Btrfs: add a comment explaining what btrfs_cont_expand does
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, int *page_started,
93                                    unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96                                      struct inode *inode,  struct inode *dir)
97 {
98         int err;
99
100         err = btrfs_init_acl(trans, inode, dir);
101         if (!err)
102                 err = btrfs_xattr_security_init(trans, inode, dir);
103         return err;
104 }
105
106 /*
107  * this does all the hard work for inserting an inline extent into
108  * the btree.  The caller should have done a btrfs_drop_extents so that
109  * no overlapping inline items exist in the btree
110  */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112                                 struct btrfs_root *root, struct inode *inode,
113                                 u64 start, size_t size, size_t compressed_size,
114                                 struct page **compressed_pages)
115 {
116         struct btrfs_key key;
117         struct btrfs_path *path;
118         struct extent_buffer *leaf;
119         struct page *page = NULL;
120         char *kaddr;
121         unsigned long ptr;
122         struct btrfs_file_extent_item *ei;
123         int err = 0;
124         int ret;
125         size_t cur_size = size;
126         size_t datasize;
127         unsigned long offset;
128         int compress_type = BTRFS_COMPRESS_NONE;
129
130         if (compressed_size && compressed_pages) {
131                 compress_type = root->fs_info->compress_type;
132                 cur_size = compressed_size;
133         }
134
135         path = btrfs_alloc_path();
136         if (!path)
137                 return -ENOMEM;
138
139         path->leave_spinning = 1;
140         btrfs_set_trans_block_group(trans, inode);
141
142         key.objectid = inode->i_ino;
143         key.offset = start;
144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145         datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147         inode_add_bytes(inode, size);
148         ret = btrfs_insert_empty_item(trans, root, path, &key,
149                                       datasize);
150         BUG_ON(ret);
151         if (ret) {
152                 err = ret;
153                 goto fail;
154         }
155         leaf = path->nodes[0];
156         ei = btrfs_item_ptr(leaf, path->slots[0],
157                             struct btrfs_file_extent_item);
158         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160         btrfs_set_file_extent_encryption(leaf, ei, 0);
161         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163         ptr = btrfs_file_extent_inline_start(ei);
164
165         if (compress_type != BTRFS_COMPRESS_NONE) {
166                 struct page *cpage;
167                 int i = 0;
168                 while (compressed_size > 0) {
169                         cpage = compressed_pages[i];
170                         cur_size = min_t(unsigned long, compressed_size,
171                                        PAGE_CACHE_SIZE);
172
173                         kaddr = kmap_atomic(cpage, KM_USER0);
174                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
175                         kunmap_atomic(kaddr, KM_USER0);
176
177                         i++;
178                         ptr += cur_size;
179                         compressed_size -= cur_size;
180                 }
181                 btrfs_set_file_extent_compression(leaf, ei,
182                                                   compress_type);
183         } else {
184                 page = find_get_page(inode->i_mapping,
185                                      start >> PAGE_CACHE_SHIFT);
186                 btrfs_set_file_extent_compression(leaf, ei, 0);
187                 kaddr = kmap_atomic(page, KM_USER0);
188                 offset = start & (PAGE_CACHE_SIZE - 1);
189                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190                 kunmap_atomic(kaddr, KM_USER0);
191                 page_cache_release(page);
192         }
193         btrfs_mark_buffer_dirty(leaf);
194         btrfs_free_path(path);
195
196         /*
197          * we're an inline extent, so nobody can
198          * extend the file past i_size without locking
199          * a page we already have locked.
200          *
201          * We must do any isize and inode updates
202          * before we unlock the pages.  Otherwise we
203          * could end up racing with unlink.
204          */
205         BTRFS_I(inode)->disk_i_size = inode->i_size;
206         btrfs_update_inode(trans, root, inode);
207
208         return 0;
209 fail:
210         btrfs_free_path(path);
211         return err;
212 }
213
214
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221                                  struct btrfs_root *root,
222                                  struct inode *inode, u64 start, u64 end,
223                                  size_t compressed_size,
224                                  struct page **compressed_pages)
225 {
226         u64 isize = i_size_read(inode);
227         u64 actual_end = min(end + 1, isize);
228         u64 inline_len = actual_end - start;
229         u64 aligned_end = (end + root->sectorsize - 1) &
230                         ~((u64)root->sectorsize - 1);
231         u64 hint_byte;
232         u64 data_len = inline_len;
233         int ret;
234
235         if (compressed_size)
236                 data_len = compressed_size;
237
238         if (start > 0 ||
239             actual_end >= PAGE_CACHE_SIZE ||
240             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241             (!compressed_size &&
242             (actual_end & (root->sectorsize - 1)) == 0) ||
243             end + 1 < isize ||
244             data_len > root->fs_info->max_inline) {
245                 return 1;
246         }
247
248         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249                                  &hint_byte, 1);
250         BUG_ON(ret);
251
252         if (isize > actual_end)
253                 inline_len = min_t(u64, isize, actual_end);
254         ret = insert_inline_extent(trans, root, inode, start,
255                                    inline_len, compressed_size,
256                                    compressed_pages);
257         BUG_ON(ret);
258         btrfs_delalloc_release_metadata(inode, end + 1 - start);
259         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260         return 0;
261 }
262
263 struct async_extent {
264         u64 start;
265         u64 ram_size;
266         u64 compressed_size;
267         struct page **pages;
268         unsigned long nr_pages;
269         int compress_type;
270         struct list_head list;
271 };
272
273 struct async_cow {
274         struct inode *inode;
275         struct btrfs_root *root;
276         struct page *locked_page;
277         u64 start;
278         u64 end;
279         struct list_head extents;
280         struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284                                      u64 start, u64 ram_size,
285                                      u64 compressed_size,
286                                      struct page **pages,
287                                      unsigned long nr_pages,
288                                      int compress_type)
289 {
290         struct async_extent *async_extent;
291
292         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293         async_extent->start = start;
294         async_extent->ram_size = ram_size;
295         async_extent->compressed_size = compressed_size;
296         async_extent->pages = pages;
297         async_extent->nr_pages = nr_pages;
298         async_extent->compress_type = compress_type;
299         list_add_tail(&async_extent->list, &cow->extents);
300         return 0;
301 }
302
303 /*
304  * we create compressed extents in two phases.  The first
305  * phase compresses a range of pages that have already been
306  * locked (both pages and state bits are locked).
307  *
308  * This is done inside an ordered work queue, and the compression
309  * is spread across many cpus.  The actual IO submission is step
310  * two, and the ordered work queue takes care of making sure that
311  * happens in the same order things were put onto the queue by
312  * writepages and friends.
313  *
314  * If this code finds it can't get good compression, it puts an
315  * entry onto the work queue to write the uncompressed bytes.  This
316  * makes sure that both compressed inodes and uncompressed inodes
317  * are written in the same order that pdflush sent them down.
318  */
319 static noinline int compress_file_range(struct inode *inode,
320                                         struct page *locked_page,
321                                         u64 start, u64 end,
322                                         struct async_cow *async_cow,
323                                         int *num_added)
324 {
325         struct btrfs_root *root = BTRFS_I(inode)->root;
326         struct btrfs_trans_handle *trans;
327         u64 num_bytes;
328         u64 blocksize = root->sectorsize;
329         u64 actual_end;
330         u64 isize = i_size_read(inode);
331         int ret = 0;
332         struct page **pages = NULL;
333         unsigned long nr_pages;
334         unsigned long nr_pages_ret = 0;
335         unsigned long total_compressed = 0;
336         unsigned long total_in = 0;
337         unsigned long max_compressed = 128 * 1024;
338         unsigned long max_uncompressed = 128 * 1024;
339         int i;
340         int will_compress;
341         int compress_type = root->fs_info->compress_type;
342
343         actual_end = min_t(u64, isize, end + 1);
344 again:
345         will_compress = 0;
346         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
348
349         /*
350          * we don't want to send crud past the end of i_size through
351          * compression, that's just a waste of CPU time.  So, if the
352          * end of the file is before the start of our current
353          * requested range of bytes, we bail out to the uncompressed
354          * cleanup code that can deal with all of this.
355          *
356          * It isn't really the fastest way to fix things, but this is a
357          * very uncommon corner.
358          */
359         if (actual_end <= start)
360                 goto cleanup_and_bail_uncompressed;
361
362         total_compressed = actual_end - start;
363
364         /* we want to make sure that amount of ram required to uncompress
365          * an extent is reasonable, so we limit the total size in ram
366          * of a compressed extent to 128k.  This is a crucial number
367          * because it also controls how easily we can spread reads across
368          * cpus for decompression.
369          *
370          * We also want to make sure the amount of IO required to do
371          * a random read is reasonably small, so we limit the size of
372          * a compressed extent to 128k.
373          */
374         total_compressed = min(total_compressed, max_uncompressed);
375         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
376         num_bytes = max(blocksize,  num_bytes);
377         total_in = 0;
378         ret = 0;
379
380         /*
381          * we do compression for mount -o compress and when the
382          * inode has not been flagged as nocompress.  This flag can
383          * change at any time if we discover bad compression ratios.
384          */
385         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
386             (btrfs_test_opt(root, COMPRESS) ||
387              (BTRFS_I(inode)->force_compress))) {
388                 WARN_ON(pages);
389                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390
391                 if (BTRFS_I(inode)->force_compress)
392                         compress_type = BTRFS_I(inode)->force_compress;
393
394                 ret = btrfs_compress_pages(compress_type,
395                                            inode->i_mapping, start,
396                                            total_compressed, pages,
397                                            nr_pages, &nr_pages_ret,
398                                            &total_in,
399                                            &total_compressed,
400                                            max_compressed);
401
402                 if (!ret) {
403                         unsigned long offset = total_compressed &
404                                 (PAGE_CACHE_SIZE - 1);
405                         struct page *page = pages[nr_pages_ret - 1];
406                         char *kaddr;
407
408                         /* zero the tail end of the last page, we might be
409                          * sending it down to disk
410                          */
411                         if (offset) {
412                                 kaddr = kmap_atomic(page, KM_USER0);
413                                 memset(kaddr + offset, 0,
414                                        PAGE_CACHE_SIZE - offset);
415                                 kunmap_atomic(kaddr, KM_USER0);
416                         }
417                         will_compress = 1;
418                 }
419         }
420         if (start == 0) {
421                 trans = btrfs_join_transaction(root, 1);
422                 BUG_ON(IS_ERR(trans));
423                 btrfs_set_trans_block_group(trans, inode);
424                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
425
426                 /* lets try to make an inline extent */
427                 if (ret || total_in < (actual_end - start)) {
428                         /* we didn't compress the entire range, try
429                          * to make an uncompressed inline extent.
430                          */
431                         ret = cow_file_range_inline(trans, root, inode,
432                                                     start, end, 0, NULL);
433                 } else {
434                         /* try making a compressed inline extent */
435                         ret = cow_file_range_inline(trans, root, inode,
436                                                     start, end,
437                                                     total_compressed, pages);
438                 }
439                 if (ret == 0) {
440                         /*
441                          * inline extent creation worked, we don't need
442                          * to create any more async work items.  Unlock
443                          * and free up our temp pages.
444                          */
445                         extent_clear_unlock_delalloc(inode,
446                              &BTRFS_I(inode)->io_tree,
447                              start, end, NULL,
448                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
449                              EXTENT_CLEAR_DELALLOC |
450                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
451
452                         btrfs_end_transaction(trans, root);
453                         goto free_pages_out;
454                 }
455                 btrfs_end_transaction(trans, root);
456         }
457
458         if (will_compress) {
459                 /*
460                  * we aren't doing an inline extent round the compressed size
461                  * up to a block size boundary so the allocator does sane
462                  * things
463                  */
464                 total_compressed = (total_compressed + blocksize - 1) &
465                         ~(blocksize - 1);
466
467                 /*
468                  * one last check to make sure the compression is really a
469                  * win, compare the page count read with the blocks on disk
470                  */
471                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
472                         ~(PAGE_CACHE_SIZE - 1);
473                 if (total_compressed >= total_in) {
474                         will_compress = 0;
475                 } else {
476                         num_bytes = total_in;
477                 }
478         }
479         if (!will_compress && pages) {
480                 /*
481                  * the compression code ran but failed to make things smaller,
482                  * free any pages it allocated and our page pointer array
483                  */
484                 for (i = 0; i < nr_pages_ret; i++) {
485                         WARN_ON(pages[i]->mapping);
486                         page_cache_release(pages[i]);
487                 }
488                 kfree(pages);
489                 pages = NULL;
490                 total_compressed = 0;
491                 nr_pages_ret = 0;
492
493                 /* flag the file so we don't compress in the future */
494                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
495                     !(BTRFS_I(inode)->force_compress)) {
496                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
497                 }
498         }
499         if (will_compress) {
500                 *num_added += 1;
501
502                 /* the async work queues will take care of doing actual
503                  * allocation on disk for these compressed pages,
504                  * and will submit them to the elevator.
505                  */
506                 add_async_extent(async_cow, start, num_bytes,
507                                  total_compressed, pages, nr_pages_ret,
508                                  compress_type);
509
510                 if (start + num_bytes < end) {
511                         start += num_bytes;
512                         pages = NULL;
513                         cond_resched();
514                         goto again;
515                 }
516         } else {
517 cleanup_and_bail_uncompressed:
518                 /*
519                  * No compression, but we still need to write the pages in
520                  * the file we've been given so far.  redirty the locked
521                  * page if it corresponds to our extent and set things up
522                  * for the async work queue to run cow_file_range to do
523                  * the normal delalloc dance
524                  */
525                 if (page_offset(locked_page) >= start &&
526                     page_offset(locked_page) <= end) {
527                         __set_page_dirty_nobuffers(locked_page);
528                         /* unlocked later on in the async handlers */
529                 }
530                 add_async_extent(async_cow, start, end - start + 1,
531                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
532                 *num_added += 1;
533         }
534
535 out:
536         return 0;
537
538 free_pages_out:
539         for (i = 0; i < nr_pages_ret; i++) {
540                 WARN_ON(pages[i]->mapping);
541                 page_cache_release(pages[i]);
542         }
543         kfree(pages);
544
545         goto out;
546 }
547
548 /*
549  * phase two of compressed writeback.  This is the ordered portion
550  * of the code, which only gets called in the order the work was
551  * queued.  We walk all the async extents created by compress_file_range
552  * and send them down to the disk.
553  */
554 static noinline int submit_compressed_extents(struct inode *inode,
555                                               struct async_cow *async_cow)
556 {
557         struct async_extent *async_extent;
558         u64 alloc_hint = 0;
559         struct btrfs_trans_handle *trans;
560         struct btrfs_key ins;
561         struct extent_map *em;
562         struct btrfs_root *root = BTRFS_I(inode)->root;
563         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
564         struct extent_io_tree *io_tree;
565         int ret = 0;
566
567         if (list_empty(&async_cow->extents))
568                 return 0;
569
570
571         while (!list_empty(&async_cow->extents)) {
572                 async_extent = list_entry(async_cow->extents.next,
573                                           struct async_extent, list);
574                 list_del(&async_extent->list);
575
576                 io_tree = &BTRFS_I(inode)->io_tree;
577
578 retry:
579                 /* did the compression code fall back to uncompressed IO? */
580                 if (!async_extent->pages) {
581                         int page_started = 0;
582                         unsigned long nr_written = 0;
583
584                         lock_extent(io_tree, async_extent->start,
585                                          async_extent->start +
586                                          async_extent->ram_size - 1, GFP_NOFS);
587
588                         /* allocate blocks */
589                         ret = cow_file_range(inode, async_cow->locked_page,
590                                              async_extent->start,
591                                              async_extent->start +
592                                              async_extent->ram_size - 1,
593                                              &page_started, &nr_written, 0);
594
595                         /*
596                          * if page_started, cow_file_range inserted an
597                          * inline extent and took care of all the unlocking
598                          * and IO for us.  Otherwise, we need to submit
599                          * all those pages down to the drive.
600                          */
601                         if (!page_started && !ret)
602                                 extent_write_locked_range(io_tree,
603                                                   inode, async_extent->start,
604                                                   async_extent->start +
605                                                   async_extent->ram_size - 1,
606                                                   btrfs_get_extent,
607                                                   WB_SYNC_ALL);
608                         kfree(async_extent);
609                         cond_resched();
610                         continue;
611                 }
612
613                 lock_extent(io_tree, async_extent->start,
614                             async_extent->start + async_extent->ram_size - 1,
615                             GFP_NOFS);
616
617                 trans = btrfs_join_transaction(root, 1);
618                 BUG_ON(IS_ERR(trans));
619                 ret = btrfs_reserve_extent(trans, root,
620                                            async_extent->compressed_size,
621                                            async_extent->compressed_size,
622                                            0, alloc_hint,
623                                            (u64)-1, &ins, 1);
624                 btrfs_end_transaction(trans, root);
625
626                 if (ret) {
627                         int i;
628                         for (i = 0; i < async_extent->nr_pages; i++) {
629                                 WARN_ON(async_extent->pages[i]->mapping);
630                                 page_cache_release(async_extent->pages[i]);
631                         }
632                         kfree(async_extent->pages);
633                         async_extent->nr_pages = 0;
634                         async_extent->pages = NULL;
635                         unlock_extent(io_tree, async_extent->start,
636                                       async_extent->start +
637                                       async_extent->ram_size - 1, GFP_NOFS);
638                         goto retry;
639                 }
640
641                 /*
642                  * here we're doing allocation and writeback of the
643                  * compressed pages
644                  */
645                 btrfs_drop_extent_cache(inode, async_extent->start,
646                                         async_extent->start +
647                                         async_extent->ram_size - 1, 0);
648
649                 em = alloc_extent_map(GFP_NOFS);
650                 BUG_ON(!em);
651                 em->start = async_extent->start;
652                 em->len = async_extent->ram_size;
653                 em->orig_start = em->start;
654
655                 em->block_start = ins.objectid;
656                 em->block_len = ins.offset;
657                 em->bdev = root->fs_info->fs_devices->latest_bdev;
658                 em->compress_type = async_extent->compress_type;
659                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
660                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
661
662                 while (1) {
663                         write_lock(&em_tree->lock);
664                         ret = add_extent_mapping(em_tree, em);
665                         write_unlock(&em_tree->lock);
666                         if (ret != -EEXIST) {
667                                 free_extent_map(em);
668                                 break;
669                         }
670                         btrfs_drop_extent_cache(inode, async_extent->start,
671                                                 async_extent->start +
672                                                 async_extent->ram_size - 1, 0);
673                 }
674
675                 ret = btrfs_add_ordered_extent_compress(inode,
676                                                 async_extent->start,
677                                                 ins.objectid,
678                                                 async_extent->ram_size,
679                                                 ins.offset,
680                                                 BTRFS_ORDERED_COMPRESSED,
681                                                 async_extent->compress_type);
682                 BUG_ON(ret);
683
684                 /*
685                  * clear dirty, set writeback and unlock the pages.
686                  */
687                 extent_clear_unlock_delalloc(inode,
688                                 &BTRFS_I(inode)->io_tree,
689                                 async_extent->start,
690                                 async_extent->start +
691                                 async_extent->ram_size - 1,
692                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
693                                 EXTENT_CLEAR_UNLOCK |
694                                 EXTENT_CLEAR_DELALLOC |
695                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
696
697                 ret = btrfs_submit_compressed_write(inode,
698                                     async_extent->start,
699                                     async_extent->ram_size,
700                                     ins.objectid,
701                                     ins.offset, async_extent->pages,
702                                     async_extent->nr_pages);
703
704                 BUG_ON(ret);
705                 alloc_hint = ins.objectid + ins.offset;
706                 kfree(async_extent);
707                 cond_resched();
708         }
709
710         return 0;
711 }
712
713 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
714                                       u64 num_bytes)
715 {
716         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717         struct extent_map *em;
718         u64 alloc_hint = 0;
719
720         read_lock(&em_tree->lock);
721         em = search_extent_mapping(em_tree, start, num_bytes);
722         if (em) {
723                 /*
724                  * if block start isn't an actual block number then find the
725                  * first block in this inode and use that as a hint.  If that
726                  * block is also bogus then just don't worry about it.
727                  */
728                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
729                         free_extent_map(em);
730                         em = search_extent_mapping(em_tree, 0, 0);
731                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
732                                 alloc_hint = em->block_start;
733                         if (em)
734                                 free_extent_map(em);
735                 } else {
736                         alloc_hint = em->block_start;
737                         free_extent_map(em);
738                 }
739         }
740         read_unlock(&em_tree->lock);
741
742         return alloc_hint;
743 }
744
745 /*
746  * when extent_io.c finds a delayed allocation range in the file,
747  * the call backs end up in this code.  The basic idea is to
748  * allocate extents on disk for the range, and create ordered data structs
749  * in ram to track those extents.
750  *
751  * locked_page is the page that writepage had locked already.  We use
752  * it to make sure we don't do extra locks or unlocks.
753  *
754  * *page_started is set to one if we unlock locked_page and do everything
755  * required to start IO on it.  It may be clean and already done with
756  * IO when we return.
757  */
758 static noinline int cow_file_range(struct inode *inode,
759                                    struct page *locked_page,
760                                    u64 start, u64 end, int *page_started,
761                                    unsigned long *nr_written,
762                                    int unlock)
763 {
764         struct btrfs_root *root = BTRFS_I(inode)->root;
765         struct btrfs_trans_handle *trans;
766         u64 alloc_hint = 0;
767         u64 num_bytes;
768         unsigned long ram_size;
769         u64 disk_num_bytes;
770         u64 cur_alloc_size;
771         u64 blocksize = root->sectorsize;
772         struct btrfs_key ins;
773         struct extent_map *em;
774         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
775         int ret = 0;
776
777         BUG_ON(root == root->fs_info->tree_root);
778         trans = btrfs_join_transaction(root, 1);
779         BUG_ON(IS_ERR(trans));
780         btrfs_set_trans_block_group(trans, inode);
781         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
782
783         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
784         num_bytes = max(blocksize,  num_bytes);
785         disk_num_bytes = num_bytes;
786         ret = 0;
787
788         if (start == 0) {
789                 /* lets try to make an inline extent */
790                 ret = cow_file_range_inline(trans, root, inode,
791                                             start, end, 0, NULL);
792                 if (ret == 0) {
793                         extent_clear_unlock_delalloc(inode,
794                                      &BTRFS_I(inode)->io_tree,
795                                      start, end, NULL,
796                                      EXTENT_CLEAR_UNLOCK_PAGE |
797                                      EXTENT_CLEAR_UNLOCK |
798                                      EXTENT_CLEAR_DELALLOC |
799                                      EXTENT_CLEAR_DIRTY |
800                                      EXTENT_SET_WRITEBACK |
801                                      EXTENT_END_WRITEBACK);
802
803                         *nr_written = *nr_written +
804                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
805                         *page_started = 1;
806                         ret = 0;
807                         goto out;
808                 }
809         }
810
811         BUG_ON(disk_num_bytes >
812                btrfs_super_total_bytes(&root->fs_info->super_copy));
813
814         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
815         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
816
817         while (disk_num_bytes > 0) {
818                 unsigned long op;
819
820                 cur_alloc_size = disk_num_bytes;
821                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
822                                            root->sectorsize, 0, alloc_hint,
823                                            (u64)-1, &ins, 1);
824                 BUG_ON(ret);
825
826                 em = alloc_extent_map(GFP_NOFS);
827                 BUG_ON(!em);
828                 em->start = start;
829                 em->orig_start = em->start;
830                 ram_size = ins.offset;
831                 em->len = ins.offset;
832
833                 em->block_start = ins.objectid;
834                 em->block_len = ins.offset;
835                 em->bdev = root->fs_info->fs_devices->latest_bdev;
836                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
837
838                 while (1) {
839                         write_lock(&em_tree->lock);
840                         ret = add_extent_mapping(em_tree, em);
841                         write_unlock(&em_tree->lock);
842                         if (ret != -EEXIST) {
843                                 free_extent_map(em);
844                                 break;
845                         }
846                         btrfs_drop_extent_cache(inode, start,
847                                                 start + ram_size - 1, 0);
848                 }
849
850                 cur_alloc_size = ins.offset;
851                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
852                                                ram_size, cur_alloc_size, 0);
853                 BUG_ON(ret);
854
855                 if (root->root_key.objectid ==
856                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
857                         ret = btrfs_reloc_clone_csums(inode, start,
858                                                       cur_alloc_size);
859                         BUG_ON(ret);
860                 }
861
862                 if (disk_num_bytes < cur_alloc_size)
863                         break;
864
865                 /* we're not doing compressed IO, don't unlock the first
866                  * page (which the caller expects to stay locked), don't
867                  * clear any dirty bits and don't set any writeback bits
868                  *
869                  * Do set the Private2 bit so we know this page was properly
870                  * setup for writepage
871                  */
872                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
873                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
874                         EXTENT_SET_PRIVATE2;
875
876                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
877                                              start, start + ram_size - 1,
878                                              locked_page, op);
879                 disk_num_bytes -= cur_alloc_size;
880                 num_bytes -= cur_alloc_size;
881                 alloc_hint = ins.objectid + ins.offset;
882                 start += cur_alloc_size;
883         }
884 out:
885         ret = 0;
886         btrfs_end_transaction(trans, root);
887
888         return ret;
889 }
890
891 /*
892  * work queue call back to started compression on a file and pages
893  */
894 static noinline void async_cow_start(struct btrfs_work *work)
895 {
896         struct async_cow *async_cow;
897         int num_added = 0;
898         async_cow = container_of(work, struct async_cow, work);
899
900         compress_file_range(async_cow->inode, async_cow->locked_page,
901                             async_cow->start, async_cow->end, async_cow,
902                             &num_added);
903         if (num_added == 0)
904                 async_cow->inode = NULL;
905 }
906
907 /*
908  * work queue call back to submit previously compressed pages
909  */
910 static noinline void async_cow_submit(struct btrfs_work *work)
911 {
912         struct async_cow *async_cow;
913         struct btrfs_root *root;
914         unsigned long nr_pages;
915
916         async_cow = container_of(work, struct async_cow, work);
917
918         root = async_cow->root;
919         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
920                 PAGE_CACHE_SHIFT;
921
922         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
923
924         if (atomic_read(&root->fs_info->async_delalloc_pages) <
925             5 * 1042 * 1024 &&
926             waitqueue_active(&root->fs_info->async_submit_wait))
927                 wake_up(&root->fs_info->async_submit_wait);
928
929         if (async_cow->inode)
930                 submit_compressed_extents(async_cow->inode, async_cow);
931 }
932
933 static noinline void async_cow_free(struct btrfs_work *work)
934 {
935         struct async_cow *async_cow;
936         async_cow = container_of(work, struct async_cow, work);
937         kfree(async_cow);
938 }
939
940 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
941                                 u64 start, u64 end, int *page_started,
942                                 unsigned long *nr_written)
943 {
944         struct async_cow *async_cow;
945         struct btrfs_root *root = BTRFS_I(inode)->root;
946         unsigned long nr_pages;
947         u64 cur_end;
948         int limit = 10 * 1024 * 1042;
949
950         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
951                          1, 0, NULL, GFP_NOFS);
952         while (start < end) {
953                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
954                 async_cow->inode = inode;
955                 async_cow->root = root;
956                 async_cow->locked_page = locked_page;
957                 async_cow->start = start;
958
959                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
960                         cur_end = end;
961                 else
962                         cur_end = min(end, start + 512 * 1024 - 1);
963
964                 async_cow->end = cur_end;
965                 INIT_LIST_HEAD(&async_cow->extents);
966
967                 async_cow->work.func = async_cow_start;
968                 async_cow->work.ordered_func = async_cow_submit;
969                 async_cow->work.ordered_free = async_cow_free;
970                 async_cow->work.flags = 0;
971
972                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
973                         PAGE_CACHE_SHIFT;
974                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
975
976                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
977                                    &async_cow->work);
978
979                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
980                         wait_event(root->fs_info->async_submit_wait,
981                            (atomic_read(&root->fs_info->async_delalloc_pages) <
982                             limit));
983                 }
984
985                 while (atomic_read(&root->fs_info->async_submit_draining) &&
986                       atomic_read(&root->fs_info->async_delalloc_pages)) {
987                         wait_event(root->fs_info->async_submit_wait,
988                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
989                            0));
990                 }
991
992                 *nr_written += nr_pages;
993                 start = cur_end + 1;
994         }
995         *page_started = 1;
996         return 0;
997 }
998
999 static noinline int csum_exist_in_range(struct btrfs_root *root,
1000                                         u64 bytenr, u64 num_bytes)
1001 {
1002         int ret;
1003         struct btrfs_ordered_sum *sums;
1004         LIST_HEAD(list);
1005
1006         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1007                                        bytenr + num_bytes - 1, &list);
1008         if (ret == 0 && list_empty(&list))
1009                 return 0;
1010
1011         while (!list_empty(&list)) {
1012                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1013                 list_del(&sums->list);
1014                 kfree(sums);
1015         }
1016         return 1;
1017 }
1018
1019 /*
1020  * when nowcow writeback call back.  This checks for snapshots or COW copies
1021  * of the extents that exist in the file, and COWs the file as required.
