1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
40 #include "compression.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
49 struct btrfs_iget_args {
50 struct btrfs_key *location;
51 struct btrfs_root *root;
54 struct btrfs_dio_data {
56 u64 unsubmitted_oe_range_start;
57 u64 unsubmitted_oe_range_end;
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static const struct extent_io_ops btrfs_extent_io_ops;
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 struct kmem_cache *btrfs_free_space_cachep;
76 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
87 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
88 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
89 static noinline int cow_file_range(struct inode *inode,
90 struct page *locked_page,
91 u64 start, u64 end, u64 delalloc_end,
92 int *page_started, unsigned long *nr_written,
93 int unlock, struct btrfs_dedupe_hash *hash);
94 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
95 u64 orig_start, u64 block_start,
96 u64 block_len, u64 orig_block_len,
97 u64 ram_bytes, int compress_type,
100 static void __endio_write_update_ordered(struct inode *inode,
101 const u64 offset, const u64 bytes,
102 const bool uptodate);
105 * Cleanup all submitted ordered extents in specified range to handle errors
106 * from the fill_dellaloc() callback.
108 * NOTE: caller must ensure that when an error happens, it can not call
109 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
110 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
111 * to be released, which we want to happen only when finishing the ordered
112 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
113 * fill_delalloc() callback already does proper cleanup for the first page of
114 * the range, that is, it invokes the callback writepage_end_io_hook() for the
115 * range of the first page.
117 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
121 unsigned long index = offset >> PAGE_SHIFT;
122 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
125 while (index <= end_index) {
126 page = find_get_page(inode->i_mapping, index);
130 ClearPagePrivate2(page);
133 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
134 bytes - PAGE_SIZE, false);
137 static int btrfs_dirty_inode(struct inode *inode);
139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
140 void btrfs_test_inode_set_ops(struct inode *inode)
142 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
147 struct inode *inode, struct inode *dir,
148 const struct qstr *qstr)
152 err = btrfs_init_acl(trans, inode, dir);
154 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
159 * this does all the hard work for inserting an inline extent into
160 * the btree. The caller should have done a btrfs_drop_extents so that
161 * no overlapping inline items exist in the btree
163 static int insert_inline_extent(struct btrfs_trans_handle *trans,
164 struct btrfs_path *path, int extent_inserted,
165 struct btrfs_root *root, struct inode *inode,
166 u64 start, size_t size, size_t compressed_size,
168 struct page **compressed_pages)
170 struct extent_buffer *leaf;
171 struct page *page = NULL;
174 struct btrfs_file_extent_item *ei;
176 size_t cur_size = size;
177 unsigned long offset;
179 if (compressed_size && compressed_pages)
180 cur_size = compressed_size;
182 inode_add_bytes(inode, size);
184 if (!extent_inserted) {
185 struct btrfs_key key;
188 key.objectid = btrfs_ino(BTRFS_I(inode));
190 key.type = BTRFS_EXTENT_DATA_KEY;
192 datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 path->leave_spinning = 1;
194 ret = btrfs_insert_empty_item(trans, root, path, &key,
199 leaf = path->nodes[0];
200 ei = btrfs_item_ptr(leaf, path->slots[0],
201 struct btrfs_file_extent_item);
202 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 btrfs_set_file_extent_encryption(leaf, ei, 0);
205 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 ptr = btrfs_file_extent_inline_start(ei);
209 if (compress_type != BTRFS_COMPRESS_NONE) {
212 while (compressed_size > 0) {
213 cpage = compressed_pages[i];
214 cur_size = min_t(unsigned long, compressed_size,
217 kaddr = kmap_atomic(cpage);
218 write_extent_buffer(leaf, kaddr, ptr, cur_size);
219 kunmap_atomic(kaddr);
223 compressed_size -= cur_size;
225 btrfs_set_file_extent_compression(leaf, ei,
228 page = find_get_page(inode->i_mapping,
229 start >> PAGE_SHIFT);
230 btrfs_set_file_extent_compression(leaf, ei, 0);
231 kaddr = kmap_atomic(page);
232 offset = start & (PAGE_SIZE - 1);
233 write_extent_buffer(leaf, kaddr + offset, ptr, size);
234 kunmap_atomic(kaddr);
237 btrfs_mark_buffer_dirty(leaf);
238 btrfs_release_path(path);
241 * we're an inline extent, so nobody can
242 * extend the file past i_size without locking
243 * a page we already have locked.
245 * We must do any isize and inode updates
246 * before we unlock the pages. Otherwise we
247 * could end up racing with unlink.
249 BTRFS_I(inode)->disk_i_size = inode->i_size;
250 ret = btrfs_update_inode(trans, root, inode);
258 * conditionally insert an inline extent into the file. This
259 * does the checks required to make sure the data is small enough
260 * to fit as an inline extent.
262 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
263 u64 end, size_t compressed_size,
265 struct page **compressed_pages)
267 struct btrfs_root *root = BTRFS_I(inode)->root;
268 struct btrfs_fs_info *fs_info = root->fs_info;
269 struct btrfs_trans_handle *trans;
270 u64 isize = i_size_read(inode);
271 u64 actual_end = min(end + 1, isize);
272 u64 inline_len = actual_end - start;
273 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
274 u64 data_len = inline_len;
276 struct btrfs_path *path;
277 int extent_inserted = 0;
278 u32 extent_item_size;
281 data_len = compressed_size;
284 actual_end > fs_info->sectorsize ||
285 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
287 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
289 data_len > fs_info->max_inline) {
293 path = btrfs_alloc_path();
297 trans = btrfs_join_transaction(root);
299 btrfs_free_path(path);
300 return PTR_ERR(trans);
302 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
304 if (compressed_size && compressed_pages)
305 extent_item_size = btrfs_file_extent_calc_inline_size(
308 extent_item_size = btrfs_file_extent_calc_inline_size(
311 ret = __btrfs_drop_extents(trans, root, inode, path,
312 start, aligned_end, NULL,
313 1, 1, extent_item_size, &extent_inserted);
315 btrfs_abort_transaction(trans, ret);
319 if (isize > actual_end)
320 inline_len = min_t(u64, isize, actual_end);
321 ret = insert_inline_extent(trans, path, extent_inserted,
323 inline_len, compressed_size,
324 compress_type, compressed_pages);
325 if (ret && ret != -ENOSPC) {
326 btrfs_abort_transaction(trans, ret);
328 } else if (ret == -ENOSPC) {
333 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
334 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
337 * Don't forget to free the reserved space, as for inlined extent
338 * it won't count as data extent, free them directly here.
339 * And at reserve time, it's always aligned to page size, so
340 * just free one page here.
342 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
343 btrfs_free_path(path);
344 btrfs_end_transaction(trans);
348 struct async_extent {
353 unsigned long nr_pages;
355 struct list_head list;
360 struct btrfs_root *root;
361 struct page *locked_page;
364 unsigned int write_flags;
365 struct list_head extents;
366 struct btrfs_work work;
369 static noinline int add_async_extent(struct async_cow *cow,
370 u64 start, u64 ram_size,
373 unsigned long nr_pages,
376 struct async_extent *async_extent;
378 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
379 BUG_ON(!async_extent); /* -ENOMEM */
380 async_extent->start = start;
381 async_extent->ram_size = ram_size;
382 async_extent->compressed_size = compressed_size;
383 async_extent->pages = pages;
384 async_extent->nr_pages = nr_pages;
385 async_extent->compress_type = compress_type;
386 list_add_tail(&async_extent->list, &cow->extents);
390 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
392 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
395 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
398 if (BTRFS_I(inode)->defrag_compress)
400 /* bad compression ratios */
401 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
403 if (btrfs_test_opt(fs_info, COMPRESS) ||
404 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
405 BTRFS_I(inode)->prop_compress)
406 return btrfs_compress_heuristic(inode, start, end);
410 static inline void inode_should_defrag(struct btrfs_inode *inode,
411 u64 start, u64 end, u64 num_bytes, u64 small_write)
413 /* If this is a small write inside eof, kick off a defrag */
414 if (num_bytes < small_write &&
415 (start > 0 || end + 1 < inode->disk_i_size))
416 btrfs_add_inode_defrag(NULL, inode);
420 * we create compressed extents in two phases. The first
421 * phase compresses a range of pages that have already been
422 * locked (both pages and state bits are locked).
424 * This is done inside an ordered work queue, and the compression
425 * is spread across many cpus. The actual IO submission is step
426 * two, and the ordered work queue takes care of making sure that
427 * happens in the same order things were put onto the queue by
428 * writepages and friends.
430 * If this code finds it can't get good compression, it puts an
431 * entry onto the work queue to write the uncompressed bytes. This
432 * makes sure that both compressed inodes and uncompressed inodes
433 * are written in the same order that the flusher thread sent them
436 static noinline void compress_file_range(struct inode *inode,
437 struct page *locked_page,
439 struct async_cow *async_cow,
442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
443 u64 blocksize = fs_info->sectorsize;
445 u64 isize = i_size_read(inode);
447 struct page **pages = NULL;
448 unsigned long nr_pages;
449 unsigned long total_compressed = 0;
450 unsigned long total_in = 0;
453 int compress_type = fs_info->compress_type;
456 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
459 actual_end = min_t(u64, isize, end + 1);
462 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
463 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
464 nr_pages = min_t(unsigned long, nr_pages,
465 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
468 * we don't want to send crud past the end of i_size through
469 * compression, that's just a waste of CPU time. So, if the
470 * end of the file is before the start of our current
471 * requested range of bytes, we bail out to the uncompressed
472 * cleanup code that can deal with all of this.
474 * It isn't really the fastest way to fix things, but this is a
475 * very uncommon corner.
477 if (actual_end <= start)
478 goto cleanup_and_bail_uncompressed;
480 total_compressed = actual_end - start;
483 * skip compression for a small file range(<=blocksize) that
484 * isn't an inline extent, since it doesn't save disk space at all.
486 if (total_compressed <= blocksize &&
487 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
488 goto cleanup_and_bail_uncompressed;
490 total_compressed = min_t(unsigned long, total_compressed,
491 BTRFS_MAX_UNCOMPRESSED);
496 * we do compression for mount -o compress and when the
497 * inode has not been flagged as nocompress. This flag can
498 * change at any time if we discover bad compression ratios.
500 if (inode_need_compress(inode, start, end)) {
502 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
504 /* just bail out to the uncompressed code */
508 if (BTRFS_I(inode)->defrag_compress)
509 compress_type = BTRFS_I(inode)->defrag_compress;
510 else if (BTRFS_I(inode)->prop_compress)
511 compress_type = BTRFS_I(inode)->prop_compress;
514 * we need to call clear_page_dirty_for_io on each
515 * page in the range. Otherwise applications with the file
516 * mmap'd can wander in and change the page contents while
517 * we are compressing them.
519 * If the compression fails for any reason, we set the pages
520 * dirty again later on.
522 * Note that the remaining part is redirtied, the start pointer
523 * has moved, the end is the original one.
526 extent_range_clear_dirty_for_io(inode, start, end);
530 /* Compression level is applied here and only here */
531 ret = btrfs_compress_pages(
532 compress_type | (fs_info->compress_level << 4),
533 inode->i_mapping, start,
540 unsigned long offset = total_compressed &
542 struct page *page = pages[nr_pages - 1];
545 /* zero the tail end of the last page, we might be
546 * sending it down to disk
549 kaddr = kmap_atomic(page);
550 memset(kaddr + offset, 0,
552 kunmap_atomic(kaddr);
559 /* lets try to make an inline extent */
560 if (ret || total_in < actual_end) {
561 /* we didn't compress the entire range, try
562 * to make an uncompressed inline extent.
564 ret = cow_file_range_inline(inode, start, end, 0,
565 BTRFS_COMPRESS_NONE, NULL);
567 /* try making a compressed inline extent */
568 ret = cow_file_range_inline(inode, start, end,
570 compress_type, pages);
573 unsigned long clear_flags = EXTENT_DELALLOC |
574 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
575 EXTENT_DO_ACCOUNTING;
576 unsigned long page_error_op;
578 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
581 * inline extent creation worked or returned error,
582 * we don't need to create any more async work items.
583 * Unlock and free up our temp pages.
585 * We use DO_ACCOUNTING here because we need the
586 * delalloc_release_metadata to be done _after_ we drop
587 * our outstanding extent for clearing delalloc for this
590 extent_clear_unlock_delalloc(inode, start, end, end,
603 * we aren't doing an inline extent round the compressed size
604 * up to a block size boundary so the allocator does sane
607 total_compressed = ALIGN(total_compressed, blocksize);
610 * one last check to make sure the compression is really a
611 * win, compare the page count read with the blocks on disk,
612 * compression must free at least one sector size
614 total_in = ALIGN(total_in, PAGE_SIZE);
615 if (total_compressed + blocksize <= total_in) {
619 * The async work queues will take care of doing actual
620 * allocation on disk for these compressed pages, and
621 * will submit them to the elevator.
623 add_async_extent(async_cow, start, total_in,
624 total_compressed, pages, nr_pages,
627 if (start + total_in < end) {
638 * the compression code ran but failed to make things smaller,
639 * free any pages it allocated and our page pointer array
641 for (i = 0; i < nr_pages; i++) {
642 WARN_ON(pages[i]->mapping);
647 total_compressed = 0;
650 /* flag the file so we don't compress in the future */
651 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
652 !(BTRFS_I(inode)->prop_compress)) {
653 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
656 cleanup_and_bail_uncompressed:
658 * No compression, but we still need to write the pages in the file
659 * we've been given so far. redirty the locked page if it corresponds
660 * to our extent and set things up for the async work queue to run
661 * cow_file_range to do the normal delalloc dance.
663 if (page_offset(locked_page) >= start &&
664 page_offset(locked_page) <= end)
665 __set_page_dirty_nobuffers(locked_page);
666 /* unlocked later on in the async handlers */
669 extent_range_redirty_for_io(inode, start, end);
670 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
671 BTRFS_COMPRESS_NONE);
677 for (i = 0; i < nr_pages; i++) {
678 WARN_ON(pages[i]->mapping);
684 static void free_async_extent_pages(struct async_extent *async_extent)
688 if (!async_extent->pages)
691 for (i = 0; i < async_extent->nr_pages; i++) {
692 WARN_ON(async_extent->pages[i]->mapping);
693 put_page(async_extent->pages[i]);
695 kfree(async_extent->pages);
696 async_extent->nr_pages = 0;
697 async_extent->pages = NULL;
701 * phase two of compressed writeback. This is the ordered portion
702 * of the code, which only gets called in the order the work was
703 * queued. We walk all the async extents created by compress_file_range
704 * and send them down to the disk.
706 static noinline void submit_compressed_extents(struct inode *inode,
707 struct async_cow *async_cow)
709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
710 struct async_extent *async_extent;
712 struct btrfs_key ins;
713 struct extent_map *em;
714 struct btrfs_root *root = BTRFS_I(inode)->root;
715 struct extent_io_tree *io_tree;
719 while (!list_empty(&async_cow->extents)) {
720 async_extent = list_entry(async_cow->extents.next,
721 struct async_extent, list);
722 list_del(&async_extent->list);
724 io_tree = &BTRFS_I(inode)->io_tree;
727 /* did the compression code fall back to uncompressed IO? */
728 if (!async_extent->pages) {
729 int page_started = 0;
730 unsigned long nr_written = 0;
732 lock_extent(io_tree, async_extent->start,
733 async_extent->start +
734 async_extent->ram_size - 1);
736 /* allocate blocks */
737 ret = cow_file_range(inode, async_cow->locked_page,
739 async_extent->start +
740 async_extent->ram_size - 1,
741 async_extent->start +
742 async_extent->ram_size - 1,
743 &page_started, &nr_written, 0,
749 * if page_started, cow_file_range inserted an
750 * inline extent and took care of all the unlocking
751 * and IO for us. Otherwise, we need to submit
752 * all those pages down to the drive.
754 if (!page_started && !ret)
755 extent_write_locked_range(inode,
757 async_extent->start +
758 async_extent->ram_size - 1,
761 unlock_page(async_cow->locked_page);
767 lock_extent(io_tree, async_extent->start,
768 async_extent->start + async_extent->ram_size - 1);
770 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771 async_extent->compressed_size,
772 async_extent->compressed_size,
773 0, alloc_hint, &ins, 1, 1);
775 free_async_extent_pages(async_extent);
777 if (ret == -ENOSPC) {
778 unlock_extent(io_tree, async_extent->start,
779 async_extent->start +
780 async_extent->ram_size - 1);
783 * we need to redirty the pages if we decide to
784 * fallback to uncompressed IO, otherwise we
785 * will not submit these pages down to lower
788 extent_range_redirty_for_io(inode,
790 async_extent->start +
791 async_extent->ram_size - 1);
798 * here we're doing allocation and writeback of the
801 em = create_io_em(inode, async_extent->start,
802 async_extent->ram_size, /* len */
803 async_extent->start, /* orig_start */
804 ins.objectid, /* block_start */
805 ins.offset, /* block_len */
806 ins.offset, /* orig_block_len */
807 async_extent->ram_size, /* ram_bytes */
808 async_extent->compress_type,
809 BTRFS_ORDERED_COMPRESSED);
811 /* ret value is not necessary due to void function */
812 goto out_free_reserve;
815 ret = btrfs_add_ordered_extent_compress(inode,
818 async_extent->ram_size,
820 BTRFS_ORDERED_COMPRESSED,
821 async_extent->compress_type);
823 btrfs_drop_extent_cache(BTRFS_I(inode),
825 async_extent->start +
826 async_extent->ram_size - 1, 0);
827 goto out_free_reserve;
829 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
832 * clear dirty, set writeback and unlock the pages.
834 extent_clear_unlock_delalloc(inode, async_extent->start,
835 async_extent->start +
836 async_extent->ram_size - 1,
837 async_extent->start +
838 async_extent->ram_size - 1,
839 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
840 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
842 if (btrfs_submit_compressed_write(inode,
844 async_extent->ram_size,
846 ins.offset, async_extent->pages,
847 async_extent->nr_pages,
848 async_cow->write_flags)) {
849 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
850 struct page *p = async_extent->pages[0];
851 const u64 start = async_extent->start;
852 const u64 end = start + async_extent->ram_size - 1;
854 p->mapping = inode->i_mapping;
855 tree->ops->writepage_end_io_hook(p, start, end,
858 extent_clear_unlock_delalloc(inode, start, end, end,
862 free_async_extent_pages(async_extent);
864 alloc_hint = ins.objectid + ins.offset;
870 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
871 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
873 extent_clear_unlock_delalloc(inode, async_extent->start,
874 async_extent->start +
875 async_extent->ram_size - 1,
876 async_extent->start +
877 async_extent->ram_size - 1,
878 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
879 EXTENT_DELALLOC_NEW |
880 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
881 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
882 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
884 free_async_extent_pages(async_extent);
889 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
892 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
893 struct extent_map *em;
896 read_lock(&em_tree->lock);
897 em = search_extent_mapping(em_tree, start, num_bytes);
900 * if block start isn't an actual block number then find the
901 * first block in this inode and use that as a hint. If that
902 * block is also bogus then just don't worry about it.
904 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
906 em = search_extent_mapping(em_tree, 0, 0);
907 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
908 alloc_hint = em->block_start;
912 alloc_hint = em->block_start;
916 read_unlock(&em_tree->lock);
922 * when extent_io.c finds a delayed allocation range in the file,
923 * the call backs end up in this code. The basic idea is to
924 * allocate extents on disk for the range, and create ordered data structs
925 * in ram to track those extents.
927 * locked_page is the page that writepage had locked already. We use
928 * it to make sure we don't do extra locks or unlocks.
930 * *page_started is set to one if we unlock locked_page and do everything
931 * required to start IO on it. It may be clean and already done with
934 static noinline int cow_file_range(struct inode *inode,
935 struct page *locked_page,
936 u64 start, u64 end, u64 delalloc_end,
937 int *page_started, unsigned long *nr_written,
938 int unlock, struct btrfs_dedupe_hash *hash)
940 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
941 struct btrfs_root *root = BTRFS_I(inode)->root;
944 unsigned long ram_size;
945 u64 cur_alloc_size = 0;
946 u64 blocksize = fs_info->sectorsize;
947 struct btrfs_key ins;
948 struct extent_map *em;
950 unsigned long page_ops;
951 bool extent_reserved = false;
954 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
960 num_bytes = ALIGN(end - start + 1, blocksize);
961 num_bytes = max(blocksize, num_bytes);
962 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
964 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
967 /* lets try to make an inline extent */
968 ret = cow_file_range_inline(inode, start, end, 0,
969 BTRFS_COMPRESS_NONE, NULL);
972 * We use DO_ACCOUNTING here because we need the
973 * delalloc_release_metadata to be run _after_ we drop
974 * our outstanding extent for clearing delalloc for this
977 extent_clear_unlock_delalloc(inode, start, end,
979 EXTENT_LOCKED | EXTENT_DELALLOC |
980 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
981 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
982 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
984 *nr_written = *nr_written +
985 (end - start + PAGE_SIZE) / PAGE_SIZE;
988 } else if (ret < 0) {
993 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
994 btrfs_drop_extent_cache(BTRFS_I(inode), start,
995 start + num_bytes - 1, 0);
997 while (num_bytes > 0) {
998 cur_alloc_size = num_bytes;
999 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1000 fs_info->sectorsize, 0, alloc_hint,
1004 cur_alloc_size = ins.offset;
1005 extent_reserved = true;
1007 ram_size = ins.offset;
1008 em = create_io_em(inode, start, ins.offset, /* len */
1009 start, /* orig_start */
1010 ins.objectid, /* block_start */
1011 ins.offset, /* block_len */
1012 ins.offset, /* orig_block_len */
1013 ram_size, /* ram_bytes */
1014 BTRFS_COMPRESS_NONE, /* compress_type */
1015 BTRFS_ORDERED_REGULAR /* type */);
1020 free_extent_map(em);
1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1023 ram_size, cur_alloc_size, 0);
1025 goto out_drop_extent_cache;
1027 if (root->root_key.objectid ==
1028 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 ret = btrfs_reloc_clone_csums(inode, start,
1032 * Only drop cache here, and process as normal.
1034 * We must not allow extent_clear_unlock_delalloc()
1035 * at out_unlock label to free meta of this ordered
1036 * extent, as its meta should be freed by
1037 * btrfs_finish_ordered_io().
1039 * So we must continue until @start is increased to
1040 * skip current ordered extent.
1043 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1044 start + ram_size - 1, 0);
1047 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1049 /* we're not doing compressed IO, don't unlock the first
1050 * page (which the caller expects to stay locked), don't
1051 * clear any dirty bits and don't set any writeback bits
1053 * Do set the Private2 bit so we know this page was properly
1054 * setup for writepage
1056 page_ops = unlock ? PAGE_UNLOCK : 0;
1057 page_ops |= PAGE_SET_PRIVATE2;
1059 extent_clear_unlock_delalloc(inode, start,
1060 start + ram_size - 1,
1061 delalloc_end, locked_page,
1062 EXTENT_LOCKED | EXTENT_DELALLOC,
1064 if (num_bytes < cur_alloc_size)
1067 num_bytes -= cur_alloc_size;
1068 alloc_hint = ins.objectid + ins.offset;
1069 start += cur_alloc_size;
1070 extent_reserved = false;
1073 * btrfs_reloc_clone_csums() error, since start is increased
1074 * extent_clear_unlock_delalloc() at out_unlock label won't
1075 * free metadata of current ordered extent, we're OK to exit.
1083 out_drop_extent_cache:
1084 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1086 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1087 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1089 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1090 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1091 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1094 * If we reserved an extent for our delalloc range (or a subrange) and
1095 * failed to create the respective ordered extent, then it means that
1096 * when we reserved the extent we decremented the extent's size from
1097 * the data space_info's bytes_may_use counter and incremented the
1098 * space_info's bytes_reserved counter by the same amount. We must make
1099 * sure extent_clear_unlock_delalloc() does not try to decrement again
1100 * the data space_info's bytes_may_use counter, therefore we do not pass
1101 * it the flag EXTENT_CLEAR_DATA_RESV.
1103 if (extent_reserved) {
1104 extent_clear_unlock_delalloc(inode, start,
1105 start + cur_alloc_size,
1106 start + cur_alloc_size,
1110 start += cur_alloc_size;
1114 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1116 clear_bits | EXTENT_CLEAR_DATA_RESV,
1122 * work queue call back to started compression on a file and pages
1124 static noinline void async_cow_start(struct btrfs_work *work)
1126 struct async_cow *async_cow;
1128 async_cow = container_of(work, struct async_cow, work);
1130 compress_file_range(async_cow->inode, async_cow->locked_page,
1131 async_cow->start, async_cow->end, async_cow,
1133 if (num_added == 0) {
1134 btrfs_add_delayed_iput(async_cow->inode);
1135 async_cow->inode = NULL;
1140 * work queue call back to submit previously compressed pages
1142 static noinline void async_cow_submit(struct btrfs_work *work)
1144 struct btrfs_fs_info *fs_info;
1145 struct async_cow *async_cow;
1146 struct btrfs_root *root;
1147 unsigned long nr_pages;
1149 async_cow = container_of(work, struct async_cow, work);
1151 root = async_cow->root;
1152 fs_info = root->fs_info;
1153 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1156 /* atomic_sub_return implies a barrier */
1157 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1159 cond_wake_up_nomb(&fs_info->async_submit_wait);
1161 if (async_cow->inode)
1162 submit_compressed_extents(async_cow->inode, async_cow);
1165 static noinline void async_cow_free(struct btrfs_work *work)
1167 struct async_cow *async_cow;
1168 async_cow = container_of(work, struct async_cow, work);
1169 if (async_cow->inode)
1170 btrfs_add_delayed_iput(async_cow->inode);
1174 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1175 u64 start, u64 end, int *page_started,
1176 unsigned long *nr_written,
1177 unsigned int write_flags)
1179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1180 struct async_cow *async_cow;
1181 struct btrfs_root *root = BTRFS_I(inode)->root;
1182 unsigned long nr_pages;
1185 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1187 while (start < end) {
1188 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1189 BUG_ON(!async_cow); /* -ENOMEM */
1190 async_cow->inode = igrab(inode);
1191 async_cow->root = root;
1192 async_cow->locked_page = locked_page;
1193 async_cow->start = start;
1194 async_cow->write_flags = write_flags;
1196 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1197 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1200 cur_end = min(end, start + SZ_512K - 1);
1202 async_cow->end = cur_end;
1203 INIT_LIST_HEAD(&async_cow->extents);
1205 btrfs_init_work(&async_cow->work,
1206 btrfs_delalloc_helper,
1207 async_cow_start, async_cow_submit,
1210 nr_pages = (cur_end - start + PAGE_SIZE) >>
1212 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1214 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1216 *nr_written += nr_pages;
1217 start = cur_end + 1;
1223 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1224 u64 bytenr, u64 num_bytes)
1227 struct btrfs_ordered_sum *sums;
1230 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1231 bytenr + num_bytes - 1, &list, 0);
1232 if (ret == 0 && list_empty(&list))
1235 while (!list_empty(&list)) {
1236 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1237 list_del(&sums->list);
1246 * when nowcow writeback call back. This checks for snapshots or COW copies
1247 * of the extents that exist in the file, and COWs the file as required.
1249 * If no cow copies or snapshots exist, we write directly to the existing
1252 static noinline int run_delalloc_nocow(struct inode *inode,
1253 struct page *locked_page,
1254 u64 start, u64 end, int *page_started, int force,
1255 unsigned long *nr_written)
1257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1258 struct btrfs_root *root = BTRFS_I(inode)->root;
1259 struct extent_buffer *leaf;
1260 struct btrfs_path *path;
1261 struct btrfs_file_extent_item *fi;
1262 struct btrfs_key found_key;
1263 struct extent_map *em;
1278 u64 ino = btrfs_ino(BTRFS_I(inode));
1280 path = btrfs_alloc_path();
1282 extent_clear_unlock_delalloc(inode, start, end, end,
1284 EXTENT_LOCKED | EXTENT_DELALLOC |
1285 EXTENT_DO_ACCOUNTING |
1286 EXTENT_DEFRAG, PAGE_UNLOCK |
1288 PAGE_SET_WRITEBACK |
1289 PAGE_END_WRITEBACK);
1293 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1295 cow_start = (u64)-1;
1298 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1302 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1303 leaf = path->nodes[0];
1304 btrfs_item_key_to_cpu(leaf, &found_key,
1305 path->slots[0] - 1);
1306 if (found_key.objectid == ino &&
1307 found_key.type == BTRFS_EXTENT_DATA_KEY)
1312 leaf = path->nodes[0];
1313 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1314 ret = btrfs_next_leaf(root, path);
1316 if (cow_start != (u64)-1)
1317 cur_offset = cow_start;
1322 leaf = path->nodes[0];
1328 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1330 if (found_key.objectid > ino)
1332 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1333 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1337 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1338 found_key.offset > end)
1341 if (found_key.offset > cur_offset) {
1342 extent_end = found_key.offset;
1347 fi = btrfs_item_ptr(leaf, path->slots[0],
1348 struct btrfs_file_extent_item);
1349 extent_type = btrfs_file_extent_type(leaf, fi);
1351 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1352 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1353 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1354 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1355 extent_offset = btrfs_file_extent_offset(leaf, fi);
1356 extent_end = found_key.offset +
1357 btrfs_file_extent_num_bytes(leaf, fi);
1359 btrfs_file_extent_disk_num_bytes(leaf, fi);
1360 if (extent_end <= start) {
1364 if (disk_bytenr == 0)
1366 if (btrfs_file_extent_compression(leaf, fi) ||
1367 btrfs_file_extent_encryption(leaf, fi) ||
1368 btrfs_file_extent_other_encoding(leaf, fi))
1371 * Do the same check as in btrfs_cross_ref_exist but
1372 * without the unnecessary search.
