247         btrfs_release_path(root, path);
3248         return ret;
3249 }
3250
3251 #endif
3252
3253 /*
3254  * this can truncate away extent items, csum items and directory items.
3255  * It starts at a high offset and removes keys until it can't find
3256  * any higher than new_size
3257  *
3258  * csum items that cross the new i_size are truncated to the new size
3259  * as well.
3260  *
3261  * min_type is the minimum key type to truncate down to.  If set to 0, this
3262  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3263  */
3264 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3265                                struct btrfs_root *root,
3266                                struct inode *inode,
3267                                u64 new_size, u32 min_type)
3268 {
3269         struct btrfs_path *path;
3270         struct extent_buffer *leaf;
3271         struct btrfs_file_extent_item *fi;
3272         struct btrfs_key key;
3273         struct btrfs_key found_key;
3274         u64 extent_start = 0;
3275         u64 extent_num_bytes = 0;
3276         u64 extent_offset = 0;
3277         u64 item_end = 0;
3278         u64 mask = root->sectorsize - 1;
3279         u32 found_type = (u8)-1;
3280         int found_extent;
3281         int del_item;
3282         int pending_del_nr = 0;
3283         int pending_del_slot = 0;
3284         int extent_type = -1;
3285         int encoding;
3286         int ret;
3287         int err = 0;
3288
3289         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3290
3291         if (root->ref_cows || root == root->fs_info->tree_root)
3292                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3293
3294         path = btrfs_alloc_path();
3295         BUG_ON(!path);
3296         path->reada = -1;
3297
3298         key.objectid = inode->i_ino;
3299         key.offset = (u64)-1;
3300         key.type = (u8)-1;
3301
3302 search_again:
3303         path->leave_spinning = 1;
3304         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3305         if (ret < 0) {
3306                 err = ret;
3307                 goto out;
3308         }
3309
3310         if (ret > 0) {
3311                 /* there are no items in the tree for us to truncate, we're
3312                  * done
3313                  */
3314                 if (path->slots[0] == 0)
3315                         goto out;
3316                 path->slots[0]--;
3317         }
3318
3319         while (1) {
3320                 fi = NULL;
3321                 leaf = path->nodes[0];
3322                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3323                 found_type = btrfs_key_type(&found_key);
3324                 encoding = 0;
3325
3326                 if (found_key.objectid != inode->i_ino)
3327                         break;
3328
3329                 if (found_type < min_type)
3330                         break;
3331
3332                 item_end = found_key.offset;
3333                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3334                         fi = btrfs_item_ptr(leaf, path->slots[0],
3335                                             struct btrfs_file_extent_item);
3336                         extent_type = btrfs_file_extent_type(leaf, fi);
3337                         encoding = btrfs_file_extent_compression(leaf, fi);
3338                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3339                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3340
3341                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3342                                 item_end +=
3343                                     btrfs_file_extent_num_bytes(leaf, fi);
3344                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3345                                 item_end += btrfs_file_extent_inline_len(leaf,
3346                                                                          fi);
3347                         }
3348                         item_end--;
3349                 }
3350                 if (found_type > min_type) {
3351                         del_item = 1;
3352                 } else {
3353                         if (item_end < new_size)
3354                                 break;
3355                         if (found_key.offset >= new_size)
3356                                 del_item = 1;
3357                         else
3358                                 del_item = 0;
3359                 }
3360                 found_extent = 0;
3361                 /* FIXME, shrink the extent if the ref count is only 1 */
3362                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3363                         goto delete;
3364
3365                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3366                         u64 num_dec;
3367                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3368                         if (!del_item && !encoding) {
3369                                 u64 orig_num_bytes =
3370                                         btrfs_file_extent_num_bytes(leaf, fi);
3371                                 extent_num_bytes = new_size -
3372                                         found_key.offset + root->sectorsize - 1;
3373                                 extent_num_bytes = extent_num_bytes &
3374                                         ~((u64)root->sectorsize - 1);
3375                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3376                                                          extent_num_bytes);
3377                                 num_dec = (orig_num_bytes -
3378                                            extent_num_bytes);
3379                                 if (root->ref_cows && extent_start != 0)
3380                                         inode_sub_bytes(inode, num_dec);
3381                                 btrfs_mark_buffer_dirty(leaf);
3382                         } else {
3383                                 extent_num_bytes =
3384                                         btrfs_file_extent_disk_num_bytes(leaf,
3385                                                                          fi);
3386                                 extent_offset = found_key.offset -
3387                                         btrfs_file_extent_offset(leaf, fi);
3388
3389                                 /* FIXME blocksize != 4096 */
3390                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3391                                 if (extent_start != 0) {
3392                                         found_extent = 1;
3393                                         if (root->ref_cows)
3394                                                 inode_sub_bytes(inode, num_dec);
3395                                 }
3396                         }
3397                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3398                         /*
3399                          * we can't truncate inline items that have had
3400                          * special encodings
3401                          */
3402                         if (!del_item &&
3403                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3404                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3405                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3406                                 u32 size = new_size - found_key.offset;
3407
3408                                 if (root->ref_cows) {
3409                                         inode_sub_bytes(inode, item_end + 1 -
3410                                                         new_size);
3411                                 }
3412                                 size =
3413                                     btrfs_file_extent_calc_inline_size(size);
3414                                 ret = btrfs_truncate_item(trans, root, path,
3415                                                           size, 1);
3416                                 BUG_ON(ret);
3417                         } else if (root->ref_cows) {
3418                                 inode_sub_bytes(inode, item_end + 1 -
3419                                                 found_key.offset);
3420                         }
3421                 }
3422 delete:
3423                 if (del_item) {
3424                         if (!pending_del_nr) {
3425                                 /* no pending yet, add ourselves */
3426                                 pending_del_slot = path->slots[0];
3427                                 pending_del_nr = 1;
3428                         } else if (pending_del_nr &&
3429                                    path->slots[0] + 1 == pending_del_slot) {
3430                                 /* hop on the pending chunk */
3431                                 pending_del_nr++;
3432                                 pending_del_slot = path->slots[0];
3433                         } else {
3434                                 BUG();
3435                         }
3436                 } else {
3437                         break;
3438                 }
3439                 if (found_extent && (root->ref_cows ||
3440                                      root == root->fs_info->tree_root)) {
3441                         btrfs_set_path_blocking(path);
3442                         ret = btrfs_free_extent(trans, root, extent_start,
3443                                                 extent_num_bytes, 0,
3444                                                 btrfs_header_owner(leaf),
3445                                                 inode->i_ino, extent_offset);
3446                         BUG_ON(ret);
3447                 }
3448
3449                 if (found_type == BTRFS_INODE_ITEM_KEY)
3450                         break;
3451
3452                 if (path->slots[0] == 0 ||
3453                     path->slots[0] != pending_del_slot) {
3454                         if (root->ref_cows) {
3455                                 err = -EAGAIN;
3456                                 goto out;
3457                         }
3458                         if (pending_del_nr) {
3459                                 ret = btrfs_del_items(trans, root, path,
3460                                                 pending_del_slot,
3461                                                 pending_del_nr);
3462                                 BUG_ON(ret);
3463                                 pending_del_nr = 0;
3464                         }
3465                         btrfs_release_path(root, path);
3466                         goto search_again;
3467                 } else {
3468                         path->slots[0]--;
3469                 }
3470         }
3471 out:
3472         if (pending_del_nr) {
3473                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3474                                       pending_del_nr);
3475                 BUG_ON(ret);
3476         }
3477         btrfs_free_path(path);
3478         return err;
3479 }
3480
3481 /*
3482  * taken from block_truncate_page, but does cow as it zeros out
3483  * any bytes left in the last page in the file.
3484  */
3485 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3486 {
3487         struct inode *inode = mapping->host;
3488         struct btrfs_root *root = BTRFS_I(inode)->root;
3489         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3490         struct btrfs_ordered_extent *ordered;
3491         struct extent_state *cached_state = NULL;
3492         char *kaddr;
3493         u32 blocksize = root->sectorsize;
3494         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3495         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3496         struct page *page;
3497         int ret = 0;
3498         u64 page_start;
3499         u64 page_end;
3500
3501         if ((offset & (blocksize - 1)) == 0)
3502                 goto out;
3503         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3504         if (ret)
3505                 goto out;
3506
3507         ret = -ENOMEM;
3508 again:
3509         page = grab_cache_page(mapping, index);
3510         if (!page) {
3511                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3512                 goto out;
3513         }
3514
3515         page_start = page_offset(page);
3516         page_end = page_start + PAGE_CACHE_SIZE - 1;
3517
3518         if (!PageUptodate(page)) {
3519                 ret = btrfs_readpage(NULL, page);
3520                 lock_page(page);
3521                 if (page->mapping != mapping) {
3522                         unlock_page(page);
3523                         page_cache_release(page);
3524                         goto again;
3525                 }
3526                 if (!PageUptodate(page)) {
3527                         ret = -EIO;
3528                         goto out_unlock;
3529                 }
3530         }
3531         wait_on_page_writeback(page);
3532
3533         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3534                          GFP_NOFS);
3535         set_page_extent_mapped(page);
3536
3537         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3538         if (ordered) {
3539                 unlock_extent_cached(io_tree, page_start, page_end,
3540                                      &cached_state, GFP_NOFS);
3541                 unlock_page(page);
3542                 page_cache_release(page);
3543                 btrfs_start_ordered_extent(inode, ordered, 1);
3544                 btrfs_put_ordered_extent(ordered);
3545                 goto again;
3546         }
3547
3548         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3549                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3550                           0, 0, &cached_state, GFP_NOFS);
3551
3552         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3553                                         &cached_state);
3554         if (ret) {
3555                 unlock_extent_cached(io_tree, page_start, page_end,
3556                                      &cached_state, GFP_NOFS);
3557                 goto out_unlock;
3558         }
3559
3560         ret = 0;
3561         if (offset != PAGE_CACHE_SIZE) {
3562                 kaddr = kmap(page);
3563                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3564                 flush_dcache_page(page);
3565                 kunmap(page);
3566         }
3567         ClearPageChecked(page);
3568         set_page_dirty(page);
3569         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3570                              GFP_NOFS);
3571
3572 out_unlock:
3573         if (ret)
3574                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3575         unlock_page(page);
3576         page_cache_release(page);
3577 out:
3578         return ret;
3579 }
3580
3581 /*
3582  * This function puts in dummy file extents for the area we're creating a hole
3583  * for.  So if we are truncating this file to a larger size we need to insert
3584  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3585  * the range between oldsize and size
3586  */
3587 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3588 {
3589         struct btrfs_trans_handle *trans;
3590         struct btrfs_root *root = BTRFS_I(inode)->root;
3591         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3592         struct extent_map *em = NULL;
3593         struct extent_state *cached_state = NULL;
3594         u64 mask = root->sectorsize - 1;
3595         u64 hole_start = (oldsize + mask) & ~mask;
3596         u64 block_end = (size + mask) & ~mask;
3597         u64 last_byte;
3598         u64 cur_offset;
3599         u64 hole_size;
3600         int err = 0;
3601
3602         if (size <= hole_start)
3603                 return 0;
3604
3605         while (1) {
3606                 struct btrfs_ordered_extent *ordered;
3607                 btrfs_wait_ordered_range(inode, hole_start,
3608                                          block_end - hole_start);
3609                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3610                                  &cached_state, GFP_NOFS);
3611                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3612                 if (!ordered)
3613                         break;
3614                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3615                                      &cached_state, GFP_NOFS);
3616                 btrfs_put_ordered_extent(ordered);
3617         }
3618
3619         cur_offset = hole_start;
3620         while (1) {
3621                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3622                                 block_end - cur_offset, 0);
3623                 BUG_ON(IS_ERR(em) || !em);
3624                 last_byte = min(extent_map_end(em), block_end);
3625                 last_byte = (last_byte + mask) & ~mask;
3626                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3627                         u64 hint_byte = 0;
3628                         hole_size = last_byte - cur_offset;
3629
3630                         trans = btrfs_start_transaction(root, 2);
3631                         if (IS_ERR(trans)) {
3632                                 err = PTR_ERR(trans);
3633                                 break;
3634                         }
3635                         btrfs_set_trans_block_group(trans, inode);
3636
3637                         err = btrfs_drop_extents(trans, inode, cur_offset,
3638                                                  cur_offset + hole_size,
3639                                                  &hint_byte, 1);
3640                         if (err)
3641                                 break;
3642
3643                         err = btrfs_insert_file_extent(trans, root,
3644                                         inode->i_ino, cur_offset, 0,
3645                                         0, hole_size, 0, hole_size,
3646                                         0, 0, 0);
3647                         if (err)
3648                                 break;
3649
3650                         btrfs_drop_extent_cache(inode, hole_start,
3651                                         last_byte - 1, 0);
3652
3653                         btrfs_end_transaction(trans, root);
3654                 }
3655                 free_extent_map(em);
3656                 em = NULL;
3657                 cur_offset = last_byte;
3658                 if (cur_offset >= block_end)
3659                         break;
3660         }
3661
3662         free_extent_map(em);
3663         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3664                              GFP_NOFS);
3665         return err;
3666 }
3667
3668 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3669 {
3670         loff_t oldsize = i_size_read(inode);
3671         int ret;
3672
3673         if (newsize == oldsize)
3674                 return 0;
3675
3676         if (newsize > oldsize) {
3677                 i_size_write(inode, newsize);
3678                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3679                 truncate_pagecache(inode, oldsize, newsize);
3680                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3681                 if (ret) {
3682                         btrfs_setsize(inode, oldsize);
3683                         return ret;
3684                 }
3685
3686                 mark_inode_dirty(inode);
3687         } else {
3688
3689                 /*
3690                  * We're truncating a file that used to have good data down to
3691                  * zero. Make sure it gets into the ordered flush list so that
3692                  * any new writes get down to disk quickly.
3693                  */
3694                 if (newsize == 0)
3695                         BTRFS_I(inode)->ordered_data_close = 1;
3696
3697                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3698                 truncate_setsize(inode, newsize);
3699                 ret = btrfs_truncate(inode);
3700         }
3701
3702         return ret;
3703 }
3704
3705 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3706 {
3707         struct inode *inode = dentry->d_inode;
3708         struct btrfs_root *root = BTRFS_I(inode)->root;
3709         int err;
3710
3711         if (btrfs_root_readonly(root))
3712                 return -EROFS;
3713
3714         err = inode_change_ok(inode, attr);
3715         if (err)
3716                 return err;
3717
3718         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3719                 err = btrfs_setsize(inode, attr->ia_size);
3720                 if (err)
3721                         return err;
3722         }
3723
3724         if (attr->ia_valid) {
3725                 setattr_copy(inode, attr);
3726                 mark_inode_dirty(inode);
3727
3728                 if (attr->ia_valid & ATTR_MODE)
3729                         err = btrfs_acl_chmod(inode);
3730         }
3731
3732         return err;
3733 }
3734
3735 void btrfs_evict_inode(struct inode *inode)
3736 {
3737         struct btrfs_trans_handle *trans;
3738         struct btrfs_root *root = BTRFS_I(inode)->root;
3739         unsigned long nr;
3740         int ret;
3741
3742         trace_btrfs_inode_evict(inode);
3743
3744         truncate_inode_pages(&inode->i_data, 0);
3745         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3746                                root == root->fs_info->tree_root))
3747                 goto no_delete;
3748
3749         if (is_bad_inode(inode)) {
3750                 btrfs_orphan_del(NULL, inode);
3751                 goto no_delete;
3752         }
3753         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3754         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3755
3756         if (root->fs_info->log_root_recovering) {
3757                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3758                 goto no_delete;
3759         }
3760
3761         if (inode->i_nlink > 0) {
3762                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3763                 goto no_delete;
3764         }
3765
3766         btrfs_i_size_write(inode, 0);
3767
3768         while (1) {
3769                 trans = btrfs_start_transaction(root, 0);
3770                 BUG_ON(IS_ERR(trans));
3771                 btrfs_set_trans_block_group(trans, inode);
3772                 trans->block_rsv = root->orphan_block_rsv;
3773
3774                 ret = btrfs_block_rsv_check(trans, root,
3775                                             root->orphan_block_rsv, 0, 5);
3776                 if (ret) {
3777                         BUG_ON(ret != -EAGAIN);
3778                         ret = btrfs_commit_transaction(trans, root);
3779                         BUG_ON(ret);
3780                         continue;
3781                 }
3782
3783                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3784                 if (ret != -EAGAIN)
3785                         break;
3786
3787                 nr = trans->blocks_used;
3788                 btrfs_end_transaction(trans, root);
3789                 trans = NULL;
3790                 btrfs_btree_balance_dirty(root, nr);
3791
3792         }
3793
3794         if (ret == 0) {
3795                 ret = btrfs_orphan_del(trans, inode);
3796                 BUG_ON(ret);
3797         }
3798
3799         nr = trans->blocks_used;
3800         btrfs_end_transaction(trans, root);
3801         btrfs_btree_balance_dirty(root, nr);
3802 no_delete:
3803         end_writeback(inode);
3804         return;
3805 }
3806
3807 /*
3808  * this returns the key found in the dir entry in the location pointer.