1022  *
1023  * If no cow copies or snapshots exist, we write directly to the existing
1024  * blocks on disk
1025  */
1026 static noinline int run_delalloc_nocow(struct inode *inode,
1027                                        struct page *locked_page,
1028                               u64 start, u64 end, int *page_started, int force,
1029                               unsigned long *nr_written)
1030 {
1031         struct btrfs_root *root = BTRFS_I(inode)->root;
1032         struct btrfs_trans_handle *trans;
1033         struct extent_buffer *leaf;
1034         struct btrfs_path *path;
1035         struct btrfs_file_extent_item *fi;
1036         struct btrfs_key found_key;
1037         u64 cow_start;
1038         u64 cur_offset;
1039         u64 extent_end;
1040         u64 extent_offset;
1041         u64 disk_bytenr;
1042         u64 num_bytes;
1043         int extent_type;
1044         int ret;
1045         int type;
1046         int nocow;
1047         int check_prev = 1;
1048         bool nolock = false;
1049
1050         path = btrfs_alloc_path();
1051         BUG_ON(!path);
1052         if (root == root->fs_info->tree_root) {
1053                 nolock = true;
1054                 trans = btrfs_join_transaction_nolock(root, 1);
1055         } else {
1056                 trans = btrfs_join_transaction(root, 1);
1057         }
1058         BUG_ON(IS_ERR(trans));
1059
1060         cow_start = (u64)-1;
1061         cur_offset = start;
1062         while (1) {
1063                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1064                                                cur_offset, 0);
1065                 BUG_ON(ret < 0);
1066                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1067                         leaf = path->nodes[0];
1068                         btrfs_item_key_to_cpu(leaf, &found_key,
1069                                               path->slots[0] - 1);
1070                         if (found_key.objectid == inode->i_ino &&
1071                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1072                                 path->slots[0]--;
1073                 }
1074                 check_prev = 0;
1075 next_slot:
1076                 leaf = path->nodes[0];
1077                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1078                         ret = btrfs_next_leaf(root, path);
1079                         if (ret < 0)
1080                                 BUG_ON(1);
1081                         if (ret > 0)
1082                                 break;
1083                         leaf = path->nodes[0];
1084                 }
1085
1086                 nocow = 0;
1087                 disk_bytenr = 0;
1088                 num_bytes = 0;
1089                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1090
1091                 if (found_key.objectid > inode->i_ino ||
1092                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1093                     found_key.offset > end)
1094                         break;
1095
1096                 if (found_key.offset > cur_offset) {
1097                         extent_end = found_key.offset;
1098                         extent_type = 0;
1099                         goto out_check;
1100                 }
1101
1102                 fi = btrfs_item_ptr(leaf, path->slots[0],
1103                                     struct btrfs_file_extent_item);
1104                 extent_type = btrfs_file_extent_type(leaf, fi);
1105
1106                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1107                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1108                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1109                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1110                         extent_end = found_key.offset +
1111                                 btrfs_file_extent_num_bytes(leaf, fi);
1112                         if (extent_end <= start) {
1113                                 path->slots[0]++;
1114                                 goto next_slot;
1115                         }
1116                         if (disk_bytenr == 0)
1117                                 goto out_check;
1118                         if (btrfs_file_extent_compression(leaf, fi) ||
1119                             btrfs_file_extent_encryption(leaf, fi) ||
1120                             btrfs_file_extent_other_encoding(leaf, fi))
1121                                 goto out_check;
1122                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1123                                 goto out_check;
1124                         if (btrfs_extent_readonly(root, disk_bytenr))
1125                                 goto out_check;
1126                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1127                                                   found_key.offset -
1128                                                   extent_offset, disk_bytenr))
1129                                 goto out_check;
1130                         disk_bytenr += extent_offset;
1131                         disk_bytenr += cur_offset - found_key.offset;
1132                         num_bytes = min(end + 1, extent_end) - cur_offset;
1133                         /*
1134                          * force cow if csum exists in the range.
1135                          * this ensure that csum for a given extent are
1136                          * either valid or do not exist.
1137                          */
1138                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1139                                 goto out_check;
1140                         nocow = 1;
1141                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1142                         extent_end = found_key.offset +
1143                                 btrfs_file_extent_inline_len(leaf, fi);
1144                         extent_end = ALIGN(extent_end, root->sectorsize);
1145                 } else {
1146                         BUG_ON(1);
1147                 }
1148 out_check:
1149                 if (extent_end <= start) {
1150                         path->slots[0]++;
1151                         goto next_slot;
1152                 }
1153                 if (!nocow) {
1154                         if (cow_start == (u64)-1)
1155                                 cow_start = cur_offset;
1156                         cur_offset = extent_end;
1157                         if (cur_offset > end)
1158                                 break;
1159                         path->slots[0]++;
1160                         goto next_slot;
1161                 }
1162
1163                 btrfs_release_path(root, path);
1164                 if (cow_start != (u64)-1) {
1165                         ret = cow_file_range(inode, locked_page, cow_start,
1166                                         found_key.offset - 1, page_started,
1167                                         nr_written, 1);
1168                         BUG_ON(ret);
1169                         cow_start = (u64)-1;
1170                 }
1171
1172                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1173                         struct extent_map *em;
1174                         struct extent_map_tree *em_tree;
1175                         em_tree = &BTRFS_I(inode)->extent_tree;
1176                         em = alloc_extent_map(GFP_NOFS);
1177                         BUG_ON(!em);
1178                         em->start = cur_offset;
1179                         em->orig_start = em->start;
1180                         em->len = num_bytes;
1181                         em->block_len = num_bytes;
1182                         em->block_start = disk_bytenr;
1183                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1184                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1185                         while (1) {
1186                                 write_lock(&em_tree->lock);
1187                                 ret = add_extent_mapping(em_tree, em);
1188                                 write_unlock(&em_tree->lock);
1189                                 if (ret != -EEXIST) {
1190                                         free_extent_map(em);
1191                                         break;
1192                                 }
1193                                 btrfs_drop_extent_cache(inode, em->start,
1194                                                 em->start + em->len - 1, 0);
1195                         }
1196                         type = BTRFS_ORDERED_PREALLOC;
1197                 } else {
1198                         type = BTRFS_ORDERED_NOCOW;
1199                 }
1200
1201                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1202                                                num_bytes, num_bytes, type);
1203                 BUG_ON(ret);
1204
1205                 if (root->root_key.objectid ==
1206                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1207                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1208                                                       num_bytes);
1209                         BUG_ON(ret);
1210                 }
1211
1212                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1213                                 cur_offset, cur_offset + num_bytes - 1,
1214                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1215                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1216                                 EXTENT_SET_PRIVATE2);
1217                 cur_offset = extent_end;
1218                 if (cur_offset > end)
1219                         break;
1220         }
1221         btrfs_release_path(root, path);
1222
1223         if (cur_offset <= end && cow_start == (u64)-1)
1224                 cow_start = cur_offset;
1225         if (cow_start != (u64)-1) {
1226                 ret = cow_file_range(inode, locked_page, cow_start, end,
1227                                      page_started, nr_written, 1);
1228                 BUG_ON(ret);
1229         }
1230
1231         if (nolock) {
1232                 ret = btrfs_end_transaction_nolock(trans, root);
1233                 BUG_ON(ret);
1234         } else {
1235                 ret = btrfs_end_transaction(trans, root);
1236                 BUG_ON(ret);
1237         }
1238         btrfs_free_path(path);
1239         return 0;
1240 }
1241
1242 /*
1243  * extent_io.c call back to do delayed allocation processing
1244  */
1245 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1246                               u64 start, u64 end, int *page_started,
1247                               unsigned long *nr_written)
1248 {
1249         int ret;
1250         struct btrfs_root *root = BTRFS_I(inode)->root;
1251
1252         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1253                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1254                                          page_started, 1, nr_written);
1255         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1256                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257                                          page_started, 0, nr_written);
1258         else if (!btrfs_test_opt(root, COMPRESS) &&
1259                  !(BTRFS_I(inode)->force_compress))
1260                 ret = cow_file_range(inode, locked_page, start, end,
1261                                       page_started, nr_written, 1);
1262         else
1263                 ret = cow_file_range_async(inode, locked_page, start, end,
1264                                            page_started, nr_written);
1265         return ret;
1266 }
1267
1268 static int btrfs_split_extent_hook(struct inode *inode,
1269                                    struct extent_state *orig, u64 split)
1270 {
1271         /* not delalloc, ignore it */
1272         if (!(orig->state & EXTENT_DELALLOC))
1273                 return 0;
1274
1275         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1276         return 0;
1277 }
1278
1279 /*
1280  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1281  * extents so we can keep track of new extents that are just merged onto old
1282  * extents, such as when we are doing sequential writes, so we can properly
1283  * account for the metadata space we'll need.
1284  */
1285 static int btrfs_merge_extent_hook(struct inode *inode,
1286                                    struct extent_state *new,
1287                                    struct extent_state *other)
1288 {
1289         /* not delalloc, ignore it */
1290         if (!(other->state & EXTENT_DELALLOC))
1291                 return 0;
1292
1293         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1294         return 0;
1295 }
1296
1297 /*
1298  * extent_io.c set_bit_hook, used to track delayed allocation
1299  * bytes in this file, and to maintain the list of inodes that
1300  * have pending delalloc work to be done.
1301  */
1302 static int btrfs_set_bit_hook(struct inode *inode,
1303                               struct extent_state *state, int *bits)
1304 {
1305
1306         /*
1307          * set_bit and clear bit hooks normally require _irqsave/restore
1308          * but in this case, we are only testeing for the DELALLOC
1309          * bit, which is only set or cleared with irqs on
1310          */
1311         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1312                 struct btrfs_root *root = BTRFS_I(inode)->root;
1313                 u64 len = state->end + 1 - state->start;
1314                 int do_list = (root->root_key.objectid !=
1315                                BTRFS_ROOT_TREE_OBJECTID);
1316
1317                 if (*bits & EXTENT_FIRST_DELALLOC)
1318                         *bits &= ~EXTENT_FIRST_DELALLOC;
1319                 else
1320                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1321
1322                 spin_lock(&root->fs_info->delalloc_lock);
1323                 BTRFS_I(inode)->delalloc_bytes += len;
1324                 root->fs_info->delalloc_bytes += len;
1325                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1326                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1327                                       &root->fs_info->delalloc_inodes);
1328                 }
1329                 spin_unlock(&root->fs_info->delalloc_lock);
1330         }
1331         return 0;
1332 }
1333
1334 /*
1335  * extent_io.c clear_bit_hook, see set_bit_hook for why
1336  */
1337 static int btrfs_clear_bit_hook(struct inode *inode,
1338                                 struct extent_state *state, int *bits)
1339 {
1340         /*
1341          * set_bit and clear bit hooks normally require _irqsave/restore
1342          * but in this case, we are only testeing for the DELALLOC
1343          * bit, which is only set or cleared with irqs on
1344          */
1345         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1346                 struct btrfs_root *root = BTRFS_I(inode)->root;
1347                 u64 len = state->end + 1 - state->start;
1348                 int do_list = (root->root_key.objectid !=
1349                                BTRFS_ROOT_TREE_OBJECTID);
1350
1351                 if (*bits & EXTENT_FIRST_DELALLOC)
1352                         *bits &= ~EXTENT_FIRST_DELALLOC;
1353                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1354                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1355
1356                 if (*bits & EXTENT_DO_ACCOUNTING)
1357                         btrfs_delalloc_release_metadata(inode, len);
1358
1359                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1360                     && do_list)
1361                         btrfs_free_reserved_data_space(inode, len);
1362
1363                 spin_lock(&root->fs_info->delalloc_lock);
1364                 root->fs_info->delalloc_bytes -= len;
1365                 BTRFS_I(inode)->delalloc_bytes -= len;
1366
1367                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1368                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1369                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1370                 }
1371                 spin_unlock(&root->fs_info->delalloc_lock);
1372         }
1373         return 0;
1374 }
1375
1376 /*
1377  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1378  * we don't create bios that span stripes or chunks
1379  */
1380 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1381                          size_t size, struct bio *bio,
1382                          unsigned long bio_flags)
1383 {
1384         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1385         struct btrfs_mapping_tree *map_tree;
1386         u64 logical = (u64)bio->bi_sector << 9;
1387         u64 length = 0;
1388         u64 map_length;
1389         int ret;
1390
1391         if (bio_flags & EXTENT_BIO_COMPRESSED)
1392                 return 0;
1393
1394         length = bio->bi_size;
1395         map_tree = &root->fs_info->mapping_tree;
1396         map_length = length;
1397         ret = btrfs_map_block(map_tree, READ, logical,
1398                               &map_length, NULL, 0);
1399
1400         if (map_length < length + size)
1401                 return 1;
1402         return ret;
1403 }
1404
1405 /*
1406  * in order to insert checksums into the metadata in large chunks,
1407  * we wait until bio submission time.   All the pages in the bio are
1408  * checksummed and sums are attached onto the ordered extent record.
1409  *
1410  * At IO completion time the cums attached on the ordered extent record
1411  * are inserted into the btree
1412  */
1413 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1414                                     struct bio *bio, int mirror_num,
1415                                     unsigned long bio_flags,
1416                                     u64 bio_offset)
1417 {
1418         struct btrfs_root *root = BTRFS_I(inode)->root;
1419         int ret = 0;
1420
1421         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1422         BUG_ON(ret);
1423         return 0;
1424 }
1425
1426 /*
1427  * in order to insert checksums into the metadata in large chunks,
1428  * we wait until bio submission time.   All the pages in the bio are
1429  * checksummed and sums are attached onto the ordered extent record.
1430  *
1431  * At IO completion time the cums attached on the ordered extent record
1432  * are inserted into the btree
1433  */
1434 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1435                           int mirror_num, unsigned long bio_flags,
1436                           u64 bio_offset)
1437 {
1438         struct btrfs_root *root = BTRFS_I(inode)->root;
1439         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1440 }
1441
1442 /*
1443  * extent_io.c submission hook. This does the right thing for csum calculation
1444  * on write, or reading the csums from the tree before a read
1445  */
1446 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1447                           int mirror_num, unsigned long bio_flags,
1448                           u64 bio_offset)
1449 {
1450         struct btrfs_root *root = BTRFS_I(inode)->root;
1451         int ret = 0;
1452         int skip_sum;
1453
1454         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1455
1456         if (root == root->fs_info->tree_root)
1457                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1458         else
1459                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1460         BUG_ON(ret);
1461
1462         if (!(rw & REQ_WRITE)) {
1463                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1464                         return btrfs_submit_compressed_read(inode, bio,
1465                                                     mirror_num, bio_flags);
1466                 } else if (!skip_sum)
1467                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1468                 goto mapit;
1469         } else if (!skip_sum) {
1470                 /* csum items have already been cloned */
1471                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1472                         goto mapit;
1473                 /* we're doing a write, do the async checksumming */
1474                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1475                                    inode, rw, bio, mirror_num,
1476                                    bio_flags, bio_offset,
1477                                    __btrfs_submit_bio_start,
1478                                    __btrfs_submit_bio_done);
1479         }
1480
1481 mapit:
1482         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1483 }
1484
1485 /*
1486  * given a list of ordered sums record them in the inode.  This happens
1487  * at IO completion time based on sums calculated at bio submission time.
1488  */
1489 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1490                              struct inode *inode, u64 file_offset,
1491                              struct list_head *list)
1492 {
1493         struct btrfs_ordered_sum *sum;
1494
1495         btrfs_set_trans_block_group(trans, inode);
1496
1497         list_for_each_entry(sum, list, list) {
1498                 btrfs_csum_file_blocks(trans,
1499                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1500         }
1501         return 0;
1502 }
1503
1504 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1505                               struct extent_state **cached_state)
1506 {
1507         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1508                 WARN_ON(1);
1509         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1510                                    cached_state, GFP_NOFS);
1511 }
1512
1513 /* see btrfs_writepage_start_hook for details on why this is required */
1514 struct btrfs_writepage_fixup {
1515         struct page *page;
1516         struct btrfs_work work;
1517 };
1518
1519 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1520 {
1521         struct btrfs_writepage_fixup *fixup;
1522         struct btrfs_ordered_extent *ordered;
1523         struct extent_state *cached_state = NULL;
1524         struct page *page;
1525         struct inode *inode;
1526         u64 page_start;
1527         u64 page_end;
1528
1529         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1530         page = fixup->page;
1531 again:
1532         lock_page(page);
1533         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1534                 ClearPageChecked(page);
1535                 goto out_page;
1536         }
1537
1538         inode = page->mapping->host;
1539         page_start = page_offset(page);
1540         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1541
1542         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1543                          &cached_state, GFP_NOFS);
1544
1545         /* already ordered? We're done */
1546         if (PagePrivate2(page))
1547                 goto out;
1548
1549         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1550         if (ordered) {
1551                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1552                                      page_end, &cached_state, GFP_NOFS);
1553                 unlock_page(page);
1554                 btrfs_start_ordered_extent(inode, ordered, 1);
1555                 goto again;
1556         }
1557
1558         BUG();
1559         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1560         ClearPageChecked(page);
1561 out:
1562         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1563                              &cached_state, GFP_NOFS);
1564 out_page:
1565         unlock_page(page);
1566         page_cache_release(page);
1567         kfree(fixup);
1568 }
1569
1570 /*
1571  * There are a few paths in the higher layers of the kernel that directly
1572  * set the page dirty bit without asking the filesystem if it is a
1573  * good idea.  This causes problems because we want to make sure COW
1574  * properly happens and the data=ordered rules are followed.
1575  *
1576  * In our case any range that doesn't have the ORDERED bit set
1577  * hasn't been properly setup for IO.  We kick off an async process
1578  * to fix it up.  The async helper will wait for ordered extents, set
1579  * the delalloc bit and make it safe to write the page.
1580  */
1581 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1582 {
1583         struct inode *inode = page->mapping->host;
1584         struct btrfs_writepage_fixup *fixup;
1585         struct btrfs_root *root = BTRFS_I(inode)->root;
1586
1587         /* this page is properly in the ordered list */
1588         if (TestClearPagePrivate2(page))
1589                 return 0;
1590
1591         if (PageChecked(page))
1592                 return -EAGAIN;
1593
1594         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595         if (!fixup)
1596                 return -EAGAIN;
1597
1598         SetPageChecked(page);
1599         page_cache_get(page);
1600         fixup->work.func = btrfs_writepage_fixup_worker;
1601         fixup->page = page;
1602         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603         return -EAGAIN;
1604 }
1605
1606 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607                                        struct inode *inode, u64 file_pos,
1608                                        u64 disk_bytenr, u64 disk_num_bytes,
1609                                        u64 num_bytes, u64 ram_bytes,
1610                                        u8 compression, u8 encryption,
1611                                        u16 other_encoding, int extent_type)
1612 {
1613         struct btrfs_root *root = BTRFS_I(inode)->root;
1614         struct btrfs_file_extent_item *fi;
1615         struct btrfs_path *path;
1616         struct extent_buffer *leaf;
1617         struct btrfs_key ins;
1618         u64 hint;
1619         int ret;
1620
1621         path = btrfs_alloc_path();
1622         BUG_ON(!path);
1623
1624         path->leave_spinning = 1;
1625
1626         /*
1627          * we may be replacing one extent in the tree with another.
1628          * The new extent is pinned in the extent map, and we don't want
1629          * to drop it from the cache until it is completely in the btree.
1630          *
1631          * So, tell btrfs_drop_extents to leave this extent in the cache.
1632          * the caller is expected to unpin it and allow it to be merged
1633          * with the others.
1634          */
1635         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636                                  &hint, 0);
1637         BUG_ON(ret);
1638
1639         ins.objectid = inode->i_ino;
1640         ins.offset = file_pos;
1641         ins.type = BTRFS_EXTENT_DATA_KEY;
1642         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643         BUG_ON(ret);
1644         leaf = path->nodes[0];
1645         fi = btrfs_item_ptr(leaf, path->slots[0],
1646                             struct btrfs_file_extent_item);
1647         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648         btrfs_set_file_extent_type(leaf, fi, extent_type);
1649         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651         btrfs_set_file_extent_offset(leaf, fi, 0);
1652         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654         btrfs_set_file_extent_compression(leaf, fi, compression);
1655         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1657
1658         btrfs_unlock_up_safe(path, 1);
1659         btrfs_set_lock_blocking(leaf);
1660
1661         btrfs_mark_buffer_dirty(leaf);
1662
1663         inode_add_bytes(inode, num_bytes);
1664
1665         ins.objectid = disk_bytenr;
1666         ins.offset = disk_num_bytes;
1667         ins.type = BTRFS_EXTENT_ITEM_KEY;
1668         ret = btrfs_alloc_reserved_file_extent(trans, root,
1669                                         root->root_key.objectid,
1670                                         inode->i_ino, file_pos, &ins);
1671         BUG_ON(ret);
1672         btrfs_free_path(path);
1673
1674         return 0;
1675 }
1676
1677 /*
1678  * helper function for btrfs_finish_ordered_io, this
1679  * just reads in some of the csum leaves to prime them into ram
1680  * before we start the transaction.  It limits the amount of btree
1681  * reads required while inside the transaction.
1682  */
1683 /* as ordered data IO finishes, this gets called so we can finish
1684  * an ordered extent if the range of bytes in the file it covers are
1685  * fully written.
1686  */
1687 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1688 {
1689         struct btrfs_root *root = BTRFS_I(inode)->root;
1690         struct btrfs_trans_handle *trans = NULL;
1691         struct btrfs_ordered_extent *ordered_extent = NULL;
1692         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1693         struct extent_state *cached_state = NULL;
1694         int compress_type = 0;
1695         int ret;
1696         bool nolock = false;
1697
1698         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1699                                              end - start + 1);
1700         if (!ret)
1701                 return 0;
1702         BUG_ON(!ordered_extent);
1703
1704         nolock = (root == root->fs_info->tree_root);
1705
1706         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1707                 BUG_ON(!list_empty(&ordered_extent->list));
1708                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1709                 if (!ret) {
1710                         if (nolock)
1711                                 trans = btrfs_join_transaction_nolock(root, 1);
1712                         else
1713                                 trans = btrfs_join_transaction(root, 1);
1714                         BUG_ON(IS_ERR(trans));
1715                         btrfs_set_trans_block_group(trans, inode);
1716                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1717                         ret = btrfs_update_inode(trans, root, inode);
1718                         BUG_ON(ret);
1719                 }
1720                 goto out;
1721         }
1722
1723         lock_extent_bits(io_tree, ordered_extent->file_offset,
1724                          ordered_extent->file_offset + ordered_extent->len - 1,
1725                          0, &cached_state, GFP_NOFS);
1726
1727         if (nolock)
1728                 trans = btrfs_join_transaction_nolock(root, 1);
1729         else
1730                 trans = btrfs_join_transaction(root, 1);
1731         BUG_ON(IS_ERR(trans));
1732         btrfs_set_trans_block_group(trans, inode);
1733         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1734
1735         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1736                 compress_type = ordered_extent->compress_type;
1737         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1738                 BUG_ON(compress_type);
1739                 ret = btrfs_mark_extent_written(trans, inode,
1740                                                 ordered_extent->file_offset,
1741                                                 ordered_extent->file_offset +
1742                                                 ordered_extent->len);
1743                 BUG_ON(ret);
1744         } else {
1745                 BUG_ON(root == root->fs_info->tree_root);
1746                 ret = insert_reserved_file_extent(trans, inode,
1747                                                 ordered_extent->file_offset,
1748                                                 ordered_extent->start,
1749                                                 ordered_extent->disk_len,
1750                                                 ordered_extent->len,
1751                                                 ordered_extent->len,
1752                                                 compress_type, 0, 0,
1753                                                 BTRFS_FILE_EXTENT_REG);
1754                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1755                                    ordered_extent->file_offset,
1756                                    ordered_extent->len);
1757                 BUG_ON(ret);
1758         }
1759         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1760                              ordered_extent->file_offset +
1761                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1762
1763         add_pending_csums(trans, inode, ordered_extent->file_offset,
1764                           &ordered_extent->list);
1765
1766         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1767         ret = btrfs_update_inode(trans, root, inode);
1768         BUG_ON(ret);
1769 out:
1770         if (nolock) {
1771                 if (trans)
1772                         btrfs_end_transaction_nolock(trans, root);
1773         } else {
1774                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1775                 if (trans)
1776                         btrfs_end_transaction(trans, root);
1777         }
1778
1779         /* once for us */
1780         btrfs_put_ordered_extent(ordered_extent);
1781         /* once for the tree */
1782         btrfs_put_ordered_extent(ordered_extent);
1783
1784         return 0;
1785 }
1786
1787 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1788                                 struct extent_state *state, int uptodate)
1789 {
1790         ClearPagePrivate2(page);
1791         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1792 }
1793
1794 /*
1795  * When IO fails, either with EIO or csum verification fails, we
1796  * try other mirrors that might have a good copy of the data.  This
1797  * io_failure_record is used to record state as we go through all the
1798  * mirrors.  If another mirror has good data, the page is set up to date
1799  * and things continue.  If a good mirror can't be found, the original
1800  * bio end_io callback is called to indicate things have failed.
