1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
40 #include "compression.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
49 struct btrfs_iget_args {
50 struct btrfs_key *location;
51 struct btrfs_root *root;
54 struct btrfs_dio_data {
56 u64 unsubmitted_oe_range_start;
57 u64 unsubmitted_oe_range_end;
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct address_space_operations btrfs_symlink_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, u64 delalloc_end,
93 int *page_started, unsigned long *nr_written,
94 int unlock, struct btrfs_dedupe_hash *hash);
95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 u64 orig_start, u64 block_start,
97 u64 block_len, u64 orig_block_len,
98 u64 ram_bytes, int compress_type,
101 static void __endio_write_update_ordered(struct inode *inode,
102 const u64 offset, const u64 bytes,
103 const bool uptodate);
106 * Cleanup all submitted ordered extents in specified range to handle errors
107 * from the fill_dellaloc() callback.
109 * NOTE: caller must ensure that when an error happens, it can not call
110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112 * to be released, which we want to happen only when finishing the ordered
113 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
114 * fill_delalloc() callback already does proper cleanup for the first page of
115 * the range, that is, it invokes the callback writepage_end_io_hook() for the
116 * range of the first page.
118 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
122 unsigned long index = offset >> PAGE_SHIFT;
123 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
126 while (index <= end_index) {
127 page = find_get_page(inode->i_mapping, index);
131 ClearPagePrivate2(page);
134 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
135 bytes - PAGE_SIZE, false);
138 static int btrfs_dirty_inode(struct inode *inode);
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode *inode)
143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148 struct inode *inode, struct inode *dir,
149 const struct qstr *qstr)
153 err = btrfs_init_acl(trans, inode, dir);
155 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
160 * this does all the hard work for inserting an inline extent into
161 * the btree. The caller should have done a btrfs_drop_extents so that
162 * no overlapping inline items exist in the btree
164 static int insert_inline_extent(struct btrfs_trans_handle *trans,
165 struct btrfs_path *path, int extent_inserted,
166 struct btrfs_root *root, struct inode *inode,
167 u64 start, size_t size, size_t compressed_size,
169 struct page **compressed_pages)
171 struct extent_buffer *leaf;
172 struct page *page = NULL;
175 struct btrfs_file_extent_item *ei;
177 size_t cur_size = size;
178 unsigned long offset;
180 if (compressed_size && compressed_pages)
181 cur_size = compressed_size;
183 inode_add_bytes(inode, size);
185 if (!extent_inserted) {
186 struct btrfs_key key;
189 key.objectid = btrfs_ino(BTRFS_I(inode));
191 key.type = BTRFS_EXTENT_DATA_KEY;
193 datasize = btrfs_file_extent_calc_inline_size(cur_size);
194 path->leave_spinning = 1;
195 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 leaf = path->nodes[0];
201 ei = btrfs_item_ptr(leaf, path->slots[0],
202 struct btrfs_file_extent_item);
203 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205 btrfs_set_file_extent_encryption(leaf, ei, 0);
206 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208 ptr = btrfs_file_extent_inline_start(ei);
210 if (compress_type != BTRFS_COMPRESS_NONE) {
213 while (compressed_size > 0) {
214 cpage = compressed_pages[i];
215 cur_size = min_t(unsigned long, compressed_size,
218 kaddr = kmap_atomic(cpage);
219 write_extent_buffer(leaf, kaddr, ptr, cur_size);
220 kunmap_atomic(kaddr);
224 compressed_size -= cur_size;
226 btrfs_set_file_extent_compression(leaf, ei,
229 page = find_get_page(inode->i_mapping,
230 start >> PAGE_SHIFT);
231 btrfs_set_file_extent_compression(leaf, ei, 0);
232 kaddr = kmap_atomic(page);
233 offset = start & (PAGE_SIZE - 1);
234 write_extent_buffer(leaf, kaddr + offset, ptr, size);
235 kunmap_atomic(kaddr);
238 btrfs_mark_buffer_dirty(leaf);
239 btrfs_release_path(path);
242 * we're an inline extent, so nobody can
243 * extend the file past i_size without locking
244 * a page we already have locked.
246 * We must do any isize and inode updates
247 * before we unlock the pages. Otherwise we
248 * could end up racing with unlink.
250 BTRFS_I(inode)->disk_i_size = inode->i_size;
251 ret = btrfs_update_inode(trans, root, inode);
259 * conditionally insert an inline extent into the file. This
260 * does the checks required to make sure the data is small enough
261 * to fit as an inline extent.
263 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
264 u64 end, size_t compressed_size,
266 struct page **compressed_pages)
268 struct btrfs_root *root = BTRFS_I(inode)->root;
269 struct btrfs_fs_info *fs_info = root->fs_info;
270 struct btrfs_trans_handle *trans;
271 u64 isize = i_size_read(inode);
272 u64 actual_end = min(end + 1, isize);
273 u64 inline_len = actual_end - start;
274 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
275 u64 data_len = inline_len;
277 struct btrfs_path *path;
278 int extent_inserted = 0;
279 u32 extent_item_size;
282 data_len = compressed_size;
285 actual_end > fs_info->sectorsize ||
286 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
288 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
290 data_len > fs_info->max_inline) {
294 path = btrfs_alloc_path();
298 trans = btrfs_join_transaction(root);
300 btrfs_free_path(path);
301 return PTR_ERR(trans);
303 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
305 if (compressed_size && compressed_pages)
306 extent_item_size = btrfs_file_extent_calc_inline_size(
309 extent_item_size = btrfs_file_extent_calc_inline_size(
312 ret = __btrfs_drop_extents(trans, root, inode, path,
313 start, aligned_end, NULL,
314 1, 1, extent_item_size, &extent_inserted);
316 btrfs_abort_transaction(trans, ret);
320 if (isize > actual_end)
321 inline_len = min_t(u64, isize, actual_end);
322 ret = insert_inline_extent(trans, path, extent_inserted,
324 inline_len, compressed_size,
325 compress_type, compressed_pages);
326 if (ret && ret != -ENOSPC) {
327 btrfs_abort_transaction(trans, ret);
329 } else if (ret == -ENOSPC) {
334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
335 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
338 * Don't forget to free the reserved space, as for inlined extent
339 * it won't count as data extent, free them directly here.
340 * And at reserve time, it's always aligned to page size, so
341 * just free one page here.
343 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
344 btrfs_free_path(path);
345 btrfs_end_transaction(trans);
349 struct async_extent {
354 unsigned long nr_pages;
356 struct list_head list;
361 struct btrfs_root *root;
362 struct page *locked_page;
365 unsigned int write_flags;
366 struct list_head extents;
367 struct btrfs_work work;
370 static noinline int add_async_extent(struct async_cow *cow,
371 u64 start, u64 ram_size,
374 unsigned long nr_pages,
377 struct async_extent *async_extent;
379 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
380 BUG_ON(!async_extent); /* -ENOMEM */
381 async_extent->start = start;
382 async_extent->ram_size = ram_size;
383 async_extent->compressed_size = compressed_size;
384 async_extent->pages = pages;
385 async_extent->nr_pages = nr_pages;
386 async_extent->compress_type = compress_type;
387 list_add_tail(&async_extent->list, &cow->extents);
391 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
396 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
399 if (BTRFS_I(inode)->defrag_compress)
401 /* bad compression ratios */
402 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
404 if (btrfs_test_opt(fs_info, COMPRESS) ||
405 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
406 BTRFS_I(inode)->prop_compress)
407 return btrfs_compress_heuristic(inode, start, end);
411 static inline void inode_should_defrag(struct btrfs_inode *inode,
412 u64 start, u64 end, u64 num_bytes, u64 small_write)
414 /* If this is a small write inside eof, kick off a defrag */
415 if (num_bytes < small_write &&
416 (start > 0 || end + 1 < inode->disk_i_size))
417 btrfs_add_inode_defrag(NULL, inode);
421 * we create compressed extents in two phases. The first
422 * phase compresses a range of pages that have already been
423 * locked (both pages and state bits are locked).
425 * This is done inside an ordered work queue, and the compression
426 * is spread across many cpus. The actual IO submission is step
427 * two, and the ordered work queue takes care of making sure that
428 * happens in the same order things were put onto the queue by
429 * writepages and friends.
431 * If this code finds it can't get good compression, it puts an
432 * entry onto the work queue to write the uncompressed bytes. This
433 * makes sure that both compressed inodes and uncompressed inodes
434 * are written in the same order that the flusher thread sent them
437 static noinline void compress_file_range(struct inode *inode,
438 struct page *locked_page,
440 struct async_cow *async_cow,
443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
444 u64 blocksize = fs_info->sectorsize;
446 u64 isize = i_size_read(inode);
448 struct page **pages = NULL;
449 unsigned long nr_pages;
450 unsigned long total_compressed = 0;
451 unsigned long total_in = 0;
454 int compress_type = fs_info->compress_type;
457 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
460 actual_end = min_t(u64, isize, end + 1);
463 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
464 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
465 nr_pages = min_t(unsigned long, nr_pages,
466 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
469 * we don't want to send crud past the end of i_size through
470 * compression, that's just a waste of CPU time. So, if the
471 * end of the file is before the start of our current
472 * requested range of bytes, we bail out to the uncompressed
473 * cleanup code that can deal with all of this.
475 * It isn't really the fastest way to fix things, but this is a
476 * very uncommon corner.
478 if (actual_end <= start)
479 goto cleanup_and_bail_uncompressed;
481 total_compressed = actual_end - start;
484 * skip compression for a small file range(<=blocksize) that
485 * isn't an inline extent, since it doesn't save disk space at all.
487 if (total_compressed <= blocksize &&
488 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
489 goto cleanup_and_bail_uncompressed;
491 total_compressed = min_t(unsigned long, total_compressed,
492 BTRFS_MAX_UNCOMPRESSED);
497 * we do compression for mount -o compress and when the
498 * inode has not been flagged as nocompress. This flag can
499 * change at any time if we discover bad compression ratios.
501 if (inode_need_compress(inode, start, end)) {
503 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
505 /* just bail out to the uncompressed code */
509 if (BTRFS_I(inode)->defrag_compress)
510 compress_type = BTRFS_I(inode)->defrag_compress;
511 else if (BTRFS_I(inode)->prop_compress)
512 compress_type = BTRFS_I(inode)->prop_compress;
515 * we need to call clear_page_dirty_for_io on each
516 * page in the range. Otherwise applications with the file
517 * mmap'd can wander in and change the page contents while
518 * we are compressing them.
520 * If the compression fails for any reason, we set the pages
521 * dirty again later on.
523 * Note that the remaining part is redirtied, the start pointer
524 * has moved, the end is the original one.
527 extent_range_clear_dirty_for_io(inode, start, end);
531 /* Compression level is applied here and only here */
532 ret = btrfs_compress_pages(
533 compress_type | (fs_info->compress_level << 4),
534 inode->i_mapping, start,
541 unsigned long offset = total_compressed &
543 struct page *page = pages[nr_pages - 1];
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
550 kaddr = kmap_atomic(page);
551 memset(kaddr + offset, 0,
553 kunmap_atomic(kaddr);
560 /* lets try to make an inline extent */
561 if (ret || total_in < actual_end) {
562 /* we didn't compress the entire range, try
563 * to make an uncompressed inline extent.
565 ret = cow_file_range_inline(inode, start, end, 0,
566 BTRFS_COMPRESS_NONE, NULL);
568 /* try making a compressed inline extent */
569 ret = cow_file_range_inline(inode, start, end,
571 compress_type, pages);
574 unsigned long clear_flags = EXTENT_DELALLOC |
575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
576 EXTENT_DO_ACCOUNTING;
577 unsigned long page_error_op;
579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
586 * We use DO_ACCOUNTING here because we need the
587 * delalloc_release_metadata to be done _after_ we drop
588 * our outstanding extent for clearing delalloc for this
591 extent_clear_unlock_delalloc(inode, start, end, end,
604 * we aren't doing an inline extent round the compressed size
605 * up to a block size boundary so the allocator does sane
608 total_compressed = ALIGN(total_compressed, blocksize);
611 * one last check to make sure the compression is really a
612 * win, compare the page count read with the blocks on disk,
613 * compression must free at least one sector size
615 total_in = ALIGN(total_in, PAGE_SIZE);
616 if (total_compressed + blocksize <= total_in) {
620 * The async work queues will take care of doing actual
621 * allocation on disk for these compressed pages, and
622 * will submit them to the elevator.
624 add_async_extent(async_cow, start, total_in,
625 total_compressed, pages, nr_pages,
628 if (start + total_in < end) {
639 * the compression code ran but failed to make things smaller,
640 * free any pages it allocated and our page pointer array
642 for (i = 0; i < nr_pages; i++) {
643 WARN_ON(pages[i]->mapping);
648 total_compressed = 0;
651 /* flag the file so we don't compress in the future */
652 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
653 !(BTRFS_I(inode)->prop_compress)) {
654 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
657 cleanup_and_bail_uncompressed:
659 * No compression, but we still need to write the pages in the file
660 * we've been given so far. redirty the locked page if it corresponds
661 * to our extent and set things up for the async work queue to run
662 * cow_file_range to do the normal delalloc dance.
664 if (page_offset(locked_page) >= start &&
665 page_offset(locked_page) <= end)
666 __set_page_dirty_nobuffers(locked_page);
667 /* unlocked later on in the async handlers */
670 extent_range_redirty_for_io(inode, start, end);
671 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672 BTRFS_COMPRESS_NONE);
678 for (i = 0; i < nr_pages; i++) {
679 WARN_ON(pages[i]->mapping);
685 static void free_async_extent_pages(struct async_extent *async_extent)
689 if (!async_extent->pages)
692 for (i = 0; i < async_extent->nr_pages; i++) {
693 WARN_ON(async_extent->pages[i]->mapping);
694 put_page(async_extent->pages[i]);
696 kfree(async_extent->pages);
697 async_extent->nr_pages = 0;
698 async_extent->pages = NULL;
702 * phase two of compressed writeback. This is the ordered portion
703 * of the code, which only gets called in the order the work was
704 * queued. We walk all the async extents created by compress_file_range
705 * and send them down to the disk.
707 static noinline void submit_compressed_extents(struct inode *inode,
708 struct async_cow *async_cow)
710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
711 struct async_extent *async_extent;
713 struct btrfs_key ins;
714 struct extent_map *em;
715 struct btrfs_root *root = BTRFS_I(inode)->root;
716 struct extent_io_tree *io_tree;
720 while (!list_empty(&async_cow->extents)) {
721 async_extent = list_entry(async_cow->extents.next,
722 struct async_extent, list);
723 list_del(&async_extent->list);
725 io_tree = &BTRFS_I(inode)->io_tree;
728 /* did the compression code fall back to uncompressed IO? */
729 if (!async_extent->pages) {
730 int page_started = 0;
731 unsigned long nr_written = 0;
733 lock_extent(io_tree, async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1);
737 /* allocate blocks */
738 ret = cow_file_range(inode, async_cow->locked_page,
740 async_extent->start +
741 async_extent->ram_size - 1,
742 async_extent->start +
743 async_extent->ram_size - 1,
744 &page_started, &nr_written, 0,
750 * if page_started, cow_file_range inserted an
751 * inline extent and took care of all the unlocking
752 * and IO for us. Otherwise, we need to submit
753 * all those pages down to the drive.
755 if (!page_started && !ret)
756 extent_write_locked_range(inode,
758 async_extent->start +
759 async_extent->ram_size - 1,
762 unlock_page(async_cow->locked_page);
768 lock_extent(io_tree, async_extent->start,
769 async_extent->start + async_extent->ram_size - 1);
771 ret = btrfs_reserve_extent(root, async_extent->ram_size,
772 async_extent->compressed_size,
773 async_extent->compressed_size,
774 0, alloc_hint, &ins, 1, 1);
776 free_async_extent_pages(async_extent);
778 if (ret == -ENOSPC) {
779 unlock_extent(io_tree, async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1);
784 * we need to redirty the pages if we decide to
785 * fallback to uncompressed IO, otherwise we
786 * will not submit these pages down to lower
789 extent_range_redirty_for_io(inode,
791 async_extent->start +
792 async_extent->ram_size - 1);
799 * here we're doing allocation and writeback of the
802 em = create_io_em(inode, async_extent->start,
803 async_extent->ram_size, /* len */
804 async_extent->start, /* orig_start */
805 ins.objectid, /* block_start */
806 ins.offset, /* block_len */
807 ins.offset, /* orig_block_len */
808 async_extent->ram_size, /* ram_bytes */
809 async_extent->compress_type,
810 BTRFS_ORDERED_COMPRESSED);
812 /* ret value is not necessary due to void function */
813 goto out_free_reserve;
816 ret = btrfs_add_ordered_extent_compress(inode,
819 async_extent->ram_size,
821 BTRFS_ORDERED_COMPRESSED,
822 async_extent->compress_type);
824 btrfs_drop_extent_cache(BTRFS_I(inode),
826 async_extent->start +
827 async_extent->ram_size - 1, 0);
828 goto out_free_reserve;
830 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
833 * clear dirty, set writeback and unlock the pages.