3809  * If no dir entries were found, location->objectid is 0.
3810  */
3811 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3812                                struct btrfs_key *location)
3813 {
3814         const char *name = dentry->d_name.name;
3815         int namelen = dentry->d_name.len;
3816         struct btrfs_dir_item *di;
3817         struct btrfs_path *path;
3818         struct btrfs_root *root = BTRFS_I(dir)->root;
3819         int ret = 0;
3820
3821         path = btrfs_alloc_path();
3822         BUG_ON(!path);
3823
3824         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3825                                     namelen, 0);
3826         if (IS_ERR(di))
3827                 ret = PTR_ERR(di);
3828
3829         if (!di || IS_ERR(di))
3830                 goto out_err;
3831
3832         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3833 out:
3834         btrfs_free_path(path);
3835         return ret;
3836 out_err:
3837         location->objectid = 0;
3838         goto out;
3839 }
3840
3841 /*
3842  * when we hit a tree root in a directory, the btrfs part of the inode
3843  * needs to be changed to reflect the root directory of the tree root.  This
3844  * is kind of like crossing a mount point.
3845  */
3846 static int fixup_tree_root_location(struct btrfs_root *root,
3847                                     struct inode *dir,
3848                                     struct dentry *dentry,
3849                                     struct btrfs_key *location,
3850                                     struct btrfs_root **sub_root)
3851 {
3852         struct btrfs_path *path;
3853         struct btrfs_root *new_root;
3854         struct btrfs_root_ref *ref;
3855         struct extent_buffer *leaf;
3856         int ret;
3857         int err = 0;
3858
3859         path = btrfs_alloc_path();
3860         if (!path) {
3861                 err = -ENOMEM;
3862                 goto out;
3863         }
3864
3865         err = -ENOENT;
3866         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3867                                   BTRFS_I(dir)->root->root_key.objectid,
3868                                   location->objectid);
3869         if (ret) {
3870                 if (ret < 0)
3871                         err = ret;
3872                 goto out;
3873         }
3874
3875         leaf = path->nodes[0];
3876         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3877         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3878             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3879                 goto out;
3880
3881         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3882                                    (unsigned long)(ref + 1),
3883                                    dentry->d_name.len);
3884         if (ret)
3885                 goto out;
3886
3887         btrfs_release_path(root->fs_info->tree_root, path);
3888
3889         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3890         if (IS_ERR(new_root)) {
3891                 err = PTR_ERR(new_root);
3892                 goto out;
3893         }
3894
3895         if (btrfs_root_refs(&new_root->root_item) == 0) {
3896                 err = -ENOENT;
3897                 goto out;
3898         }
3899
3900         *sub_root = new_root;
3901         location->objectid = btrfs_root_dirid(&new_root->root_item);
3902         location->type = BTRFS_INODE_ITEM_KEY;
3903         location->offset = 0;
3904         err = 0;
3905 out:
3906         btrfs_free_path(path);
3907         return err;
3908 }
3909
3910 static void inode_tree_add(struct inode *inode)
3911 {
3912         struct btrfs_root *root = BTRFS_I(inode)->root;
3913         struct btrfs_inode *entry;
3914         struct rb_node **p;
3915         struct rb_node *parent;
3916 again:
3917         p = &root->inode_tree.rb_node;
3918         parent = NULL;
3919
3920         if (inode_unhashed(inode))
3921                 return;
3922
3923         spin_lock(&root->inode_lock);
3924         while (*p) {
3925                 parent = *p;
3926                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3927
3928                 if (inode->i_ino < entry->vfs_inode.i_ino)
3929                         p = &parent->rb_left;
3930                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3931                         p = &parent->rb_right;
3932                 else {
3933                         WARN_ON(!(entry->vfs_inode.i_state &
3934                                   (I_WILL_FREE | I_FREEING)));
3935                         rb_erase(parent, &root->inode_tree);
3936                         RB_CLEAR_NODE(parent);
3937                         spin_unlock(&root->inode_lock);
3938                         goto again;
3939                 }
3940         }
3941         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3942         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3943         spin_unlock(&root->inode_lock);
3944 }
3945
3946 static void inode_tree_del(struct inode *inode)
3947 {
3948         struct btrfs_root *root = BTRFS_I(inode)->root;
3949         int empty = 0;
3950
3951         spin_lock(&root->inode_lock);
3952         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3953                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3954                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3955                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3956         }
3957         spin_unlock(&root->inode_lock);
3958
3959         /*
3960          * Free space cache has inodes in the tree root, but the tree root has a
3961          * root_refs of 0, so this could end up dropping the tree root as a
3962          * snapshot, so we need the extra !root->fs_info->tree_root check to
3963          * make sure we don't drop it.
3964          */
3965         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3966             root != root->fs_info->tree_root) {
3967                 synchronize_srcu(&root->fs_info->subvol_srcu);
3968                 spin_lock(&root->inode_lock);
3969                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3970                 spin_unlock(&root->inode_lock);
3971                 if (empty)
3972                         btrfs_add_dead_root(root);
3973         }
3974 }
3975
3976 int btrfs_invalidate_inodes(struct btrfs_root *root)
3977 {
3978         struct rb_node *node;
3979         struct rb_node *prev;
3980         struct btrfs_inode *entry;
3981         struct inode *inode;
3982         u64 objectid = 0;
3983
3984         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3985
3986         spin_lock(&root->inode_lock);
3987 again:
3988         node = root->inode_tree.rb_node;
3989         prev = NULL;
3990         while (node) {
3991                 prev = node;
3992                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3993
3994                 if (objectid < entry->vfs_inode.i_ino)
3995                         node = node->rb_left;
3996                 else if (objectid > entry->vfs_inode.i_ino)
3997                         node = node->rb_right;
3998                 else
3999                         break;
4000         }
4001         if (!node) {
4002                 while (prev) {
4003                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4004                         if (objectid <= entry->vfs_inode.i_ino) {
4005                                 node = prev;
4006                                 break;
4007                         }
4008                         prev = rb_next(prev);
4009                 }
4010         }
4011         while (node) {
4012                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4013                 objectid = entry->vfs_inode.i_ino + 1;
4014                 inode = igrab(&entry->vfs_inode);
4015                 if (inode) {
4016                         spin_unlock(&root->inode_lock);
4017                         if (atomic_read(&inode->i_count) > 1)
4018                                 d_prune_aliases(inode);
4019                         /*
4020                          * btrfs_drop_inode will have it removed from
4021                          * the inode cache when its usage count
4022                          * hits zero.
4023                          */
4024                         iput(inode);
4025                         cond_resched();
4026                         spin_lock(&root->inode_lock);
4027                         goto again;
4028                 }
4029
4030                 if (cond_resched_lock(&root->inode_lock))
4031                         goto again;
4032
4033                 node = rb_next(node);
4034         }
4035         spin_unlock(&root->inode_lock);
4036         return 0;
4037 }
4038
4039 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4040 {
4041         struct btrfs_iget_args *args = p;
4042         inode->i_ino = args->ino;
4043         BTRFS_I(inode)->root = args->root;
4044         btrfs_set_inode_space_info(args->root, inode);
4045         return 0;
4046 }
4047
4048 static int btrfs_find_actor(struct inode *inode, void *opaque)
4049 {
4050         struct btrfs_iget_args *args = opaque;
4051         return args->ino == inode->i_ino &&
4052                 args->root == BTRFS_I(inode)->root;
4053 }
4054
4055 static struct inode *btrfs_iget_locked(struct super_block *s,
4056                                        u64 objectid,
4057                                        struct btrfs_root *root)
4058 {
4059         struct inode *inode;
4060         struct btrfs_iget_args args;
4061         args.ino = objectid;
4062         args.root = root;
4063
4064         inode = iget5_locked(s, objectid, btrfs_find_actor,
4065                              btrfs_init_locked_inode,
4066                              (void *)&args);
4067         return inode;
4068 }
4069
4070 /* Get an inode object given its location and corresponding root.
4071  * Returns in *is_new if the inode was read from disk
4072  */
4073 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4074                          struct btrfs_root *root, int *new)
4075 {
4076         struct inode *inode;
4077
4078         inode = btrfs_iget_locked(s, location->objectid, root);
4079         if (!inode)
4080                 return ERR_PTR(-ENOMEM);
4081
4082         if (inode->i_state & I_NEW) {
4083                 BTRFS_I(inode)->root = root;
4084                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4085                 btrfs_read_locked_inode(inode);
4086                 inode_tree_add(inode);
4087                 unlock_new_inode(inode);
4088                 if (new)
4089                         *new = 1;
4090         }
4091
4092         return inode;
4093 }
4094
4095 static struct inode *new_simple_dir(struct super_block *s,
4096                                     struct btrfs_key *key,
4097                                     struct btrfs_root *root)
4098 {
4099         struct inode *inode = new_inode(s);
4100
4101         if (!inode)
4102                 return ERR_PTR(-ENOMEM);
4103
4104         BTRFS_I(inode)->root = root;
4105         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4106         BTRFS_I(inode)->dummy_inode = 1;
4107
4108         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4109         inode->i_op = &simple_dir_inode_operations;
4110         inode->i_fop = &simple_dir_operations;
4111         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4112         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4113
4114         return inode;
4115 }
4116
4117 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4118 {
4119         struct inode *inode;
4120         struct btrfs_root *root = BTRFS_I(dir)->root;
4121         struct btrfs_root *sub_root = root;
4122         struct btrfs_key location;
4123         int index;
4124         int ret;
4125
4126         if (dentry->d_name.len > BTRFS_NAME_LEN)
4127                 return ERR_PTR(-ENAMETOOLONG);
4128
4129         ret = btrfs_inode_by_name(dir, dentry, &location);
4130
4131         if (ret < 0)
4132                 return ERR_PTR(ret);
4133
4134         if (location.objectid == 0)
4135                 return NULL;
4136
4137         if (location.type == BTRFS_INODE_ITEM_KEY) {
4138                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4139                 return inode;
4140         }
4141
4142         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4143
4144         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4145         ret = fixup_tree_root_location(root, dir, dentry,
4146                                        &location, &sub_root);
4147         if (ret < 0) {
4148                 if (ret != -ENOENT)
4149                         inode = ERR_PTR(ret);
4150                 else
4151                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4152         } else {
4153                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4154         }
4155         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4156
4157         if (!IS_ERR(inode) && root != sub_root) {
4158                 down_read(&root->fs_info->cleanup_work_sem);
4159                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4160                         ret = btrfs_orphan_cleanup(sub_root);
4161                 up_read(&root->fs_info->cleanup_work_sem);
4162                 if (ret)
4163                         inode = ERR_PTR(ret);
4164         }
4165
4166         return inode;
4167 }
4168
4169 static int btrfs_dentry_delete(const struct dentry *dentry)
4170 {
4171         struct btrfs_root *root;
4172
4173         if (!dentry->d_inode && !IS_ROOT(dentry))
4174                 dentry = dentry->d_parent;
4175
4176         if (dentry->d_inode) {
4177                 root = BTRFS_I(dentry->d_inode)->root;
4178                 if (btrfs_root_refs(&root->root_item) == 0)
4179                         return 1;
4180         }
4181         return 0;
4182 }
4183
4184 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4185                                    struct nameidata *nd)
4186 {
4187         struct inode *inode;
4188
4189         inode = btrfs_lookup_dentry(dir, dentry);
4190         if (IS_ERR(inode))
4191                 return ERR_CAST(inode);
4192
4193         return d_splice_alias(inode, dentry);
4194 }
4195
4196 static unsigned char btrfs_filetype_table[] = {
4197         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4198 };
4199
4200 static int btrfs_real_readdir(struct file *filp, void *dirent,
4201                               filldir_t filldir)
4202 {
4203         struct inode *inode = filp->f_dentry->d_inode;
4204         struct btrfs_root *root = BTRFS_I(inode)->root;
4205         struct btrfs_item *item;
4206         struct btrfs_dir_item *di;
4207         struct btrfs_key key;
4208         struct btrfs_key found_key;
4209         struct btrfs_path *path;
4210         int ret;
4211         u32 nritems;
4212         struct extent_buffer *leaf;
4213         int slot;
4214         int advance;
4215         unsigned char d_type;
4216         int over = 0;
4217         u32 di_cur;
4218         u32 di_total;
4219         u32 di_len;
4220         int key_type = BTRFS_DIR_INDEX_KEY;
4221         char tmp_name[32];
4222         char *name_ptr;
4223         int name_len;
4224
4225         /* FIXME, use a real flag for deciding about the key type */
4226         if (root->fs_info->tree_root == root)
4227                 key_type = BTRFS_DIR_ITEM_KEY;
4228
4229         /* special case for "." */
4230         if (filp->f_pos == 0) {
4231                 over = filldir(dirent, ".", 1,
4232                                1, inode->i_ino,
4233                                DT_DIR);
4234                 if (over)
4235                         return 0;
4236                 filp->f_pos = 1;
4237         }
4238         /* special case for .., just use the back ref */
4239         if (filp->f_pos == 1) {
4240                 u64 pino = parent_ino(filp->f_path.dentry);
4241                 over = filldir(dirent, "..", 2,
4242                                2, pino, DT_DIR);
4243                 if (over)
4244                         return 0;
4245                 filp->f_pos = 2;
4246         }
4247         path = btrfs_alloc_path();
4248         path->reada = 2;
4249
4250         btrfs_set_key_type(&key, key_type);
4251         key.offset = filp->f_pos;
4252         key.objectid = inode->i_ino;
4253
4254         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4255         if (ret < 0)
4256                 goto err;
4257         advance = 0;
4258
4259         while (1) {
4260                 leaf = path->nodes[0];
4261                 nritems = btrfs_header_nritems(leaf);
4262                 slot = path->slots[0];
4263                 if (advance || slot >= nritems) {
4264                         if (slot >= nritems - 1) {
4265                                 ret = btrfs_next_leaf(root, path);
4266                                 if (ret)
4267                                         break;
4268                                 leaf = path->nodes[0];
4269                                 nritems = btrfs_header_nritems(leaf);
4270                                 slot = path->slots[0];
4271                         } else {
4272                                 slot++;
4273                                 path->slots[0]++;
4274                         }
4275                 }
4276
4277                 advance = 1;
4278                 item = btrfs_item_nr(leaf, slot);
4279                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4280
4281                 if (found_key.objectid != key.objectid)
4282                         break;
4283                 if (btrfs_key_type(&found_key) != key_type)
4284                         break;
4285                 if (found_key.offset < filp->f_pos)
4286                         continue;
4287
4288                 filp->f_pos = found_key.offset;
4289
4290                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4291                 di_cur = 0;
4292                 di_total = btrfs_item_size(leaf, item);
4293
4294                 while (di_cur < di_total) {
4295                         struct btrfs_key location;
4296
4297                         if (verify_dir_item(root, leaf, di))
4298                                 break;
4299
4300                         name_len = btrfs_dir_name_len(leaf, di);
4301                         if (name_len <= sizeof(tmp_name)) {
4302                                 name_ptr = tmp_name;
4303                         } else {
4304                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4305                                 if (!name_ptr) {
4306                                         ret = -ENOMEM;
4307                                         goto err;
4308                                 }
4309                         }
4310                         read_extent_buffer(leaf, name_ptr,
4311                                            (unsigned long)(di + 1), name_len);
4312
4313                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4314                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4315
4316                         /* is this a reference to our own snapshot? If so
4317                          * skip it
4318                          */
4319                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4320                             location.objectid == root->root_key.objectid) {
4321                                 over = 0;
4322                                 goto skip;
4323                         }
4324                         over = filldir(dirent, name_ptr, name_len,
4325                                        found_key.offset, location.objectid,
4326                                        d_type);
4327
4328 skip:
4329                         if (name_ptr != tmp_name)
4330                                 kfree(name_ptr);
4331
4332                         if (over)
4333                                 goto nopos;
4334                         di_len = btrfs_dir_name_len(leaf, di) +
4335                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4336                         di_cur += di_len;
4337                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4338                 }
4339         }
4340
4341         /* Reached end of directory/root. Bump pos past the last item. */
4342         if (key_type == BTRFS_DIR_INDEX_KEY)
4343                 /*
4344                  * 32-bit glibc will use getdents64, but then strtol -
4345                  * so the last number we can serve is this.