1801  */
1802 struct io_failure_record {
1803         struct page *page;
1804         u64 start;
1805         u64 len;
1806         u64 logical;
1807         unsigned long bio_flags;
1808         int last_mirror;
1809 };
1810
1811 static int btrfs_io_failed_hook(struct bio *failed_bio,
1812                          struct page *page, u64 start, u64 end,
1813                          struct extent_state *state)
1814 {
1815         struct io_failure_record *failrec = NULL;
1816         u64 private;
1817         struct extent_map *em;
1818         struct inode *inode = page->mapping->host;
1819         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1820         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1821         struct bio *bio;
1822         int num_copies;
1823         int ret;
1824         int rw;
1825         u64 logical;
1826
1827         ret = get_state_private(failure_tree, start, &private);
1828         if (ret) {
1829                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1830                 if (!failrec)
1831                         return -ENOMEM;
1832                 failrec->start = start;
1833                 failrec->len = end - start + 1;
1834                 failrec->last_mirror = 0;
1835                 failrec->bio_flags = 0;
1836
1837                 read_lock(&em_tree->lock);
1838                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1839                 if (em->start > start || em->start + em->len < start) {
1840                         free_extent_map(em);
1841                         em = NULL;
1842                 }
1843                 read_unlock(&em_tree->lock);
1844
1845                 if (!em || IS_ERR(em)) {
1846                         kfree(failrec);
1847                         return -EIO;
1848                 }
1849                 logical = start - em->start;
1850                 logical = em->block_start + logical;
1851                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1852                         logical = em->block_start;
1853                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1854                         extent_set_compress_type(&failrec->bio_flags,
1855                                                  em->compress_type);
1856                 }
1857                 failrec->logical = logical;
1858                 free_extent_map(em);
1859                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1860                                 EXTENT_DIRTY, GFP_NOFS);
1861                 set_state_private(failure_tree, start,
1862                                  (u64)(unsigned long)failrec);
1863         } else {
1864                 failrec = (struct io_failure_record *)(unsigned long)private;
1865         }
1866         num_copies = btrfs_num_copies(
1867                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1868                               failrec->logical, failrec->len);
1869         failrec->last_mirror++;
1870         if (!state) {
1871                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1872                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1873                                                     failrec->start,
1874                                                     EXTENT_LOCKED);
1875                 if (state && state->start != failrec->start)
1876                         state = NULL;
1877                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1878         }
1879         if (!state || failrec->last_mirror > num_copies) {
1880                 set_state_private(failure_tree, failrec->start, 0);
1881                 clear_extent_bits(failure_tree, failrec->start,
1882                                   failrec->start + failrec->len - 1,
1883                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1884                 kfree(failrec);
1885                 return -EIO;
1886         }
1887         bio = bio_alloc(GFP_NOFS, 1);
1888         bio->bi_private = state;
1889         bio->bi_end_io = failed_bio->bi_end_io;
1890         bio->bi_sector = failrec->logical >> 9;
1891         bio->bi_bdev = failed_bio->bi_bdev;
1892         bio->bi_size = 0;
1893
1894         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1895         if (failed_bio->bi_rw & REQ_WRITE)
1896                 rw = WRITE;
1897         else
1898                 rw = READ;
1899
1900         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1901                                                       failrec->last_mirror,
1902                                                       failrec->bio_flags, 0);
1903         return 0;
1904 }
1905
1906 /*
1907  * each time an IO finishes, we do a fast check in the IO failure tree
1908  * to see if we need to process or clean up an io_failure_record
1909  */
1910 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1911 {
1912         u64 private;
1913         u64 private_failure;
1914         struct io_failure_record *failure;
1915         int ret;
1916
1917         private = 0;
1918         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1919                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1920                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1921                                         start, &private_failure);
1922                 if (ret == 0) {
1923                         failure = (struct io_failure_record *)(unsigned long)
1924                                    private_failure;
1925                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1926                                           failure->start, 0);
1927                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1928                                           failure->start,
1929                                           failure->start + failure->len - 1,
1930                                           EXTENT_DIRTY | EXTENT_LOCKED,
1931                                           GFP_NOFS);
1932                         kfree(failure);
1933                 }
1934         }
1935         return 0;
1936 }
1937
1938 /*
1939  * when reads are done, we need to check csums to verify the data is correct
1940  * if there's a match, we allow the bio to finish.  If not, we go through
1941  * the io_failure_record routines to find good copies
1942  */
1943 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1944                                struct extent_state *state)
1945 {
1946         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1947         struct inode *inode = page->mapping->host;
1948         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1949         char *kaddr;
1950         u64 private = ~(u32)0;
1951         int ret;
1952         struct btrfs_root *root = BTRFS_I(inode)->root;
1953         u32 csum = ~(u32)0;
1954
1955         if (PageChecked(page)) {
1956                 ClearPageChecked(page);
1957                 goto good;
1958         }
1959
1960         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1961                 return 0;
1962
1963         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1964             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1965                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1966                                   GFP_NOFS);
1967                 return 0;
1968         }
1969
1970         if (state && state->start == start) {
1971                 private = state->private;
1972                 ret = 0;
1973         } else {
1974                 ret = get_state_private(io_tree, start, &private);
1975         }
1976         kaddr = kmap_atomic(page, KM_USER0);
1977         if (ret)
1978                 goto zeroit;
1979
1980         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1981         btrfs_csum_final(csum, (char *)&csum);
1982         if (csum != private)
1983                 goto zeroit;
1984
1985         kunmap_atomic(kaddr, KM_USER0);
1986 good:
1987         /* if the io failure tree for this inode is non-empty,
1988          * check to see if we've recovered from a failed IO
1989          */
1990         btrfs_clean_io_failures(inode, start);
1991         return 0;
1992
1993 zeroit:
1994         if (printk_ratelimit()) {
1995                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1996                        "private %llu\n", page->mapping->host->i_ino,
1997                        (unsigned long long)start, csum,
1998                        (unsigned long long)private);
1999         }
2000         memset(kaddr + offset, 1, end - start + 1);
2001         flush_dcache_page(page);
2002         kunmap_atomic(kaddr, KM_USER0);
2003         if (private == 0)
2004                 return 0;
2005         return -EIO;
2006 }
2007
2008 struct delayed_iput {
2009         struct list_head list;
2010         struct inode *inode;
2011 };
2012
2013 void btrfs_add_delayed_iput(struct inode *inode)
2014 {
2015         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2016         struct delayed_iput *delayed;
2017
2018         if (atomic_add_unless(&inode->i_count, -1, 1))
2019                 return;
2020
2021         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2022         delayed->inode = inode;
2023
2024         spin_lock(&fs_info->delayed_iput_lock);
2025         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2026         spin_unlock(&fs_info->delayed_iput_lock);
2027 }
2028
2029 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2030 {
2031         LIST_HEAD(list);
2032         struct btrfs_fs_info *fs_info = root->fs_info;
2033         struct delayed_iput *delayed;
2034         int empty;
2035
2036         spin_lock(&fs_info->delayed_iput_lock);
2037         empty = list_empty(&fs_info->delayed_iputs);
2038         spin_unlock(&fs_info->delayed_iput_lock);
2039         if (empty)
2040                 return;
2041
2042         down_read(&root->fs_info->cleanup_work_sem);
2043         spin_lock(&fs_info->delayed_iput_lock);
2044         list_splice_init(&fs_info->delayed_iputs, &list);
2045         spin_unlock(&fs_info->delayed_iput_lock);
2046
2047         while (!list_empty(&list)) {
2048                 delayed = list_entry(list.next, struct delayed_iput, list);
2049                 list_del(&delayed->list);
2050                 iput(delayed->inode);
2051                 kfree(delayed);
2052         }
2053         up_read(&root->fs_info->cleanup_work_sem);
2054 }
2055
2056 /*
2057  * calculate extra metadata reservation when snapshotting a subvolume
2058  * contains orphan files.
2059  */
2060 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2061                                 struct btrfs_pending_snapshot *pending,
2062                                 u64 *bytes_to_reserve)
2063 {
2064         struct btrfs_root *root;
2065         struct btrfs_block_rsv *block_rsv;
2066         u64 num_bytes;
2067         int index;
2068
2069         root = pending->root;
2070         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2071                 return;
2072
2073         block_rsv = root->orphan_block_rsv;
2074
2075         /* orphan block reservation for the snapshot */
2076         num_bytes = block_rsv->size;
2077
2078         /*
2079          * after the snapshot is created, COWing tree blocks may use more
2080          * space than it frees. So we should make sure there is enough
2081          * reserved space.
2082          */
2083         index = trans->transid & 0x1;
2084         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2085                 num_bytes += block_rsv->size -
2086                              (block_rsv->reserved + block_rsv->freed[index]);
2087         }
2088
2089         *bytes_to_reserve += num_bytes;
2090 }
2091
2092 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2093                                 struct btrfs_pending_snapshot *pending)
2094 {
2095         struct btrfs_root *root = pending->root;
2096         struct btrfs_root *snap = pending->snap;
2097         struct btrfs_block_rsv *block_rsv;
2098         u64 num_bytes;
2099         int index;
2100         int ret;
2101
2102         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2103                 return;
2104
2105         /* refill source subvolume's orphan block reservation */
2106         block_rsv = root->orphan_block_rsv;
2107         index = trans->transid & 0x1;
2108         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2109                 num_bytes = block_rsv->size -
2110                             (block_rsv->reserved + block_rsv->freed[index]);
2111                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2112                                               root->orphan_block_rsv,
2113                                               num_bytes);
2114                 BUG_ON(ret);
2115         }
2116
2117         /* setup orphan block reservation for the snapshot */
2118         block_rsv = btrfs_alloc_block_rsv(snap);
2119         BUG_ON(!block_rsv);
2120
2121         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2122         snap->orphan_block_rsv = block_rsv;
2123
2124         num_bytes = root->orphan_block_rsv->size;
2125         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2126                                       block_rsv, num_bytes);
2127         BUG_ON(ret);
2128
2129 #if 0
2130         /* insert orphan item for the snapshot */
2131         WARN_ON(!root->orphan_item_inserted);
2132         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2133                                        snap->root_key.objectid);
2134         BUG_ON(ret);
2135         snap->orphan_item_inserted = 1;
2136 #endif
2137 }
2138
2139 enum btrfs_orphan_cleanup_state {
2140         ORPHAN_CLEANUP_STARTED  = 1,
2141         ORPHAN_CLEANUP_DONE     = 2,
2142 };
2143
2144 /*
2145  * This is called in transaction commmit time. If there are no orphan
2146  * files in the subvolume, it removes orphan item and frees block_rsv
2147  * structure.
2148  */
2149 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2150                               struct btrfs_root *root)
2151 {
2152         int ret;
2153
2154         if (!list_empty(&root->orphan_list) ||
2155             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2156                 return;
2157
2158         if (root->orphan_item_inserted &&
2159             btrfs_root_refs(&root->root_item) > 0) {
2160                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2161                                             root->root_key.objectid);
2162                 BUG_ON(ret);
2163                 root->orphan_item_inserted = 0;
2164         }
2165
2166         if (root->orphan_block_rsv) {
2167                 WARN_ON(root->orphan_block_rsv->size > 0);
2168                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2169                 root->orphan_block_rsv = NULL;
2170         }
2171 }
2172
2173 /*
2174  * This creates an orphan entry for the given inode in case something goes
2175  * wrong in the middle of an unlink/truncate.
2176  *
2177  * NOTE: caller of this function should reserve 5 units of metadata for
2178  *       this function.
2179  */
2180 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2181 {
2182         struct btrfs_root *root = BTRFS_I(inode)->root;
2183         struct btrfs_block_rsv *block_rsv = NULL;
2184         int reserve = 0;
2185         int insert = 0;
2186         int ret;
2187
2188         if (!root->orphan_block_rsv) {
2189                 block_rsv = btrfs_alloc_block_rsv(root);
2190                 BUG_ON(!block_rsv);
2191         }
2192
2193         spin_lock(&root->orphan_lock);
2194         if (!root->orphan_block_rsv) {
2195                 root->orphan_block_rsv = block_rsv;
2196         } else if (block_rsv) {
2197                 btrfs_free_block_rsv(root, block_rsv);
2198                 block_rsv = NULL;
2199         }
2200
2201         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2202                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2203 #if 0
2204                 /*
2205                  * For proper ENOSPC handling, we should do orphan
2206                  * cleanup when mounting. But this introduces backward
2207                  * compatibility issue.
2208                  */
2209                 if (!xchg(&root->orphan_item_inserted, 1))
2210                         insert = 2;
2211                 else
2212                         insert = 1;
2213 #endif
2214                 insert = 1;
2215         } else {
2216                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2217         }
2218
2219         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2220                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2221                 reserve = 1;
2222         }
2223         spin_unlock(&root->orphan_lock);
2224
2225         if (block_rsv)
2226                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2227
2228         /* grab metadata reservation from transaction handle */
2229         if (reserve) {
2230                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2231                 BUG_ON(ret);
2232         }
2233
2234         /* insert an orphan item to track this unlinked/truncated file */
2235         if (insert >= 1) {
2236                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2237                 BUG_ON(ret);
2238         }
2239
2240         /* insert an orphan item to track subvolume contains orphan files */
2241         if (insert >= 2) {
2242                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2243                                                root->root_key.objectid);
2244                 BUG_ON(ret);
2245         }
2246         return 0;
2247 }
2248
2249 /*
2250  * We have done the truncate/delete so we can go ahead and remove the orphan
2251  * item for this particular inode.
2252  */
2253 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2254 {
2255         struct btrfs_root *root = BTRFS_I(inode)->root;
2256         int delete_item = 0;
2257         int release_rsv = 0;
2258         int ret = 0;
2259
2260         spin_lock(&root->orphan_lock);
2261         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2262                 list_del_init(&BTRFS_I(inode)->i_orphan);
2263                 delete_item = 1;
2264         }
2265
2266         if (BTRFS_I(inode)->orphan_meta_reserved) {
2267                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2268                 release_rsv = 1;
2269         }
2270         spin_unlock(&root->orphan_lock);
2271
2272         if (trans && delete_item) {
2273                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2274                 BUG_ON(ret);
2275         }
2276
2277         if (release_rsv)
2278                 btrfs_orphan_release_metadata(inode);
2279
2280         return 0;
2281 }
2282
2283 /*
2284  * this cleans up any orphans that may be left on the list from the last use
2285  * of this root.
2286  */
2287 int btrfs_orphan_cleanup(struct btrfs_root *root)
2288 {
2289         struct btrfs_path *path;
2290         struct extent_buffer *leaf;
2291         struct btrfs_key key, found_key;
2292         struct btrfs_trans_handle *trans;
2293         struct inode *inode;
2294         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2295
2296         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2297                 return 0;
2298
2299         path = btrfs_alloc_path();
2300         if (!path) {
2301                 ret = -ENOMEM;
2302                 goto out;
2303         }
2304         path->reada = -1;
2305
2306         key.objectid = BTRFS_ORPHAN_OBJECTID;
2307         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2308         key.offset = (u64)-1;
2309
2310         while (1) {
2311                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2312                 if (ret < 0)
2313                         goto out;
2314
2315                 /*
2316                  * if ret == 0 means we found what we were searching for, which
2317                  * is weird, but possible, so only screw with path if we didnt
2318                  * find the key and see if we have stuff that matches
2319                  */
2320                 if (ret > 0) {
2321                         ret = 0;
2322                         if (path->slots[0] == 0)
2323                                 break;
2324                         path->slots[0]--;
2325                 }
2326
2327                 /* pull out the item */
2328                 leaf = path->nodes[0];
2329                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2330
2331                 /* make sure the item matches what we want */
2332                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2333                         break;
2334                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2335                         break;
2336
2337                 /* release the path since we're done with it */
2338                 btrfs_release_path(root, path);
2339
2340                 /*
2341                  * this is where we are basically btrfs_lookup, without the
2342                  * crossing root thing.  we store the inode number in the
2343                  * offset of the orphan item.
2344                  */
2345                 found_key.objectid = found_key.offset;
2346                 found_key.type = BTRFS_INODE_ITEM_KEY;
2347                 found_key.offset = 0;
2348                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2349                 if (IS_ERR(inode)) {
2350                         ret = PTR_ERR(inode);
2351                         goto out;
2352                 }
2353
2354                 /*
2355                  * add this inode to the orphan list so btrfs_orphan_del does
2356                  * the proper thing when we hit it
2357                  */
2358                 spin_lock(&root->orphan_lock);
2359                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2360                 spin_unlock(&root->orphan_lock);
2361
2362                 /*
2363                  * if this is a bad inode, means we actually succeeded in
2364                  * removing the inode, but not the orphan record, which means
2365                  * we need to manually delete the orphan since iput will just
2366                  * do a destroy_inode
2367                  */
2368                 if (is_bad_inode(inode)) {
2369                         trans = btrfs_start_transaction(root, 0);
2370                         if (IS_ERR(trans)) {
2371                                 ret = PTR_ERR(trans);
2372                                 goto out;
2373                         }
2374                         btrfs_orphan_del(trans, inode);
2375                         btrfs_end_transaction(trans, root);
2376                         iput(inode);
2377                         continue;
2378                 }
2379
2380                 /* if we have links, this was a truncate, lets do that */
2381                 if (inode->i_nlink) {
2382                         if (!S_ISREG(inode->i_mode)) {
2383                                 WARN_ON(1);
2384                                 iput(inode);
2385                                 continue;
2386                         }
2387                         nr_truncate++;
2388                         ret = btrfs_truncate(inode);
2389                 } else {
2390                         nr_unlink++;
2391                 }
2392
2393                 /* this will do delete_inode and everything for us */
2394                 iput(inode);
2395                 if (ret)
2396                         goto out;
2397         }
2398         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2399
2400         if (root->orphan_block_rsv)
2401                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2402                                         (u64)-1);
2403
2404         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2405                 trans = btrfs_join_transaction(root, 1);
2406                 if (!IS_ERR(trans))
2407                         btrfs_end_transaction(trans, root);
2408         }
2409
2410         if (nr_unlink)
2411                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2412         if (nr_truncate)
2413                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2414
2415 out:
2416         if (ret)
2417                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2418         btrfs_free_path(path);
2419         return ret;
2420 }
2421
2422 /*
2423  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2424  * don't find any xattrs, we know there can't be any acls.
2425  *
2426  * slot is the slot the inode is in, objectid is the objectid of the inode
2427  */
2428 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2429                                           int slot, u64 objectid)
2430 {
2431         u32 nritems = btrfs_header_nritems(leaf);
2432         struct btrfs_key found_key;
2433         int scanned = 0;
2434
2435         slot++;
2436         while (slot < nritems) {
2437                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2438
2439                 /* we found a different objectid, there must not be acls */
2440                 if (found_key.objectid != objectid)
2441                         return 0;
2442
2443                 /* we found an xattr, assume we've got an acl */
2444                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2445                         return 1;
2446
2447                 /*
2448                  * we found a key greater than an xattr key, there can't
2449                  * be any acls later on
2450                  */
2451                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2452                         return 0;
2453
2454                 slot++;
2455                 scanned++;
2456
2457                 /*
2458                  * it goes inode, inode backrefs, xattrs, extents,
2459                  * so if there are a ton of hard links to an inode there can
2460                  * be a lot of backrefs.  Don't waste time searching too hard,
2461                  * this is just an optimization
2462                  */
2463                 if (scanned >= 8)
2464                         break;
2465         }
2466         /* we hit the end of the leaf before we found an xattr or
2467          * something larger than an xattr.  We have to assume the inode
2468          * has acls
2469          */
2470         return 1;
2471 }
2472
2473 /*
2474  * read an inode from the btree into the in-memory inode
2475  */
2476 static void btrfs_read_locked_inode(struct inode *inode)
2477 {
2478         struct btrfs_path *path;
2479         struct extent_buffer *leaf;
2480         struct btrfs_inode_item *inode_item;
2481         struct btrfs_timespec *tspec;
2482         struct btrfs_root *root = BTRFS_I(inode)->root;
2483         struct btrfs_key location;
2484         int maybe_acls;
2485         u64 alloc_group_block;
2486         u32 rdev;
2487         int ret;
2488
2489         path = btrfs_alloc_path();
2490         BUG_ON(!path);
2491         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2492
2493         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2494         if (ret)
2495                 goto make_bad;
2496
2497         leaf = path->nodes[0];
2498         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2499                                     struct btrfs_inode_item);
2500
2501         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2502         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2503         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2504         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2505         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2506
2507         tspec = btrfs_inode_atime(inode_item);
2508         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2509         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2510
2511         tspec = btrfs_inode_mtime(inode_item);
2512         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2513         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2514
2515         tspec = btrfs_inode_ctime(inode_item);
2516         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2517         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2518
2519         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2520         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2521         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2522         inode->i_generation = BTRFS_I(inode)->generation;
2523         inode->i_rdev = 0;
2524         rdev = btrfs_inode_rdev(leaf, inode_item);
2525
2526         BTRFS_I(inode)->index_cnt = (u64)-1;
2527         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2528
2529         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2530
2531         /*
2532          * try to precache a NULL acl entry for files that don't have
2533          * any xattrs or acls
2534          */
2535         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2536         if (!maybe_acls)
2537                 cache_no_acl(inode);
2538
2539         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2540                                                 alloc_group_block, 0);
2541         btrfs_free_path(path);
2542         inode_item = NULL;
2543
2544         switch (inode->i_mode & S_IFMT) {
2545         case S_IFREG:
2546                 inode->i_mapping->a_ops = &btrfs_aops;
2547                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2548                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2549                 inode->i_fop = &btrfs_file_operations;
2550                 inode->i_op = &btrfs_file_inode_operations;
2551                 break;
2552         case S_IFDIR:
2553                 inode->i_fop = &btrfs_dir_file_operations;
2554                 if (root == root->fs_info->tree_root)
2555                         inode->i_op = &btrfs_dir_ro_inode_operations;
2556                 else
2557                         inode->i_op = &btrfs_dir_inode_operations;
2558                 break;
2559         case S_IFLNK:
2560                 inode->i_op = &btrfs_symlink_inode_operations;
2561                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2562                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2563                 break;
2564         default:
2565                 inode->i_op = &btrfs_special_inode_operations;
2566                 init_special_inode(inode, inode->i_mode, rdev);
2567                 break;
2568         }
2569
2570         btrfs_update_iflags(inode);
2571         return;
2572
2573 make_bad:
2574         btrfs_free_path(path);
2575         make_bad_inode(inode);
2576 }
2577
2578 /*
2579  * given a leaf and an inode, copy the inode fields into the leaf
2580  */
2581 static void fill_inode_item(struct btrfs_trans_handle *trans,
2582                             struct extent_buffer *leaf,
2583                             struct btrfs_inode_item *item,
2584                             struct inode *inode)
2585 {
2586         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2587         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2588         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2589         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2590         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2591
2592         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2593                                inode->i_atime.tv_sec);
2594         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2595                                 inode->i_atime.tv_nsec);
2596
2597         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2598                                inode->i_mtime.tv_sec);
2599         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2600                                 inode->i_mtime.tv_nsec);
2601
2602         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2603                                inode->i_ctime.tv_sec);
2604         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2605                                 inode->i_ctime.tv_nsec);
2606
2607         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2608         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2609         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2610         btrfs_set_inode_transid(leaf, item, trans->transid);
2611         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2612         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2613         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2614 }
2615
2616 /*
2617  * copy everything in the in-memory inode into the btree.
2618  */
2619 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2620                                 struct btrfs_root *root, struct inode *inode)
2621 {
2622         struct btrfs_inode_item *inode_item;
2623         struct btrfs_path *path;
2624         struct extent_buffer *leaf;
2625         int ret;
2626
2627         path = btrfs_alloc_path();
2628         BUG_ON(!path);
2629         path->leave_spinning = 1;
2630         ret = btrfs_lookup_inode(trans, root, path,
2631                                  &BTRFS_I(inode)->location, 1);
2632         if (ret) {
2633                 if (ret > 0)
2634                         ret = -ENOENT;
2635                 goto failed;
2636         }
2637
2638         btrfs_unlock_up_safe(path, 1);
2639         leaf = path->nodes[0];
2640         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2641                                   struct btrfs_inode_item);
2642
2643         fill_inode_item(trans, leaf, inode_item, inode);
2644         btrfs_mark_buffer_dirty(leaf);
2645         btrfs_set_inode_last_trans(trans, inode);
2646         ret = 0;
2647 failed:
2648         btrfs_free_path(path);
2649         return ret;
2650 }
2651
2652
2653 /*
2654  * unlink helper that gets used here in inode.c and in the tree logging
2655  * recovery code.  It remove a link in a directory with a given name, and
2656  * also drops the back refs in the inode to the directory
2657  */
2658 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2659                        struct btrfs_root *root,
2660                        struct inode *dir, struct inode *inode,
2661                        const char *name, int name_len)
2662 {
2663         struct btrfs_path *path;
2664         int ret = 0;
2665         struct extent_buffer *leaf;
2666         struct btrfs_dir_item *di;
2667         struct btrfs_key key;
2668         u64 index;
2669
2670         path = btrfs_alloc_path();
2671         if (!path) {
2672                 ret = -ENOMEM;
2673                 goto out;
2674         }
2675
2676         path->leave_spinning = 1;
2677         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2678                                     name, name_len, -1);
2679         if (IS_ERR(di)) {
2680                 ret = PTR_ERR(di);
2681                 goto err;
2682         }
2683         if (!di) {
2684                 ret = -ENOENT;
2685                 goto err;
2686         }
2687         leaf = path->nodes[0];
2688         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2689         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2690         if (ret)
2691                 goto err;
2692         btrfs_release_path(root, path);
2693
2694         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2695                                   inode->i_ino,
2696                                   dir->i_ino, &index);
2697         if (ret) {
2698                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2699                        "inode %lu parent %lu\n", name_len, name,
2700                        inode->i_ino, dir->i_ino);
2701                 goto err;
2702         }
2703
2704         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2705                                          index, name, name_len, -1);
2706         if (IS_ERR(di)) {
2707                 ret = PTR_ERR(di);
2708                 goto err;
2709         }
2710         if (!di) {
2711                 ret = -ENOENT;
2712                 goto err;
2713         }
2714         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2715         btrfs_release_path(root, path);
2716
2717         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2718                                          inode, dir->i_ino);
2719         BUG_ON(ret != 0 && ret != -ENOENT);
2720
2721         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2722                                            dir, index);
2723         if (ret == -ENOENT)
2724                 ret = 0;
2725 err:
2726         btrfs_free_path(path);
2727         if (ret)
2728                 goto out;
2729
2730         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2731         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2732         btrfs_update_inode(trans, root, dir);
2733         btrfs_drop_nlink(inode);
2734         ret = btrfs_update_inode(trans, root, inode);
2735 out:
2736         return ret;
2737 }
2738
2739 /* helper to check if there is any shared block in the path */
2740 static int check_path_shared(struct btrfs_root *root,
2741                              struct btrfs_path *path)
2742 {
2743         struct extent_buffer *eb;
2744         int level;
2745         u64 refs = 1;
2746
2747         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2748                 int ret;
2749
2750                 if (!path->nodes[level])
2751                         break;
2752                 eb = path->nodes[level];
2753                 if (!btrfs_block_can_be_shared(root, eb))
2754                         continue;
2755                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2756                                                &refs, NULL);
2757                 if (refs > 1)
2758                         return 1;
2759         }
2760         return 0;
2761 }
2762
2763 /*
2764  * helper to start transaction for unlink and rmdir.
2765  *
2766  * unlink and rmdir are special in btrfs, they do not always free space.
2767  * so in enospc case, we should make sure they will free space before
2768  * allowing them to use the global metadata reservation.