835 extent_clear_unlock_delalloc(inode, async_extent->start,
836 async_extent->start +
837 async_extent->ram_size - 1,
838 async_extent->start +
839 async_extent->ram_size - 1,
840 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
843 if (btrfs_submit_compressed_write(inode,
845 async_extent->ram_size,
847 ins.offset, async_extent->pages,
848 async_extent->nr_pages,
849 async_cow->write_flags)) {
850 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 struct page *p = async_extent->pages[0];
852 const u64 start = async_extent->start;
853 const u64 end = start + async_extent->ram_size - 1;
855 p->mapping = inode->i_mapping;
856 tree->ops->writepage_end_io_hook(p, start, end,
859 extent_clear_unlock_delalloc(inode, start, end, end,
863 free_async_extent_pages(async_extent);
865 alloc_hint = ins.objectid + ins.offset;
871 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
872 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
874 extent_clear_unlock_delalloc(inode, async_extent->start,
875 async_extent->start +
876 async_extent->ram_size - 1,
877 async_extent->start +
878 async_extent->ram_size - 1,
879 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
880 EXTENT_DELALLOC_NEW |
881 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
885 free_async_extent_pages(async_extent);
890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 struct extent_map *em;
897 read_lock(&em_tree->lock);
898 em = search_extent_mapping(em_tree, start, num_bytes);
901 * if block start isn't an actual block number then find the
902 * first block in this inode and use that as a hint. If that
903 * block is also bogus then just don't worry about it.
905 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
907 em = search_extent_mapping(em_tree, 0, 0);
908 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 alloc_hint = em->block_start;
913 alloc_hint = em->block_start;
917 read_unlock(&em_tree->lock);
923 * when extent_io.c finds a delayed allocation range in the file,
924 * the call backs end up in this code. The basic idea is to
925 * allocate extents on disk for the range, and create ordered data structs
926 * in ram to track those extents.
928 * locked_page is the page that writepage had locked already. We use
929 * it to make sure we don't do extra locks or unlocks.
931 * *page_started is set to one if we unlock locked_page and do everything
932 * required to start IO on it. It may be clean and already done with
935 static noinline int cow_file_range(struct inode *inode,
936 struct page *locked_page,
937 u64 start, u64 end, u64 delalloc_end,
938 int *page_started, unsigned long *nr_written,
939 int unlock, struct btrfs_dedupe_hash *hash)
941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
942 struct btrfs_root *root = BTRFS_I(inode)->root;
945 unsigned long ram_size;
946 u64 cur_alloc_size = 0;
947 u64 blocksize = fs_info->sectorsize;
948 struct btrfs_key ins;
949 struct extent_map *em;
951 unsigned long page_ops;
952 bool extent_reserved = false;
955 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
961 num_bytes = ALIGN(end - start + 1, blocksize);
962 num_bytes = max(blocksize, num_bytes);
963 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
965 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
968 /* lets try to make an inline extent */
969 ret = cow_file_range_inline(inode, start, end, 0,
970 BTRFS_COMPRESS_NONE, NULL);
973 * We use DO_ACCOUNTING here because we need the
974 * delalloc_release_metadata to be run _after_ we drop
975 * our outstanding extent for clearing delalloc for this
978 extent_clear_unlock_delalloc(inode, start, end,
980 EXTENT_LOCKED | EXTENT_DELALLOC |
981 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
982 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
983 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
985 *nr_written = *nr_written +
986 (end - start + PAGE_SIZE) / PAGE_SIZE;
989 } else if (ret < 0) {
994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
995 btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 start + num_bytes - 1, 0);
998 while (num_bytes > 0) {
999 cur_alloc_size = num_bytes;
1000 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1001 fs_info->sectorsize, 0, alloc_hint,
1005 cur_alloc_size = ins.offset;
1006 extent_reserved = true;
1008 ram_size = ins.offset;
1009 em = create_io_em(inode, start, ins.offset, /* len */
1010 start, /* orig_start */
1011 ins.objectid, /* block_start */
1012 ins.offset, /* block_len */
1013 ins.offset, /* orig_block_len */
1014 ram_size, /* ram_bytes */
1015 BTRFS_COMPRESS_NONE, /* compress_type */
1016 BTRFS_ORDERED_REGULAR /* type */);
1021 free_extent_map(em);
1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024 ram_size, cur_alloc_size, 0);
1026 goto out_drop_extent_cache;
1028 if (root->root_key.objectid ==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 ret = btrfs_reloc_clone_csums(inode, start,
1033 * Only drop cache here, and process as normal.
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1044 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 start + ram_size - 1, 0);
1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
1057 page_ops = unlock ? PAGE_UNLOCK : 0;
1058 page_ops |= PAGE_SET_PRIVATE2;
1060 extent_clear_unlock_delalloc(inode, start,
1061 start + ram_size - 1,
1062 delalloc_end, locked_page,
1063 EXTENT_LOCKED | EXTENT_DELALLOC,
1065 if (num_bytes < cur_alloc_size)
1068 num_bytes -= cur_alloc_size;
1069 alloc_hint = ins.objectid + ins.offset;
1070 start += cur_alloc_size;
1071 extent_reserved = false;
1074 * btrfs_reloc_clone_csums() error, since start is increased
1075 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 * free metadata of current ordered extent, we're OK to exit.
1084 out_drop_extent_cache:
1085 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1090 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 * If we reserved an extent for our delalloc range (or a subrange) and
1096 * failed to create the respective ordered extent, then it means that
1097 * when we reserved the extent we decremented the extent's size from
1098 * the data space_info's bytes_may_use counter and incremented the
1099 * space_info's bytes_reserved counter by the same amount. We must make
1100 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 if (extent_reserved) {
1105 extent_clear_unlock_delalloc(inode, start,
1106 start + cur_alloc_size,
1107 start + cur_alloc_size,
1111 start += cur_alloc_size;
1115 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1117 clear_bits | EXTENT_CLEAR_DATA_RESV,
1123 * work queue call back to started compression on a file and pages
1125 static noinline void async_cow_start(struct btrfs_work *work)
1127 struct async_cow *async_cow;
1129 async_cow = container_of(work, struct async_cow, work);
1131 compress_file_range(async_cow->inode, async_cow->locked_page,
1132 async_cow->start, async_cow->end, async_cow,
1134 if (num_added == 0) {
1135 btrfs_add_delayed_iput(async_cow->inode);
1136 async_cow->inode = NULL;
1141 * work queue call back to submit previously compressed pages
1143 static noinline void async_cow_submit(struct btrfs_work *work)
1145 struct btrfs_fs_info *fs_info;
1146 struct async_cow *async_cow;
1147 struct btrfs_root *root;
1148 unsigned long nr_pages;
1150 async_cow = container_of(work, struct async_cow, work);
1152 root = async_cow->root;
1153 fs_info = root->fs_info;
1154 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 /* atomic_sub_return implies a barrier */
1158 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1160 cond_wake_up_nomb(&fs_info->async_submit_wait);
1162 if (async_cow->inode)
1163 submit_compressed_extents(async_cow->inode, async_cow);
1166 static noinline void async_cow_free(struct btrfs_work *work)
1168 struct async_cow *async_cow;
1169 async_cow = container_of(work, struct async_cow, work);
1170 if (async_cow->inode)
1171 btrfs_add_delayed_iput(async_cow->inode);
1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1176 u64 start, u64 end, int *page_started,
1177 unsigned long *nr_written,
1178 unsigned int write_flags)
1180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1181 struct async_cow *async_cow;
1182 struct btrfs_root *root = BTRFS_I(inode)->root;
1183 unsigned long nr_pages;
1186 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1188 while (start < end) {
1189 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1190 BUG_ON(!async_cow); /* -ENOMEM */
1191 async_cow->inode = igrab(inode);
1192 async_cow->root = root;
1193 async_cow->locked_page = locked_page;
1194 async_cow->start = start;
1195 async_cow->write_flags = write_flags;
1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1201 cur_end = min(end, start + SZ_512K - 1);
1203 async_cow->end = cur_end;
1204 INIT_LIST_HEAD(&async_cow->extents);
1206 btrfs_init_work(&async_cow->work,
1207 btrfs_delalloc_helper,
1208 async_cow_start, async_cow_submit,
1211 nr_pages = (cur_end - start + PAGE_SIZE) >>
1213 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1215 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1217 *nr_written += nr_pages;
1218 start = cur_end + 1;
1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1225 u64 bytenr, u64 num_bytes)
1228 struct btrfs_ordered_sum *sums;
1231 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1232 bytenr + num_bytes - 1, &list, 0);
1233 if (ret == 0 && list_empty(&list))
1236 while (!list_empty(&list)) {
1237 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1238 list_del(&sums->list);
1247 * when nowcow writeback call back. This checks for snapshots or COW copies
1248 * of the extents that exist in the file, and COWs the file as required.
1250 * If no cow copies or snapshots exist, we write directly to the existing
1253 static noinline int run_delalloc_nocow(struct inode *inode,
1254 struct page *locked_page,
1255 u64 start, u64 end, int *page_started, int force,
1256 unsigned long *nr_written)
1258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1259 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 struct extent_buffer *leaf;
1261 struct btrfs_path *path;
1262 struct btrfs_file_extent_item *fi;
1263 struct btrfs_key found_key;
1264 struct extent_map *em;
1279 u64 ino = btrfs_ino(BTRFS_I(inode));
1281 path = btrfs_alloc_path();
1283 extent_clear_unlock_delalloc(inode, start, end, end,
1285 EXTENT_LOCKED | EXTENT_DELALLOC |
1286 EXTENT_DO_ACCOUNTING |
1287 EXTENT_DEFRAG, PAGE_UNLOCK |
1289 PAGE_SET_WRITEBACK |
1290 PAGE_END_WRITEBACK);
1294 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1296 cow_start = (u64)-1;
1299 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1303 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &found_key,
1306 path->slots[0] - 1);
1307 if (found_key.objectid == ino &&
1308 found_key.type == BTRFS_EXTENT_DATA_KEY)
1313 leaf = path->nodes[0];
1314 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315 ret = btrfs_next_leaf(root, path);
1317 if (cow_start != (u64)-1)
1318 cur_offset = cow_start;
1323 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1331 if (found_key.objectid > ino)
1333 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1334 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1338 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1339 found_key.offset > end)
1342 if (found_key.offset > cur_offset) {
1343 extent_end = found_key.offset;
1348 fi = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_file_extent_item);
1350 extent_type = btrfs_file_extent_type(leaf, fi);
1352 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1353 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1354 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1355 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1356 extent_offset = btrfs_file_extent_offset(leaf, fi);
1357 extent_end = found_key.offset +
1358 btrfs_file_extent_num_bytes(leaf, fi);
1360 btrfs_file_extent_disk_num_bytes(leaf, fi);
1361 if (extent_end <= start) {
1365 if (disk_bytenr == 0)
1367 if (btrfs_file_extent_compression(leaf, fi) ||
1368 btrfs_file_extent_encryption(leaf, fi) ||
1369 btrfs_file_extent_other_encoding(leaf, fi))
1372 * Do the same check as in btrfs_cross_ref_exist but
1373 * without the unnecessary search.
1375 if (btrfs_file_extent_generation(leaf, fi) <=
1376 btrfs_root_last_snapshot(&root->root_item))
1378 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1380 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1382 ret = btrfs_cross_ref_exist(root, ino,
1384 extent_offset, disk_bytenr);
1387 * ret could be -EIO if the above fails to read
1391 if (cow_start != (u64)-1)
1392 cur_offset = cow_start;
1396 WARN_ON_ONCE(nolock);
1399 disk_bytenr += extent_offset;
1400 disk_bytenr += cur_offset - found_key.offset;
1401 num_bytes = min(end + 1, extent_end) - cur_offset;
1403 * if there are pending snapshots for this root,
1404 * we fall into common COW way.
1407 err = btrfs_start_write_no_snapshotting(root);
1412 * force cow if csum exists in the range.
1413 * this ensure that csum for a given extent are
1414 * either valid or do not exist.
1416 ret = csum_exist_in_range(fs_info, disk_bytenr,
1420 btrfs_end_write_no_snapshotting(root);
1423 * ret could be -EIO if the above fails to read
1427 if (cow_start != (u64)-1)
1428 cur_offset = cow_start;
1431 WARN_ON_ONCE(nolock);
1434 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1436 btrfs_end_write_no_snapshotting(root);
1440 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1441 extent_end = found_key.offset +
1442 btrfs_file_extent_ram_bytes(leaf, fi);
1443 extent_end = ALIGN(extent_end,
1444 fs_info->sectorsize);
1449 if (extent_end <= start) {
1451 if (!nolock && nocow)
1452 btrfs_end_write_no_snapshotting(root);
1454 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1458 if (cow_start == (u64)-1)
1459 cow_start = cur_offset;
1460 cur_offset = extent_end;
1461 if (cur_offset > end)
1467 btrfs_release_path(path);
1468 if (cow_start != (u64)-1) {
1469 ret = cow_file_range(inode, locked_page,
1470 cow_start, found_key.offset - 1,
1471 end, page_started, nr_written, 1,
1474 if (!nolock && nocow)
1475 btrfs_end_write_no_snapshotting(root);
1477 btrfs_dec_nocow_writers(fs_info,
1481 cow_start = (u64)-1;
1484 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1485 u64 orig_start = found_key.offset - extent_offset;
1487 em = create_io_em(inode, cur_offset, num_bytes,
1489 disk_bytenr, /* block_start */
1490 num_bytes, /* block_len */
1491 disk_num_bytes, /* orig_block_len */
1492 ram_bytes, BTRFS_COMPRESS_NONE,
1493 BTRFS_ORDERED_PREALLOC);
1495 if (!nolock && nocow)
1496 btrfs_end_write_no_snapshotting(root);
1498 btrfs_dec_nocow_writers(fs_info,
1503 free_extent_map(em);
1506 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1507 type = BTRFS_ORDERED_PREALLOC;
1509 type = BTRFS_ORDERED_NOCOW;
1512 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1513 num_bytes, num_bytes, type);
1515 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1516 BUG_ON(ret); /* -ENOMEM */
1518 if (root->root_key.objectid ==
1519 BTRFS_DATA_RELOC_TREE_OBJECTID)
1521 * Error handled later, as we must prevent
1522 * extent_clear_unlock_delalloc() in error handler
1523 * from freeing metadata of created ordered extent.
1525 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1528 extent_clear_unlock_delalloc(inode, cur_offset,
1529 cur_offset + num_bytes - 1, end,
1530 locked_page, EXTENT_LOCKED |
1532 EXTENT_CLEAR_DATA_RESV,
1533 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1535 if (!nolock && nocow)
1536 btrfs_end_write_no_snapshotting(root);
1537 cur_offset = extent_end;
1540 * btrfs_reloc_clone_csums() error, now we're OK to call error
1541 * handler, as metadata for created ordered extent will only
1542 * be freed by btrfs_finish_ordered_io().
1546 if (cur_offset > end)
1549 btrfs_release_path(path);
1551 if (cur_offset <= end && cow_start == (u64)-1) {
1552 cow_start = cur_offset;
1556 if (cow_start != (u64)-1) {
1557 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1558 page_started, nr_written, 1, NULL);
1564 if (ret && cur_offset < end)
1565 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1566 locked_page, EXTENT_LOCKED |
1567 EXTENT_DELALLOC | EXTENT_DEFRAG |
1568 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1570 PAGE_SET_WRITEBACK |
1571 PAGE_END_WRITEBACK);
1572 btrfs_free_path(path);
1576 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1579 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1580 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1584 * @defrag_bytes is a hint value, no spinlock held here,
1585 * if is not zero, it means the file is defragging.
1586 * Force cow if given extent needs to be defragged.