4346                  */
4347                 filp->f_pos = 0x7fffffff;
4348         else
4349                 filp->f_pos++;
4350 nopos:
4351         ret = 0;
4352 err:
4353         btrfs_free_path(path);
4354         return ret;
4355 }
4356
4357 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4358 {
4359         struct btrfs_root *root = BTRFS_I(inode)->root;
4360         struct btrfs_trans_handle *trans;
4361         int ret = 0;
4362         bool nolock = false;
4363
4364         if (BTRFS_I(inode)->dummy_inode)
4365                 return 0;
4366
4367         smp_mb();
4368         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4369
4370         if (wbc->sync_mode == WB_SYNC_ALL) {
4371                 if (nolock)
4372                         trans = btrfs_join_transaction_nolock(root, 1);
4373                 else
4374                         trans = btrfs_join_transaction(root, 1);
4375                 if (IS_ERR(trans))
4376                         return PTR_ERR(trans);
4377                 btrfs_set_trans_block_group(trans, inode);
4378                 if (nolock)
4379                         ret = btrfs_end_transaction_nolock(trans, root);
4380                 else
4381                         ret = btrfs_commit_transaction(trans, root);
4382         }
4383         return ret;
4384 }
4385
4386 /*
4387  * This is somewhat expensive, updating the tree every time the
4388  * inode changes.  But, it is most likely to find the inode in cache.
4389  * FIXME, needs more benchmarking...there are no reasons other than performance
4390  * to keep or drop this code.
4391  */
4392 void btrfs_dirty_inode(struct inode *inode)
4393 {
4394         struct btrfs_root *root = BTRFS_I(inode)->root;
4395         struct btrfs_trans_handle *trans;
4396         int ret;
4397
4398         if (BTRFS_I(inode)->dummy_inode)
4399                 return;
4400
4401         trans = btrfs_join_transaction(root, 1);
4402         BUG_ON(IS_ERR(trans));
4403         btrfs_set_trans_block_group(trans, inode);
4404
4405         ret = btrfs_update_inode(trans, root, inode);
4406         if (ret && ret == -ENOSPC) {
4407                 /* whoops, lets try again with the full transaction */
4408                 btrfs_end_transaction(trans, root);
4409                 trans = btrfs_start_transaction(root, 1);
4410                 if (IS_ERR(trans)) {
4411                         if (printk_ratelimit()) {
4412                                 printk(KERN_ERR "btrfs: fail to "
4413                                        "dirty  inode %lu error %ld\n",
4414                                        inode->i_ino, PTR_ERR(trans));
4415                         }
4416                         return;
4417                 }
4418                 btrfs_set_trans_block_group(trans, inode);
4419
4420                 ret = btrfs_update_inode(trans, root, inode);
4421                 if (ret) {
4422                         if (printk_ratelimit()) {
4423                                 printk(KERN_ERR "btrfs: fail to "
4424                                        "dirty  inode %lu error %d\n",
4425                                        inode->i_ino, ret);
4426                         }
4427                 }
4428         }
4429         btrfs_end_transaction(trans, root);
4430 }
4431
4432 /*
4433  * find the highest existing sequence number in a directory
4434  * and then set the in-memory index_cnt variable to reflect
4435  * free sequence numbers
4436  */
4437 static int btrfs_set_inode_index_count(struct inode *inode)
4438 {
4439         struct btrfs_root *root = BTRFS_I(inode)->root;
4440         struct btrfs_key key, found_key;
4441         struct btrfs_path *path;
4442         struct extent_buffer *leaf;
4443         int ret;
4444
4445         key.objectid = inode->i_ino;
4446         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4447         key.offset = (u64)-1;
4448
4449         path = btrfs_alloc_path();
4450         if (!path)
4451                 return -ENOMEM;
4452
4453         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4454         if (ret < 0)
4455                 goto out;
4456         /* FIXME: we should be able to handle this */
4457         if (ret == 0)
4458                 goto out;
4459         ret = 0;
4460
4461         /*
4462          * MAGIC NUMBER EXPLANATION:
4463          * since we search a directory based on f_pos we have to start at 2
4464          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4465          * else has to start at 2
4466          */
4467         if (path->slots[0] == 0) {
4468                 BTRFS_I(inode)->index_cnt = 2;
4469                 goto out;
4470         }
4471
4472         path->slots[0]--;
4473
4474         leaf = path->nodes[0];
4475         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4476
4477         if (found_key.objectid != inode->i_ino ||
4478             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4479                 BTRFS_I(inode)->index_cnt = 2;
4480                 goto out;
4481         }
4482
4483         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4484 out:
4485         btrfs_free_path(path);
4486         return ret;
4487 }
4488
4489 /*
4490  * helper to find a free sequence number in a given directory.  This current
4491  * code is very simple, later versions will do smarter things in the btree
4492  */
4493 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4494 {
4495         int ret = 0;
4496
4497         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4498                 ret = btrfs_set_inode_index_count(dir);
4499                 if (ret)
4500                         return ret;
4501         }
4502
4503         *index = BTRFS_I(dir)->index_cnt;
4504         BTRFS_I(dir)->index_cnt++;
4505
4506         return ret;
4507 }
4508
4509 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4510                                      struct btrfs_root *root,
4511                                      struct inode *dir,
4512                                      const char *name, int name_len,
4513                                      u64 ref_objectid, u64 objectid,
4514                                      u64 alloc_hint, int mode, u64 *index)
4515 {
4516         struct inode *inode;
4517         struct btrfs_inode_item *inode_item;
4518         struct btrfs_key *location;
4519         struct btrfs_path *path;
4520         struct btrfs_inode_ref *ref;
4521         struct btrfs_key key[2];
4522         u32 sizes[2];
4523         unsigned long ptr;
4524         int ret;
4525         int owner;
4526
4527         path = btrfs_alloc_path();
4528         BUG_ON(!path);
4529
4530         inode = new_inode(root->fs_info->sb);
4531         if (!inode)
4532                 return ERR_PTR(-ENOMEM);
4533
4534         if (dir) {
4535                 trace_btrfs_inode_request(dir);
4536
4537                 ret = btrfs_set_inode_index(dir, index);
4538                 if (ret) {
4539                         iput(inode);
4540                         return ERR_PTR(ret);
4541                 }
4542         }
4543         /*
4544          * index_cnt is ignored for everything but a dir,
4545          * btrfs_get_inode_index_count has an explanation for the magic
4546          * number
4547          */
4548         BTRFS_I(inode)->index_cnt = 2;
4549         BTRFS_I(inode)->root = root;
4550         BTRFS_I(inode)->generation = trans->transid;
4551         inode->i_generation = BTRFS_I(inode)->generation;
4552         btrfs_set_inode_space_info(root, inode);
4553
4554         if (mode & S_IFDIR)
4555                 owner = 0;
4556         else
4557                 owner = 1;
4558         BTRFS_I(inode)->block_group =
4559                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4560
4561         key[0].objectid = objectid;
4562         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4563         key[0].offset = 0;
4564
4565         key[1].objectid = objectid;
4566         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4567         key[1].offset = ref_objectid;
4568
4569         sizes[0] = sizeof(struct btrfs_inode_item);
4570         sizes[1] = name_len + sizeof(*ref);
4571
4572         path->leave_spinning = 1;
4573         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4574         if (ret != 0)
4575                 goto fail;
4576
4577         inode_init_owner(inode, dir, mode);
4578         inode->i_ino = objectid;
4579         inode_set_bytes(inode, 0);
4580         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4581         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4582                                   struct btrfs_inode_item);
4583         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4584
4585         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4586                              struct btrfs_inode_ref);
4587         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4588         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4589         ptr = (unsigned long)(ref + 1);
4590         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4591
4592         btrfs_mark_buffer_dirty(path->nodes[0]);
4593         btrfs_free_path(path);
4594
4595         location = &BTRFS_I(inode)->location;
4596         location->objectid = objectid;
4597         location->offset = 0;
4598         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4599
4600         btrfs_inherit_iflags(inode, dir);
4601
4602         if ((mode & S_IFREG)) {
4603                 if (btrfs_test_opt(root, NODATASUM))
4604                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4605                 if (btrfs_test_opt(root, NODATACOW) ||
4606                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4607                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4608         }
4609
4610         insert_inode_hash(inode);
4611         inode_tree_add(inode);
4612
4613         trace_btrfs_inode_new(inode);
4614
4615         return inode;
4616 fail:
4617         if (dir)
4618                 BTRFS_I(dir)->index_cnt--;
4619         btrfs_free_path(path);
4620         iput(inode);
4621         return ERR_PTR(ret);
4622 }
4623
4624 static inline u8 btrfs_inode_type(struct inode *inode)
4625 {
4626         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4627 }
4628
4629 /*
4630  * utility function to add 'inode' into 'parent_inode' with
4631  * a give name and a given sequence number.
4632  * if 'add_backref' is true, also insert a backref from the
4633  * inode to the parent directory.
4634  */
4635 int btrfs_add_link(struct btrfs_trans_handle *trans,
4636                    struct inode *parent_inode, struct inode *inode,
4637                    const char *name, int name_len, int add_backref, u64 index)
4638 {
4639         int ret = 0;
4640         struct btrfs_key key;
4641         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4642
4643         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4644                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4645         } else {
4646                 key.objectid = inode->i_ino;
4647                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4648                 key.offset = 0;
4649         }
4650
4651         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4652                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4653                                          key.objectid, root->root_key.objectid,
4654                                          parent_inode->i_ino,
4655                                          index, name, name_len);
4656         } else if (add_backref) {
4657                 ret = btrfs_insert_inode_ref(trans, root,
4658                                              name, name_len, inode->i_ino,
4659                                              parent_inode->i_ino, index);
4660         }
4661
4662         if (ret == 0) {
4663                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4664                                             parent_inode->i_ino, &key,
4665                                             btrfs_inode_type(inode), index);
4666                 BUG_ON(ret);
4667
4668                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4669                                    name_len * 2);
4670                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4671                 ret = btrfs_update_inode(trans, root, parent_inode);
4672         }
4673         return ret;
4674 }
4675
4676 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4677                             struct inode *dir, struct dentry *dentry,
4678                             struct inode *inode, int backref, u64 index)
4679 {
4680         int err = btrfs_add_link(trans, dir, inode,
4681                                  dentry->d_name.name, dentry->d_name.len,
4682                                  backref, index);
4683         if (!err) {
4684                 d_instantiate(dentry, inode);
4685                 return 0;
4686         }
4687         if (err > 0)
4688                 err = -EEXIST;
4689         return err;
4690 }
4691
4692 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4693                         int mode, dev_t rdev)
4694 {
4695         struct btrfs_trans_handle *trans;
4696         struct btrfs_root *root = BTRFS_I(dir)->root;
4697         struct inode *inode = NULL;
4698         int err;
4699         int drop_inode = 0;
4700         u64 objectid;
4701         unsigned long nr = 0;
4702         u64 index = 0;
4703
4704         if (!new_valid_dev(rdev))
4705                 return -EINVAL;
4706
4707         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4708         if (err)
4709                 return err;
4710
4711         /*
4712          * 2 for inode item and ref
4713          * 2 for dir items
4714          * 1 for xattr if selinux is on
4715          */
4716         trans = btrfs_start_transaction(root, 5);
4717         if (IS_ERR(trans))
4718                 return PTR_ERR(trans);
4719
4720         btrfs_set_trans_block_group(trans, dir);
4721
4722         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4723                                 dentry->d_name.len, dir->i_ino, objectid,
4724                                 BTRFS_I(dir)->block_group, mode, &index);
4725         err = PTR_ERR(inode);
4726         if (IS_ERR(inode))
4727                 goto out_unlock;
4728
4729         err = btrfs_init_inode_security(trans, inode, dir);
4730         if (err) {
4731                 drop_inode = 1;
4732                 goto out_unlock;
4733         }
4734
4735         btrfs_set_trans_block_group(trans, inode);
4736         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4737         if (err)
4738                 drop_inode = 1;
4739         else {
4740                 inode->i_op = &btrfs_special_inode_operations;
4741                 init_special_inode(inode, inode->i_mode, rdev);
4742                 btrfs_update_inode(trans, root, inode);
4743         }
4744         btrfs_update_inode_block_group(trans, inode);
4745         btrfs_update_inode_block_group(trans, dir);
4746 out_unlock:
4747         nr = trans->blocks_used;
4748         btrfs_end_transaction_throttle(trans, root);
4749         btrfs_btree_balance_dirty(root, nr);
4750         if (drop_inode) {
4751                 inode_dec_link_count(inode);
4752                 iput(inode);
4753         }
4754         return err;
4755 }
4756
4757 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4758                         int mode, struct nameidata *nd)
4759 {
4760         struct btrfs_trans_handle *trans;
4761         struct btrfs_root *root = BTRFS_I(dir)->root;
4762         struct inode *inode = NULL;
4763         int drop_inode = 0;
4764         int err;
4765         unsigned long nr = 0;
4766         u64 objectid;
4767         u64 index = 0;
4768
4769         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4770         if (err)
4771                 return err;
4772         /*
4773          * 2 for inode item and ref
4774          * 2 for dir items
4775          * 1 for xattr if selinux is on
4776          */
4777         trans = btrfs_start_transaction(root, 5);
4778         if (IS_ERR(trans))
4779                 return PTR_ERR(trans);
4780
4781         btrfs_set_trans_block_group(trans, dir);
4782
4783         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4784                                 dentry->d_name.len, dir->i_ino, objectid,
4785                                 BTRFS_I(dir)->block_group, mode, &index);
4786         err = PTR_ERR(inode);
4787         if (IS_ERR(inode))
4788                 goto out_unlock;
4789
4790         err = btrfs_init_inode_security(trans, inode, dir);
4791         if (err) {
4792                 drop_inode = 1;
4793                 goto out_unlock;
4794         }
4795
4796         btrfs_set_trans_block_group(trans, inode);
4797         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4798         if (err)
4799                 drop_inode = 1;
4800         else {
4801                 inode->i_mapping->a_ops = &btrfs_aops;
4802                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4803                 inode->i_fop = &btrfs_file_operations;
4804                 inode->i_op = &btrfs_file_inode_operations;
4805                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4806         }
4807         btrfs_update_inode_block_group(trans, inode);
4808         btrfs_update_inode_block_group(trans, dir);
4809 out_unlock:
4810         nr = trans->blocks_used;
4811         btrfs_end_transaction_throttle(trans, root);
4812         if (drop_inode) {
4813                 inode_dec_link_count(inode);
4814                 iput(inode);
4815         }
4816         btrfs_btree_balance_dirty(root, nr);
4817         return err;
4818 }
4819
4820 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4821                       struct dentry *dentry)
4822 {
4823         struct btrfs_trans_handle *trans;
4824         struct btrfs_root *root = BTRFS_I(dir)->root;
4825         struct inode *inode = old_dentry->d_inode;
4826         u64 index;
4827         unsigned long nr = 0;
4828         int err;
4829         int drop_inode = 0;
4830
4831         if (inode->i_nlink == 0)
4832                 return -ENOENT;
4833
4834         /* do not allow sys_link's with other subvols of the same device */
4835         if (root->objectid != BTRFS_I(inode)->root->objectid)
4836                 return -EXDEV;
4837
4838         if (inode->i_nlink == ~0U)
4839                 return -EMLINK;
4840
4841         btrfs_inc_nlink(inode);
4842         inode->i_ctime = CURRENT_TIME;
4843
4844         err = btrfs_set_inode_index(dir, &index);
4845         if (err)
4846                 goto fail;
4847
4848         /*
4849          * 2 items for inode and inode ref
4850          * 2 items for dir items
4851          * 1 item for parent inode
4852          */
4853         trans = btrfs_start_transaction(root, 5);
4854         if (IS_ERR(trans)) {
4855                 err = PTR_ERR(trans);
4856                 goto fail;
4857         }
4858
4859         btrfs_set_trans_block_group(trans, dir);
4860         ihold(inode);
4861
4862         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4863
4864         if (err) {
4865                 drop_inode = 1;
4866         } else {
4867                 struct dentry *parent = dget_parent(dentry);
4868                 btrfs_update_inode_block_group(trans, dir);
4869                 err = btrfs_update_inode(trans, root, inode);
4870                 BUG_ON(err);
4871                 btrfs_log_new_name(trans, inode, NULL, parent);
4872                 dput(parent);
4873         }
4874
4875         nr = trans->blocks_used;
4876         btrfs_end_transaction_throttle(trans, root);
4877 fail:
4878         if (drop_inode) {
4879                 inode_dec_link_count(inode);
4880                 iput(inode);
4881         }
4882         btrfs_btree_balance_dirty(root, nr);
4883         return err;
4884 }
4885
4886 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4887 {
4888         struct inode *inode = NULL;
4889         struct btrfs_trans_handle *trans;
4890         struct btrfs_root *root = BTRFS_I(dir)->root;
4891         int err = 0;
4892         int drop_on_err = 0;
4893         u64 objectid = 0;
4894         u64 index = 0;
4895         unsigned long nr = 1;
4896
4897         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4898         if (err)
4899                 return err;
4900
4901         /*
4902          * 2 items for inode and ref
4903          * 2 items for dir items
4904          * 1 for xattr if selinux is on
4905          */
4906         trans = btrfs_start_transaction(root, 5);
4907         if (IS_ERR(trans))
4908                 return PTR_ERR(trans);
4909         btrfs_set_trans_block_group(trans, dir);
4910
4911         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4912                                 dentry->d_name.len, dir->i_ino, objectid,
4913                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4914                                 &index);
4915         if (IS_ERR(inode)) {
4916                 err = PTR_ERR(inode);
4917                 goto out_fail;
4918         }
4919
4920         drop_on_err = 1;
4921
4922         err = btrfs_init_inode_security(trans, inode, dir);
4923         if (err)
4924                 goto out_fail;
4925
4926         inode->i_op = &btrfs_dir_inode_operations;
4927         inode->i_fop = &btrfs_dir_file_operations;
4928         btrfs_set_trans_block_group(trans, inode);
4929
4930         btrfs_i_size_write(inode, 0);
4931         err = btrfs_update_inode(trans, root, inode);
4932         if (err)
4933                 goto out_fail;
4934
4935         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4936                              dentry->d_name.len, 0, index);
4937         if (err)
4938                 goto out_fail;
4939
4940         d_instantiate(dentry, inode);
4941         drop_on_err = 0;
4942         btrfs_update_inode_block_group(trans, inode);
4943         btrfs_update_inode_block_group(trans, dir);
4944
4945 out_fail:
4946         nr = trans->blocks_used;
4947         btrfs_end_transaction_throttle(trans, root);
4948         if (drop_on_err)
4949                 iput(inode);
4950         btrfs_btree_balance_dirty(root, nr);
4951         return err;
4952 }
4953
4954 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4955  * and an extent that you want to insert, deal with overlap and insert
4956  * the new extent into the tree.