2769  */
2770 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2771                                                        struct dentry *dentry)
2772 {
2773         struct btrfs_trans_handle *trans;
2774         struct btrfs_root *root = BTRFS_I(dir)->root;
2775         struct btrfs_path *path;
2776         struct btrfs_inode_ref *ref;
2777         struct btrfs_dir_item *di;
2778         struct inode *inode = dentry->d_inode;
2779         u64 index;
2780         int check_link = 1;
2781         int err = -ENOSPC;
2782         int ret;
2783
2784         trans = btrfs_start_transaction(root, 10);
2785         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2786                 return trans;
2787
2788         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2789                 return ERR_PTR(-ENOSPC);
2790
2791         /* check if there is someone else holds reference */
2792         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2793                 return ERR_PTR(-ENOSPC);
2794
2795         if (atomic_read(&inode->i_count) > 2)
2796                 return ERR_PTR(-ENOSPC);
2797
2798         if (xchg(&root->fs_info->enospc_unlink, 1))
2799                 return ERR_PTR(-ENOSPC);
2800
2801         path = btrfs_alloc_path();
2802         if (!path) {
2803                 root->fs_info->enospc_unlink = 0;
2804                 return ERR_PTR(-ENOMEM);
2805         }
2806
2807         trans = btrfs_start_transaction(root, 0);
2808         if (IS_ERR(trans)) {
2809                 btrfs_free_path(path);
2810                 root->fs_info->enospc_unlink = 0;
2811                 return trans;
2812         }
2813
2814         path->skip_locking = 1;
2815         path->search_commit_root = 1;
2816
2817         ret = btrfs_lookup_inode(trans, root, path,
2818                                 &BTRFS_I(dir)->location, 0);
2819         if (ret < 0) {
2820                 err = ret;
2821                 goto out;
2822         }
2823         if (ret == 0) {
2824                 if (check_path_shared(root, path))
2825                         goto out;
2826         } else {
2827                 check_link = 0;
2828         }
2829         btrfs_release_path(root, path);
2830
2831         ret = btrfs_lookup_inode(trans, root, path,
2832                                 &BTRFS_I(inode)->location, 0);
2833         if (ret < 0) {
2834                 err = ret;
2835                 goto out;
2836         }
2837         if (ret == 0) {
2838                 if (check_path_shared(root, path))
2839                         goto out;
2840         } else {
2841                 check_link = 0;
2842         }
2843         btrfs_release_path(root, path);
2844
2845         if (ret == 0 && S_ISREG(inode->i_mode)) {
2846                 ret = btrfs_lookup_file_extent(trans, root, path,
2847                                                inode->i_ino, (u64)-1, 0);
2848                 if (ret < 0) {
2849                         err = ret;
2850                         goto out;
2851                 }
2852                 BUG_ON(ret == 0);
2853                 if (check_path_shared(root, path))
2854                         goto out;
2855                 btrfs_release_path(root, path);
2856         }
2857
2858         if (!check_link) {
2859                 err = 0;
2860                 goto out;
2861         }
2862
2863         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2864                                 dentry->d_name.name, dentry->d_name.len, 0);
2865         if (IS_ERR(di)) {
2866                 err = PTR_ERR(di);
2867                 goto out;
2868         }
2869         if (di) {
2870                 if (check_path_shared(root, path))
2871                         goto out;
2872         } else {
2873                 err = 0;
2874                 goto out;
2875         }
2876         btrfs_release_path(root, path);
2877
2878         ref = btrfs_lookup_inode_ref(trans, root, path,
2879                                 dentry->d_name.name, dentry->d_name.len,
2880                                 inode->i_ino, dir->i_ino, 0);
2881         if (IS_ERR(ref)) {
2882                 err = PTR_ERR(ref);
2883                 goto out;
2884         }
2885         BUG_ON(!ref);
2886         if (check_path_shared(root, path))
2887                 goto out;
2888         index = btrfs_inode_ref_index(path->nodes[0], ref);
2889         btrfs_release_path(root, path);
2890
2891         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2892                                 dentry->d_name.name, dentry->d_name.len, 0);
2893         if (IS_ERR(di)) {
2894                 err = PTR_ERR(di);
2895                 goto out;
2896         }
2897         BUG_ON(ret == -ENOENT);
2898         if (check_path_shared(root, path))
2899                 goto out;
2900
2901         err = 0;
2902 out:
2903         btrfs_free_path(path);
2904         if (err) {
2905                 btrfs_end_transaction(trans, root);
2906                 root->fs_info->enospc_unlink = 0;
2907                 return ERR_PTR(err);
2908         }
2909
2910         trans->block_rsv = &root->fs_info->global_block_rsv;
2911         return trans;
2912 }
2913
2914 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2915                                struct btrfs_root *root)
2916 {
2917         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2918                 BUG_ON(!root->fs_info->enospc_unlink);
2919                 root->fs_info->enospc_unlink = 0;
2920         }
2921         btrfs_end_transaction_throttle(trans, root);
2922 }
2923
2924 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2925 {
2926         struct btrfs_root *root = BTRFS_I(dir)->root;
2927         struct btrfs_trans_handle *trans;
2928         struct inode *inode = dentry->d_inode;
2929         int ret;
2930         unsigned long nr = 0;
2931
2932         trans = __unlink_start_trans(dir, dentry);
2933         if (IS_ERR(trans))
2934                 return PTR_ERR(trans);
2935
2936         btrfs_set_trans_block_group(trans, dir);
2937
2938         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2939
2940         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2941                                  dentry->d_name.name, dentry->d_name.len);
2942         BUG_ON(ret);
2943
2944         if (inode->i_nlink == 0) {
2945                 ret = btrfs_orphan_add(trans, inode);
2946                 BUG_ON(ret);
2947         }
2948
2949         nr = trans->blocks_used;
2950         __unlink_end_trans(trans, root);
2951         btrfs_btree_balance_dirty(root, nr);
2952         return ret;
2953 }
2954
2955 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2956                         struct btrfs_root *root,
2957                         struct inode *dir, u64 objectid,
2958                         const char *name, int name_len)
2959 {
2960         struct btrfs_path *path;
2961         struct extent_buffer *leaf;
2962         struct btrfs_dir_item *di;
2963         struct btrfs_key key;
2964         u64 index;
2965         int ret;
2966
2967         path = btrfs_alloc_path();
2968         if (!path)
2969                 return -ENOMEM;
2970
2971         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2972                                    name, name_len, -1);
2973         BUG_ON(!di || IS_ERR(di));
2974
2975         leaf = path->nodes[0];
2976         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2977         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2978         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2979         BUG_ON(ret);
2980         btrfs_release_path(root, path);
2981
2982         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2983                                  objectid, root->root_key.objectid,
2984                                  dir->i_ino, &index, name, name_len);
2985         if (ret < 0) {
2986                 BUG_ON(ret != -ENOENT);
2987                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2988                                                  name, name_len);
2989                 BUG_ON(!di || IS_ERR(di));
2990
2991                 leaf = path->nodes[0];
2992                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2993                 btrfs_release_path(root, path);
2994                 index = key.offset;
2995         }
2996
2997         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2998                                          index, name, name_len, -1);
2999         BUG_ON(!di || IS_ERR(di));
3000
3001         leaf = path->nodes[0];
3002         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3003         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3004         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3005         BUG_ON(ret);
3006         btrfs_release_path(root, path);
3007
3008         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3009         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3010         ret = btrfs_update_inode(trans, root, dir);
3011         BUG_ON(ret);
3012
3013         btrfs_free_path(path);
3014         return 0;
3015 }
3016
3017 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3018 {
3019         struct inode *inode = dentry->d_inode;
3020         int err = 0;
3021         struct btrfs_root *root = BTRFS_I(dir)->root;
3022         struct btrfs_trans_handle *trans;
3023         unsigned long nr = 0;
3024
3025         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3026             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3027                 return -ENOTEMPTY;
3028
3029         trans = __unlink_start_trans(dir, dentry);
3030         if (IS_ERR(trans))
3031                 return PTR_ERR(trans);
3032
3033         btrfs_set_trans_block_group(trans, dir);
3034
3035         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3036                 err = btrfs_unlink_subvol(trans, root, dir,
3037                                           BTRFS_I(inode)->location.objectid,
3038                                           dentry->d_name.name,
3039                                           dentry->d_name.len);
3040                 goto out;
3041         }
3042
3043         err = btrfs_orphan_add(trans, inode);
3044         if (err)
3045                 goto out;
3046
3047         /* now the directory is empty */
3048         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3049                                  dentry->d_name.name, dentry->d_name.len);
3050         if (!err)
3051                 btrfs_i_size_write(inode, 0);
3052 out:
3053         nr = trans->blocks_used;
3054         __unlink_end_trans(trans, root);
3055         btrfs_btree_balance_dirty(root, nr);
3056
3057         return err;
3058 }
3059
3060 #if 0
3061 /*
3062  * when truncating bytes in a file, it is possible to avoid reading
3063  * the leaves that contain only checksum items.  This can be the
3064  * majority of the IO required to delete a large file, but it must
3065  * be done carefully.
3066  *
3067  * The keys in the level just above the leaves are checked to make sure
3068  * the lowest key in a given leaf is a csum key, and starts at an offset
3069  * after the new  size.
3070  *
3071  * Then the key for the next leaf is checked to make sure it also has
3072  * a checksum item for the same file.  If it does, we know our target leaf
3073  * contains only checksum items, and it can be safely freed without reading
3074  * it.
3075  *
3076  * This is just an optimization targeted at large files.  It may do
3077  * nothing.  It will return 0 unless things went badly.
3078  */
3079 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3080                                      struct btrfs_root *root,
3081                                      struct btrfs_path *path,
3082                                      struct inode *inode, u64 new_size)
3083 {
3084         struct btrfs_key key;
3085         int ret;
3086         int nritems;
3087         struct btrfs_key found_key;
3088         struct btrfs_key other_key;
3089         struct btrfs_leaf_ref *ref;
3090         u64 leaf_gen;
3091         u64 leaf_start;
3092
3093         path->lowest_level = 1;
3094         key.objectid = inode->i_ino;
3095         key.type = BTRFS_CSUM_ITEM_KEY;
3096         key.offset = new_size;
3097 again:
3098         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3099         if (ret < 0)
3100                 goto out;
3101
3102         if (path->nodes[1] == NULL) {
3103                 ret = 0;
3104                 goto out;
3105         }
3106         ret = 0;
3107         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3108         nritems = btrfs_header_nritems(path->nodes[1]);
3109
3110         if (!nritems)
3111                 goto out;
3112
3113         if (path->slots[1] >= nritems)
3114                 goto next_node;
3115
3116         /* did we find a key greater than anything we want to delete? */
3117         if (found_key.objectid > inode->i_ino ||
3118            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3119                 goto out;
3120
3121         /* we check the next key in the node to make sure the leave contains
3122          * only checksum items.  This comparison doesn't work if our
3123          * leaf is the last one in the node
3124          */
3125         if (path->slots[1] + 1 >= nritems) {
3126 next_node:
3127                 /* search forward from the last key in the node, this
3128                  * will bring us into the next node in the tree
3129                  */
3130                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3131
3132                 /* unlikely, but we inc below, so check to be safe */
3133                 if (found_key.offset == (u64)-1)
3134                         goto out;
3135
3136                 /* search_forward needs a path with locks held, do the
3137                  * search again for the original key.  It is possible
3138                  * this will race with a balance and return a path that
3139                  * we could modify, but this drop is just an optimization
3140                  * and is allowed to miss some leaves.
3141                  */
3142                 btrfs_release_path(root, path);
3143                 found_key.offset++;
3144
3145                 /* setup a max key for search_forward */
3146                 other_key.offset = (u64)-1;
3147                 other_key.type = key.type;
3148                 other_key.objectid = key.objectid;
3149
3150                 path->keep_locks = 1;
3151                 ret = btrfs_search_forward(root, &found_key, &other_key,
3152                                            path, 0, 0);
3153                 path->keep_locks = 0;
3154                 if (ret || found_key.objectid != key.objectid ||
3155                     found_key.type != key.type) {
3156                         ret = 0;
3157                         goto out;
3158                 }
3159
3160                 key.offset = found_key.offset;
3161                 btrfs_release_path(root, path);
3162                 cond_resched();
3163                 goto again;
3164         }
3165
3166         /* we know there's one more slot after us in the tree,
3167          * read that key so we can verify it is also a checksum item
3168          */
3169         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3170
3171         if (found_key.objectid < inode->i_ino)
3172                 goto next_key;
3173
3174         if (found_key.type != key.type || found_key.offset < new_size)
3175                 goto next_key;
3176
3177         /*
3178          * if the key for the next leaf isn't a csum key from this objectid,
3179          * we can't be sure there aren't good items inside this leaf.
3180          * Bail out
3181          */
3182         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3183                 goto out;
3184
3185         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3186         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3187         /*
3188          * it is safe to delete this leaf, it contains only
3189          * csum items from this inode at an offset >= new_size
3190          */
3191         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3192         BUG_ON(ret);
3193
3194         if (root->ref_cows && leaf_gen < trans->transid) {
3195                 ref = btrfs_alloc_leaf_ref(root, 0);
3196                 if (ref) {
3197                         ref->root_gen = root->root_key.offset;
3198                         ref->bytenr = leaf_start;
3199                         ref->owner = 0;
3200                         ref->generation = leaf_gen;
3201                         ref->nritems = 0;
3202
3203                         btrfs_sort_leaf_ref(ref);
3204
3205                         ret = btrfs_add_leaf_ref(root, ref, 0);
3206                         WARN_ON(ret);
3207                         btrfs_free_leaf_ref(root, ref);
3208                 } else {
3209                         WARN_ON(1);
3210                 }
3211         }
3212 next_key:
3213         btrfs_release_path(root, path);
3214
3215         if (other_key.objectid == inode->i_ino &&
3216             other_key.type == key.type && other_key.offset > key.offset) {
3217                 key.offset = other_key.offset;
3218                 cond_resched();
3219                 goto again;
3220         }
3221         ret = 0;
3222 out:
3223         /* fixup any changes we've made to the path */
3224         path->lowest_level = 0;
3225         path->keep_locks = 0;
3226         btrfs_release_path(root, path);
3227         return ret;
3228 }
3229
3230 #endif
3231
3232 /*
3233  * this can truncate away extent items, csum items and directory items.
3234  * It starts at a high offset and removes keys until it can't find
3235  * any higher than new_size
3236  *
3237  * csum items that cross the new i_size are truncated to the new size
3238  * as well.
3239  *
3240  * min_type is the minimum key type to truncate down to.  If set to 0, this
3241  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3242  */
3243 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3244                                struct btrfs_root *root,
3245                                struct inode *inode,
3246                                u64 new_size, u32 min_type)
3247 {
3248         struct btrfs_path *path;
3249         struct extent_buffer *leaf;
3250         struct btrfs_file_extent_item *fi;
3251         struct btrfs_key key;
3252         struct btrfs_key found_key;
3253         u64 extent_start = 0;
3254         u64 extent_num_bytes = 0;
3255         u64 extent_offset = 0;
3256         u64 item_end = 0;
3257         u64 mask = root->sectorsize - 1;
3258         u32 found_type = (u8)-1;
3259         int found_extent;
3260         int del_item;
3261         int pending_del_nr = 0;
3262         int pending_del_slot = 0;
3263         int extent_type = -1;
3264         int encoding;
3265         int ret;
3266         int err = 0;
3267
3268         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3269
3270         if (root->ref_cows || root == root->fs_info->tree_root)
3271                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3272
3273         path = btrfs_alloc_path();
3274         BUG_ON(!path);
3275         path->reada = -1;
3276
3277         key.objectid = inode->i_ino;
3278         key.offset = (u64)-1;
3279         key.type = (u8)-1;
3280
3281 search_again:
3282         path->leave_spinning = 1;
3283         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3284         if (ret < 0) {
3285                 err = ret;
3286                 goto out;
3287         }
3288
3289         if (ret > 0) {
3290                 /* there are no items in the tree for us to truncate, we're
3291                  * done
3292                  */
3293                 if (path->slots[0] == 0)
3294                         goto out;
3295                 path->slots[0]--;
3296         }
3297
3298         while (1) {
3299                 fi = NULL;
3300                 leaf = path->nodes[0];
3301                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3302                 found_type = btrfs_key_type(&found_key);
3303                 encoding = 0;
3304
3305                 if (found_key.objectid != inode->i_ino)
3306                         break;
3307
3308                 if (found_type < min_type)
3309                         break;
3310
3311                 item_end = found_key.offset;
3312                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3313                         fi = btrfs_item_ptr(leaf, path->slots[0],
3314                                             struct btrfs_file_extent_item);
3315                         extent_type = btrfs_file_extent_type(leaf, fi);
3316                         encoding = btrfs_file_extent_compression(leaf, fi);
3317                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3318                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3319
3320                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3321                                 item_end +=
3322                                     btrfs_file_extent_num_bytes(leaf, fi);
3323                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3324                                 item_end += btrfs_file_extent_inline_len(leaf,
3325                                                                          fi);
3326                         }
3327                         item_end--;
3328                 }
3329                 if (found_type > min_type) {
3330                         del_item = 1;
3331                 } else {
3332                         if (item_end < new_size)
3333                                 break;
3334                         if (found_key.offset >= new_size)
3335                                 del_item = 1;
3336                         else
3337                                 del_item = 0;
3338                 }
3339                 found_extent = 0;
3340                 /* FIXME, shrink the extent if the ref count is only 1 */
3341                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3342                         goto delete;
3343
3344                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3345                         u64 num_dec;
3346                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3347                         if (!del_item && !encoding) {
3348                                 u64 orig_num_bytes =
3349                                         btrfs_file_extent_num_bytes(leaf, fi);
3350                                 extent_num_bytes = new_size -
3351                                         found_key.offset + root->sectorsize - 1;
3352                                 extent_num_bytes = extent_num_bytes &
3353                                         ~((u64)root->sectorsize - 1);
3354                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3355                                                          extent_num_bytes);
3356                                 num_dec = (orig_num_bytes -
3357                                            extent_num_bytes);
3358                                 if (root->ref_cows && extent_start != 0)
3359                                         inode_sub_bytes(inode, num_dec);
3360                                 btrfs_mark_buffer_dirty(leaf);
3361                         } else {
3362                                 extent_num_bytes =
3363                                         btrfs_file_extent_disk_num_bytes(leaf,
3364                                                                          fi);
3365                                 extent_offset = found_key.offset -
3366                                         btrfs_file_extent_offset(leaf, fi);
3367
3368                                 /* FIXME blocksize != 4096 */
3369                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3370                                 if (extent_start != 0) {
3371                                         found_extent = 1;
3372                                         if (root->ref_cows)
3373                                                 inode_sub_bytes(inode, num_dec);
3374                                 }
3375                         }
3376                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3377                         /*
3378                          * we can't truncate inline items that have had
3379                          * special encodings
3380                          */
3381                         if (!del_item &&
3382                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3383                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3384                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3385                                 u32 size = new_size - found_key.offset;
3386
3387                                 if (root->ref_cows) {
3388                                         inode_sub_bytes(inode, item_end + 1 -
3389                                                         new_size);
3390                                 }
3391                                 size =
3392                                     btrfs_file_extent_calc_inline_size(size);
3393                                 ret = btrfs_truncate_item(trans, root, path,
3394                                                           size, 1);
3395                                 BUG_ON(ret);
3396                         } else if (root->ref_cows) {
3397                                 inode_sub_bytes(inode, item_end + 1 -
3398                                                 found_key.offset);
3399                         }
3400                 }
3401 delete:
3402                 if (del_item) {
3403                         if (!pending_del_nr) {
3404                                 /* no pending yet, add ourselves */
3405                                 pending_del_slot = path->slots[0];
3406                                 pending_del_nr = 1;
3407                         } else if (pending_del_nr &&
3408                                    path->slots[0] + 1 == pending_del_slot) {
3409                                 /* hop on the pending chunk */
3410                                 pending_del_nr++;
3411                                 pending_del_slot = path->slots[0];
3412                         } else {
3413                                 BUG();
3414                         }
3415                 } else {
3416                         break;
3417                 }
3418                 if (found_extent && (root->ref_cows ||
3419                                      root == root->fs_info->tree_root)) {
3420                         btrfs_set_path_blocking(path);
3421                         ret = btrfs_free_extent(trans, root, extent_start,
3422                                                 extent_num_bytes, 0,
3423                                                 btrfs_header_owner(leaf),
3424                                                 inode->i_ino, extent_offset);
3425                         BUG_ON(ret);
3426                 }
3427
3428                 if (found_type == BTRFS_INODE_ITEM_KEY)
3429                         break;
3430
3431                 if (path->slots[0] == 0 ||
3432                     path->slots[0] != pending_del_slot) {
3433                         if (root->ref_cows) {
3434                                 err = -EAGAIN;
3435                                 goto out;
3436                         }
3437                         if (pending_del_nr) {
3438                                 ret = btrfs_del_items(trans, root, path,
3439                                                 pending_del_slot,
3440                                                 pending_del_nr);
3441                                 BUG_ON(ret);
3442                                 pending_del_nr = 0;
3443                         }
3444                         btrfs_release_path(root, path);
3445                         goto search_again;
3446                 } else {
3447                         path->slots[0]--;
3448                 }
3449         }
3450 out:
3451         if (pending_del_nr) {
3452                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3453                                       pending_del_nr);
3454                 BUG_ON(ret);
3455         }
3456         btrfs_free_path(path);
3457         return err;
3458 }
3459
3460 /*
3461  * taken from block_truncate_page, but does cow as it zeros out
3462  * any bytes left in the last page in the file.
3463  */
3464 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3465 {
3466         struct inode *inode = mapping->host;
3467         struct btrfs_root *root = BTRFS_I(inode)->root;
3468         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3469         struct btrfs_ordered_extent *ordered;
3470         struct extent_state *cached_state = NULL;
3471         char *kaddr;
3472         u32 blocksize = root->sectorsize;
3473         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3474         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3475         struct page *page;
3476         int ret = 0;
3477         u64 page_start;
3478         u64 page_end;
3479
3480         if ((offset & (blocksize - 1)) == 0)
3481                 goto out;
3482         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3483         if (ret)
3484                 goto out;
3485
3486         ret = -ENOMEM;
3487 again:
3488         page = grab_cache_page(mapping, index);
3489         if (!page) {
3490                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3491                 goto out;
3492         }
3493
3494         page_start = page_offset(page);
3495         page_end = page_start + PAGE_CACHE_SIZE - 1;
3496
3497         if (!PageUptodate(page)) {
3498                 ret = btrfs_readpage(NULL, page);
3499                 lock_page(page);
3500                 if (page->mapping != mapping) {
3501                         unlock_page(page);
3502                         page_cache_release(page);
3503                         goto again;
3504                 }
3505                 if (!PageUptodate(page)) {
3506                         ret = -EIO;
3507                         goto out_unlock;
3508                 }
3509         }
3510         wait_on_page_writeback(page);
3511
3512         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3513                          GFP_NOFS);
3514         set_page_extent_mapped(page);
3515
3516         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3517         if (ordered) {
3518                 unlock_extent_cached(io_tree, page_start, page_end,
3519                                      &cached_state, GFP_NOFS);
3520                 unlock_page(page);
3521                 page_cache_release(page);
3522                 btrfs_start_ordered_extent(inode, ordered, 1);
3523                 btrfs_put_ordered_extent(ordered);
3524                 goto again;
3525         }
3526
3527         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3528                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3529                           0, 0, &cached_state, GFP_NOFS);
3530
3531         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3532                                         &cached_state);
3533         if (ret) {
3534                 unlock_extent_cached(io_tree, page_start, page_end,
3535                                      &cached_state, GFP_NOFS);
3536                 goto out_unlock;
3537         }
3538
3539         ret = 0;
3540         if (offset != PAGE_CACHE_SIZE) {
3541                 kaddr = kmap(page);
3542                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3543                 flush_dcache_page(page);
3544                 kunmap(page);
3545         }
3546         ClearPageChecked(page);
3547         set_page_dirty(page);
3548         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3549                              GFP_NOFS);
3550
3551 out_unlock:
3552         if (ret)
3553                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3554         unlock_page(page);
3555         page_cache_release(page);
3556 out:
3557         return ret;
3558 }
3559
3560 /*
3561  * This function puts in dummy file extents for the area we're creating a hole
3562  * for.  So if we are truncating this file to a larger size we need to insert
3563  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3564  * the range between oldsize and size
3565  */
3566 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3567 {
3568         struct btrfs_trans_handle *trans;
3569         struct btrfs_root *root = BTRFS_I(inode)->root;
3570         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3571         struct extent_map *em = NULL;
3572         struct extent_state *cached_state = NULL;
3573         u64 mask = root->sectorsize - 1;
3574         u64 hole_start = (oldsize + mask) & ~mask;
3575         u64 block_end = (size + mask) & ~mask;
3576         u64 last_byte;
3577         u64 cur_offset;
3578         u64 hole_size;
3579         int err = 0;
3580
3581         if (size <= hole_start)
3582                 return 0;
3583
3584         while (1) {
3585                 struct btrfs_ordered_extent *ordered;
3586                 btrfs_wait_ordered_range(inode, hole_start,
3587                                          block_end - hole_start);
3588                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3589                                  &cached_state, GFP_NOFS);
3590                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3591                 if (!ordered)
3592                         break;
3593                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3594                                      &cached_state, GFP_NOFS);
3595                 btrfs_put_ordered_extent(ordered);
3596         }
3597
3598         cur_offset = hole_start;
3599         while (1) {
3600                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3601                                 block_end - cur_offset, 0);
3602                 BUG_ON(IS_ERR(em) || !em);
3603                 last_byte = min(extent_map_end(em), block_end);
3604                 last_byte = (last_byte + mask) & ~mask;
3605                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3606                         u64 hint_byte = 0;
3607                         hole_size = last_byte - cur_offset;
3608
3609                         trans = btrfs_start_transaction(root, 2);
3610                         if (IS_ERR(trans)) {
3611                                 err = PTR_ERR(trans);
3612                                 break;
3613                         }
3614                         btrfs_set_trans_block_group(trans, inode);
3615
3616                         err = btrfs_drop_extents(trans, inode, cur_offset,
3617                                                  cur_offset + hole_size,
3618                                                  &hint_byte, 1);
3619                         if (err)
3620                                 break;
3621
3622                         err = btrfs_insert_file_extent(trans, root,
3623                                         inode->i_ino, cur_offset, 0,
3624                                         0, hole_size, 0, hole_size,
3625                                         0, 0, 0);
3626                         if (err)
3627                                 break;
3628
3629                         btrfs_drop_extent_cache(inode, hole_start,
3630                                         last_byte - 1, 0);
3631
3632                         btrfs_end_transaction(trans, root);
3633                 }
3634                 free_extent_map(em);
3635                 em = NULL;
3636                 cur_offset = last_byte;
3637                 if (cur_offset >= block_end)
3638                         break;
3639         }
3640
3641         free_extent_map(em);
3642         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3643                              GFP_NOFS);
3644         return err;
3645 }
3646
3647 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3648 {
3649         loff_t oldsize = i_size_read(inode);
3650         int ret;
3651
3652         if (newsize == oldsize)
3653                 return 0;
3654
3655         if (newsize > oldsize) {
3656                 i_size_write(inode, newsize);
3657                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3658                 truncate_pagecache(inode, oldsize, newsize);
3659                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3660                 if (ret) {
3661                         btrfs_setsize(inode, oldsize);
3662                         return ret;
3663                 }
3664
3665                 mark_inode_dirty(inode);
3666         } else {
3667
3668                 /*
3669                  * We're truncating a file that used to have good data down to
3670                  * zero. Make sure it gets into the ordered flush list so that
3671                  * any new writes get down to disk quickly.
3672                  */
3673                 if (newsize == 0)
3674                         BTRFS_I(inode)->ordered_data_close = 1;
3675
3676                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3677                 truncate_setsize(inode, newsize);
3678                 ret = btrfs_truncate(inode);
3679         }
3680
3681         return ret;
3682 }
3683
3684 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3685 {
3686         struct inode *inode = dentry->d_inode;
3687         struct btrfs_root *root = BTRFS_I(inode)->root;
3688         int err;
3689
3690         if (btrfs_root_readonly(root))
3691                 return -EROFS;
3692
3693         err = inode_change_ok(inode, attr);
3694         if (err)
3695                 return err;
3696
3697         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3698                 err = btrfs_setsize(inode, attr->ia_size);
3699                 if (err)
3700                         return err;
3701         }
3702
3703         if (attr->ia_valid) {
3704                 setattr_copy(inode, attr);
3705                 mark_inode_dirty(inode);
3706
3707                 if (attr->ia_valid & ATTR_MODE)
3708                         err = btrfs_acl_chmod(inode);
3709         }
3710
3711         return err;
3712 }
3713
3714 void btrfs_evict_inode(struct inode *inode)
3715 {
3716         struct btrfs_trans_handle *trans;
3717         struct btrfs_root *root = BTRFS_I(inode)->root;
3718         unsigned long nr;
3719         int ret;
3720
3721         truncate_inode_pages(&inode->i_data, 0);
3722         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3723                                root == root->fs_info->tree_root))
3724                 goto no_delete;
3725
3726         if (is_bad_inode(inode)) {
3727                 btrfs_orphan_del(NULL, inode);
3728                 goto no_delete;
3729         }
3730         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3731         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3732
3733         if (root->fs_info->log_root_recovering) {
3734                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3735                 goto no_delete;
3736         }
3737
3738         if (inode->i_nlink > 0) {
3739                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3740                 goto no_delete;
3741         }
3742
3743         btrfs_i_size_write(inode, 0);
3744
3745         while (1) {
3746                 trans = btrfs_start_transaction(root, 0);
3747                 BUG_ON(IS_ERR(trans));
3748                 btrfs_set_trans_block_group(trans, inode);
3749                 trans->block_rsv = root->orphan_block_rsv;
3750
3751                 ret = btrfs_block_rsv_check(trans, root,
3752                                             root->orphan_block_rsv, 0, 5);
3753                 if (ret) {
3754                         BUG_ON(ret != -EAGAIN);
3755                         ret = btrfs_commit_transaction(trans, root);
3756                         BUG_ON(ret);
3757                         continue;
3758                 }
3759
3760                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3761                 if (ret != -EAGAIN)
3762                         break;
3763
3764                 nr = trans->blocks_used;
3765                 btrfs_end_transaction(trans, root);
3766                 trans = NULL;
3767                 btrfs_btree_balance_dirty(root, nr);
3768
3769         }
3770
3771         if (ret == 0) {
3772                 ret = btrfs_orphan_del(trans, inode);
3773                 BUG_ON(ret);
3774         }
3775
3776         nr = trans->blocks_used;
3777         btrfs_end_transaction(trans, root);
3778         btrfs_btree_balance_dirty(root, nr);
3779 no_delete:
3780         end_writeback(inode);
3781         return;
3782 }
3783
3784 /*
3785  * this returns the key found in the dir entry in the location pointer.
3786  * If no dir entries were found, location->objectid is 0.
3787  */
3788 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3789                                struct btrfs_key *location)
3790 {
3791         const char *name = dentry->d_name.name;
3792         int namelen = dentry->d_name.len;
3793         struct btrfs_dir_item *di;
3794         struct btrfs_path *path;
3795         struct btrfs_root *root = BTRFS_I(dir)->root;
3796         int ret = 0;
3797
3798         path = btrfs_alloc_path();
3799         BUG_ON(!path);
3800
3801         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3802                                     namelen, 0);
3803         if (IS_ERR(di))
3804                 ret = PTR_ERR(di);
3805
3806         if (!di || IS_ERR(di))
3807                 goto out_err;
3808
3809         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3810 out:
3811         btrfs_free_path(path);
3812         return ret;
3813 out_err:
3814         location->objectid = 0;
3815         goto out;
3816 }
3817
3818 /*
3819  * when we hit a tree root in a directory, the btrfs part of the inode
3820  * needs to be changed to reflect the root directory of the tree root.  This
3821  * is kind of like crossing a mount point.