1588 if (BTRFS_I(inode)->defrag_bytes &&
1589 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1590 EXTENT_DEFRAG, 0, NULL))
1597 * extent_io.c call back to do delayed allocation processing
1599 static int run_delalloc_range(void *private_data, struct page *locked_page,
1600 u64 start, u64 end, int *page_started,
1601 unsigned long *nr_written,
1602 struct writeback_control *wbc)
1604 struct inode *inode = private_data;
1606 int force_cow = need_force_cow(inode, start, end);
1607 unsigned int write_flags = wbc_to_write_flags(wbc);
1609 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1610 ret = run_delalloc_nocow(inode, locked_page, start, end,
1611 page_started, 1, nr_written);
1612 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1613 ret = run_delalloc_nocow(inode, locked_page, start, end,
1614 page_started, 0, nr_written);
1615 } else if (!inode_need_compress(inode, start, end)) {
1616 ret = cow_file_range(inode, locked_page, start, end, end,
1617 page_started, nr_written, 1, NULL);
1619 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1620 &BTRFS_I(inode)->runtime_flags);
1621 ret = cow_file_range_async(inode, locked_page, start, end,
1622 page_started, nr_written,
1626 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1630 static void btrfs_split_extent_hook(void *private_data,
1631 struct extent_state *orig, u64 split)
1633 struct inode *inode = private_data;
1636 /* not delalloc, ignore it */
1637 if (!(orig->state & EXTENT_DELALLOC))
1640 size = orig->end - orig->start + 1;
1641 if (size > BTRFS_MAX_EXTENT_SIZE) {
1646 * See the explanation in btrfs_merge_extent_hook, the same
1647 * applies here, just in reverse.
1649 new_size = orig->end - split + 1;
1650 num_extents = count_max_extents(new_size);
1651 new_size = split - orig->start;
1652 num_extents += count_max_extents(new_size);
1653 if (count_max_extents(size) >= num_extents)
1657 spin_lock(&BTRFS_I(inode)->lock);
1658 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1659 spin_unlock(&BTRFS_I(inode)->lock);
1663 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1664 * extents so we can keep track of new extents that are just merged onto old
1665 * extents, such as when we are doing sequential writes, so we can properly
1666 * account for the metadata space we'll need.
1668 static void btrfs_merge_extent_hook(void *private_data,
1669 struct extent_state *new,
1670 struct extent_state *other)
1672 struct inode *inode = private_data;
1673 u64 new_size, old_size;
1676 /* not delalloc, ignore it */
1677 if (!(other->state & EXTENT_DELALLOC))
1680 if (new->start > other->start)
1681 new_size = new->end - other->start + 1;
1683 new_size = other->end - new->start + 1;
1685 /* we're not bigger than the max, unreserve the space and go */
1686 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1687 spin_lock(&BTRFS_I(inode)->lock);
1688 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1689 spin_unlock(&BTRFS_I(inode)->lock);
1694 * We have to add up either side to figure out how many extents were
1695 * accounted for before we merged into one big extent. If the number of
1696 * extents we accounted for is <= the amount we need for the new range
1697 * then we can return, otherwise drop. Think of it like this
1701 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1702 * need 2 outstanding extents, on one side we have 1 and the other side
1703 * we have 1 so they are == and we can return. But in this case
1705 * [MAX_SIZE+4k][MAX_SIZE+4k]
1707 * Each range on their own accounts for 2 extents, but merged together
1708 * they are only 3 extents worth of accounting, so we need to drop in
1711 old_size = other->end - other->start + 1;
1712 num_extents = count_max_extents(old_size);
1713 old_size = new->end - new->start + 1;
1714 num_extents += count_max_extents(old_size);
1715 if (count_max_extents(new_size) >= num_extents)
1718 spin_lock(&BTRFS_I(inode)->lock);
1719 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1720 spin_unlock(&BTRFS_I(inode)->lock);
1723 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1724 struct inode *inode)
1726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1728 spin_lock(&root->delalloc_lock);
1729 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1730 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1731 &root->delalloc_inodes);
1732 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1733 &BTRFS_I(inode)->runtime_flags);
1734 root->nr_delalloc_inodes++;
1735 if (root->nr_delalloc_inodes == 1) {
1736 spin_lock(&fs_info->delalloc_root_lock);
1737 BUG_ON(!list_empty(&root->delalloc_root));
1738 list_add_tail(&root->delalloc_root,
1739 &fs_info->delalloc_roots);
1740 spin_unlock(&fs_info->delalloc_root_lock);
1743 spin_unlock(&root->delalloc_lock);
1747 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1748 struct btrfs_inode *inode)
1750 struct btrfs_fs_info *fs_info = root->fs_info;
1752 if (!list_empty(&inode->delalloc_inodes)) {
1753 list_del_init(&inode->delalloc_inodes);
1754 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1755 &inode->runtime_flags);
1756 root->nr_delalloc_inodes--;
1757 if (!root->nr_delalloc_inodes) {
1758 ASSERT(list_empty(&root->delalloc_inodes));
1759 spin_lock(&fs_info->delalloc_root_lock);
1760 BUG_ON(list_empty(&root->delalloc_root));
1761 list_del_init(&root->delalloc_root);
1762 spin_unlock(&fs_info->delalloc_root_lock);
1767 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1768 struct btrfs_inode *inode)
1770 spin_lock(&root->delalloc_lock);
1771 __btrfs_del_delalloc_inode(root, inode);
1772 spin_unlock(&root->delalloc_lock);
1776 * extent_io.c set_bit_hook, used to track delayed allocation
1777 * bytes in this file, and to maintain the list of inodes that
1778 * have pending delalloc work to be done.
1780 static void btrfs_set_bit_hook(void *private_data,
1781 struct extent_state *state, unsigned *bits)
1783 struct inode *inode = private_data;
1785 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1787 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1790 * set_bit and clear bit hooks normally require _irqsave/restore
1791 * but in this case, we are only testing for the DELALLOC
1792 * bit, which is only set or cleared with irqs on
1794 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1795 struct btrfs_root *root = BTRFS_I(inode)->root;
1796 u64 len = state->end + 1 - state->start;
1797 u32 num_extents = count_max_extents(len);
1798 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1800 spin_lock(&BTRFS_I(inode)->lock);
1801 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1802 spin_unlock(&BTRFS_I(inode)->lock);
1804 /* For sanity tests */
1805 if (btrfs_is_testing(fs_info))
1808 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1809 fs_info->delalloc_batch);
1810 spin_lock(&BTRFS_I(inode)->lock);
1811 BTRFS_I(inode)->delalloc_bytes += len;
1812 if (*bits & EXTENT_DEFRAG)
1813 BTRFS_I(inode)->defrag_bytes += len;
1814 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1815 &BTRFS_I(inode)->runtime_flags))
1816 btrfs_add_delalloc_inodes(root, inode);
1817 spin_unlock(&BTRFS_I(inode)->lock);
1820 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1821 (*bits & EXTENT_DELALLOC_NEW)) {
1822 spin_lock(&BTRFS_I(inode)->lock);
1823 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1825 spin_unlock(&BTRFS_I(inode)->lock);
1830 * extent_io.c clear_bit_hook, see set_bit_hook for why
1832 static void btrfs_clear_bit_hook(void *private_data,
1833 struct extent_state *state,
1836 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1837 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1838 u64 len = state->end + 1 - state->start;
1839 u32 num_extents = count_max_extents(len);
1841 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1842 spin_lock(&inode->lock);
1843 inode->defrag_bytes -= len;
1844 spin_unlock(&inode->lock);
1848 * set_bit and clear bit hooks normally require _irqsave/restore
1849 * but in this case, we are only testing for the DELALLOC
1850 * bit, which is only set or cleared with irqs on
1852 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1853 struct btrfs_root *root = inode->root;
1854 bool do_list = !btrfs_is_free_space_inode(inode);
1856 spin_lock(&inode->lock);
1857 btrfs_mod_outstanding_extents(inode, -num_extents);
1858 spin_unlock(&inode->lock);
1861 * We don't reserve metadata space for space cache inodes so we
1862 * don't need to call dellalloc_release_metadata if there is an
1865 if (*bits & EXTENT_CLEAR_META_RESV &&
1866 root != fs_info->tree_root)
1867 btrfs_delalloc_release_metadata(inode, len, false);
1869 /* For sanity tests. */
1870 if (btrfs_is_testing(fs_info))
1873 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1874 do_list && !(state->state & EXTENT_NORESERVE) &&
1875 (*bits & EXTENT_CLEAR_DATA_RESV))
1876 btrfs_free_reserved_data_space_noquota(
1880 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1881 fs_info->delalloc_batch);
1882 spin_lock(&inode->lock);
1883 inode->delalloc_bytes -= len;
1884 if (do_list && inode->delalloc_bytes == 0 &&
1885 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1886 &inode->runtime_flags))
1887 btrfs_del_delalloc_inode(root, inode);
1888 spin_unlock(&inode->lock);
1891 if ((state->state & EXTENT_DELALLOC_NEW) &&
1892 (*bits & EXTENT_DELALLOC_NEW)) {
1893 spin_lock(&inode->lock);
1894 ASSERT(inode->new_delalloc_bytes >= len);
1895 inode->new_delalloc_bytes -= len;
1896 spin_unlock(&inode->lock);
1901 * Merge bio hook, this must check the chunk tree to make sure we don't create
1902 * bios that span stripes or chunks
1904 * return 1 if page cannot be merged to bio
1905 * return 0 if page can be merged to bio
1906 * return error otherwise
1908 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1909 size_t size, struct bio *bio,
1910 unsigned long bio_flags)
1912 struct inode *inode = page->mapping->host;
1913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1914 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1919 if (bio_flags & EXTENT_BIO_COMPRESSED)
1922 length = bio->bi_iter.bi_size;
1923 map_length = length;
1924 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1928 if (map_length < length + size)
1934 * in order to insert checksums into the metadata in large chunks,
1935 * we wait until bio submission time. All the pages in the bio are
1936 * checksummed and sums are attached onto the ordered extent record.
1938 * At IO completion time the cums attached on the ordered extent record
1939 * are inserted into the btree
1941 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1944 struct inode *inode = private_data;
1945 blk_status_t ret = 0;
1947 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1948 BUG_ON(ret); /* -ENOMEM */
1953 * in order to insert checksums into the metadata in large chunks,
1954 * we wait until bio submission time. All the pages in the bio are
1955 * checksummed and sums are attached onto the ordered extent record.
1957 * At IO completion time the cums attached on the ordered extent record
1958 * are inserted into the btree
1960 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1963 struct inode *inode = private_data;
1964 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1967 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1969 bio->bi_status = ret;
1976 * extent_io.c submission hook. This does the right thing for csum calculation
1977 * on write, or reading the csums from the tree before a read.
1979 * Rules about async/sync submit,
1980 * a) read: sync submit
1982 * b) write without checksum: sync submit
1984 * c) write with checksum:
1985 * c-1) if bio is issued by fsync: sync submit
1986 * (sync_writers != 0)
1988 * c-2) if root is reloc root: sync submit
1989 * (only in case of buffered IO)
1991 * c-3) otherwise: async submit
1993 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1994 int mirror_num, unsigned long bio_flags,
1997 struct inode *inode = private_data;
1998 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1999 struct btrfs_root *root = BTRFS_I(inode)->root;
2000 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2001 blk_status_t ret = 0;
2003 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2005 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2007 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2008 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2010 if (bio_op(bio) != REQ_OP_WRITE) {
2011 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2015 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2016 ret = btrfs_submit_compressed_read(inode, bio,
2020 } else if (!skip_sum) {
2021 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2026 } else if (async && !skip_sum) {
2027 /* csum items have already been cloned */
2028 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2030 /* we're doing a write, do the async checksumming */
2031 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2033 btrfs_submit_bio_start);
2035 } else if (!skip_sum) {
2036 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2042 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2046 bio->bi_status = ret;
2053 * given a list of ordered sums record them in the inode. This happens
2054 * at IO completion time based on sums calculated at bio submission time.
2056 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2057 struct inode *inode, struct list_head *list)
2059 struct btrfs_ordered_sum *sum;
2062 list_for_each_entry(sum, list, list) {
2063 trans->adding_csums = true;
2064 ret = btrfs_csum_file_blocks(trans,
2065 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2066 trans->adding_csums = false;
2073 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2074 unsigned int extra_bits,
2075 struct extent_state **cached_state, int dedupe)
2077 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2078 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2079 extra_bits, cached_state);
2082 /* see btrfs_writepage_start_hook for details on why this is required */
2083 struct btrfs_writepage_fixup {
2085 struct btrfs_work work;
2088 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2090 struct btrfs_writepage_fixup *fixup;
2091 struct btrfs_ordered_extent *ordered;
2092 struct extent_state *cached_state = NULL;
2093 struct extent_changeset *data_reserved = NULL;
2095 struct inode *inode;
2100 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2104 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2105 ClearPageChecked(page);
2109 inode = page->mapping->host;
2110 page_start = page_offset(page);
2111 page_end = page_offset(page) + PAGE_SIZE - 1;
2113 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2116 /* already ordered? We're done */
2117 if (PagePrivate2(page))
2120 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2123 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2124 page_end, &cached_state);
2126 btrfs_start_ordered_extent(inode, ordered, 1);
2127 btrfs_put_ordered_extent(ordered);
2131 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2134 mapping_set_error(page->mapping, ret);
2135 end_extent_writepage(page, ret, page_start, page_end);
2136 ClearPageChecked(page);
2140 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2143 mapping_set_error(page->mapping, ret);
2144 end_extent_writepage(page, ret, page_start, page_end);
2145 ClearPageChecked(page);
2149 ClearPageChecked(page);
2150 set_page_dirty(page);
2151 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2153 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2159 extent_changeset_free(data_reserved);
2163 * There are a few paths in the higher layers of the kernel that directly
2164 * set the page dirty bit without asking the filesystem if it is a
2165 * good idea. This causes problems because we want to make sure COW
2166 * properly happens and the data=ordered rules are followed.
2168 * In our case any range that doesn't have the ORDERED bit set
2169 * hasn't been properly setup for IO. We kick off an async process
2170 * to fix it up. The async helper will wait for ordered extents, set
2171 * the delalloc bit and make it safe to write the page.
2173 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2175 struct inode *inode = page->mapping->host;
2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2177 struct btrfs_writepage_fixup *fixup;
2179 /* this page is properly in the ordered list */
2180 if (TestClearPagePrivate2(page))
2183 if (PageChecked(page))
2186 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2190 SetPageChecked(page);
2192 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2193 btrfs_writepage_fixup_worker, NULL, NULL);
2195 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2199 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2200 struct inode *inode, u64 file_pos,
2201 u64 disk_bytenr, u64 disk_num_bytes,
2202 u64 num_bytes, u64 ram_bytes,
2203 u8 compression, u8 encryption,
2204 u16 other_encoding, int extent_type)
2206 struct btrfs_root *root = BTRFS_I(inode)->root;
2207 struct btrfs_file_extent_item *fi;
2208 struct btrfs_path *path;
2209 struct extent_buffer *leaf;
2210 struct btrfs_key ins;
2212 int extent_inserted = 0;
2215 path = btrfs_alloc_path();
2220 * we may be replacing one extent in the tree with another.
2221 * The new extent is pinned in the extent map, and we don't want
2222 * to drop it from the cache until it is completely in the btree.
2224 * So, tell btrfs_drop_extents to leave this extent in the cache.
2225 * the caller is expected to unpin it and allow it to be merged
2228 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2229 file_pos + num_bytes, NULL, 0,
2230 1, sizeof(*fi), &extent_inserted);
2234 if (!extent_inserted) {
2235 ins.objectid = btrfs_ino(BTRFS_I(inode));
2236 ins.offset = file_pos;
2237 ins.type = BTRFS_EXTENT_DATA_KEY;
2239 path->leave_spinning = 1;
2240 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2245 leaf = path->nodes[0];
2246 fi = btrfs_item_ptr(leaf, path->slots[0],
2247 struct btrfs_file_extent_item);
2248 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2249 btrfs_set_file_extent_type(leaf, fi, extent_type);
2250 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2251 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2252 btrfs_set_file_extent_offset(leaf, fi, 0);
2253 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2254 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2255 btrfs_set_file_extent_compression(leaf, fi, compression);
2256 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2257 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2259 btrfs_mark_buffer_dirty(leaf);
2260 btrfs_release_path(path);
2262 inode_add_bytes(inode, num_bytes);
2264 ins.objectid = disk_bytenr;
2265 ins.offset = disk_num_bytes;
2266 ins.type = BTRFS_EXTENT_ITEM_KEY;
2269 * Release the reserved range from inode dirty range map, as it is
2270 * already moved into delayed_ref_head
2272 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2276 ret = btrfs_alloc_reserved_file_extent(trans, root,
2277 btrfs_ino(BTRFS_I(inode)),
2278 file_pos, qg_released, &ins);
2280 btrfs_free_path(path);
2285 /* snapshot-aware defrag */
2286 struct sa_defrag_extent_backref {
2287 struct rb_node node;
2288 struct old_sa_defrag_extent *old;
2297 struct old_sa_defrag_extent {
2298 struct list_head list;
2299 struct new_sa_defrag_extent *new;
2308 struct new_sa_defrag_extent {
2309 struct rb_root root;
2310 struct list_head head;
2311 struct btrfs_path *path;
2312 struct inode *inode;
2320 static int backref_comp(struct sa_defrag_extent_backref *b1,
2321 struct sa_defrag_extent_backref *b2)
2323 if (b1->root_id < b2->root_id)
2325 else if (b1->root_id > b2->root_id)
2328 if (b1->inum < b2->inum)
2330 else if (b1->inum > b2->inum)
2333 if (b1->file_pos < b2->file_pos)
2335 else if (b1->file_pos > b2->file_pos)
2339 * [------------------------------] ===> (a range of space)
2340 * |<--->| |<---->| =============> (fs/file tree A)
2341 * |<---------------------------->| ===> (fs/file tree B)
2343 * A range of space can refer to two file extents in one tree while
2344 * refer to only one file extent in another tree.