4957  */
4958 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4959                                 struct extent_map *existing,
4960                                 struct extent_map *em,
4961                                 u64 map_start, u64 map_len)
4962 {
4963         u64 start_diff;
4964
4965         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4966         start_diff = map_start - em->start;
4967         em->start = map_start;
4968         em->len = map_len;
4969         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4970             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4971                 em->block_start += start_diff;
4972                 em->block_len -= start_diff;
4973         }
4974         return add_extent_mapping(em_tree, em);
4975 }
4976
4977 static noinline int uncompress_inline(struct btrfs_path *path,
4978                                       struct inode *inode, struct page *page,
4979                                       size_t pg_offset, u64 extent_offset,
4980                                       struct btrfs_file_extent_item *item)
4981 {
4982         int ret;
4983         struct extent_buffer *leaf = path->nodes[0];
4984         char *tmp;
4985         size_t max_size;
4986         unsigned long inline_size;
4987         unsigned long ptr;
4988         int compress_type;
4989
4990         WARN_ON(pg_offset != 0);
4991         compress_type = btrfs_file_extent_compression(leaf, item);
4992         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4993         inline_size = btrfs_file_extent_inline_item_len(leaf,
4994                                         btrfs_item_nr(leaf, path->slots[0]));
4995         tmp = kmalloc(inline_size, GFP_NOFS);
4996         ptr = btrfs_file_extent_inline_start(item);
4997
4998         read_extent_buffer(leaf, tmp, ptr, inline_size);
4999
5000         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5001         ret = btrfs_decompress(compress_type, tmp, page,
5002                                extent_offset, inline_size, max_size);
5003         if (ret) {
5004                 char *kaddr = kmap_atomic(page, KM_USER0);
5005                 unsigned long copy_size = min_t(u64,
5006                                   PAGE_CACHE_SIZE - pg_offset,
5007                                   max_size - extent_offset);
5008                 memset(kaddr + pg_offset, 0, copy_size);
5009                 kunmap_atomic(kaddr, KM_USER0);
5010         }
5011         kfree(tmp);
5012         return 0;
5013 }
5014
5015 /*
5016  * a bit scary, this does extent mapping from logical file offset to the disk.
5017  * the ugly parts come from merging extents from the disk with the in-ram
5018  * representation.  This gets more complex because of the data=ordered code,
5019  * where the in-ram extents might be locked pending data=ordered completion.
5020  *
5021  * This also copies inline extents directly into the page.
5022  */
5023
5024 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5025                                     size_t pg_offset, u64 start, u64 len,
5026                                     int create)
5027 {
5028         int ret;
5029         int err = 0;
5030         u64 bytenr;
5031         u64 extent_start = 0;
5032         u64 extent_end = 0;
5033         u64 objectid = inode->i_ino;
5034         u32 found_type;
5035         struct btrfs_path *path = NULL;
5036         struct btrfs_root *root = BTRFS_I(inode)->root;
5037         struct btrfs_file_extent_item *item;
5038         struct extent_buffer *leaf;
5039         struct btrfs_key found_key;
5040         struct extent_map *em = NULL;
5041         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5042         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5043         struct btrfs_trans_handle *trans = NULL;
5044         int compress_type;
5045
5046 again:
5047         read_lock(&em_tree->lock);
5048         em = lookup_extent_mapping(em_tree, start, len);
5049         if (em)
5050                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5051         read_unlock(&em_tree->lock);
5052
5053         if (em) {
5054                 if (em->start > start || em->start + em->len <= start)
5055                         free_extent_map(em);
5056                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5057                         free_extent_map(em);
5058                 else
5059                         goto out;
5060         }
5061         em = alloc_extent_map(GFP_NOFS);
5062         if (!em) {
5063                 err = -ENOMEM;
5064                 goto out;
5065         }
5066         em->bdev = root->fs_info->fs_devices->latest_bdev;
5067         em->start = EXTENT_MAP_HOLE;
5068         em->orig_start = EXTENT_MAP_HOLE;
5069         em->len = (u64)-1;
5070         em->block_len = (u64)-1;
5071
5072         if (!path) {
5073                 path = btrfs_alloc_path();
5074                 BUG_ON(!path);
5075         }
5076
5077         ret = btrfs_lookup_file_extent(trans, root, path,
5078                                        objectid, start, trans != NULL);
5079         if (ret < 0) {
5080                 err = ret;
5081                 goto out;
5082         }
5083
5084         if (ret != 0) {
5085                 if (path->slots[0] == 0)
5086                         goto not_found;
5087                 path->slots[0]--;
5088         }
5089
5090         leaf = path->nodes[0];
5091         item = btrfs_item_ptr(leaf, path->slots[0],
5092                               struct btrfs_file_extent_item);
5093         /* are we inside the extent that was found? */
5094         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5095         found_type = btrfs_key_type(&found_key);
5096         if (found_key.objectid != objectid ||
5097             found_type != BTRFS_EXTENT_DATA_KEY) {
5098                 goto not_found;
5099         }
5100
5101         found_type = btrfs_file_extent_type(leaf, item);
5102         extent_start = found_key.offset;
5103         compress_type = btrfs_file_extent_compression(leaf, item);
5104         if (found_type == BTRFS_FILE_EXTENT_REG ||
5105             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5106                 extent_end = extent_start +
5107                        btrfs_file_extent_num_bytes(leaf, item);
5108         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5109                 size_t size;
5110                 size = btrfs_file_extent_inline_len(leaf, item);
5111                 extent_end = (extent_start + size + root->sectorsize - 1) &
5112                         ~((u64)root->sectorsize - 1);
5113         }
5114
5115         if (start >= extent_end) {
5116                 path->slots[0]++;
5117                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5118                         ret = btrfs_next_leaf(root, path);
5119                         if (ret < 0) {
5120                                 err = ret;
5121                                 goto out;
5122                         }
5123                         if (ret > 0)
5124                                 goto not_found;
5125                         leaf = path->nodes[0];
5126                 }
5127                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5128                 if (found_key.objectid != objectid ||
5129                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5130                         goto not_found;
5131                 if (start + len <= found_key.offset)
5132                         goto not_found;
5133                 em->start = start;
5134                 em->len = found_key.offset - start;
5135                 goto not_found_em;
5136         }
5137
5138         if (found_type == BTRFS_FILE_EXTENT_REG ||
5139             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5140                 em->start = extent_start;
5141                 em->len = extent_end - extent_start;
5142                 em->orig_start = extent_start -
5143                                  btrfs_file_extent_offset(leaf, item);
5144                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5145                 if (bytenr == 0) {
5146                         em->block_start = EXTENT_MAP_HOLE;
5147                         goto insert;
5148                 }
5149                 if (compress_type != BTRFS_COMPRESS_NONE) {
5150                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5151                         em->compress_type = compress_type;
5152                         em->block_start = bytenr;
5153                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5154                                                                          item);
5155                 } else {
5156                         bytenr += btrfs_file_extent_offset(leaf, item);
5157                         em->block_start = bytenr;
5158                         em->block_len = em->len;
5159                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5160                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5161                 }
5162                 goto insert;
5163         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5164                 unsigned long ptr;
5165                 char *map;
5166                 size_t size;
5167                 size_t extent_offset;
5168                 size_t copy_size;
5169
5170                 em->block_start = EXTENT_MAP_INLINE;
5171                 if (!page || create) {
5172                         em->start = extent_start;
5173                         em->len = extent_end - extent_start;
5174                         goto out;
5175                 }
5176
5177                 size = btrfs_file_extent_inline_len(leaf, item);
5178                 extent_offset = page_offset(page) + pg_offset - extent_start;
5179                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5180                                 size - extent_offset);
5181                 em->start = extent_start + extent_offset;
5182                 em->len = (copy_size + root->sectorsize - 1) &
5183                         ~((u64)root->sectorsize - 1);
5184                 em->orig_start = EXTENT_MAP_INLINE;
5185                 if (compress_type) {
5186                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5187                         em->compress_type = compress_type;
5188                 }
5189                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5190                 if (create == 0 && !PageUptodate(page)) {
5191                         if (btrfs_file_extent_compression(leaf, item) !=
5192                             BTRFS_COMPRESS_NONE) {
5193                                 ret = uncompress_inline(path, inode, page,
5194                                                         pg_offset,
5195                                                         extent_offset, item);
5196                                 BUG_ON(ret);
5197                         } else {
5198                                 map = kmap(page);
5199                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5200                                                    copy_size);
5201                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5202                                         memset(map + pg_offset + copy_size, 0,
5203                                                PAGE_CACHE_SIZE - pg_offset -
5204                                                copy_size);
5205                                 }
5206                                 kunmap(page);
5207                         }
5208                         flush_dcache_page(page);
5209                 } else if (create && PageUptodate(page)) {
5210                         WARN_ON(1);
5211                         if (!trans) {
5212                                 kunmap(page);
5213                                 free_extent_map(em);
5214                                 em = NULL;
5215                                 btrfs_release_path(root, path);
5216                                 trans = btrfs_join_transaction(root, 1);
5217                                 if (IS_ERR(trans))
5218                                         return ERR_CAST(trans);
5219                                 goto again;
5220                         }
5221                         map = kmap(page);
5222                         write_extent_buffer(leaf, map + pg_offset, ptr,
5223                                             copy_size);
5224                         kunmap(page);
5225                         btrfs_mark_buffer_dirty(leaf);
5226                 }
5227                 set_extent_uptodate(io_tree, em->start,
5228                                     extent_map_end(em) - 1, GFP_NOFS);
5229                 goto insert;
5230         } else {
5231                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5232                 WARN_ON(1);
5233         }
5234 not_found:
5235         em->start = start;
5236         em->len = len;
5237 not_found_em:
5238         em->block_start = EXTENT_MAP_HOLE;
5239         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5240 insert:
5241         btrfs_release_path(root, path);
5242         if (em->start > start || extent_map_end(em) <= start) {
5243                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5244                        "[%llu %llu]\n", (unsigned long long)em->start,
5245                        (unsigned long long)em->len,
5246                        (unsigned long long)start,
5247                        (unsigned long long)len);
5248                 err = -EIO;
5249                 goto out;
5250         }
5251
5252         err = 0;
5253         write_lock(&em_tree->lock);
5254         ret = add_extent_mapping(em_tree, em);
5255         /* it is possible that someone inserted the extent into the tree
5256          * while we had the lock dropped.  It is also possible that
5257          * an overlapping map exists in the tree
5258          */
5259         if (ret == -EEXIST) {
5260                 struct extent_map *existing;
5261
5262                 ret = 0;
5263
5264                 existing = lookup_extent_mapping(em_tree, start, len);
5265                 if (existing && (existing->start > start ||
5266                     existing->start + existing->len <= start)) {
5267                         free_extent_map(existing);
5268                         existing = NULL;
5269                 }
5270                 if (!existing) {
5271                         existing = lookup_extent_mapping(em_tree, em->start,
5272                                                          em->len);
5273                         if (existing) {
5274                                 err = merge_extent_mapping(em_tree, existing,
5275                                                            em, start,
5276                                                            root->sectorsize);
5277                                 free_extent_map(existing);
5278                                 if (err) {
5279                                         free_extent_map(em);
5280                                         em = NULL;
5281                                 }
5282                         } else {
5283                                 err = -EIO;
5284                                 free_extent_map(em);
5285                                 em = NULL;
5286                         }
5287                 } else {
5288                         free_extent_map(em);
5289                         em = existing;
5290                         err = 0;
5291                 }
5292         }
5293         write_unlock(&em_tree->lock);
5294 out:
5295
5296         trace_btrfs_get_extent(root, em);
5297
5298         if (path)
5299                 btrfs_free_path(path);
5300         if (trans) {
5301                 ret = btrfs_end_transaction(trans, root);
5302                 if (!err)
5303                         err = ret;
5304         }
5305         if (err) {
5306                 free_extent_map(em);
5307                 return ERR_PTR(err);
5308         }
5309         return em;
5310 }
5311
5312 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5313                                            size_t pg_offset, u64 start, u64 len,
5314                                            int create)
5315 {
5316         struct extent_map *em;
5317         struct extent_map *hole_em = NULL;
5318         u64 range_start = start;
5319         u64 end;
5320         u64 found;
5321         u64 found_end;
5322         int err = 0;
5323
5324         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5325         if (IS_ERR(em))
5326                 return em;
5327         if (em) {
5328                 /*
5329                  * if our em maps to a hole, there might
5330                  * actually be delalloc bytes behind it
5331                  */
5332                 if (em->block_start != EXTENT_MAP_HOLE)
5333                         return em;
5334                 else
5335                         hole_em = em;
5336         }
5337
5338         /* check to see if we've wrapped (len == -1 or similar) */
5339         end = start + len;
5340         if (end < start)
5341                 end = (u64)-1;
5342         else
5343                 end -= 1;
5344
5345         em = NULL;
5346
5347         /* ok, we didn't find anything, lets look for delalloc */
5348         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5349                                  end, len, EXTENT_DELALLOC, 1);
5350         found_end = range_start + found;
5351         if (found_end < range_start)
5352                 found_end = (u64)-1;
5353
5354         /*
5355          * we didn't find anything useful, return
5356          * the original results from get_extent()
5357          */
5358         if (range_start > end || found_end <= start) {
5359                 em = hole_em;
5360                 hole_em = NULL;
5361                 goto out;
5362         }
5363
5364         /* adjust the range_start to make sure it doesn't
5365          * go backwards from the start they passed in
5366          */
5367         range_start = max(start,range_start);
5368         found = found_end - range_start;
5369
5370         if (found > 0) {
5371                 u64 hole_start = start;
5372                 u64 hole_len = len;
5373
5374                 em = alloc_extent_map(GFP_NOFS);
5375                 if (!em) {
5376                         err = -ENOMEM;
5377                         goto out;
5378                 }
5379                 /*
5380                  * when btrfs_get_extent can't find anything it
5381                  * returns one huge hole
5382                  *
5383                  * make sure what it found really fits our range, and
5384                  * adjust to make sure it is based on the start from
5385                  * the caller
5386                  */
5387                 if (hole_em) {
5388                         u64 calc_end = extent_map_end(hole_em);
5389
5390                         if (calc_end <= start || (hole_em->start > end)) {
5391                                 free_extent_map(hole_em);
5392                                 hole_em = NULL;
5393                         } else {
5394                                 hole_start = max(hole_em->start, start);
5395                                 hole_len = calc_end - hole_start;
5396                         }
5397                 }
5398                 em->bdev = NULL;
5399                 if (hole_em && range_start > hole_start) {
5400                         /* our hole starts before our delalloc, so we
5401                          * have to return just the parts of the hole
5402                          * that go until  the delalloc starts
5403                          */
5404                         em->len = min(hole_len,
5405                                       range_start - hole_start);
5406                         em->start = hole_start;
5407                         em->orig_start = hole_start;
5408                         /*
5409                          * don't adjust block start at all,
5410                          * it is fixed at EXTENT_MAP_HOLE
5411                          */