3822  */
3823 static int fixup_tree_root_location(struct btrfs_root *root,
3824                                     struct inode *dir,
3825                                     struct dentry *dentry,
3826                                     struct btrfs_key *location,
3827                                     struct btrfs_root **sub_root)
3828 {
3829         struct btrfs_path *path;
3830         struct btrfs_root *new_root;
3831         struct btrfs_root_ref *ref;
3832         struct extent_buffer *leaf;
3833         int ret;
3834         int err = 0;
3835
3836         path = btrfs_alloc_path();
3837         if (!path) {
3838                 err = -ENOMEM;
3839                 goto out;
3840         }
3841
3842         err = -ENOENT;
3843         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3844                                   BTRFS_I(dir)->root->root_key.objectid,
3845                                   location->objectid);
3846         if (ret) {
3847                 if (ret < 0)
3848                         err = ret;
3849                 goto out;
3850         }
3851
3852         leaf = path->nodes[0];
3853         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3854         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3855             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3856                 goto out;
3857
3858         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3859                                    (unsigned long)(ref + 1),
3860                                    dentry->d_name.len);
3861         if (ret)
3862                 goto out;
3863
3864         btrfs_release_path(root->fs_info->tree_root, path);
3865
3866         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3867         if (IS_ERR(new_root)) {
3868                 err = PTR_ERR(new_root);
3869                 goto out;
3870         }
3871
3872         if (btrfs_root_refs(&new_root->root_item) == 0) {
3873                 err = -ENOENT;
3874                 goto out;
3875         }
3876
3877         *sub_root = new_root;
3878         location->objectid = btrfs_root_dirid(&new_root->root_item);
3879         location->type = BTRFS_INODE_ITEM_KEY;
3880         location->offset = 0;
3881         err = 0;
3882 out:
3883         btrfs_free_path(path);
3884         return err;
3885 }
3886
3887 static void inode_tree_add(struct inode *inode)
3888 {
3889         struct btrfs_root *root = BTRFS_I(inode)->root;
3890         struct btrfs_inode *entry;
3891         struct rb_node **p;
3892         struct rb_node *parent;
3893 again:
3894         p = &root->inode_tree.rb_node;
3895         parent = NULL;
3896
3897         if (inode_unhashed(inode))
3898                 return;
3899
3900         spin_lock(&root->inode_lock);
3901         while (*p) {
3902                 parent = *p;
3903                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3904
3905                 if (inode->i_ino < entry->vfs_inode.i_ino)
3906                         p = &parent->rb_left;
3907                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3908                         p = &parent->rb_right;
3909                 else {
3910                         WARN_ON(!(entry->vfs_inode.i_state &
3911                                   (I_WILL_FREE | I_FREEING)));
3912                         rb_erase(parent, &root->inode_tree);
3913                         RB_CLEAR_NODE(parent);
3914                         spin_unlock(&root->inode_lock);
3915                         goto again;
3916                 }
3917         }
3918         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3919         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3920         spin_unlock(&root->inode_lock);
3921 }
3922
3923 static void inode_tree_del(struct inode *inode)
3924 {
3925         struct btrfs_root *root = BTRFS_I(inode)->root;
3926         int empty = 0;
3927
3928         spin_lock(&root->inode_lock);
3929         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3930                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3931                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3932                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3933         }
3934         spin_unlock(&root->inode_lock);
3935
3936         /*
3937          * Free space cache has inodes in the tree root, but the tree root has a
3938          * root_refs of 0, so this could end up dropping the tree root as a
3939          * snapshot, so we need the extra !root->fs_info->tree_root check to
3940          * make sure we don't drop it.
3941          */
3942         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3943             root != root->fs_info->tree_root) {
3944                 synchronize_srcu(&root->fs_info->subvol_srcu);
3945                 spin_lock(&root->inode_lock);
3946                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3947                 spin_unlock(&root->inode_lock);
3948                 if (empty)
3949                         btrfs_add_dead_root(root);
3950         }
3951 }
3952
3953 int btrfs_invalidate_inodes(struct btrfs_root *root)
3954 {
3955         struct rb_node *node;
3956         struct rb_node *prev;
3957         struct btrfs_inode *entry;
3958         struct inode *inode;
3959         u64 objectid = 0;
3960
3961         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3962
3963         spin_lock(&root->inode_lock);
3964 again:
3965         node = root->inode_tree.rb_node;
3966         prev = NULL;
3967         while (node) {
3968                 prev = node;
3969                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3970
3971                 if (objectid < entry->vfs_inode.i_ino)
3972                         node = node->rb_left;
3973                 else if (objectid > entry->vfs_inode.i_ino)
3974                         node = node->rb_right;
3975                 else
3976                         break;
3977         }
3978         if (!node) {
3979                 while (prev) {
3980                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3981                         if (objectid <= entry->vfs_inode.i_ino) {
3982                                 node = prev;
3983                                 break;
3984                         }
3985                         prev = rb_next(prev);
3986                 }
3987         }
3988         while (node) {
3989                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3990                 objectid = entry->vfs_inode.i_ino + 1;
3991                 inode = igrab(&entry->vfs_inode);
3992                 if (inode) {
3993                         spin_unlock(&root->inode_lock);
3994                         if (atomic_read(&inode->i_count) > 1)
3995                                 d_prune_aliases(inode);
3996                         /*
3997                          * btrfs_drop_inode will have it removed from
3998                          * the inode cache when its usage count
3999                          * hits zero.
4000                          */
4001                         iput(inode);
4002                         cond_resched();
4003                         spin_lock(&root->inode_lock);
4004                         goto again;
4005                 }
4006
4007                 if (cond_resched_lock(&root->inode_lock))
4008                         goto again;
4009
4010                 node = rb_next(node);
4011         }
4012         spin_unlock(&root->inode_lock);
4013         return 0;
4014 }
4015
4016 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4017 {
4018         struct btrfs_iget_args *args = p;
4019         inode->i_ino = args->ino;
4020         BTRFS_I(inode)->root = args->root;
4021         btrfs_set_inode_space_info(args->root, inode);
4022         return 0;
4023 }
4024
4025 static int btrfs_find_actor(struct inode *inode, void *opaque)
4026 {
4027         struct btrfs_iget_args *args = opaque;
4028         return args->ino == inode->i_ino &&
4029                 args->root == BTRFS_I(inode)->root;
4030 }
4031
4032 static struct inode *btrfs_iget_locked(struct super_block *s,
4033                                        u64 objectid,
4034                                        struct btrfs_root *root)
4035 {
4036         struct inode *inode;
4037         struct btrfs_iget_args args;
4038         args.ino = objectid;
4039         args.root = root;
4040
4041         inode = iget5_locked(s, objectid, btrfs_find_actor,
4042                              btrfs_init_locked_inode,
4043                              (void *)&args);
4044         return inode;
4045 }
4046
4047 /* Get an inode object given its location and corresponding root.
4048  * Returns in *is_new if the inode was read from disk
4049  */
4050 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4051                          struct btrfs_root *root, int *new)
4052 {
4053         struct inode *inode;
4054
4055         inode = btrfs_iget_locked(s, location->objectid, root);
4056         if (!inode)
4057                 return ERR_PTR(-ENOMEM);
4058
4059         if (inode->i_state & I_NEW) {
4060                 BTRFS_I(inode)->root = root;
4061                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4062                 btrfs_read_locked_inode(inode);
4063
4064                 inode_tree_add(inode);
4065                 unlock_new_inode(inode);
4066                 if (new)
4067                         *new = 1;
4068         }
4069
4070         return inode;
4071 }
4072
4073 static struct inode *new_simple_dir(struct super_block *s,
4074                                     struct btrfs_key *key,
4075                                     struct btrfs_root *root)
4076 {
4077         struct inode *inode = new_inode(s);
4078
4079         if (!inode)
4080                 return ERR_PTR(-ENOMEM);
4081
4082         BTRFS_I(inode)->root = root;
4083         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4084         BTRFS_I(inode)->dummy_inode = 1;
4085
4086         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4087         inode->i_op = &simple_dir_inode_operations;
4088         inode->i_fop = &simple_dir_operations;
4089         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4090         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4091
4092         return inode;
4093 }
4094
4095 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4096 {
4097         struct inode *inode;
4098         struct btrfs_root *root = BTRFS_I(dir)->root;
4099         struct btrfs_root *sub_root = root;
4100         struct btrfs_key location;
4101         int index;
4102         int ret;
4103
4104         if (dentry->d_name.len > BTRFS_NAME_LEN)
4105                 return ERR_PTR(-ENAMETOOLONG);
4106
4107         ret = btrfs_inode_by_name(dir, dentry, &location);
4108
4109         if (ret < 0)
4110                 return ERR_PTR(ret);
4111
4112         if (location.objectid == 0)
4113                 return NULL;
4114
4115         if (location.type == BTRFS_INODE_ITEM_KEY) {
4116                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4117                 return inode;
4118         }
4119
4120         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4121
4122         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4123         ret = fixup_tree_root_location(root, dir, dentry,
4124                                        &location, &sub_root);
4125         if (ret < 0) {
4126                 if (ret != -ENOENT)
4127                         inode = ERR_PTR(ret);
4128                 else
4129                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4130         } else {
4131                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4132         }
4133         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4134
4135         if (!IS_ERR(inode) && root != sub_root) {
4136                 down_read(&root->fs_info->cleanup_work_sem);
4137                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4138                         ret = btrfs_orphan_cleanup(sub_root);
4139                 up_read(&root->fs_info->cleanup_work_sem);
4140                 if (ret)
4141                         inode = ERR_PTR(ret);
4142         }
4143
4144         return inode;
4145 }
4146
4147 static int btrfs_dentry_delete(const struct dentry *dentry)
4148 {
4149         struct btrfs_root *root;
4150
4151         if (!dentry->d_inode && !IS_ROOT(dentry))
4152                 dentry = dentry->d_parent;
4153
4154         if (dentry->d_inode) {
4155                 root = BTRFS_I(dentry->d_inode)->root;
4156                 if (btrfs_root_refs(&root->root_item) == 0)
4157                         return 1;
4158         }
4159         return 0;
4160 }
4161
4162 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4163                                    struct nameidata *nd)
4164 {
4165         struct inode *inode;
4166
4167         inode = btrfs_lookup_dentry(dir, dentry);
4168         if (IS_ERR(inode))
4169                 return ERR_CAST(inode);
4170
4171         return d_splice_alias(inode, dentry);
4172 }
4173
4174 static unsigned char btrfs_filetype_table[] = {
4175         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4176 };
4177
4178 static int btrfs_real_readdir(struct file *filp, void *dirent,
4179                               filldir_t filldir)
4180 {
4181         struct inode *inode = filp->f_dentry->d_inode;
4182         struct btrfs_root *root = BTRFS_I(inode)->root;
4183         struct btrfs_item *item;
4184         struct btrfs_dir_item *di;
4185         struct btrfs_key key;
4186         struct btrfs_key found_key;
4187         struct btrfs_path *path;
4188         int ret;
4189         u32 nritems;
4190         struct extent_buffer *leaf;
4191         int slot;
4192         int advance;
4193         unsigned char d_type;
4194         int over = 0;
4195         u32 di_cur;
4196         u32 di_total;
4197         u32 di_len;
4198         int key_type = BTRFS_DIR_INDEX_KEY;
4199         char tmp_name[32];
4200         char *name_ptr;
4201         int name_len;
4202
4203         /* FIXME, use a real flag for deciding about the key type */
4204         if (root->fs_info->tree_root == root)
4205                 key_type = BTRFS_DIR_ITEM_KEY;
4206
4207         /* special case for "." */
4208         if (filp->f_pos == 0) {
4209                 over = filldir(dirent, ".", 1,
4210                                1, inode->i_ino,
4211                                DT_DIR);
4212                 if (over)
4213                         return 0;
4214                 filp->f_pos = 1;
4215         }
4216         /* special case for .., just use the back ref */
4217         if (filp->f_pos == 1) {
4218                 u64 pino = parent_ino(filp->f_path.dentry);
4219                 over = filldir(dirent, "..", 2,
4220                                2, pino, DT_DIR);
4221                 if (over)
4222                         return 0;
4223                 filp->f_pos = 2;
4224         }
4225         path = btrfs_alloc_path();
4226         path->reada = 2;
4227
4228         btrfs_set_key_type(&key, key_type);
4229         key.offset = filp->f_pos;
4230         key.objectid = inode->i_ino;
4231
4232         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4233         if (ret < 0)
4234                 goto err;
4235         advance = 0;
4236
4237         while (1) {
4238                 leaf = path->nodes[0];
4239                 nritems = btrfs_header_nritems(leaf);
4240                 slot = path->slots[0];
4241                 if (advance || slot >= nritems) {
4242                         if (slot >= nritems - 1) {
4243                                 ret = btrfs_next_leaf(root, path);
4244                                 if (ret)
4245                                         break;
4246                                 leaf = path->nodes[0];
4247                                 nritems = btrfs_header_nritems(leaf);
4248                                 slot = path->slots[0];
4249                         } else {
4250                                 slot++;
4251                                 path->slots[0]++;
4252                         }
4253                 }
4254
4255                 advance = 1;
4256                 item = btrfs_item_nr(leaf, slot);
4257                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4258
4259                 if (found_key.objectid != key.objectid)
4260                         break;
4261                 if (btrfs_key_type(&found_key) != key_type)
4262                         break;
4263                 if (found_key.offset < filp->f_pos)
4264                         continue;
4265
4266                 filp->f_pos = found_key.offset;
4267
4268                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4269                 di_cur = 0;
4270                 di_total = btrfs_item_size(leaf, item);
4271
4272                 while (di_cur < di_total) {
4273                         struct btrfs_key location;
4274
4275                         name_len = btrfs_dir_name_len(leaf, di);
4276                         if (name_len <= sizeof(tmp_name)) {
4277                                 name_ptr = tmp_name;
4278                         } else {
4279                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4280                                 if (!name_ptr) {
4281                                         ret = -ENOMEM;
4282                                         goto err;
4283                                 }
4284                         }
4285                         read_extent_buffer(leaf, name_ptr,
4286                                            (unsigned long)(di + 1), name_len);
4287
4288                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4289                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4290
4291                         /* is this a reference to our own snapshot? If so
4292                          * skip it
4293                          */
4294                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4295                             location.objectid == root->root_key.objectid) {
4296                                 over = 0;
4297                                 goto skip;
4298                         }
4299                         over = filldir(dirent, name_ptr, name_len,
4300                                        found_key.offset, location.objectid,
4301                                        d_type);
4302
4303 skip:
4304                         if (name_ptr != tmp_name)
4305                                 kfree(name_ptr);
4306
4307                         if (over)
4308                                 goto nopos;
4309                         di_len = btrfs_dir_name_len(leaf, di) +
4310                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4311                         di_cur += di_len;
4312                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4313                 }
4314         }
4315
4316         /* Reached end of directory/root. Bump pos past the last item. */
4317         if (key_type == BTRFS_DIR_INDEX_KEY)
4318                 /*
4319                  * 32-bit glibc will use getdents64, but then strtol -
4320                  * so the last number we can serve is this.
4321                  */
4322                 filp->f_pos = 0x7fffffff;
4323         else
4324                 filp->f_pos++;
4325 nopos:
4326         ret = 0;
4327 err:
4328         btrfs_free_path(path);
4329         return ret;
4330 }
4331
4332 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4333 {
4334         struct btrfs_root *root = BTRFS_I(inode)->root;
4335         struct btrfs_trans_handle *trans;
4336         int ret = 0;
4337         bool nolock = false;
4338
4339         if (BTRFS_I(inode)->dummy_inode)
4340                 return 0;
4341
4342         smp_mb();
4343         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4344
4345         if (wbc->sync_mode == WB_SYNC_ALL) {
4346                 if (nolock)
4347                         trans = btrfs_join_transaction_nolock(root, 1);
4348                 else
4349                         trans = btrfs_join_transaction(root, 1);
4350                 if (IS_ERR(trans))
4351                         return PTR_ERR(trans);
4352                 btrfs_set_trans_block_group(trans, inode);
4353                 if (nolock)
4354                         ret = btrfs_end_transaction_nolock(trans, root);
4355                 else
4356                         ret = btrfs_commit_transaction(trans, root);
4357         }
4358         return ret;
4359 }
4360
4361 /*
4362  * This is somewhat expensive, updating the tree every time the
4363  * inode changes.  But, it is most likely to find the inode in cache.
4364  * FIXME, needs more benchmarking...there are no reasons other than performance
4365  * to keep or drop this code.
4366  */
4367 void btrfs_dirty_inode(struct inode *inode)
4368 {
4369         struct btrfs_root *root = BTRFS_I(inode)->root;
4370         struct btrfs_trans_handle *trans;
4371         int ret;
4372
4373         if (BTRFS_I(inode)->dummy_inode)
4374                 return;
4375
4376         trans = btrfs_join_transaction(root, 1);
4377         BUG_ON(IS_ERR(trans));
4378         btrfs_set_trans_block_group(trans, inode);
4379
4380         ret = btrfs_update_inode(trans, root, inode);
4381         if (ret && ret == -ENOSPC) {
4382                 /* whoops, lets try again with the full transaction */
4383                 btrfs_end_transaction(trans, root);
4384                 trans = btrfs_start_transaction(root, 1);
4385                 if (IS_ERR(trans)) {
4386                         if (printk_ratelimit()) {
4387                                 printk(KERN_ERR "btrfs: fail to "
4388                                        "dirty  inode %lu error %ld\n",
4389                                        inode->i_ino, PTR_ERR(trans));
4390                         }
4391                         return;
4392                 }
4393                 btrfs_set_trans_block_group(trans, inode);
4394
4395                 ret = btrfs_update_inode(trans, root, inode);
4396                 if (ret) {
4397                         if (printk_ratelimit()) {
4398                                 printk(KERN_ERR "btrfs: fail to "
4399                                        "dirty  inode %lu error %d\n",
4400                                        inode->i_ino, ret);
4401                         }
4402                 }
4403         }
4404         btrfs_end_transaction(trans, root);
4405 }
4406
4407 /*
4408  * find the highest existing sequence number in a directory
4409  * and then set the in-memory index_cnt variable to reflect
4410  * free sequence numbers
4411  */
4412 static int btrfs_set_inode_index_count(struct inode *inode)
4413 {
4414         struct btrfs_root *root = BTRFS_I(inode)->root;
4415         struct btrfs_key key, found_key;
4416         struct btrfs_path *path;
4417         struct extent_buffer *leaf;
4418         int ret;
4419
4420         key.objectid = inode->i_ino;
4421         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4422         key.offset = (u64)-1;
4423
4424         path = btrfs_alloc_path();
4425         if (!path)
4426                 return -ENOMEM;
4427
4428         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4429         if (ret < 0)
4430                 goto out;
4431         /* FIXME: we should be able to handle this */
4432         if (ret == 0)
4433                 goto out;
4434         ret = 0;
4435
4436         /*
4437          * MAGIC NUMBER EXPLANATION:
4438          * since we search a directory based on f_pos we have to start at 2
4439          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4440          * else has to start at 2
4441          */
4442         if (path->slots[0] == 0) {
4443                 BTRFS_I(inode)->index_cnt = 2;
4444                 goto out;
4445         }
4446
4447         path->slots[0]--;
4448
4449         leaf = path->nodes[0];
4450         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4451
4452         if (found_key.objectid != inode->i_ino ||
4453             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4454                 BTRFS_I(inode)->index_cnt = 2;
4455                 goto out;
4456         }
4457
4458         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4459 out:
4460         btrfs_free_path(path);
4461         return ret;
4462 }
4463
4464 /*
4465  * helper to find a free sequence number in a given directory.  This current
4466  * code is very simple, later versions will do smarter things in the btree
4467  */
4468 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4469 {
4470         int ret = 0;
4471
4472         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4473                 ret = btrfs_set_inode_index_count(dir);
4474                 if (ret)
4475                         return ret;
4476         }
4477
4478         *index = BTRFS_I(dir)->index_cnt;
4479         BTRFS_I(dir)->index_cnt++;
4480
4481         return ret;
4482 }
4483
4484 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4485                                      struct btrfs_root *root,
4486                                      struct inode *dir,
4487                                      const char *name, int name_len,
4488                                      u64 ref_objectid, u64 objectid,
4489                                      u64 alloc_hint, int mode, u64 *index)
4490 {
4491         struct inode *inode;
4492         struct btrfs_inode_item *inode_item;
4493         struct btrfs_key *location;
4494         struct btrfs_path *path;
4495         struct btrfs_inode_ref *ref;
4496         struct btrfs_key key[2];
4497         u32 sizes[2];
4498         unsigned long ptr;
4499         int ret;
4500         int owner;
4501
4502         path = btrfs_alloc_path();
4503         BUG_ON(!path);
4504
4505         inode = new_inode(root->fs_info->sb);
4506         if (!inode)
4507                 return ERR_PTR(-ENOMEM);
4508
4509         if (dir) {
4510                 ret = btrfs_set_inode_index(dir, index);
4511                 if (ret) {
4512                         iput(inode);
4513                         return ERR_PTR(ret);
4514                 }
4515         }
4516         /*
4517          * index_cnt is ignored for everything but a dir,
4518          * btrfs_get_inode_index_count has an explanation for the magic
4519          * number
4520          */
4521         BTRFS_I(inode)->index_cnt = 2;
4522         BTRFS_I(inode)->root = root;
4523         BTRFS_I(inode)->generation = trans->transid;
4524         inode->i_generation = BTRFS_I(inode)->generation;
4525         btrfs_set_inode_space_info(root, inode);
4526
4527         if (mode & S_IFDIR)
4528                 owner = 0;
4529         else
4530                 owner = 1;
4531         BTRFS_I(inode)->block_group =
4532                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4533
4534         key[0].objectid = objectid;
4535         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4536         key[0].offset = 0;
4537
4538         key[1].objectid = objectid;
4539         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4540         key[1].offset = ref_objectid;
4541
4542         sizes[0] = sizeof(struct btrfs_inode_item);
4543         sizes[1] = name_len + sizeof(*ref);
4544
4545         path->leave_spinning = 1;
4546         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4547         if (ret != 0)
4548                 goto fail;
4549
4550         inode_init_owner(inode, dir, mode);
4551         inode->i_ino = objectid;
4552         inode_set_bytes(inode, 0);
4553         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4554         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4555                                   struct btrfs_inode_item);
4556         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4557
4558         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4559                              struct btrfs_inode_ref);
4560         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4561         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4562         ptr = (unsigned long)(ref + 1);
4563         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4564
4565         btrfs_mark_buffer_dirty(path->nodes[0]);
4566         btrfs_free_path(path);
4567
4568         location = &BTRFS_I(inode)->location;
4569         location->objectid = objectid;
4570         location->offset = 0;
4571         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4572
4573         btrfs_inherit_iflags(inode, dir);
4574
4575         if ((mode & S_IFREG)) {
4576                 if (btrfs_test_opt(root, NODATASUM))
4577                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4578                 if (btrfs_test_opt(root, NODATACOW))
4579                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4580         }
4581
4582         insert_inode_hash(inode);
4583         inode_tree_add(inode);
4584         return inode;
4585 fail:
4586         if (dir)
4587                 BTRFS_I(dir)->index_cnt--;
4588         btrfs_free_path(path);
4589         iput(inode);
4590         return ERR_PTR(ret);
4591 }
4592
4593 static inline u8 btrfs_inode_type(struct inode *inode)
4594 {
4595         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4596 }
4597
4598 /*
4599  * utility function to add 'inode' into 'parent_inode' with
4600  * a give name and a given sequence number.
4601  * if 'add_backref' is true, also insert a backref from the
4602  * inode to the parent directory.