2346 * So we may process a disk offset more than one time(two extents in A)
2347 * and locate at the same extent(one extent in B), then insert two same
2348 * backrefs(both refer to the extent in B).
2353 static void backref_insert(struct rb_root *root,
2354 struct sa_defrag_extent_backref *backref)
2356 struct rb_node **p = &root->rb_node;
2357 struct rb_node *parent = NULL;
2358 struct sa_defrag_extent_backref *entry;
2363 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2365 ret = backref_comp(backref, entry);
2369 p = &(*p)->rb_right;
2372 rb_link_node(&backref->node, parent, p);
2373 rb_insert_color(&backref->node, root);
2377 * Note the backref might has changed, and in this case we just return 0.
2379 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2382 struct btrfs_file_extent_item *extent;
2383 struct old_sa_defrag_extent *old = ctx;
2384 struct new_sa_defrag_extent *new = old->new;
2385 struct btrfs_path *path = new->path;
2386 struct btrfs_key key;
2387 struct btrfs_root *root;
2388 struct sa_defrag_extent_backref *backref;
2389 struct extent_buffer *leaf;
2390 struct inode *inode = new->inode;
2391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2397 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2398 inum == btrfs_ino(BTRFS_I(inode)))
2401 key.objectid = root_id;
2402 key.type = BTRFS_ROOT_ITEM_KEY;
2403 key.offset = (u64)-1;
2405 root = btrfs_read_fs_root_no_name(fs_info, &key);
2407 if (PTR_ERR(root) == -ENOENT)
2410 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2411 inum, offset, root_id);
2412 return PTR_ERR(root);
2415 key.objectid = inum;
2416 key.type = BTRFS_EXTENT_DATA_KEY;
2417 if (offset > (u64)-1 << 32)
2420 key.offset = offset;
2422 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2423 if (WARN_ON(ret < 0))
2430 leaf = path->nodes[0];
2431 slot = path->slots[0];
2433 if (slot >= btrfs_header_nritems(leaf)) {
2434 ret = btrfs_next_leaf(root, path);
2437 } else if (ret > 0) {
2446 btrfs_item_key_to_cpu(leaf, &key, slot);
2448 if (key.objectid > inum)
2451 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2454 extent = btrfs_item_ptr(leaf, slot,
2455 struct btrfs_file_extent_item);
2457 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2461 * 'offset' refers to the exact key.offset,
2462 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2463 * (key.offset - extent_offset).
2465 if (key.offset != offset)
2468 extent_offset = btrfs_file_extent_offset(leaf, extent);
2469 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2471 if (extent_offset >= old->extent_offset + old->offset +
2472 old->len || extent_offset + num_bytes <=
2473 old->extent_offset + old->offset)
2478 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2484 backref->root_id = root_id;
2485 backref->inum = inum;
2486 backref->file_pos = offset;
2487 backref->num_bytes = num_bytes;
2488 backref->extent_offset = extent_offset;
2489 backref->generation = btrfs_file_extent_generation(leaf, extent);
2491 backref_insert(&new->root, backref);
2494 btrfs_release_path(path);
2499 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2500 struct new_sa_defrag_extent *new)
2502 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2503 struct old_sa_defrag_extent *old, *tmp;
2508 list_for_each_entry_safe(old, tmp, &new->head, list) {
2509 ret = iterate_inodes_from_logical(old->bytenr +
2510 old->extent_offset, fs_info,
2511 path, record_one_backref,
2513 if (ret < 0 && ret != -ENOENT)
2516 /* no backref to be processed for this extent */
2518 list_del(&old->list);
2523 if (list_empty(&new->head))
2529 static int relink_is_mergable(struct extent_buffer *leaf,
2530 struct btrfs_file_extent_item *fi,
2531 struct new_sa_defrag_extent *new)
2533 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2536 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2539 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2542 if (btrfs_file_extent_encryption(leaf, fi) ||
2543 btrfs_file_extent_other_encoding(leaf, fi))
2550 * Note the backref might has changed, and in this case we just return 0.
2552 static noinline int relink_extent_backref(struct btrfs_path *path,
2553 struct sa_defrag_extent_backref *prev,
2554 struct sa_defrag_extent_backref *backref)
2556 struct btrfs_file_extent_item *extent;
2557 struct btrfs_file_extent_item *item;
2558 struct btrfs_ordered_extent *ordered;
2559 struct btrfs_trans_handle *trans;
2560 struct btrfs_root *root;
2561 struct btrfs_key key;
2562 struct extent_buffer *leaf;
2563 struct old_sa_defrag_extent *old = backref->old;
2564 struct new_sa_defrag_extent *new = old->new;
2565 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2566 struct inode *inode;
2567 struct extent_state *cached = NULL;
2576 if (prev && prev->root_id == backref->root_id &&
2577 prev->inum == backref->inum &&
2578 prev->file_pos + prev->num_bytes == backref->file_pos)
2581 /* step 1: get root */
2582 key.objectid = backref->root_id;
2583 key.type = BTRFS_ROOT_ITEM_KEY;
2584 key.offset = (u64)-1;
2586 index = srcu_read_lock(&fs_info->subvol_srcu);
2588 root = btrfs_read_fs_root_no_name(fs_info, &key);
2590 srcu_read_unlock(&fs_info->subvol_srcu, index);
2591 if (PTR_ERR(root) == -ENOENT)
2593 return PTR_ERR(root);
2596 if (btrfs_root_readonly(root)) {
2597 srcu_read_unlock(&fs_info->subvol_srcu, index);
2601 /* step 2: get inode */
2602 key.objectid = backref->inum;
2603 key.type = BTRFS_INODE_ITEM_KEY;
2606 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2607 if (IS_ERR(inode)) {
2608 srcu_read_unlock(&fs_info->subvol_srcu, index);
2612 srcu_read_unlock(&fs_info->subvol_srcu, index);
2614 /* step 3: relink backref */
2615 lock_start = backref->file_pos;
2616 lock_end = backref->file_pos + backref->num_bytes - 1;
2617 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2620 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2622 btrfs_put_ordered_extent(ordered);
2626 trans = btrfs_join_transaction(root);
2627 if (IS_ERR(trans)) {
2628 ret = PTR_ERR(trans);
2632 key.objectid = backref->inum;
2633 key.type = BTRFS_EXTENT_DATA_KEY;
2634 key.offset = backref->file_pos;
2636 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2639 } else if (ret > 0) {
2644 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2645 struct btrfs_file_extent_item);
2647 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2648 backref->generation)
2651 btrfs_release_path(path);
2653 start = backref->file_pos;
2654 if (backref->extent_offset < old->extent_offset + old->offset)
2655 start += old->extent_offset + old->offset -
2656 backref->extent_offset;
2658 len = min(backref->extent_offset + backref->num_bytes,
2659 old->extent_offset + old->offset + old->len);
2660 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2662 ret = btrfs_drop_extents(trans, root, inode, start,
2667 key.objectid = btrfs_ino(BTRFS_I(inode));
2668 key.type = BTRFS_EXTENT_DATA_KEY;
2671 path->leave_spinning = 1;
2673 struct btrfs_file_extent_item *fi;
2675 struct btrfs_key found_key;
2677 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2682 leaf = path->nodes[0];
2683 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2685 fi = btrfs_item_ptr(leaf, path->slots[0],
2686 struct btrfs_file_extent_item);
2687 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2689 if (extent_len + found_key.offset == start &&
2690 relink_is_mergable(leaf, fi, new)) {
2691 btrfs_set_file_extent_num_bytes(leaf, fi,
2693 btrfs_mark_buffer_dirty(leaf);
2694 inode_add_bytes(inode, len);
2700 btrfs_release_path(path);
2705 ret = btrfs_insert_empty_item(trans, root, path, &key,
2708 btrfs_abort_transaction(trans, ret);
2712 leaf = path->nodes[0];
2713 item = btrfs_item_ptr(leaf, path->slots[0],
2714 struct btrfs_file_extent_item);
2715 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2716 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2717 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2718 btrfs_set_file_extent_num_bytes(leaf, item, len);
2719 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2720 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2721 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2722 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2723 btrfs_set_file_extent_encryption(leaf, item, 0);
2724 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2726 btrfs_mark_buffer_dirty(leaf);
2727 inode_add_bytes(inode, len);
2728 btrfs_release_path(path);
2730 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2732 backref->root_id, backref->inum,
2733 new->file_pos); /* start - extent_offset */
2735 btrfs_abort_transaction(trans, ret);
2741 btrfs_release_path(path);
2742 path->leave_spinning = 0;
2743 btrfs_end_transaction(trans);
2745 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2751 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2753 struct old_sa_defrag_extent *old, *tmp;
2758 list_for_each_entry_safe(old, tmp, &new->head, list) {
2764 static void relink_file_extents(struct new_sa_defrag_extent *new)
2766 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2767 struct btrfs_path *path;
2768 struct sa_defrag_extent_backref *backref;
2769 struct sa_defrag_extent_backref *prev = NULL;
2770 struct inode *inode;
2771 struct rb_node *node;
2776 path = btrfs_alloc_path();
2780 if (!record_extent_backrefs(path, new)) {
2781 btrfs_free_path(path);
2784 btrfs_release_path(path);
2787 node = rb_first(&new->root);
2790 rb_erase(node, &new->root);
2792 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2794 ret = relink_extent_backref(path, prev, backref);
2807 btrfs_free_path(path);
2809 free_sa_defrag_extent(new);
2811 atomic_dec(&fs_info->defrag_running);
2812 wake_up(&fs_info->transaction_wait);
2815 static struct new_sa_defrag_extent *
2816 record_old_file_extents(struct inode *inode,
2817 struct btrfs_ordered_extent *ordered)
2819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820 struct btrfs_root *root = BTRFS_I(inode)->root;
2821 struct btrfs_path *path;
2822 struct btrfs_key key;
2823 struct old_sa_defrag_extent *old;
2824 struct new_sa_defrag_extent *new;
2827 new = kmalloc(sizeof(*new), GFP_NOFS);
2832 new->file_pos = ordered->file_offset;
2833 new->len = ordered->len;
2834 new->bytenr = ordered->start;
2835 new->disk_len = ordered->disk_len;
2836 new->compress_type = ordered->compress_type;
2837 new->root = RB_ROOT;
2838 INIT_LIST_HEAD(&new->head);
2840 path = btrfs_alloc_path();
2844 key.objectid = btrfs_ino(BTRFS_I(inode));
2845 key.type = BTRFS_EXTENT_DATA_KEY;
2846 key.offset = new->file_pos;
2848 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2851 if (ret > 0 && path->slots[0] > 0)
2854 /* find out all the old extents for the file range */
2856 struct btrfs_file_extent_item *extent;
2857 struct extent_buffer *l;
2866 slot = path->slots[0];
2868 if (slot >= btrfs_header_nritems(l)) {
2869 ret = btrfs_next_leaf(root, path);
2877 btrfs_item_key_to_cpu(l, &key, slot);
2879 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2881 if (key.type != BTRFS_EXTENT_DATA_KEY)
2883 if (key.offset >= new->file_pos + new->len)
2886 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2888 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2889 if (key.offset + num_bytes < new->file_pos)
2892 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2896 extent_offset = btrfs_file_extent_offset(l, extent);
2898 old = kmalloc(sizeof(*old), GFP_NOFS);
2902 offset = max(new->file_pos, key.offset);
2903 end = min(new->file_pos + new->len, key.offset + num_bytes);
2905 old->bytenr = disk_bytenr;
2906 old->extent_offset = extent_offset;
2907 old->offset = offset - key.offset;
2908 old->len = end - offset;
2911 list_add_tail(&old->list, &new->head);
2917 btrfs_free_path(path);
2918 atomic_inc(&fs_info->defrag_running);
2923 btrfs_free_path(path);
2925 free_sa_defrag_extent(new);
2929 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2932 struct btrfs_block_group_cache *cache;
2934 cache = btrfs_lookup_block_group(fs_info, start);
2937 spin_lock(&cache->lock);
2938 cache->delalloc_bytes -= len;
2939 spin_unlock(&cache->lock);
2941 btrfs_put_block_group(cache);
2944 /* as ordered data IO finishes, this gets called so we can finish
2945 * an ordered extent if the range of bytes in the file it covers are
2948 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2950 struct inode *inode = ordered_extent->inode;
2951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2952 struct btrfs_root *root = BTRFS_I(inode)->root;
2953 struct btrfs_trans_handle *trans = NULL;
2954 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2955 struct extent_state *cached_state = NULL;
2956 struct new_sa_defrag_extent *new = NULL;
2957 int compress_type = 0;
2959 u64 logical_len = ordered_extent->len;
2961 bool truncated = false;
2962 bool range_locked = false;
2963 bool clear_new_delalloc_bytes = false;
2965 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2966 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2967 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2968 clear_new_delalloc_bytes = true;
2970 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2972 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2977 btrfs_free_io_failure_record(BTRFS_I(inode),
2978 ordered_extent->file_offset,
2979 ordered_extent->file_offset +
2980 ordered_extent->len - 1);
2982 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2984 logical_len = ordered_extent->truncated_len;
2985 /* Truncated the entire extent, don't bother adding */
2990 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2991 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2994 * For mwrite(mmap + memset to write) case, we still reserve
2995 * space for NOCOW range.
2996 * As NOCOW won't cause a new delayed ref, just free the space
2998 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2999 ordered_extent->len);
3000 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3002 trans = btrfs_join_transaction_nolock(root);
3004 trans = btrfs_join_transaction(root);
3005 if (IS_ERR(trans)) {
3006 ret = PTR_ERR(trans);
3010 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3011 ret = btrfs_update_inode_fallback(trans, root, inode);
3012 if (ret) /* -ENOMEM or corruption */
3013 btrfs_abort_transaction(trans, ret);
3017 range_locked = true;
3018 lock_extent_bits(io_tree, ordered_extent->file_offset,
3019 ordered_extent->file_offset + ordered_extent->len - 1,
3022 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3023 ordered_extent->file_offset + ordered_extent->len - 1,
3024 EXTENT_DEFRAG, 0, cached_state);
3026 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3027 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3028 /* the inode is shared */
3029 new = record_old_file_extents(inode, ordered_extent);
3031 clear_extent_bit(io_tree, ordered_extent->file_offset,
3032 ordered_extent->file_offset + ordered_extent->len - 1,
3033 EXTENT_DEFRAG, 0, 0, &cached_state);
3037 trans = btrfs_join_transaction_nolock(root);
3039 trans = btrfs_join_transaction(root);
3040 if (IS_ERR(trans)) {
3041 ret = PTR_ERR(trans);
3046 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3048 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3049 compress_type = ordered_extent->compress_type;
3050 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3051 BUG_ON(compress_type);
3052 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3053 ordered_extent->len);
3054 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3055 ordered_extent->file_offset,
3056 ordered_extent->file_offset +
3059 BUG_ON(root == fs_info->tree_root);
3060 ret = insert_reserved_file_extent(trans, inode,
3061 ordered_extent->file_offset,
3062 ordered_extent->start,
3063 ordered_extent->disk_len,
3064 logical_len, logical_len,
3065 compress_type, 0, 0,
3066 BTRFS_FILE_EXTENT_REG);
3068 btrfs_release_delalloc_bytes(fs_info,
3069 ordered_extent->start,
3070 ordered_extent->disk_len);
3072 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3073 ordered_extent->file_offset, ordered_extent->len,
3076 btrfs_abort_transaction(trans, ret);
3080 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3082 btrfs_abort_transaction(trans, ret);
3086 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3087 ret = btrfs_update_inode_fallback(trans, root, inode);
3088 if (ret) { /* -ENOMEM or corruption */
3089 btrfs_abort_transaction(trans, ret);
3094 if (range_locked || clear_new_delalloc_bytes) {
3095 unsigned int clear_bits = 0;
3098 clear_bits |= EXTENT_LOCKED;
3099 if (clear_new_delalloc_bytes)
3100 clear_bits |= EXTENT_DELALLOC_NEW;
3101 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3102 ordered_extent->file_offset,
3103 ordered_extent->file_offset +
3104 ordered_extent->len - 1,
3106 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3111 btrfs_end_transaction(trans);
3113 if (ret || truncated) {
3117 start = ordered_extent->file_offset + logical_len;
3119 start = ordered_extent->file_offset;
3120 end = ordered_extent->file_offset + ordered_extent->len - 1;
3121 clear_extent_uptodate(io_tree, start, end, NULL);
3123 /* Drop the cache for the part of the extent we didn't write. */
3124 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3127 * If the ordered extent had an IOERR or something else went
3128 * wrong we need to return the space for this ordered extent
3129 * back to the allocator. We only free the extent in the
3130 * truncated case if we didn't write out the extent at all.