5412                         em->block_start = hole_em->block_start;
5413                         em->block_len = hole_len;
5414                 } else {
5415                         em->start = range_start;
5416                         em->len = found;
5417                         em->orig_start = range_start;
5418                         em->block_start = EXTENT_MAP_DELALLOC;
5419                         em->block_len = found;
5420                 }
5421         } else if (hole_em) {
5422                 return hole_em;
5423         }
5424 out:
5425
5426         free_extent_map(hole_em);
5427         if (err) {
5428                 free_extent_map(em);
5429                 return ERR_PTR(err);
5430         }
5431         return em;
5432 }
5433
5434 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5435                                                   u64 start, u64 len)
5436 {
5437         struct btrfs_root *root = BTRFS_I(inode)->root;
5438         struct btrfs_trans_handle *trans;
5439         struct extent_map *em;
5440         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5441         struct btrfs_key ins;
5442         u64 alloc_hint;
5443         int ret;
5444
5445         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5446
5447         trans = btrfs_join_transaction(root, 0);
5448         if (IS_ERR(trans))
5449                 return ERR_CAST(trans);
5450
5451         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5452
5453         alloc_hint = get_extent_allocation_hint(inode, start, len);
5454         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5455                                    alloc_hint, (u64)-1, &ins, 1);
5456         if (ret) {
5457                 em = ERR_PTR(ret);
5458                 goto out;
5459         }
5460
5461         em = alloc_extent_map(GFP_NOFS);
5462         if (!em) {
5463                 em = ERR_PTR(-ENOMEM);
5464                 goto out;
5465         }
5466
5467         em->start = start;
5468         em->orig_start = em->start;
5469         em->len = ins.offset;
5470
5471         em->block_start = ins.objectid;
5472         em->block_len = ins.offset;
5473         em->bdev = root->fs_info->fs_devices->latest_bdev;
5474         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5475
5476         while (1) {
5477                 write_lock(&em_tree->lock);
5478                 ret = add_extent_mapping(em_tree, em);
5479                 write_unlock(&em_tree->lock);
5480                 if (ret != -EEXIST)
5481                         break;
5482                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5483         }
5484
5485         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5486                                            ins.offset, ins.offset, 0);
5487         if (ret) {
5488                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5489                 em = ERR_PTR(ret);
5490         }
5491 out:
5492         btrfs_end_transaction(trans, root);
5493         return em;
5494 }
5495
5496 /*
5497  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5498  * block must be cow'd
5499  */
5500 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5501                                       struct inode *inode, u64 offset, u64 len)
5502 {
5503         struct btrfs_path *path;
5504         int ret;
5505         struct extent_buffer *leaf;
5506         struct btrfs_root *root = BTRFS_I(inode)->root;
5507         struct btrfs_file_extent_item *fi;
5508         struct btrfs_key key;
5509         u64 disk_bytenr;
5510         u64 backref_offset;
5511         u64 extent_end;
5512         u64 num_bytes;
5513         int slot;
5514         int found_type;
5515
5516         path = btrfs_alloc_path();
5517         if (!path)
5518                 return -ENOMEM;
5519
5520         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5521                                        offset, 0);
5522         if (ret < 0)
5523                 goto out;
5524
5525         slot = path->slots[0];
5526         if (ret == 1) {
5527                 if (slot == 0) {
5528                         /* can't find the item, must cow */
5529                         ret = 0;
5530                         goto out;
5531                 }
5532                 slot--;
5533         }
5534         ret = 0;
5535         leaf = path->nodes[0];
5536         btrfs_item_key_to_cpu(leaf, &key, slot);
5537         if (key.objectid != inode->i_ino ||
5538             key.type != BTRFS_EXTENT_DATA_KEY) {
5539                 /* not our file or wrong item type, must cow */
5540                 goto out;
5541         }
5542
5543         if (key.offset > offset) {
5544                 /* Wrong offset, must cow */
5545                 goto out;
5546         }
5547
5548         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5549         found_type = btrfs_file_extent_type(leaf, fi);
5550         if (found_type != BTRFS_FILE_EXTENT_REG &&
5551             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5552                 /* not a regular extent, must cow */
5553                 goto out;
5554         }
5555         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5556         backref_offset = btrfs_file_extent_offset(leaf, fi);
5557
5558         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5559         if (extent_end < offset + len) {
5560                 /* extent doesn't include our full range, must cow */
5561                 goto out;
5562         }
5563
5564         if (btrfs_extent_readonly(root, disk_bytenr))
5565                 goto out;
5566
5567         /*
5568          * look for other files referencing this extent, if we
5569          * find any we must cow
5570          */
5571         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5572                                   key.offset - backref_offset, disk_bytenr))
5573                 goto out;
5574
5575         /*
5576          * adjust disk_bytenr and num_bytes to cover just the bytes
5577          * in this extent we are about to write.  If there
5578          * are any csums in that range we have to cow in order
5579          * to keep the csums correct
5580          */
5581         disk_bytenr += backref_offset;
5582         disk_bytenr += offset - key.offset;
5583         num_bytes = min(offset + len, extent_end) - offset;
5584         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5585                                 goto out;
5586         /*
5587          * all of the above have passed, it is safe to overwrite this extent
5588          * without cow
5589          */
5590         ret = 1;
5591 out:
5592         btrfs_free_path(path);
5593         return ret;
5594 }
5595
5596 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5597                                    struct buffer_head *bh_result, int create)
5598 {
5599         struct extent_map *em;
5600         struct btrfs_root *root = BTRFS_I(inode)->root;
5601         u64 start = iblock << inode->i_blkbits;
5602         u64 len = bh_result->b_size;
5603         struct btrfs_trans_handle *trans;
5604
5605         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5606         if (IS_ERR(em))
5607                 return PTR_ERR(em);
5608
5609         /*
5610          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5611          * io.  INLINE is special, and we could probably kludge it in here, but
5612          * it's still buffered so for safety lets just fall back to the generic
5613          * buffered path.
5614          *
5615          * For COMPRESSED we _have_ to read the entire extent in so we can
5616          * decompress it, so there will be buffering required no matter what we
5617          * do, so go ahead and fallback to buffered.
5618          *
5619          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5620          * to buffered IO.  Don't blame me, this is the price we pay for using
5621          * the generic code.
5622          */
5623         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5624             em->block_start == EXTENT_MAP_INLINE) {
5625                 free_extent_map(em);
5626                 return -ENOTBLK;
5627         }
5628
5629         /* Just a good old fashioned hole, return */
5630         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5631                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5632                 free_extent_map(em);
5633                 /* DIO will do one hole at a time, so just unlock a sector */
5634                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5635                               start + root->sectorsize - 1, GFP_NOFS);
5636                 return 0;
5637         }
5638
5639         /*
5640          * We don't allocate a new extent in the following cases
5641          *
5642          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5643          * existing extent.
5644          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5645          * just use the extent.
5646          *
5647          */
5648         if (!create) {
5649                 len = em->len - (start - em->start);
5650                 goto map;
5651         }
5652
5653         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5654             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5655              em->block_start != EXTENT_MAP_HOLE)) {
5656                 int type;
5657                 int ret;
5658                 u64 block_start;
5659
5660                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5661                         type = BTRFS_ORDERED_PREALLOC;
5662                 else
5663                         type = BTRFS_ORDERED_NOCOW;
5664                 len = min(len, em->len - (start - em->start));
5665                 block_start = em->block_start + (start - em->start);
5666
5667                 /*
5668                  * we're not going to log anything, but we do need
5669                  * to make sure the current transaction stays open
5670                  * while we look for nocow cross refs
5671                  */
5672                 trans = btrfs_join_transaction(root, 0);
5673                 if (IS_ERR(trans))
5674                         goto must_cow;
5675
5676                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5677                         ret = btrfs_add_ordered_extent_dio(inode, start,
5678                                            block_start, len, len, type);
5679                         btrfs_end_transaction(trans, root);
5680                         if (ret) {
5681                                 free_extent_map(em);
5682                                 return ret;
5683                         }
5684                         goto unlock;
5685                 }
5686                 btrfs_end_transaction(trans, root);
5687         }
5688 must_cow:
5689         /*
5690          * this will cow the extent, reset the len in case we changed
5691          * it above
5692          */
5693         len = bh_result->b_size;
5694         free_extent_map(em);
5695         em = btrfs_new_extent_direct(inode, start, len);
5696         if (IS_ERR(em))
5697                 return PTR_ERR(em);
5698         len = min(len, em->len - (start - em->start));
5699 unlock:
5700         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5701                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5702                           0, NULL, GFP_NOFS);
5703 map:
5704         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5705                 inode->i_blkbits;
5706         bh_result->b_size = len;
5707         bh_result->b_bdev = em->bdev;
5708         set_buffer_mapped(bh_result);
5709         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5710                 set_buffer_new(bh_result);
5711
5712         free_extent_map(em);
5713
5714         return 0;
5715 }
5716
5717 struct btrfs_dio_private {
5718         struct inode *inode;
5719         u64 logical_offset;
5720         u64 disk_bytenr;
5721         u64 bytes;
5722         u32 *csums;
5723         void *private;
5724
5725         /* number of bios pending for this dio */
5726         atomic_t pending_bios;
5727
5728         /* IO errors */
5729         int errors;
5730
5731         struct bio *orig_bio;
5732 };
5733
5734 static void btrfs_endio_direct_read(struct bio *bio, int err)
5735 {
5736         struct btrfs_dio_private *dip = bio->bi_private;
5737         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5738         struct bio_vec *bvec = bio->bi_io_vec;
5739         struct inode *inode = dip->inode;
5740         struct btrfs_root *root = BTRFS_I(inode)->root;
5741         u64 start;
5742         u32 *private = dip->csums;
5743
5744         start = dip->logical_offset;
5745         do {
5746                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5747                         struct page *page = bvec->bv_page;
5748                         char *kaddr;
5749                         u32 csum = ~(u32)0;
5750                         unsigned long flags;
5751
5752                         local_irq_save(flags);
5753                         kaddr = kmap_atomic(page, KM_IRQ0);
5754                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5755                                                csum, bvec->bv_len);
5756                         btrfs_csum_final(csum, (char *)&csum);
5757                         kunmap_atomic(kaddr, KM_IRQ0);
5758                         local_irq_restore(flags);
5759
5760                         flush_dcache_page(bvec->bv_page);
5761                         if (csum != *private) {
5762                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5763                                       " %llu csum %u private %u\n",
5764                                       inode->i_ino, (unsigned long long)start,
5765                                       csum, *private);
5766                                 err = -EIO;
5767                         }
5768                 }
5769
5770                 start += bvec->bv_len;
5771                 private++;
5772                 bvec++;
5773         } while (bvec <= bvec_end);
5774
5775         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5776                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5777         bio->bi_private = dip->private;
5778
5779         kfree(dip->csums);
5780         kfree(dip);
5781
5782         /* If we had a csum failure make sure to clear the uptodate flag */
5783         if (err)
5784                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5785         dio_end_io(bio, err);
5786 }
5787
5788 static void btrfs_endio_direct_write(struct bio *bio, int err)
5789 {
5790         struct btrfs_dio_private *dip = bio->bi_private;
5791         struct inode *inode = dip->inode;
5792         struct btrfs_root *root = BTRFS_I(inode)->root;
5793         struct btrfs_trans_handle *trans;
5794         struct btrfs_ordered_extent *ordered = NULL;
5795         struct extent_state *cached_state = NULL;
5796         u64 ordered_offset = dip->logical_offset;
5797         u64 ordered_bytes = dip->bytes;
5798         int ret;
5799
5800         if (err)
5801                 goto out_done;
5802 again:
5803         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5804                                                    &ordered_offset,
5805                                                    ordered_bytes);
5806         if (!ret)
5807                 goto out_test;
5808
5809         BUG_ON(!ordered);
5810
5811         trans = btrfs_join_transaction(root, 1);
5812         if (IS_ERR(trans)) {
5813                 err = -ENOMEM;
5814                 goto out;
5815         }
5816         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5817
5818         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5819                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5820                 if (!ret)
5821                         ret = btrfs_update_inode(trans, root, inode);
5822                 err = ret;
5823                 goto out;
5824         }
5825
5826         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5827                          ordered->file_offset + ordered->len - 1, 0,
5828                          &cached_state, GFP_NOFS);
5829
5830         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5831                 ret = btrfs_mark_extent_written(trans, inode,
5832                                                 ordered->file_offset,
5833                                                 ordered->file_offset +
5834                                                 ordered->len);
5835                 if (ret) {
5836                         err = ret;
5837                         goto out_unlock;
5838                 }
5839         } else {
5840                 ret = insert_reserved_file_extent(trans, inode,
5841                                                   ordered->file_offset,
5842                                                   ordered->start,
5843                                                   ordered->disk_len,
5844                                                   ordered->len,
5845                                                   ordered->len,
5846                                                   0, 0, 0,
5847                                                   BTRFS_FILE_EXTENT_REG);
5848                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5849                                    ordered->file_offset, ordered->len);
5850                 if (ret) {
5851                         err = ret;
5852                         WARN_ON(1);
5853                         goto out_unlock;
5854                 }
5855         }
5856
5857         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5858         btrfs_ordered_update_i_size(inode, 0, ordered);
5859         btrfs_update_inode(trans, root, inode);
5860 out_unlock:
5861         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5862                              ordered->file_offset + ordered->len - 1,
5863                              &cached_state, GFP_NOFS);
5864 out:
5865         btrfs_delalloc_release_metadata(inode, ordered->len);
5866         btrfs_end_transaction(trans, root);
5867         ordered_offset = ordered->file_offset + ordered->len;
5868         btrfs_put_ordered_extent(ordered);
5869         btrfs_put_ordered_extent(ordered);
5870
5871 out_test:
5872         /*
5873          * our bio might span multiple ordered extents.  If we haven't
5874          * completed the accounting for the whole dio, go back and try again
5875          */
5876         if (ordered_offset < dip->logical_offset + dip->bytes) {
5877                 ordered_bytes = dip->logical_offset + dip->bytes -
5878                         ordered_offset;
5879                 goto again;
5880         }
5881 out_done:
5882         bio->bi_private = dip->private;
5883
5884         kfree(dip->csums);
5885         kfree(dip);
5886
5887         /* If we had an error make sure to clear the uptodate flag */
5888         if (err)
5889                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5890         dio_end_io(bio, err);
5891 }
5892
5893 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5894                                     struct bio *bio, int mirror_num,
5895                                     unsigned long bio_flags, u64 offset)
5896 {
5897         int ret;
5898         struct btrfs_root *root = BTRFS_I(inode)->root;
5899         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5900         BUG_ON(ret);
5901         return 0;
5902 }
5903
5904 static void btrfs_end_dio_bio(struct bio *bio, int err)
5905 {
5906         struct btrfs_dio_private *dip = bio->bi_private;
5907
5908         if (err) {
5909                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5910                       "sector %#Lx len %u err no %d\n",
5911                       dip->inode->i_ino, bio->bi_rw,
5912                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5913                 dip->errors = 1;
5914
5915                 /*
5916                  * before atomic variable goto zero, we must make sure
5917                  * dip->errors is perceived to be set.