4603  */
4604 int btrfs_add_link(struct btrfs_trans_handle *trans,
4605                    struct inode *parent_inode, struct inode *inode,
4606                    const char *name, int name_len, int add_backref, u64 index)
4607 {
4608         int ret = 0;
4609         struct btrfs_key key;
4610         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4611
4612         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4613                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4614         } else {
4615                 key.objectid = inode->i_ino;
4616                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4617                 key.offset = 0;
4618         }
4619
4620         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4621                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4622                                          key.objectid, root->root_key.objectid,
4623                                          parent_inode->i_ino,
4624                                          index, name, name_len);
4625         } else if (add_backref) {
4626                 ret = btrfs_insert_inode_ref(trans, root,
4627                                              name, name_len, inode->i_ino,
4628                                              parent_inode->i_ino, index);
4629         }
4630
4631         if (ret == 0) {
4632                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4633                                             parent_inode->i_ino, &key,
4634                                             btrfs_inode_type(inode), index);
4635                 BUG_ON(ret);
4636
4637                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4638                                    name_len * 2);
4639                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4640                 ret = btrfs_update_inode(trans, root, parent_inode);
4641         }
4642         return ret;
4643 }
4644
4645 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4646                             struct inode *dir, struct dentry *dentry,
4647                             struct inode *inode, int backref, u64 index)
4648 {
4649         int err = btrfs_add_link(trans, dir, inode,
4650                                  dentry->d_name.name, dentry->d_name.len,
4651                                  backref, index);
4652         if (!err) {
4653                 d_instantiate(dentry, inode);
4654                 return 0;
4655         }
4656         if (err > 0)
4657                 err = -EEXIST;
4658         return err;
4659 }
4660
4661 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4662                         int mode, dev_t rdev)
4663 {
4664         struct btrfs_trans_handle *trans;
4665         struct btrfs_root *root = BTRFS_I(dir)->root;
4666         struct inode *inode = NULL;
4667         int err;
4668         int drop_inode = 0;
4669         u64 objectid;
4670         unsigned long nr = 0;
4671         u64 index = 0;
4672
4673         if (!new_valid_dev(rdev))
4674                 return -EINVAL;
4675
4676         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4677         if (err)
4678                 return err;
4679
4680         /*
4681          * 2 for inode item and ref
4682          * 2 for dir items
4683          * 1 for xattr if selinux is on
4684          */
4685         trans = btrfs_start_transaction(root, 5);
4686         if (IS_ERR(trans))
4687                 return PTR_ERR(trans);
4688
4689         btrfs_set_trans_block_group(trans, dir);
4690
4691         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4692                                 dentry->d_name.len, dir->i_ino, objectid,
4693                                 BTRFS_I(dir)->block_group, mode, &index);
4694         err = PTR_ERR(inode);
4695         if (IS_ERR(inode))
4696                 goto out_unlock;
4697
4698         err = btrfs_init_inode_security(trans, inode, dir);
4699         if (err) {
4700                 drop_inode = 1;
4701                 goto out_unlock;
4702         }
4703
4704         btrfs_set_trans_block_group(trans, inode);
4705         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4706         if (err)
4707                 drop_inode = 1;
4708         else {
4709                 inode->i_op = &btrfs_special_inode_operations;
4710                 init_special_inode(inode, inode->i_mode, rdev);
4711                 btrfs_update_inode(trans, root, inode);
4712         }
4713         btrfs_update_inode_block_group(trans, inode);
4714         btrfs_update_inode_block_group(trans, dir);
4715 out_unlock:
4716         nr = trans->blocks_used;
4717         btrfs_end_transaction_throttle(trans, root);
4718         btrfs_btree_balance_dirty(root, nr);
4719         if (drop_inode) {
4720                 inode_dec_link_count(inode);
4721                 iput(inode);
4722         }
4723         return err;
4724 }
4725
4726 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4727                         int mode, struct nameidata *nd)
4728 {
4729         struct btrfs_trans_handle *trans;
4730         struct btrfs_root *root = BTRFS_I(dir)->root;
4731         struct inode *inode = NULL;
4732         int drop_inode = 0;
4733         int err;
4734         unsigned long nr = 0;
4735         u64 objectid;
4736         u64 index = 0;
4737
4738         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4739         if (err)
4740                 return err;
4741         /*
4742          * 2 for inode item and ref
4743          * 2 for dir items
4744          * 1 for xattr if selinux is on
4745          */
4746         trans = btrfs_start_transaction(root, 5);
4747         if (IS_ERR(trans))
4748                 return PTR_ERR(trans);
4749
4750         btrfs_set_trans_block_group(trans, dir);
4751
4752         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4753                                 dentry->d_name.len, dir->i_ino, objectid,
4754                                 BTRFS_I(dir)->block_group, mode, &index);
4755         err = PTR_ERR(inode);
4756         if (IS_ERR(inode))
4757                 goto out_unlock;
4758
4759         err = btrfs_init_inode_security(trans, inode, dir);
4760         if (err) {
4761                 drop_inode = 1;
4762                 goto out_unlock;
4763         }
4764
4765         btrfs_set_trans_block_group(trans, inode);
4766         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4767         if (err)
4768                 drop_inode = 1;
4769         else {
4770                 inode->i_mapping->a_ops = &btrfs_aops;
4771                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4772                 inode->i_fop = &btrfs_file_operations;
4773                 inode->i_op = &btrfs_file_inode_operations;
4774                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4775         }
4776         btrfs_update_inode_block_group(trans, inode);
4777         btrfs_update_inode_block_group(trans, dir);
4778 out_unlock:
4779         nr = trans->blocks_used;
4780         btrfs_end_transaction_throttle(trans, root);
4781         if (drop_inode) {
4782                 inode_dec_link_count(inode);
4783                 iput(inode);
4784         }
4785         btrfs_btree_balance_dirty(root, nr);
4786         return err;
4787 }
4788
4789 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4790                       struct dentry *dentry)
4791 {
4792         struct btrfs_trans_handle *trans;
4793         struct btrfs_root *root = BTRFS_I(dir)->root;
4794         struct inode *inode = old_dentry->d_inode;
4795         u64 index;
4796         unsigned long nr = 0;
4797         int err;
4798         int drop_inode = 0;
4799
4800         if (inode->i_nlink == 0)
4801                 return -ENOENT;
4802
4803         /* do not allow sys_link's with other subvols of the same device */
4804         if (root->objectid != BTRFS_I(inode)->root->objectid)
4805                 return -EPERM;
4806
4807         btrfs_inc_nlink(inode);
4808         inode->i_ctime = CURRENT_TIME;
4809
4810         err = btrfs_set_inode_index(dir, &index);
4811         if (err)
4812                 goto fail;
4813
4814         /*
4815          * 2 items for inode and inode ref
4816          * 2 items for dir items
4817          * 1 item for parent inode
4818          */
4819         trans = btrfs_start_transaction(root, 5);
4820         if (IS_ERR(trans)) {
4821                 err = PTR_ERR(trans);
4822                 goto fail;
4823         }
4824
4825         btrfs_set_trans_block_group(trans, dir);
4826         ihold(inode);
4827
4828         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4829
4830         if (err) {
4831                 drop_inode = 1;
4832         } else {
4833                 struct dentry *parent = dget_parent(dentry);
4834                 btrfs_update_inode_block_group(trans, dir);
4835                 err = btrfs_update_inode(trans, root, inode);
4836                 BUG_ON(err);
4837                 btrfs_log_new_name(trans, inode, NULL, parent);
4838                 dput(parent);
4839         }
4840
4841         nr = trans->blocks_used;
4842         btrfs_end_transaction_throttle(trans, root);
4843 fail:
4844         if (drop_inode) {
4845                 inode_dec_link_count(inode);
4846                 iput(inode);
4847         }
4848         btrfs_btree_balance_dirty(root, nr);
4849         return err;
4850 }
4851
4852 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4853 {
4854         struct inode *inode = NULL;
4855         struct btrfs_trans_handle *trans;
4856         struct btrfs_root *root = BTRFS_I(dir)->root;
4857         int err = 0;
4858         int drop_on_err = 0;
4859         u64 objectid = 0;
4860         u64 index = 0;
4861         unsigned long nr = 1;
4862
4863         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4864         if (err)
4865                 return err;
4866
4867         /*
4868          * 2 items for inode and ref
4869          * 2 items for dir items
4870          * 1 for xattr if selinux is on
4871          */
4872         trans = btrfs_start_transaction(root, 5);
4873         if (IS_ERR(trans))
4874                 return PTR_ERR(trans);
4875         btrfs_set_trans_block_group(trans, dir);
4876
4877         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4878                                 dentry->d_name.len, dir->i_ino, objectid,
4879                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4880                                 &index);
4881         if (IS_ERR(inode)) {
4882                 err = PTR_ERR(inode);
4883                 goto out_fail;
4884         }
4885
4886         drop_on_err = 1;
4887
4888         err = btrfs_init_inode_security(trans, inode, dir);
4889         if (err)
4890                 goto out_fail;
4891
4892         inode->i_op = &btrfs_dir_inode_operations;
4893         inode->i_fop = &btrfs_dir_file_operations;
4894         btrfs_set_trans_block_group(trans, inode);
4895
4896         btrfs_i_size_write(inode, 0);
4897         err = btrfs_update_inode(trans, root, inode);
4898         if (err)
4899                 goto out_fail;
4900
4901         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4902                              dentry->d_name.len, 0, index);
4903         if (err)
4904                 goto out_fail;
4905
4906         d_instantiate(dentry, inode);
4907         drop_on_err = 0;
4908         btrfs_update_inode_block_group(trans, inode);
4909         btrfs_update_inode_block_group(trans, dir);
4910
4911 out_fail:
4912         nr = trans->blocks_used;
4913         btrfs_end_transaction_throttle(trans, root);
4914         if (drop_on_err)
4915                 iput(inode);
4916         btrfs_btree_balance_dirty(root, nr);
4917         return err;
4918 }
4919
4920 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4921  * and an extent that you want to insert, deal with overlap and insert
4922  * the new extent into the tree.
4923  */
4924 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4925                                 struct extent_map *existing,
4926                                 struct extent_map *em,
4927                                 u64 map_start, u64 map_len)
4928 {
4929         u64 start_diff;
4930
4931         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4932         start_diff = map_start - em->start;
4933         em->start = map_start;
4934         em->len = map_len;
4935         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4936             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4937                 em->block_start += start_diff;
4938                 em->block_len -= start_diff;
4939         }
4940         return add_extent_mapping(em_tree, em);
4941 }
4942
4943 static noinline int uncompress_inline(struct btrfs_path *path,
4944                                       struct inode *inode, struct page *page,
4945                                       size_t pg_offset, u64 extent_offset,
4946                                       struct btrfs_file_extent_item *item)
4947 {
4948         int ret;
4949         struct extent_buffer *leaf = path->nodes[0];
4950         char *tmp;
4951         size_t max_size;
4952         unsigned long inline_size;
4953         unsigned long ptr;
4954         int compress_type;
4955
4956         WARN_ON(pg_offset != 0);
4957         compress_type = btrfs_file_extent_compression(leaf, item);
4958         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4959         inline_size = btrfs_file_extent_inline_item_len(leaf,
4960                                         btrfs_item_nr(leaf, path->slots[0]));
4961         tmp = kmalloc(inline_size, GFP_NOFS);
4962         ptr = btrfs_file_extent_inline_start(item);
4963
4964         read_extent_buffer(leaf, tmp, ptr, inline_size);
4965
4966         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4967         ret = btrfs_decompress(compress_type, tmp, page,
4968                                extent_offset, inline_size, max_size);
4969         if (ret) {
4970                 char *kaddr = kmap_atomic(page, KM_USER0);
4971                 unsigned long copy_size = min_t(u64,
4972                                   PAGE_CACHE_SIZE - pg_offset,
4973                                   max_size - extent_offset);
4974                 memset(kaddr + pg_offset, 0, copy_size);
4975                 kunmap_atomic(kaddr, KM_USER0);
4976         }
4977         kfree(tmp);
4978         return 0;
4979 }
4980
4981 /*
4982  * a bit scary, this does extent mapping from logical file offset to the disk.
4983  * the ugly parts come from merging extents from the disk with the in-ram
4984  * representation.  This gets more complex because of the data=ordered code,
4985  * where the in-ram extents might be locked pending data=ordered completion.
4986  *
4987  * This also copies inline extents directly into the page.
4988  */
4989
4990 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4991                                     size_t pg_offset, u64 start, u64 len,
4992                                     int create)
4993 {
4994         int ret;
4995         int err = 0;
4996         u64 bytenr;
4997         u64 extent_start = 0;
4998         u64 extent_end = 0;
4999         u64 objectid = inode->i_ino;
5000         u32 found_type;
5001         struct btrfs_path *path = NULL;
5002         struct btrfs_root *root = BTRFS_I(inode)->root;
5003         struct btrfs_file_extent_item *item;
5004         struct extent_buffer *leaf;
5005         struct btrfs_key found_key;
5006         struct extent_map *em = NULL;
5007         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5008         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5009         struct btrfs_trans_handle *trans = NULL;
5010         int compress_type;
5011
5012 again:
5013         read_lock(&em_tree->lock);
5014         em = lookup_extent_mapping(em_tree, start, len);
5015         if (em)
5016                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5017         read_unlock(&em_tree->lock);
5018
5019         if (em) {
5020                 if (em->start > start || em->start + em->len <= start)
5021                         free_extent_map(em);
5022                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5023                         free_extent_map(em);
5024                 else
5025                         goto out;
5026         }
5027         em = alloc_extent_map(GFP_NOFS);
5028         if (!em) {
5029                 err = -ENOMEM;
5030                 goto out;
5031         }
5032         em->bdev = root->fs_info->fs_devices->latest_bdev;
5033         em->start = EXTENT_MAP_HOLE;
5034         em->orig_start = EXTENT_MAP_HOLE;
5035         em->len = (u64)-1;
5036         em->block_len = (u64)-1;
5037
5038         if (!path) {
5039                 path = btrfs_alloc_path();
5040                 BUG_ON(!path);
5041         }
5042
5043         ret = btrfs_lookup_file_extent(trans, root, path,
5044                                        objectid, start, trans != NULL);
5045         if (ret < 0) {
5046                 err = ret;
5047                 goto out;
5048         }
5049
5050         if (ret != 0) {
5051                 if (path->slots[0] == 0)
5052                         goto not_found;
5053                 path->slots[0]--;
5054         }
5055
5056         leaf = path->nodes[0];
5057         item = btrfs_item_ptr(leaf, path->slots[0],
5058                               struct btrfs_file_extent_item);
5059         /* are we inside the extent that was found? */
5060         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5061         found_type = btrfs_key_type(&found_key);
5062         if (found_key.objectid != objectid ||
5063             found_type != BTRFS_EXTENT_DATA_KEY) {
5064                 goto not_found;
5065         }
5066
5067         found_type = btrfs_file_extent_type(leaf, item);
5068         extent_start = found_key.offset;
5069         compress_type = btrfs_file_extent_compression(leaf, item);
5070         if (found_type == BTRFS_FILE_EXTENT_REG ||
5071             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5072                 extent_end = extent_start +
5073                        btrfs_file_extent_num_bytes(leaf, item);
5074         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5075                 size_t size;
5076                 size = btrfs_file_extent_inline_len(leaf, item);
5077                 extent_end = (extent_start + size + root->sectorsize - 1) &
5078                         ~((u64)root->sectorsize - 1);
5079         }
5080
5081         if (start >= extent_end) {
5082                 path->slots[0]++;
5083                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5084                         ret = btrfs_next_leaf(root, path);
5085                         if (ret < 0) {
5086                                 err = ret;
5087                                 goto out;
5088                         }
5089                         if (ret > 0)
5090                                 goto not_found;
5091                         leaf = path->nodes[0];
5092                 }
5093                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5094                 if (found_key.objectid != objectid ||
5095                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5096                         goto not_found;
5097                 if (start + len <= found_key.offset)
5098                         goto not_found;
5099                 em->start = start;
5100                 em->len = found_key.offset - start;
5101                 goto not_found_em;
5102         }
5103
5104         if (found_type == BTRFS_FILE_EXTENT_REG ||
5105             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5106                 em->start = extent_start;
5107                 em->len = extent_end - extent_start;
5108                 em->orig_start = extent_start -
5109                                  btrfs_file_extent_offset(leaf, item);
5110                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5111                 if (bytenr == 0) {
5112                         em->block_start = EXTENT_MAP_HOLE;
5113                         goto insert;
5114                 }
5115                 if (compress_type != BTRFS_COMPRESS_NONE) {
5116                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5117                         em->compress_type = compress_type;
5118                         em->block_start = bytenr;
5119                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5120                                                                          item);
5121                 } else {
5122                         bytenr += btrfs_file_extent_offset(leaf, item);
5123                         em->block_start = bytenr;
5124                         em->block_len = em->len;
5125                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5126                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5127                 }
5128                 goto insert;
5129         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5130                 unsigned long ptr;
5131                 char *map;
5132                 size_t size;
5133                 size_t extent_offset;
5134                 size_t copy_size;
5135
5136                 em->block_start = EXTENT_MAP_INLINE;
5137                 if (!page || create) {
5138                         em->start = extent_start;
5139                         em->len = extent_end - extent_start;
5140                         goto out;
5141                 }
5142
5143                 size = btrfs_file_extent_inline_len(leaf, item);
5144                 extent_offset = page_offset(page) + pg_offset - extent_start;
5145                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5146                                 size - extent_offset);
5147                 em->start = extent_start + extent_offset;
5148                 em->len = (copy_size + root->sectorsize - 1) &
5149                         ~((u64)root->sectorsize - 1);
5150                 em->orig_start = EXTENT_MAP_INLINE;
5151                 if (compress_type) {
5152                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5153                         em->compress_type = compress_type;
5154                 }
5155                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5156                 if (create == 0 && !PageUptodate(page)) {
5157                         if (btrfs_file_extent_compression(leaf, item) !=
5158                             BTRFS_COMPRESS_NONE) {
5159                                 ret = uncompress_inline(path, inode, page,
5160                                                         pg_offset,
5161                                                         extent_offset, item);
5162                                 BUG_ON(ret);
5163                         } else {
5164                                 map = kmap(page);
5165                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5166                                                    copy_size);
5167                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5168                                         memset(map + pg_offset + copy_size, 0,
5169                                                PAGE_CACHE_SIZE - pg_offset -
5170                                                copy_size);
5171                                 }
5172                                 kunmap(page);
5173                         }
5174                         flush_dcache_page(page);
5175                 } else if (create && PageUptodate(page)) {
5176                         WARN_ON(1);
5177                         if (!trans) {
5178                                 kunmap(page);
5179                                 free_extent_map(em);
5180                                 em = NULL;
5181                                 btrfs_release_path(root, path);
5182                                 trans = btrfs_join_transaction(root, 1);
5183                                 if (IS_ERR(trans))
5184                                         return ERR_CAST(trans);
5185                                 goto again;
5186                         }
5187                         map = kmap(page);
5188                         write_extent_buffer(leaf, map + pg_offset, ptr,
5189                                             copy_size);
5190                         kunmap(page);
5191                         btrfs_mark_buffer_dirty(leaf);
5192                 }
5193                 set_extent_uptodate(io_tree, em->start,
5194                                     extent_map_end(em) - 1, GFP_NOFS);
5195                 goto insert;
5196         } else {
5197                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5198                 WARN_ON(1);
5199         }
5200 not_found:
5201         em->start = start;
5202         em->len = len;
5203 not_found_em:
5204         em->block_start = EXTENT_MAP_HOLE;
5205         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5206 insert:
5207         btrfs_release_path(root, path);
5208         if (em->start > start || extent_map_end(em) <= start) {
5209                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5210                        "[%llu %llu]\n", (unsigned long long)em->start,
5211                        (unsigned long long)em->len,
5212                        (unsigned long long)start,
5213                        (unsigned long long)len);
5214                 err = -EIO;
5215                 goto out;
5216         }
5217
5218         err = 0;
5219         write_lock(&em_tree->lock);
5220         ret = add_extent_mapping(em_tree, em);
5221         /* it is possible that someone inserted the extent into the tree
5222          * while we had the lock dropped.  It is also possible that
5223          * an overlapping map exists in the tree
5224          */
5225         if (ret == -EEXIST) {
5226                 struct extent_map *existing;
5227
5228                 ret = 0;
5229
5230                 existing = lookup_extent_mapping(em_tree, start, len);
5231                 if (existing && (existing->start > start ||
5232                     existing->start + existing->len <= start)) {
5233                         free_extent_map(existing);
5234                         existing = NULL;
5235                 }
5236                 if (!existing) {
5237                         existing = lookup_extent_mapping(em_tree, em->start,
5238                                                          em->len);
5239                         if (existing) {
5240                                 err = merge_extent_mapping(em_tree, existing,
5241                                                            em, start,
5242                                                            root->sectorsize);
5243                                 free_extent_map(existing);
5244                                 if (err) {
5245                                         free_extent_map(em);
5246                                         em = NULL;
5247                                 }
5248                         } else {
5249                                 err = -EIO;
5250                                 free_extent_map(em);
5251                                 em = NULL;
5252                         }
5253                 } else {
5254                         free_extent_map(em);
5255                         em = existing;
5256                         err = 0;
5257                 }
5258         }
5259         write_unlock(&em_tree->lock);
5260 out:
5261         if (path)
5262                 btrfs_free_path(path);
5263         if (trans) {
5264                 ret = btrfs_end_transaction(trans, root);
5265                 if (!err)
5266                         err = ret;
5267         }
5268         if (err) {
5269                 free_extent_map(em);
5270                 return ERR_PTR(err);
5271         }
5272         return em;
5273 }
5274
5275 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5276                                            size_t pg_offset, u64 start, u64 len,
5277                                            int create)
5278 {
5279         struct extent_map *em;
5280         struct extent_map *hole_em = NULL;
5281         u64 range_start = start;
5282         u64 end;
5283         u64 found;
5284         u64 found_end;
5285         int err = 0;
5286
5287         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5288         if (IS_ERR(em))
5289                 return em;
5290         if (em) {
5291                 /*
5292                  * if our em maps to a hole, there might
5293                  * actually be delalloc bytes behind it
5294                  */
5295                 if (em->block_start != EXTENT_MAP_HOLE)
5296                         return em;
5297                 else
5298                         hole_em = em;
5299         }
5300
5301         /* check to see if we've wrapped (len == -1 or similar) */
5302         end = start + len;
5303         if (end < start)
5304                 end = (u64)-1;
5305         else
5306                 end -= 1;
5307
5308         em = NULL;
5309
5310         /* ok, we didn't find anything, lets look for delalloc */
5311         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5312                                  end, len, EXTENT_DELALLOC, 1);
5313         found_end = range_start + found;
5314         if (found_end < range_start)
5315                 found_end = (u64)-1;
5316
5317         /*
5318          * we didn't find anything useful, return
5319          * the original results from get_extent()
5320          */
5321         if (range_start > end || found_end <= start) {
5322                 em = hole_em;
5323                 hole_em = NULL;
5324                 goto out;
5325         }
5326
5327         /* adjust the range_start to make sure it doesn't
5328          * go backwards from the start they passed in
5329          */
5330         range_start = max(start,range_start);
5331         found = found_end - range_start;
5332
5333         if (found > 0) {
5334                 u64 hole_start = start;
5335                 u64 hole_len = len;
5336
5337                 em = alloc_extent_map(GFP_NOFS);
5338                 if (!em) {
5339                         err = -ENOMEM;
5340                         goto out;
5341                 }
5342                 /*
5343                  * when btrfs_get_extent can't find anything it
5344                  * returns one huge hole
5345                  *
5346                  * make sure what it found really fits our range, and
5347                  * adjust to make sure it is based on the start from
5348                  * the caller
5349                  */
5350                 if (hole_em) {
5351                         u64 calc_end = extent_map_end(hole_em);
5352
5353                         if (calc_end <= start || (hole_em->start > end)) {
5354                                 free_extent_map(hole_em);
5355                                 hole_em = NULL;
5356                         } else {
5357                                 hole_start = max(hole_em->start, start);
5358                                 hole_len = calc_end - hole_start;
5359                         }
5360                 }
5361                 em->bdev = NULL;
5362                 if (hole_em && range_start > hole_start) {
5363                         /* our hole starts before our delalloc, so we
5364                          * have to return just the parts of the hole
5365                          * that go until  the delalloc starts
5366                          */
5367                         em->len = min(hole_len,
5368                                       range_start - hole_start);
5369                         em->start = hole_start;
5370                         em->orig_start = hole_start;
5371                         /*
5372                          * don't adjust block start at all,
5373                          * it is fixed at EXTENT_MAP_HOLE
5374                          */
5375                         em->block_start = hole_em->block_start;
5376                         em->block_len = hole_len;
5377                 } else {
5378                         em->start = range_start;
5379                         em->len = found;
5380                         em->orig_start = range_start;
5381                         em->block_start = EXTENT_MAP_DELALLOC;
5382                         em->block_len = found;
5383                 }
5384         } else if (hole_em) {
5385                 return hole_em;
5386         }
5387 out:
5388
5389         free_extent_map(hole_em);
5390         if (err) {
5391                 free_extent_map(em);
5392                 return ERR_PTR(err);
5393         }
5394         return em;
5395 }
5396
5397 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5398                                                   u64 start, u64 len)
5399 {
5400         struct btrfs_root *root = BTRFS_I(inode)->root;
5401         struct btrfs_trans_handle *trans;
5402         struct extent_map *em;
5403         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5404         struct btrfs_key ins;
5405         u64 alloc_hint;
5406         int ret;
5407
5408         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5409
5410         trans = btrfs_join_transaction(root, 0);
5411         if (IS_ERR(trans))
5412                 return ERR_CAST(trans);
5413
5414         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5415
5416         alloc_hint = get_extent_allocation_hint(inode, start, len);
5417         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5418                                    alloc_hint, (u64)-1, &ins, 1);
5419         if (ret) {
5420                 em = ERR_PTR(ret);
5421                 goto out;
5422         }
5423
5424         em = alloc_extent_map(GFP_NOFS);
5425         if (!em) {
5426                 em = ERR_PTR(-ENOMEM);
5427                 goto out;
5428         }
5429
5430         em->start = start;
5431         em->orig_start = em->start;
5432         em->len = ins.offset;
5433
5434         em->block_start = ins.objectid;
5435         em->block_len = ins.offset;
5436         em->bdev = root->fs_info->fs_devices->latest_bdev;
5437         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5438
5439         while (1) {
5440                 write_lock(&em_tree->lock);
5441                 ret = add_extent_mapping(em_tree, em);
5442                 write_unlock(&em_tree->lock);
5443                 if (ret != -EEXIST)
5444                         break;
5445                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5446         }
5447
5448         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5449                                            ins.offset, ins.offset, 0);
5450         if (ret) {
5451                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5452                 em = ERR_PTR(ret);
5453         }
5454 out:
5455         btrfs_end_transaction(trans, root);
5456         return em;
5457 }
5458
5459 /*
5460  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5461  * block must be cow'd
5462  */
5463 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5464                                       struct inode *inode, u64 offset, u64 len)
5465 {
5466         struct btrfs_path *path;
5467         int ret;
5468         struct extent_buffer *leaf;
5469         struct btrfs_root *root = BTRFS_I(inode)->root;
5470         struct btrfs_file_extent_item *fi;
5471         struct btrfs_key key;
5472         u64 disk_bytenr;
5473         u64 backref_offset;
5474         u64 extent_end;
5475         u64 num_bytes;
5476         int slot;
5477         int found_type;
5478
5479         path = btrfs_alloc_path();
5480         if (!path)
5481                 return -ENOMEM;
5482
5483         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5484                                        offset, 0);
5485         if (ret < 0)
5486                 goto out;
5487
5488         slot = path->slots[0];
5489         if (ret == 1) {
5490                 if (slot == 0) {
5491                         /* can't find the item, must cow */
5492                         ret = 0;
5493                         goto out;
5494                 }
5495                 slot--;
5496         }
5497         ret = 0;
5498         leaf = path->nodes[0];
5499         btrfs_item_key_to_cpu(leaf, &key, slot);
5500         if (key.objectid != inode->i_ino ||
5501             key.type != BTRFS_EXTENT_DATA_KEY) {
5502                 /* not our file or wrong item type, must cow */
5503                 goto out;
5504         }
5505
5506         if (key.offset > offset) {
5507                 /* Wrong offset, must cow */
5508                 goto out;
5509         }
5510
5511         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5512         found_type = btrfs_file_extent_type(leaf, fi);
5513         if (found_type != BTRFS_FILE_EXTENT_REG &&
5514             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5515                 /* not a regular extent, must cow */
5516                 goto out;
5517         }
5518         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5519         backref_offset = btrfs_file_extent_offset(leaf, fi);
5520
5521         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5522         if (extent_end < offset + len) {
5523                 /* extent doesn't include our full range, must cow */
5524                 goto out;
5525         }
5526
5527         if (btrfs_extent_readonly(root, disk_bytenr))
5528                 goto out;
5529
5530         /*
5531          * look for other files referencing this extent, if we
5532          * find any we must cow
5533          */
5534         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5535                                   key.offset - backref_offset, disk_bytenr))
5536                 goto out;
5537
5538         /*
5539          * adjust disk_bytenr and num_bytes to cover just the bytes
5540          * in this extent we are about to write.  If there
5541          * are any csums in that range we have to cow in order
5542          * to keep the csums correct
5543          */
5544         disk_bytenr += backref_offset;
5545         disk_bytenr += offset - key.offset;
5546         num_bytes = min(offset + len, extent_end) - offset;
5547         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5548                                 goto out;
5549         /*
5550          * all of the above have passed, it is safe to overwrite this extent
5551          * without cow
5552          */
5553         ret = 1;
5554 out:
5555         btrfs_free_path(path);
5556         return ret;
5557 }
5558
5559 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5560                                    struct buffer_head *bh_result, int create)
5561 {
5562         struct extent_map *em;
5563         struct btrfs_root *root = BTRFS_I(inode)->root;
5564         u64 start = iblock << inode->i_blkbits;
5565         u64 len = bh_result->b_size;
5566         struct btrfs_trans_handle *trans;
5567
5568         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5569         if (IS_ERR(em))
5570                 return PTR_ERR(em);
5571
5572         /*
5573          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5574          * io.  INLINE is special, and we could probably kludge it in here, but
5575          * it's still buffered so for safety lets just fall back to the generic
5576          * buffered path.
5577          *
5578          * For COMPRESSED we _have_ to read the entire extent in so we can
5579          * decompress it, so there will be buffering required no matter what we
5580          * do, so go ahead and fallback to buffered.
5581          *
5582          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5583          * to buffered IO.  Don't blame me, this is the price we pay for using
5584          * the generic code.
5585          */
5586         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5587             em->block_start == EXTENT_MAP_INLINE) {
5588                 free_extent_map(em);
5589                 return -ENOTBLK;
5590         }
5591
5592         /* Just a good old fashioned hole, return */
5593         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5594                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5595                 free_extent_map(em);
5596                 /* DIO will do one hole at a time, so just unlock a sector */
5597                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5598                               start + root->sectorsize - 1, GFP_NOFS);
5599                 return 0;
5600         }
5601
5602         /*
5603          * We don't allocate a new extent in the following cases
5604          *
5605          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5606          * existing extent.
5607          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5608          * just use the extent.