1374 if (btrfs_file_extent_generation(leaf, fi) <=
1375 btrfs_root_last_snapshot(&root->root_item))
1377 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1379 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1381 ret = btrfs_cross_ref_exist(root, ino,
1383 extent_offset, disk_bytenr);
1386 * ret could be -EIO if the above fails to read
1390 if (cow_start != (u64)-1)
1391 cur_offset = cow_start;
1395 WARN_ON_ONCE(nolock);
1398 disk_bytenr += extent_offset;
1399 disk_bytenr += cur_offset - found_key.offset;
1400 num_bytes = min(end + 1, extent_end) - cur_offset;
1402 * if there are pending snapshots for this root,
1403 * we fall into common COW way.
1405 if (!nolock && atomic_read(&root->snapshot_force_cow))
1408 * force cow if csum exists in the range.
1409 * this ensure that csum for a given extent are
1410 * either valid or do not exist.
1412 ret = csum_exist_in_range(fs_info, disk_bytenr,
1416 * ret could be -EIO if the above fails to read
1420 if (cow_start != (u64)-1)
1421 cur_offset = cow_start;
1424 WARN_ON_ONCE(nolock);
1427 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1430 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1431 extent_end = found_key.offset +
1432 btrfs_file_extent_ram_bytes(leaf, fi);
1433 extent_end = ALIGN(extent_end,
1434 fs_info->sectorsize);
1439 if (extent_end <= start) {
1442 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1446 if (cow_start == (u64)-1)
1447 cow_start = cur_offset;
1448 cur_offset = extent_end;
1449 if (cur_offset > end)
1455 btrfs_release_path(path);
1456 if (cow_start != (u64)-1) {
1457 ret = cow_file_range(inode, locked_page,
1458 cow_start, found_key.offset - 1,
1459 end, page_started, nr_written, 1,
1463 btrfs_dec_nocow_writers(fs_info,
1467 cow_start = (u64)-1;
1470 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1471 u64 orig_start = found_key.offset - extent_offset;
1473 em = create_io_em(inode, cur_offset, num_bytes,
1475 disk_bytenr, /* block_start */
1476 num_bytes, /* block_len */
1477 disk_num_bytes, /* orig_block_len */
1478 ram_bytes, BTRFS_COMPRESS_NONE,
1479 BTRFS_ORDERED_PREALLOC);
1482 btrfs_dec_nocow_writers(fs_info,
1487 free_extent_map(em);
1490 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1491 type = BTRFS_ORDERED_PREALLOC;
1493 type = BTRFS_ORDERED_NOCOW;
1496 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1497 num_bytes, num_bytes, type);
1499 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1500 BUG_ON(ret); /* -ENOMEM */
1502 if (root->root_key.objectid ==
1503 BTRFS_DATA_RELOC_TREE_OBJECTID)
1505 * Error handled later, as we must prevent
1506 * extent_clear_unlock_delalloc() in error handler
1507 * from freeing metadata of created ordered extent.
1509 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1512 extent_clear_unlock_delalloc(inode, cur_offset,
1513 cur_offset + num_bytes - 1, end,
1514 locked_page, EXTENT_LOCKED |
1516 EXTENT_CLEAR_DATA_RESV,
1517 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1519 cur_offset = extent_end;
1522 * btrfs_reloc_clone_csums() error, now we're OK to call error
1523 * handler, as metadata for created ordered extent will only
1524 * be freed by btrfs_finish_ordered_io().
1528 if (cur_offset > end)
1531 btrfs_release_path(path);
1533 if (cur_offset <= end && cow_start == (u64)-1) {
1534 cow_start = cur_offset;
1538 if (cow_start != (u64)-1) {
1539 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1540 page_started, nr_written, 1, NULL);
1546 if (ret && cur_offset < end)
1547 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1548 locked_page, EXTENT_LOCKED |
1549 EXTENT_DELALLOC | EXTENT_DEFRAG |
1550 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 PAGE_SET_WRITEBACK |
1553 PAGE_END_WRITEBACK);
1554 btrfs_free_path(path);
1558 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1561 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1562 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1566 * @defrag_bytes is a hint value, no spinlock held here,
1567 * if is not zero, it means the file is defragging.
1568 * Force cow if given extent needs to be defragged.
1570 if (BTRFS_I(inode)->defrag_bytes &&
1571 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1572 EXTENT_DEFRAG, 0, NULL))
1579 * extent_io.c call back to do delayed allocation processing
1581 static int run_delalloc_range(void *private_data, struct page *locked_page,
1582 u64 start, u64 end, int *page_started,
1583 unsigned long *nr_written,
1584 struct writeback_control *wbc)
1586 struct inode *inode = private_data;
1588 int force_cow = need_force_cow(inode, start, end);
1589 unsigned int write_flags = wbc_to_write_flags(wbc);
1591 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1592 ret = run_delalloc_nocow(inode, locked_page, start, end,
1593 page_started, 1, nr_written);
1594 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1595 ret = run_delalloc_nocow(inode, locked_page, start, end,
1596 page_started, 0, nr_written);
1597 } else if (!inode_need_compress(inode, start, end)) {
1598 ret = cow_file_range(inode, locked_page, start, end, end,
1599 page_started, nr_written, 1, NULL);
1601 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1602 &BTRFS_I(inode)->runtime_flags);
1603 ret = cow_file_range_async(inode, locked_page, start, end,
1604 page_started, nr_written,
1608 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1612 static void btrfs_split_extent_hook(void *private_data,
1613 struct extent_state *orig, u64 split)
1615 struct inode *inode = private_data;
1618 /* not delalloc, ignore it */
1619 if (!(orig->state & EXTENT_DELALLOC))
1622 size = orig->end - orig->start + 1;
1623 if (size > BTRFS_MAX_EXTENT_SIZE) {
1628 * See the explanation in btrfs_merge_extent_hook, the same
1629 * applies here, just in reverse.
1631 new_size = orig->end - split + 1;
1632 num_extents = count_max_extents(new_size);
1633 new_size = split - orig->start;
1634 num_extents += count_max_extents(new_size);
1635 if (count_max_extents(size) >= num_extents)
1639 spin_lock(&BTRFS_I(inode)->lock);
1640 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1641 spin_unlock(&BTRFS_I(inode)->lock);
1645 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1646 * extents so we can keep track of new extents that are just merged onto old
1647 * extents, such as when we are doing sequential writes, so we can properly
1648 * account for the metadata space we'll need.
1650 static void btrfs_merge_extent_hook(void *private_data,
1651 struct extent_state *new,
1652 struct extent_state *other)
1654 struct inode *inode = private_data;
1655 u64 new_size, old_size;
1658 /* not delalloc, ignore it */
1659 if (!(other->state & EXTENT_DELALLOC))
1662 if (new->start > other->start)
1663 new_size = new->end - other->start + 1;
1665 new_size = other->end - new->start + 1;
1667 /* we're not bigger than the max, unreserve the space and go */
1668 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1669 spin_lock(&BTRFS_I(inode)->lock);
1670 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1671 spin_unlock(&BTRFS_I(inode)->lock);
1676 * We have to add up either side to figure out how many extents were
1677 * accounted for before we merged into one big extent. If the number of
1678 * extents we accounted for is <= the amount we need for the new range
1679 * then we can return, otherwise drop. Think of it like this
1683 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1684 * need 2 outstanding extents, on one side we have 1 and the other side
1685 * we have 1 so they are == and we can return. But in this case
1687 * [MAX_SIZE+4k][MAX_SIZE+4k]
1689 * Each range on their own accounts for 2 extents, but merged together
1690 * they are only 3 extents worth of accounting, so we need to drop in
1693 old_size = other->end - other->start + 1;
1694 num_extents = count_max_extents(old_size);
1695 old_size = new->end - new->start + 1;
1696 num_extents += count_max_extents(old_size);
1697 if (count_max_extents(new_size) >= num_extents)
1700 spin_lock(&BTRFS_I(inode)->lock);
1701 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1702 spin_unlock(&BTRFS_I(inode)->lock);
1705 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1706 struct inode *inode)
1708 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1710 spin_lock(&root->delalloc_lock);
1711 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1712 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1713 &root->delalloc_inodes);
1714 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 &BTRFS_I(inode)->runtime_flags);
1716 root->nr_delalloc_inodes++;
1717 if (root->nr_delalloc_inodes == 1) {
1718 spin_lock(&fs_info->delalloc_root_lock);
1719 BUG_ON(!list_empty(&root->delalloc_root));
1720 list_add_tail(&root->delalloc_root,
1721 &fs_info->delalloc_roots);
1722 spin_unlock(&fs_info->delalloc_root_lock);
1725 spin_unlock(&root->delalloc_lock);
1729 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1730 struct btrfs_inode *inode)
1732 struct btrfs_fs_info *fs_info = root->fs_info;
1734 if (!list_empty(&inode->delalloc_inodes)) {
1735 list_del_init(&inode->delalloc_inodes);
1736 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1737 &inode->runtime_flags);
1738 root->nr_delalloc_inodes--;
1739 if (!root->nr_delalloc_inodes) {
1740 ASSERT(list_empty(&root->delalloc_inodes));
1741 spin_lock(&fs_info->delalloc_root_lock);
1742 BUG_ON(list_empty(&root->delalloc_root));
1743 list_del_init(&root->delalloc_root);
1744 spin_unlock(&fs_info->delalloc_root_lock);
1749 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1750 struct btrfs_inode *inode)
1752 spin_lock(&root->delalloc_lock);
1753 __btrfs_del_delalloc_inode(root, inode);
1754 spin_unlock(&root->delalloc_lock);
1758 * extent_io.c set_bit_hook, used to track delayed allocation
1759 * bytes in this file, and to maintain the list of inodes that
1760 * have pending delalloc work to be done.
1762 static void btrfs_set_bit_hook(void *private_data,
1763 struct extent_state *state, unsigned *bits)
1765 struct inode *inode = private_data;
1767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1772 * set_bit and clear bit hooks normally require _irqsave/restore
1773 * but in this case, we are only testing for the DELALLOC
1774 * bit, which is only set or cleared with irqs on
1776 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1777 struct btrfs_root *root = BTRFS_I(inode)->root;
1778 u64 len = state->end + 1 - state->start;
1779 u32 num_extents = count_max_extents(len);
1780 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1782 spin_lock(&BTRFS_I(inode)->lock);
1783 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1784 spin_unlock(&BTRFS_I(inode)->lock);
1786 /* For sanity tests */
1787 if (btrfs_is_testing(fs_info))
1790 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1791 fs_info->delalloc_batch);
1792 spin_lock(&BTRFS_I(inode)->lock);
1793 BTRFS_I(inode)->delalloc_bytes += len;
1794 if (*bits & EXTENT_DEFRAG)
1795 BTRFS_I(inode)->defrag_bytes += len;
1796 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1797 &BTRFS_I(inode)->runtime_flags))
1798 btrfs_add_delalloc_inodes(root, inode);
1799 spin_unlock(&BTRFS_I(inode)->lock);
1802 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1803 (*bits & EXTENT_DELALLOC_NEW)) {
1804 spin_lock(&BTRFS_I(inode)->lock);
1805 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1807 spin_unlock(&BTRFS_I(inode)->lock);
1812 * extent_io.c clear_bit_hook, see set_bit_hook for why
1814 static void btrfs_clear_bit_hook(void *private_data,
1815 struct extent_state *state,
1818 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1820 u64 len = state->end + 1 - state->start;
1821 u32 num_extents = count_max_extents(len);
1823 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1824 spin_lock(&inode->lock);
1825 inode->defrag_bytes -= len;
1826 spin_unlock(&inode->lock);
1830 * set_bit and clear bit hooks normally require _irqsave/restore
1831 * but in this case, we are only testing for the DELALLOC
1832 * bit, which is only set or cleared with irqs on
1834 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1835 struct btrfs_root *root = inode->root;
1836 bool do_list = !btrfs_is_free_space_inode(inode);
1838 spin_lock(&inode->lock);
1839 btrfs_mod_outstanding_extents(inode, -num_extents);
1840 spin_unlock(&inode->lock);
1843 * We don't reserve metadata space for space cache inodes so we
1844 * don't need to call dellalloc_release_metadata if there is an
1847 if (*bits & EXTENT_CLEAR_META_RESV &&
1848 root != fs_info->tree_root)
1849 btrfs_delalloc_release_metadata(inode, len, false);
1851 /* For sanity tests. */
1852 if (btrfs_is_testing(fs_info))
1855 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1856 do_list && !(state->state & EXTENT_NORESERVE) &&
1857 (*bits & EXTENT_CLEAR_DATA_RESV))
1858 btrfs_free_reserved_data_space_noquota(
1862 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1863 fs_info->delalloc_batch);
1864 spin_lock(&inode->lock);
1865 inode->delalloc_bytes -= len;
1866 if (do_list && inode->delalloc_bytes == 0 &&
1867 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1868 &inode->runtime_flags))
1869 btrfs_del_delalloc_inode(root, inode);
1870 spin_unlock(&inode->lock);
1873 if ((state->state & EXTENT_DELALLOC_NEW) &&
1874 (*bits & EXTENT_DELALLOC_NEW)) {
1875 spin_lock(&inode->lock);
1876 ASSERT(inode->new_delalloc_bytes >= len);
1877 inode->new_delalloc_bytes -= len;
1878 spin_unlock(&inode->lock);
1883 * Merge bio hook, this must check the chunk tree to make sure we don't create
1884 * bios that span stripes or chunks
1886 * return 1 if page cannot be merged to bio
1887 * return 0 if page can be merged to bio
1888 * return error otherwise
1890 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1891 size_t size, struct bio *bio,
1892 unsigned long bio_flags)
1894 struct inode *inode = page->mapping->host;
1895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1896 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1901 if (bio_flags & EXTENT_BIO_COMPRESSED)
1904 length = bio->bi_iter.bi_size;
1905 map_length = length;
1906 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1910 if (map_length < length + size)
1916 * in order to insert checksums into the metadata in large chunks,
1917 * we wait until bio submission time. All the pages in the bio are
1918 * checksummed and sums are attached onto the ordered extent record.
1920 * At IO completion time the cums attached on the ordered extent record
1921 * are inserted into the btree
1923 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1926 struct inode *inode = private_data;
1927 blk_status_t ret = 0;
1929 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1930 BUG_ON(ret); /* -ENOMEM */
1935 * in order to insert checksums into the metadata in large chunks,
1936 * we wait until bio submission time. All the pages in the bio are
1937 * checksummed and sums are attached onto the ordered extent record.
1939 * At IO completion time the cums attached on the ordered extent record
1940 * are inserted into the btree
1942 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1945 struct inode *inode = private_data;
1946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1949 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1951 bio->bi_status = ret;
1958 * extent_io.c submission hook. This does the right thing for csum calculation
1959 * on write, or reading the csums from the tree before a read.
1961 * Rules about async/sync submit,
1962 * a) read: sync submit
1964 * b) write without checksum: sync submit
1966 * c) write with checksum:
1967 * c-1) if bio is issued by fsync: sync submit
1968 * (sync_writers != 0)
1970 * c-2) if root is reloc root: sync submit
1971 * (only in case of buffered IO)
1973 * c-3) otherwise: async submit
1975 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1976 int mirror_num, unsigned long bio_flags,
1979 struct inode *inode = private_data;
1980 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1981 struct btrfs_root *root = BTRFS_I(inode)->root;
1982 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1983 blk_status_t ret = 0;
1985 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1987 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1989 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1990 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1992 if (bio_op(bio) != REQ_OP_WRITE) {
1993 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1997 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1998 ret = btrfs_submit_compressed_read(inode, bio,
2002 } else if (!skip_sum) {
2003 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2008 } else if (async && !skip_sum) {
2009 /* csum items have already been cloned */
2010 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2012 /* we're doing a write, do the async checksumming */
2013 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2015 btrfs_submit_bio_start);
2017 } else if (!skip_sum) {
2018 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2024 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2028 bio->bi_status = ret;
2035 * given a list of ordered sums record them in the inode. This happens
2036 * at IO completion time based on sums calculated at bio submission time.
2038 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2039 struct inode *inode, struct list_head *list)
2041 struct btrfs_ordered_sum *sum;
2044 list_for_each_entry(sum, list, list) {
2045 trans->adding_csums = true;
2046 ret = btrfs_csum_file_blocks(trans,
2047 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2048 trans->adding_csums = false;
2055 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2056 unsigned int extra_bits,
2057 struct extent_state **cached_state, int dedupe)
2059 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2060 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2061 extra_bits, cached_state);
2064 /* see btrfs_writepage_start_hook for details on why this is required */
2065 struct btrfs_writepage_fixup {
2067 struct btrfs_work work;
2070 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2072 struct btrfs_writepage_fixup *fixup;
2073 struct btrfs_ordered_extent *ordered;
2074 struct extent_state *cached_state = NULL;
2075 struct extent_changeset *data_reserved = NULL;
2077 struct inode *inode;
2082 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2086 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2087 ClearPageChecked(page);
2091 inode = page->mapping->host;
2092 page_start = page_offset(page);
2093 page_end = page_offset(page) + PAGE_SIZE - 1;
2095 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2098 /* already ordered? We're done */
2099 if (PagePrivate2(page))
2102 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2105 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2106 page_end, &cached_state);
2108 btrfs_start_ordered_extent(inode, ordered, 1);
2109 btrfs_put_ordered_extent(ordered);
2113 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2116 mapping_set_error(page->mapping, ret);
2117 end_extent_writepage(page, ret, page_start, page_end);
2118 ClearPageChecked(page);
2122 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2125 mapping_set_error(page->mapping, ret);
2126 end_extent_writepage(page, ret, page_start, page_end);
2127 ClearPageChecked(page);
2131 ClearPageChecked(page);
2132 set_page_dirty(page);
2133 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2135 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2141 extent_changeset_free(data_reserved);
2145 * There are a few paths in the higher layers of the kernel that directly
2146 * set the page dirty bit without asking the filesystem if it is a
2147 * good idea. This causes problems because we want to make sure COW
2148 * properly happens and the data=ordered rules are followed.
2150 * In our case any range that doesn't have the ORDERED bit set
2151 * hasn't been properly setup for IO. We kick off an async process
2152 * to fix it up. The async helper will wait for ordered extents, set
2153 * the delalloc bit and make it safe to write the page.
2155 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2157 struct inode *inode = page->mapping->host;
2158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2159 struct btrfs_writepage_fixup *fixup;
2161 /* this page is properly in the ordered list */
2162 if (TestClearPagePrivate2(page))
2165 if (PageChecked(page))
2168 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2172 SetPageChecked(page);
2174 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2175 btrfs_writepage_fixup_worker, NULL, NULL);
2177 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2181 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2182 struct inode *inode, u64 file_pos,
2183 u64 disk_bytenr, u64 disk_num_bytes,
2184 u64 num_bytes, u64 ram_bytes,
2185 u8 compression, u8 encryption,
2186 u16 other_encoding, int extent_type)
2188 struct btrfs_root *root = BTRFS_I(inode)->root;
2189 struct btrfs_file_extent_item *fi;
2190 struct btrfs_path *path;
2191 struct extent_buffer *leaf;
2192 struct btrfs_key ins;
2194 int extent_inserted = 0;
2197 path = btrfs_alloc_path();
2202 * we may be replacing one extent in the tree with another.
2203 * The new extent is pinned in the extent map, and we don't want
2204 * to drop it from the cache until it is completely in the btree.
2206 * So, tell btrfs_drop_extents to leave this extent in the cache.
2207 * the caller is expected to unpin it and allow it to be merged
2210 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2211 file_pos + num_bytes, NULL, 0,
2212 1, sizeof(*fi), &extent_inserted);
2216 if (!extent_inserted) {
2217 ins.objectid = btrfs_ino(BTRFS_I(inode));
2218 ins.offset = file_pos;
2219 ins.type = BTRFS_EXTENT_DATA_KEY;
2221 path->leave_spinning = 1;
2222 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2227 leaf = path->nodes[0];
2228 fi = btrfs_item_ptr(leaf, path->slots[0],
2229 struct btrfs_file_extent_item);
2230 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2231 btrfs_set_file_extent_type(leaf, fi, extent_type);
2232 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2233 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2234 btrfs_set_file_extent_offset(leaf, fi, 0);
2235 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2236 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2237 btrfs_set_file_extent_compression(leaf, fi, compression);
2238 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2239 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2241 btrfs_mark_buffer_dirty(leaf);
2242 btrfs_release_path(path);
2244 inode_add_bytes(inode, num_bytes);
2246 ins.objectid = disk_bytenr;
2247 ins.offset = disk_num_bytes;
2248 ins.type = BTRFS_EXTENT_ITEM_KEY;
2251 * Release the reserved range from inode dirty range map, as it is
2252 * already moved into delayed_ref_head
2254 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2258 ret = btrfs_alloc_reserved_file_extent(trans, root,
2259 btrfs_ino(BTRFS_I(inode)),
2260 file_pos, qg_released, &ins);
2262 btrfs_free_path(path);
2267 /* snapshot-aware defrag */
2268 struct sa_defrag_extent_backref {
2269 struct rb_node node;
2270 struct old_sa_defrag_extent *old;
2279 struct old_sa_defrag_extent {
2280 struct list_head list;
2281 struct new_sa_defrag_extent *new;
2290 struct new_sa_defrag_extent {
2291 struct rb_root root;
2292 struct list_head head;
2293 struct btrfs_path *path;
2294 struct inode *inode;
2302 static int backref_comp(struct sa_defrag_extent_backref *b1,
2303 struct sa_defrag_extent_backref *b2)
2305 if (b1->root_id < b2->root_id)
2307 else if (b1->root_id > b2->root_id)
2310 if (b1->inum < b2->inum)
2312 else if (b1->inum > b2->inum)
2315 if (b1->file_pos < b2->file_pos)
2317 else if (b1->file_pos > b2->file_pos)
2321 * [------------------------------] ===> (a range of space)
2322 * |<--->| |<---->| =============> (fs/file tree A)
2323 * |<---------------------------->| ===> (fs/file tree B)
2325 * A range of space can refer to two file extents in one tree while
2326 * refer to only one file extent in another tree.
2328 * So we may process a disk offset more than one time(two extents in A)
2329 * and locate at the same extent(one extent in B), then insert two same
2330 * backrefs(both refer to the extent in B).
2335 static void backref_insert(struct rb_root *root,
2336 struct sa_defrag_extent_backref *backref)
2338 struct rb_node **p = &root->rb_node;
2339 struct rb_node *parent = NULL;
2340 struct sa_defrag_extent_backref *entry;
2345 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2347 ret = backref_comp(backref, entry);
2351 p = &(*p)->rb_right;
2354 rb_link_node(&backref->node, parent, p);
2355 rb_insert_color(&backref->node, root);
2359 * Note the backref might has changed, and in this case we just return 0.
2361 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2364 struct btrfs_file_extent_item *extent;
2365 struct old_sa_defrag_extent *old = ctx;
2366 struct new_sa_defrag_extent *new = old->new;
2367 struct btrfs_path *path = new->path;
2368 struct btrfs_key key;
2369 struct btrfs_root *root;
2370 struct sa_defrag_extent_backref *backref;
2371 struct extent_buffer *leaf;
2372 struct inode *inode = new->inode;
2373 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2379 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2380 inum == btrfs_ino(BTRFS_I(inode)))
2383 key.objectid = root_id;
2384 key.type = BTRFS_ROOT_ITEM_KEY;
2385 key.offset = (u64)-1;
2387 root = btrfs_read_fs_root_no_name(fs_info, &key);
2389 if (PTR_ERR(root) == -ENOENT)
2392 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2393 inum, offset, root_id);
2394 return PTR_ERR(root);
2397 key.objectid = inum;
2398 key.type = BTRFS_EXTENT_DATA_KEY;
2399 if (offset > (u64)-1 << 32)
2402 key.offset = offset;
2404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2405 if (WARN_ON(ret < 0))
2412 leaf = path->nodes[0];
2413 slot = path->slots[0];
2415 if (slot >= btrfs_header_nritems(leaf)) {
2416 ret = btrfs_next_leaf(root, path);
2419 } else if (ret > 0) {
2428 btrfs_item_key_to_cpu(leaf, &key, slot);
2430 if (key.objectid > inum)
2433 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2436 extent = btrfs_item_ptr(leaf, slot,
2437 struct btrfs_file_extent_item);
2439 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2443 * 'offset' refers to the exact key.offset,
2444 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2445 * (key.offset - extent_offset).
2447 if (key.offset != offset)
2450 extent_offset = btrfs_file_extent_offset(leaf, extent);
2451 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2453 if (extent_offset >= old->extent_offset + old->offset +
2454 old->len || extent_offset + num_bytes <=
2455 old->extent_offset + old->offset)
2460 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2466 backref->root_id = root_id;
2467 backref->inum = inum;
2468 backref->file_pos = offset;
2469 backref->num_bytes = num_bytes;
2470 backref->extent_offset = extent_offset;
2471 backref->generation = btrfs_file_extent_generation(leaf, extent);
2473 backref_insert(&new->root, backref);
2476 btrfs_release_path(path);
2481 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2482 struct new_sa_defrag_extent *new)
2484 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2485 struct old_sa_defrag_extent *old, *tmp;
2490 list_for_each_entry_safe(old, tmp, &new->head, list) {
2491 ret = iterate_inodes_from_logical(old->bytenr +
2492 old->extent_offset, fs_info,
2493 path, record_one_backref,
2495 if (ret < 0 && ret != -ENOENT)
2498 /* no backref to be processed for this extent */
2500 list_del(&old->list);
2505 if (list_empty(&new->head))
2511 static int relink_is_mergable(struct extent_buffer *leaf,
2512 struct btrfs_file_extent_item *fi,
2513 struct new_sa_defrag_extent *new)
2515 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2518 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2521 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2524 if (btrfs_file_extent_encryption(leaf, fi) ||
2525 btrfs_file_extent_other_encoding(leaf, fi))
2532 * Note the backref might has changed, and in this case we just return 0.