5918                  */
5919                 smp_mb__before_atomic_dec();
5920         }
5921
5922         /* if there are more bios still pending for this dio, just exit */
5923         if (!atomic_dec_and_test(&dip->pending_bios))
5924                 goto out;
5925
5926         if (dip->errors)
5927                 bio_io_error(dip->orig_bio);
5928         else {
5929                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5930                 bio_endio(dip->orig_bio, 0);
5931         }
5932 out:
5933         bio_put(bio);
5934 }
5935
5936 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5937                                        u64 first_sector, gfp_t gfp_flags)
5938 {
5939         int nr_vecs = bio_get_nr_vecs(bdev);
5940         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5941 }
5942
5943 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5944                                          int rw, u64 file_offset, int skip_sum,
5945                                          u32 *csums)
5946 {
5947         int write = rw & REQ_WRITE;
5948         struct btrfs_root *root = BTRFS_I(inode)->root;
5949         int ret;
5950
5951         bio_get(bio);
5952         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5953         if (ret)
5954                 goto err;
5955
5956         if (write && !skip_sum) {
5957                 ret = btrfs_wq_submit_bio(root->fs_info,
5958                                    inode, rw, bio, 0, 0,
5959                                    file_offset,
5960                                    __btrfs_submit_bio_start_direct_io,
5961                                    __btrfs_submit_bio_done);
5962                 goto err;
5963         } else if (!skip_sum) {
5964                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5965                                           file_offset, csums);
5966                 if (ret)
5967                         goto err;
5968         }
5969
5970         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5971 err:
5972         bio_put(bio);
5973         return ret;
5974 }
5975
5976 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5977                                     int skip_sum)
5978 {
5979         struct inode *inode = dip->inode;
5980         struct btrfs_root *root = BTRFS_I(inode)->root;
5981         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5982         struct bio *bio;
5983         struct bio *orig_bio = dip->orig_bio;
5984         struct bio_vec *bvec = orig_bio->bi_io_vec;
5985         u64 start_sector = orig_bio->bi_sector;
5986         u64 file_offset = dip->logical_offset;
5987         u64 submit_len = 0;
5988         u64 map_length;
5989         int nr_pages = 0;
5990         u32 *csums = dip->csums;
5991         int ret = 0;
5992         int write = rw & REQ_WRITE;
5993
5994         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5995         if (!bio)
5996                 return -ENOMEM;
5997         bio->bi_private = dip;
5998         bio->bi_end_io = btrfs_end_dio_bio;
5999         atomic_inc(&dip->pending_bios);
6000
6001         map_length = orig_bio->bi_size;
6002         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6003                               &map_length, NULL, 0);
6004         if (ret) {
6005                 bio_put(bio);
6006                 return -EIO;
6007         }
6008
6009         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6010                 if (unlikely(map_length < submit_len + bvec->bv_len ||
6011                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6012                                  bvec->bv_offset) < bvec->bv_len)) {
6013                         /*
6014                          * inc the count before we submit the bio so
6015                          * we know the end IO handler won't happen before
6016                          * we inc the count. Otherwise, the dip might get freed
6017                          * before we're done setting it up
6018                          */
6019                         atomic_inc(&dip->pending_bios);
6020                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
6021                                                      file_offset, skip_sum,
6022                                                      csums);
6023                         if (ret) {
6024                                 bio_put(bio);
6025                                 atomic_dec(&dip->pending_bios);
6026                                 goto out_err;
6027                         }
6028
6029                         /* Write's use the ordered csums */
6030                         if (!write && !skip_sum)
6031                                 csums = csums + nr_pages;
6032                         start_sector += submit_len >> 9;
6033                         file_offset += submit_len;
6034
6035                         submit_len = 0;
6036                         nr_pages = 0;
6037
6038                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6039                                                   start_sector, GFP_NOFS);
6040                         if (!bio)
6041                                 goto out_err;
6042                         bio->bi_private = dip;
6043                         bio->bi_end_io = btrfs_end_dio_bio;
6044
6045                         map_length = orig_bio->bi_size;
6046                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6047                                               &map_length, NULL, 0);
6048                         if (ret) {
6049                                 bio_put(bio);
6050                                 goto out_err;
6051                         }
6052                 } else {
6053                         submit_len += bvec->bv_len;
6054                         nr_pages ++;
6055                         bvec++;
6056                 }
6057         }
6058
6059         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6060                                      csums);
6061         if (!ret)
6062                 return 0;
6063
6064         bio_put(bio);
6065 out_err:
6066         dip->errors = 1;
6067         /*
6068          * before atomic variable goto zero, we must
6069          * make sure dip->errors is perceived to be set.
6070          */
6071         smp_mb__before_atomic_dec();
6072         if (atomic_dec_and_test(&dip->pending_bios))
6073                 bio_io_error(dip->orig_bio);
6074
6075         /* bio_end_io() will handle error, so we needn't return it */
6076         return 0;
6077 }
6078
6079 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6080                                 loff_t file_offset)
6081 {
6082         struct btrfs_root *root = BTRFS_I(inode)->root;
6083         struct btrfs_dio_private *dip;
6084         struct bio_vec *bvec = bio->bi_io_vec;
6085         int skip_sum;
6086         int write = rw & REQ_WRITE;
6087         int ret = 0;
6088
6089         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6090
6091         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6092         if (!dip) {
6093                 ret = -ENOMEM;
6094                 goto free_ordered;
6095         }
6096         dip->csums = NULL;
6097
6098         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6099         if (!write && !skip_sum) {
6100                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6101                 if (!dip->csums) {
6102                         kfree(dip);
6103                         ret = -ENOMEM;
6104                         goto free_ordered;
6105                 }
6106         }
6107
6108         dip->private = bio->bi_private;
6109         dip->inode = inode;
6110         dip->logical_offset = file_offset;
6111
6112         dip->bytes = 0;
6113         do {
6114                 dip->bytes += bvec->bv_len;
6115                 bvec++;
6116         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6117
6118         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6119         bio->bi_private = dip;
6120         dip->errors = 0;
6121         dip->orig_bio = bio;
6122         atomic_set(&dip->pending_bios, 0);
6123
6124         if (write)
6125                 bio->bi_end_io = btrfs_endio_direct_write;
6126         else
6127                 bio->bi_end_io = btrfs_endio_direct_read;
6128
6129         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6130         if (!ret)
6131                 return;
6132 free_ordered:
6133         /*
6134          * If this is a write, we need to clean up the reserved space and kill
6135          * the ordered extent.
6136          */
6137         if (write) {
6138                 struct btrfs_ordered_extent *ordered;
6139                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6140                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6141                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6142                         btrfs_free_reserved_extent(root, ordered->start,
6143                                                    ordered->disk_len);
6144                 btrfs_put_ordered_extent(ordered);
6145                 btrfs_put_ordered_extent(ordered);
6146         }
6147         bio_endio(bio, ret);
6148 }
6149
6150 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6151                         const struct iovec *iov, loff_t offset,
6152                         unsigned long nr_segs)
6153 {
6154         int seg;
6155         size_t size;
6156         unsigned long addr;
6157         unsigned blocksize_mask = root->sectorsize - 1;
6158         ssize_t retval = -EINVAL;
6159         loff_t end = offset;
6160
6161         if (offset & blocksize_mask)
6162                 goto out;
6163
6164         /* Check the memory alignment.  Blocks cannot straddle pages */
6165         for (seg = 0; seg < nr_segs; seg++) {
6166                 addr = (unsigned long)iov[seg].iov_base;
6167                 size = iov[seg].iov_len;
6168                 end += size;
6169                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6170                         goto out;
6171         }
6172         retval = 0;
6173 out:
6174         return retval;
6175 }
6176 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6177                         const struct iovec *iov, loff_t offset,
6178                         unsigned long nr_segs)
6179 {
6180         struct file *file = iocb->ki_filp;
6181         struct inode *inode = file->f_mapping->host;
6182         struct btrfs_ordered_extent *ordered;
6183         struct extent_state *cached_state = NULL;
6184         u64 lockstart, lockend;
6185         ssize_t ret;
6186         int writing = rw & WRITE;
6187         int write_bits = 0;
6188         size_t count = iov_length(iov, nr_segs);
6189
6190         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6191                             offset, nr_segs)) {
6192                 return 0;
6193         }
6194
6195         lockstart = offset;
6196         lockend = offset + count - 1;
6197
6198         if (writing) {
6199                 ret = btrfs_delalloc_reserve_space(inode, count);
6200                 if (ret)
6201                         goto out;
6202         }
6203
6204         while (1) {
6205                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6206                                  0, &cached_state, GFP_NOFS);
6207                 /*
6208                  * We're concerned with the entire range that we're going to be
6209                  * doing DIO to, so we need to make sure theres no ordered
6210                  * extents in this range.
6211                  */
6212                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6213                                                      lockend - lockstart + 1);
6214                 if (!ordered)
6215                         break;
6216                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6217                                      &cached_state, GFP_NOFS);
6218                 btrfs_start_ordered_extent(inode, ordered, 1);
6219                 btrfs_put_ordered_extent(ordered);
6220                 cond_resched();
6221         }
6222
6223         /*
6224          * we don't use btrfs_set_extent_delalloc because we don't want
6225          * the dirty or uptodate bits
6226          */
6227         if (writing) {
6228                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6229                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6230                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6231                                      GFP_NOFS);
6232                 if (ret) {
6233                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6234                                          lockend, EXTENT_LOCKED | write_bits,
6235                                          1, 0, &cached_state, GFP_NOFS);
6236                         goto out;
6237                 }
6238         }
6239
6240         free_extent_state(cached_state);
6241         cached_state = NULL;
6242
6243         ret = __blockdev_direct_IO(rw, iocb, inode,
6244                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6245                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6246                    btrfs_submit_direct, 0);
6247
6248         if (ret < 0 && ret != -EIOCBQUEUED) {
6249                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6250                               offset + iov_length(iov, nr_segs) - 1,
6251                               EXTENT_LOCKED | write_bits, 1, 0,
6252                               &cached_state, GFP_NOFS);
6253         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6254                 /*
6255                  * We're falling back to buffered, unlock the section we didn't
6256                  * do IO on.
6257                  */
6258                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6259                               offset + iov_length(iov, nr_segs) - 1,
6260                               EXTENT_LOCKED | write_bits, 1, 0,
6261                               &cached_state, GFP_NOFS);
6262         }
6263 out:
6264         free_extent_state(cached_state);
6265         return ret;
6266 }
6267
6268 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6269                 __u64 start, __u64 len)
6270 {
6271         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6272 }
6273
6274 int btrfs_readpage(struct file *file, struct page *page)
6275 {
6276         struct extent_io_tree *tree;
6277         tree = &BTRFS_I(page->mapping->host)->io_tree;
6278         return extent_read_full_page(tree, page, btrfs_get_extent);
6279 }
6280
6281 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6282 {
6283         struct extent_io_tree *tree;
6284
6285
6286         if (current->flags & PF_MEMALLOC) {
6287                 redirty_page_for_writepage(wbc, page);
6288                 unlock_page(page);
6289                 return 0;
6290         }
6291         tree = &BTRFS_I(page->mapping->host)->io_tree;
6292         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6293 }
6294
6295 int btrfs_writepages(struct address_space *mapping,
6296                      struct writeback_control *wbc)
6297 {
6298         struct extent_io_tree *tree;
6299
6300         tree = &BTRFS_I(mapping->host)->io_tree;
6301         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6302 }
6303
6304 static int
6305 btrfs_readpages(struct file *file, struct address_space *mapping,
6306                 struct list_head *pages, unsigned nr_pages)
6307 {
6308         struct extent_io_tree *tree;
6309         tree = &BTRFS_I(mapping->host)->io_tree;
6310         return extent_readpages(tree, mapping, pages, nr_pages,
6311                                 btrfs_get_extent);
6312 }
6313 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6314 {
6315         struct extent_io_tree *tree;
6316         struct extent_map_tree *map;
6317         int ret;
6318
6319         tree = &BTRFS_I(page->mapping->host)->io_tree;
6320         map = &BTRFS_I(page->mapping->host)->extent_tree;
6321         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6322         if (ret == 1) {
6323                 ClearPagePrivate(page);
6324                 set_page_private(page, 0);
6325                 page_cache_release(page);
6326         }
6327         return ret;
6328 }
6329
6330 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6331 {
6332         if (PageWriteback(page) || PageDirty(page))
6333                 return 0;
6334         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6335 }
6336
6337 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6338 {
6339         struct extent_io_tree *tree;
6340         struct btrfs_ordered_extent *ordered;
6341         struct extent_state *cached_state = NULL;
6342         u64 page_start = page_offset(page);
6343         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6344
6345
6346         /*
6347          * we have the page locked, so new writeback can't start,
6348          * and the dirty bit won't be cleared while we are here.
6349          *
6350          * Wait for IO on this page so that we can safely clear
6351          * the PagePrivate2 bit and do ordered accounting
6352          */
6353         wait_on_page_writeback(page);
6354
6355         tree = &BTRFS_I(page->mapping->host)->io_tree;
6356         if (offset) {
6357                 btrfs_releasepage(page, GFP_NOFS);
6358                 return;
6359         }
6360         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6361                          GFP_NOFS);
6362         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6363                                            page_offset(page));
6364         if (ordered) {
6365                 /*
6366                  * IO on this page will never be started, so we need
6367                  * to account for any ordered extents now
6368                  */
6369                 clear_extent_bit(tree, page_start, page_end,
6370                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6371                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6372                                  &cached_state, GFP_NOFS);
6373                 /*
6374                  * whoever cleared the private bit is responsible
6375                  * for the finish_ordered_io
6376                  */
6377                 if (TestClearPagePrivate2(page)) {
6378                         btrfs_finish_ordered_io(page->mapping->host,
6379                                                 page_start, page_end);
6380                 }
6381                 btrfs_put_ordered_extent(ordered);
6382                 cached_state = NULL;
6383                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6384                                  GFP_NOFS);
6385         }
6386         clear_extent_bit(tree, page_start, page_end,
6387                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6388                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6389         __btrfs_releasepage(page, GFP_NOFS);
6390
6391         ClearPageChecked(page);
6392         if (PagePrivate(page)) {
6393                 ClearPagePrivate(page);
6394                 set_page_private(page, 0);
6395                 page_cache_release(page);
6396         }
6397 }
6398
6399 /*
6400  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6401  * called from a page fault handler when a page is first dirtied. Hence we must
6402  * be careful to check for EOF conditions here. We set the page up correctly
6403  * for a written page which means we get ENOSPC checking when writing into
6404  * holes and correct delalloc and unwritten extent mapping on filesystems that
6405  * support these features.
6406  *
6407  * We are not allowed to take the i_mutex here so we have to play games to
6408  * protect against truncate races as the page could now be beyond EOF.  Because
6409  * vmtruncate() writes the inode size before removing pages, once we have the
6410  * page lock we can determine safely if the page is beyond EOF. If it is not
6411  * beyond EOF, then the page is guaranteed safe against truncation until we
6412  * unlock the page.
6413  */
6414 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6415 {
6416         struct page *page = vmf->page;
6417         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6418         struct btrfs_root *root = BTRFS_I(inode)->root;
6419         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6420         struct btrfs_ordered_extent *ordered;
6421         struct extent_state *cached_state = NULL;
6422         char *kaddr;
6423         unsigned long zero_start;
6424         loff_t size;
6425         int ret;
6426         u64 page_start;
6427         u64 page_end;
6428
6429         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6430         if (ret) {
6431                 if (ret == -ENOMEM)
6432                         ret = VM_FAULT_OOM;
6433                 else /* -ENOSPC, -EIO, etc */
6434                         ret = VM_FAULT_SIGBUS;
6435                 goto out;
6436         }
6437
6438         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6439 again:
6440         lock_page(page);
6441         size = i_size_read(inode);
6442         page_start = page_offset(page);
6443         page_end = page_start + PAGE_CACHE_SIZE - 1;
6444
6445         if ((page->mapping != inode->i_mapping) ||
6446             (page_start >= size)) {
6447                 /* page got truncated out from underneath us */
6448                 goto out_unlock;
6449         }
6450         wait_on_page_writeback(page);
6451
6452         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6453                          GFP_NOFS);
6454         set_page_extent_mapped(page);
6455
6456         /*
6457          * we can't set the delalloc bits if there are pending ordered
6458          * extents.  Drop our locks and wait for them to finish
6459          */
6460         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6461         if (ordered) {
6462                 unlock_extent_cached(io_tree, page_start, page_end,
6463                                      &cached_state, GFP_NOFS);
6464                 unlock_page(page);
6465                 btrfs_start_ordered_extent(inode, ordered, 1);
6466                 btrfs_put_ordered_extent(ordered);
6467                 goto again;
6468         }
6469
6470         /*
6471          * XXX - page_mkwrite gets called every time the page is dirtied, even
6472          * if it was already dirty, so for space accounting reasons we need to
6473          * clear any delalloc bits for the range we are fixing to save.  There
6474          * is probably a better way to do this, but for now keep consistent with
6475          * prepare_pages in the normal write path.