3132 if ((ret || !logical_len) &&
3133 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3134 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3135 btrfs_free_reserved_extent(fs_info,
3136 ordered_extent->start,
3137 ordered_extent->disk_len, 1);
3142 * This needs to be done to make sure anybody waiting knows we are done
3143 * updating everything for this ordered extent.
3145 btrfs_remove_ordered_extent(inode, ordered_extent);
3147 /* for snapshot-aware defrag */
3150 free_sa_defrag_extent(new);
3151 atomic_dec(&fs_info->defrag_running);
3153 relink_file_extents(new);
3158 btrfs_put_ordered_extent(ordered_extent);
3159 /* once for the tree */
3160 btrfs_put_ordered_extent(ordered_extent);
3162 /* Try to release some metadata so we don't get an OOM but don't wait */
3163 btrfs_btree_balance_dirty_nodelay(fs_info);
3168 static void finish_ordered_fn(struct btrfs_work *work)
3170 struct btrfs_ordered_extent *ordered_extent;
3171 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3172 btrfs_finish_ordered_io(ordered_extent);
3175 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3176 struct extent_state *state, int uptodate)
3178 struct inode *inode = page->mapping->host;
3179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3180 struct btrfs_ordered_extent *ordered_extent = NULL;
3181 struct btrfs_workqueue *wq;
3182 btrfs_work_func_t func;
3184 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3186 ClearPagePrivate2(page);
3187 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3188 end - start + 1, uptodate))
3191 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3192 wq = fs_info->endio_freespace_worker;
3193 func = btrfs_freespace_write_helper;
3195 wq = fs_info->endio_write_workers;
3196 func = btrfs_endio_write_helper;
3199 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3201 btrfs_queue_work(wq, &ordered_extent->work);
3204 static int __readpage_endio_check(struct inode *inode,
3205 struct btrfs_io_bio *io_bio,
3206 int icsum, struct page *page,
3207 int pgoff, u64 start, size_t len)
3213 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3215 kaddr = kmap_atomic(page);
3216 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3217 btrfs_csum_final(csum, (u8 *)&csum);
3218 if (csum != csum_expected)
3221 kunmap_atomic(kaddr);
3224 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3225 io_bio->mirror_num);
3226 memset(kaddr + pgoff, 1, len);
3227 flush_dcache_page(page);
3228 kunmap_atomic(kaddr);
3233 * when reads are done, we need to check csums to verify the data is correct
3234 * if there's a match, we allow the bio to finish. If not, the code in
3235 * extent_io.c will try to find good copies for us.
3237 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3238 u64 phy_offset, struct page *page,
3239 u64 start, u64 end, int mirror)
3241 size_t offset = start - page_offset(page);
3242 struct inode *inode = page->mapping->host;
3243 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3244 struct btrfs_root *root = BTRFS_I(inode)->root;
3246 if (PageChecked(page)) {
3247 ClearPageChecked(page);
3251 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3254 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3255 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3256 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3260 phy_offset >>= inode->i_sb->s_blocksize_bits;
3261 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3262 start, (size_t)(end - start + 1));
3266 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3268 * @inode: The inode we want to perform iput on
3270 * This function uses the generic vfs_inode::i_count to track whether we should
3271 * just decrement it (in case it's > 1) or if this is the last iput then link
3272 * the inode to the delayed iput machinery. Delayed iputs are processed at
3273 * transaction commit time/superblock commit/cleaner kthread.
3275 void btrfs_add_delayed_iput(struct inode *inode)
3277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3278 struct btrfs_inode *binode = BTRFS_I(inode);
3280 if (atomic_add_unless(&inode->i_count, -1, 1))
3283 spin_lock(&fs_info->delayed_iput_lock);
3284 ASSERT(list_empty(&binode->delayed_iput));
3285 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3286 spin_unlock(&fs_info->delayed_iput_lock);
3289 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3292 spin_lock(&fs_info->delayed_iput_lock);
3293 while (!list_empty(&fs_info->delayed_iputs)) {
3294 struct btrfs_inode *inode;
3296 inode = list_first_entry(&fs_info->delayed_iputs,
3297 struct btrfs_inode, delayed_iput);
3298 list_del_init(&inode->delayed_iput);
3299 spin_unlock(&fs_info->delayed_iput_lock);
3300 iput(&inode->vfs_inode);
3301 spin_lock(&fs_info->delayed_iput_lock);
3303 spin_unlock(&fs_info->delayed_iput_lock);
3307 * This creates an orphan entry for the given inode in case something goes wrong
3308 * in the middle of an unlink.
3310 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3311 struct btrfs_inode *inode)
3315 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3316 if (ret && ret != -EEXIST) {
3317 btrfs_abort_transaction(trans, ret);
3325 * We have done the delete so we can go ahead and remove the orphan item for
3326 * this particular inode.
3328 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3329 struct btrfs_inode *inode)
3331 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3335 * this cleans up any orphans that may be left on the list from the last use
3338 int btrfs_orphan_cleanup(struct btrfs_root *root)
3340 struct btrfs_fs_info *fs_info = root->fs_info;
3341 struct btrfs_path *path;
3342 struct extent_buffer *leaf;
3343 struct btrfs_key key, found_key;
3344 struct btrfs_trans_handle *trans;
3345 struct inode *inode;
3346 u64 last_objectid = 0;
3347 int ret = 0, nr_unlink = 0;
3349 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3352 path = btrfs_alloc_path();
3357 path->reada = READA_BACK;
3359 key.objectid = BTRFS_ORPHAN_OBJECTID;
3360 key.type = BTRFS_ORPHAN_ITEM_KEY;
3361 key.offset = (u64)-1;
3364 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3369 * if ret == 0 means we found what we were searching for, which
3370 * is weird, but possible, so only screw with path if we didn't
3371 * find the key and see if we have stuff that matches
3375 if (path->slots[0] == 0)
3380 /* pull out the item */
3381 leaf = path->nodes[0];
3382 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3384 /* make sure the item matches what we want */
3385 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3387 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3390 /* release the path since we're done with it */
3391 btrfs_release_path(path);
3394 * this is where we are basically btrfs_lookup, without the
3395 * crossing root thing. we store the inode number in the
3396 * offset of the orphan item.
3399 if (found_key.offset == last_objectid) {
3401 "Error removing orphan entry, stopping orphan cleanup");
3406 last_objectid = found_key.offset;
3408 found_key.objectid = found_key.offset;
3409 found_key.type = BTRFS_INODE_ITEM_KEY;
3410 found_key.offset = 0;
3411 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3412 ret = PTR_ERR_OR_ZERO(inode);
3413 if (ret && ret != -ENOENT)
3416 if (ret == -ENOENT && root == fs_info->tree_root) {
3417 struct btrfs_root *dead_root;
3418 struct btrfs_fs_info *fs_info = root->fs_info;
3419 int is_dead_root = 0;
3422 * this is an orphan in the tree root. Currently these
3423 * could come from 2 sources:
3424 * a) a snapshot deletion in progress
3425 * b) a free space cache inode
3426 * We need to distinguish those two, as the snapshot
3427 * orphan must not get deleted.
3428 * find_dead_roots already ran before us, so if this
3429 * is a snapshot deletion, we should find the root
3430 * in the dead_roots list
3432 spin_lock(&fs_info->trans_lock);
3433 list_for_each_entry(dead_root, &fs_info->dead_roots,
3435 if (dead_root->root_key.objectid ==
3436 found_key.objectid) {
3441 spin_unlock(&fs_info->trans_lock);
3443 /* prevent this orphan from being found again */
3444 key.offset = found_key.objectid - 1;
3451 * If we have an inode with links, there are a couple of
3452 * possibilities. Old kernels (before v3.12) used to create an
3453 * orphan item for truncate indicating that there were possibly
3454 * extent items past i_size that needed to be deleted. In v3.12,
3455 * truncate was changed to update i_size in sync with the extent
3456 * items, but the (useless) orphan item was still created. Since
3457 * v4.18, we don't create the orphan item for truncate at all.
3459 * So, this item could mean that we need to do a truncate, but
3460 * only if this filesystem was last used on a pre-v3.12 kernel
3461 * and was not cleanly unmounted. The odds of that are quite
3462 * slim, and it's a pain to do the truncate now, so just delete
3465 * It's also possible that this orphan item was supposed to be
3466 * deleted but wasn't. The inode number may have been reused,
3467 * but either way, we can delete the orphan item.
3469 if (ret == -ENOENT || inode->i_nlink) {
3472 trans = btrfs_start_transaction(root, 1);
3473 if (IS_ERR(trans)) {
3474 ret = PTR_ERR(trans);
3477 btrfs_debug(fs_info, "auto deleting %Lu",
3478 found_key.objectid);
3479 ret = btrfs_del_orphan_item(trans, root,
3480 found_key.objectid);
3481 btrfs_end_transaction(trans);
3489 /* this will do delete_inode and everything for us */
3494 /* release the path since we're done with it */
3495 btrfs_release_path(path);
3497 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3499 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3500 trans = btrfs_join_transaction(root);
3502 btrfs_end_transaction(trans);
3506 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3510 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3511 btrfs_free_path(path);
3516 * very simple check to peek ahead in the leaf looking for xattrs. If we
3517 * don't find any xattrs, we know there can't be any acls.
3519 * slot is the slot the inode is in, objectid is the objectid of the inode
3521 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3522 int slot, u64 objectid,
3523 int *first_xattr_slot)
3525 u32 nritems = btrfs_header_nritems(leaf);
3526 struct btrfs_key found_key;
3527 static u64 xattr_access = 0;
3528 static u64 xattr_default = 0;
3531 if (!xattr_access) {
3532 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3533 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3534 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3535 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3539 *first_xattr_slot = -1;
3540 while (slot < nritems) {
3541 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3543 /* we found a different objectid, there must not be acls */
3544 if (found_key.objectid != objectid)
3547 /* we found an xattr, assume we've got an acl */
3548 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3549 if (*first_xattr_slot == -1)
3550 *first_xattr_slot = slot;
3551 if (found_key.offset == xattr_access ||
3552 found_key.offset == xattr_default)
3557 * we found a key greater than an xattr key, there can't
3558 * be any acls later on
3560 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3567 * it goes inode, inode backrefs, xattrs, extents,
3568 * so if there are a ton of hard links to an inode there can
3569 * be a lot of backrefs. Don't waste time searching too hard,
3570 * this is just an optimization
3575 /* we hit the end of the leaf before we found an xattr or
3576 * something larger than an xattr. We have to assume the inode
3579 if (*first_xattr_slot == -1)
3580 *first_xattr_slot = slot;
3585 * read an inode from the btree into the in-memory inode
3587 static int btrfs_read_locked_inode(struct inode *inode)
3589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3590 struct btrfs_path *path;
3591 struct extent_buffer *leaf;
3592 struct btrfs_inode_item *inode_item;
3593 struct btrfs_root *root = BTRFS_I(inode)->root;
3594 struct btrfs_key location;
3599 bool filled = false;
3600 int first_xattr_slot;
3602 ret = btrfs_fill_inode(inode, &rdev);
3606 path = btrfs_alloc_path();
3610 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3612 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3614 btrfs_free_path(path);
3618 leaf = path->nodes[0];
3623 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3624 struct btrfs_inode_item);
3625 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3626 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3627 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3628 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3629 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3631 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3632 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3634 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3635 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3637 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3638 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3640 BTRFS_I(inode)->i_otime.tv_sec =
3641 btrfs_timespec_sec(leaf, &inode_item->otime);
3642 BTRFS_I(inode)->i_otime.tv_nsec =
3643 btrfs_timespec_nsec(leaf, &inode_item->otime);
3645 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3646 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3647 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3649 inode_set_iversion_queried(inode,
3650 btrfs_inode_sequence(leaf, inode_item));
3651 inode->i_generation = BTRFS_I(inode)->generation;
3653 rdev = btrfs_inode_rdev(leaf, inode_item);
3655 BTRFS_I(inode)->index_cnt = (u64)-1;
3656 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3660 * If we were modified in the current generation and evicted from memory
3661 * and then re-read we need to do a full sync since we don't have any
3662 * idea about which extents were modified before we were evicted from
3665 * This is required for both inode re-read from disk and delayed inode
3666 * in delayed_nodes_tree.
3668 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3669 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3670 &BTRFS_I(inode)->runtime_flags);
3673 * We don't persist the id of the transaction where an unlink operation
3674 * against the inode was last made. So here we assume the inode might
3675 * have been evicted, and therefore the exact value of last_unlink_trans
3676 * lost, and set it to last_trans to avoid metadata inconsistencies
3677 * between the inode and its parent if the inode is fsync'ed and the log
3678 * replayed. For example, in the scenario:
3681 * ln mydir/foo mydir/bar
3684 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3685 * xfs_io -c fsync mydir/foo
3687 * mount fs, triggers fsync log replay
3689 * We must make sure that when we fsync our inode foo we also log its
3690 * parent inode, otherwise after log replay the parent still has the
3691 * dentry with the "bar" name but our inode foo has a link count of 1
3692 * and doesn't have an inode ref with the name "bar" anymore.
3694 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3695 * but it guarantees correctness at the expense of occasional full
3696 * transaction commits on fsync if our inode is a directory, or if our
3697 * inode is not a directory, logging its parent unnecessarily.
3699 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3702 if (inode->i_nlink != 1 ||
3703 path->slots[0] >= btrfs_header_nritems(leaf))
3706 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3707 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3710 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3711 if (location.type == BTRFS_INODE_REF_KEY) {
3712 struct btrfs_inode_ref *ref;
3714 ref = (struct btrfs_inode_ref *)ptr;
3715 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3716 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3717 struct btrfs_inode_extref *extref;
3719 extref = (struct btrfs_inode_extref *)ptr;
3720 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3725 * try to precache a NULL acl entry for files that don't have
3726 * any xattrs or acls
3728 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3729 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3730 if (first_xattr_slot != -1) {
3731 path->slots[0] = first_xattr_slot;
3732 ret = btrfs_load_inode_props(inode, path);
3735 "error loading props for ino %llu (root %llu): %d",
3736 btrfs_ino(BTRFS_I(inode)),
3737 root->root_key.objectid, ret);
3739 btrfs_free_path(path);
3742 cache_no_acl(inode);
3744 switch (inode->i_mode & S_IFMT) {
3746 inode->i_mapping->a_ops = &btrfs_aops;
3747 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3748 inode->i_fop = &btrfs_file_operations;
3749 inode->i_op = &btrfs_file_inode_operations;
3752 inode->i_fop = &btrfs_dir_file_operations;
3753 inode->i_op = &btrfs_dir_inode_operations;
3756 inode->i_op = &btrfs_symlink_inode_operations;
3757 inode_nohighmem(inode);
3758 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3761 inode->i_op = &btrfs_special_inode_operations;
3762 init_special_inode(inode, inode->i_mode, rdev);
3766 btrfs_sync_inode_flags_to_i_flags(inode);
3771 * given a leaf and an inode, copy the inode fields into the leaf
3773 static void fill_inode_item(struct btrfs_trans_handle *trans,
3774 struct extent_buffer *leaf,
3775 struct btrfs_inode_item *item,
3776 struct inode *inode)
3778 struct btrfs_map_token token;
3780 btrfs_init_map_token(&token);
3782 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3783 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3784 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3786 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3787 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3789 btrfs_set_token_timespec_sec(leaf, &item->atime,
3790 inode->i_atime.tv_sec, &token);
3791 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3792 inode->i_atime.tv_nsec, &token);
3794 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3795 inode->i_mtime.tv_sec, &token);
3796 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3797 inode->i_mtime.tv_nsec, &token);
3799 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3800 inode->i_ctime.tv_sec, &token);
3801 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3802 inode->i_ctime.tv_nsec, &token);
3804 btrfs_set_token_timespec_sec(leaf, &item->otime,
3805 BTRFS_I(inode)->i_otime.tv_sec, &token);
3806 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3807 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3809 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3811 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3813 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3815 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3816 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3817 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3818 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3822 * copy everything in the in-memory inode into the btree.