2534 static noinline int relink_extent_backref(struct btrfs_path *path,
2535 struct sa_defrag_extent_backref *prev,
2536 struct sa_defrag_extent_backref *backref)
2538 struct btrfs_file_extent_item *extent;
2539 struct btrfs_file_extent_item *item;
2540 struct btrfs_ordered_extent *ordered;
2541 struct btrfs_trans_handle *trans;
2542 struct btrfs_root *root;
2543 struct btrfs_key key;
2544 struct extent_buffer *leaf;
2545 struct old_sa_defrag_extent *old = backref->old;
2546 struct new_sa_defrag_extent *new = old->new;
2547 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2548 struct inode *inode;
2549 struct extent_state *cached = NULL;
2558 if (prev && prev->root_id == backref->root_id &&
2559 prev->inum == backref->inum &&
2560 prev->file_pos + prev->num_bytes == backref->file_pos)
2563 /* step 1: get root */
2564 key.objectid = backref->root_id;
2565 key.type = BTRFS_ROOT_ITEM_KEY;
2566 key.offset = (u64)-1;
2568 index = srcu_read_lock(&fs_info->subvol_srcu);
2570 root = btrfs_read_fs_root_no_name(fs_info, &key);
2572 srcu_read_unlock(&fs_info->subvol_srcu, index);
2573 if (PTR_ERR(root) == -ENOENT)
2575 return PTR_ERR(root);
2578 if (btrfs_root_readonly(root)) {
2579 srcu_read_unlock(&fs_info->subvol_srcu, index);
2583 /* step 2: get inode */
2584 key.objectid = backref->inum;
2585 key.type = BTRFS_INODE_ITEM_KEY;
2588 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2589 if (IS_ERR(inode)) {
2590 srcu_read_unlock(&fs_info->subvol_srcu, index);
2594 srcu_read_unlock(&fs_info->subvol_srcu, index);
2596 /* step 3: relink backref */
2597 lock_start = backref->file_pos;
2598 lock_end = backref->file_pos + backref->num_bytes - 1;
2599 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2602 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2604 btrfs_put_ordered_extent(ordered);
2608 trans = btrfs_join_transaction(root);
2609 if (IS_ERR(trans)) {
2610 ret = PTR_ERR(trans);
2614 key.objectid = backref->inum;
2615 key.type = BTRFS_EXTENT_DATA_KEY;
2616 key.offset = backref->file_pos;
2618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2621 } else if (ret > 0) {
2626 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2627 struct btrfs_file_extent_item);
2629 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2630 backref->generation)
2633 btrfs_release_path(path);
2635 start = backref->file_pos;
2636 if (backref->extent_offset < old->extent_offset + old->offset)
2637 start += old->extent_offset + old->offset -
2638 backref->extent_offset;
2640 len = min(backref->extent_offset + backref->num_bytes,
2641 old->extent_offset + old->offset + old->len);
2642 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2644 ret = btrfs_drop_extents(trans, root, inode, start,
2649 key.objectid = btrfs_ino(BTRFS_I(inode));
2650 key.type = BTRFS_EXTENT_DATA_KEY;
2653 path->leave_spinning = 1;
2655 struct btrfs_file_extent_item *fi;
2657 struct btrfs_key found_key;
2659 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2664 leaf = path->nodes[0];
2665 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2667 fi = btrfs_item_ptr(leaf, path->slots[0],
2668 struct btrfs_file_extent_item);
2669 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2671 if (extent_len + found_key.offset == start &&
2672 relink_is_mergable(leaf, fi, new)) {
2673 btrfs_set_file_extent_num_bytes(leaf, fi,
2675 btrfs_mark_buffer_dirty(leaf);
2676 inode_add_bytes(inode, len);
2682 btrfs_release_path(path);
2687 ret = btrfs_insert_empty_item(trans, root, path, &key,
2690 btrfs_abort_transaction(trans, ret);
2694 leaf = path->nodes[0];
2695 item = btrfs_item_ptr(leaf, path->slots[0],
2696 struct btrfs_file_extent_item);
2697 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2698 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2699 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2700 btrfs_set_file_extent_num_bytes(leaf, item, len);
2701 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2702 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2703 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2704 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2705 btrfs_set_file_extent_encryption(leaf, item, 0);
2706 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2708 btrfs_mark_buffer_dirty(leaf);
2709 inode_add_bytes(inode, len);
2710 btrfs_release_path(path);
2712 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2714 backref->root_id, backref->inum,
2715 new->file_pos); /* start - extent_offset */
2717 btrfs_abort_transaction(trans, ret);
2723 btrfs_release_path(path);
2724 path->leave_spinning = 0;
2725 btrfs_end_transaction(trans);
2727 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2733 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2735 struct old_sa_defrag_extent *old, *tmp;
2740 list_for_each_entry_safe(old, tmp, &new->head, list) {
2746 static void relink_file_extents(struct new_sa_defrag_extent *new)
2748 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2749 struct btrfs_path *path;
2750 struct sa_defrag_extent_backref *backref;
2751 struct sa_defrag_extent_backref *prev = NULL;
2752 struct rb_node *node;
2755 path = btrfs_alloc_path();
2759 if (!record_extent_backrefs(path, new)) {
2760 btrfs_free_path(path);
2763 btrfs_release_path(path);
2766 node = rb_first(&new->root);
2769 rb_erase(node, &new->root);
2771 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2773 ret = relink_extent_backref(path, prev, backref);
2786 btrfs_free_path(path);
2788 free_sa_defrag_extent(new);
2790 atomic_dec(&fs_info->defrag_running);
2791 wake_up(&fs_info->transaction_wait);
2794 static struct new_sa_defrag_extent *
2795 record_old_file_extents(struct inode *inode,
2796 struct btrfs_ordered_extent *ordered)
2798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2799 struct btrfs_root *root = BTRFS_I(inode)->root;
2800 struct btrfs_path *path;
2801 struct btrfs_key key;
2802 struct old_sa_defrag_extent *old;
2803 struct new_sa_defrag_extent *new;
2806 new = kmalloc(sizeof(*new), GFP_NOFS);
2811 new->file_pos = ordered->file_offset;
2812 new->len = ordered->len;
2813 new->bytenr = ordered->start;
2814 new->disk_len = ordered->disk_len;
2815 new->compress_type = ordered->compress_type;
2816 new->root = RB_ROOT;
2817 INIT_LIST_HEAD(&new->head);
2819 path = btrfs_alloc_path();
2823 key.objectid = btrfs_ino(BTRFS_I(inode));
2824 key.type = BTRFS_EXTENT_DATA_KEY;
2825 key.offset = new->file_pos;
2827 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2830 if (ret > 0 && path->slots[0] > 0)
2833 /* find out all the old extents for the file range */
2835 struct btrfs_file_extent_item *extent;
2836 struct extent_buffer *l;
2845 slot = path->slots[0];
2847 if (slot >= btrfs_header_nritems(l)) {
2848 ret = btrfs_next_leaf(root, path);
2856 btrfs_item_key_to_cpu(l, &key, slot);
2858 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2860 if (key.type != BTRFS_EXTENT_DATA_KEY)
2862 if (key.offset >= new->file_pos + new->len)
2865 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2867 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2868 if (key.offset + num_bytes < new->file_pos)
2871 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2875 extent_offset = btrfs_file_extent_offset(l, extent);
2877 old = kmalloc(sizeof(*old), GFP_NOFS);
2881 offset = max(new->file_pos, key.offset);
2882 end = min(new->file_pos + new->len, key.offset + num_bytes);
2884 old->bytenr = disk_bytenr;
2885 old->extent_offset = extent_offset;
2886 old->offset = offset - key.offset;
2887 old->len = end - offset;
2890 list_add_tail(&old->list, &new->head);
2896 btrfs_free_path(path);
2897 atomic_inc(&fs_info->defrag_running);
2902 btrfs_free_path(path);
2904 free_sa_defrag_extent(new);
2908 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2911 struct btrfs_block_group_cache *cache;
2913 cache = btrfs_lookup_block_group(fs_info, start);
2916 spin_lock(&cache->lock);
2917 cache->delalloc_bytes -= len;
2918 spin_unlock(&cache->lock);
2920 btrfs_put_block_group(cache);
2923 /* as ordered data IO finishes, this gets called so we can finish
2924 * an ordered extent if the range of bytes in the file it covers are
2927 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2929 struct inode *inode = ordered_extent->inode;
2930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2931 struct btrfs_root *root = BTRFS_I(inode)->root;
2932 struct btrfs_trans_handle *trans = NULL;
2933 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2934 struct extent_state *cached_state = NULL;
2935 struct new_sa_defrag_extent *new = NULL;
2936 int compress_type = 0;
2938 u64 logical_len = ordered_extent->len;
2940 bool truncated = false;
2941 bool range_locked = false;
2942 bool clear_new_delalloc_bytes = false;
2944 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2945 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2946 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2947 clear_new_delalloc_bytes = true;
2949 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2951 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2956 btrfs_free_io_failure_record(BTRFS_I(inode),
2957 ordered_extent->file_offset,
2958 ordered_extent->file_offset +
2959 ordered_extent->len - 1);
2961 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2963 logical_len = ordered_extent->truncated_len;
2964 /* Truncated the entire extent, don't bother adding */
2969 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2970 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2973 * For mwrite(mmap + memset to write) case, we still reserve
2974 * space for NOCOW range.
2975 * As NOCOW won't cause a new delayed ref, just free the space
2977 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2978 ordered_extent->len);
2979 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2981 trans = btrfs_join_transaction_nolock(root);
2983 trans = btrfs_join_transaction(root);
2984 if (IS_ERR(trans)) {
2985 ret = PTR_ERR(trans);
2989 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2990 ret = btrfs_update_inode_fallback(trans, root, inode);
2991 if (ret) /* -ENOMEM or corruption */
2992 btrfs_abort_transaction(trans, ret);
2996 range_locked = true;
2997 lock_extent_bits(io_tree, ordered_extent->file_offset,
2998 ordered_extent->file_offset + ordered_extent->len - 1,
3001 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3002 ordered_extent->file_offset + ordered_extent->len - 1,
3003 EXTENT_DEFRAG, 0, cached_state);
3005 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3006 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3007 /* the inode is shared */
3008 new = record_old_file_extents(inode, ordered_extent);
3010 clear_extent_bit(io_tree, ordered_extent->file_offset,
3011 ordered_extent->file_offset + ordered_extent->len - 1,
3012 EXTENT_DEFRAG, 0, 0, &cached_state);
3016 trans = btrfs_join_transaction_nolock(root);
3018 trans = btrfs_join_transaction(root);
3019 if (IS_ERR(trans)) {
3020 ret = PTR_ERR(trans);
3025 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3027 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3028 compress_type = ordered_extent->compress_type;
3029 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3030 BUG_ON(compress_type);
3031 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3032 ordered_extent->len);
3033 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3034 ordered_extent->file_offset,
3035 ordered_extent->file_offset +
3038 BUG_ON(root == fs_info->tree_root);
3039 ret = insert_reserved_file_extent(trans, inode,
3040 ordered_extent->file_offset,
3041 ordered_extent->start,
3042 ordered_extent->disk_len,
3043 logical_len, logical_len,
3044 compress_type, 0, 0,
3045 BTRFS_FILE_EXTENT_REG);
3047 btrfs_release_delalloc_bytes(fs_info,
3048 ordered_extent->start,
3049 ordered_extent->disk_len);
3051 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3052 ordered_extent->file_offset, ordered_extent->len,
3055 btrfs_abort_transaction(trans, ret);
3059 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3061 btrfs_abort_transaction(trans, ret);
3065 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3066 ret = btrfs_update_inode_fallback(trans, root, inode);
3067 if (ret) { /* -ENOMEM or corruption */
3068 btrfs_abort_transaction(trans, ret);
3073 if (range_locked || clear_new_delalloc_bytes) {
3074 unsigned int clear_bits = 0;
3077 clear_bits |= EXTENT_LOCKED;
3078 if (clear_new_delalloc_bytes)
3079 clear_bits |= EXTENT_DELALLOC_NEW;
3080 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3081 ordered_extent->file_offset,
3082 ordered_extent->file_offset +
3083 ordered_extent->len - 1,
3085 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3090 btrfs_end_transaction(trans);
3092 if (ret || truncated) {
3096 start = ordered_extent->file_offset + logical_len;
3098 start = ordered_extent->file_offset;
3099 end = ordered_extent->file_offset + ordered_extent->len - 1;
3100 clear_extent_uptodate(io_tree, start, end, NULL);
3102 /* Drop the cache for the part of the extent we didn't write. */
3103 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3106 * If the ordered extent had an IOERR or something else went
3107 * wrong we need to return the space for this ordered extent
3108 * back to the allocator. We only free the extent in the
3109 * truncated case if we didn't write out the extent at all.
3111 if ((ret || !logical_len) &&
3112 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3113 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3114 btrfs_free_reserved_extent(fs_info,
3115 ordered_extent->start,
3116 ordered_extent->disk_len, 1);
3121 * This needs to be done to make sure anybody waiting knows we are done
3122 * updating everything for this ordered extent.
3124 btrfs_remove_ordered_extent(inode, ordered_extent);
3126 /* for snapshot-aware defrag */
3129 free_sa_defrag_extent(new);
3130 atomic_dec(&fs_info->defrag_running);
3132 relink_file_extents(new);
3137 btrfs_put_ordered_extent(ordered_extent);
3138 /* once for the tree */
3139 btrfs_put_ordered_extent(ordered_extent);
3141 /* Try to release some metadata so we don't get an OOM but don't wait */
3142 btrfs_btree_balance_dirty_nodelay(fs_info);
3147 static void finish_ordered_fn(struct btrfs_work *work)
3149 struct btrfs_ordered_extent *ordered_extent;
3150 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3151 btrfs_finish_ordered_io(ordered_extent);
3154 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3155 struct extent_state *state, int uptodate)
3157 struct inode *inode = page->mapping->host;
3158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3159 struct btrfs_ordered_extent *ordered_extent = NULL;
3160 struct btrfs_workqueue *wq;
3161 btrfs_work_func_t func;
3163 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3165 ClearPagePrivate2(page);
3166 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3167 end - start + 1, uptodate))
3170 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3171 wq = fs_info->endio_freespace_worker;
3172 func = btrfs_freespace_write_helper;
3174 wq = fs_info->endio_write_workers;
3175 func = btrfs_endio_write_helper;
3178 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3180 btrfs_queue_work(wq, &ordered_extent->work);
3183 static int __readpage_endio_check(struct inode *inode,
3184 struct btrfs_io_bio *io_bio,
3185 int icsum, struct page *page,
3186 int pgoff, u64 start, size_t len)
3192 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3194 kaddr = kmap_atomic(page);
3195 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3196 btrfs_csum_final(csum, (u8 *)&csum);
3197 if (csum != csum_expected)
3200 kunmap_atomic(kaddr);
3203 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3204 io_bio->mirror_num);
3205 memset(kaddr + pgoff, 1, len);
3206 flush_dcache_page(page);
3207 kunmap_atomic(kaddr);
3212 * when reads are done, we need to check csums to verify the data is correct
3213 * if there's a match, we allow the bio to finish. If not, the code in
3214 * extent_io.c will try to find good copies for us.
3216 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3217 u64 phy_offset, struct page *page,
3218 u64 start, u64 end, int mirror)
3220 size_t offset = start - page_offset(page);
3221 struct inode *inode = page->mapping->host;
3222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3223 struct btrfs_root *root = BTRFS_I(inode)->root;
3225 if (PageChecked(page)) {
3226 ClearPageChecked(page);
3230 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3233 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3234 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3235 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3239 phy_offset >>= inode->i_sb->s_blocksize_bits;
3240 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3241 start, (size_t)(end - start + 1));
3245 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3247 * @inode: The inode we want to perform iput on
3249 * This function uses the generic vfs_inode::i_count to track whether we should
3250 * just decrement it (in case it's > 1) or if this is the last iput then link
3251 * the inode to the delayed iput machinery. Delayed iputs are processed at
3252 * transaction commit time/superblock commit/cleaner kthread.
3254 void btrfs_add_delayed_iput(struct inode *inode)
3256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3257 struct btrfs_inode *binode = BTRFS_I(inode);
3259 if (atomic_add_unless(&inode->i_count, -1, 1))
3262 spin_lock(&fs_info->delayed_iput_lock);
3263 ASSERT(list_empty(&binode->delayed_iput));
3264 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3265 spin_unlock(&fs_info->delayed_iput_lock);
3268 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3271 spin_lock(&fs_info->delayed_iput_lock);
3272 while (!list_empty(&fs_info->delayed_iputs)) {
3273 struct btrfs_inode *inode;
3275 inode = list_first_entry(&fs_info->delayed_iputs,
3276 struct btrfs_inode, delayed_iput);
3277 list_del_init(&inode->delayed_iput);
3278 spin_unlock(&fs_info->delayed_iput_lock);
3279 iput(&inode->vfs_inode);
3280 spin_lock(&fs_info->delayed_iput_lock);
3282 spin_unlock(&fs_info->delayed_iput_lock);
3286 * This creates an orphan entry for the given inode in case something goes wrong
3287 * in the middle of an unlink.
3289 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3290 struct btrfs_inode *inode)
3294 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3295 if (ret && ret != -EEXIST) {
3296 btrfs_abort_transaction(trans, ret);
3304 * We have done the delete so we can go ahead and remove the orphan item for
3305 * this particular inode.
3307 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3308 struct btrfs_inode *inode)
3310 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3314 * this cleans up any orphans that may be left on the list from the last use
3317 int btrfs_orphan_cleanup(struct btrfs_root *root)
3319 struct btrfs_fs_info *fs_info = root->fs_info;
3320 struct btrfs_path *path;
3321 struct extent_buffer *leaf;
3322 struct btrfs_key key, found_key;
3323 struct btrfs_trans_handle *trans;
3324 struct inode *inode;
3325 u64 last_objectid = 0;
3326 int ret = 0, nr_unlink = 0;
3328 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3331 path = btrfs_alloc_path();
3336 path->reada = READA_BACK;
3338 key.objectid = BTRFS_ORPHAN_OBJECTID;
3339 key.type = BTRFS_ORPHAN_ITEM_KEY;
3340 key.offset = (u64)-1;
3343 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348 * if ret == 0 means we found what we were searching for, which
3349 * is weird, but possible, so only screw with path if we didn't
3350 * find the key and see if we have stuff that matches
3354 if (path->slots[0] == 0)
3359 /* pull out the item */
3360 leaf = path->nodes[0];
3361 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3363 /* make sure the item matches what we want */
3364 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3366 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3369 /* release the path since we're done with it */
3370 btrfs_release_path(path);
3373 * this is where we are basically btrfs_lookup, without the
3374 * crossing root thing. we store the inode number in the
3375 * offset of the orphan item.
3378 if (found_key.offset == last_objectid) {
3380 "Error removing orphan entry, stopping orphan cleanup");
3385 last_objectid = found_key.offset;
3387 found_key.objectid = found_key.offset;
3388 found_key.type = BTRFS_INODE_ITEM_KEY;
3389 found_key.offset = 0;
3390 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3391 ret = PTR_ERR_OR_ZERO(inode);
3392 if (ret && ret != -ENOENT)
3395 if (ret == -ENOENT && root == fs_info->tree_root) {
3396 struct btrfs_root *dead_root;
3397 struct btrfs_fs_info *fs_info = root->fs_info;
3398 int is_dead_root = 0;
3401 * this is an orphan in the tree root. Currently these
3402 * could come from 2 sources:
3403 * a) a snapshot deletion in progress
3404 * b) a free space cache inode
3405 * We need to distinguish those two, as the snapshot
3406 * orphan must not get deleted.
3407 * find_dead_roots already ran before us, so if this
3408 * is a snapshot deletion, we should find the root
3409 * in the dead_roots list
3411 spin_lock(&fs_info->trans_lock);
3412 list_for_each_entry(dead_root, &fs_info->dead_roots,
3414 if (dead_root->root_key.objectid ==
3415 found_key.objectid) {
3420 spin_unlock(&fs_info->trans_lock);
3422 /* prevent this orphan from being found again */
3423 key.offset = found_key.objectid - 1;
3430 * If we have an inode with links, there are a couple of
3431 * possibilities. Old kernels (before v3.12) used to create an
3432 * orphan item for truncate indicating that there were possibly
3433 * extent items past i_size that needed to be deleted. In v3.12,
3434 * truncate was changed to update i_size in sync with the extent
3435 * items, but the (useless) orphan item was still created. Since
3436 * v4.18, we don't create the orphan item for truncate at all.
3438 * So, this item could mean that we need to do a truncate, but
3439 * only if this filesystem was last used on a pre-v3.12 kernel
3440 * and was not cleanly unmounted. The odds of that are quite
3441 * slim, and it's a pain to do the truncate now, so just delete
3444 * It's also possible that this orphan item was supposed to be
3445 * deleted but wasn't. The inode number may have been reused,
3446 * but either way, we can delete the orphan item.
3448 if (ret == -ENOENT || inode->i_nlink) {
3451 trans = btrfs_start_transaction(root, 1);
3452 if (IS_ERR(trans)) {
3453 ret = PTR_ERR(trans);
3456 btrfs_debug(fs_info, "auto deleting %Lu",
3457 found_key.objectid);
3458 ret = btrfs_del_orphan_item(trans, root,
3459 found_key.objectid);
3460 btrfs_end_transaction(trans);
3468 /* this will do delete_inode and everything for us */
3471 /* release the path since we're done with it */
3472 btrfs_release_path(path);
3474 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3476 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3477 trans = btrfs_join_transaction(root);
3479 btrfs_end_transaction(trans);
3483 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3487 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3488 btrfs_free_path(path);
3493 * very simple check to peek ahead in the leaf looking for xattrs. If we
3494 * don't find any xattrs, we know there can't be any acls.
3496 * slot is the slot the inode is in, objectid is the objectid of the inode
3498 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3499 int slot, u64 objectid,
3500 int *first_xattr_slot)
3502 u32 nritems = btrfs_header_nritems(leaf);
3503 struct btrfs_key found_key;
3504 static u64 xattr_access = 0;
3505 static u64 xattr_default = 0;
3508 if (!xattr_access) {
3509 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3510 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3511 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3512 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3516 *first_xattr_slot = -1;
3517 while (slot < nritems) {
3518 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3520 /* we found a different objectid, there must not be acls */
3521 if (found_key.objectid != objectid)
3524 /* we found an xattr, assume we've got an acl */
3525 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3526 if (*first_xattr_slot == -1)
3527 *first_xattr_slot = slot;
3528 if (found_key.offset == xattr_access ||
3529 found_key.offset == xattr_default)
3534 * we found a key greater than an xattr key, there can't
3535 * be any acls later on
3537 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3544 * it goes inode, inode backrefs, xattrs, extents,
3545 * so if there are a ton of hard links to an inode there can
3546 * be a lot of backrefs. Don't waste time searching too hard,
3547 * this is just an optimization
3552 /* we hit the end of the leaf before we found an xattr or
3553 * something larger than an xattr. We have to assume the inode
3556 if (*first_xattr_slot == -1)
3557 *first_xattr_slot = slot;
3562 * read an inode from the btree into the in-memory inode
3564 static int btrfs_read_locked_inode(struct inode *inode)
3566 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3567 struct btrfs_path *path;
3568 struct extent_buffer *leaf;
3569 struct btrfs_inode_item *inode_item;
3570 struct btrfs_root *root = BTRFS_I(inode)->root;
3571 struct btrfs_key location;
3576 bool filled = false;
3577 int first_xattr_slot;
3579 ret = btrfs_fill_inode(inode, &rdev);
3583 path = btrfs_alloc_path();
3587 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3589 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3591 btrfs_free_path(path);
3595 leaf = path->nodes[0];
3600 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3601 struct btrfs_inode_item);
3602 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3603 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3604 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3605 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3606 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3608 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3609 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3611 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3612 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3614 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3615 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3617 BTRFS_I(inode)->i_otime.tv_sec =
3618 btrfs_timespec_sec(leaf, &inode_item->otime);
3619 BTRFS_I(inode)->i_otime.tv_nsec =
3620 btrfs_timespec_nsec(leaf, &inode_item->otime);
3622 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3623 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3624 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3626 inode_set_iversion_queried(inode,
3627 btrfs_inode_sequence(leaf, inode_item));
3628 inode->i_generation = BTRFS_I(inode)->generation;
3630 rdev = btrfs_inode_rdev(leaf, inode_item);
3632 BTRFS_I(inode)->index_cnt = (u64)-1;
3633 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3637 * If we were modified in the current generation and evicted from memory
3638 * and then re-read we need to do a full sync since we don't have any
3639 * idea about which extents were modified before we were evicted from
3642 * This is required for both inode re-read from disk and delayed inode
3643 * in delayed_nodes_tree.
3645 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3646 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3647 &BTRFS_I(inode)->runtime_flags);
3650 * We don't persist the id of the transaction where an unlink operation
3651 * against the inode was last made. So here we assume the inode might
3652 * have been evicted, and therefore the exact value of last_unlink_trans
3653 * lost, and set it to last_trans to avoid metadata inconsistencies
3654 * between the inode and its parent if the inode is fsync'ed and the log
3655 * replayed. For example, in the scenario:
3658 * ln mydir/foo mydir/bar
3661 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3662 * xfs_io -c fsync mydir/foo
3664 * mount fs, triggers fsync log replay
3666 * We must make sure that when we fsync our inode foo we also log its
3667 * parent inode, otherwise after log replay the parent still has the
3668 * dentry with the "bar" name but our inode foo has a link count of 1
3669 * and doesn't have an inode ref with the name "bar" anymore.
3671 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3672 * but it guarantees correctness at the expense of occasional full
3673 * transaction commits on fsync if our inode is a directory, or if our
3674 * inode is not a directory, logging its parent unnecessarily.
3676 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3679 if (inode->i_nlink != 1 ||
3680 path->slots[0] >= btrfs_header_nritems(leaf))
3683 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3684 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3687 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3688 if (location.type == BTRFS_INODE_REF_KEY) {
3689 struct btrfs_inode_ref *ref;
3691 ref = (struct btrfs_inode_ref *)ptr;
3692 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3693 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3694 struct btrfs_inode_extref *extref;
3696 extref = (struct btrfs_inode_extref *)ptr;
3697 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3702 * try to precache a NULL acl entry for files that don't have
3703 * any xattrs or acls
3705 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3706 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3707 if (first_xattr_slot != -1) {
3708 path->slots[0] = first_xattr_slot;
3709 ret = btrfs_load_inode_props(inode, path);
3712 "error loading props for ino %llu (root %llu): %d",
3713 btrfs_ino(BTRFS_I(inode)),
3714 root->root_key.objectid, ret);
3716 btrfs_free_path(path);
3719 cache_no_acl(inode);
3721 switch (inode->i_mode & S_IFMT) {
3723 inode->i_mapping->a_ops = &btrfs_aops;
3724 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3725 inode->i_fop = &btrfs_file_operations;
3726 inode->i_op = &btrfs_file_inode_operations;
3729 inode->i_fop = &btrfs_dir_file_operations;
3730 inode->i_op = &btrfs_dir_inode_operations;
3733 inode->i_op = &btrfs_symlink_inode_operations;
3734 inode_nohighmem(inode);
3735 inode->i_mapping->a_ops = &btrfs_aops;
3738 inode->i_op = &btrfs_special_inode_operations;
3739 init_special_inode(inode, inode->i_mode, rdev);
3743 btrfs_sync_inode_flags_to_i_flags(inode);
3748 * given a leaf and an inode, copy the inode fields into the leaf
3750 static void fill_inode_item(struct btrfs_trans_handle *trans,
3751 struct extent_buffer *leaf,
3752 struct btrfs_inode_item *item,
3753 struct inode *inode)
3755 struct btrfs_map_token token;
3757 btrfs_init_map_token(&token);
3759 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3760 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3761 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3763 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3764 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3766 btrfs_set_token_timespec_sec(leaf, &item->atime,
3767 inode->i_atime.tv_sec, &token);
3768 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3769 inode->i_atime.tv_nsec, &token);
3771 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3772 inode->i_mtime.tv_sec, &token);
3773 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3774 inode->i_mtime.tv_nsec, &token);
3776 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3777 inode->i_ctime.tv_sec, &token);
3778 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3779 inode->i_ctime.tv_nsec, &token);
3781 btrfs_set_token_timespec_sec(leaf, &item->otime,
3782 BTRFS_I(inode)->i_otime.tv_sec, &token);
3783 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3784 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3786 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3788 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3790 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3792 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3793 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3794 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3795 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3799 * copy everything in the in-memory inode into the btree.
3801 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3802 struct btrfs_root *root, struct inode *inode)
3804 struct btrfs_inode_item *inode_item;
3805 struct btrfs_path *path;
3806 struct extent_buffer *leaf;
3809 path = btrfs_alloc_path();
3813 path->leave_spinning = 1;
3814 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3822 leaf = path->nodes[0];
3823 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3824 struct btrfs_inode_item);
3826 fill_inode_item(trans, leaf, inode_item, inode);
3827 btrfs_mark_buffer_dirty(leaf);
3828 btrfs_set_inode_last_trans(trans, inode);
3831 btrfs_free_path(path);
3836 * copy everything in the in-memory inode into the btree.
3838 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3839 struct btrfs_root *root, struct inode *inode)
3841 struct btrfs_fs_info *fs_info = root->fs_info;
3845 * If the inode is a free space inode, we can deadlock during commit
3846 * if we put it into the delayed code.
3848 * The data relocation inode should also be directly updated
3851 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3852 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3853 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3854 btrfs_update_root_times(trans, root);
3856 ret = btrfs_delayed_update_inode(trans, root, inode);
3858 btrfs_set_inode_last_trans(trans, inode);
3862 return btrfs_update_inode_item(trans, root, inode);
3865 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3866 struct btrfs_root *root,
3867 struct inode *inode)
3871 ret = btrfs_update_inode(trans, root, inode);
3873 return btrfs_update_inode_item(trans, root, inode);
3878 * unlink helper that gets used here in inode.c and in the tree logging
3879 * recovery code. It remove a link in a directory with a given name, and
3880 * also drops the back refs in the inode to the directory
3882 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3883 struct btrfs_root *root,
3884 struct btrfs_inode *dir,
3885 struct btrfs_inode *inode,
3886 const char *name, int name_len)
3888 struct btrfs_fs_info *fs_info = root->fs_info;
3889 struct btrfs_path *path;
3891 struct extent_buffer *leaf;
3892 struct btrfs_dir_item *di;
3893 struct btrfs_key key;
3895 u64 ino = btrfs_ino(inode);
3896 u64 dir_ino = btrfs_ino(dir);
3898 path = btrfs_alloc_path();
3904 path->leave_spinning = 1;
3905 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3906 name, name_len, -1);
3907 if (IS_ERR_OR_NULL(di)) {
3908 ret = di ? PTR_ERR(di) : -ENOENT;
3911 leaf = path->nodes[0];
3912 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3913 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3916 btrfs_release_path(path);
3919 * If we don't have dir index, we have to get it by looking up
3920 * the inode ref, since we get the inode ref, remove it directly,
3921 * it is unnecessary to do delayed deletion.
3923 * But if we have dir index, needn't search inode ref to get it.
3924 * Since the inode ref is close to the inode item, it is better
3925 * that we delay to delete it, and just do this deletion when
3926 * we update the inode item.
3928 if (inode->dir_index) {
3929 ret = btrfs_delayed_delete_inode_ref(inode);
3931 index = inode->dir_index;
3936 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3940 "failed to delete reference to %.*s, inode %llu parent %llu",
3941 name_len, name, ino, dir_ino);
3942 btrfs_abort_transaction(trans, ret);
3946 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3948 btrfs_abort_transaction(trans, ret);
3952 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3954 if (ret != 0 && ret != -ENOENT) {
3955 btrfs_abort_transaction(trans, ret);
3959 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3964 btrfs_abort_transaction(trans, ret);
3966 btrfs_free_path(path);
3970 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3971 inode_inc_iversion(&inode->vfs_inode);
3972 inode_inc_iversion(&dir->vfs_inode);
3973 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3974 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3975 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3980 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3981 struct btrfs_root *root,
3982 struct btrfs_inode *dir, struct btrfs_inode *inode,
3983 const char *name, int name_len)
3986 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3988 drop_nlink(&inode->vfs_inode);
3989 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3995 * helper to start transaction for unlink and rmdir.