6476          */
6477         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6478                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6479                           0, 0, &cached_state, GFP_NOFS);
6480
6481         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6482                                         &cached_state);
6483         if (ret) {
6484                 unlock_extent_cached(io_tree, page_start, page_end,
6485                                      &cached_state, GFP_NOFS);
6486                 ret = VM_FAULT_SIGBUS;
6487                 goto out_unlock;
6488         }
6489         ret = 0;
6490
6491         /* page is wholly or partially inside EOF */
6492         if (page_start + PAGE_CACHE_SIZE > size)
6493                 zero_start = size & ~PAGE_CACHE_MASK;
6494         else
6495                 zero_start = PAGE_CACHE_SIZE;
6496
6497         if (zero_start != PAGE_CACHE_SIZE) {
6498                 kaddr = kmap(page);
6499                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6500                 flush_dcache_page(page);
6501                 kunmap(page);
6502         }
6503         ClearPageChecked(page);
6504         set_page_dirty(page);
6505         SetPageUptodate(page);
6506
6507         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6508         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6509
6510         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6511
6512 out_unlock:
6513         if (!ret)
6514                 return VM_FAULT_LOCKED;
6515         unlock_page(page);
6516         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6517 out:
6518         return ret;
6519 }
6520
6521 static int btrfs_truncate(struct inode *inode)
6522 {
6523         struct btrfs_root *root = BTRFS_I(inode)->root;
6524         int ret;
6525         int err = 0;
6526         struct btrfs_trans_handle *trans;
6527         unsigned long nr;
6528         u64 mask = root->sectorsize - 1;
6529
6530         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6531         if (ret)
6532                 return ret;
6533
6534         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6535         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6536
6537         trans = btrfs_start_transaction(root, 5);
6538         if (IS_ERR(trans))
6539                 return PTR_ERR(trans);
6540
6541         btrfs_set_trans_block_group(trans, inode);
6542
6543         ret = btrfs_orphan_add(trans, inode);
6544         if (ret) {
6545                 btrfs_end_transaction(trans, root);
6546                 return ret;
6547         }
6548
6549         nr = trans->blocks_used;
6550         btrfs_end_transaction(trans, root);
6551         btrfs_btree_balance_dirty(root, nr);
6552
6553         /* Now start a transaction for the truncate */
6554         trans = btrfs_start_transaction(root, 0);
6555         if (IS_ERR(trans))
6556                 return PTR_ERR(trans);
6557         btrfs_set_trans_block_group(trans, inode);
6558         trans->block_rsv = root->orphan_block_rsv;
6559
6560         /*
6561          * setattr is responsible for setting the ordered_data_close flag,
6562          * but that is only tested during the last file release.  That
6563          * could happen well after the next commit, leaving a great big
6564          * window where new writes may get lost if someone chooses to write
6565          * to this file after truncating to zero
6566          *
6567          * The inode doesn't have any dirty data here, and so if we commit
6568          * this is a noop.  If someone immediately starts writing to the inode
6569          * it is very likely we'll catch some of their writes in this
6570          * transaction, and the commit will find this file on the ordered
6571          * data list with good things to send down.
6572          *
6573          * This is a best effort solution, there is still a window where
6574          * using truncate to replace the contents of the file will
6575          * end up with a zero length file after a crash.
6576          */
6577         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6578                 btrfs_add_ordered_operation(trans, root, inode);
6579
6580         while (1) {
6581                 if (!trans) {
6582                         trans = btrfs_start_transaction(root, 0);
6583                         if (IS_ERR(trans))
6584                                 return PTR_ERR(trans);
6585                         btrfs_set_trans_block_group(trans, inode);
6586                         trans->block_rsv = root->orphan_block_rsv;
6587                 }
6588
6589                 ret = btrfs_block_rsv_check(trans, root,
6590                                             root->orphan_block_rsv, 0, 5);
6591                 if (ret == -EAGAIN) {
6592                         ret = btrfs_commit_transaction(trans, root);
6593                         if (ret)
6594                                 return ret;
6595                         trans = NULL;
6596                         continue;
6597                 } else if (ret) {
6598                         err = ret;
6599                         break;
6600                 }
6601
6602                 ret = btrfs_truncate_inode_items(trans, root, inode,
6603                                                  inode->i_size,
6604                                                  BTRFS_EXTENT_DATA_KEY);
6605                 if (ret != -EAGAIN) {
6606                         err = ret;
6607                         break;
6608                 }
6609
6610                 ret = btrfs_update_inode(trans, root, inode);
6611                 if (ret) {
6612                         err = ret;
6613                         break;
6614                 }
6615
6616                 nr = trans->blocks_used;
6617                 btrfs_end_transaction(trans, root);
6618                 trans = NULL;
6619                 btrfs_btree_balance_dirty(root, nr);
6620         }
6621
6622         if (ret == 0 && inode->i_nlink > 0) {
6623                 ret = btrfs_orphan_del(trans, inode);
6624                 if (ret)
6625                         err = ret;
6626         } else if (ret && inode->i_nlink > 0) {
6627                 /*
6628                  * Failed to do the truncate, remove us from the in memory
6629                  * orphan list.
6630                  */
6631                 ret = btrfs_orphan_del(NULL, inode);
6632         }
6633
6634         ret = btrfs_update_inode(trans, root, inode);
6635         if (ret && !err)
6636                 err = ret;
6637
6638         nr = trans->blocks_used;
6639         ret = btrfs_end_transaction_throttle(trans, root);
6640         if (ret && !err)
6641                 err = ret;
6642         btrfs_btree_balance_dirty(root, nr);
6643
6644         return err;
6645 }
6646
6647 /*
6648  * create a new subvolume directory/inode (helper for the ioctl).
6649  */
6650 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6651                              struct btrfs_root *new_root,
6652                              u64 new_dirid, u64 alloc_hint)
6653 {
6654         struct inode *inode;
6655         int err;
6656         u64 index = 0;
6657
6658         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6659                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6660         if (IS_ERR(inode))
6661                 return PTR_ERR(inode);
6662         inode->i_op = &btrfs_dir_inode_operations;
6663         inode->i_fop = &btrfs_dir_file_operations;
6664
6665         inode->i_nlink = 1;
6666         btrfs_i_size_write(inode, 0);
6667
6668         err = btrfs_update_inode(trans, new_root, inode);
6669         BUG_ON(err);
6670
6671         iput(inode);
6672         return 0;
6673 }
6674
6675 /* helper function for file defrag and space balancing.  This
6676  * forces readahead on a given range of bytes in an inode
6677  */
6678 unsigned long btrfs_force_ra(struct address_space *mapping,
6679                               struct file_ra_state *ra, struct file *file,
6680                               pgoff_t offset, pgoff_t last_index)
6681 {
6682         pgoff_t req_size = last_index - offset + 1;
6683
6684         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6685         return offset + req_size;
6686 }
6687
6688 struct inode *btrfs_alloc_inode(struct super_block *sb)
6689 {
6690         struct btrfs_inode *ei;
6691         struct inode *inode;
6692
6693         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6694         if (!ei)
6695                 return NULL;
6696
6697         ei->root = NULL;
6698         ei->space_info = NULL;
6699         ei->generation = 0;
6700         ei->sequence = 0;
6701         ei->last_trans = 0;
6702         ei->last_sub_trans = 0;
6703         ei->logged_trans = 0;
6704         ei->delalloc_bytes = 0;
6705         ei->reserved_bytes = 0;
6706         ei->disk_i_size = 0;
6707         ei->flags = 0;
6708         ei->index_cnt = (u64)-1;
6709         ei->last_unlink_trans = 0;
6710
6711         atomic_set(&ei->outstanding_extents, 0);
6712         atomic_set(&ei->reserved_extents, 0);
6713
6714         ei->ordered_data_close = 0;
6715         ei->orphan_meta_reserved = 0;
6716         ei->dummy_inode = 0;
6717         ei->force_compress = BTRFS_COMPRESS_NONE;
6718
6719         inode = &ei->vfs_inode;
6720         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6721         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6722         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6723         mutex_init(&ei->log_mutex);
6724         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6725         INIT_LIST_HEAD(&ei->i_orphan);
6726         INIT_LIST_HEAD(&ei->delalloc_inodes);
6727         INIT_LIST_HEAD(&ei->ordered_operations);
6728         RB_CLEAR_NODE(&ei->rb_node);
6729
6730         return inode;
6731 }
6732
6733 static void btrfs_i_callback(struct rcu_head *head)
6734 {
6735         struct inode *inode = container_of(head, struct inode, i_rcu);
6736         INIT_LIST_HEAD(&inode->i_dentry);
6737         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6738 }
6739
6740 void btrfs_destroy_inode(struct inode *inode)
6741 {
6742         struct btrfs_ordered_extent *ordered;
6743         struct btrfs_root *root = BTRFS_I(inode)->root;
6744
6745         WARN_ON(!list_empty(&inode->i_dentry));
6746         WARN_ON(inode->i_data.nrpages);
6747         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6748         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6749
6750         /*
6751          * This can happen where we create an inode, but somebody else also
6752          * created the same inode and we need to destroy the one we already
6753          * created.
6754          */
6755         if (!root)
6756                 goto free;
6757
6758         /*
6759          * Make sure we're properly removed from the ordered operation
6760          * lists.
6761          */
6762         smp_mb();
6763         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6764                 spin_lock(&root->fs_info->ordered_extent_lock);
6765                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6766                 spin_unlock(&root->fs_info->ordered_extent_lock);
6767         }
6768
6769         if (root == root->fs_info->tree_root) {
6770                 struct btrfs_block_group_cache *block_group;
6771
6772                 block_group = btrfs_lookup_block_group(root->fs_info,
6773                                                 BTRFS_I(inode)->block_group);
6774                 if (block_group && block_group->inode == inode) {
6775                         spin_lock(&block_group->lock);
6776                         block_group->inode = NULL;
6777                         spin_unlock(&block_group->lock);
6778                         btrfs_put_block_group(block_group);
6779                 } else if (block_group) {
6780                         btrfs_put_block_group(block_group);
6781                 }
6782         }
6783
6784         spin_lock(&root->orphan_lock);
6785         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6786                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6787                        inode->i_ino);
6788                 list_del_init(&BTRFS_I(inode)->i_orphan);
6789         }
6790         spin_unlock(&root->orphan_lock);
6791
6792         while (1) {
6793                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6794                 if (!ordered)
6795                         break;
6796                 else {
6797                         printk(KERN_ERR "btrfs found ordered "
6798                                "extent %llu %llu on inode cleanup\n",
6799                                (unsigned long long)ordered->file_offset,
6800                                (unsigned long long)ordered->len);
6801                         btrfs_remove_ordered_extent(inode, ordered);
6802                         btrfs_put_ordered_extent(ordered);
6803                         btrfs_put_ordered_extent(ordered);
6804                 }
6805         }
6806         inode_tree_del(inode);
6807         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6808 free:
6809         call_rcu(&inode->i_rcu, btrfs_i_callback);
6810 }
6811
6812 int btrfs_drop_inode(struct inode *inode)
6813 {
6814         struct btrfs_root *root = BTRFS_I(inode)->root;
6815
6816         if (btrfs_root_refs(&root->root_item) == 0 &&
6817             root != root->fs_info->tree_root)
6818                 return 1;
6819         else
6820                 return generic_drop_inode(inode);
6821 }
6822
6823 static void init_once(void *foo)
6824 {
6825         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6826
6827         inode_init_once(&ei->vfs_inode);
6828 }
6829
6830 void btrfs_destroy_cachep(void)
6831 {
6832         if (btrfs_inode_cachep)
6833                 kmem_cache_destroy(btrfs_inode_cachep);
6834         if (btrfs_trans_handle_cachep)
6835                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6836         if (btrfs_transaction_cachep)
6837                 kmem_cache_destroy(btrfs_transaction_cachep);
6838         if (btrfs_path_cachep)
6839                 kmem_cache_destroy(btrfs_path_cachep);
6840         if (btrfs_free_space_cachep)
6841                 kmem_cache_destroy(btrfs_free_space_cachep);
6842 }
6843
6844 int btrfs_init_cachep(void)
6845 {
6846         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6847                         sizeof(struct btrfs_inode), 0,
6848                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6849         if (!btrfs_inode_cachep)
6850                 goto fail;
6851
6852         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6853                         sizeof(struct btrfs_trans_handle), 0,
6854                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6855         if (!btrfs_trans_handle_cachep)
6856                 goto fail;
6857
6858         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6859                         sizeof(struct btrfs_transaction), 0,
6860                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6861         if (!btrfs_transaction_cachep)
6862                 goto fail;
6863
6864         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6865                         sizeof(struct btrfs_path), 0,
6866                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6867         if (!btrfs_path_cachep)
6868                 goto fail;
6869
6870         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6871                         sizeof(struct btrfs_free_space), 0,
6872                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6873         if (!btrfs_free_space_cachep)
6874                 goto fail;
6875
6876         return 0;
6877 fail:
6878         btrfs_destroy_cachep();
6879         return -ENOMEM;
6880 }
6881
6882 static int btrfs_getattr(struct vfsmount *mnt,
6883                          struct dentry *dentry, struct kstat *stat)
6884 {
6885         struct inode *inode = dentry->d_inode;
6886         generic_fillattr(inode, stat);
6887         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6888         stat->blksize = PAGE_CACHE_SIZE;
6889         stat->blocks = (inode_get_bytes(inode) +
6890                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6891         return 0;
6892 }
6893
6894 /*
6895  * If a file is moved, it will inherit the cow and compression flags of the new
6896  * directory.
6897  */
6898 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6899 {
6900         struct btrfs_inode *b_dir = BTRFS_I(dir);
6901         struct btrfs_inode *b_inode = BTRFS_I(inode);
6902
6903         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6904                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6905         else
6906                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6907
6908         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6909                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6910         else
6911                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6912 }
6913
6914 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6915                            struct inode *new_dir, struct dentry *new_dentry)
6916 {
6917         struct btrfs_trans_handle *trans;
6918         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6919         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6920         struct inode *new_inode = new_dentry->d_inode;
6921         struct inode *old_inode = old_dentry->d_inode;
6922         struct timespec ctime = CURRENT_TIME;
6923         u64 index = 0;
6924         u64 root_objectid;
6925         int ret;
6926
6927         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6928                 return -EPERM;
6929
6930         /* we only allow rename subvolume link between subvolumes */
6931         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6932                 return -EXDEV;
6933
6934         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6935             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6936                 return -ENOTEMPTY;
6937
6938         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6939             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6940                 return -ENOTEMPTY;
6941         /*
6942          * we're using rename to replace one file with another.
6943          * and the replacement file is large.  Start IO on it now so
6944          * we don't add too much work to the end of the transaction
6945          */
6946         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6947             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6948                 filemap_flush(old_inode->i_mapping);
6949
6950         /* close the racy window with snapshot create/destroy ioctl */
6951         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6952                 down_read(&root->fs_info->subvol_sem);
6953         /*
6954          * We want to reserve the absolute worst case amount of items.  So if
6955          * both inodes are subvols and we need to unlink them then that would
6956          * require 4 item modifications, but if they are both normal inodes it
6957          * would require 5 item modifications, so we'll assume their normal
6958          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6959          * should cover the worst case number of items we'll modify.
6960          */
6961         trans = btrfs_start_transaction(root, 20);
6962         if (IS_ERR(trans)) {
6963                 ret = PTR_ERR(trans);
6964                 goto out_notrans;
6965         }
6966
6967         btrfs_set_trans_block_group(trans, new_dir);
6968
6969         if (dest != root)
6970                 btrfs_record_root_in_trans(trans, dest);
6971
6972         ret = btrfs_set_inode_index(new_dir, &index);
6973         if (ret)
6974                 goto out_fail;
6975
6976         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6977                 /* force full log commit if subvolume involved. */
6978                 root->fs_info->last_trans_log_full_commit = trans->transid;
6979         } else {
6980                 ret = btrfs_insert_inode_ref(trans, dest,
6981                                              new_dentry->d_name.name,
6982                                              new_dentry->d_name.len,
6983                                              old_inode->i_ino,
6984                                              new_dir->i_ino, index);
6985                 if (ret)
6986                         goto out_fail;
6987                 /*
6988                  * this is an ugly little race, but the rename is required
6989                  * to make sure that if we crash, the inode is either at the
6990                  * old name or the new one.  pinning the log transaction lets
6991                  * us make sure we don't allow a log commit to come in after
6992                  * we unlink the name but before we add the new name back in.
6993                  */
6994                 btrfs_pin_log_trans(root);
6995         }
6996         /*
6997          * make sure the inode gets flushed if it is replacing
6998          * something.
6999          */
7000         if (new_inode && new_inode->i_size &&
7001             old_inode && S_ISREG(old_inode->i_mode)) {
7002                 btrfs_add_ordered_operation(trans, root, old_inode);
7003         }
7004
7005         old_dir->i_ctime = old_dir->i_mtime = ctime;
7006         new_dir->i_ctime = new_dir->i_mtime = ctime;
7007         old_inode->i_ctime = ctime;
7008
7009         if (old_dentry->d_parent != new_dentry->d_parent)
7010                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7011
7012         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7013                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7014                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7015                                         old_dentry->d_name.name,
7016                                         old_dentry->d_name.len);
7017         } else {
7018                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7019                                         old_dentry->d_inode,
7020                                         old_dentry->d_name.name,
7021                                         old_dentry->d_name.len);
7022                 if (!ret)
7023                         ret = btrfs_update_inode(trans, root, old_inode);
7024         }
7025         BUG_ON(ret);
7026
7027         if (new_inode) {
7028                 new_inode->i_ctime = CURRENT_TIME;
7029                 if (unlikely(new_inode->i_ino ==
7030                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7031                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7032                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7033                                                 root_objectid,
7034                                                 new_dentry->d_name.name,
7035                                                 new_dentry->d_name.len);
7036                         BUG_ON(new_inode->i_nlink == 0);
7037                 } else {
7038                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7039                                                  new_dentry->d_inode,
7040                                                  new_dentry->d_name.name,
7041                                                  new_dentry->d_name.len);
7042                 }
7043                 BUG_ON(ret);
7044                 if (new_inode->i_nlink == 0) {
7045                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7046                         BUG_ON(ret);
7047                 }
7048         }
7049
7050         fixup_inode_flags(new_dir, old_inode);
7051
7052         ret = btrfs_add_link(trans, new_dir, old_inode,
7053                              new_dentry->d_name.name,
7054                              new_dentry->d_name.len, 0, index);
7055         BUG_ON(ret);
7056
7057         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7058                 struct dentry *parent = dget_parent(new_dentry);
7059                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7060                 dput(parent);
7061                 btrfs_end_log_trans(root);
7062         }
7063 out_fail:
7064         btrfs_end_transaction_throttle(trans, root);
7065 out_notrans:
7066         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7067                 up_read(&root->fs_info->subvol_sem);
7068
7069         return ret;
7070 }
7071
7072 /*
7073  * some fairly slow code that needs optimization. This walks the list
7074  * of all the inodes with pending delalloc and forces them to disk.