3824 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3825 struct btrfs_root *root, struct inode *inode)
3827 struct btrfs_inode_item *inode_item;
3828 struct btrfs_path *path;
3829 struct extent_buffer *leaf;
3832 path = btrfs_alloc_path();
3836 path->leave_spinning = 1;
3837 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3845 leaf = path->nodes[0];
3846 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3847 struct btrfs_inode_item);
3849 fill_inode_item(trans, leaf, inode_item, inode);
3850 btrfs_mark_buffer_dirty(leaf);
3851 btrfs_set_inode_last_trans(trans, inode);
3854 btrfs_free_path(path);
3859 * copy everything in the in-memory inode into the btree.
3861 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3862 struct btrfs_root *root, struct inode *inode)
3864 struct btrfs_fs_info *fs_info = root->fs_info;
3868 * If the inode is a free space inode, we can deadlock during commit
3869 * if we put it into the delayed code.
3871 * The data relocation inode should also be directly updated
3874 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3875 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3876 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3877 btrfs_update_root_times(trans, root);
3879 ret = btrfs_delayed_update_inode(trans, root, inode);
3881 btrfs_set_inode_last_trans(trans, inode);
3885 return btrfs_update_inode_item(trans, root, inode);
3888 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3889 struct btrfs_root *root,
3890 struct inode *inode)
3894 ret = btrfs_update_inode(trans, root, inode);
3896 return btrfs_update_inode_item(trans, root, inode);
3901 * unlink helper that gets used here in inode.c and in the tree logging
3902 * recovery code. It remove a link in a directory with a given name, and
3903 * also drops the back refs in the inode to the directory
3905 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3906 struct btrfs_root *root,
3907 struct btrfs_inode *dir,
3908 struct btrfs_inode *inode,
3909 const char *name, int name_len)
3911 struct btrfs_fs_info *fs_info = root->fs_info;
3912 struct btrfs_path *path;
3914 struct extent_buffer *leaf;
3915 struct btrfs_dir_item *di;
3916 struct btrfs_key key;
3918 u64 ino = btrfs_ino(inode);
3919 u64 dir_ino = btrfs_ino(dir);
3921 path = btrfs_alloc_path();
3927 path->leave_spinning = 1;
3928 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3929 name, name_len, -1);
3938 leaf = path->nodes[0];
3939 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3940 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3943 btrfs_release_path(path);
3946 * If we don't have dir index, we have to get it by looking up
3947 * the inode ref, since we get the inode ref, remove it directly,
3948 * it is unnecessary to do delayed deletion.
3950 * But if we have dir index, needn't search inode ref to get it.
3951 * Since the inode ref is close to the inode item, it is better
3952 * that we delay to delete it, and just do this deletion when
3953 * we update the inode item.
3955 if (inode->dir_index) {
3956 ret = btrfs_delayed_delete_inode_ref(inode);
3958 index = inode->dir_index;
3963 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3967 "failed to delete reference to %.*s, inode %llu parent %llu",
3968 name_len, name, ino, dir_ino);
3969 btrfs_abort_transaction(trans, ret);
3973 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3975 btrfs_abort_transaction(trans, ret);
3979 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3981 if (ret != 0 && ret != -ENOENT) {
3982 btrfs_abort_transaction(trans, ret);
3986 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3991 btrfs_abort_transaction(trans, ret);
3993 btrfs_free_path(path);
3997 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3998 inode_inc_iversion(&inode->vfs_inode);
3999 inode_inc_iversion(&dir->vfs_inode);
4000 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4001 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4002 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4007 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4008 struct btrfs_root *root,
4009 struct btrfs_inode *dir, struct btrfs_inode *inode,
4010 const char *name, int name_len)
4013 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4015 drop_nlink(&inode->vfs_inode);
4016 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4022 * helper to start transaction for unlink and rmdir.
4024 * unlink and rmdir are special in btrfs, they do not always free space, so
4025 * if we cannot make our reservations the normal way try and see if there is
4026 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4027 * allow the unlink to occur.
4029 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4031 struct btrfs_root *root = BTRFS_I(dir)->root;
4034 * 1 for the possible orphan item
4035 * 1 for the dir item
4036 * 1 for the dir index
4037 * 1 for the inode ref
4040 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4043 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4045 struct btrfs_root *root = BTRFS_I(dir)->root;
4046 struct btrfs_trans_handle *trans;
4047 struct inode *inode = d_inode(dentry);
4050 trans = __unlink_start_trans(dir);
4052 return PTR_ERR(trans);
4054 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4057 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4058 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4059 dentry->d_name.len);
4063 if (inode->i_nlink == 0) {
4064 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4070 btrfs_end_transaction(trans);
4071 btrfs_btree_balance_dirty(root->fs_info);
4075 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4076 struct inode *dir, u64 objectid,
4077 const char *name, int name_len)
4079 struct btrfs_root *root = BTRFS_I(dir)->root;
4080 struct btrfs_path *path;
4081 struct extent_buffer *leaf;
4082 struct btrfs_dir_item *di;
4083 struct btrfs_key key;
4086 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4088 path = btrfs_alloc_path();
4092 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4093 name, name_len, -1);
4094 if (IS_ERR_OR_NULL(di)) {
4102 leaf = path->nodes[0];
4103 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4104 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4105 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4107 btrfs_abort_transaction(trans, ret);
4110 btrfs_release_path(path);
4112 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4113 dir_ino, &index, name, name_len);
4115 if (ret != -ENOENT) {
4116 btrfs_abort_transaction(trans, ret);
4119 di = btrfs_search_dir_index_item(root, path, dir_ino,
4121 if (IS_ERR_OR_NULL(di)) {
4126 btrfs_abort_transaction(trans, ret);
4130 leaf = path->nodes[0];
4131 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4134 btrfs_release_path(path);
4136 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4138 btrfs_abort_transaction(trans, ret);
4142 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4143 inode_inc_iversion(dir);
4144 dir->i_mtime = dir->i_ctime = current_time(dir);
4145 ret = btrfs_update_inode_fallback(trans, root, dir);
4147 btrfs_abort_transaction(trans, ret);
4149 btrfs_free_path(path);
4154 * Helper to check if the subvolume references other subvolumes or if it's
4157 static noinline int may_destroy_subvol(struct btrfs_root *root)
4159 struct btrfs_fs_info *fs_info = root->fs_info;
4160 struct btrfs_path *path;
4161 struct btrfs_dir_item *di;
4162 struct btrfs_key key;
4166 path = btrfs_alloc_path();
4170 /* Make sure this root isn't set as the default subvol */
4171 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4172 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4173 dir_id, "default", 7, 0);
4174 if (di && !IS_ERR(di)) {
4175 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4176 if (key.objectid == root->root_key.objectid) {
4179 "deleting default subvolume %llu is not allowed",
4183 btrfs_release_path(path);
4186 key.objectid = root->root_key.objectid;
4187 key.type = BTRFS_ROOT_REF_KEY;
4188 key.offset = (u64)-1;
4190 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4196 if (path->slots[0] > 0) {
4198 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4199 if (key.objectid == root->root_key.objectid &&
4200 key.type == BTRFS_ROOT_REF_KEY)
4204 btrfs_free_path(path);
4208 /* Delete all dentries for inodes belonging to the root */
4209 static void btrfs_prune_dentries(struct btrfs_root *root)
4211 struct btrfs_fs_info *fs_info = root->fs_info;
4212 struct rb_node *node;
4213 struct rb_node *prev;
4214 struct btrfs_inode *entry;
4215 struct inode *inode;
4218 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4219 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4221 spin_lock(&root->inode_lock);
4223 node = root->inode_tree.rb_node;
4227 entry = rb_entry(node, struct btrfs_inode, rb_node);
4229 if (objectid < btrfs_ino(entry))
4230 node = node->rb_left;
4231 else if (objectid > btrfs_ino(entry))
4232 node = node->rb_right;
4238 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4239 if (objectid <= btrfs_ino(entry)) {
4243 prev = rb_next(prev);
4247 entry = rb_entry(node, struct btrfs_inode, rb_node);
4248 objectid = btrfs_ino(entry) + 1;
4249 inode = igrab(&entry->vfs_inode);
4251 spin_unlock(&root->inode_lock);
4252 if (atomic_read(&inode->i_count) > 1)
4253 d_prune_aliases(inode);
4255 * btrfs_drop_inode will have it removed from the inode
4256 * cache when its usage count hits zero.
4260 spin_lock(&root->inode_lock);
4264 if (cond_resched_lock(&root->inode_lock))
4267 node = rb_next(node);
4269 spin_unlock(&root->inode_lock);
4272 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4274 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4275 struct btrfs_root *root = BTRFS_I(dir)->root;
4276 struct inode *inode = d_inode(dentry);
4277 struct btrfs_root *dest = BTRFS_I(inode)->root;
4278 struct btrfs_trans_handle *trans;
4279 struct btrfs_block_rsv block_rsv;
4285 * Don't allow to delete a subvolume with send in progress. This is
4286 * inside the inode lock so the error handling that has to drop the bit
4287 * again is not run concurrently.
4289 spin_lock(&dest->root_item_lock);
4290 root_flags = btrfs_root_flags(&dest->root_item);
4291 if (dest->send_in_progress == 0) {
4292 btrfs_set_root_flags(&dest->root_item,
4293 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4294 spin_unlock(&dest->root_item_lock);
4296 spin_unlock(&dest->root_item_lock);
4298 "attempt to delete subvolume %llu during send",
4299 dest->root_key.objectid);
4303 down_write(&fs_info->subvol_sem);
4305 err = may_destroy_subvol(dest);
4309 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4311 * One for dir inode,
4312 * two for dir entries,
4313 * two for root ref/backref.
4315 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4319 trans = btrfs_start_transaction(root, 0);
4320 if (IS_ERR(trans)) {
4321 err = PTR_ERR(trans);
4324 trans->block_rsv = &block_rsv;
4325 trans->bytes_reserved = block_rsv.size;
4327 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4329 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4330 dentry->d_name.name, dentry->d_name.len);
4333 btrfs_abort_transaction(trans, ret);
4337 btrfs_record_root_in_trans(trans, dest);
4339 memset(&dest->root_item.drop_progress, 0,
4340 sizeof(dest->root_item.drop_progress));
4341 dest->root_item.drop_level = 0;
4342 btrfs_set_root_refs(&dest->root_item, 0);
4344 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4345 ret = btrfs_insert_orphan_item(trans,
4347 dest->root_key.objectid);
4349 btrfs_abort_transaction(trans, ret);
4355 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4356 BTRFS_UUID_KEY_SUBVOL,
4357 dest->root_key.objectid);
4358 if (ret && ret != -ENOENT) {
4359 btrfs_abort_transaction(trans, ret);
4363 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4364 ret = btrfs_uuid_tree_remove(trans,
4365 dest->root_item.received_uuid,
4366 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4367 dest->root_key.objectid);
4368 if (ret && ret != -ENOENT) {
4369 btrfs_abort_transaction(trans, ret);
4376 trans->block_rsv = NULL;
4377 trans->bytes_reserved = 0;
4378 ret = btrfs_end_transaction(trans);
4381 inode->i_flags |= S_DEAD;
4383 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4385 up_write(&fs_info->subvol_sem);
4387 spin_lock(&dest->root_item_lock);
4388 root_flags = btrfs_root_flags(&dest->root_item);
4389 btrfs_set_root_flags(&dest->root_item,
4390 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4391 spin_unlock(&dest->root_item_lock);
4393 d_invalidate(dentry);
4394 btrfs_prune_dentries(dest);
4395 ASSERT(dest->send_in_progress == 0);
4398 if (dest->ino_cache_inode) {
4399 iput(dest->ino_cache_inode);
4400 dest->ino_cache_inode = NULL;
4407 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4409 struct inode *inode = d_inode(dentry);
4411 struct btrfs_root *root = BTRFS_I(dir)->root;
4412 struct btrfs_trans_handle *trans;
4413 u64 last_unlink_trans;
4415 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4417 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4418 return btrfs_delete_subvolume(dir, dentry);
4420 trans = __unlink_start_trans(dir);
4422 return PTR_ERR(trans);
4424 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4425 err = btrfs_unlink_subvol(trans, dir,
4426 BTRFS_I(inode)->location.objectid,
4427 dentry->d_name.name,
4428 dentry->d_name.len);
4432 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4436 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4438 /* now the directory is empty */
4439 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4440 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4441 dentry->d_name.len);
4443 btrfs_i_size_write(BTRFS_I(inode), 0);
4445 * Propagate the last_unlink_trans value of the deleted dir to
4446 * its parent directory. This is to prevent an unrecoverable
4447 * log tree in the case we do something like this:
4449 * 2) create snapshot under dir foo
4450 * 3) delete the snapshot
4453 * 6) fsync foo or some file inside foo
4455 if (last_unlink_trans >= trans->transid)
4456 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4459 btrfs_end_transaction(trans);
4460 btrfs_btree_balance_dirty(root->fs_info);
4465 static int truncate_space_check(struct btrfs_trans_handle *trans,
4466 struct btrfs_root *root,
4469 struct btrfs_fs_info *fs_info = root->fs_info;
4473 * This is only used to apply pressure to the enospc system, we don't
4474 * intend to use this reservation at all.
4476 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4477 bytes_deleted *= fs_info->nodesize;
4478 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4479 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4481 trace_btrfs_space_reservation(fs_info, "transaction",
4484 trans->bytes_reserved += bytes_deleted;
4491 * Return this if we need to call truncate_block for the last bit of the
4494 #define NEED_TRUNCATE_BLOCK 1
4497 * this can truncate away extent items, csum items and directory items.
4498 * It starts at a high offset and removes keys until it can't find
4499 * any higher than new_size
4501 * csum items that cross the new i_size are truncated to the new size
4504 * min_type is the minimum key type to truncate down to. If set to 0, this
4505 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4507 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4508 struct btrfs_root *root,
4509 struct inode *inode,
4510 u64 new_size, u32 min_type)
4512 struct btrfs_fs_info *fs_info = root->fs_info;
4513 struct btrfs_path *path;
4514 struct extent_buffer *leaf;
4515 struct btrfs_file_extent_item *fi;
4516 struct btrfs_key key;
4517 struct btrfs_key found_key;
4518 u64 extent_start = 0;
4519 u64 extent_num_bytes = 0;
4520 u64 extent_offset = 0;
4522 u64 last_size = new_size;
4523 u32 found_type = (u8)-1;
4526 int pending_del_nr = 0;
4527 int pending_del_slot = 0;
4528 int extent_type = -1;
4530 u64 ino = btrfs_ino(BTRFS_I(inode));
4531 u64 bytes_deleted = 0;
4532 bool be_nice = false;
4533 bool should_throttle = false;
4534 bool should_end = false;
4536 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4539 * for non-free space inodes and ref cows, we want to back off from
4542 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4543 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4546 path = btrfs_alloc_path();
4549 path->reada = READA_BACK;
4552 * We want to drop from the next block forward in case this new size is
4553 * not block aligned since we will be keeping the last block of the
4554 * extent just the way it is.