3997 * unlink and rmdir are special in btrfs, they do not always free space, so
3998 * if we cannot make our reservations the normal way try and see if there is
3999 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4000 * allow the unlink to occur.
4002 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4004 struct btrfs_root *root = BTRFS_I(dir)->root;
4007 * 1 for the possible orphan item
4008 * 1 for the dir item
4009 * 1 for the dir index
4010 * 1 for the inode ref
4013 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4016 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4018 struct btrfs_root *root = BTRFS_I(dir)->root;
4019 struct btrfs_trans_handle *trans;
4020 struct inode *inode = d_inode(dentry);
4023 trans = __unlink_start_trans(dir);
4025 return PTR_ERR(trans);
4027 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4030 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4031 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4032 dentry->d_name.len);
4036 if (inode->i_nlink == 0) {
4037 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4043 btrfs_end_transaction(trans);
4044 btrfs_btree_balance_dirty(root->fs_info);
4048 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4049 struct inode *dir, u64 objectid,
4050 const char *name, int name_len)
4052 struct btrfs_root *root = BTRFS_I(dir)->root;
4053 struct btrfs_path *path;
4054 struct extent_buffer *leaf;
4055 struct btrfs_dir_item *di;
4056 struct btrfs_key key;
4059 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4061 path = btrfs_alloc_path();
4065 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4066 name, name_len, -1);
4067 if (IS_ERR_OR_NULL(di)) {
4068 ret = di ? PTR_ERR(di) : -ENOENT;
4072 leaf = path->nodes[0];
4073 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4074 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4075 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4077 btrfs_abort_transaction(trans, ret);
4080 btrfs_release_path(path);
4082 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4083 dir_ino, &index, name, name_len);
4085 if (ret != -ENOENT) {
4086 btrfs_abort_transaction(trans, ret);
4089 di = btrfs_search_dir_index_item(root, path, dir_ino,
4091 if (IS_ERR_OR_NULL(di)) {
4096 btrfs_abort_transaction(trans, ret);
4100 leaf = path->nodes[0];
4101 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4104 btrfs_release_path(path);
4106 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4108 btrfs_abort_transaction(trans, ret);
4112 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4113 inode_inc_iversion(dir);
4114 dir->i_mtime = dir->i_ctime = current_time(dir);
4115 ret = btrfs_update_inode_fallback(trans, root, dir);
4117 btrfs_abort_transaction(trans, ret);
4119 btrfs_free_path(path);
4124 * Helper to check if the subvolume references other subvolumes or if it's
4127 static noinline int may_destroy_subvol(struct btrfs_root *root)
4129 struct btrfs_fs_info *fs_info = root->fs_info;
4130 struct btrfs_path *path;
4131 struct btrfs_dir_item *di;
4132 struct btrfs_key key;
4136 path = btrfs_alloc_path();
4140 /* Make sure this root isn't set as the default subvol */
4141 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4142 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4143 dir_id, "default", 7, 0);
4144 if (di && !IS_ERR(di)) {
4145 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4146 if (key.objectid == root->root_key.objectid) {
4149 "deleting default subvolume %llu is not allowed",
4153 btrfs_release_path(path);
4156 key.objectid = root->root_key.objectid;
4157 key.type = BTRFS_ROOT_REF_KEY;
4158 key.offset = (u64)-1;
4160 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4166 if (path->slots[0] > 0) {
4168 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4169 if (key.objectid == root->root_key.objectid &&
4170 key.type == BTRFS_ROOT_REF_KEY)
4174 btrfs_free_path(path);
4178 /* Delete all dentries for inodes belonging to the root */
4179 static void btrfs_prune_dentries(struct btrfs_root *root)
4181 struct btrfs_fs_info *fs_info = root->fs_info;
4182 struct rb_node *node;
4183 struct rb_node *prev;
4184 struct btrfs_inode *entry;
4185 struct inode *inode;
4188 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4189 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4191 spin_lock(&root->inode_lock);
4193 node = root->inode_tree.rb_node;
4197 entry = rb_entry(node, struct btrfs_inode, rb_node);
4199 if (objectid < btrfs_ino(entry))
4200 node = node->rb_left;
4201 else if (objectid > btrfs_ino(entry))
4202 node = node->rb_right;
4208 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4209 if (objectid <= btrfs_ino(entry)) {
4213 prev = rb_next(prev);
4217 entry = rb_entry(node, struct btrfs_inode, rb_node);
4218 objectid = btrfs_ino(entry) + 1;
4219 inode = igrab(&entry->vfs_inode);
4221 spin_unlock(&root->inode_lock);
4222 if (atomic_read(&inode->i_count) > 1)
4223 d_prune_aliases(inode);
4225 * btrfs_drop_inode will have it removed from the inode
4226 * cache when its usage count hits zero.
4230 spin_lock(&root->inode_lock);
4234 if (cond_resched_lock(&root->inode_lock))
4237 node = rb_next(node);
4239 spin_unlock(&root->inode_lock);
4242 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4244 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4245 struct btrfs_root *root = BTRFS_I(dir)->root;
4246 struct inode *inode = d_inode(dentry);
4247 struct btrfs_root *dest = BTRFS_I(inode)->root;
4248 struct btrfs_trans_handle *trans;
4249 struct btrfs_block_rsv block_rsv;
4255 * Don't allow to delete a subvolume with send in progress. This is
4256 * inside the inode lock so the error handling that has to drop the bit
4257 * again is not run concurrently.
4259 spin_lock(&dest->root_item_lock);
4260 if (dest->send_in_progress) {
4261 spin_unlock(&dest->root_item_lock);
4263 "attempt to delete subvolume %llu during send",
4264 dest->root_key.objectid);
4267 root_flags = btrfs_root_flags(&dest->root_item);
4268 btrfs_set_root_flags(&dest->root_item,
4269 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4270 spin_unlock(&dest->root_item_lock);
4272 down_write(&fs_info->subvol_sem);
4274 err = may_destroy_subvol(dest);
4278 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4280 * One for dir inode,
4281 * two for dir entries,
4282 * two for root ref/backref.
4284 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4288 trans = btrfs_start_transaction(root, 0);
4289 if (IS_ERR(trans)) {
4290 err = PTR_ERR(trans);
4293 trans->block_rsv = &block_rsv;
4294 trans->bytes_reserved = block_rsv.size;
4296 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4298 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4299 dentry->d_name.name, dentry->d_name.len);
4302 btrfs_abort_transaction(trans, ret);
4306 btrfs_record_root_in_trans(trans, dest);
4308 memset(&dest->root_item.drop_progress, 0,
4309 sizeof(dest->root_item.drop_progress));
4310 dest->root_item.drop_level = 0;
4311 btrfs_set_root_refs(&dest->root_item, 0);
4313 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4314 ret = btrfs_insert_orphan_item(trans,
4316 dest->root_key.objectid);
4318 btrfs_abort_transaction(trans, ret);
4324 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4325 BTRFS_UUID_KEY_SUBVOL,
4326 dest->root_key.objectid);
4327 if (ret && ret != -ENOENT) {
4328 btrfs_abort_transaction(trans, ret);
4332 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4333 ret = btrfs_uuid_tree_remove(trans,
4334 dest->root_item.received_uuid,
4335 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4336 dest->root_key.objectid);
4337 if (ret && ret != -ENOENT) {
4338 btrfs_abort_transaction(trans, ret);
4345 trans->block_rsv = NULL;
4346 trans->bytes_reserved = 0;
4347 ret = btrfs_end_transaction(trans);
4350 inode->i_flags |= S_DEAD;
4352 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4354 up_write(&fs_info->subvol_sem);
4356 spin_lock(&dest->root_item_lock);
4357 root_flags = btrfs_root_flags(&dest->root_item);
4358 btrfs_set_root_flags(&dest->root_item,
4359 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4360 spin_unlock(&dest->root_item_lock);
4362 d_invalidate(dentry);
4363 btrfs_prune_dentries(dest);
4364 ASSERT(dest->send_in_progress == 0);
4367 if (dest->ino_cache_inode) {
4368 iput(dest->ino_cache_inode);
4369 dest->ino_cache_inode = NULL;
4376 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4378 struct inode *inode = d_inode(dentry);
4380 struct btrfs_root *root = BTRFS_I(dir)->root;
4381 struct btrfs_trans_handle *trans;
4382 u64 last_unlink_trans;
4384 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4386 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4387 return btrfs_delete_subvolume(dir, dentry);
4389 trans = __unlink_start_trans(dir);
4391 return PTR_ERR(trans);
4393 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4394 err = btrfs_unlink_subvol(trans, dir,
4395 BTRFS_I(inode)->location.objectid,
4396 dentry->d_name.name,
4397 dentry->d_name.len);
4401 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4405 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4407 /* now the directory is empty */
4408 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4409 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4410 dentry->d_name.len);
4412 btrfs_i_size_write(BTRFS_I(inode), 0);
4414 * Propagate the last_unlink_trans value of the deleted dir to
4415 * its parent directory. This is to prevent an unrecoverable
4416 * log tree in the case we do something like this:
4418 * 2) create snapshot under dir foo
4419 * 3) delete the snapshot
4422 * 6) fsync foo or some file inside foo
4424 if (last_unlink_trans >= trans->transid)
4425 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4428 btrfs_end_transaction(trans);
4429 btrfs_btree_balance_dirty(root->fs_info);
4434 static int truncate_space_check(struct btrfs_trans_handle *trans,
4435 struct btrfs_root *root,
4438 struct btrfs_fs_info *fs_info = root->fs_info;
4442 * This is only used to apply pressure to the enospc system, we don't
4443 * intend to use this reservation at all.
4445 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4446 bytes_deleted *= fs_info->nodesize;
4447 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4448 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4450 trace_btrfs_space_reservation(fs_info, "transaction",
4453 trans->bytes_reserved += bytes_deleted;
4460 * Return this if we need to call truncate_block for the last bit of the
4463 #define NEED_TRUNCATE_BLOCK 1
4466 * this can truncate away extent items, csum items and directory items.
4467 * It starts at a high offset and removes keys until it can't find
4468 * any higher than new_size
4470 * csum items that cross the new i_size are truncated to the new size
4473 * min_type is the minimum key type to truncate down to. If set to 0, this
4474 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4476 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4477 struct btrfs_root *root,
4478 struct inode *inode,
4479 u64 new_size, u32 min_type)
4481 struct btrfs_fs_info *fs_info = root->fs_info;
4482 struct btrfs_path *path;
4483 struct extent_buffer *leaf;
4484 struct btrfs_file_extent_item *fi;
4485 struct btrfs_key key;
4486 struct btrfs_key found_key;
4487 u64 extent_start = 0;
4488 u64 extent_num_bytes = 0;
4489 u64 extent_offset = 0;
4491 u64 last_size = new_size;
4492 u32 found_type = (u8)-1;
4495 int pending_del_nr = 0;
4496 int pending_del_slot = 0;
4497 int extent_type = -1;
4499 u64 ino = btrfs_ino(BTRFS_I(inode));
4500 u64 bytes_deleted = 0;
4501 bool be_nice = false;
4502 bool should_throttle = false;
4503 bool should_end = false;
4505 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4508 * for non-free space inodes and ref cows, we want to back off from
4511 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4512 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4515 path = btrfs_alloc_path();
4518 path->reada = READA_BACK;
4521 * We want to drop from the next block forward in case this new size is
4522 * not block aligned since we will be keeping the last block of the
4523 * extent just the way it is.
4525 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4526 root == fs_info->tree_root)
4527 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4528 fs_info->sectorsize),
4532 * This function is also used to drop the items in the log tree before
4533 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4534 * it is used to drop the loged items. So we shouldn't kill the delayed
4537 if (min_type == 0 && root == BTRFS_I(inode)->root)
4538 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4541 key.offset = (u64)-1;
4546 * with a 16K leaf size and 128MB extents, you can actually queue
4547 * up a huge file in a single leaf. Most of the time that
4548 * bytes_deleted is > 0, it will be huge by the time we get here
4550 if (be_nice && bytes_deleted > SZ_32M &&
4551 btrfs_should_end_transaction(trans)) {
4556 path->leave_spinning = 1;
4557 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4563 /* there are no items in the tree for us to truncate, we're
4566 if (path->slots[0] == 0)
4573 leaf = path->nodes[0];
4574 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4575 found_type = found_key.type;
4577 if (found_key.objectid != ino)
4580 if (found_type < min_type)
4583 item_end = found_key.offset;
4584 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4585 fi = btrfs_item_ptr(leaf, path->slots[0],
4586 struct btrfs_file_extent_item);
4587 extent_type = btrfs_file_extent_type(leaf, fi);
4588 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4590 btrfs_file_extent_num_bytes(leaf, fi);
4592 trace_btrfs_truncate_show_fi_regular(
4593 BTRFS_I(inode), leaf, fi,
4595 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4596 item_end += btrfs_file_extent_ram_bytes(leaf,
4599 trace_btrfs_truncate_show_fi_inline(
4600 BTRFS_I(inode), leaf, fi, path->slots[0],
4605 if (found_type > min_type) {
4608 if (item_end < new_size)
4610 if (found_key.offset >= new_size)
4616 /* FIXME, shrink the extent if the ref count is only 1 */
4617 if (found_type != BTRFS_EXTENT_DATA_KEY)
4620 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4622 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4624 u64 orig_num_bytes =
4625 btrfs_file_extent_num_bytes(leaf, fi);
4626 extent_num_bytes = ALIGN(new_size -
4628 fs_info->sectorsize);
4629 btrfs_set_file_extent_num_bytes(leaf, fi,
4631 num_dec = (orig_num_bytes -
4633 if (test_bit(BTRFS_ROOT_REF_COWS,
4636 inode_sub_bytes(inode, num_dec);
4637 btrfs_mark_buffer_dirty(leaf);
4640 btrfs_file_extent_disk_num_bytes(leaf,
4642 extent_offset = found_key.offset -
4643 btrfs_file_extent_offset(leaf, fi);
4645 /* FIXME blocksize != 4096 */
4646 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4647 if (extent_start != 0) {
4649 if (test_bit(BTRFS_ROOT_REF_COWS,
4651 inode_sub_bytes(inode, num_dec);
4654 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4656 * we can't truncate inline items that have had
4660 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4661 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4662 btrfs_file_extent_compression(leaf, fi) == 0) {
4663 u32 size = (u32)(new_size - found_key.offset);
4665 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4666 size = btrfs_file_extent_calc_inline_size(size);
4667 btrfs_truncate_item(root->fs_info, path, size, 1);
4668 } else if (!del_item) {
4670 * We have to bail so the last_size is set to
4671 * just before this extent.
4673 ret = NEED_TRUNCATE_BLOCK;
4677 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4678 inode_sub_bytes(inode, item_end + 1 - new_size);
4682 last_size = found_key.offset;
4684 last_size = new_size;
4686 if (!pending_del_nr) {
4687 /* no pending yet, add ourselves */
4688 pending_del_slot = path->slots[0];
4690 } else if (pending_del_nr &&
4691 path->slots[0] + 1 == pending_del_slot) {
4692 /* hop on the pending chunk */
4694 pending_del_slot = path->slots[0];
4701 should_throttle = false;
4704 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4705 root == fs_info->tree_root)) {
4706 btrfs_set_path_blocking(path);
4707 bytes_deleted += extent_num_bytes;
4708 ret = btrfs_free_extent(trans, root, extent_start,
4709 extent_num_bytes, 0,
4710 btrfs_header_owner(leaf),
4711 ino, extent_offset);
4713 btrfs_abort_transaction(trans, ret);
4716 if (btrfs_should_throttle_delayed_refs(trans))
4717 btrfs_async_run_delayed_refs(fs_info,
4718 trans->delayed_ref_updates * 2,
4721 if (truncate_space_check(trans, root,
4722 extent_num_bytes)) {
4725 if (btrfs_should_throttle_delayed_refs(trans))
4726 should_throttle = true;
4730 if (found_type == BTRFS_INODE_ITEM_KEY)
4733 if (path->slots[0] == 0 ||
4734 path->slots[0] != pending_del_slot ||
4735 should_throttle || should_end) {
4736 if (pending_del_nr) {
4737 ret = btrfs_del_items(trans, root, path,
4741 btrfs_abort_transaction(trans, ret);
4746 btrfs_release_path(path);
4747 if (should_throttle) {
4748 unsigned long updates = trans->delayed_ref_updates;
4750 trans->delayed_ref_updates = 0;
4751 ret = btrfs_run_delayed_refs(trans,
4758 * if we failed to refill our space rsv, bail out
4759 * and let the transaction restart
4771 if (ret >= 0 && pending_del_nr) {
4774 err = btrfs_del_items(trans, root, path, pending_del_slot,
4777 btrfs_abort_transaction(trans, err);
4781 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4782 ASSERT(last_size >= new_size);
4783 if (!ret && last_size > new_size)
4784 last_size = new_size;
4785 btrfs_ordered_update_i_size(inode, last_size, NULL);
4788 btrfs_free_path(path);
4790 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4791 unsigned long updates = trans->delayed_ref_updates;
4795 trans->delayed_ref_updates = 0;
4796 err = btrfs_run_delayed_refs(trans, updates * 2);
4805 * btrfs_truncate_block - read, zero a chunk and write a block
4806 * @inode - inode that we're zeroing
4807 * @from - the offset to start zeroing
4808 * @len - the length to zero, 0 to zero the entire range respective to the
4810 * @front - zero up to the offset instead of from the offset on
4812 * This will find the block for the "from" offset and cow the block and zero the
4813 * part we want to zero. This is used with truncate and hole punching.
4815 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4819 struct address_space *mapping = inode->i_mapping;
4820 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4821 struct btrfs_ordered_extent *ordered;
4822 struct extent_state *cached_state = NULL;
4823 struct extent_changeset *data_reserved = NULL;
4825 u32 blocksize = fs_info->sectorsize;
4826 pgoff_t index = from >> PAGE_SHIFT;
4827 unsigned offset = from & (blocksize - 1);
4829 gfp_t mask = btrfs_alloc_write_mask(mapping);
4834 if (IS_ALIGNED(offset, blocksize) &&
4835 (!len || IS_ALIGNED(len, blocksize)))
4838 block_start = round_down(from, blocksize);
4839 block_end = block_start + blocksize - 1;
4841 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4842 block_start, blocksize);
4847 page = find_or_create_page(mapping, index, mask);
4849 btrfs_delalloc_release_space(inode, data_reserved,
4850 block_start, blocksize, true);
4851 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4856 if (!PageUptodate(page)) {
4857 ret = btrfs_readpage(NULL, page);
4859 if (page->mapping != mapping) {
4864 if (!PageUptodate(page)) {
4869 wait_on_page_writeback(page);
4871 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4872 set_page_extent_mapped(page);
4874 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4876 unlock_extent_cached(io_tree, block_start, block_end,
4880 btrfs_start_ordered_extent(inode, ordered, 1);
4881 btrfs_put_ordered_extent(ordered);
4885 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4886 EXTENT_DIRTY | EXTENT_DELALLOC |
4887 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4888 0, 0, &cached_state);
4890 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4893 unlock_extent_cached(io_tree, block_start, block_end,
4898 if (offset != blocksize) {
4900 len = blocksize - offset;
4903 memset(kaddr + (block_start - page_offset(page)),
4906 memset(kaddr + (block_start - page_offset(page)) + offset,
4908 flush_dcache_page(page);
4911 ClearPageChecked(page);
4912 set_page_dirty(page);
4913 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4917 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4919 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4923 extent_changeset_free(data_reserved);
4927 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4928 u64 offset, u64 len)
4930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4931 struct btrfs_trans_handle *trans;
4935 * Still need to make sure the inode looks like it's been updated so
4936 * that any holes get logged if we fsync.
4938 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4939 BTRFS_I(inode)->last_trans = fs_info->generation;
4940 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4941 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4946 * 1 - for the one we're dropping
4947 * 1 - for the one we're adding
4948 * 1 - for updating the inode.
4950 trans = btrfs_start_transaction(root, 3);
4952 return PTR_ERR(trans);
4954 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4956 btrfs_abort_transaction(trans, ret);
4957 btrfs_end_transaction(trans);
4961 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4962 offset, 0, 0, len, 0, len, 0, 0, 0);
4964 btrfs_abort_transaction(trans, ret);
4966 btrfs_update_inode(trans, root, inode);
4967 btrfs_end_transaction(trans);
4972 * This function puts in dummy file extents for the area we're creating a hole
4973 * for. So if we are truncating this file to a larger size we need to insert
4974 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4975 * the range between oldsize and size
4977 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4980 struct btrfs_root *root = BTRFS_I(inode)->root;
4981 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4982 struct extent_map *em = NULL;
4983 struct extent_state *cached_state = NULL;
4984 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4985 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4986 u64 block_end = ALIGN(size, fs_info->sectorsize);
4993 * If our size started in the middle of a block we need to zero out the
4994 * rest of the block before we expand the i_size, otherwise we could
4995 * expose stale data.
4997 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5001 if (size <= hole_start)
5005 struct btrfs_ordered_extent *ordered;
5007 lock_extent_bits(io_tree, hole_start, block_end - 1,
5009 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5010 block_end - hole_start);
5013 unlock_extent_cached(io_tree, hole_start, block_end - 1,
5015 btrfs_start_ordered_extent(inode, ordered, 1);
5016 btrfs_put_ordered_extent(ordered);
5019 cur_offset = hole_start;
5021 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5022 block_end - cur_offset, 0);
5028 last_byte = min(extent_map_end(em), block_end);
5029 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5030 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5031 struct extent_map *hole_em;
5032 hole_size = last_byte - cur_offset;
5034 err = maybe_insert_hole(root, inode, cur_offset,
5038 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5039 cur_offset + hole_size - 1, 0);
5040 hole_em = alloc_extent_map();
5042 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5043 &BTRFS_I(inode)->runtime_flags);
5046 hole_em->start = cur_offset;
5047 hole_em->len = hole_size;
5048 hole_em->orig_start = cur_offset;
5050 hole_em->block_start = EXTENT_MAP_HOLE;
5051 hole_em->block_len = 0;
5052 hole_em->orig_block_len = 0;
5053 hole_em->ram_bytes = hole_size;
5054 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5055 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5056 hole_em->generation = fs_info->generation;
5059 write_lock(&em_tree->lock);
5060 err = add_extent_mapping(em_tree, hole_em, 1);
5061 write_unlock(&em_tree->lock);
5064 btrfs_drop_extent_cache(BTRFS_I(inode),
5069 free_extent_map(hole_em);
5072 free_extent_map(em);
5074 cur_offset = last_byte;
5075 if (cur_offset >= block_end)
5078 free_extent_map(em);
5079 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5083 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5085 struct btrfs_root *root = BTRFS_I(inode)->root;
5086 struct btrfs_trans_handle *trans;
5087 loff_t oldsize = i_size_read(inode);
5088 loff_t newsize = attr->ia_size;
5089 int mask = attr->ia_valid;
5093 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5094 * special case where we need to update the times despite not having
5095 * these flags set. For all other operations the VFS set these flags
5096 * explicitly if it wants a timestamp update.
5098 if (newsize != oldsize) {
5099 inode_inc_iversion(inode);
5100 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5101 inode->i_ctime = inode->i_mtime =
5102 current_time(inode);
5105 if (newsize > oldsize) {
5107 * Don't do an expanding truncate while snapshotting is ongoing.
5108 * This is to ensure the snapshot captures a fully consistent
5109 * state of this file - if the snapshot captures this expanding
5110 * truncation, it must capture all writes that happened before
5113 btrfs_wait_for_snapshot_creation(root);
5114 ret = btrfs_cont_expand(inode, oldsize, newsize);
5116 btrfs_end_write_no_snapshotting(root);
5120 trans = btrfs_start_transaction(root, 1);
5121 if (IS_ERR(trans)) {
5122 btrfs_end_write_no_snapshotting(root);
5123 return PTR_ERR(trans);
5126 i_size_write(inode, newsize);
5127 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5128 pagecache_isize_extended(inode, oldsize, newsize);
5129 ret = btrfs_update_inode(trans, root, inode);
5130 btrfs_end_write_no_snapshotting(root);
5131 btrfs_end_transaction(trans);
5135 * We're truncating a file that used to have good data down to
5136 * zero. Make sure it gets into the ordered flush list so that
5137 * any new writes get down to disk quickly.
5140 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5141 &BTRFS_I(inode)->runtime_flags);
5143 truncate_setsize(inode, newsize);
5145 /* Disable nonlocked read DIO to avoid the end less truncate */
5146 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5147 inode_dio_wait(inode);
5148 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5150 ret = btrfs_truncate(inode, newsize == oldsize);
5151 if (ret && inode->i_nlink) {
5155 * Truncate failed, so fix up the in-memory size. We
5156 * adjusted disk_i_size down as we removed extents, so
5157 * wait for disk_i_size to be stable and then update the
5158 * in-memory size to match.
5160 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5163 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5170 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5172 struct inode *inode = d_inode(dentry);
5173 struct btrfs_root *root = BTRFS_I(inode)->root;
5176 if (btrfs_root_readonly(root))
5179 err = setattr_prepare(dentry, attr);
5183 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5184 err = btrfs_setsize(inode, attr);
5189 if (attr->ia_valid) {
5190 setattr_copy(inode, attr);
5191 inode_inc_iversion(inode);
5192 err = btrfs_dirty_inode(inode);
5194 if (!err && attr->ia_valid & ATTR_MODE)
5195 err = posix_acl_chmod(inode, inode->i_mode);
5202 * While truncating the inode pages during eviction, we get the VFS calling
5203 * btrfs_invalidatepage() against each page of the inode. This is slow because
5204 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5205 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5206 * extent_state structures over and over, wasting lots of time.
5208 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5209 * those expensive operations on a per page basis and do only the ordered io
5210 * finishing, while we release here the extent_map and extent_state structures,
5211 * without the excessive merging and splitting.
5213 static void evict_inode_truncate_pages(struct inode *inode)
5215 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5216 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5217 struct rb_node *node;
5219 ASSERT(inode->i_state & I_FREEING);
5220 truncate_inode_pages_final(&inode->i_data);
5222 write_lock(&map_tree->lock);
5223 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5224 struct extent_map *em;
5226 node = rb_first_cached(&map_tree->map);
5227 em = rb_entry(node, struct extent_map, rb_node);
5228 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5229 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5230 remove_extent_mapping(map_tree, em);
5231 free_extent_map(em);
5232 if (need_resched()) {
5233 write_unlock(&map_tree->lock);
5235 write_lock(&map_tree->lock);
5238 write_unlock(&map_tree->lock);
5241 * Keep looping until we have no more ranges in the io tree.
5242 * We can have ongoing bios started by readpages (called from readahead)
5243 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5244 * still in progress (unlocked the pages in the bio but did not yet
5245 * unlocked the ranges in the io tree). Therefore this means some
5246 * ranges can still be locked and eviction started because before
5247 * submitting those bios, which are executed by a separate task (work
5248 * queue kthread), inode references (inode->i_count) were not taken
5249 * (which would be dropped in the end io callback of each bio).
5250 * Therefore here we effectively end up waiting for those bios and
5251 * anyone else holding locked ranges without having bumped the inode's
5252 * reference count - if we don't do it, when they access the inode's
5253 * io_tree to unlock a range it may be too late, leading to an
5254 * use-after-free issue.
5256 spin_lock(&io_tree->lock);
5257 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5258 struct extent_state *state;
5259 struct extent_state *cached_state = NULL;
5263 node = rb_first(&io_tree->state);
5264 state = rb_entry(node, struct extent_state, rb_node);
5265 start = state->start;
5267 spin_unlock(&io_tree->lock);
5269 lock_extent_bits(io_tree, start, end, &cached_state);
5272 * If still has DELALLOC flag, the extent didn't reach disk,
5273 * and its reserved space won't be freed by delayed_ref.
5274 * So we need to free its reserved space here.
5275 * (Refer to comment in btrfs_invalidatepage, case 2)
5277 * Note, end is the bytenr of last byte, so we need + 1 here.
5279 if (state->state & EXTENT_DELALLOC)
5280 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5282 clear_extent_bit(io_tree, start, end,
5283 EXTENT_LOCKED | EXTENT_DIRTY |
5284 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5285 EXTENT_DEFRAG, 1, 1, &cached_state);
5288 spin_lock(&io_tree->lock);
5290 spin_unlock(&io_tree->lock);
5293 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5294 struct btrfs_block_rsv *rsv)
5296 struct btrfs_fs_info *fs_info = root->fs_info;
5297 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5301 struct btrfs_trans_handle *trans;
5304 ret = btrfs_block_rsv_refill(root, rsv, rsv->size,
5305 BTRFS_RESERVE_FLUSH_LIMIT);
5307 if (ret && ++failures > 2) {
5309 "could not allocate space for a delete; will truncate on mount");
5310 return ERR_PTR(-ENOSPC);
5313 trans = btrfs_join_transaction(root);
5314 if (IS_ERR(trans) || !ret)
5318 * Try to steal from the global reserve if there is space for
5321 if (!btrfs_check_space_for_delayed_refs(trans) &&
5322 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, false))
5325 /* If not, commit and try again. */
5326 ret = btrfs_commit_transaction(trans);
5328 return ERR_PTR(ret);
5332 void btrfs_evict_inode(struct inode *inode)
5334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5335 struct btrfs_trans_handle *trans;
5336 struct btrfs_root *root = BTRFS_I(inode)->root;
5337 struct btrfs_block_rsv *rsv;
5340 trace_btrfs_inode_evict(inode);
5347 evict_inode_truncate_pages(inode);
5349 if (inode->i_nlink &&
5350 ((btrfs_root_refs(&root->root_item) != 0 &&
5351 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5352 btrfs_is_free_space_inode(BTRFS_I(inode))))
5355 if (is_bad_inode(inode))
5358 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5360 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5363 if (inode->i_nlink > 0) {
5364 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5365 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5369 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5373 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5376 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5379 btrfs_i_size_write(BTRFS_I(inode), 0);
5382 trans = evict_refill_and_join(root, rsv);
5386 trans->block_rsv = rsv;
5388 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5389 trans->block_rsv = &fs_info->trans_block_rsv;
5390 btrfs_end_transaction(trans);
5391 btrfs_btree_balance_dirty(fs_info);
5392 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5399 * Errors here aren't a big deal, it just means we leave orphan items in
5400 * the tree. They will be cleaned up on the next mount. If the inode
5401 * number gets reused, cleanup deletes the orphan item without doing
5402 * anything, and unlink reuses the existing orphan item.