5609          *
5610          */
5611         if (!create) {
5612                 len = em->len - (start - em->start);
5613                 goto map;
5614         }
5615
5616         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5617             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5618              em->block_start != EXTENT_MAP_HOLE)) {
5619                 int type;
5620                 int ret;
5621                 u64 block_start;
5622
5623                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5624                         type = BTRFS_ORDERED_PREALLOC;
5625                 else
5626                         type = BTRFS_ORDERED_NOCOW;
5627                 len = min(len, em->len - (start - em->start));
5628                 block_start = em->block_start + (start - em->start);
5629
5630                 /*
5631                  * we're not going to log anything, but we do need
5632                  * to make sure the current transaction stays open
5633                  * while we look for nocow cross refs
5634                  */
5635                 trans = btrfs_join_transaction(root, 0);
5636                 if (IS_ERR(trans))
5637                         goto must_cow;
5638
5639                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5640                         ret = btrfs_add_ordered_extent_dio(inode, start,
5641                                            block_start, len, len, type);
5642                         btrfs_end_transaction(trans, root);
5643                         if (ret) {
5644                                 free_extent_map(em);
5645                                 return ret;
5646                         }
5647                         goto unlock;
5648                 }
5649                 btrfs_end_transaction(trans, root);
5650         }
5651 must_cow:
5652         /*
5653          * this will cow the extent, reset the len in case we changed
5654          * it above
5655          */
5656         len = bh_result->b_size;
5657         free_extent_map(em);
5658         em = btrfs_new_extent_direct(inode, start, len);
5659         if (IS_ERR(em))
5660                 return PTR_ERR(em);
5661         len = min(len, em->len - (start - em->start));
5662 unlock:
5663         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5664                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5665                           0, NULL, GFP_NOFS);
5666 map:
5667         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5668                 inode->i_blkbits;
5669         bh_result->b_size = len;
5670         bh_result->b_bdev = em->bdev;
5671         set_buffer_mapped(bh_result);
5672         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5673                 set_buffer_new(bh_result);
5674
5675         free_extent_map(em);
5676
5677         return 0;
5678 }
5679
5680 struct btrfs_dio_private {
5681         struct inode *inode;
5682         u64 logical_offset;
5683         u64 disk_bytenr;
5684         u64 bytes;
5685         u32 *csums;
5686         void *private;
5687
5688         /* number of bios pending for this dio */
5689         atomic_t pending_bios;
5690
5691         /* IO errors */
5692         int errors;
5693
5694         struct bio *orig_bio;
5695 };
5696
5697 static void btrfs_endio_direct_read(struct bio *bio, int err)
5698 {
5699         struct btrfs_dio_private *dip = bio->bi_private;
5700         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5701         struct bio_vec *bvec = bio->bi_io_vec;
5702         struct inode *inode = dip->inode;
5703         struct btrfs_root *root = BTRFS_I(inode)->root;
5704         u64 start;
5705         u32 *private = dip->csums;
5706
5707         start = dip->logical_offset;
5708         do {
5709                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5710                         struct page *page = bvec->bv_page;
5711                         char *kaddr;
5712                         u32 csum = ~(u32)0;
5713                         unsigned long flags;
5714
5715                         local_irq_save(flags);
5716                         kaddr = kmap_atomic(page, KM_IRQ0);
5717                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5718                                                csum, bvec->bv_len);
5719                         btrfs_csum_final(csum, (char *)&csum);
5720                         kunmap_atomic(kaddr, KM_IRQ0);
5721                         local_irq_restore(flags);
5722
5723                         flush_dcache_page(bvec->bv_page);
5724                         if (csum != *private) {
5725                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5726                                       " %llu csum %u private %u\n",
5727                                       inode->i_ino, (unsigned long long)start,
5728                                       csum, *private);
5729                                 err = -EIO;
5730                         }
5731                 }
5732
5733                 start += bvec->bv_len;
5734                 private++;
5735                 bvec++;
5736         } while (bvec <= bvec_end);
5737
5738         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5739                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5740         bio->bi_private = dip->private;
5741
5742         kfree(dip->csums);
5743         kfree(dip);
5744         dio_end_io(bio, err);
5745 }
5746
5747 static void btrfs_endio_direct_write(struct bio *bio, int err)
5748 {
5749         struct btrfs_dio_private *dip = bio->bi_private;
5750         struct inode *inode = dip->inode;
5751         struct btrfs_root *root = BTRFS_I(inode)->root;
5752         struct btrfs_trans_handle *trans;
5753         struct btrfs_ordered_extent *ordered = NULL;
5754         struct extent_state *cached_state = NULL;
5755         u64 ordered_offset = dip->logical_offset;
5756         u64 ordered_bytes = dip->bytes;
5757         int ret;
5758
5759         if (err)
5760                 goto out_done;
5761 again:
5762         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5763                                                    &ordered_offset,
5764                                                    ordered_bytes);
5765         if (!ret)
5766                 goto out_test;
5767
5768         BUG_ON(!ordered);
5769
5770         trans = btrfs_join_transaction(root, 1);
5771         if (IS_ERR(trans)) {
5772                 err = -ENOMEM;
5773                 goto out;
5774         }
5775         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5776
5777         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5778                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5779                 if (!ret)
5780                         ret = btrfs_update_inode(trans, root, inode);
5781                 err = ret;
5782                 goto out;
5783         }
5784
5785         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5786                          ordered->file_offset + ordered->len - 1, 0,
5787                          &cached_state, GFP_NOFS);
5788
5789         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5790                 ret = btrfs_mark_extent_written(trans, inode,
5791                                                 ordered->file_offset,
5792                                                 ordered->file_offset +
5793                                                 ordered->len);
5794                 if (ret) {
5795                         err = ret;
5796                         goto out_unlock;
5797                 }
5798         } else {
5799                 ret = insert_reserved_file_extent(trans, inode,
5800                                                   ordered->file_offset,
5801                                                   ordered->start,
5802                                                   ordered->disk_len,
5803                                                   ordered->len,
5804                                                   ordered->len,
5805                                                   0, 0, 0,
5806                                                   BTRFS_FILE_EXTENT_REG);
5807                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5808                                    ordered->file_offset, ordered->len);
5809                 if (ret) {
5810                         err = ret;
5811                         WARN_ON(1);
5812                         goto out_unlock;
5813                 }
5814         }
5815
5816         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5817         btrfs_ordered_update_i_size(inode, 0, ordered);
5818         btrfs_update_inode(trans, root, inode);
5819 out_unlock:
5820         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5821                              ordered->file_offset + ordered->len - 1,
5822                              &cached_state, GFP_NOFS);
5823 out:
5824         btrfs_delalloc_release_metadata(inode, ordered->len);
5825         btrfs_end_transaction(trans, root);
5826         ordered_offset = ordered->file_offset + ordered->len;
5827         btrfs_put_ordered_extent(ordered);
5828         btrfs_put_ordered_extent(ordered);
5829
5830 out_test:
5831         /*
5832          * our bio might span multiple ordered extents.  If we haven't
5833          * completed the accounting for the whole dio, go back and try again
5834          */
5835         if (ordered_offset < dip->logical_offset + dip->bytes) {
5836                 ordered_bytes = dip->logical_offset + dip->bytes -
5837                         ordered_offset;
5838                 goto again;
5839         }
5840 out_done:
5841         bio->bi_private = dip->private;
5842
5843         kfree(dip->csums);
5844         kfree(dip);
5845         dio_end_io(bio, err);
5846 }
5847
5848 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5849                                     struct bio *bio, int mirror_num,
5850                                     unsigned long bio_flags, u64 offset)
5851 {
5852         int ret;
5853         struct btrfs_root *root = BTRFS_I(inode)->root;
5854         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5855         BUG_ON(ret);
5856         return 0;
5857 }
5858
5859 static void btrfs_end_dio_bio(struct bio *bio, int err)
5860 {
5861         struct btrfs_dio_private *dip = bio->bi_private;
5862
5863         if (err) {
5864                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5865                       "sector %#Lx len %u err no %d\n",
5866                       dip->inode->i_ino, bio->bi_rw,
5867                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5868                 dip->errors = 1;
5869
5870                 /*
5871                  * before atomic variable goto zero, we must make sure
5872                  * dip->errors is perceived to be set.
5873                  */
5874                 smp_mb__before_atomic_dec();
5875         }
5876
5877         /* if there are more bios still pending for this dio, just exit */
5878         if (!atomic_dec_and_test(&dip->pending_bios))
5879                 goto out;
5880
5881         if (dip->errors)
5882                 bio_io_error(dip->orig_bio);
5883         else {
5884                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5885                 bio_endio(dip->orig_bio, 0);
5886         }
5887 out:
5888         bio_put(bio);
5889 }
5890
5891 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5892                                        u64 first_sector, gfp_t gfp_flags)
5893 {
5894         int nr_vecs = bio_get_nr_vecs(bdev);
5895         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5896 }
5897
5898 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5899                                          int rw, u64 file_offset, int skip_sum,
5900                                          u32 *csums)
5901 {
5902         int write = rw & REQ_WRITE;
5903         struct btrfs_root *root = BTRFS_I(inode)->root;
5904         int ret;
5905
5906         bio_get(bio);
5907         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5908         if (ret)
5909                 goto err;
5910
5911         if (write && !skip_sum) {
5912                 ret = btrfs_wq_submit_bio(root->fs_info,
5913                                    inode, rw, bio, 0, 0,
5914                                    file_offset,
5915                                    __btrfs_submit_bio_start_direct_io,
5916                                    __btrfs_submit_bio_done);
5917                 goto err;
5918         } else if (!skip_sum)
5919                 btrfs_lookup_bio_sums_dio(root, inode, bio,
5920                                           file_offset, csums);
5921
5922         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5923 err:
5924         bio_put(bio);
5925         return ret;
5926 }
5927
5928 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5929                                     int skip_sum)
5930 {
5931         struct inode *inode = dip->inode;
5932         struct btrfs_root *root = BTRFS_I(inode)->root;
5933         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5934         struct bio *bio;
5935         struct bio *orig_bio = dip->orig_bio;
5936         struct bio_vec *bvec = orig_bio->bi_io_vec;
5937         u64 start_sector = orig_bio->bi_sector;
5938         u64 file_offset = dip->logical_offset;
5939         u64 submit_len = 0;
5940         u64 map_length;
5941         int nr_pages = 0;
5942         u32 *csums = dip->csums;
5943         int ret = 0;
5944
5945         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5946         if (!bio)
5947                 return -ENOMEM;
5948         bio->bi_private = dip;
5949         bio->bi_end_io = btrfs_end_dio_bio;
5950         atomic_inc(&dip->pending_bios);
5951
5952         map_length = orig_bio->bi_size;
5953         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5954                               &map_length, NULL, 0);
5955         if (ret) {
5956                 bio_put(bio);
5957                 return -EIO;
5958         }
5959
5960         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5961                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5962                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5963                                  bvec->bv_offset) < bvec->bv_len)) {
5964                         /*
5965                          * inc the count before we submit the bio so
5966                          * we know the end IO handler won't happen before
5967                          * we inc the count. Otherwise, the dip might get freed
5968                          * before we're done setting it up
5969                          */
5970                         atomic_inc(&dip->pending_bios);
5971                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5972                                                      file_offset, skip_sum,
5973                                                      csums);
5974                         if (ret) {
5975                                 bio_put(bio);
5976                                 atomic_dec(&dip->pending_bios);
5977                                 goto out_err;
5978                         }
5979
5980                         if (!skip_sum)
5981                                 csums = csums + nr_pages;
5982                         start_sector += submit_len >> 9;
5983                         file_offset += submit_len;
5984
5985                         submit_len = 0;
5986                         nr_pages = 0;
5987
5988                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5989                                                   start_sector, GFP_NOFS);
5990                         if (!bio)
5991                                 goto out_err;
5992                         bio->bi_private = dip;
5993                         bio->bi_end_io = btrfs_end_dio_bio;
5994
5995                         map_length = orig_bio->bi_size;
5996                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5997                                               &map_length, NULL, 0);
5998                         if (ret) {
5999                                 bio_put(bio);
6000                                 goto out_err;
6001                         }
6002                 } else {
6003                         submit_len += bvec->bv_len;
6004                         nr_pages ++;
6005                         bvec++;
6006                 }
6007         }
6008
6009         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6010                                      csums);
6011         if (!ret)
6012                 return 0;
6013
6014         bio_put(bio);
6015 out_err:
6016         dip->errors = 1;
6017         /*
6018          * before atomic variable goto zero, we must
6019          * make sure dip->errors is perceived to be set.
6020          */
6021         smp_mb__before_atomic_dec();
6022         if (atomic_dec_and_test(&dip->pending_bios))
6023                 bio_io_error(dip->orig_bio);
6024
6025         /* bio_end_io() will handle error, so we needn't return it */
6026         return 0;
6027 }
6028
6029 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6030                                 loff_t file_offset)
6031 {
6032         struct btrfs_root *root = BTRFS_I(inode)->root;
6033         struct btrfs_dio_private *dip;
6034         struct bio_vec *bvec = bio->bi_io_vec;
6035         int skip_sum;
6036         int write = rw & REQ_WRITE;
6037         int ret = 0;
6038
6039         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6040
6041         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6042         if (!dip) {
6043                 ret = -ENOMEM;
6044                 goto free_ordered;
6045         }
6046         dip->csums = NULL;
6047
6048         if (!skip_sum) {
6049                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6050                 if (!dip->csums) {
6051                         kfree(dip);
6052                         ret = -ENOMEM;
6053                         goto free_ordered;
6054                 }
6055         }
6056
6057         dip->private = bio->bi_private;
6058         dip->inode = inode;
6059         dip->logical_offset = file_offset;
6060
6061         dip->bytes = 0;
6062         do {
6063                 dip->bytes += bvec->bv_len;
6064                 bvec++;
6065         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6066
6067         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6068         bio->bi_private = dip;
6069         dip->errors = 0;
6070         dip->orig_bio = bio;
6071         atomic_set(&dip->pending_bios, 0);
6072
6073         if (write)
6074                 bio->bi_end_io = btrfs_endio_direct_write;
6075         else
6076                 bio->bi_end_io = btrfs_endio_direct_read;
6077
6078         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6079         if (!ret)
6080                 return;
6081 free_ordered:
6082         /*
6083          * If this is a write, we need to clean up the reserved space and kill
6084          * the ordered extent.
6085          */
6086         if (write) {
6087                 struct btrfs_ordered_extent *ordered;
6088                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6089                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6090                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6091                         btrfs_free_reserved_extent(root, ordered->start,
6092                                                    ordered->disk_len);
6093                 btrfs_put_ordered_extent(ordered);
6094                 btrfs_put_ordered_extent(ordered);
6095         }
6096         bio_endio(bio, ret);
6097 }
6098
6099 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6100                         const struct iovec *iov, loff_t offset,
6101                         unsigned long nr_segs)
6102 {
6103         int seg;
6104         size_t size;
6105         unsigned long addr;
6106         unsigned blocksize_mask = root->sectorsize - 1;
6107         ssize_t retval = -EINVAL;
6108         loff_t end = offset;
6109
6110         if (offset & blocksize_mask)
6111                 goto out;
6112
6113         /* Check the memory alignment.  Blocks cannot straddle pages */
6114         for (seg = 0; seg < nr_segs; seg++) {
6115                 addr = (unsigned long)iov[seg].iov_base;
6116                 size = iov[seg].iov_len;
6117                 end += size;
6118                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6119                         goto out;
6120         }
6121         retval = 0;
6122 out:
6123         return retval;
6124 }
6125 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6126                         const struct iovec *iov, loff_t offset,
6127                         unsigned long nr_segs)
6128 {
6129         struct file *file = iocb->ki_filp;
6130         struct inode *inode = file->f_mapping->host;
6131         struct btrfs_ordered_extent *ordered;
6132         struct extent_state *cached_state = NULL;
6133         u64 lockstart, lockend;
6134         ssize_t ret;
6135         int writing = rw & WRITE;
6136         int write_bits = 0;
6137         size_t count = iov_length(iov, nr_segs);
6138
6139         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6140                             offset, nr_segs)) {
6141                 return 0;
6142         }
6143
6144         lockstart = offset;
6145         lockend = offset + count - 1;
6146
6147         if (writing) {
6148                 ret = btrfs_delalloc_reserve_space(inode, count);
6149                 if (ret)
6150                         goto out;
6151         }
6152
6153         while (1) {
6154                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6155                                  0, &cached_state, GFP_NOFS);
6156                 /*
6157                  * We're concerned with the entire range that we're going to be
6158                  * doing DIO to, so we need to make sure theres no ordered
6159                  * extents in this range.
6160                  */
6161                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6162                                                      lockend - lockstart + 1);
6163                 if (!ordered)
6164                         break;
6165                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6166                                      &cached_state, GFP_NOFS);
6167                 btrfs_start_ordered_extent(inode, ordered, 1);
6168                 btrfs_put_ordered_extent(ordered);
6169                 cond_resched();
6170         }
6171
6172         /*
6173          * we don't use btrfs_set_extent_delalloc because we don't want
6174          * the dirty or uptodate bits
6175          */
6176         if (writing) {
6177                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6178                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6179                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6180                                      GFP_NOFS);
6181                 if (ret) {
6182                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6183                                          lockend, EXTENT_LOCKED | write_bits,
6184                                          1, 0, &cached_state, GFP_NOFS);
6185                         goto out;
6186                 }
6187         }
6188
6189         free_extent_state(cached_state);
6190         cached_state = NULL;
6191
6192         ret = __blockdev_direct_IO(rw, iocb, inode,
6193                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6194                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6195                    btrfs_submit_direct, 0);
6196
6197         if (ret < 0 && ret != -EIOCBQUEUED) {
6198                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6199                               offset + iov_length(iov, nr_segs) - 1,
6200                               EXTENT_LOCKED | write_bits, 1, 0,
6201                               &cached_state, GFP_NOFS);
6202         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6203                 /*
6204                  * We're falling back to buffered, unlock the section we didn't
6205                  * do IO on.
6206                  */
6207                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6208                               offset + iov_length(iov, nr_segs) - 1,
6209                               EXTENT_LOCKED | write_bits, 1, 0,
6210                               &cached_state, GFP_NOFS);
6211         }
6212 out:
6213         free_extent_state(cached_state);
6214         return ret;
6215 }
6216
6217 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6218                 __u64 start, __u64 len)
6219 {
6220         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6221 }
6222
6223 int btrfs_readpage(struct file *file, struct page *page)
6224 {
6225         struct extent_io_tree *tree;
6226         tree = &BTRFS_I(page->mapping->host)->io_tree;
6227         return extent_read_full_page(tree, page, btrfs_get_extent);
6228 }
6229
6230 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6231 {
6232         struct extent_io_tree *tree;
6233
6234
6235         if (current->flags & PF_MEMALLOC) {
6236                 redirty_page_for_writepage(wbc, page);
6237                 unlock_page(page);
6238                 return 0;
6239         }
6240         tree = &BTRFS_I(page->mapping->host)->io_tree;
6241         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6242 }
6243
6244 int btrfs_writepages(struct address_space *mapping,
6245                      struct writeback_control *wbc)
6246 {
6247         struct extent_io_tree *tree;
6248
6249         tree = &BTRFS_I(mapping->host)->io_tree;
6250         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6251 }
6252
6253 static int
6254 btrfs_readpages(struct file *file, struct address_space *mapping,
6255                 struct list_head *pages, unsigned nr_pages)
6256 {
6257         struct extent_io_tree *tree;
6258         tree = &BTRFS_I(mapping->host)->io_tree;
6259         return extent_readpages(tree, mapping, pages, nr_pages,
6260                                 btrfs_get_extent);
6261 }
6262 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6263 {
6264         struct extent_io_tree *tree;
6265         struct extent_map_tree *map;
6266         int ret;
6267
6268         tree = &BTRFS_I(page->mapping->host)->io_tree;
6269         map = &BTRFS_I(page->mapping->host)->extent_tree;
6270         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6271         if (ret == 1) {
6272                 ClearPagePrivate(page);
6273                 set_page_private(page, 0);
6274                 page_cache_release(page);
6275         }
6276         return ret;
6277 }
6278
6279 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6280 {
6281         if (PageWriteback(page) || PageDirty(page))
6282                 return 0;
6283         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6284 }
6285
6286 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6287 {
6288         struct extent_io_tree *tree;
6289         struct btrfs_ordered_extent *ordered;
6290         struct extent_state *cached_state = NULL;
6291         u64 page_start = page_offset(page);
6292         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6293
6294
6295         /*
6296          * we have the page locked, so new writeback can't start,
6297          * and the dirty bit won't be cleared while we are here.
6298          *
6299          * Wait for IO on this page so that we can safely clear
6300          * the PagePrivate2 bit and do ordered accounting
6301          */
6302         wait_on_page_writeback(page);
6303
6304         tree = &BTRFS_I(page->mapping->host)->io_tree;
6305         if (offset) {
6306                 btrfs_releasepage(page, GFP_NOFS);
6307                 return;
6308         }
6309         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6310                          GFP_NOFS);
6311         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6312                                            page_offset(page));
6313         if (ordered) {
6314                 /*
6315                  * IO on this page will never be started, so we need
6316                  * to account for any ordered extents now
6317                  */
6318                 clear_extent_bit(tree, page_start, page_end,
6319                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6320                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6321                                  &cached_state, GFP_NOFS);
6322                 /*
6323                  * whoever cleared the private bit is responsible
6324                  * for the finish_ordered_io
6325                  */
6326                 if (TestClearPagePrivate2(page)) {
6327                         btrfs_finish_ordered_io(page->mapping->host,
6328                                                 page_start, page_end);
6329                 }
6330                 btrfs_put_ordered_extent(ordered);
6331                 cached_state = NULL;
6332                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6333                                  GFP_NOFS);
6334         }
6335         clear_extent_bit(tree, page_start, page_end,
6336                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6337                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6338         __btrfs_releasepage(page, GFP_NOFS);
6339
6340         ClearPageChecked(page);
6341         if (PagePrivate(page)) {
6342                 ClearPagePrivate(page);
6343                 set_page_private(page, 0);
6344                 page_cache_release(page);
6345         }
6346 }
6347
6348 /*
6349  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6350  * called from a page fault handler when a page is first dirtied. Hence we must
6351  * be careful to check for EOF conditions here. We set the page up correctly
6352  * for a written page which means we get ENOSPC checking when writing into
6353  * holes and correct delalloc and unwritten extent mapping on filesystems that
6354  * support these features.
6355  *
6356  * We are not allowed to take the i_mutex here so we have to play games to
6357  * protect against truncate races as the page could now be beyond EOF.  Because
6358  * vmtruncate() writes the inode size before removing pages, once we have the
6359  * page lock we can determine safely if the page is beyond EOF. If it is not
6360  * beyond EOF, then the page is guaranteed safe against truncation until we
6361  * unlock the page.
6362  */
6363 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6364 {
6365         struct page *page = vmf->page;
6366         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6367         struct btrfs_root *root = BTRFS_I(inode)->root;
6368         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6369         struct btrfs_ordered_extent *ordered;
6370         struct extent_state *cached_state = NULL;
6371         char *kaddr;
6372         unsigned long zero_start;
6373         loff_t size;
6374         int ret;
6375         u64 page_start;
6376         u64 page_end;
6377
6378         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6379         if (ret) {
6380                 if (ret == -ENOMEM)
6381                         ret = VM_FAULT_OOM;
6382                 else /* -ENOSPC, -EIO, etc */
6383                         ret = VM_FAULT_SIGBUS;
6384                 goto out;
6385         }
6386
6387         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6388 again:
6389         lock_page(page);
6390         size = i_size_read(inode);
6391         page_start = page_offset(page);
6392         page_end = page_start + PAGE_CACHE_SIZE - 1;
6393
6394         if ((page->mapping != inode->i_mapping) ||
6395             (page_start >= size)) {
6396                 /* page got truncated out from underneath us */
6397                 goto out_unlock;
6398         }
6399         wait_on_page_writeback(page);
6400
6401         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6402                          GFP_NOFS);
6403         set_page_extent_mapped(page);
6404
6405         /*
6406          * we can't set the delalloc bits if there are pending ordered
6407          * extents.  Drop our locks and wait for them to finish
6408          */
6409         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6410         if (ordered) {
6411                 unlock_extent_cached(io_tree, page_start, page_end,
6412                                      &cached_state, GFP_NOFS);
6413                 unlock_page(page);
6414                 btrfs_start_ordered_extent(inode, ordered, 1);
6415                 btrfs_put_ordered_extent(ordered);
6416                 goto again;
6417         }
6418
6419         /*
6420          * XXX - page_mkwrite gets called every time the page is dirtied, even
6421          * if it was already dirty, so for space accounting reasons we need to
6422          * clear any delalloc bits for the range we are fixing to save.  There
6423          * is probably a better way to do this, but for now keep consistent with
6424          * prepare_pages in the normal write path.
6425          */
6426         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6427                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6428                           0, 0, &cached_state, GFP_NOFS);
6429
6430         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6431                                         &cached_state);
6432         if (ret) {
6433                 unlock_extent_cached(io_tree, page_start, page_end,
6434                                      &cached_state, GFP_NOFS);
6435                 ret = VM_FAULT_SIGBUS;
6436                 goto out_unlock;
6437         }
6438         ret = 0;
6439
6440         /* page is wholly or partially inside EOF */
6441         if (page_start + PAGE_CACHE_SIZE > size)
6442                 zero_start = size & ~PAGE_CACHE_MASK;
6443         else
6444                 zero_start = PAGE_CACHE_SIZE;
6445
6446         if (zero_start != PAGE_CACHE_SIZE) {
6447                 kaddr = kmap(page);
6448                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6449                 flush_dcache_page(page);
6450                 kunmap(page);
6451         }
6452         ClearPageChecked(page);
6453         set_page_dirty(page);
6454         SetPageUptodate(page);
6455
6456         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6457         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6458
6459         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6460
6461 out_unlock:
6462         if (!ret)
6463                 return VM_FAULT_LOCKED;
6464         unlock_page(page);
6465         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6466 out:
6467         return ret;
6468 }
6469
6470 static int btrfs_truncate(struct inode *inode)
6471 {
6472         struct btrfs_root *root = BTRFS_I(inode)->root;
6473         int ret;
6474         int err = 0;
6475         struct btrfs_trans_handle *trans;
6476         unsigned long nr;
6477         u64 mask = root->sectorsize - 1;
6478
6479         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6480         if (ret)
6481                 return ret;
6482
6483         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6484         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6485
6486         trans = btrfs_start_transaction(root, 5);
6487         if (IS_ERR(trans))
6488                 return PTR_ERR(trans);
6489
6490         btrfs_set_trans_block_group(trans, inode);
6491
6492         ret = btrfs_orphan_add(trans, inode);
6493         if (ret) {
6494                 btrfs_end_transaction(trans, root);
6495                 return ret;
6496         }
6497
6498         nr = trans->blocks_used;
6499         btrfs_end_transaction(trans, root);
6500         btrfs_btree_balance_dirty(root, nr);
6501
6502         /* Now start a transaction for the truncate */
6503         trans = btrfs_start_transaction(root, 0);
6504         if (IS_ERR(trans))
6505                 return PTR_ERR(trans);
6506         btrfs_set_trans_block_group(trans, inode);
6507         trans->block_rsv = root->orphan_block_rsv;
6508
6509         /*
6510          * setattr is responsible for setting the ordered_data_close flag,
6511          * but that is only tested during the last file release.  That
6512          * could happen well after the next commit, leaving a great big
6513          * window where new writes may get lost if someone chooses to write
6514          * to this file after truncating to zero
6515          *
6516          * The inode doesn't have any dirty data here, and so if we commit
6517          * this is a noop.  If someone immediately starts writing to the inode
6518          * it is very likely we'll catch some of their writes in this
6519          * transaction, and the commit will find this file on the ordered
6520          * data list with good things to send down.
6521          *
6522          * This is a best effort solution, there is still a window where
6523          * using truncate to replace the contents of the file will
6524          * end up with a zero length file after a crash.
6525          */
6526         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6527                 btrfs_add_ordered_operation(trans, root, inode);
6528
6529         while (1) {
6530                 if (!trans) {
6531                         trans = btrfs_start_transaction(root, 0);
6532                         if (IS_ERR(trans))
6533                                 return PTR_ERR(trans);
6534                         btrfs_set_trans_block_group(trans, inode);
6535                         trans->block_rsv = root->orphan_block_rsv;
6536                 }
6537
6538                 ret = btrfs_block_rsv_check(trans, root,
6539                                             root->orphan_block_rsv, 0, 5);
6540                 if (ret == -EAGAIN) {
6541                         ret = btrfs_commit_transaction(trans, root);
6542                         if (ret)
6543                                 return ret;
6544                         trans = NULL;
6545                         continue;
6546                 } else if (ret) {
6547                         err = ret;
6548                         break;
6549                 }
6550
6551                 ret = btrfs_truncate_inode_items(trans, root, inode,
6552                                                  inode->i_size,
6553                                                  BTRFS_EXTENT_DATA_KEY);
6554                 if (ret != -EAGAIN) {
6555                         err = ret;
6556                         break;
6557                 }
6558
6559                 ret = btrfs_update_inode(trans, root, inode);
6560                 if (ret) {
6561                         err = ret;
6562                         break;
6563                 }
6564
6565                 nr = trans->blocks_used;
6566                 btrfs_end_transaction(trans, root);
6567                 trans = NULL;
6568                 btrfs_btree_balance_dirty(root, nr);
6569         }
6570
6571         if (ret == 0 && inode->i_nlink > 0) {
6572                 ret = btrfs_orphan_del(trans, inode);
6573                 if (ret)
6574                         err = ret;
6575         } else if (ret && inode->i_nlink > 0) {
6576                 /*
6577                  * Failed to do the truncate, remove us from the in memory
6578                  * orphan list.
6579                  */
6580                 ret = btrfs_orphan_del(NULL, inode);
6581         }
6582
6583         ret = btrfs_update_inode(trans, root, inode);
6584         if (ret && !err)
6585                 err = ret;
6586
6587         nr = trans->blocks_used;
6588         ret = btrfs_end_transaction_throttle(trans, root);
6589         if (ret && !err)
6590                 err = ret;
6591         btrfs_btree_balance_dirty(root, nr);
6592
6593         return err;
6594 }
6595
6596 /*
6597  * create a new subvolume directory/inode (helper for the ioctl).