4556 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4557 root == fs_info->tree_root)
4558 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4559 fs_info->sectorsize),
4563 * This function is also used to drop the items in the log tree before
4564 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4565 * it is used to drop the loged items. So we shouldn't kill the delayed
4568 if (min_type == 0 && root == BTRFS_I(inode)->root)
4569 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4572 key.offset = (u64)-1;
4577 * with a 16K leaf size and 128MB extents, you can actually queue
4578 * up a huge file in a single leaf. Most of the time that
4579 * bytes_deleted is > 0, it will be huge by the time we get here
4581 if (be_nice && bytes_deleted > SZ_32M &&
4582 btrfs_should_end_transaction(trans)) {
4587 path->leave_spinning = 1;
4588 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4594 /* there are no items in the tree for us to truncate, we're
4597 if (path->slots[0] == 0)
4604 leaf = path->nodes[0];
4605 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4606 found_type = found_key.type;
4608 if (found_key.objectid != ino)
4611 if (found_type < min_type)
4614 item_end = found_key.offset;
4615 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4616 fi = btrfs_item_ptr(leaf, path->slots[0],
4617 struct btrfs_file_extent_item);
4618 extent_type = btrfs_file_extent_type(leaf, fi);
4619 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4621 btrfs_file_extent_num_bytes(leaf, fi);
4623 trace_btrfs_truncate_show_fi_regular(
4624 BTRFS_I(inode), leaf, fi,
4626 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4627 item_end += btrfs_file_extent_ram_bytes(leaf,
4630 trace_btrfs_truncate_show_fi_inline(
4631 BTRFS_I(inode), leaf, fi, path->slots[0],
4636 if (found_type > min_type) {
4639 if (item_end < new_size)
4641 if (found_key.offset >= new_size)
4647 /* FIXME, shrink the extent if the ref count is only 1 */
4648 if (found_type != BTRFS_EXTENT_DATA_KEY)
4651 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4653 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4655 u64 orig_num_bytes =
4656 btrfs_file_extent_num_bytes(leaf, fi);
4657 extent_num_bytes = ALIGN(new_size -
4659 fs_info->sectorsize);
4660 btrfs_set_file_extent_num_bytes(leaf, fi,
4662 num_dec = (orig_num_bytes -
4664 if (test_bit(BTRFS_ROOT_REF_COWS,
4667 inode_sub_bytes(inode, num_dec);
4668 btrfs_mark_buffer_dirty(leaf);
4671 btrfs_file_extent_disk_num_bytes(leaf,
4673 extent_offset = found_key.offset -
4674 btrfs_file_extent_offset(leaf, fi);
4676 /* FIXME blocksize != 4096 */
4677 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4678 if (extent_start != 0) {
4680 if (test_bit(BTRFS_ROOT_REF_COWS,
4682 inode_sub_bytes(inode, num_dec);
4685 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4687 * we can't truncate inline items that have had
4691 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4692 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4693 btrfs_file_extent_compression(leaf, fi) == 0) {
4694 u32 size = (u32)(new_size - found_key.offset);
4696 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4697 size = btrfs_file_extent_calc_inline_size(size);
4698 btrfs_truncate_item(root->fs_info, path, size, 1);
4699 } else if (!del_item) {
4701 * We have to bail so the last_size is set to
4702 * just before this extent.
4704 ret = NEED_TRUNCATE_BLOCK;
4708 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4709 inode_sub_bytes(inode, item_end + 1 - new_size);
4713 last_size = found_key.offset;
4715 last_size = new_size;
4717 if (!pending_del_nr) {
4718 /* no pending yet, add ourselves */
4719 pending_del_slot = path->slots[0];
4721 } else if (pending_del_nr &&
4722 path->slots[0] + 1 == pending_del_slot) {
4723 /* hop on the pending chunk */
4725 pending_del_slot = path->slots[0];
4732 should_throttle = false;
4735 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4736 root == fs_info->tree_root)) {
4737 btrfs_set_path_blocking(path);
4738 bytes_deleted += extent_num_bytes;
4739 ret = btrfs_free_extent(trans, root, extent_start,
4740 extent_num_bytes, 0,
4741 btrfs_header_owner(leaf),
4742 ino, extent_offset);
4744 btrfs_abort_transaction(trans, ret);
4747 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4748 btrfs_async_run_delayed_refs(fs_info,
4749 trans->delayed_ref_updates * 2,
4752 if (truncate_space_check(trans, root,
4753 extent_num_bytes)) {
4756 if (btrfs_should_throttle_delayed_refs(trans,
4758 should_throttle = true;
4762 if (found_type == BTRFS_INODE_ITEM_KEY)
4765 if (path->slots[0] == 0 ||
4766 path->slots[0] != pending_del_slot ||
4767 should_throttle || should_end) {
4768 if (pending_del_nr) {
4769 ret = btrfs_del_items(trans, root, path,
4773 btrfs_abort_transaction(trans, ret);
4778 btrfs_release_path(path);
4779 if (should_throttle) {
4780 unsigned long updates = trans->delayed_ref_updates;
4782 trans->delayed_ref_updates = 0;
4783 ret = btrfs_run_delayed_refs(trans,
4790 * if we failed to refill our space rsv, bail out
4791 * and let the transaction restart
4803 if (ret >= 0 && pending_del_nr) {
4806 err = btrfs_del_items(trans, root, path, pending_del_slot,
4809 btrfs_abort_transaction(trans, err);
4813 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4814 ASSERT(last_size >= new_size);
4815 if (!ret && last_size > new_size)
4816 last_size = new_size;
4817 btrfs_ordered_update_i_size(inode, last_size, NULL);
4820 btrfs_free_path(path);
4822 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4823 unsigned long updates = trans->delayed_ref_updates;
4827 trans->delayed_ref_updates = 0;
4828 err = btrfs_run_delayed_refs(trans, updates * 2);
4837 * btrfs_truncate_block - read, zero a chunk and write a block
4838 * @inode - inode that we're zeroing
4839 * @from - the offset to start zeroing
4840 * @len - the length to zero, 0 to zero the entire range respective to the
4842 * @front - zero up to the offset instead of from the offset on
4844 * This will find the block for the "from" offset and cow the block and zero the
4845 * part we want to zero. This is used with truncate and hole punching.
4847 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4850 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4851 struct address_space *mapping = inode->i_mapping;
4852 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4853 struct btrfs_ordered_extent *ordered;
4854 struct extent_state *cached_state = NULL;
4855 struct extent_changeset *data_reserved = NULL;
4857 u32 blocksize = fs_info->sectorsize;
4858 pgoff_t index = from >> PAGE_SHIFT;
4859 unsigned offset = from & (blocksize - 1);
4861 gfp_t mask = btrfs_alloc_write_mask(mapping);
4866 if (IS_ALIGNED(offset, blocksize) &&
4867 (!len || IS_ALIGNED(len, blocksize)))
4870 block_start = round_down(from, blocksize);
4871 block_end = block_start + blocksize - 1;
4873 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4874 block_start, blocksize);
4879 page = find_or_create_page(mapping, index, mask);
4881 btrfs_delalloc_release_space(inode, data_reserved,
4882 block_start, blocksize, true);
4883 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4888 if (!PageUptodate(page)) {
4889 ret = btrfs_readpage(NULL, page);
4891 if (page->mapping != mapping) {
4896 if (!PageUptodate(page)) {
4901 wait_on_page_writeback(page);
4903 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4904 set_page_extent_mapped(page);
4906 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4908 unlock_extent_cached(io_tree, block_start, block_end,
4912 btrfs_start_ordered_extent(inode, ordered, 1);
4913 btrfs_put_ordered_extent(ordered);
4917 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4918 EXTENT_DIRTY | EXTENT_DELALLOC |
4919 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4920 0, 0, &cached_state);
4922 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4925 unlock_extent_cached(io_tree, block_start, block_end,
4930 if (offset != blocksize) {
4932 len = blocksize - offset;
4935 memset(kaddr + (block_start - page_offset(page)),
4938 memset(kaddr + (block_start - page_offset(page)) + offset,
4940 flush_dcache_page(page);
4943 ClearPageChecked(page);
4944 set_page_dirty(page);
4945 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4949 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4951 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4955 extent_changeset_free(data_reserved);
4959 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4960 u64 offset, u64 len)
4962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4963 struct btrfs_trans_handle *trans;
4967 * Still need to make sure the inode looks like it's been updated so
4968 * that any holes get logged if we fsync.
4970 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4971 BTRFS_I(inode)->last_trans = fs_info->generation;
4972 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4973 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4978 * 1 - for the one we're dropping
4979 * 1 - for the one we're adding
4980 * 1 - for updating the inode.
4982 trans = btrfs_start_transaction(root, 3);
4984 return PTR_ERR(trans);
4986 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4988 btrfs_abort_transaction(trans, ret);
4989 btrfs_end_transaction(trans);
4993 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4994 offset, 0, 0, len, 0, len, 0, 0, 0);
4996 btrfs_abort_transaction(trans, ret);
4998 btrfs_update_inode(trans, root, inode);
4999 btrfs_end_transaction(trans);
5004 * This function puts in dummy file extents for the area we're creating a hole
5005 * for. So if we are truncating this file to a larger size we need to insert
5006 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5007 * the range between oldsize and size
5009 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5011 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5012 struct btrfs_root *root = BTRFS_I(inode)->root;
5013 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5014 struct extent_map *em = NULL;
5015 struct extent_state *cached_state = NULL;
5016 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5017 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5018 u64 block_end = ALIGN(size, fs_info->sectorsize);
5025 * If our size started in the middle of a block we need to zero out the
5026 * rest of the block before we expand the i_size, otherwise we could
5027 * expose stale data.
5029 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5033 if (size <= hole_start)
5037 struct btrfs_ordered_extent *ordered;
5039 lock_extent_bits(io_tree, hole_start, block_end - 1,
5041 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5042 block_end - hole_start);
5045 unlock_extent_cached(io_tree, hole_start, block_end - 1,
5047 btrfs_start_ordered_extent(inode, ordered, 1);
5048 btrfs_put_ordered_extent(ordered);
5051 cur_offset = hole_start;
5053 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5054 block_end - cur_offset, 0);
5060 last_byte = min(extent_map_end(em), block_end);
5061 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5062 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5063 struct extent_map *hole_em;
5064 hole_size = last_byte - cur_offset;
5066 err = maybe_insert_hole(root, inode, cur_offset,
5070 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5071 cur_offset + hole_size - 1, 0);
5072 hole_em = alloc_extent_map();
5074 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5075 &BTRFS_I(inode)->runtime_flags);
5078 hole_em->start = cur_offset;
5079 hole_em->len = hole_size;
5080 hole_em->orig_start = cur_offset;
5082 hole_em->block_start = EXTENT_MAP_HOLE;
5083 hole_em->block_len = 0;
5084 hole_em->orig_block_len = 0;
5085 hole_em->ram_bytes = hole_size;
5086 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5087 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5088 hole_em->generation = fs_info->generation;
5091 write_lock(&em_tree->lock);
5092 err = add_extent_mapping(em_tree, hole_em, 1);
5093 write_unlock(&em_tree->lock);
5096 btrfs_drop_extent_cache(BTRFS_I(inode),
5101 free_extent_map(hole_em);
5104 free_extent_map(em);
5106 cur_offset = last_byte;
5107 if (cur_offset >= block_end)
5110 free_extent_map(em);
5111 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5115 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5117 struct btrfs_root *root = BTRFS_I(inode)->root;
5118 struct btrfs_trans_handle *trans;
5119 loff_t oldsize = i_size_read(inode);
5120 loff_t newsize = attr->ia_size;
5121 int mask = attr->ia_valid;
5125 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5126 * special case where we need to update the times despite not having
5127 * these flags set. For all other operations the VFS set these flags
5128 * explicitly if it wants a timestamp update.
5130 if (newsize != oldsize) {
5131 inode_inc_iversion(inode);
5132 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5133 inode->i_ctime = inode->i_mtime =
5134 current_time(inode);
5137 if (newsize > oldsize) {
5139 * Don't do an expanding truncate while snapshotting is ongoing.
5140 * This is to ensure the snapshot captures a fully consistent
5141 * state of this file - if the snapshot captures this expanding
5142 * truncation, it must capture all writes that happened before
5145 btrfs_wait_for_snapshot_creation(root);
5146 ret = btrfs_cont_expand(inode, oldsize, newsize);
5148 btrfs_end_write_no_snapshotting(root);
5152 trans = btrfs_start_transaction(root, 1);
5153 if (IS_ERR(trans)) {
5154 btrfs_end_write_no_snapshotting(root);
5155 return PTR_ERR(trans);
5158 i_size_write(inode, newsize);
5159 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5160 pagecache_isize_extended(inode, oldsize, newsize);
5161 ret = btrfs_update_inode(trans, root, inode);
5162 btrfs_end_write_no_snapshotting(root);
5163 btrfs_end_transaction(trans);
5167 * We're truncating a file that used to have good data down to
5168 * zero. Make sure it gets into the ordered flush list so that
5169 * any new writes get down to disk quickly.
5172 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5173 &BTRFS_I(inode)->runtime_flags);
5175 truncate_setsize(inode, newsize);
5177 /* Disable nonlocked read DIO to avoid the end less truncate */
5178 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5179 inode_dio_wait(inode);
5180 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5182 ret = btrfs_truncate(inode, newsize == oldsize);
5183 if (ret && inode->i_nlink) {
5187 * Truncate failed, so fix up the in-memory size. We
5188 * adjusted disk_i_size down as we removed extents, so
5189 * wait for disk_i_size to be stable and then update the
5190 * in-memory size to match.
5192 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5195 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5202 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5204 struct inode *inode = d_inode(dentry);
5205 struct btrfs_root *root = BTRFS_I(inode)->root;
5208 if (btrfs_root_readonly(root))
5211 err = setattr_prepare(dentry, attr);
5215 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5216 err = btrfs_setsize(inode, attr);
5221 if (attr->ia_valid) {
5222 setattr_copy(inode, attr);
5223 inode_inc_iversion(inode);
5224 err = btrfs_dirty_inode(inode);
5226 if (!err && attr->ia_valid & ATTR_MODE)
5227 err = posix_acl_chmod(inode, inode->i_mode);
5234 * While truncating the inode pages during eviction, we get the VFS calling
5235 * btrfs_invalidatepage() against each page of the inode. This is slow because
5236 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5237 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5238 * extent_state structures over and over, wasting lots of time.
5240 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5241 * those expensive operations on a per page basis and do only the ordered io
5242 * finishing, while we release here the extent_map and extent_state structures,
5243 * without the excessive merging and splitting.
5245 static void evict_inode_truncate_pages(struct inode *inode)
5247 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5248 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5249 struct rb_node *node;
5251 ASSERT(inode->i_state & I_FREEING);
5252 truncate_inode_pages_final(&inode->i_data);
5254 write_lock(&map_tree->lock);
5255 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5256 struct extent_map *em;
5258 node = rb_first(&map_tree->map);
5259 em = rb_entry(node, struct extent_map, rb_node);
5260 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5261 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5262 remove_extent_mapping(map_tree, em);
5263 free_extent_map(em);
5264 if (need_resched()) {
5265 write_unlock(&map_tree->lock);
5267 write_lock(&map_tree->lock);
5270 write_unlock(&map_tree->lock);
5273 * Keep looping until we have no more ranges in the io tree.
5274 * We can have ongoing bios started by readpages (called from readahead)
5275 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5276 * still in progress (unlocked the pages in the bio but did not yet
5277 * unlocked the ranges in the io tree). Therefore this means some
5278 * ranges can still be locked and eviction started because before
5279 * submitting those bios, which are executed by a separate task (work
5280 * queue kthread), inode references (inode->i_count) were not taken
5281 * (which would be dropped in the end io callback of each bio).
5282 * Therefore here we effectively end up waiting for those bios and
5283 * anyone else holding locked ranges without having bumped the inode's
5284 * reference count - if we don't do it, when they access the inode's
5285 * io_tree to unlock a range it may be too late, leading to an
5286 * use-after-free issue.
5288 spin_lock(&io_tree->lock);
5289 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5290 struct extent_state *state;
5291 struct extent_state *cached_state = NULL;
5295 node = rb_first(&io_tree->state);
5296 state = rb_entry(node, struct extent_state, rb_node);
5297 start = state->start;
5299 spin_unlock(&io_tree->lock);
5301 lock_extent_bits(io_tree, start, end, &cached_state);
5304 * If still has DELALLOC flag, the extent didn't reach disk,
5305 * and its reserved space won't be freed by delayed_ref.
5306 * So we need to free its reserved space here.
5307 * (Refer to comment in btrfs_invalidatepage, case 2)
5309 * Note, end is the bytenr of last byte, so we need + 1 here.