5404 * If it turns out that we are dropping too many of these, we might want
5405 * to add a mechanism for retrying these after a commit.
5407 trans = evict_refill_and_join(root, rsv);
5408 if (!IS_ERR(trans)) {
5409 trans->block_rsv = rsv;
5410 btrfs_orphan_del(trans, BTRFS_I(inode));
5411 trans->block_rsv = &fs_info->trans_block_rsv;
5412 btrfs_end_transaction(trans);
5415 if (!(root == fs_info->tree_root ||
5416 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5417 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5420 btrfs_free_block_rsv(fs_info, rsv);
5423 * If we didn't successfully delete, the orphan item will still be in
5424 * the tree and we'll retry on the next mount. Again, we might also want
5425 * to retry these periodically in the future.
5427 btrfs_remove_delayed_node(BTRFS_I(inode));
5432 * this returns the key found in the dir entry in the location pointer.
5433 * If no dir entries were found, returns -ENOENT.
5434 * If found a corrupted location in dir entry, returns -EUCLEAN.
5436 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5437 struct btrfs_key *location)
5439 const char *name = dentry->d_name.name;
5440 int namelen = dentry->d_name.len;
5441 struct btrfs_dir_item *di;
5442 struct btrfs_path *path;
5443 struct btrfs_root *root = BTRFS_I(dir)->root;
5446 path = btrfs_alloc_path();
5450 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5452 if (IS_ERR_OR_NULL(di)) {
5453 ret = di ? PTR_ERR(di) : -ENOENT;
5457 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5458 if (location->type != BTRFS_INODE_ITEM_KEY &&
5459 location->type != BTRFS_ROOT_ITEM_KEY) {
5461 btrfs_warn(root->fs_info,
5462 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5463 __func__, name, btrfs_ino(BTRFS_I(dir)),
5464 location->objectid, location->type, location->offset);
5467 btrfs_free_path(path);
5472 * when we hit a tree root in a directory, the btrfs part of the inode
5473 * needs to be changed to reflect the root directory of the tree root. This
5474 * is kind of like crossing a mount point.
5476 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5478 struct dentry *dentry,
5479 struct btrfs_key *location,
5480 struct btrfs_root **sub_root)
5482 struct btrfs_path *path;
5483 struct btrfs_root *new_root;
5484 struct btrfs_root_ref *ref;
5485 struct extent_buffer *leaf;
5486 struct btrfs_key key;
5490 path = btrfs_alloc_path();
5497 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5498 key.type = BTRFS_ROOT_REF_KEY;
5499 key.offset = location->objectid;
5501 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5508 leaf = path->nodes[0];
5509 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5510 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5511 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5514 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5515 (unsigned long)(ref + 1),
5516 dentry->d_name.len);
5520 btrfs_release_path(path);
5522 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5523 if (IS_ERR(new_root)) {
5524 err = PTR_ERR(new_root);
5528 *sub_root = new_root;
5529 location->objectid = btrfs_root_dirid(&new_root->root_item);
5530 location->type = BTRFS_INODE_ITEM_KEY;
5531 location->offset = 0;
5534 btrfs_free_path(path);
5538 static void inode_tree_add(struct inode *inode)
5540 struct btrfs_root *root = BTRFS_I(inode)->root;
5541 struct btrfs_inode *entry;
5543 struct rb_node *parent;
5544 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5545 u64 ino = btrfs_ino(BTRFS_I(inode));
5547 if (inode_unhashed(inode))
5550 spin_lock(&root->inode_lock);
5551 p = &root->inode_tree.rb_node;
5554 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5556 if (ino < btrfs_ino(entry))
5557 p = &parent->rb_left;
5558 else if (ino > btrfs_ino(entry))
5559 p = &parent->rb_right;
5561 WARN_ON(!(entry->vfs_inode.i_state &
5562 (I_WILL_FREE | I_FREEING)));
5563 rb_replace_node(parent, new, &root->inode_tree);
5564 RB_CLEAR_NODE(parent);
5565 spin_unlock(&root->inode_lock);
5569 rb_link_node(new, parent, p);
5570 rb_insert_color(new, &root->inode_tree);
5571 spin_unlock(&root->inode_lock);
5574 static void inode_tree_del(struct inode *inode)
5576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5577 struct btrfs_root *root = BTRFS_I(inode)->root;
5580 spin_lock(&root->inode_lock);
5581 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5582 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5583 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5584 empty = RB_EMPTY_ROOT(&root->inode_tree);
5586 spin_unlock(&root->inode_lock);
5588 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5589 synchronize_srcu(&fs_info->subvol_srcu);
5590 spin_lock(&root->inode_lock);
5591 empty = RB_EMPTY_ROOT(&root->inode_tree);
5592 spin_unlock(&root->inode_lock);
5594 btrfs_add_dead_root(root);
5599 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5601 struct btrfs_iget_args *args = p;
5602 inode->i_ino = args->location->objectid;
5603 memcpy(&BTRFS_I(inode)->location, args->location,
5604 sizeof(*args->location));
5605 BTRFS_I(inode)->root = args->root;
5609 static int btrfs_find_actor(struct inode *inode, void *opaque)
5611 struct btrfs_iget_args *args = opaque;
5612 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5613 args->root == BTRFS_I(inode)->root;
5616 static struct inode *btrfs_iget_locked(struct super_block *s,
5617 struct btrfs_key *location,
5618 struct btrfs_root *root)
5620 struct inode *inode;
5621 struct btrfs_iget_args args;
5622 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5624 args.location = location;
5627 inode = iget5_locked(s, hashval, btrfs_find_actor,
5628 btrfs_init_locked_inode,
5633 /* Get an inode object given its location and corresponding root.
5634 * Returns in *is_new if the inode was read from disk
5636 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5637 struct btrfs_root *root, int *new)
5639 struct inode *inode;
5641 inode = btrfs_iget_locked(s, location, root);
5643 return ERR_PTR(-ENOMEM);
5645 if (inode->i_state & I_NEW) {
5648 ret = btrfs_read_locked_inode(inode);
5650 inode_tree_add(inode);
5651 unlock_new_inode(inode);
5657 * ret > 0 can come from btrfs_search_slot called by
5658 * btrfs_read_locked_inode, this means the inode item
5663 inode = ERR_PTR(ret);
5670 static struct inode *new_simple_dir(struct super_block *s,
5671 struct btrfs_key *key,
5672 struct btrfs_root *root)
5674 struct inode *inode = new_inode(s);
5677 return ERR_PTR(-ENOMEM);
5679 BTRFS_I(inode)->root = root;
5680 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5681 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5683 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5684 inode->i_op = &btrfs_dir_ro_inode_operations;
5685 inode->i_opflags &= ~IOP_XATTR;
5686 inode->i_fop = &simple_dir_operations;
5687 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5688 inode->i_mtime = current_time(inode);
5689 inode->i_atime = inode->i_mtime;
5690 inode->i_ctime = inode->i_mtime;
5691 BTRFS_I(inode)->i_otime = inode->i_mtime;
5696 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5698 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5699 struct inode *inode;
5700 struct btrfs_root *root = BTRFS_I(dir)->root;
5701 struct btrfs_root *sub_root = root;
5702 struct btrfs_key location;
5706 if (dentry->d_name.len > BTRFS_NAME_LEN)
5707 return ERR_PTR(-ENAMETOOLONG);
5709 ret = btrfs_inode_by_name(dir, dentry, &location);
5711 return ERR_PTR(ret);
5713 if (location.type == BTRFS_INODE_ITEM_KEY) {
5714 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5718 index = srcu_read_lock(&fs_info->subvol_srcu);
5719 ret = fixup_tree_root_location(fs_info, dir, dentry,
5720 &location, &sub_root);
5723 inode = ERR_PTR(ret);
5725 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5727 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5729 srcu_read_unlock(&fs_info->subvol_srcu, index);
5731 if (!IS_ERR(inode) && root != sub_root) {
5732 down_read(&fs_info->cleanup_work_sem);
5733 if (!sb_rdonly(inode->i_sb))
5734 ret = btrfs_orphan_cleanup(sub_root);
5735 up_read(&fs_info->cleanup_work_sem);
5738 inode = ERR_PTR(ret);
5745 static int btrfs_dentry_delete(const struct dentry *dentry)
5747 struct btrfs_root *root;
5748 struct inode *inode = d_inode(dentry);
5750 if (!inode && !IS_ROOT(dentry))
5751 inode = d_inode(dentry->d_parent);
5754 root = BTRFS_I(inode)->root;
5755 if (btrfs_root_refs(&root->root_item) == 0)
5758 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5764 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5767 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5769 if (inode == ERR_PTR(-ENOENT))
5771 return d_splice_alias(inode, dentry);
5774 unsigned char btrfs_filetype_table[] = {
5775 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5779 * All this infrastructure exists because dir_emit can fault, and we are holding
5780 * the tree lock when doing readdir. For now just allocate a buffer and copy
5781 * our information into that, and then dir_emit from the buffer. This is
5782 * similar to what NFS does, only we don't keep the buffer around in pagecache
5783 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5784 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5787 static int btrfs_opendir(struct inode *inode, struct file *file)
5789 struct btrfs_file_private *private;
5791 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5794 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5795 if (!private->filldir_buf) {
5799 file->private_data = private;
5810 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5813 struct dir_entry *entry = addr;
5814 char *name = (char *)(entry + 1);
5816 ctx->pos = get_unaligned(&entry->offset);
5817 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5818 get_unaligned(&entry->ino),
5819 get_unaligned(&entry->type)))
5821 addr += sizeof(struct dir_entry) +
5822 get_unaligned(&entry->name_len);
5828 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5830 struct inode *inode = file_inode(file);
5831 struct btrfs_root *root = BTRFS_I(inode)->root;
5832 struct btrfs_file_private *private = file->private_data;
5833 struct btrfs_dir_item *di;
5834 struct btrfs_key key;
5835 struct btrfs_key found_key;
5836 struct btrfs_path *path;
5838 struct list_head ins_list;
5839 struct list_head del_list;
5841 struct extent_buffer *leaf;
5848 struct btrfs_key location;
5850 if (!dir_emit_dots(file, ctx))
5853 path = btrfs_alloc_path();
5857 addr = private->filldir_buf;
5858 path->reada = READA_FORWARD;
5860 INIT_LIST_HEAD(&ins_list);
5861 INIT_LIST_HEAD(&del_list);
5862 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5865 key.type = BTRFS_DIR_INDEX_KEY;
5866 key.offset = ctx->pos;
5867 key.objectid = btrfs_ino(BTRFS_I(inode));
5869 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5874 struct dir_entry *entry;
5876 leaf = path->nodes[0];
5877 slot = path->slots[0];
5878 if (slot >= btrfs_header_nritems(leaf)) {
5879 ret = btrfs_next_leaf(root, path);
5887 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5889 if (found_key.objectid != key.objectid)
5891 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5893 if (found_key.offset < ctx->pos)
5895 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5897 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5898 name_len = btrfs_dir_name_len(leaf, di);
5899 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5901 btrfs_release_path(path);
5902 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5905 addr = private->filldir_buf;
5912 put_unaligned(name_len, &entry->name_len);
5913 name_ptr = (char *)(entry + 1);
5914 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5916 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5918 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5919 put_unaligned(location.objectid, &entry->ino);
5920 put_unaligned(found_key.offset, &entry->offset);
5922 addr += sizeof(struct dir_entry) + name_len;
5923 total_len += sizeof(struct dir_entry) + name_len;
5927 btrfs_release_path(path);
5929 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5933 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5938 * Stop new entries from being returned after we return the last
5941 * New directory entries are assigned a strictly increasing
5942 * offset. This means that new entries created during readdir
5943 * are *guaranteed* to be seen in the future by that readdir.
5944 * This has broken buggy programs which operate on names as
5945 * they're returned by readdir. Until we re-use freed offsets
5946 * we have this hack to stop new entries from being returned
5947 * under the assumption that they'll never reach this huge
5950 * This is being careful not to overflow 32bit loff_t unless the
5951 * last entry requires it because doing so has broken 32bit apps
5954 if (ctx->pos >= INT_MAX)
5955 ctx->pos = LLONG_MAX;
5962 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5963 btrfs_free_path(path);
5968 * This is somewhat expensive, updating the tree every time the
5969 * inode changes. But, it is most likely to find the inode in cache.
5970 * FIXME, needs more benchmarking...there are no reasons other than performance
5971 * to keep or drop this code.
5973 static int btrfs_dirty_inode(struct inode *inode)
5975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5976 struct btrfs_root *root = BTRFS_I(inode)->root;
5977 struct btrfs_trans_handle *trans;
5980 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5983 trans = btrfs_join_transaction(root);
5985 return PTR_ERR(trans);
5987 ret = btrfs_update_inode(trans, root, inode);
5988 if (ret && ret == -ENOSPC) {
5989 /* whoops, lets try again with the full transaction */
5990 btrfs_end_transaction(trans);
5991 trans = btrfs_start_transaction(root, 1);
5993 return PTR_ERR(trans);
5995 ret = btrfs_update_inode(trans, root, inode);
5997 btrfs_end_transaction(trans);
5998 if (BTRFS_I(inode)->delayed_node)
5999 btrfs_balance_delayed_items(fs_info);
6005 * This is a copy of file_update_time. We need this so we can return error on
6006 * ENOSPC for updating the inode in the case of file write and mmap writes.
6008 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6011 struct btrfs_root *root = BTRFS_I(inode)->root;
6012 bool dirty = flags & ~S_VERSION;
6014 if (btrfs_root_readonly(root))
6017 if (flags & S_VERSION)
6018 dirty |= inode_maybe_inc_iversion(inode, dirty);
6019 if (flags & S_CTIME)
6020 inode->i_ctime = *now;
6021 if (flags & S_MTIME)
6022 inode->i_mtime = *now;
6023 if (flags & S_ATIME)
6024 inode->i_atime = *now;
6025 return dirty ? btrfs_dirty_inode(inode) : 0;
6029 * find the highest existing sequence number in a directory
6030 * and then set the in-memory index_cnt variable to reflect
6031 * free sequence numbers
6033 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6035 struct btrfs_root *root = inode->root;
6036 struct btrfs_key key, found_key;
6037 struct btrfs_path *path;
6038 struct extent_buffer *leaf;
6041 key.objectid = btrfs_ino(inode);
6042 key.type = BTRFS_DIR_INDEX_KEY;
6043 key.offset = (u64)-1;
6045 path = btrfs_alloc_path();
6049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6052 /* FIXME: we should be able to handle this */
6058 * MAGIC NUMBER EXPLANATION:
6059 * since we search a directory based on f_pos we have to start at 2
6060 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6061 * else has to start at 2
6063 if (path->slots[0] == 0) {
6064 inode->index_cnt = 2;
6070 leaf = path->nodes[0];
6071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6073 if (found_key.objectid != btrfs_ino(inode) ||
6074 found_key.type != BTRFS_DIR_INDEX_KEY) {
6075 inode->index_cnt = 2;
6079 inode->index_cnt = found_key.offset + 1;
6081 btrfs_free_path(path);
6086 * helper to find a free sequence number in a given directory. This current
6087 * code is very simple, later versions will do smarter things in the btree
6089 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6093 if (dir->index_cnt == (u64)-1) {
6094 ret = btrfs_inode_delayed_dir_index_count(dir);
6096 ret = btrfs_set_inode_index_count(dir);
6102 *index = dir->index_cnt;
6108 static int btrfs_insert_inode_locked(struct inode *inode)
6110 struct btrfs_iget_args args;
6111 args.location = &BTRFS_I(inode)->location;
6112 args.root = BTRFS_I(inode)->root;
6114 return insert_inode_locked4(inode,
6115 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6116 btrfs_find_actor, &args);
6120 * Inherit flags from the parent inode.
6122 * Currently only the compression flags and the cow flags are inherited.
6124 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6131 flags = BTRFS_I(dir)->flags;
6133 if (flags & BTRFS_INODE_NOCOMPRESS) {
6134 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6135 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6136 } else if (flags & BTRFS_INODE_COMPRESS) {
6137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6138 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6141 if (flags & BTRFS_INODE_NODATACOW) {
6142 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6143 if (S_ISREG(inode->i_mode))
6144 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6147 btrfs_sync_inode_flags_to_i_flags(inode);
6150 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6151 struct btrfs_root *root,
6153 const char *name, int name_len,
6154 u64 ref_objectid, u64 objectid,
6155 umode_t mode, u64 *index)
6157 struct btrfs_fs_info *fs_info = root->fs_info;
6158 struct inode *inode;
6159 struct btrfs_inode_item *inode_item;
6160 struct btrfs_key *location;
6161 struct btrfs_path *path;
6162 struct btrfs_inode_ref *ref;
6163 struct btrfs_key key[2];
6165 int nitems = name ? 2 : 1;
6169 path = btrfs_alloc_path();
6171 return ERR_PTR(-ENOMEM);
6173 inode = new_inode(fs_info->sb);
6175 btrfs_free_path(path);
6176 return ERR_PTR(-ENOMEM);
6180 * O_TMPFILE, set link count to 0, so that after this point,
6181 * we fill in an inode item with the correct link count.
6184 set_nlink(inode, 0);
6187 * we have to initialize this early, so we can reclaim the inode
6188 * number if we fail afterwards in this function.
6190 inode->i_ino = objectid;
6193 trace_btrfs_inode_request(dir);
6195 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6197 btrfs_free_path(path);
6199 return ERR_PTR(ret);
6205 * index_cnt is ignored for everything but a dir,
6206 * btrfs_set_inode_index_count has an explanation for the magic
6209 BTRFS_I(inode)->index_cnt = 2;
6210 BTRFS_I(inode)->dir_index = *index;
6211 BTRFS_I(inode)->root = root;
6212 BTRFS_I(inode)->generation = trans->transid;
6213 inode->i_generation = BTRFS_I(inode)->generation;
6216 * We could have gotten an inode number from somebody who was fsynced
6217 * and then removed in this same transaction, so let's just set full
6218 * sync since it will be a full sync anyway and this will blow away the
6219 * old info in the log.
6221 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6223 key[0].objectid = objectid;
6224 key[0].type = BTRFS_INODE_ITEM_KEY;
6227 sizes[0] = sizeof(struct btrfs_inode_item);
6231 * Start new inodes with an inode_ref. This is slightly more
6232 * efficient for small numbers of hard links since they will
6233 * be packed into one item. Extended refs will kick in if we
6234 * add more hard links than can fit in the ref item.
6236 key[1].objectid = objectid;
6237 key[1].type = BTRFS_INODE_REF_KEY;
6238 key[1].offset = ref_objectid;
6240 sizes[1] = name_len + sizeof(*ref);
6243 location = &BTRFS_I(inode)->location;
6244 location->objectid = objectid;
6245 location->offset = 0;
6246 location->type = BTRFS_INODE_ITEM_KEY;
6248 ret = btrfs_insert_inode_locked(inode);
6254 path->leave_spinning = 1;
6255 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6259 inode_init_owner(inode, dir, mode);
6260 inode_set_bytes(inode, 0);
6262 inode->i_mtime = current_time(inode);
6263 inode->i_atime = inode->i_mtime;
6264 inode->i_ctime = inode->i_mtime;
6265 BTRFS_I(inode)->i_otime = inode->i_mtime;
6267 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6268 struct btrfs_inode_item);
6269 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6270 sizeof(*inode_item));
6271 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6274 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6275 struct btrfs_inode_ref);
6276 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6277 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6278 ptr = (unsigned long)(ref + 1);
6279 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6282 btrfs_mark_buffer_dirty(path->nodes[0]);
6283 btrfs_free_path(path);
6285 btrfs_inherit_iflags(inode, dir);
6287 if (S_ISREG(mode)) {
6288 if (btrfs_test_opt(fs_info, NODATASUM))
6289 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6290 if (btrfs_test_opt(fs_info, NODATACOW))
6291 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6292 BTRFS_INODE_NODATASUM;
6295 inode_tree_add(inode);
6297 trace_btrfs_inode_new(inode);
6298 btrfs_set_inode_last_trans(trans, inode);
6300 btrfs_update_root_times(trans, root);
6302 ret = btrfs_inode_inherit_props(trans, inode, dir);
6305 "error inheriting props for ino %llu (root %llu): %d",
6306 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6311 discard_new_inode(inode);
6314 BTRFS_I(dir)->index_cnt--;
6315 btrfs_free_path(path);
6316 return ERR_PTR(ret);
6319 static inline u8 btrfs_inode_type(struct inode *inode)
6321 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6325 * utility function to add 'inode' into 'parent_inode' with
6326 * a give name and a given sequence number.
6327 * if 'add_backref' is true, also insert a backref from the
6328 * inode to the parent directory.
6330 int btrfs_add_link(struct btrfs_trans_handle *trans,
6331 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6332 const char *name, int name_len, int add_backref, u64 index)
6335 struct btrfs_key key;
6336 struct btrfs_root *root = parent_inode->root;
6337 u64 ino = btrfs_ino(inode);
6338 u64 parent_ino = btrfs_ino(parent_inode);
6340 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6341 memcpy(&key, &inode->root->root_key, sizeof(key));
6344 key.type = BTRFS_INODE_ITEM_KEY;
6348 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6349 ret = btrfs_add_root_ref(trans, key.objectid,
6350 root->root_key.objectid, parent_ino,
6351 index, name, name_len);
6352 } else if (add_backref) {
6353 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6357 /* Nothing to clean up yet */
6361 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6362 btrfs_inode_type(&inode->vfs_inode), index);
6363 if (ret == -EEXIST || ret == -EOVERFLOW)
6366 btrfs_abort_transaction(trans, ret);
6370 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6372 inode_inc_iversion(&parent_inode->vfs_inode);
6373 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6374 current_time(&parent_inode->vfs_inode);
6375 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6377 btrfs_abort_transaction(trans, ret);
6381 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6384 err = btrfs_del_root_ref(trans, key.objectid,
6385 root->root_key.objectid, parent_ino,
6386 &local_index, name, name_len);
6388 } else if (add_backref) {
6392 err = btrfs_del_inode_ref(trans, root, name, name_len,
6393 ino, parent_ino, &local_index);
6398 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6399 struct btrfs_inode *dir, struct dentry *dentry,
6400 struct btrfs_inode *inode, int backref, u64 index)
6402 int err = btrfs_add_link(trans, dir, inode,
6403 dentry->d_name.name, dentry->d_name.len,
6410 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6411 umode_t mode, dev_t rdev)
6413 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6414 struct btrfs_trans_handle *trans;
6415 struct btrfs_root *root = BTRFS_I(dir)->root;
6416 struct inode *inode = NULL;
6422 * 2 for inode item and ref
6424 * 1 for xattr if selinux is on
6426 trans = btrfs_start_transaction(root, 5);
6428 return PTR_ERR(trans);
6430 err = btrfs_find_free_ino(root, &objectid);
6434 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6435 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6437 if (IS_ERR(inode)) {
6438 err = PTR_ERR(inode);
6444 * If the active LSM wants to access the inode during
6445 * d_instantiate it needs these. Smack checks to see
6446 * if the filesystem supports xattrs by looking at the
6449 inode->i_op = &btrfs_special_inode_operations;
6450 init_special_inode(inode, inode->i_mode, rdev);
6452 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6456 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6461 btrfs_update_inode(trans, root, inode);
6462 d_instantiate_new(dentry, inode);
6465 btrfs_end_transaction(trans);
6466 btrfs_btree_balance_dirty(fs_info);
6468 inode_dec_link_count(inode);
6469 discard_new_inode(inode);
6474 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6475 umode_t mode, bool excl)
6477 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6478 struct btrfs_trans_handle *trans;
6479 struct btrfs_root *root = BTRFS_I(dir)->root;
6480 struct inode *inode = NULL;
6486 * 2 for inode item and ref
6488 * 1 for xattr if selinux is on
6490 trans = btrfs_start_transaction(root, 5);
6492 return PTR_ERR(trans);
6494 err = btrfs_find_free_ino(root, &objectid);
6498 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6499 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6501 if (IS_ERR(inode)) {
6502 err = PTR_ERR(inode);
6507 * If the active LSM wants to access the inode during
6508 * d_instantiate it needs these. Smack checks to see
6509 * if the filesystem supports xattrs by looking at the
6512 inode->i_fop = &btrfs_file_operations;
6513 inode->i_op = &btrfs_file_inode_operations;
6514 inode->i_mapping->a_ops = &btrfs_aops;
6516 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6520 err = btrfs_update_inode(trans, root, inode);
6524 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6529 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6530 d_instantiate_new(dentry, inode);
6533 btrfs_end_transaction(trans);
6535 inode_dec_link_count(inode);
6536 discard_new_inode(inode);
6538 btrfs_btree_balance_dirty(fs_info);
6542 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6543 struct dentry *dentry)
6545 struct btrfs_trans_handle *trans = NULL;
6546 struct btrfs_root *root = BTRFS_I(dir)->root;
6547 struct inode *inode = d_inode(old_dentry);
6548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6553 /* do not allow sys_link's with other subvols of the same device */
6554 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6557 if (inode->i_nlink >= BTRFS_LINK_MAX)
6560 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6565 * 2 items for inode and inode ref
6566 * 2 items for dir items
6567 * 1 item for parent inode
6568 * 1 item for orphan item deletion if O_TMPFILE
6570 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6571 if (IS_ERR(trans)) {
6572 err = PTR_ERR(trans);
6577 /* There are several dir indexes for this inode, clear the cache. */
6578 BTRFS_I(inode)->dir_index = 0ULL;
6580 inode_inc_iversion(inode);
6581 inode->i_ctime = current_time(inode);
6583 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6585 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6591 struct dentry *parent = dentry->d_parent;
6594 err = btrfs_update_inode(trans, root, inode);
6597 if (inode->i_nlink == 1) {
6599 * If new hard link count is 1, it's a file created
6600 * with open(2) O_TMPFILE flag.
6602 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6606 d_instantiate(dentry, inode);
6607 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6609 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6610 err = btrfs_commit_transaction(trans);
6617 btrfs_end_transaction(trans);
6619 inode_dec_link_count(inode);
6622 btrfs_btree_balance_dirty(fs_info);
6626 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6628 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6629 struct inode *inode = NULL;
6630 struct btrfs_trans_handle *trans;
6631 struct btrfs_root *root = BTRFS_I(dir)->root;
6633 int drop_on_err = 0;
6638 * 2 items for inode and ref
6639 * 2 items for dir items
6640 * 1 for xattr if selinux is on
6642 trans = btrfs_start_transaction(root, 5);
6644 return PTR_ERR(trans);
6646 err = btrfs_find_free_ino(root, &objectid);
6650 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6651 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6652 S_IFDIR | mode, &index);
6653 if (IS_ERR(inode)) {
6654 err = PTR_ERR(inode);
6660 /* these must be set before we unlock the inode */
6661 inode->i_op = &btrfs_dir_inode_operations;
6662 inode->i_fop = &btrfs_dir_file_operations;
6664 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6668 btrfs_i_size_write(BTRFS_I(inode), 0);
6669 err = btrfs_update_inode(trans, root, inode);
6673 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6674 dentry->d_name.name,
6675 dentry->d_name.len, 0, index);
6679 d_instantiate_new(dentry, inode);
6683 btrfs_end_transaction(trans);
6685 inode_dec_link_count(inode);
6686 discard_new_inode(inode);
6688 btrfs_btree_balance_dirty(fs_info);
6692 static noinline int uncompress_inline(struct btrfs_path *path,
6694 size_t pg_offset, u64 extent_offset,
6695 struct btrfs_file_extent_item *item)
6698 struct extent_buffer *leaf = path->nodes[0];
6701 unsigned long inline_size;
6705 WARN_ON(pg_offset != 0);
6706 compress_type = btrfs_file_extent_compression(leaf, item);
6707 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6708 inline_size = btrfs_file_extent_inline_item_len(leaf,
6709 btrfs_item_nr(path->slots[0]));
6710 tmp = kmalloc(inline_size, GFP_NOFS);
6713 ptr = btrfs_file_extent_inline_start(item);
6715 read_extent_buffer(leaf, tmp, ptr, inline_size);
6717 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6718 ret = btrfs_decompress(compress_type, tmp, page,
6719 extent_offset, inline_size, max_size);
6722 * decompression code contains a memset to fill in any space between the end
6723 * of the uncompressed data and the end of max_size in case the decompressed
6724 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6725 * the end of an inline extent and the beginning of the next block, so we
6726 * cover that region here.