6598  */
6599 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6600                              struct btrfs_root *new_root,
6601                              u64 new_dirid, u64 alloc_hint)
6602 {
6603         struct inode *inode;
6604         int err;
6605         u64 index = 0;
6606
6607         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6608                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6609         if (IS_ERR(inode))
6610                 return PTR_ERR(inode);
6611         inode->i_op = &btrfs_dir_inode_operations;
6612         inode->i_fop = &btrfs_dir_file_operations;
6613
6614         inode->i_nlink = 1;
6615         btrfs_i_size_write(inode, 0);
6616
6617         err = btrfs_update_inode(trans, new_root, inode);
6618         BUG_ON(err);
6619
6620         iput(inode);
6621         return 0;
6622 }
6623
6624 /* helper function for file defrag and space balancing.  This
6625  * forces readahead on a given range of bytes in an inode
6626  */
6627 unsigned long btrfs_force_ra(struct address_space *mapping,
6628                               struct file_ra_state *ra, struct file *file,
6629                               pgoff_t offset, pgoff_t last_index)
6630 {
6631         pgoff_t req_size = last_index - offset + 1;
6632
6633         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6634         return offset + req_size;
6635 }
6636
6637 struct inode *btrfs_alloc_inode(struct super_block *sb)
6638 {
6639         struct btrfs_inode *ei;
6640         struct inode *inode;
6641
6642         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6643         if (!ei)
6644                 return NULL;
6645
6646         ei->root = NULL;
6647         ei->space_info = NULL;
6648         ei->generation = 0;
6649         ei->sequence = 0;
6650         ei->last_trans = 0;
6651         ei->last_sub_trans = 0;
6652         ei->logged_trans = 0;
6653         ei->delalloc_bytes = 0;
6654         ei->reserved_bytes = 0;
6655         ei->disk_i_size = 0;
6656         ei->flags = 0;
6657         ei->index_cnt = (u64)-1;
6658         ei->last_unlink_trans = 0;
6659
6660         atomic_set(&ei->outstanding_extents, 0);
6661         atomic_set(&ei->reserved_extents, 0);
6662
6663         ei->ordered_data_close = 0;
6664         ei->orphan_meta_reserved = 0;
6665         ei->dummy_inode = 0;
6666         ei->force_compress = BTRFS_COMPRESS_NONE;
6667
6668         inode = &ei->vfs_inode;
6669         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6670         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6671         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6672         mutex_init(&ei->log_mutex);
6673         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6674         INIT_LIST_HEAD(&ei->i_orphan);
6675         INIT_LIST_HEAD(&ei->delalloc_inodes);
6676         INIT_LIST_HEAD(&ei->ordered_operations);
6677         RB_CLEAR_NODE(&ei->rb_node);
6678
6679         return inode;
6680 }
6681
6682 static void btrfs_i_callback(struct rcu_head *head)
6683 {
6684         struct inode *inode = container_of(head, struct inode, i_rcu);
6685         INIT_LIST_HEAD(&inode->i_dentry);
6686         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6687 }
6688
6689 void btrfs_destroy_inode(struct inode *inode)
6690 {
6691         struct btrfs_ordered_extent *ordered;
6692         struct btrfs_root *root = BTRFS_I(inode)->root;
6693
6694         WARN_ON(!list_empty(&inode->i_dentry));
6695         WARN_ON(inode->i_data.nrpages);
6696         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6697         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6698
6699         /*
6700          * This can happen where we create an inode, but somebody else also
6701          * created the same inode and we need to destroy the one we already
6702          * created.
6703          */
6704         if (!root)
6705                 goto free;
6706
6707         /*
6708          * Make sure we're properly removed from the ordered operation
6709          * lists.
6710          */
6711         smp_mb();
6712         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6713                 spin_lock(&root->fs_info->ordered_extent_lock);
6714                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6715                 spin_unlock(&root->fs_info->ordered_extent_lock);
6716         }
6717
6718         if (root == root->fs_info->tree_root) {
6719                 struct btrfs_block_group_cache *block_group;
6720
6721                 block_group = btrfs_lookup_block_group(root->fs_info,
6722                                                 BTRFS_I(inode)->block_group);
6723                 if (block_group && block_group->inode == inode) {
6724                         spin_lock(&block_group->lock);
6725                         block_group->inode = NULL;
6726                         spin_unlock(&block_group->lock);
6727                         btrfs_put_block_group(block_group);
6728                 } else if (block_group) {
6729                         btrfs_put_block_group(block_group);
6730                 }
6731         }
6732
6733         spin_lock(&root->orphan_lock);
6734         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6735                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6736                        inode->i_ino);
6737                 list_del_init(&BTRFS_I(inode)->i_orphan);
6738         }
6739         spin_unlock(&root->orphan_lock);
6740
6741         while (1) {
6742                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6743                 if (!ordered)
6744                         break;
6745                 else {
6746                         printk(KERN_ERR "btrfs found ordered "
6747                                "extent %llu %llu on inode cleanup\n",
6748                                (unsigned long long)ordered->file_offset,
6749                                (unsigned long long)ordered->len);
6750                         btrfs_remove_ordered_extent(inode, ordered);
6751                         btrfs_put_ordered_extent(ordered);
6752                         btrfs_put_ordered_extent(ordered);
6753                 }
6754         }
6755         inode_tree_del(inode);
6756         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6757 free:
6758         call_rcu(&inode->i_rcu, btrfs_i_callback);
6759 }
6760
6761 int btrfs_drop_inode(struct inode *inode)
6762 {
6763         struct btrfs_root *root = BTRFS_I(inode)->root;
6764
6765         if (btrfs_root_refs(&root->root_item) == 0 &&
6766             root != root->fs_info->tree_root)
6767                 return 1;
6768         else
6769                 return generic_drop_inode(inode);
6770 }
6771
6772 static void init_once(void *foo)
6773 {
6774         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6775
6776         inode_init_once(&ei->vfs_inode);
6777 }
6778
6779 void btrfs_destroy_cachep(void)
6780 {
6781         if (btrfs_inode_cachep)
6782                 kmem_cache_destroy(btrfs_inode_cachep);
6783         if (btrfs_trans_handle_cachep)
6784                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6785         if (btrfs_transaction_cachep)
6786                 kmem_cache_destroy(btrfs_transaction_cachep);
6787         if (btrfs_path_cachep)
6788                 kmem_cache_destroy(btrfs_path_cachep);
6789         if (btrfs_free_space_cachep)
6790                 kmem_cache_destroy(btrfs_free_space_cachep);
6791 }
6792
6793 int btrfs_init_cachep(void)
6794 {
6795         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6796                         sizeof(struct btrfs_inode), 0,
6797                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6798         if (!btrfs_inode_cachep)
6799                 goto fail;
6800
6801         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6802                         sizeof(struct btrfs_trans_handle), 0,
6803                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6804         if (!btrfs_trans_handle_cachep)
6805                 goto fail;
6806
6807         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6808                         sizeof(struct btrfs_transaction), 0,
6809                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6810         if (!btrfs_transaction_cachep)
6811                 goto fail;
6812
6813         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6814                         sizeof(struct btrfs_path), 0,
6815                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6816         if (!btrfs_path_cachep)
6817                 goto fail;
6818
6819         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6820                         sizeof(struct btrfs_free_space), 0,
6821                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6822         if (!btrfs_free_space_cachep)
6823                 goto fail;
6824
6825         return 0;
6826 fail:
6827         btrfs_destroy_cachep();
6828         return -ENOMEM;
6829 }
6830
6831 static int btrfs_getattr(struct vfsmount *mnt,
6832                          struct dentry *dentry, struct kstat *stat)
6833 {
6834         struct inode *inode = dentry->d_inode;
6835         generic_fillattr(inode, stat);
6836         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6837         stat->blksize = PAGE_CACHE_SIZE;
6838         stat->blocks = (inode_get_bytes(inode) +
6839                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6840         return 0;
6841 }
6842
6843 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6844                            struct inode *new_dir, struct dentry *new_dentry)
6845 {
6846         struct btrfs_trans_handle *trans;
6847         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6848         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6849         struct inode *new_inode = new_dentry->d_inode;
6850         struct inode *old_inode = old_dentry->d_inode;
6851         struct timespec ctime = CURRENT_TIME;
6852         u64 index = 0;
6853         u64 root_objectid;
6854         int ret;
6855
6856         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6857                 return -EPERM;
6858
6859         /* we only allow rename subvolume link between subvolumes */
6860         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6861                 return -EXDEV;
6862
6863         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6864             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6865                 return -ENOTEMPTY;
6866
6867         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6868             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6869                 return -ENOTEMPTY;
6870         /*
6871          * we're using rename to replace one file with another.
6872          * and the replacement file is large.  Start IO on it now so
6873          * we don't add too much work to the end of the transaction
6874          */
6875         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6876             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6877                 filemap_flush(old_inode->i_mapping);
6878
6879         /* close the racy window with snapshot create/destroy ioctl */
6880         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6881                 down_read(&root->fs_info->subvol_sem);
6882         /*
6883          * We want to reserve the absolute worst case amount of items.  So if
6884          * both inodes are subvols and we need to unlink them then that would
6885          * require 4 item modifications, but if they are both normal inodes it
6886          * would require 5 item modifications, so we'll assume their normal
6887          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6888          * should cover the worst case number of items we'll modify.
6889          */
6890         trans = btrfs_start_transaction(root, 20);
6891         if (IS_ERR(trans))
6892                 return PTR_ERR(trans);
6893
6894         btrfs_set_trans_block_group(trans, new_dir);
6895
6896         if (dest != root)
6897                 btrfs_record_root_in_trans(trans, dest);
6898
6899         ret = btrfs_set_inode_index(new_dir, &index);
6900         if (ret)
6901                 goto out_fail;
6902
6903         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6904                 /* force full log commit if subvolume involved. */
6905                 root->fs_info->last_trans_log_full_commit = trans->transid;
6906         } else {
6907                 ret = btrfs_insert_inode_ref(trans, dest,
6908                                              new_dentry->d_name.name,
6909                                              new_dentry->d_name.len,
6910                                              old_inode->i_ino,
6911                                              new_dir->i_ino, index);
6912                 if (ret)
6913                         goto out_fail;
6914                 /*
6915                  * this is an ugly little race, but the rename is required
6916                  * to make sure that if we crash, the inode is either at the
6917                  * old name or the new one.  pinning the log transaction lets
6918                  * us make sure we don't allow a log commit to come in after
6919                  * we unlink the name but before we add the new name back in.
6920                  */
6921                 btrfs_pin_log_trans(root);
6922         }
6923         /*
6924          * make sure the inode gets flushed if it is replacing
6925          * something.
6926          */
6927         if (new_inode && new_inode->i_size &&
6928             old_inode && S_ISREG(old_inode->i_mode)) {
6929                 btrfs_add_ordered_operation(trans, root, old_inode);
6930         }
6931
6932         old_dir->i_ctime = old_dir->i_mtime = ctime;
6933         new_dir->i_ctime = new_dir->i_mtime = ctime;
6934         old_inode->i_ctime = ctime;
6935
6936         if (old_dentry->d_parent != new_dentry->d_parent)
6937                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6938
6939         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6940                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6941                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6942                                         old_dentry->d_name.name,
6943                                         old_dentry->d_name.len);
6944         } else {
6945                 btrfs_inc_nlink(old_dentry->d_inode);
6946                 ret = btrfs_unlink_inode(trans, root, old_dir,
6947                                          old_dentry->d_inode,
6948                                          old_dentry->d_name.name,
6949                                          old_dentry->d_name.len);
6950         }
6951         BUG_ON(ret);
6952
6953         if (new_inode) {
6954                 new_inode->i_ctime = CURRENT_TIME;
6955                 if (unlikely(new_inode->i_ino ==
6956                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6957                         root_objectid = BTRFS_I(new_inode)->location.objectid;
6958                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
6959                                                 root_objectid,
6960                                                 new_dentry->d_name.name,
6961                                                 new_dentry->d_name.len);
6962                         BUG_ON(new_inode->i_nlink == 0);
6963                 } else {
6964                         ret = btrfs_unlink_inode(trans, dest, new_dir,
6965                                                  new_dentry->d_inode,
6966                                                  new_dentry->d_name.name,
6967                                                  new_dentry->d_name.len);
6968                 }
6969                 BUG_ON(ret);
6970                 if (new_inode->i_nlink == 0) {
6971                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6972                         BUG_ON(ret);
6973                 }
6974         }
6975
6976         ret = btrfs_add_link(trans, new_dir, old_inode,
6977                              new_dentry->d_name.name,
6978                              new_dentry->d_name.len, 0, index);
6979         BUG_ON(ret);
6980
6981         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6982                 struct dentry *parent = dget_parent(new_dentry);
6983                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6984                 dput(parent);
6985                 btrfs_end_log_trans(root);
6986         }
6987 out_fail:
6988         btrfs_end_transaction_throttle(trans, root);
6989
6990         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6991                 up_read(&root->fs_info->subvol_sem);
6992
6993         return ret;
6994 }
6995
6996 /*
6997  * some fairly slow code that needs optimization. This walks the list
6998  * of all the inodes with pending delalloc and forces them to disk.
6999  */
7000 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7001 {
7002         struct list_head *head = &root->fs_info->delalloc_inodes;
7003         struct btrfs_inode *binode;
7004         struct inode *inode;
7005
7006         if (root->fs_info->sb->s_flags & MS_RDONLY)
7007                 return -EROFS;
7008
7009         spin_lock(&root->fs_info->delalloc_lock);
7010         while (!list_empty(head)) {
7011                 binode = list_entry(head->next, struct btrfs_inode,
7012                                     delalloc_inodes);
7013                 inode = igrab(&binode->vfs_inode);
7014                 if (!inode)
7015                         list_del_init(&binode->delalloc_inodes);
7016                 spin_unlock(&root->fs_info->delalloc_lock);
7017                 if (inode) {
7018                         filemap_flush(inode->i_mapping);
7019                         if (delay_iput)
7020                                 btrfs_add_delayed_iput(inode);
7021                         else
7022                                 iput(inode);
7023                 }
7024                 cond_resched();
7025                 spin_lock(&root->fs_info->delalloc_lock);
7026         }
7027         spin_unlock(&root->fs_info->delalloc_lock);
7028
7029         /* the filemap_flush will queue IO into the worker threads, but
7030          * we have to make sure the IO is actually started and that
7031          * ordered extents get created before we return
7032          */
7033         atomic_inc(&root->fs_info->async_submit_draining);
7034         while (atomic_read(&root->fs_info->nr_async_submits) ||
7035               atomic_read(&root->fs_info->async_delalloc_pages)) {
7036                 wait_event(root->fs_info->async_submit_wait,
7037                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7038                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7039         }
7040         atomic_dec(&root->fs_info->async_submit_draining);
7041         return 0;
7042 }
7043
7044 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7045                                    int sync)
7046 {
7047         struct btrfs_inode *binode;
7048         struct inode *inode = NULL;
7049
7050         spin_lock(&root->fs_info->delalloc_lock);
7051         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7052                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7053                                     struct btrfs_inode, delalloc_inodes);
7054                 inode = igrab(&binode->vfs_inode);
7055                 if (inode) {
7056                         list_move_tail(&binode->delalloc_inodes,
7057                                        &root->fs_info->delalloc_inodes);
7058                         break;
7059                 }
7060
7061                 list_del_init(&binode->delalloc_inodes);
7062                 cond_resched_lock(&root->fs_info->delalloc_lock);
7063         }
7064         spin_unlock(&root->fs_info->delalloc_lock);
7065
7066         if (inode) {
7067                 if (sync) {
7068                         filemap_write_and_wait(inode->i_mapping);
7069                         /*
7070                          * We have to do this because compression doesn't
7071                          * actually set PG_writeback until it submits the pages
7072                          * for IO, which happens in an async thread, so we could
7073                          * race and not actually wait for any writeback pages
7074                          * because they've not been submitted yet.  Technically
7075                          * this could still be the case for the ordered stuff
7076                          * since the async thread may not have started to do its
7077                          * work yet.  If this becomes the case then we need to
7078                          * figure out a way to make sure that in writepage we
7079                          * wait for any async pages to be submitted before
7080                          * returning so that fdatawait does what its supposed to
7081                          * do.
7082                          */
7083                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7084                 } else {
7085                         filemap_flush(inode->i_mapping);
7086                 }
7087                 if (delay_iput)
7088                         btrfs_add_delayed_iput(inode);
7089                 else
7090                         iput(inode);
7091                 return 1;
7092         }
7093         return 0;
7094 }
7095
7096 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7097                          const char *symname)
7098 {
7099         struct btrfs_trans_handle *trans;
7100         struct btrfs_root *root = BTRFS_I(dir)->root;
7101         struct btrfs_path *path;
7102         struct btrfs_key key;
7103         struct inode *inode = NULL;
7104         int err;
7105         int drop_inode = 0;
7106         u64 objectid;
7107         u64 index = 0 ;
7108         int name_len;
7109         int datasize;
7110         unsigned long ptr;
7111         struct btrfs_file_extent_item *ei;
7112         struct extent_buffer *leaf;
7113         unsigned long nr = 0;
7114
7115         name_len = strlen(symname) + 1;
7116         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7117                 return -ENAMETOOLONG;
7118
7119         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7120         if (err)
7121                 return err;
7122         /*
7123          * 2 items for inode item and ref
7124          * 2 items for dir items
7125          * 1 item for xattr if selinux is on
7126          */
7127         trans = btrfs_start_transaction(root, 5);
7128         if (IS_ERR(trans))
7129                 return PTR_ERR(trans);
7130
7131         btrfs_set_trans_block_group(trans, dir);
7132
7133         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7134                                 dentry->d_name.len, dir->i_ino, objectid,
7135                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7136                                 &index);
7137         err = PTR_ERR(inode);
7138         if (IS_ERR(inode))
7139                 goto out_unlock;
7140
7141         err = btrfs_init_inode_security(trans, inode, dir);
7142         if (err) {
7143                 drop_inode = 1;
7144                 goto out_unlock;
7145         }
7146
7147         btrfs_set_trans_block_group(trans, inode);
7148         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7149         if (err)
7150                 drop_inode = 1;
7151         else {
7152                 inode->i_mapping->a_ops = &btrfs_aops;
7153                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7154                 inode->i_fop = &btrfs_file_operations;
7155                 inode->i_op = &btrfs_file_inode_operations;
7156                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7157         }
7158         btrfs_update_inode_block_group(trans, inode);
7159         btrfs_update_inode_block_group(trans, dir);
7160         if (drop_inode)
7161                 goto out_unlock;
7162
7163         path = btrfs_alloc_path();
7164         BUG_ON(!path);
7165         key.objectid = inode->i_ino;
7166         key.offset = 0;
7167         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7168         datasize = btrfs_file_extent_calc_inline_size(name_len);
7169         err = btrfs_insert_empty_item(trans, root, path, &key,
7170                                       datasize);
7171         if (err) {
7172                 drop_inode = 1;
7173                 goto out_unlock;
7174         }
7175         leaf = path->nodes[0];
7176         ei = btrfs_item_ptr(leaf, path->slots[0],
7177                             struct btrfs_file_extent_item);
7178         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7179         btrfs_set_file_extent_type(leaf, ei,
7180                                    BTRFS_FILE_EXTENT_INLINE);
7181         btrfs_set_file_extent_encryption(leaf, ei, 0);
7182         btrfs_set_file_extent_compression(leaf, ei, 0);
7183         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7184         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7185
7186         ptr = btrfs_file_extent_inline_start(ei);
7187         write_extent_buffer(leaf, symname, ptr, name_len);
7188         btrfs_mark_buffer_dirty(leaf);
7189         btrfs_free_path(path);
7190
7191         inode->i_op = &btrfs_symlink_inode_operations;
7192         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7193         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7194         inode_set_bytes(inode, name_len);
7195         btrfs_i_size_write(inode, name_len - 1);
7196         err = btrfs_update_inode(trans, root, inode);
7197         if (err)
7198                 drop_inode = 1;
7199
7200 out_unlock:
7201         nr = trans->blocks_used;
7202         btrfs_end_transaction_throttle(trans, root);
7203         if (drop_inode) {
7204                 inode_dec_link_count(inode);
7205                 iput(inode);
7206         }
7207         btrfs_btree_balance_dirty(root, nr);
7208         return err;
7209 }
7210
7211 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7212                                        u64 start, u64 num_bytes, u64 min_size,
7213                                        loff_t actual_len, u64 *alloc_hint,
7214                                        struct btrfs_trans_handle *trans)
7215 {
7216         struct btrfs_root *root = BTRFS_I(inode)->root;
7217         struct btrfs_key ins;
7218         u64 cur_offset = start;
7219         u64 i_size;
7220         int ret = 0;
7221         bool own_trans = true;
7222
7223         if (trans)
7224                 own_trans = false;
7225         while (num_bytes > 0) {
7226                 if (own_trans) {
7227                         trans = btrfs_start_transaction(root, 3);
7228                         if (IS_ERR(trans)) {
7229                                 ret = PTR_ERR(trans);
7230                                 break;
7231                         }
7232                 }
7233
7234                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7235                                            0, *alloc_hint, (u64)-1, &ins, 1);
7236                 if (ret) {
7237                         if (own_trans)
7238                                 btrfs_end_transaction(trans, root);
7239                         break;
7240                 }
7241
7242                 ret = insert_reserved_file_extent(trans, inode,
7243                                                   cur_offset, ins.objectid,
7244                                                   ins.offset, ins.offset,
7245                                                   ins.offset, 0, 0, 0,
7246                                                   BTRFS_FILE_EXTENT_PREALLOC);
7247                 BUG_ON(ret);
7248                 btrfs_drop_extent_cache(inode, cur_offset,
7249                                         cur_offset + ins.offset -1, 0);
7250
7251                 num_bytes -= ins.offset;
7252                 cur_offset += ins.offset;
7253                 *alloc_hint = ins.objectid + ins.offset;
7254
7255                 inode->i_ctime = CURRENT_TIME;
7256                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7257                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7258                     (actual_len > inode->i_size) &&
7259                     (cur_offset > inode->i_size)) {
7260                         if (cur_offset > actual_len)
7261                                 i_size = actual_len;
7262                         else
7263                                 i_size = cur_offset;
7264                         i_size_write(inode, i_size);
7265                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7266                 }
7267
7268                 ret = btrfs_update_inode(trans, root, inode);
7269                 BUG_ON(ret);
7270
7271                 if (own_trans)
7272                         btrfs_end_transaction(trans, root);
7273         }
7274         return ret;
7275 }
7276
7277 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7278                               u64 start, u64 num_bytes, u64 min_size,
7279                               loff_t actual_len, u64 *alloc_hint)
7280 {
7281         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7282                                            min_size, actual_len, alloc_hint,
7283                                            NULL);
7284 }
7285
7286 int btrfs_prealloc_file_range_trans(struct inode *inode,
7287                                     struct btrfs_trans_handle *trans, int mode,
7288                                     u64 start, u64 num_bytes, u64 min_size,
7289                                     loff_t actual_len, u64 *alloc_hint)
7290 {
7291         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7292                                            min_size, actual_len, alloc_hint, trans);
7293 }
7294
7295 static int btrfs_set_page_dirty(struct page *page)
7296 {
7297         return __set_page_dirty_nobuffers(page);
7298 }
7299
7300 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7301 {
7302         struct btrfs_root *root = BTRFS_I(inode)->root;
7303
7304         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7305                 return -EROFS;
7306         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7307                 return -EACCES;
7308         return generic_permission(inode, mask, flags, btrfs_check_acl);
7309 }
7310
7311 static const struct inode_operations btrfs_dir_inode_operations = {
7312         .getattr        = btrfs_getattr,
7313         .lookup         = btrfs_lookup,
7314         .create         = btrfs_create,
7315         .unlink         = btrfs_unlink,
7316         .link           = btrfs_link,
7317         .mkdir          = btrfs_mkdir,
7318         .rmdir          = btrfs_rmdir,
7319         .rename         = btrfs_rename,
7320         .symlink        = btrfs_symlink,
7321         .setattr        = btrfs_setattr,
7322         .mknod          = btrfs_mknod,
7323         .setxattr       = btrfs_setxattr,
7324         .getxattr       = btrfs_getxattr,
7325         .listxattr      = btrfs_listxattr,
7326         .removexattr    = btrfs_removexattr,
7327         .permission     = btrfs_permission,
7328 };
7329 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7330         .lookup         = btrfs_lookup,
7331         .permission     = btrfs_permission,
7332 };
7333
7334 static const struct file_operations btrfs_dir_file_operations = {
7335         .llseek         = generic_file_llseek,
7336         .read           = generic_read_dir,
7337         .readdir        = btrfs_real_readdir,
7338         .unlocked_ioctl = btrfs_ioctl,
7339 #ifdef CONFIG_COMPAT
7340         .compat_ioctl   = btrfs_ioctl,
7341 #endif
7342         .release        = btrfs_release_file,
7343         .fsync          = btrfs_sync_file,
7344 };
7345
7346 static struct extent_io_ops btrfs_extent_io_ops = {
7347         .fill_delalloc = run_delalloc_range,
7348         .submit_bio_hook = btrfs_submit_bio_hook,
7349         .merge_bio_hook = btrfs_merge_bio_hook,
7350         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7351         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7352         .writepage_start_hook = btrfs_writepage_start_hook,
7353         .readpage_io_failed_hook = btrfs_io_failed_hook,
7354         .set_bit_hook = btrfs_set_bit_hook,
7355         .clear_bit_hook = btrfs_clear_bit_hook,
7356         .merge_extent_hook = btrfs_merge_extent_hook,
7357         .split_extent_hook = btrfs_split_extent_hook,
7358 };
7359
7360 /*
7361  * btrfs doesn't support the bmap operation because swapfiles
7362  * use bmap to make a mapping of extents in the file.  They assume
7363  * these extents won't change over the life of the file and they
7364  * use the bmap result to do IO directly to the drive.
7365  *
7366  * the btrfs bmap call would return logical addresses that aren't
7367  * suitable for IO and they also will change frequently as COW
7368  * operations happen.  So, swapfile + btrfs == corruption.
7369  *
7370  * For now we're avoiding this by dropping bmap.
7371  */
7372 static const struct address_space_operations btrfs_aops = {
7373         .readpage       = btrfs_readpage,
7374         .writepage      = btrfs_writepage,
7375         .writepages     = btrfs_writepages,
7376         .readpages      = btrfs_readpages,
7377         .sync_page      = block_sync_page,
7378         .direct_IO      = btrfs_direct_IO,
7379         .invalidatepage = btrfs_invalidatepage,
7380         .releasepage    = btrfs_releasepage,
7381         .set_page_dirty = btrfs_set_page_dirty,
7382         .error_remove_page = generic_error_remove_page,
7383 };
7384
7385 static const struct address_space_operations btrfs_symlink_aops = {
7386         .readpage       = btrfs_readpage,
7387         .writepage      = btrfs_writepage,
7388         .invalidatepage = btrfs_invalidatepage,
7389         .releasepage    = btrfs_releasepage,
7390 };
7391
7392 static const struct inode_operations btrfs_file_inode_operations = {
7393         .getattr        = btrfs_getattr,
7394         .setattr        = btrfs_setattr,
7395         .setxattr       = btrfs_setxattr,
7396         .getxattr       = btrfs_getxattr,
7397         .listxattr      = btrfs_listxattr,
7398         .removexattr    = btrfs_removexattr,
7399         .permission     = btrfs_permission,
7400         .fiemap         = btrfs_fiemap,
7401 };
7402 static const struct inode_operations btrfs_special_inode_operations = {
7403         .getattr        = btrfs_getattr,
7404         .setattr        = btrfs_setattr,
7405         .permission     = btrfs_permission,
7406         .setxattr       = btrfs_setxattr,
7407         .getxattr       = btrfs_getxattr,
7408         .listxattr      = btrfs_listxattr,
7409         .removexattr    = btrfs_removexattr,
7410 };
7411 static const struct inode_operations btrfs_symlink_inode_operations = {
7412         .readlink       = generic_readlink,
7413         .follow_link    = page_follow_link_light,
7414         .put_link       = page_put_link,
7415         .getattr        = btrfs_getattr,
7416         .permission     = btrfs_permission,
7417         .setxattr       = btrfs_setxattr,
7418         .getxattr       = btrfs_getxattr,
7419         .listxattr      = btrfs_listxattr,
7420         .removexattr    = btrfs_removexattr,
7421 };
7422
7423 const struct dentry_operations btrfs_dentry_operations = {
7424         .d_delete       = btrfs_dentry_delete,
7425 };