7075  */
7076 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7077 {
7078         struct list_head *head = &root->fs_info->delalloc_inodes;
7079         struct btrfs_inode *binode;
7080         struct inode *inode;
7081
7082         if (root->fs_info->sb->s_flags & MS_RDONLY)
7083                 return -EROFS;
7084
7085         spin_lock(&root->fs_info->delalloc_lock);
7086         while (!list_empty(head)) {
7087                 binode = list_entry(head->next, struct btrfs_inode,
7088                                     delalloc_inodes);
7089                 inode = igrab(&binode->vfs_inode);
7090                 if (!inode)
7091                         list_del_init(&binode->delalloc_inodes);
7092                 spin_unlock(&root->fs_info->delalloc_lock);
7093                 if (inode) {
7094                         filemap_flush(inode->i_mapping);
7095                         if (delay_iput)
7096                                 btrfs_add_delayed_iput(inode);
7097                         else
7098                                 iput(inode);
7099                 }
7100                 cond_resched();
7101                 spin_lock(&root->fs_info->delalloc_lock);
7102         }
7103         spin_unlock(&root->fs_info->delalloc_lock);
7104
7105         /* the filemap_flush will queue IO into the worker threads, but
7106          * we have to make sure the IO is actually started and that
7107          * ordered extents get created before we return
7108          */
7109         atomic_inc(&root->fs_info->async_submit_draining);
7110         while (atomic_read(&root->fs_info->nr_async_submits) ||
7111               atomic_read(&root->fs_info->async_delalloc_pages)) {
7112                 wait_event(root->fs_info->async_submit_wait,
7113                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7114                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7115         }
7116         atomic_dec(&root->fs_info->async_submit_draining);
7117         return 0;
7118 }
7119
7120 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7121                                    int sync)
7122 {
7123         struct btrfs_inode *binode;
7124         struct inode *inode = NULL;
7125
7126         spin_lock(&root->fs_info->delalloc_lock);
7127         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7128                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7129                                     struct btrfs_inode, delalloc_inodes);
7130                 inode = igrab(&binode->vfs_inode);
7131                 if (inode) {
7132                         list_move_tail(&binode->delalloc_inodes,
7133                                        &root->fs_info->delalloc_inodes);
7134                         break;
7135                 }
7136
7137                 list_del_init(&binode->delalloc_inodes);
7138                 cond_resched_lock(&root->fs_info->delalloc_lock);
7139         }
7140         spin_unlock(&root->fs_info->delalloc_lock);
7141
7142         if (inode) {
7143                 if (sync) {
7144                         filemap_write_and_wait(inode->i_mapping);
7145                         /*
7146                          * We have to do this because compression doesn't
7147                          * actually set PG_writeback until it submits the pages
7148                          * for IO, which happens in an async thread, so we could
7149                          * race and not actually wait for any writeback pages
7150                          * because they've not been submitted yet.  Technically
7151                          * this could still be the case for the ordered stuff
7152                          * since the async thread may not have started to do its
7153                          * work yet.  If this becomes the case then we need to
7154                          * figure out a way to make sure that in writepage we
7155                          * wait for any async pages to be submitted before
7156                          * returning so that fdatawait does what its supposed to
7157                          * do.
7158                          */
7159                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7160                 } else {
7161                         filemap_flush(inode->i_mapping);
7162                 }
7163                 if (delay_iput)
7164                         btrfs_add_delayed_iput(inode);
7165                 else
7166                         iput(inode);
7167                 return 1;
7168         }
7169         return 0;
7170 }
7171
7172 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7173                          const char *symname)
7174 {
7175         struct btrfs_trans_handle *trans;
7176         struct btrfs_root *root = BTRFS_I(dir)->root;
7177         struct btrfs_path *path;
7178         struct btrfs_key key;
7179         struct inode *inode = NULL;
7180         int err;
7181         int drop_inode = 0;
7182         u64 objectid;
7183         u64 index = 0 ;
7184         int name_len;
7185         int datasize;
7186         unsigned long ptr;
7187         struct btrfs_file_extent_item *ei;
7188         struct extent_buffer *leaf;
7189         unsigned long nr = 0;
7190
7191         name_len = strlen(symname) + 1;
7192         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7193                 return -ENAMETOOLONG;
7194
7195         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7196         if (err)
7197                 return err;
7198         /*
7199          * 2 items for inode item and ref
7200          * 2 items for dir items
7201          * 1 item for xattr if selinux is on
7202          */
7203         trans = btrfs_start_transaction(root, 5);
7204         if (IS_ERR(trans))
7205                 return PTR_ERR(trans);
7206
7207         btrfs_set_trans_block_group(trans, dir);
7208
7209         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7210                                 dentry->d_name.len, dir->i_ino, objectid,
7211                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7212                                 &index);
7213         err = PTR_ERR(inode);
7214         if (IS_ERR(inode))
7215                 goto out_unlock;
7216
7217         err = btrfs_init_inode_security(trans, inode, dir);
7218         if (err) {
7219                 drop_inode = 1;
7220                 goto out_unlock;
7221         }
7222
7223         btrfs_set_trans_block_group(trans, inode);
7224         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7225         if (err)
7226                 drop_inode = 1;
7227         else {
7228                 inode->i_mapping->a_ops = &btrfs_aops;
7229                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7230                 inode->i_fop = &btrfs_file_operations;
7231                 inode->i_op = &btrfs_file_inode_operations;
7232                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7233         }
7234         btrfs_update_inode_block_group(trans, inode);
7235         btrfs_update_inode_block_group(trans, dir);
7236         if (drop_inode)
7237                 goto out_unlock;
7238
7239         path = btrfs_alloc_path();
7240         BUG_ON(!path);
7241         key.objectid = inode->i_ino;
7242         key.offset = 0;
7243         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7244         datasize = btrfs_file_extent_calc_inline_size(name_len);
7245         err = btrfs_insert_empty_item(trans, root, path, &key,
7246                                       datasize);
7247         if (err) {
7248                 drop_inode = 1;
7249                 goto out_unlock;
7250         }
7251         leaf = path->nodes[0];
7252         ei = btrfs_item_ptr(leaf, path->slots[0],
7253                             struct btrfs_file_extent_item);
7254         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7255         btrfs_set_file_extent_type(leaf, ei,
7256                                    BTRFS_FILE_EXTENT_INLINE);
7257         btrfs_set_file_extent_encryption(leaf, ei, 0);
7258         btrfs_set_file_extent_compression(leaf, ei, 0);
7259         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7260         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7261
7262         ptr = btrfs_file_extent_inline_start(ei);
7263         write_extent_buffer(leaf, symname, ptr, name_len);
7264         btrfs_mark_buffer_dirty(leaf);
7265         btrfs_free_path(path);
7266
7267         inode->i_op = &btrfs_symlink_inode_operations;
7268         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7269         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7270         inode_set_bytes(inode, name_len);
7271         btrfs_i_size_write(inode, name_len - 1);
7272         err = btrfs_update_inode(trans, root, inode);
7273         if (err)
7274                 drop_inode = 1;
7275
7276 out_unlock:
7277         nr = trans->blocks_used;
7278         btrfs_end_transaction_throttle(trans, root);
7279         if (drop_inode) {
7280                 inode_dec_link_count(inode);
7281                 iput(inode);
7282         }
7283         btrfs_btree_balance_dirty(root, nr);
7284         return err;
7285 }
7286
7287 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7288                                        u64 start, u64 num_bytes, u64 min_size,
7289                                        loff_t actual_len, u64 *alloc_hint,
7290                                        struct btrfs_trans_handle *trans)
7291 {
7292         struct btrfs_root *root = BTRFS_I(inode)->root;
7293         struct btrfs_key ins;
7294         u64 cur_offset = start;
7295         u64 i_size;
7296         int ret = 0;
7297         bool own_trans = true;
7298
7299         if (trans)
7300                 own_trans = false;
7301         while (num_bytes > 0) {
7302                 if (own_trans) {
7303                         trans = btrfs_start_transaction(root, 3);
7304                         if (IS_ERR(trans)) {
7305                                 ret = PTR_ERR(trans);
7306                                 break;
7307                         }
7308                 }
7309
7310                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7311                                            0, *alloc_hint, (u64)-1, &ins, 1);
7312                 if (ret) {
7313                         if (own_trans)
7314                                 btrfs_end_transaction(trans, root);
7315                         break;
7316                 }
7317
7318                 ret = insert_reserved_file_extent(trans, inode,
7319                                                   cur_offset, ins.objectid,
7320                                                   ins.offset, ins.offset,
7321                                                   ins.offset, 0, 0, 0,
7322                                                   BTRFS_FILE_EXTENT_PREALLOC);
7323                 BUG_ON(ret);
7324                 btrfs_drop_extent_cache(inode, cur_offset,
7325                                         cur_offset + ins.offset -1, 0);
7326
7327                 num_bytes -= ins.offset;
7328                 cur_offset += ins.offset;
7329                 *alloc_hint = ins.objectid + ins.offset;
7330
7331                 inode->i_ctime = CURRENT_TIME;
7332                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7333                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7334                     (actual_len > inode->i_size) &&
7335                     (cur_offset > inode->i_size)) {
7336                         if (cur_offset > actual_len)
7337                                 i_size = actual_len;
7338                         else
7339                                 i_size = cur_offset;
7340                         i_size_write(inode, i_size);
7341                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7342                 }
7343
7344                 ret = btrfs_update_inode(trans, root, inode);
7345                 BUG_ON(ret);
7346
7347                 if (own_trans)
7348                         btrfs_end_transaction(trans, root);
7349         }
7350         return ret;
7351 }
7352
7353 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7354                               u64 start, u64 num_bytes, u64 min_size,
7355                               loff_t actual_len, u64 *alloc_hint)
7356 {
7357         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7358                                            min_size, actual_len, alloc_hint,
7359                                            NULL);
7360 }
7361
7362 int btrfs_prealloc_file_range_trans(struct inode *inode,
7363                                     struct btrfs_trans_handle *trans, int mode,
7364                                     u64 start, u64 num_bytes, u64 min_size,
7365                                     loff_t actual_len, u64 *alloc_hint)
7366 {
7367         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7368                                            min_size, actual_len, alloc_hint, trans);
7369 }
7370
7371 static int btrfs_set_page_dirty(struct page *page)
7372 {
7373         return __set_page_dirty_nobuffers(page);
7374 }
7375
7376 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7377 {
7378         struct btrfs_root *root = BTRFS_I(inode)->root;
7379
7380         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7381                 return -EROFS;
7382         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7383                 return -EACCES;
7384         return generic_permission(inode, mask, flags, btrfs_check_acl);
7385 }
7386
7387 static const struct inode_operations btrfs_dir_inode_operations = {
7388         .getattr        = btrfs_getattr,
7389         .lookup         = btrfs_lookup,
7390         .create         = btrfs_create,
7391         .unlink         = btrfs_unlink,
7392         .link           = btrfs_link,
7393         .mkdir          = btrfs_mkdir,
7394         .rmdir          = btrfs_rmdir,
7395         .rename         = btrfs_rename,
7396         .symlink        = btrfs_symlink,
7397         .setattr        = btrfs_setattr,
7398         .mknod          = btrfs_mknod,
7399         .setxattr       = btrfs_setxattr,
7400         .getxattr       = btrfs_getxattr,
7401         .listxattr      = btrfs_listxattr,
7402         .removexattr    = btrfs_removexattr,
7403         .permission     = btrfs_permission,
7404 };
7405 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7406         .lookup         = btrfs_lookup,
7407         .permission     = btrfs_permission,
7408 };
7409
7410 static const struct file_operations btrfs_dir_file_operations = {
7411         .llseek         = generic_file_llseek,
7412         .read           = generic_read_dir,
7413         .readdir        = btrfs_real_readdir,
7414         .unlocked_ioctl = btrfs_ioctl,
7415 #ifdef CONFIG_COMPAT
7416         .compat_ioctl   = btrfs_ioctl,
7417 #endif
7418         .release        = btrfs_release_file,
7419         .fsync          = btrfs_sync_file,
7420 };
7421
7422 static struct extent_io_ops btrfs_extent_io_ops = {
7423         .fill_delalloc = run_delalloc_range,
7424         .submit_bio_hook = btrfs_submit_bio_hook,
7425         .merge_bio_hook = btrfs_merge_bio_hook,
7426         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7427         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7428         .writepage_start_hook = btrfs_writepage_start_hook,
7429         .readpage_io_failed_hook = btrfs_io_failed_hook,
7430         .set_bit_hook = btrfs_set_bit_hook,
7431         .clear_bit_hook = btrfs_clear_bit_hook,
7432         .merge_extent_hook = btrfs_merge_extent_hook,
7433         .split_extent_hook = btrfs_split_extent_hook,
7434 };
7435
7436 /*
7437  * btrfs doesn't support the bmap operation because swapfiles
7438  * use bmap to make a mapping of extents in the file.  They assume
7439  * these extents won't change over the life of the file and they
7440  * use the bmap result to do IO directly to the drive.
7441  *
7442  * the btrfs bmap call would return logical addresses that aren't
7443  * suitable for IO and they also will change frequently as COW
7444  * operations happen.  So, swapfile + btrfs == corruption.
7445  *
7446  * For now we're avoiding this by dropping bmap.
7447  */
7448 static const struct address_space_operations btrfs_aops = {
7449         .readpage       = btrfs_readpage,
7450         .writepage      = btrfs_writepage,
7451         .writepages     = btrfs_writepages,
7452         .readpages      = btrfs_readpages,
7453         .sync_page      = block_sync_page,
7454         .direct_IO      = btrfs_direct_IO,
7455         .invalidatepage = btrfs_invalidatepage,
7456         .releasepage    = btrfs_releasepage,
7457         .set_page_dirty = btrfs_set_page_dirty,
7458         .error_remove_page = generic_error_remove_page,
7459 };
7460
7461 static const struct address_space_operations btrfs_symlink_aops = {
7462         .readpage       = btrfs_readpage,
7463         .writepage      = btrfs_writepage,
7464         .invalidatepage = btrfs_invalidatepage,
7465         .releasepage    = btrfs_releasepage,
7466 };
7467
7468 static const struct inode_operations btrfs_file_inode_operations = {
7469         .getattr        = btrfs_getattr,
7470         .setattr        = btrfs_setattr,
7471         .setxattr       = btrfs_setxattr,
7472         .getxattr       = btrfs_getxattr,
7473         .listxattr      = btrfs_listxattr,
7474         .removexattr    = btrfs_removexattr,
7475         .permission     = btrfs_permission,
7476         .fiemap         = btrfs_fiemap,
7477 };
7478 static const struct inode_operations btrfs_special_inode_operations = {
7479         .getattr        = btrfs_getattr,
7480         .setattr        = btrfs_setattr,
7481         .permission     = btrfs_permission,
7482         .setxattr       = btrfs_setxattr,
7483         .getxattr       = btrfs_getxattr,
7484         .listxattr      = btrfs_listxattr,
7485         .removexattr    = btrfs_removexattr,
7486 };
7487 static const struct inode_operations btrfs_symlink_inode_operations = {
7488         .readlink       = generic_readlink,
7489         .follow_link    = page_follow_link_light,
7490         .put_link       = page_put_link,
7491         .getattr        = btrfs_getattr,
7492         .permission     = btrfs_permission,
7493         .setxattr       = btrfs_setxattr,
7494         .getxattr       = btrfs_getxattr,
7495         .listxattr      = btrfs_listxattr,
7496         .removexattr    = btrfs_removexattr,
7497 };
7498
7499 const struct dentry_operations btrfs_dentry_operations = {
7500         .d_delete       = btrfs_dentry_delete,
7501 };