6729 if (max_size + pg_offset < PAGE_SIZE) {
6730 char *map = kmap(page);
6731 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6739 * a bit scary, this does extent mapping from logical file offset to the disk.
6740 * the ugly parts come from merging extents from the disk with the in-ram
6741 * representation. This gets more complex because of the data=ordered code,
6742 * where the in-ram extents might be locked pending data=ordered completion.
6744 * This also copies inline extents directly into the page.
6746 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6748 size_t pg_offset, u64 start, u64 len,
6751 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6754 u64 extent_start = 0;
6756 u64 objectid = btrfs_ino(inode);
6758 struct btrfs_path *path = NULL;
6759 struct btrfs_root *root = inode->root;
6760 struct btrfs_file_extent_item *item;
6761 struct extent_buffer *leaf;
6762 struct btrfs_key found_key;
6763 struct extent_map *em = NULL;
6764 struct extent_map_tree *em_tree = &inode->extent_tree;
6765 struct extent_io_tree *io_tree = &inode->io_tree;
6766 const bool new_inline = !page || create;
6768 read_lock(&em_tree->lock);
6769 em = lookup_extent_mapping(em_tree, start, len);
6771 em->bdev = fs_info->fs_devices->latest_bdev;
6772 read_unlock(&em_tree->lock);
6775 if (em->start > start || em->start + em->len <= start)
6776 free_extent_map(em);
6777 else if (em->block_start == EXTENT_MAP_INLINE && page)
6778 free_extent_map(em);
6782 em = alloc_extent_map();
6787 em->bdev = fs_info->fs_devices->latest_bdev;
6788 em->start = EXTENT_MAP_HOLE;
6789 em->orig_start = EXTENT_MAP_HOLE;
6791 em->block_len = (u64)-1;
6793 path = btrfs_alloc_path();
6799 /* Chances are we'll be called again, so go ahead and do readahead */
6800 path->reada = READA_FORWARD;
6803 * Unless we're going to uncompress the inline extent, no sleep would
6806 path->leave_spinning = 1;
6808 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6815 if (path->slots[0] == 0)
6820 leaf = path->nodes[0];
6821 item = btrfs_item_ptr(leaf, path->slots[0],
6822 struct btrfs_file_extent_item);
6823 /* are we inside the extent that was found? */
6824 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6825 found_type = found_key.type;
6826 if (found_key.objectid != objectid ||
6827 found_type != BTRFS_EXTENT_DATA_KEY) {
6829 * If we backup past the first extent we want to move forward
6830 * and see if there is an extent in front of us, otherwise we'll
6831 * say there is a hole for our whole search range which can
6838 found_type = btrfs_file_extent_type(leaf, item);
6839 extent_start = found_key.offset;
6840 if (found_type == BTRFS_FILE_EXTENT_REG ||
6841 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6842 extent_end = extent_start +
6843 btrfs_file_extent_num_bytes(leaf, item);
6845 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6847 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6850 size = btrfs_file_extent_ram_bytes(leaf, item);
6851 extent_end = ALIGN(extent_start + size,
6852 fs_info->sectorsize);
6854 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6859 if (start >= extent_end) {
6861 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6862 ret = btrfs_next_leaf(root, path);
6869 leaf = path->nodes[0];
6871 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6872 if (found_key.objectid != objectid ||
6873 found_key.type != BTRFS_EXTENT_DATA_KEY)
6875 if (start + len <= found_key.offset)
6877 if (start > found_key.offset)
6880 em->orig_start = start;
6881 em->len = found_key.offset - start;
6885 btrfs_extent_item_to_extent_map(inode, path, item,
6888 if (found_type == BTRFS_FILE_EXTENT_REG ||
6889 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6891 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6895 size_t extent_offset;
6901 size = btrfs_file_extent_ram_bytes(leaf, item);
6902 extent_offset = page_offset(page) + pg_offset - extent_start;
6903 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6904 size - extent_offset);
6905 em->start = extent_start + extent_offset;
6906 em->len = ALIGN(copy_size, fs_info->sectorsize);
6907 em->orig_block_len = em->len;
6908 em->orig_start = em->start;
6909 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6911 btrfs_set_path_blocking(path);
6912 if (!PageUptodate(page)) {
6913 if (btrfs_file_extent_compression(leaf, item) !=
6914 BTRFS_COMPRESS_NONE) {
6915 ret = uncompress_inline(path, page, pg_offset,
6916 extent_offset, item);
6923 read_extent_buffer(leaf, map + pg_offset, ptr,
6925 if (pg_offset + copy_size < PAGE_SIZE) {
6926 memset(map + pg_offset + copy_size, 0,
6927 PAGE_SIZE - pg_offset -
6932 flush_dcache_page(page);
6934 set_extent_uptodate(io_tree, em->start,
6935 extent_map_end(em) - 1, NULL, GFP_NOFS);
6940 em->orig_start = start;
6943 em->block_start = EXTENT_MAP_HOLE;
6945 btrfs_release_path(path);
6946 if (em->start > start || extent_map_end(em) <= start) {
6948 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6949 em->start, em->len, start, len);
6955 write_lock(&em_tree->lock);
6956 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6957 write_unlock(&em_tree->lock);
6959 btrfs_free_path(path);
6961 trace_btrfs_get_extent(root, inode, em);
6964 free_extent_map(em);
6965 return ERR_PTR(err);
6967 BUG_ON(!em); /* Error is always set */
6971 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6973 size_t pg_offset, u64 start, u64 len,
6976 struct extent_map *em;
6977 struct extent_map *hole_em = NULL;
6978 u64 range_start = start;
6984 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6988 * If our em maps to:
6990 * - a pre-alloc extent,
6991 * there might actually be delalloc bytes behind it.
6993 if (em->block_start != EXTENT_MAP_HOLE &&
6994 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6999 /* check to see if we've wrapped (len == -1 or similar) */
7008 /* ok, we didn't find anything, lets look for delalloc */
7009 found = count_range_bits(&inode->io_tree, &range_start,
7010 end, len, EXTENT_DELALLOC, 1);
7011 found_end = range_start + found;
7012 if (found_end < range_start)
7013 found_end = (u64)-1;
7016 * we didn't find anything useful, return
7017 * the original results from get_extent()
7019 if (range_start > end || found_end <= start) {
7025 /* adjust the range_start to make sure it doesn't
7026 * go backwards from the start they passed in
7028 range_start = max(start, range_start);
7029 found = found_end - range_start;
7032 u64 hole_start = start;
7035 em = alloc_extent_map();
7041 * when btrfs_get_extent can't find anything it
7042 * returns one huge hole
7044 * make sure what it found really fits our range, and
7045 * adjust to make sure it is based on the start from
7049 u64 calc_end = extent_map_end(hole_em);
7051 if (calc_end <= start || (hole_em->start > end)) {
7052 free_extent_map(hole_em);
7055 hole_start = max(hole_em->start, start);
7056 hole_len = calc_end - hole_start;
7060 if (hole_em && range_start > hole_start) {
7061 /* our hole starts before our delalloc, so we
7062 * have to return just the parts of the hole
7063 * that go until the delalloc starts
7065 em->len = min(hole_len,
7066 range_start - hole_start);
7067 em->start = hole_start;
7068 em->orig_start = hole_start;
7070 * don't adjust block start at all,
7071 * it is fixed at EXTENT_MAP_HOLE
7073 em->block_start = hole_em->block_start;
7074 em->block_len = hole_len;
7075 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7076 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7078 em->start = range_start;
7080 em->orig_start = range_start;
7081 em->block_start = EXTENT_MAP_DELALLOC;
7082 em->block_len = found;
7089 free_extent_map(hole_em);
7091 free_extent_map(em);
7092 return ERR_PTR(err);
7097 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7100 const u64 orig_start,
7101 const u64 block_start,
7102 const u64 block_len,
7103 const u64 orig_block_len,
7104 const u64 ram_bytes,
7107 struct extent_map *em = NULL;
7110 if (type != BTRFS_ORDERED_NOCOW) {
7111 em = create_io_em(inode, start, len, orig_start,
7112 block_start, block_len, orig_block_len,
7114 BTRFS_COMPRESS_NONE, /* compress_type */
7119 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7120 len, block_len, type);
7123 free_extent_map(em);
7124 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7125 start + len - 1, 0);
7134 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7138 struct btrfs_root *root = BTRFS_I(inode)->root;
7139 struct extent_map *em;
7140 struct btrfs_key ins;
7144 alloc_hint = get_extent_allocation_hint(inode, start, len);
7145 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7146 0, alloc_hint, &ins, 1, 1);
7148 return ERR_PTR(ret);
7150 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7151 ins.objectid, ins.offset, ins.offset,
7152 ins.offset, BTRFS_ORDERED_REGULAR);
7153 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7155 btrfs_free_reserved_extent(fs_info, ins.objectid,
7162 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7163 * block must be cow'd
7165 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7166 u64 *orig_start, u64 *orig_block_len,
7169 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7170 struct btrfs_path *path;
7172 struct extent_buffer *leaf;
7173 struct btrfs_root *root = BTRFS_I(inode)->root;
7174 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7175 struct btrfs_file_extent_item *fi;
7176 struct btrfs_key key;
7183 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7185 path = btrfs_alloc_path();
7189 ret = btrfs_lookup_file_extent(NULL, root, path,
7190 btrfs_ino(BTRFS_I(inode)), offset, 0);
7194 slot = path->slots[0];
7197 /* can't find the item, must cow */
7204 leaf = path->nodes[0];
7205 btrfs_item_key_to_cpu(leaf, &key, slot);
7206 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7207 key.type != BTRFS_EXTENT_DATA_KEY) {
7208 /* not our file or wrong item type, must cow */
7212 if (key.offset > offset) {
7213 /* Wrong offset, must cow */
7217 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7218 found_type = btrfs_file_extent_type(leaf, fi);
7219 if (found_type != BTRFS_FILE_EXTENT_REG &&
7220 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7221 /* not a regular extent, must cow */
7225 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7228 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7229 if (extent_end <= offset)
7232 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7233 if (disk_bytenr == 0)
7236 if (btrfs_file_extent_compression(leaf, fi) ||
7237 btrfs_file_extent_encryption(leaf, fi) ||
7238 btrfs_file_extent_other_encoding(leaf, fi))
7242 * Do the same check as in btrfs_cross_ref_exist but without the
7243 * unnecessary search.
7245 if (btrfs_file_extent_generation(leaf, fi) <=
7246 btrfs_root_last_snapshot(&root->root_item))
7249 backref_offset = btrfs_file_extent_offset(leaf, fi);
7252 *orig_start = key.offset - backref_offset;
7253 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7254 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7257 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7260 num_bytes = min(offset + *len, extent_end) - offset;
7261 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7264 range_end = round_up(offset + num_bytes,
7265 root->fs_info->sectorsize) - 1;
7266 ret = test_range_bit(io_tree, offset, range_end,
7267 EXTENT_DELALLOC, 0, NULL);
7274 btrfs_release_path(path);
7277 * look for other files referencing this extent, if we
7278 * find any we must cow
7281 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7282 key.offset - backref_offset, disk_bytenr);
7289 * adjust disk_bytenr and num_bytes to cover just the bytes
7290 * in this extent we are about to write. If there
7291 * are any csums in that range we have to cow in order
7292 * to keep the csums correct
7294 disk_bytenr += backref_offset;
7295 disk_bytenr += offset - key.offset;
7296 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7299 * all of the above have passed, it is safe to overwrite this extent
7305 btrfs_free_path(path);
7309 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7310 struct extent_state **cached_state, int writing)
7312 struct btrfs_ordered_extent *ordered;
7316 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7319 * We're concerned with the entire range that we're going to be
7320 * doing DIO to, so we need to make sure there's no ordered
7321 * extents in this range.
7323 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7324 lockend - lockstart + 1);
7327 * We need to make sure there are no buffered pages in this
7328 * range either, we could have raced between the invalidate in
7329 * generic_file_direct_write and locking the extent. The
7330 * invalidate needs to happen so that reads after a write do not
7334 (!writing || !filemap_range_has_page(inode->i_mapping,
7335 lockstart, lockend)))
7338 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7343 * If we are doing a DIO read and the ordered extent we
7344 * found is for a buffered write, we can not wait for it
7345 * to complete and retry, because if we do so we can
7346 * deadlock with concurrent buffered writes on page
7347 * locks. This happens only if our DIO read covers more
7348 * than one extent map, if at this point has already
7349 * created an ordered extent for a previous extent map
7350 * and locked its range in the inode's io tree, and a
7351 * concurrent write against that previous extent map's
7352 * range and this range started (we unlock the ranges
7353 * in the io tree only when the bios complete and
7354 * buffered writes always lock pages before attempting
7355 * to lock range in the io tree).
7358 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7359 btrfs_start_ordered_extent(inode, ordered, 1);
7362 btrfs_put_ordered_extent(ordered);
7365 * We could trigger writeback for this range (and wait
7366 * for it to complete) and then invalidate the pages for
7367 * this range (through invalidate_inode_pages2_range()),
7368 * but that can lead us to a deadlock with a concurrent
7369 * call to readpages() (a buffered read or a defrag call
7370 * triggered a readahead) on a page lock due to an
7371 * ordered dio extent we created before but did not have
7372 * yet a corresponding bio submitted (whence it can not
7373 * complete), which makes readpages() wait for that
7374 * ordered extent to complete while holding a lock on
7389 /* The callers of this must take lock_extent() */
7390 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7391 u64 orig_start, u64 block_start,
7392 u64 block_len, u64 orig_block_len,
7393 u64 ram_bytes, int compress_type,
7396 struct extent_map_tree *em_tree;
7397 struct extent_map *em;
7398 struct btrfs_root *root = BTRFS_I(inode)->root;
7401 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7402 type == BTRFS_ORDERED_COMPRESSED ||
7403 type == BTRFS_ORDERED_NOCOW ||
7404 type == BTRFS_ORDERED_REGULAR);
7406 em_tree = &BTRFS_I(inode)->extent_tree;
7407 em = alloc_extent_map();
7409 return ERR_PTR(-ENOMEM);
7412 em->orig_start = orig_start;
7414 em->block_len = block_len;
7415 em->block_start = block_start;
7416 em->bdev = root->fs_info->fs_devices->latest_bdev;
7417 em->orig_block_len = orig_block_len;
7418 em->ram_bytes = ram_bytes;
7419 em->generation = -1;
7420 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7421 if (type == BTRFS_ORDERED_PREALLOC) {
7422 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7423 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7424 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7425 em->compress_type = compress_type;
7429 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7430 em->start + em->len - 1, 0);
7431 write_lock(&em_tree->lock);
7432 ret = add_extent_mapping(em_tree, em, 1);
7433 write_unlock(&em_tree->lock);
7435 * The caller has taken lock_extent(), who could race with us
7438 } while (ret == -EEXIST);
7441 free_extent_map(em);
7442 return ERR_PTR(ret);
7445 /* em got 2 refs now, callers needs to do free_extent_map once. */
7450 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7451 struct buffer_head *bh_result,
7452 struct inode *inode,
7455 if (em->block_start == EXTENT_MAP_HOLE ||
7456 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7459 len = min(len, em->len - (start - em->start));
7461 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7463 bh_result->b_size = len;
7464 bh_result->b_bdev = em->bdev;
7465 set_buffer_mapped(bh_result);
7470 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7471 struct buffer_head *bh_result,
7472 struct inode *inode,
7473 struct btrfs_dio_data *dio_data,
7476 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7477 struct extent_map *em = *map;
7481 * We don't allocate a new extent in the following cases
7483 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7485 * 2) The extent is marked as PREALLOC. We're good to go here and can
7486 * just use the extent.
7489 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7490 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7491 em->block_start != EXTENT_MAP_HOLE)) {
7493 u64 block_start, orig_start, orig_block_len, ram_bytes;
7495 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7496 type = BTRFS_ORDERED_PREALLOC;
7498 type = BTRFS_ORDERED_NOCOW;
7499 len = min(len, em->len - (start - em->start));
7500 block_start = em->block_start + (start - em->start);
7502 if (can_nocow_extent(inode, start, &len, &orig_start,
7503 &orig_block_len, &ram_bytes) == 1 &&
7504 btrfs_inc_nocow_writers(fs_info, block_start)) {
7505 struct extent_map *em2;
7507 em2 = btrfs_create_dio_extent(inode, start, len,
7508 orig_start, block_start,
7509 len, orig_block_len,
7511 btrfs_dec_nocow_writers(fs_info, block_start);
7512 if (type == BTRFS_ORDERED_PREALLOC) {
7513 free_extent_map(em);
7517 if (em2 && IS_ERR(em2)) {
7522 * For inode marked NODATACOW or extent marked PREALLOC,
7523 * use the existing or preallocated extent, so does not
7524 * need to adjust btrfs_space_info's bytes_may_use.
7526 btrfs_free_reserved_data_space_noquota(inode, start,
7532 /* this will cow the extent */
7533 len = bh_result->b_size;
7534 free_extent_map(em);
7535 *map = em = btrfs_new_extent_direct(inode, start, len);
7541 len = min(len, em->len - (start - em->start));
7544 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7546 bh_result->b_size = len;
7547 bh_result->b_bdev = em->bdev;
7548 set_buffer_mapped(bh_result);
7550 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7551 set_buffer_new(bh_result);
7554 * Need to update the i_size under the extent lock so buffered
7555 * readers will get the updated i_size when we unlock.
7557 if (!dio_data->overwrite && start + len > i_size_read(inode))
7558 i_size_write(inode, start + len);
7560 WARN_ON(dio_data->reserve < len);
7561 dio_data->reserve -= len;
7562 dio_data->unsubmitted_oe_range_end = start + len;
7563 current->journal_info = dio_data;
7568 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7569 struct buffer_head *bh_result, int create)
7571 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7572 struct extent_map *em;
7573 struct extent_state *cached_state = NULL;
7574 struct btrfs_dio_data *dio_data = NULL;
7575 u64 start = iblock << inode->i_blkbits;
7576 u64 lockstart, lockend;
7577 u64 len = bh_result->b_size;
7578 int unlock_bits = EXTENT_LOCKED;
7582 unlock_bits |= EXTENT_DIRTY;
7584 len = min_t(u64, len, fs_info->sectorsize);
7587 lockend = start + len - 1;
7589 if (current->journal_info) {
7591 * Need to pull our outstanding extents and set journal_info to NULL so
7592 * that anything that needs to check if there's a transaction doesn't get
7595 dio_data = current->journal_info;
7596 current->journal_info = NULL;
7600 * If this errors out it's because we couldn't invalidate pagecache for
7601 * this range and we need to fallback to buffered.
7603 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7609 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7616 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7617 * io. INLINE is special, and we could probably kludge it in here, but
7618 * it's still buffered so for safety lets just fall back to the generic
7621 * For COMPRESSED we _have_ to read the entire extent in so we can
7622 * decompress it, so there will be buffering required no matter what we
7623 * do, so go ahead and fallback to buffered.
7625 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7626 * to buffered IO. Don't blame me, this is the price we pay for using
7629 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7630 em->block_start == EXTENT_MAP_INLINE) {
7631 free_extent_map(em);
7637 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7638 dio_data, start, len);
7642 /* clear and unlock the entire range */
7643 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7644 unlock_bits, 1, 0, &cached_state);
7646 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7648 /* Can be negative only if we read from a hole */
7651 free_extent_map(em);
7655 * We need to unlock only the end area that we aren't using.
7656 * The rest is going to be unlocked by the endio routine.
7658 lockstart = start + bh_result->b_size;
7659 if (lockstart < lockend) {
7660 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7661 lockend, unlock_bits, 1, 0,
7664 free_extent_state(cached_state);
7668 free_extent_map(em);
7673 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7674 unlock_bits, 1, 0, &cached_state);
7677 current->journal_info = dio_data;
7681 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7685 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7688 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7690 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7694 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7699 static int btrfs_check_dio_repairable(struct inode *inode,
7700 struct bio *failed_bio,
7701 struct io_failure_record *failrec,
7704 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7707 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7708 if (num_copies == 1) {
7710 * we only have a single copy of the data, so don't bother with
7711 * all the retry and error correction code that follows. no
7712 * matter what the error is, it is very likely to persist.
7714 btrfs_debug(fs_info,
7715 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7716 num_copies, failrec->this_mirror, failed_mirror);
7720 failrec->failed_mirror = failed_mirror;
7721 failrec->this_mirror++;
7722 if (failrec->this_mirror == failed_mirror)
7723 failrec->this_mirror++;
7725 if (failrec->this_mirror > num_copies) {
7726 btrfs_debug(fs_info,
7727 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7728 num_copies, failrec->this_mirror, failed_mirror);
7735 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7736 struct page *page, unsigned int pgoff,
7737 u64 start, u64 end, int failed_mirror,
7738 bio_end_io_t *repair_endio, void *repair_arg)
7740 struct io_failure_record *failrec;
7741 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7742 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7745 unsigned int read_mode = 0;
7748 blk_status_t status;
7749 struct bio_vec bvec;
7751 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7753 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7755 return errno_to_blk_status(ret);
7757 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7760 free_io_failure(failure_tree, io_tree, failrec);
7761 return BLK_STS_IOERR;
7764 segs = bio_segments(failed_bio);
7765 bio_get_first_bvec(failed_bio, &bvec);
7767 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7768 read_mode |= REQ_FAILFAST_DEV;
7770 isector = start - btrfs_io_bio(failed_bio)->logical;
7771 isector >>= inode->i_sb->s_blocksize_bits;
7772 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7773 pgoff, isector, repair_endio, repair_arg);
7774 bio->bi_opf = REQ_OP_READ | read_mode;
7776 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7777 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7778 read_mode, failrec->this_mirror, failrec->in_validation);
7780 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7782 free_io_failure(failure_tree, io_tree, failrec);
7789 struct btrfs_retry_complete {
7790 struct completion done;
7791 struct inode *inode;
7796 static void btrfs_retry_endio_nocsum(struct bio *bio)
7798 struct btrfs_retry_complete *done = bio->bi_private;
7799 struct inode *inode = done->inode;
7800 struct bio_vec *bvec;
7801 struct extent_io_tree *io_tree, *failure_tree;
7807 ASSERT(bio->bi_vcnt == 1);
7808 io_tree = &BTRFS_I(inode)->io_tree;
7809 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7810 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7813 ASSERT(!bio_flagged(bio, BIO_CLONED));
7814 bio_for_each_segment_all(bvec, bio, i)
7815 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7816 io_tree, done->start, bvec->bv_page,
7817 btrfs_ino(BTRFS_I(inode)), 0);
7819 complete(&done->done);
7823 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7824 struct btrfs_io_bio *io_bio)
7826 struct btrfs_fs_info *fs_info;
7827 struct bio_vec bvec;
7828 struct bvec_iter iter;
7829 struct btrfs_retry_complete done;
7835 blk_status_t err = BLK_STS_OK;
7837 fs_info = BTRFS_I(inode)->root->fs_info;
7838 sectorsize = fs_info->sectorsize;
7840 start = io_bio->logical;
7842 io_bio->bio.bi_iter = io_bio->iter;
7844 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7845 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7846 pgoff = bvec.bv_offset;
7848 next_block_or_try_again:
7851 init_completion(&done.done);
7853 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7854 pgoff, start, start + sectorsize - 1,
7856 btrfs_retry_endio_nocsum, &done);
7862 wait_for_completion_io(&done.done);
7864 if (!done.uptodate) {
7865 /* We might have another mirror, so try again */
7866 goto next_block_or_try_again;
7870 start += sectorsize;
7874 pgoff += sectorsize;
7875 ASSERT(pgoff < PAGE_SIZE);
7876 goto next_block_or_try_again;
7883 static void btrfs_retry_endio(struct bio *bio)
7885 struct btrfs_retry_complete *done = bio->bi_private;
7886 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7887 struct extent_io_tree *io_tree, *failure_tree;
7888 struct inode *inode = done->inode;
7889 struct bio_vec *bvec;
7899 ASSERT(bio->bi_vcnt == 1);
7900 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7902 io_tree = &BTRFS_I(inode)->io_tree;
7903 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7905 ASSERT(!bio_flagged(bio, BIO_CLONED));
7906 bio_for_each_segment_all(bvec, bio, i) {
7907 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7908 bvec->bv_offset, done->start,
7911 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7912 failure_tree, io_tree, done->start,
7914 btrfs_ino(BTRFS_I(inode)),
7920 done->uptodate = uptodate;
7922 complete(&done->done);
7926 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7927 struct btrfs_io_bio *io_bio, blk_status_t err)
7929 struct btrfs_fs_info *fs_info;
7930 struct bio_vec bvec;
7931 struct bvec_iter iter;
7932 struct btrfs_retry_complete done;
7939 bool uptodate = (err == 0);
7941 blk_status_t status;
7943 fs_info = BTRFS_I(inode)->root->fs_info;
7944 sectorsize = fs_info->sectorsize;
7947 start = io_bio->logical;
7949 io_bio->bio.bi_iter = io_bio->iter;
7951 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7952 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7954 pgoff = bvec.bv_offset;
7957 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7958 ret = __readpage_endio_check(inode, io_bio, csum_pos,
7959 bvec.bv_page, pgoff, start, sectorsize);
7966 init_completion(&done.done);
7968 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7969 pgoff, start, start + sectorsize - 1,
7970 io_bio->mirror_num, btrfs_retry_endio,
7977 wait_for_completion_io(&done.done);
7979 if (!done.uptodate) {
7980 /* We might have another mirror, so try again */
7984 offset += sectorsize;
7985 start += sectorsize;
7991 pgoff += sectorsize;
7992 ASSERT(pgoff < PAGE_SIZE);
8000 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8001 struct btrfs_io_bio *io_bio, blk_status_t err)
8003 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8007 return __btrfs_correct_data_nocsum(inode, io_bio);
8011 return __btrfs_subio_endio_read(inode, io_bio, err);
8015 static void btrfs_endio_direct_read(struct bio *bio)
8017 struct btrfs_dio_private *dip = bio->bi_private;
8018 struct inode *inode = dip->inode;
8019 struct bio *dio_bio;
8020 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8021 blk_status_t err = bio->bi_status;
8023 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8024 err = btrfs_subio_endio_read(inode, io_bio, err);
8026 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8027 dip->logical_offset + dip->bytes - 1);
8028 dio_bio = dip->dio_bio;
8032 dio_bio->bi_status = err;
8033 dio_end_io(dio_bio);
8036 io_bio->end_io(io_bio, blk_status_to_errno(err));
8040 static void __endio_write_update_ordered(struct inode *inode,
8041 const u64 offset, const u64 bytes,
8042 const bool uptodate)
8044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8045 struct btrfs_ordered_extent *ordered = NULL;
8046 struct btrfs_workqueue *wq;
8047 btrfs_work_func_t func;
8048 u64 ordered_offset = offset;
8049 u64 ordered_bytes = bytes;
8052 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8053 wq = fs_info->endio_freespace_worker;
8054 func = btrfs_freespace_write_helper;
8056 wq = fs_info->endio_write_workers;
8057 func = btrfs_endio_write_helper;
8060 while (ordered_offset < offset + bytes) {
8061 last_offset = ordered_offset;
8062 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8066 btrfs_init_work(&ordered->work, func,
8069 btrfs_queue_work(wq, &ordered->work);
8072 * If btrfs_dec_test_ordered_pending does not find any ordered
8073 * extent in the range, we can exit.
8075 if (ordered_offset == last_offset)
8078 * Our bio might span multiple ordered extents. In this case
8079 * we keep goin until we have accounted the whole dio.
8081 if (ordered_offset < offset + bytes) {
8082 ordered_bytes = offset + bytes - ordered_offset;
8088 static void btrfs_endio_direct_write(struct bio *bio)
8090 struct btrfs_dio_private *dip = bio->bi_private;
8091 struct bio *dio_bio = dip->dio_bio;
8093 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8094 dip->bytes, !bio->bi_status);
8098 dio_bio->bi_status = bio->bi_status;
8099 dio_end_io(dio_bio);
8103 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8104 struct bio *bio, u64 offset)
8106 struct inode *inode = private_data;
8108 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8109 BUG_ON(ret); /* -ENOMEM */
8113 static void btrfs_end_dio_bio(struct bio *bio)
8115 struct btrfs_dio_private *dip = bio->bi_private;
8116 blk_status_t err = bio->bi_status;
8119 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8120 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8121 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8123 (unsigned long long)bio->bi_iter.bi_sector,
8124 bio->bi_iter.bi_size, err);
8126 if (dip->subio_endio)
8127 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8131 * We want to perceive the errors flag being set before
8132 * decrementing the reference count. We don't need a barrier
8133 * since atomic operations with a return value are fully
8134 * ordered as per atomic_t.txt
8139 /* if there are more bios still pending for this dio, just exit */
8140 if (!atomic_dec_and_test(&dip->pending_bios))
8144 bio_io_error(dip->orig_bio);
8146 dip->dio_bio->bi_status = BLK_STS_OK;
8147 bio_endio(dip->orig_bio);
8153 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8154 struct btrfs_dio_private *dip,
8158 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8159 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8163 * We load all the csum data we need when we submit
8164 * the first bio to reduce the csum tree search and
8167 if (dip->logical_offset == file_offset) {
8168 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8174 if (bio == dip->orig_bio)
8177 file_offset -= dip->logical_offset;
8178 file_offset >>= inode->i_sb->s_blocksize_bits;
8179 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8184 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8185 struct inode *inode, u64 file_offset, int async_submit)
8187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8188 struct btrfs_dio_private *dip = bio->bi_private;
8189 bool write = bio_op(bio) == REQ_OP_WRITE;
8192 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8194 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8197 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8202 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8205 if (write && async_submit) {
8206 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8208 btrfs_submit_bio_start_direct_io);
8212 * If we aren't doing async submit, calculate the csum of the
8215 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8219 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8225 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8230 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8232 struct inode *inode = dip->inode;
8233 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8235 struct bio *orig_bio = dip->orig_bio;
8236 u64 start_sector = orig_bio->bi_iter.bi_sector;
8237 u64 file_offset = dip->logical_offset;
8239 int async_submit = 0;
8241 int clone_offset = 0;
8244 blk_status_t status;
8246 map_length = orig_bio->bi_iter.bi_size;
8247 submit_len = map_length;
8248 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8249 &map_length, NULL, 0);
8253 if (map_length >= submit_len) {
8255 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8259 /* async crcs make it difficult to collect full stripe writes. */
8260 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8266 ASSERT(map_length <= INT_MAX);
8267 atomic_inc(&dip->pending_bios);
8269 clone_len = min_t(int, submit_len, map_length);
8272 * This will never fail as it's passing GPF_NOFS and
8273 * the allocation is backed by btrfs_bioset.
8275 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8277 bio->bi_private = dip;
8278 bio->bi_end_io = btrfs_end_dio_bio;
8279 btrfs_io_bio(bio)->logical = file_offset;
8281 ASSERT(submit_len >= clone_len);
8282 submit_len -= clone_len;
8283 if (submit_len == 0)
8287 * Increase the count before we submit the bio so we know
8288 * the end IO handler won't happen before we increase the
8289 * count. Otherwise, the dip might get freed before we're
8290 * done setting it up.
8292 atomic_inc(&dip->pending_bios);
8294 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8298 atomic_dec(&dip->pending_bios);
8302 clone_offset += clone_len;
8303 start_sector += clone_len >> 9;
8304 file_offset += clone_len;
8306 map_length = submit_len;
8307 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8308 start_sector << 9, &map_length, NULL, 0);
8311 } while (submit_len > 0);
8314 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8322 * Before atomic variable goto zero, we must make sure dip->errors is
8323 * perceived to be set. This ordering is ensured by the fact that an
8324 * atomic operations with a return value are fully ordered as per
8327 if (atomic_dec_and_test(&dip->pending_bios))
8328 bio_io_error(dip->orig_bio);
8330 /* bio_end_io() will handle error, so we needn't return it */
8334 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8337 struct btrfs_dio_private *dip = NULL;
8338 struct bio *bio = NULL;
8339 struct btrfs_io_bio *io_bio;
8340 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8343 bio = btrfs_bio_clone(dio_bio);
8345 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8351 dip->private = dio_bio->bi_private;
8353 dip->logical_offset = file_offset;
8354 dip->bytes = dio_bio->bi_iter.bi_size;
8355 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8356 bio->bi_private = dip;
8357 dip->orig_bio = bio;
8358 dip->dio_bio = dio_bio;
8359 atomic_set(&dip->pending_bios, 0);
8360 io_bio = btrfs_io_bio(bio);
8361 io_bio->logical = file_offset;
8364 bio->bi_end_io = btrfs_endio_direct_write;
8366 bio->bi_end_io = btrfs_endio_direct_read;
8367 dip->subio_endio = btrfs_subio_endio_read;
8371 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8372 * even if we fail to submit a bio, because in such case we do the
8373 * corresponding error handling below and it must not be done a second
8374 * time by btrfs_direct_IO().
8377 struct btrfs_dio_data *dio_data = current->journal_info;
8379 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8381 dio_data->unsubmitted_oe_range_start =
8382 dio_data->unsubmitted_oe_range_end;
8385 ret = btrfs_submit_direct_hook(dip);
8390 io_bio->end_io(io_bio, ret);
8394 * If we arrived here it means either we failed to submit the dip
8395 * or we either failed to clone the dio_bio or failed to allocate the
8396 * dip. If we cloned the dio_bio and allocated the dip, we can just
8397 * call bio_endio against our io_bio so that we get proper resource
8398 * cleanup if we fail to submit the dip, otherwise, we must do the
8399 * same as btrfs_endio_direct_[write|read] because we can't call these
8400 * callbacks - they require an allocated dip and a clone of dio_bio.
8405 * The end io callbacks free our dip, do the final put on bio
8406 * and all the cleanup and final put for dio_bio (through
8413 __endio_write_update_ordered(inode,
8415 dio_bio->bi_iter.bi_size,
8418 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8419 file_offset + dio_bio->bi_iter.bi_size - 1);
8421 dio_bio->bi_status = BLK_STS_IOERR;
8423 * Releases and cleans up our dio_bio, no need to bio_put()
8424 * nor bio_endio()/bio_io_error() against dio_bio.
8426 dio_end_io(dio_bio);
8433 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8434 const struct iov_iter *iter, loff_t offset)
8438 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8439 ssize_t retval = -EINVAL;
8441 if (offset & blocksize_mask)
8444 if (iov_iter_alignment(iter) & blocksize_mask)
8447 /* If this is a write we don't need to check anymore */
8448 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8451 * Check to make sure we don't have duplicate iov_base's in this
8452 * iovec, if so return EINVAL, otherwise we'll get csum errors
8453 * when reading back.
8455 for (seg = 0; seg < iter->nr_segs; seg++) {
8456 for (i = seg + 1; i < iter->nr_segs; i++) {
8457 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8466 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8468 struct file *file = iocb->ki_filp;
8469 struct inode *inode = file->f_mapping->host;
8470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8471 struct btrfs_dio_data dio_data = { 0 };
8472 struct extent_changeset *data_reserved = NULL;
8473 loff_t offset = iocb->ki_pos;
8477 bool relock = false;
8480 if (check_direct_IO(fs_info, iter, offset))
8483 inode_dio_begin(inode);
8486 * The generic stuff only does filemap_write_and_wait_range, which
8487 * isn't enough if we've written compressed pages to this area, so
8488 * we need to flush the dirty pages again to make absolutely sure
8489 * that any outstanding dirty pages are on disk.
8491 count = iov_iter_count(iter);
8492 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8493 &BTRFS_I(inode)->runtime_flags))
8494 filemap_fdatawrite_range(inode->i_mapping, offset,
8495 offset + count - 1);
8497 if (iov_iter_rw(iter) == WRITE) {
8499 * If the write DIO is beyond the EOF, we need update
8500 * the isize, but it is protected by i_mutex. So we can
8501 * not unlock the i_mutex at this case.
8503 if (offset + count <= inode->i_size) {
8504 dio_data.overwrite = 1;
8505 inode_unlock(inode);
8507 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8511 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8517 * We need to know how many extents we reserved so that we can
8518 * do the accounting properly if we go over the number we
8519 * originally calculated. Abuse current->journal_info for this.
8521 dio_data.reserve = round_up(count,
8522 fs_info->sectorsize);
8523 dio_data.unsubmitted_oe_range_start = (u64)offset;
8524 dio_data.unsubmitted_oe_range_end = (u64)offset;
8525 current->journal_info = &dio_data;
8526 down_read(&BTRFS_I(inode)->dio_sem);
8527 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8528 &BTRFS_I(inode)->runtime_flags)) {
8529 inode_dio_end(inode);
8530 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8534 ret = __blockdev_direct_IO(iocb, inode,
8535 fs_info->fs_devices->latest_bdev,
8536 iter, btrfs_get_blocks_direct, NULL,
8537 btrfs_submit_direct, flags);
8538 if (iov_iter_rw(iter) == WRITE) {
8539 up_read(&BTRFS_I(inode)->dio_sem);
8540 current->journal_info = NULL;
8541 if (ret < 0 && ret != -EIOCBQUEUED) {
8542 if (dio_data.reserve)
8543 btrfs_delalloc_release_space(inode, data_reserved,
8544 offset, dio_data.reserve, true);
8546 * On error we might have left some ordered extents
8547 * without submitting corresponding bios for them, so
8548 * cleanup them up to avoid other tasks getting them
8549 * and waiting for them to complete forever.
8551 if (dio_data.unsubmitted_oe_range_start <
8552 dio_data.unsubmitted_oe_range_end)
8553 __endio_write_update_ordered(inode,
8554 dio_data.unsubmitted_oe_range_start,
8555 dio_data.unsubmitted_oe_range_end -
8556 dio_data.unsubmitted_oe_range_start,
8558 } else if (ret >= 0 && (size_t)ret < count)
8559 btrfs_delalloc_release_space(inode, data_reserved,
8560 offset, count - (size_t)ret, true);
8561 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8565 inode_dio_end(inode);
8569 extent_changeset_free(data_reserved);
8573 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8575 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8576 __u64 start, __u64 len)
8580 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8584 return extent_fiemap(inode, fieinfo, start, len);
8587 int btrfs_readpage(struct file *file, struct page *page)
8589 struct extent_io_tree *tree;
8590 tree = &BTRFS_I(page->mapping->host)->io_tree;
8591 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8594 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8596 struct inode *inode = page->mapping->host;
8599 if (current->flags & PF_MEMALLOC) {
8600 redirty_page_for_writepage(wbc, page);
8606 * If we are under memory pressure we will call this directly from the
8607 * VM, we need to make sure we have the inode referenced for the ordered
8608 * extent. If not just return like we didn't do anything.
8610 if (!igrab(inode)) {
8611 redirty_page_for_writepage(wbc, page);
8612 return AOP_WRITEPAGE_ACTIVATE;
8614 ret = extent_write_full_page(page, wbc);
8615 btrfs_add_delayed_iput(inode);
8619 static int btrfs_writepages(struct address_space *mapping,
8620 struct writeback_control *wbc)
8622 return extent_writepages(mapping, wbc);
8626 btrfs_readpages(struct file *file, struct address_space *mapping,
8627 struct list_head *pages, unsigned nr_pages)
8629 return extent_readpages(mapping, pages, nr_pages);
8632 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8634 int ret = try_release_extent_mapping(page, gfp_flags);
8636 ClearPagePrivate(page);
8637 set_page_private(page, 0);
8643 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8645 if (PageWriteback(page) || PageDirty(page))
8647 return __btrfs_releasepage(page, gfp_flags);
8650 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8651 unsigned int length)
8653 struct inode *inode = page->mapping->host;
8654 struct extent_io_tree *tree;
8655 struct btrfs_ordered_extent *ordered;
8656 struct extent_state *cached_state = NULL;
8657 u64 page_start = page_offset(page);
8658 u64 page_end = page_start + PAGE_SIZE - 1;
8661 int inode_evicting = inode->i_state & I_FREEING;
8664 * we have the page locked, so new writeback can't start,
8665 * and the dirty bit won't be cleared while we are here.
8667 * Wait for IO on this page so that we can safely clear
8668 * the PagePrivate2 bit and do ordered accounting
8670 wait_on_page_writeback(page);
8672 tree = &BTRFS_I(inode)->io_tree;
8674 btrfs_releasepage(page, GFP_NOFS);
8678 if (!inode_evicting)
8679 lock_extent_bits(tree, page_start, page_end, &cached_state);
8682 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8683 page_end - start + 1);
8685 end = min(page_end, ordered->file_offset + ordered->len - 1);
8687 * IO on this page will never be started, so we need
8688 * to account for any ordered extents now
8690 if (!inode_evicting)
8691 clear_extent_bit(tree, start, end,
8692 EXTENT_DIRTY | EXTENT_DELALLOC |
8693 EXTENT_DELALLOC_NEW |
8694 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8695 EXTENT_DEFRAG, 1, 0, &cached_state);
8697 * whoever cleared the private bit is responsible
8698 * for the finish_ordered_io
8700 if (TestClearPagePrivate2(page)) {
8701 struct btrfs_ordered_inode_tree *tree;
8704 tree = &BTRFS_I(inode)->ordered_tree;
8706 spin_lock_irq(&tree->lock);
8707 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8708 new_len = start - ordered->file_offset;
8709 if (new_len < ordered->truncated_len)
8710 ordered->truncated_len = new_len;
8711 spin_unlock_irq(&tree->lock);
8713 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8715 end - start + 1, 1))
8716 btrfs_finish_ordered_io(ordered);
8718 btrfs_put_ordered_extent(ordered);
8719 if (!inode_evicting) {
8720 cached_state = NULL;
8721 lock_extent_bits(tree, start, end,
8726 if (start < page_end)
8731 * Qgroup reserved space handler
8732 * Page here will be either
8733 * 1) Already written to disk
8734 * In this case, its reserved space is released from data rsv map
8735 * and will be freed by delayed_ref handler finally.
8736 * So even we call qgroup_free_data(), it won't decrease reserved
8738 * 2) Not written to disk
8739 * This means the reserved space should be freed here. However,
8740 * if a truncate invalidates the page (by clearing PageDirty)
8741 * and the page is accounted for while allocating extent
8742 * in btrfs_check_data_free_space() we let delayed_ref to
8743 * free the entire extent.
8745 if (PageDirty(page))
8746 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8747 if (!inode_evicting) {
8748 clear_extent_bit(tree, page_start, page_end,
8749 EXTENT_LOCKED | EXTENT_DIRTY |
8750 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8751 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8754 __btrfs_releasepage(page, GFP_NOFS);
8757 ClearPageChecked(page);
8758 if (PagePrivate(page)) {
8759 ClearPagePrivate(page);
8760 set_page_private(page, 0);
8766 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8767 * called from a page fault handler when a page is first dirtied. Hence we must
8768 * be careful to check for EOF conditions here. We set the page up correctly
8769 * for a written page which means we get ENOSPC checking when writing into
8770 * holes and correct delalloc and unwritten extent mapping on filesystems that
8771 * support these features.
8773 * We are not allowed to take the i_mutex here so we have to play games to
8774 * protect against truncate races as the page could now be beyond EOF. Because
8775 * truncate_setsize() writes the inode size before removing pages, once we have
8776 * the page lock we can determine safely if the page is beyond EOF. If it is not
8777 * beyond EOF, then the page is guaranteed safe against truncation until we
8780 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8782 struct page *page = vmf->page;
8783 struct inode *inode = file_inode(vmf->vma->vm_file);
8784 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8785 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8786 struct btrfs_ordered_extent *ordered;
8787 struct extent_state *cached_state = NULL;
8788 struct extent_changeset *data_reserved = NULL;
8790 unsigned long zero_start;
8800 reserved_space = PAGE_SIZE;
8802 sb_start_pagefault(inode->i_sb);
8803 page_start = page_offset(page);
8804 page_end = page_start + PAGE_SIZE - 1;
8808 * Reserving delalloc space after obtaining the page lock can lead to
8809 * deadlock. For example, if a dirty page is locked by this function
8810 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8811 * dirty page write out, then the btrfs_writepage() function could
8812 * end up waiting indefinitely to get a lock on the page currently
8813 * being processed by btrfs_page_mkwrite() function.
8815 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8818 ret2 = file_update_time(vmf->vma->vm_file);
8822 ret = vmf_error(ret2);
8828 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8831 size = i_size_read(inode);
8833 if ((page->mapping != inode->i_mapping) ||
8834 (page_start >= size)) {
8835 /* page got truncated out from underneath us */
8838 wait_on_page_writeback(page);
8840 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8841 set_page_extent_mapped(page);
8844 * we can't set the delalloc bits if there are pending ordered
8845 * extents. Drop our locks and wait for them to finish
8847 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8850 unlock_extent_cached(io_tree, page_start, page_end,
8853 btrfs_start_ordered_extent(inode, ordered, 1);
8854 btrfs_put_ordered_extent(ordered);
8858 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8859 reserved_space = round_up(size - page_start,
8860 fs_info->sectorsize);
8861 if (reserved_space < PAGE_SIZE) {
8862 end = page_start + reserved_space - 1;
8863 btrfs_delalloc_release_space(inode, data_reserved,
8864 page_start, PAGE_SIZE - reserved_space,
8870 * page_mkwrite gets called when the page is firstly dirtied after it's
8871 * faulted in, but write(2) could also dirty a page and set delalloc
8872 * bits, thus in this case for space account reason, we still need to
8873 * clear any delalloc bits within this page range since we have to
8874 * reserve data&meta space before lock_page() (see above comments).
8876 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8877 EXTENT_DIRTY | EXTENT_DELALLOC |
8878 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8879 0, 0, &cached_state);
8881 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8884 unlock_extent_cached(io_tree, page_start, page_end,
8886 ret = VM_FAULT_SIGBUS;
8891 /* page is wholly or partially inside EOF */
8892 if (page_start + PAGE_SIZE > size)
8893 zero_start = size & ~PAGE_MASK;
8895 zero_start = PAGE_SIZE;
8897 if (zero_start != PAGE_SIZE) {
8899 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8900 flush_dcache_page(page);
8903 ClearPageChecked(page);
8904 set_page_dirty(page);
8905 SetPageUptodate(page);
8907 BTRFS_I(inode)->last_trans = fs_info->generation;
8908 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8909 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8911 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8914 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8915 sb_end_pagefault(inode->i_sb);
8916 extent_changeset_free(data_reserved);
8917 return VM_FAULT_LOCKED;
8923 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8924 btrfs_delalloc_release_space(inode, data_reserved, page_start,
8925 reserved_space, (ret != 0));
8927 sb_end_pagefault(inode->i_sb);
8928 extent_changeset_free(data_reserved);
8932 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8935 struct btrfs_root *root = BTRFS_I(inode)->root;
8936 struct btrfs_block_rsv *rsv;
8938 struct btrfs_trans_handle *trans;
8939 u64 mask = fs_info->sectorsize - 1;
8940 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8942 if (!skip_writeback) {
8943 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8950 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8951 * things going on here:
8953 * 1) We need to reserve space to update our inode.
8955 * 2) We need to have something to cache all the space that is going to
8956 * be free'd up by the truncate operation, but also have some slack
8957 * space reserved in case it uses space during the truncate (thank you
8958 * very much snapshotting).
8960 * And we need these to be separate. The fact is we can use a lot of
8961 * space doing the truncate, and we have no earthly idea how much space
8962 * we will use, so we need the truncate reservation to be separate so it
8963 * doesn't end up using space reserved for updating the inode. We also
8964 * need to be able to stop the transaction and start a new one, which
8965 * means we need to be able to update the inode several times, and we
8966 * have no idea of knowing how many times that will be, so we can't just
8967 * reserve 1 item for the entirety of the operation, so that has to be
8968 * done separately as well.
8970 * So that leaves us with
8972 * 1) rsv - for the truncate reservation, which we will steal from the
8973 * transaction reservation.
8974 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8975 * updating the inode.
8977 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8980 rsv->size = min_size;
8984 * 1 for the truncate slack space
8985 * 1 for updating the inode.
8987 trans = btrfs_start_transaction(root, 2);
8988 if (IS_ERR(trans)) {
8989 ret = PTR_ERR(trans);
8993 /* Migrate the slack space for the truncate to our reserve */
8994 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8999 * So if we truncate and then write and fsync we normally would just
9000 * write the extents that changed, which is a problem if we need to
9001 * first truncate that entire inode. So set this flag so we write out
9002 * all of the extents in the inode to the sync log so we're completely
9005 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9006 trans->block_rsv = rsv;
9009 ret = btrfs_truncate_inode_items(trans, root, inode,
9011 BTRFS_EXTENT_DATA_KEY);
9012 trans->block_rsv = &fs_info->trans_block_rsv;
9013 if (ret != -ENOSPC && ret != -EAGAIN)
9016 ret = btrfs_update_inode(trans, root, inode);
9020 btrfs_end_transaction(trans);
9021 btrfs_btree_balance_dirty(fs_info);
9023 trans = btrfs_start_transaction(root, 2);
9024 if (IS_ERR(trans)) {
9025 ret = PTR_ERR(trans);
9030 btrfs_block_rsv_release(fs_info, rsv, -1);
9031 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9032 rsv, min_size, false);
9033 BUG_ON(ret); /* shouldn't happen */
9034 trans->block_rsv = rsv;
9038 * We can't call btrfs_truncate_block inside a trans handle as we could
9039 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9040 * we've truncated everything except the last little bit, and can do
9041 * btrfs_truncate_block and then update the disk_i_size.
9043 if (ret == NEED_TRUNCATE_BLOCK) {
9044 btrfs_end_transaction(trans);
9045 btrfs_btree_balance_dirty(fs_info);
9047 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9050 trans = btrfs_start_transaction(root, 1);
9051 if (IS_ERR(trans)) {
9052 ret = PTR_ERR(trans);
9055 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9061 trans->block_rsv = &fs_info->trans_block_rsv;
9062 ret2 = btrfs_update_inode(trans, root, inode);
9066 ret2 = btrfs_end_transaction(trans);
9069 btrfs_btree_balance_dirty(fs_info);
9072 btrfs_free_block_rsv(fs_info, rsv);
9078 * create a new subvolume directory/inode (helper for the ioctl).
9080 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9081 struct btrfs_root *new_root,
9082 struct btrfs_root *parent_root,
9085 struct inode *inode;
9089 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9090 new_dirid, new_dirid,
9091 S_IFDIR | (~current_umask() & S_IRWXUGO),
9094 return PTR_ERR(inode);
9095 inode->i_op = &btrfs_dir_inode_operations;
9096 inode->i_fop = &btrfs_dir_file_operations;
9098 set_nlink(inode, 1);
9099 btrfs_i_size_write(BTRFS_I(inode), 0);
9100 unlock_new_inode(inode);
9102 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9104 btrfs_err(new_root->fs_info,
9105 "error inheriting subvolume %llu properties: %d",
9106 new_root->root_key.objectid, err);
9108 err = btrfs_update_inode(trans, new_root, inode);
9114 struct inode *btrfs_alloc_inode(struct super_block *sb)
9116 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9117 struct btrfs_inode *ei;
9118 struct inode *inode;
9120 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9127 ei->last_sub_trans = 0;
9128 ei->logged_trans = 0;
9129 ei->delalloc_bytes = 0;
9130 ei->new_delalloc_bytes = 0;
9131 ei->defrag_bytes = 0;
9132 ei->disk_i_size = 0;
9135 ei->index_cnt = (u64)-1;
9137 ei->last_unlink_trans = 0;
9138 ei->last_log_commit = 0;
9140 spin_lock_init(&ei->lock);
9141 ei->outstanding_extents = 0;
9142 if (sb->s_magic != BTRFS_TEST_MAGIC)
9143 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9144 BTRFS_BLOCK_RSV_DELALLOC);
9145 ei->runtime_flags = 0;
9146 ei->prop_compress = BTRFS_COMPRESS_NONE;
9147 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9149 ei->delayed_node = NULL;
9151 ei->i_otime.tv_sec = 0;
9152 ei->i_otime.tv_nsec = 0;
9154 inode = &ei->vfs_inode;
9155 extent_map_tree_init(&ei->extent_tree);
9156 extent_io_tree_init(&ei->io_tree, inode);
9157 extent_io_tree_init(&ei->io_failure_tree, inode);
9158 ei->io_tree.track_uptodate = 1;
9159 ei->io_failure_tree.track_uptodate = 1;
9160 atomic_set(&ei->sync_writers, 0);
9161 mutex_init(&ei->log_mutex);
9162 mutex_init(&ei->delalloc_mutex);
9163 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9164 INIT_LIST_HEAD(&ei->delalloc_inodes);
9165 INIT_LIST_HEAD(&ei->delayed_iput);
9166 RB_CLEAR_NODE(&ei->rb_node);
9167 init_rwsem(&ei->dio_sem);
9172 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9173 void btrfs_test_destroy_inode(struct inode *inode)
9175 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9176 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9180 static void btrfs_i_callback(struct rcu_head *head)
9182 struct inode *inode = container_of(head, struct inode, i_rcu);
9183 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9186 void btrfs_destroy_inode(struct inode *inode)
9188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9189 struct btrfs_ordered_extent *ordered;
9190 struct btrfs_root *root = BTRFS_I(inode)->root;
9192 WARN_ON(!hlist_empty(&inode->i_dentry));
9193 WARN_ON(inode->i_data.nrpages);
9194 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9195 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9196 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9197 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9198 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9199 WARN_ON(BTRFS_I(inode)->csum_bytes);
9200 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9203 * This can happen where we create an inode, but somebody else also
9204 * created the same inode and we need to destroy the one we already
9211 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9216 "found ordered extent %llu %llu on inode cleanup",
9217 ordered->file_offset, ordered->len);
9218 btrfs_remove_ordered_extent(inode, ordered);
9219 btrfs_put_ordered_extent(ordered);
9220 btrfs_put_ordered_extent(ordered);
9223 btrfs_qgroup_check_reserved_leak(inode);
9224 inode_tree_del(inode);
9225 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9227 call_rcu(&inode->i_rcu, btrfs_i_callback);
9230 int btrfs_drop_inode(struct inode *inode)
9232 struct btrfs_root *root = BTRFS_I(inode)->root;
9237 /* the snap/subvol tree is on deleting */
9238 if (btrfs_root_refs(&root->root_item) == 0)
9241 return generic_drop_inode(inode);
9244 static void init_once(void *foo)
9246 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9248 inode_init_once(&ei->vfs_inode);
9251 void __cold btrfs_destroy_cachep(void)
9254 * Make sure all delayed rcu free inodes are flushed before we
9258 kmem_cache_destroy(btrfs_inode_cachep);
9259 kmem_cache_destroy(btrfs_trans_handle_cachep);
9260 kmem_cache_destroy(btrfs_path_cachep);
9261 kmem_cache_destroy(btrfs_free_space_cachep);
9264 int __init btrfs_init_cachep(void)
9266 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9267 sizeof(struct btrfs_inode), 0,
9268 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9270 if (!btrfs_inode_cachep)
9273 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9274 sizeof(struct btrfs_trans_handle), 0,
9275 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9276 if (!btrfs_trans_handle_cachep)
9279 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9280 sizeof(struct btrfs_path), 0,
9281 SLAB_MEM_SPREAD, NULL);
9282 if (!btrfs_path_cachep)
9285 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9286 sizeof(struct btrfs_free_space), 0,
9287 SLAB_MEM_SPREAD, NULL);
9288 if (!btrfs_free_space_cachep)
9293 btrfs_destroy_cachep();
9297 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9298 u32 request_mask, unsigned int flags)
9301 struct inode *inode = d_inode(path->dentry);
9302 u32 blocksize = inode->i_sb->s_blocksize;
9303 u32 bi_flags = BTRFS_I(inode)->flags;
9305 stat->result_mask |= STATX_BTIME;
9306 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9307 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9308 if (bi_flags & BTRFS_INODE_APPEND)
9309 stat->attributes |= STATX_ATTR_APPEND;
9310 if (bi_flags & BTRFS_INODE_COMPRESS)
9311 stat->attributes |= STATX_ATTR_COMPRESSED;
9312 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9313 stat->attributes |= STATX_ATTR_IMMUTABLE;
9314 if (bi_flags & BTRFS_INODE_NODUMP)
9315 stat->attributes |= STATX_ATTR_NODUMP;
9317 stat->attributes_mask |= (STATX_ATTR_APPEND |
9318 STATX_ATTR_COMPRESSED |
9319 STATX_ATTR_IMMUTABLE |
9322 generic_fillattr(inode, stat);
9323 stat->dev = BTRFS_I(inode)->root->anon_dev;
9325 spin_lock(&BTRFS_I(inode)->lock);
9326 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9327 spin_unlock(&BTRFS_I(inode)->lock);
9328 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9329 ALIGN(delalloc_bytes, blocksize)) >> 9;
9333 static int btrfs_rename_exchange(struct inode *old_dir,
9334 struct dentry *old_dentry,
9335 struct inode *new_dir,
9336 struct dentry *new_dentry)
9338 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9339 struct btrfs_trans_handle *trans;
9340 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9341 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9342 struct inode *new_inode = new_dentry->d_inode;
9343 struct inode *old_inode = old_dentry->d_inode;
9344 struct timespec64 ctime = current_time(old_inode);
9345 struct dentry *parent;
9346 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9347 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9352 bool root_log_pinned = false;
9353 bool dest_log_pinned = false;
9354 struct btrfs_log_ctx ctx_root;
9355 struct btrfs_log_ctx ctx_dest;
9356 bool sync_log_root = false;
9357 bool sync_log_dest = false;
9358 bool commit_transaction = false;
9360 /* we only allow rename subvolume link between subvolumes */
9361 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9364 btrfs_init_log_ctx(&ctx_root, old_inode);
9365 btrfs_init_log_ctx(&ctx_dest, new_inode);
9367 /* close the race window with snapshot create/destroy ioctl */
9368 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9369 down_read(&fs_info->subvol_sem);
9370 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9371 down_read(&fs_info->subvol_sem);
9374 * We want to reserve the absolute worst case amount of items. So if
9375 * both inodes are subvols and we need to unlink them then that would
9376 * require 4 item modifications, but if they are both normal inodes it
9377 * would require 5 item modifications, so we'll assume their normal
9378 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9379 * should cover the worst case number of items we'll modify.
9381 trans = btrfs_start_transaction(root, 12);
9382 if (IS_ERR(trans)) {
9383 ret = PTR_ERR(trans);
9388 * We need to find a free sequence number both in the source and
9389 * in the destination directory for the exchange.
9391 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9394 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9398 BTRFS_I(old_inode)->dir_index = 0ULL;
9399 BTRFS_I(new_inode)->dir_index = 0ULL;
9401 /* Reference for the source. */
9402 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9403 /* force full log commit if subvolume involved. */
9404 btrfs_set_log_full_commit(fs_info, trans);
9406 btrfs_pin_log_trans(root);
9407 root_log_pinned = true;
9408 ret = btrfs_insert_inode_ref(trans, dest,
9409 new_dentry->d_name.name,
9410 new_dentry->d_name.len,
9412 btrfs_ino(BTRFS_I(new_dir)),
9418 /* And now for the dest. */
9419 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9420 /* force full log commit if subvolume involved. */
9421 btrfs_set_log_full_commit(fs_info, trans);
9423 btrfs_pin_log_trans(dest);
9424 dest_log_pinned = true;
9425 ret = btrfs_insert_inode_ref(trans, root,
9426 old_dentry->d_name.name,
9427 old_dentry->d_name.len,
9429 btrfs_ino(BTRFS_I(old_dir)),
9435 /* Update inode version and ctime/mtime. */
9436 inode_inc_iversion(old_dir);
9437 inode_inc_iversion(new_dir);
9438 inode_inc_iversion(old_inode);
9439 inode_inc_iversion(new_inode);
9440 old_dir->i_ctime = old_dir->i_mtime = ctime;
9441 new_dir->i_ctime = new_dir->i_mtime = ctime;
9442 old_inode->i_ctime = ctime;
9443 new_inode->i_ctime = ctime;
9445 if (old_dentry->d_parent != new_dentry->d_parent) {
9446 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9447 BTRFS_I(old_inode), 1);
9448 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9449 BTRFS_I(new_inode), 1);
9452 /* src is a subvolume */
9453 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9454 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9455 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9456 old_dentry->d_name.name,
9457 old_dentry->d_name.len);
9458 } else { /* src is an inode */
9459 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9460 BTRFS_I(old_dentry->d_inode),
9461 old_dentry->d_name.name,
9462 old_dentry->d_name.len);
9464 ret = btrfs_update_inode(trans, root, old_inode);
9467 btrfs_abort_transaction(trans, ret);
9471 /* dest is a subvolume */
9472 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9473 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9474 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9475 new_dentry->d_name.name,
9476 new_dentry->d_name.len);
9477 } else { /* dest is an inode */
9478 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9479 BTRFS_I(new_dentry->d_inode),
9480 new_dentry->d_name.name,
9481 new_dentry->d_name.len);
9483 ret = btrfs_update_inode(trans, dest, new_inode);
9486 btrfs_abort_transaction(trans, ret);
9490 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9491 new_dentry->d_name.name,
9492 new_dentry->d_name.len, 0, old_idx);
9494 btrfs_abort_transaction(trans, ret);
9498 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9499 old_dentry->d_name.name,
9500 old_dentry->d_name.len, 0, new_idx);
9502 btrfs_abort_transaction(trans, ret);
9506 if (old_inode->i_nlink == 1)
9507 BTRFS_I(old_inode)->dir_index = old_idx;
9508 if (new_inode->i_nlink == 1)
9509 BTRFS_I(new_inode)->dir_index = new_idx;
9511 if (root_log_pinned) {
9512 parent = new_dentry->d_parent;
9513 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9514 BTRFS_I(old_dir), parent,
9516 if (ret == BTRFS_NEED_LOG_SYNC)
9517 sync_log_root = true;
9518 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9519 commit_transaction = true;
9521 btrfs_end_log_trans(root);
9522 root_log_pinned = false;
9524 if (dest_log_pinned) {
9525 if (!commit_transaction) {
9526 parent = old_dentry->d_parent;
9527 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9528 BTRFS_I(new_dir), parent,
9530 if (ret == BTRFS_NEED_LOG_SYNC)
9531 sync_log_dest = true;
9532 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9533 commit_transaction = true;
9536 btrfs_end_log_trans(dest);
9537 dest_log_pinned = false;
9541 * If we have pinned a log and an error happened, we unpin tasks
9542 * trying to sync the log and force them to fallback to a transaction
9543 * commit if the log currently contains any of the inodes involved in
9544 * this rename operation (to ensure we do not persist a log with an
9545 * inconsistent state for any of these inodes or leading to any
9546 * inconsistencies when replayed). If the transaction was aborted, the
9547 * abortion reason is propagated to userspace when attempting to commit
9548 * the transaction. If the log does not contain any of these inodes, we
9549 * allow the tasks to sync it.
9551 if (ret && (root_log_pinned || dest_log_pinned)) {
9552 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9553 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9554 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9556 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9557 btrfs_set_log_full_commit(fs_info, trans);
9559 if (root_log_pinned) {
9560 btrfs_end_log_trans(root);
9561 root_log_pinned = false;
9563 if (dest_log_pinned) {
9564 btrfs_end_log_trans(dest);
9565 dest_log_pinned = false;
9568 if (!ret && sync_log_root && !commit_transaction) {
9569 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9572 commit_transaction = true;
9574 if (!ret && sync_log_dest && !commit_transaction) {
9575 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9578 commit_transaction = true;
9580 if (commit_transaction) {
9581 ret = btrfs_commit_transaction(trans);
9585 ret2 = btrfs_end_transaction(trans);
9586 ret = ret ? ret : ret2;
9589 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9590 up_read(&fs_info->subvol_sem);
9591 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9592 up_read(&fs_info->subvol_sem);
9597 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9598 struct btrfs_root *root,
9600 struct dentry *dentry)
9603 struct inode *inode;
9607 ret = btrfs_find_free_ino(root, &objectid);
9611 inode = btrfs_new_inode(trans, root, dir,
9612 dentry->d_name.name,
9614 btrfs_ino(BTRFS_I(dir)),
9616 S_IFCHR | WHITEOUT_MODE,
9619 if (IS_ERR(inode)) {
9620 ret = PTR_ERR(inode);
9624 inode->i_op = &btrfs_special_inode_operations;
9625 init_special_inode(inode, inode->i_mode,
9628 ret = btrfs_init_inode_security(trans, inode, dir,
9633 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9634 BTRFS_I(inode), 0, index);
9638 ret = btrfs_update_inode(trans, root, inode);
9640 unlock_new_inode(inode);
9642 inode_dec_link_count(inode);
9648 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9649 struct inode *new_dir, struct dentry *new_dentry,
9652 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9653 struct btrfs_trans_handle *trans;
9654 unsigned int trans_num_items;
9655 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9656 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9657 struct inode *new_inode = d_inode(new_dentry);
9658 struct inode *old_inode = d_inode(old_dentry);
9662 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9663 bool log_pinned = false;
9664 struct btrfs_log_ctx ctx;
9665 bool sync_log = false;
9666 bool commit_transaction = false;
9668 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9671 /* we only allow rename subvolume link between subvolumes */
9672 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9675 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9676 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9679 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9680 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9684 /* check for collisions, even if the name isn't there */
9685 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9686 new_dentry->d_name.name,
9687 new_dentry->d_name.len);
9690 if (ret == -EEXIST) {
9692 * eexist without a new_inode */
9693 if (WARN_ON(!new_inode)) {
9697 /* maybe -EOVERFLOW */
9704 * we're using rename to replace one file with another. Start IO on it
9705 * now so we don't add too much work to the end of the transaction
9707 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9708 filemap_flush(old_inode->i_mapping);
9710 /* close the racy window with snapshot create/destroy ioctl */
9711 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9712 down_read(&fs_info->subvol_sem);
9714 * We want to reserve the absolute worst case amount of items. So if
9715 * both inodes are subvols and we need to unlink them then that would
9716 * require 4 item modifications, but if they are both normal inodes it
9717 * would require 5 item modifications, so we'll assume they are normal
9718 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9719 * should cover the worst case number of items we'll modify.
9720 * If our rename has the whiteout flag, we need more 5 units for the
9721 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9722 * when selinux is enabled).
9724 trans_num_items = 11;
9725 if (flags & RENAME_WHITEOUT)
9726 trans_num_items += 5;
9727 trans = btrfs_start_transaction(root, trans_num_items);
9728 if (IS_ERR(trans)) {
9729 ret = PTR_ERR(trans);
9734 btrfs_record_root_in_trans(trans, dest);
9736 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9740 BTRFS_I(old_inode)->dir_index = 0ULL;
9741 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9742 /* force full log commit if subvolume involved. */
9743 btrfs_set_log_full_commit(fs_info, trans);
9745 btrfs_pin_log_trans(root);
9747 ret = btrfs_insert_inode_ref(trans, dest,
9748 new_dentry->d_name.name,
9749 new_dentry->d_name.len,
9751 btrfs_ino(BTRFS_I(new_dir)), index);
9756 inode_inc_iversion(old_dir);
9757 inode_inc_iversion(new_dir);
9758 inode_inc_iversion(old_inode);
9759 old_dir->i_ctime = old_dir->i_mtime =
9760 new_dir->i_ctime = new_dir->i_mtime =
9761 old_inode->i_ctime = current_time(old_dir);
9763 if (old_dentry->d_parent != new_dentry->d_parent)
9764 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9765 BTRFS_I(old_inode), 1);
9767 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9768 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9769 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9770 old_dentry->d_name.name,
9771 old_dentry->d_name.len);
9773 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9774 BTRFS_I(d_inode(old_dentry)),
9775 old_dentry->d_name.name,
9776 old_dentry->d_name.len);
9778 ret = btrfs_update_inode(trans, root, old_inode);
9781 btrfs_abort_transaction(trans, ret);
9786 inode_inc_iversion(new_inode);
9787 new_inode->i_ctime = current_time(new_inode);
9788 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9789 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9790 root_objectid = BTRFS_I(new_inode)->location.objectid;
9791 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9792 new_dentry->d_name.name,
9793 new_dentry->d_name.len);
9794 BUG_ON(new_inode->i_nlink == 0);
9796 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9797 BTRFS_I(d_inode(new_dentry)),
9798 new_dentry->d_name.name,
9799 new_dentry->d_name.len);
9801 if (!ret && new_inode->i_nlink == 0)
9802 ret = btrfs_orphan_add(trans,
9803 BTRFS_I(d_inode(new_dentry)));
9805 btrfs_abort_transaction(trans, ret);
9810 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9811 new_dentry->d_name.name,
9812 new_dentry->d_name.len, 0, index);
9814 btrfs_abort_transaction(trans, ret);
9818 if (old_inode->i_nlink == 1)
9819 BTRFS_I(old_inode)->dir_index = index;
9822 struct dentry *parent = new_dentry->d_parent;
9824 btrfs_init_log_ctx(&ctx, old_inode);
9825 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9826 BTRFS_I(old_dir), parent,
9828 if (ret == BTRFS_NEED_LOG_SYNC)
9830 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9831 commit_transaction = true;
9833 btrfs_end_log_trans(root);
9837 if (flags & RENAME_WHITEOUT) {
9838 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9842 btrfs_abort_transaction(trans, ret);
9848 * If we have pinned the log and an error happened, we unpin tasks
9849 * trying to sync the log and force them to fallback to a transaction
9850 * commit if the log currently contains any of the inodes involved in
9851 * this rename operation (to ensure we do not persist a log with an
9852 * inconsistent state for any of these inodes or leading to any
9853 * inconsistencies when replayed). If the transaction was aborted, the
9854 * abortion reason is propagated to userspace when attempting to commit
9855 * the transaction. If the log does not contain any of these inodes, we
9856 * allow the tasks to sync it.
9858 if (ret && log_pinned) {
9859 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9860 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9861 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9863 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9864 btrfs_set_log_full_commit(fs_info, trans);
9866 btrfs_end_log_trans(root);
9869 if (!ret && sync_log) {
9870 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9872 commit_transaction = true;
9874 if (commit_transaction) {
9875 ret = btrfs_commit_transaction(trans);
9879 ret2 = btrfs_end_transaction(trans);
9880 ret = ret ? ret : ret2;
9883 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9884 up_read(&fs_info->subvol_sem);
9889 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9890 struct inode *new_dir, struct dentry *new_dentry,
9893 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9896 if (flags & RENAME_EXCHANGE)
9897 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9900 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9903 struct btrfs_delalloc_work {
9904 struct inode *inode;
9905 struct completion completion;
9906 struct list_head list;
9907 struct btrfs_work work;
9910 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9912 struct btrfs_delalloc_work *delalloc_work;
9913 struct inode *inode;
9915 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9917 inode = delalloc_work->inode;
9918 filemap_flush(inode->i_mapping);
9919 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9920 &BTRFS_I(inode)->runtime_flags))
9921 filemap_flush(inode->i_mapping);
9924 complete(&delalloc_work->completion);
9927 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9929 struct btrfs_delalloc_work *work;
9931 work = kmalloc(sizeof(*work), GFP_NOFS);
9935 init_completion(&work->completion);
9936 INIT_LIST_HEAD(&work->list);
9937 work->inode = inode;
9938 WARN_ON_ONCE(!inode);
9939 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9940 btrfs_run_delalloc_work, NULL, NULL);
9946 * some fairly slow code that needs optimization. This walks the list
9947 * of all the inodes with pending delalloc and forces them to disk.
9949 static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9951 struct btrfs_inode *binode;
9952 struct inode *inode;
9953 struct btrfs_delalloc_work *work, *next;
9954 struct list_head works;
9955 struct list_head splice;
9958 INIT_LIST_HEAD(&works);
9959 INIT_LIST_HEAD(&splice);
9961 mutex_lock(&root->delalloc_mutex);
9962 spin_lock(&root->delalloc_lock);
9963 list_splice_init(&root->delalloc_inodes, &splice);
9964 while (!list_empty(&splice)) {
9965 binode = list_entry(splice.next, struct btrfs_inode,
9968 list_move_tail(&binode->delalloc_inodes,
9969 &root->delalloc_inodes);
9970 inode = igrab(&binode->vfs_inode);
9972 cond_resched_lock(&root->delalloc_lock);
9975 spin_unlock(&root->delalloc_lock);
9977 work = btrfs_alloc_delalloc_work(inode);
9983 list_add_tail(&work->list, &works);
9984 btrfs_queue_work(root->fs_info->flush_workers,
9987 if (nr != -1 && ret >= nr)
9990 spin_lock(&root->delalloc_lock);
9992 spin_unlock(&root->delalloc_lock);
9995 list_for_each_entry_safe(work, next, &works, list) {
9996 list_del_init(&work->list);
9997 wait_for_completion(&work->completion);
10001 if (!list_empty(&splice)) {
10002 spin_lock(&root->delalloc_lock);
10003 list_splice_tail(&splice, &root->delalloc_inodes);
10004 spin_unlock(&root->delalloc_lock);
10006 mutex_unlock(&root->delalloc_mutex);
10010 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
10012 struct btrfs_fs_info *fs_info = root->fs_info;
10015 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10018 ret = start_delalloc_inodes(root, -1);
10024 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10026 struct btrfs_root *root;
10027 struct list_head splice;
10030 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10033 INIT_LIST_HEAD(&splice);
10035 mutex_lock(&fs_info->delalloc_root_mutex);
10036 spin_lock(&fs_info->delalloc_root_lock);
10037 list_splice_init(&fs_info->delalloc_roots, &splice);
10038 while (!list_empty(&splice) && nr) {
10039 root = list_first_entry(&splice, struct btrfs_root,
10041 root = btrfs_grab_fs_root(root);
10043 list_move_tail(&root->delalloc_root,
10044 &fs_info->delalloc_roots);
10045 spin_unlock(&fs_info->delalloc_root_lock);
10047 ret = start_delalloc_inodes(root, nr);
10048 btrfs_put_fs_root(root);
10056 spin_lock(&fs_info->delalloc_root_lock);
10058 spin_unlock(&fs_info->delalloc_root_lock);
10062 if (!list_empty(&splice)) {
10063 spin_lock(&fs_info->delalloc_root_lock);
10064 list_splice_tail(&splice, &fs_info->delalloc_roots);
10065 spin_unlock(&fs_info->delalloc_root_lock);
10067 mutex_unlock(&fs_info->delalloc_root_mutex);
10071 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10072 const char *symname)
10074 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10075 struct btrfs_trans_handle *trans;
10076 struct btrfs_root *root = BTRFS_I(dir)->root;
10077 struct btrfs_path *path;
10078 struct btrfs_key key;
10079 struct inode *inode = NULL;
10086 struct btrfs_file_extent_item *ei;
10087 struct extent_buffer *leaf;
10089 name_len = strlen(symname);
10090 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10091 return -ENAMETOOLONG;
10094 * 2 items for inode item and ref
10095 * 2 items for dir items
10096 * 1 item for updating parent inode item
10097 * 1 item for the inline extent item
10098 * 1 item for xattr if selinux is on
10100 trans = btrfs_start_transaction(root, 7);
10102 return PTR_ERR(trans);
10104 err = btrfs_find_free_ino(root, &objectid);
10108 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10109 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10110 objectid, S_IFLNK|S_IRWXUGO, &index);
10111 if (IS_ERR(inode)) {
10112 err = PTR_ERR(inode);
10118 * If the active LSM wants to access the inode during
10119 * d_instantiate it needs these. Smack checks to see
10120 * if the filesystem supports xattrs by looking at the
10123 inode->i_fop = &btrfs_file_operations;
10124 inode->i_op = &btrfs_file_inode_operations;
10125 inode->i_mapping->a_ops = &btrfs_aops;
10126 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10128 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10132 path = btrfs_alloc_path();
10137 key.objectid = btrfs_ino(BTRFS_I(inode));
10139 key.type = BTRFS_EXTENT_DATA_KEY;
10140 datasize = btrfs_file_extent_calc_inline_size(name_len);
10141 err = btrfs_insert_empty_item(trans, root, path, &key,
10144 btrfs_free_path(path);
10147 leaf = path->nodes[0];
10148 ei = btrfs_item_ptr(leaf, path->slots[0],
10149 struct btrfs_file_extent_item);
10150 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10151 btrfs_set_file_extent_type(leaf, ei,
10152 BTRFS_FILE_EXTENT_INLINE);
10153 btrfs_set_file_extent_encryption(leaf, ei, 0);
10154 btrfs_set_file_extent_compression(leaf, ei, 0);
10155 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10156 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10158 ptr = btrfs_file_extent_inline_start(ei);
10159 write_extent_buffer(leaf, symname, ptr, name_len);
10160 btrfs_mark_buffer_dirty(leaf);
10161 btrfs_free_path(path);
10163 inode->i_op = &btrfs_symlink_inode_operations;
10164 inode_nohighmem(inode);
10165 inode->i_mapping->a_ops = &btrfs_aops;
10166 inode_set_bytes(inode, name_len);
10167 btrfs_i_size_write(BTRFS_I(inode), name_len);
10168 err = btrfs_update_inode(trans, root, inode);
10170 * Last step, add directory indexes for our symlink inode. This is the
10171 * last step to avoid extra cleanup of these indexes if an error happens
10175 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10176 BTRFS_I(inode), 0, index);
10180 d_instantiate_new(dentry, inode);
10183 btrfs_end_transaction(trans);
10184 if (err && inode) {
10185 inode_dec_link_count(inode);
10186 discard_new_inode(inode);
10188 btrfs_btree_balance_dirty(fs_info);
10192 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10193 u64 start, u64 num_bytes, u64 min_size,
10194 loff_t actual_len, u64 *alloc_hint,
10195 struct btrfs_trans_handle *trans)
10197 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10198 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10199 struct extent_map *em;
10200 struct btrfs_root *root = BTRFS_I(inode)->root;
10201 struct btrfs_key ins;
10202 u64 cur_offset = start;
10205 u64 last_alloc = (u64)-1;
10207 bool own_trans = true;
10208 u64 end = start + num_bytes - 1;
10212 while (num_bytes > 0) {
10214 trans = btrfs_start_transaction(root, 3);
10215 if (IS_ERR(trans)) {
10216 ret = PTR_ERR(trans);
10221 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10222 cur_bytes = max(cur_bytes, min_size);
10224 * If we are severely fragmented we could end up with really
10225 * small allocations, so if the allocator is returning small
10226 * chunks lets make its job easier by only searching for those
10229 cur_bytes = min(cur_bytes, last_alloc);
10230 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10231 min_size, 0, *alloc_hint, &ins, 1, 0);
10234 btrfs_end_transaction(trans);
10237 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10239 last_alloc = ins.offset;
10240 ret = insert_reserved_file_extent(trans, inode,
10241 cur_offset, ins.objectid,
10242 ins.offset, ins.offset,
10243 ins.offset, 0, 0, 0,
10244 BTRFS_FILE_EXTENT_PREALLOC);
10246 btrfs_free_reserved_extent(fs_info, ins.objectid,
10248 btrfs_abort_transaction(trans, ret);
10250 btrfs_end_transaction(trans);
10254 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10255 cur_offset + ins.offset -1, 0);
10257 em = alloc_extent_map();
10259 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10260 &BTRFS_I(inode)->runtime_flags);
10264 em->start = cur_offset;
10265 em->orig_start = cur_offset;
10266 em->len = ins.offset;
10267 em->block_start = ins.objectid;
10268 em->block_len = ins.offset;
10269 em->orig_block_len = ins.offset;
10270 em->ram_bytes = ins.offset;
10271 em->bdev = fs_info->fs_devices->latest_bdev;
10272 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10273 em->generation = trans->transid;
10276 write_lock(&em_tree->lock);
10277 ret = add_extent_mapping(em_tree, em, 1);
10278 write_unlock(&em_tree->lock);
10279 if (ret != -EEXIST)
10281 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10282 cur_offset + ins.offset - 1,
10285 free_extent_map(em);
10287 num_bytes -= ins.offset;
10288 cur_offset += ins.offset;
10289 *alloc_hint = ins.objectid + ins.offset;
10291 inode_inc_iversion(inode);
10292 inode->i_ctime = current_time(inode);
10293 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10294 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10295 (actual_len > inode->i_size) &&
10296 (cur_offset > inode->i_size)) {
10297 if (cur_offset > actual_len)
10298 i_size = actual_len;
10300 i_size = cur_offset;
10301 i_size_write(inode, i_size);
10302 btrfs_ordered_update_i_size(inode, i_size, NULL);
10305 ret = btrfs_update_inode(trans, root, inode);
10308 btrfs_abort_transaction(trans, ret);
10310 btrfs_end_transaction(trans);
10315 btrfs_end_transaction(trans);
10317 if (cur_offset < end)
10318 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10319 end - cur_offset + 1);
10323 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10324 u64 start, u64 num_bytes, u64 min_size,
10325 loff_t actual_len, u64 *alloc_hint)
10327 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10328 min_size, actual_len, alloc_hint,
10332 int btrfs_prealloc_file_range_trans(struct inode *inode,
10333 struct btrfs_trans_handle *trans, int mode,
10334 u64 start, u64 num_bytes, u64 min_size,
10335 loff_t actual_len, u64 *alloc_hint)
10337 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10338 min_size, actual_len, alloc_hint, trans);
10341 static int btrfs_set_page_dirty(struct page *page)
10343 return __set_page_dirty_nobuffers(page);
10346 static int btrfs_permission(struct inode *inode, int mask)
10348 struct btrfs_root *root = BTRFS_I(inode)->root;
10349 umode_t mode = inode->i_mode;
10351 if (mask & MAY_WRITE &&
10352 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10353 if (btrfs_root_readonly(root))
10355 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10358 return generic_permission(inode, mask);
10361 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10363 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10364 struct btrfs_trans_handle *trans;
10365 struct btrfs_root *root = BTRFS_I(dir)->root;
10366 struct inode *inode = NULL;
10372 * 5 units required for adding orphan entry
10374 trans = btrfs_start_transaction(root, 5);
10376 return PTR_ERR(trans);
10378 ret = btrfs_find_free_ino(root, &objectid);
10382 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10383 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10384 if (IS_ERR(inode)) {
10385 ret = PTR_ERR(inode);
10390 inode->i_fop = &btrfs_file_operations;
10391 inode->i_op = &btrfs_file_inode_operations;
10393 inode->i_mapping->a_ops = &btrfs_aops;
10394 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10396 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10400 ret = btrfs_update_inode(trans, root, inode);
10403 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10408 * We set number of links to 0 in btrfs_new_inode(), and here we set
10409 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10412 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10414 set_nlink(inode, 1);
10415 d_tmpfile(dentry, inode);
10416 unlock_new_inode(inode);
10417 mark_inode_dirty(inode);
10419 btrfs_end_transaction(trans);
10421 discard_new_inode(inode);
10422 btrfs_btree_balance_dirty(fs_info);
10426 __attribute__((const))
10427 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10432 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10433 u64 start, u64 end)
10435 struct inode *inode = private_data;
10438 isize = i_size_read(inode);
10439 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10440 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10441 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10442 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10446 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10448 struct inode *inode = tree->private_data;
10449 unsigned long index = start >> PAGE_SHIFT;
10450 unsigned long end_index = end >> PAGE_SHIFT;
10453 while (index <= end_index) {
10454 page = find_get_page(inode->i_mapping, index);
10455 ASSERT(page); /* Pages should be in the extent_io_tree */
10456 set_page_writeback(page);
10462 static const struct inode_operations btrfs_dir_inode_operations = {
10463 .getattr = btrfs_getattr,
10464 .lookup = btrfs_lookup,
10465 .create = btrfs_create,
10466 .unlink = btrfs_unlink,
10467 .link = btrfs_link,
10468 .mkdir = btrfs_mkdir,
10469 .rmdir = btrfs_rmdir,
10470 .rename = btrfs_rename2,
10471 .symlink = btrfs_symlink,
10472 .setattr = btrfs_setattr,
10473 .mknod = btrfs_mknod,
10474 .listxattr = btrfs_listxattr,
10475 .permission = btrfs_permission,
10476 .get_acl = btrfs_get_acl,
10477 .set_acl = btrfs_set_acl,
10478 .update_time = btrfs_update_time,
10479 .tmpfile = btrfs_tmpfile,
10481 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10482 .lookup = btrfs_lookup,
10483 .permission = btrfs_permission,
10484 .update_time = btrfs_update_time,
10487 static const struct file_operations btrfs_dir_file_operations = {
10488 .llseek = generic_file_llseek,
10489 .read = generic_read_dir,
10490 .iterate_shared = btrfs_real_readdir,
10491 .open = btrfs_opendir,
10492 .unlocked_ioctl = btrfs_ioctl,
10493 #ifdef CONFIG_COMPAT
10494 .compat_ioctl = btrfs_compat_ioctl,
10496 .release = btrfs_release_file,
10497 .fsync = btrfs_sync_file,
10500 static const struct extent_io_ops btrfs_extent_io_ops = {
10501 /* mandatory callbacks */
10502 .submit_bio_hook = btrfs_submit_bio_hook,
10503 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10504 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10506 /* optional callbacks */
10507 .fill_delalloc = run_delalloc_range,
10508 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10509 .writepage_start_hook = btrfs_writepage_start_hook,
10510 .set_bit_hook = btrfs_set_bit_hook,
10511 .clear_bit_hook = btrfs_clear_bit_hook,
10512 .merge_extent_hook = btrfs_merge_extent_hook,
10513 .split_extent_hook = btrfs_split_extent_hook,
10514 .check_extent_io_range = btrfs_check_extent_io_range,
10518 * btrfs doesn't support the bmap operation because swapfiles
10519 * use bmap to make a mapping of extents in the file. They assume
10520 * these extents won't change over the life of the file and they
10521 * use the bmap result to do IO directly to the drive.
10523 * the btrfs bmap call would return logical addresses that aren't
10524 * suitable for IO and they also will change frequently as COW
10525 * operations happen. So, swapfile + btrfs == corruption.
10527 * For now we're avoiding this by dropping bmap.
10529 static const struct address_space_operations btrfs_aops = {
10530 .readpage = btrfs_readpage,
10531 .writepage = btrfs_writepage,
10532 .writepages = btrfs_writepages,
10533 .readpages = btrfs_readpages,
10534 .direct_IO = btrfs_direct_IO,
10535 .invalidatepage = btrfs_invalidatepage,
10536 .releasepage = btrfs_releasepage,
10537 .set_page_dirty = btrfs_set_page_dirty,
10538 .error_remove_page = generic_error_remove_page,
10541 static const struct inode_operations btrfs_file_inode_operations = {
10542 .getattr = btrfs_getattr,
10543 .setattr = btrfs_setattr,
10544 .listxattr = btrfs_listxattr,
10545 .permission = btrfs_permission,
10546 .fiemap = btrfs_fiemap,
10547 .get_acl = btrfs_get_acl,
10548 .set_acl = btrfs_set_acl,
10549 .update_time = btrfs_update_time,
10551 static const struct inode_operations btrfs_special_inode_operations = {
10552 .getattr = btrfs_getattr,
10553 .setattr = btrfs_setattr,
10554 .permission = btrfs_permission,
10555 .listxattr = btrfs_listxattr,
10556 .get_acl = btrfs_get_acl,
10557 .set_acl = btrfs_set_acl,
10558 .update_time = btrfs_update_time,
10560 static const struct inode_operations btrfs_symlink_inode_operations = {
10561 .get_link = page_get_link,
10562 .getattr = btrfs_getattr,
10563 .setattr = btrfs_setattr,
10564 .permission = btrfs_permission,
10565 .listxattr = btrfs_listxattr,
10566 .update_time = btrfs_update_time,
10569 const struct dentry_operations btrfs_dentry_operations = {
10570 .d_delete = btrfs_dentry_delete,