5311 if (state->state & EXTENT_DELALLOC)
5312 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5314 clear_extent_bit(io_tree, start, end,
5315 EXTENT_LOCKED | EXTENT_DIRTY |
5316 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5317 EXTENT_DEFRAG, 1, 1, &cached_state);
5320 spin_lock(&io_tree->lock);
5322 spin_unlock(&io_tree->lock);
5325 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5326 struct btrfs_block_rsv *rsv,
5329 struct btrfs_fs_info *fs_info = root->fs_info;
5330 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5334 struct btrfs_trans_handle *trans;
5337 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5338 BTRFS_RESERVE_FLUSH_LIMIT);
5340 if (ret && ++failures > 2) {
5342 "could not allocate space for a delete; will truncate on mount");
5343 return ERR_PTR(-ENOSPC);
5346 trans = btrfs_join_transaction(root);
5347 if (IS_ERR(trans) || !ret)
5351 * Try to steal from the global reserve if there is space for
5354 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5355 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5358 /* If not, commit and try again. */
5359 ret = btrfs_commit_transaction(trans);
5361 return ERR_PTR(ret);
5365 void btrfs_evict_inode(struct inode *inode)
5367 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5368 struct btrfs_trans_handle *trans;
5369 struct btrfs_root *root = BTRFS_I(inode)->root;
5370 struct btrfs_block_rsv *rsv;
5374 trace_btrfs_inode_evict(inode);
5381 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5383 evict_inode_truncate_pages(inode);
5385 if (inode->i_nlink &&
5386 ((btrfs_root_refs(&root->root_item) != 0 &&
5387 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5388 btrfs_is_free_space_inode(BTRFS_I(inode))))
5391 if (is_bad_inode(inode))
5393 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5394 if (!special_file(inode->i_mode))
5395 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5397 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5399 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5402 if (inode->i_nlink > 0) {
5403 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5404 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5408 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5412 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5415 rsv->size = min_size;
5418 btrfs_i_size_write(BTRFS_I(inode), 0);
5421 trans = evict_refill_and_join(root, rsv, min_size);
5425 trans->block_rsv = rsv;
5427 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5428 trans->block_rsv = &fs_info->trans_block_rsv;
5429 btrfs_end_transaction(trans);
5430 btrfs_btree_balance_dirty(fs_info);
5431 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5438 * Errors here aren't a big deal, it just means we leave orphan items in
5439 * the tree. They will be cleaned up on the next mount. If the inode
5440 * number gets reused, cleanup deletes the orphan item without doing
5441 * anything, and unlink reuses the existing orphan item.
5443 * If it turns out that we are dropping too many of these, we might want
5444 * to add a mechanism for retrying these after a commit.
5446 trans = evict_refill_and_join(root, rsv, min_size);
5447 if (!IS_ERR(trans)) {
5448 trans->block_rsv = rsv;
5449 btrfs_orphan_del(trans, BTRFS_I(inode));
5450 trans->block_rsv = &fs_info->trans_block_rsv;
5451 btrfs_end_transaction(trans);
5454 if (!(root == fs_info->tree_root ||
5455 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5456 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5459 btrfs_free_block_rsv(fs_info, rsv);
5462 * If we didn't successfully delete, the orphan item will still be in
5463 * the tree and we'll retry on the next mount. Again, we might also want
5464 * to retry these periodically in the future.
5466 btrfs_remove_delayed_node(BTRFS_I(inode));
5471 * this returns the key found in the dir entry in the location pointer.
5472 * If no dir entries were found, returns -ENOENT.
5473 * If found a corrupted location in dir entry, returns -EUCLEAN.
5475 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5476 struct btrfs_key *location)
5478 const char *name = dentry->d_name.name;
5479 int namelen = dentry->d_name.len;
5480 struct btrfs_dir_item *di;
5481 struct btrfs_path *path;
5482 struct btrfs_root *root = BTRFS_I(dir)->root;
5485 path = btrfs_alloc_path();
5489 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5500 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5501 if (location->type != BTRFS_INODE_ITEM_KEY &&
5502 location->type != BTRFS_ROOT_ITEM_KEY) {
5504 btrfs_warn(root->fs_info,
5505 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5506 __func__, name, btrfs_ino(BTRFS_I(dir)),
5507 location->objectid, location->type, location->offset);
5510 btrfs_free_path(path);
5515 * when we hit a tree root in a directory, the btrfs part of the inode
5516 * needs to be changed to reflect the root directory of the tree root. This
5517 * is kind of like crossing a mount point.
5519 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5521 struct dentry *dentry,
5522 struct btrfs_key *location,
5523 struct btrfs_root **sub_root)
5525 struct btrfs_path *path;
5526 struct btrfs_root *new_root;
5527 struct btrfs_root_ref *ref;
5528 struct extent_buffer *leaf;
5529 struct btrfs_key key;
5533 path = btrfs_alloc_path();
5540 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5541 key.type = BTRFS_ROOT_REF_KEY;
5542 key.offset = location->objectid;
5544 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5551 leaf = path->nodes[0];
5552 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5553 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5554 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5557 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5558 (unsigned long)(ref + 1),
5559 dentry->d_name.len);
5563 btrfs_release_path(path);
5565 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5566 if (IS_ERR(new_root)) {
5567 err = PTR_ERR(new_root);
5571 *sub_root = new_root;
5572 location->objectid = btrfs_root_dirid(&new_root->root_item);
5573 location->type = BTRFS_INODE_ITEM_KEY;
5574 location->offset = 0;
5577 btrfs_free_path(path);
5581 static void inode_tree_add(struct inode *inode)
5583 struct btrfs_root *root = BTRFS_I(inode)->root;
5584 struct btrfs_inode *entry;
5586 struct rb_node *parent;
5587 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5588 u64 ino = btrfs_ino(BTRFS_I(inode));
5590 if (inode_unhashed(inode))
5593 spin_lock(&root->inode_lock);
5594 p = &root->inode_tree.rb_node;
5597 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5599 if (ino < btrfs_ino(entry))
5600 p = &parent->rb_left;
5601 else if (ino > btrfs_ino(entry))
5602 p = &parent->rb_right;
5604 WARN_ON(!(entry->vfs_inode.i_state &
5605 (I_WILL_FREE | I_FREEING)));
5606 rb_replace_node(parent, new, &root->inode_tree);
5607 RB_CLEAR_NODE(parent);
5608 spin_unlock(&root->inode_lock);
5612 rb_link_node(new, parent, p);
5613 rb_insert_color(new, &root->inode_tree);
5614 spin_unlock(&root->inode_lock);
5617 static void inode_tree_del(struct inode *inode)
5619 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5620 struct btrfs_root *root = BTRFS_I(inode)->root;
5623 spin_lock(&root->inode_lock);
5624 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5625 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5626 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5627 empty = RB_EMPTY_ROOT(&root->inode_tree);
5629 spin_unlock(&root->inode_lock);
5631 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5632 synchronize_srcu(&fs_info->subvol_srcu);
5633 spin_lock(&root->inode_lock);
5634 empty = RB_EMPTY_ROOT(&root->inode_tree);
5635 spin_unlock(&root->inode_lock);
5637 btrfs_add_dead_root(root);
5642 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5644 struct btrfs_iget_args *args = p;
5645 inode->i_ino = args->location->objectid;
5646 memcpy(&BTRFS_I(inode)->location, args->location,
5647 sizeof(*args->location));
5648 BTRFS_I(inode)->root = args->root;
5652 static int btrfs_find_actor(struct inode *inode, void *opaque)
5654 struct btrfs_iget_args *args = opaque;
5655 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5656 args->root == BTRFS_I(inode)->root;
5659 static struct inode *btrfs_iget_locked(struct super_block *s,
5660 struct btrfs_key *location,
5661 struct btrfs_root *root)
5663 struct inode *inode;
5664 struct btrfs_iget_args args;
5665 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5667 args.location = location;
5670 inode = iget5_locked(s, hashval, btrfs_find_actor,
5671 btrfs_init_locked_inode,
5676 /* Get an inode object given its location and corresponding root.
5677 * Returns in *is_new if the inode was read from disk
5679 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5680 struct btrfs_root *root, int *new)
5682 struct inode *inode;
5684 inode = btrfs_iget_locked(s, location, root);
5686 return ERR_PTR(-ENOMEM);
5688 if (inode->i_state & I_NEW) {
5691 ret = btrfs_read_locked_inode(inode);
5693 inode_tree_add(inode);
5694 unlock_new_inode(inode);
5700 * ret > 0 can come from btrfs_search_slot called by
5701 * btrfs_read_locked_inode, this means the inode item
5706 inode = ERR_PTR(ret);
5713 static struct inode *new_simple_dir(struct super_block *s,
5714 struct btrfs_key *key,
5715 struct btrfs_root *root)
5717 struct inode *inode = new_inode(s);
5720 return ERR_PTR(-ENOMEM);
5722 BTRFS_I(inode)->root = root;
5723 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5724 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5726 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5727 inode->i_op = &btrfs_dir_ro_inode_operations;
5728 inode->i_opflags &= ~IOP_XATTR;
5729 inode->i_fop = &simple_dir_operations;
5730 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5731 inode->i_mtime = current_time(inode);
5732 inode->i_atime = inode->i_mtime;
5733 inode->i_ctime = inode->i_mtime;
5734 BTRFS_I(inode)->i_otime = inode->i_mtime;
5739 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5741 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5742 struct inode *inode;
5743 struct btrfs_root *root = BTRFS_I(dir)->root;
5744 struct btrfs_root *sub_root = root;
5745 struct btrfs_key location;
5749 if (dentry->d_name.len > BTRFS_NAME_LEN)
5750 return ERR_PTR(-ENAMETOOLONG);
5752 ret = btrfs_inode_by_name(dir, dentry, &location);
5754 return ERR_PTR(ret);
5756 if (location.type == BTRFS_INODE_ITEM_KEY) {
5757 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5761 index = srcu_read_lock(&fs_info->subvol_srcu);
5762 ret = fixup_tree_root_location(fs_info, dir, dentry,
5763 &location, &sub_root);
5766 inode = ERR_PTR(ret);
5768 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5770 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5772 srcu_read_unlock(&fs_info->subvol_srcu, index);
5774 if (!IS_ERR(inode) && root != sub_root) {
5775 down_read(&fs_info->cleanup_work_sem);
5776 if (!sb_rdonly(inode->i_sb))
5777 ret = btrfs_orphan_cleanup(sub_root);
5778 up_read(&fs_info->cleanup_work_sem);
5781 inode = ERR_PTR(ret);
5788 static int btrfs_dentry_delete(const struct dentry *dentry)
5790 struct btrfs_root *root;
5791 struct inode *inode = d_inode(dentry);
5793 if (!inode && !IS_ROOT(dentry))
5794 inode = d_inode(dentry->d_parent);
5797 root = BTRFS_I(inode)->root;
5798 if (btrfs_root_refs(&root->root_item) == 0)
5801 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5807 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5810 struct inode *inode;
5812 inode = btrfs_lookup_dentry(dir, dentry);
5813 if (IS_ERR(inode)) {
5814 if (PTR_ERR(inode) == -ENOENT)
5817 return ERR_CAST(inode);
5820 return d_splice_alias(inode, dentry);
5823 unsigned char btrfs_filetype_table[] = {
5824 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5828 * All this infrastructure exists because dir_emit can fault, and we are holding
5829 * the tree lock when doing readdir. For now just allocate a buffer and copy
5830 * our information into that, and then dir_emit from the buffer. This is
5831 * similar to what NFS does, only we don't keep the buffer around in pagecache
5832 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5833 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5836 static int btrfs_opendir(struct inode *inode, struct file *file)
5838 struct btrfs_file_private *private;
5840 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5843 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5844 if (!private->filldir_buf) {
5848 file->private_data = private;
5859 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5862 struct dir_entry *entry = addr;
5863 char *name = (char *)(entry + 1);
5865 ctx->pos = get_unaligned(&entry->offset);
5866 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5867 get_unaligned(&entry->ino),
5868 get_unaligned(&entry->type)))
5870 addr += sizeof(struct dir_entry) +
5871 get_unaligned(&entry->name_len);
5877 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5879 struct inode *inode = file_inode(file);
5880 struct btrfs_root *root = BTRFS_I(inode)->root;
5881 struct btrfs_file_private *private = file->private_data;
5882 struct btrfs_dir_item *di;
5883 struct btrfs_key key;
5884 struct btrfs_key found_key;
5885 struct btrfs_path *path;
5887 struct list_head ins_list;
5888 struct list_head del_list;
5890 struct extent_buffer *leaf;
5897 struct btrfs_key location;
5899 if (!dir_emit_dots(file, ctx))
5902 path = btrfs_alloc_path();
5906 addr = private->filldir_buf;
5907 path->reada = READA_FORWARD;
5909 INIT_LIST_HEAD(&ins_list);
5910 INIT_LIST_HEAD(&del_list);
5911 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5914 key.type = BTRFS_DIR_INDEX_KEY;
5915 key.offset = ctx->pos;
5916 key.objectid = btrfs_ino(BTRFS_I(inode));
5918 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5923 struct dir_entry *entry;
5925 leaf = path->nodes[0];
5926 slot = path->slots[0];
5927 if (slot >= btrfs_header_nritems(leaf)) {
5928 ret = btrfs_next_leaf(root, path);
5936 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5938 if (found_key.objectid != key.objectid)
5940 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5942 if (found_key.offset < ctx->pos)
5944 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5946 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5947 name_len = btrfs_dir_name_len(leaf, di);
5948 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5950 btrfs_release_path(path);
5951 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5954 addr = private->filldir_buf;
5961 put_unaligned(name_len, &entry->name_len);
5962 name_ptr = (char *)(entry + 1);
5963 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5965 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5967 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5968 put_unaligned(location.objectid, &entry->ino);
5969 put_unaligned(found_key.offset, &entry->offset);
5971 addr += sizeof(struct dir_entry) + name_len;
5972 total_len += sizeof(struct dir_entry) + name_len;
5976 btrfs_release_path(path);
5978 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5982 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5987 * Stop new entries from being returned after we return the last
5990 * New directory entries are assigned a strictly increasing
5991 * offset. This means that new entries created during readdir
5992 * are *guaranteed* to be seen in the future by that readdir.
5993 * This has broken buggy programs which operate on names as
5994 * they're returned by readdir. Until we re-use freed offsets
5995 * we have this hack to stop new entries from being returned
5996 * under the assumption that they'll never reach this huge
5999 * This is being careful not to overflow 32bit loff_t unless the
6000 * last entry requires it because doing so has broken 32bit apps
6003 if (ctx->pos >= INT_MAX)
6004 ctx->pos = LLONG_MAX;
6011 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6012 btrfs_free_path(path);
6017 * This is somewhat expensive, updating the tree every time the
6018 * inode changes. But, it is most likely to find the inode in cache.
6019 * FIXME, needs more benchmarking...there are no reasons other than performance
6020 * to keep or drop this code.
6022 static int btrfs_dirty_inode(struct inode *inode)
6024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6025 struct btrfs_root *root = BTRFS_I(inode)->root;
6026 struct btrfs_trans_handle *trans;
6029 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6032 trans = btrfs_join_transaction(root);
6034 return PTR_ERR(trans);
6036 ret = btrfs_update_inode(trans, root, inode);
6037 if (ret && ret == -ENOSPC) {
6038 /* whoops, lets try again with the full transaction */
6039 btrfs_end_transaction(trans);
6040 trans = btrfs_start_transaction(root, 1);
6042 return PTR_ERR(trans);
6044 ret = btrfs_update_inode(trans, root, inode);
6046 btrfs_end_transaction(trans);
6047 if (BTRFS_I(inode)->delayed_node)
6048 btrfs_balance_delayed_items(fs_info);
6054 * This is a copy of file_update_time. We need this so we can return error on
6055 * ENOSPC for updating the inode in the case of file write and mmap writes.
6057 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6060 struct btrfs_root *root = BTRFS_I(inode)->root;
6061 bool dirty = flags & ~S_VERSION;
6063 if (btrfs_root_readonly(root))
6066 if (flags & S_VERSION)
6067 dirty |= inode_maybe_inc_iversion(inode, dirty);
6068 if (flags & S_CTIME)
6069 inode->i_ctime = *now;
6070 if (flags & S_MTIME)
6071 inode->i_mtime = *now;
6072 if (flags & S_ATIME)
6073 inode->i_atime = *now;
6074 return dirty ? btrfs_dirty_inode(inode) : 0;
6078 * find the highest existing sequence number in a directory
6079 * and then set the in-memory index_cnt variable to reflect
6080 * free sequence numbers
6082 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6084 struct btrfs_root *root = inode->root;
6085 struct btrfs_key key, found_key;
6086 struct btrfs_path *path;
6087 struct extent_buffer *leaf;
6090 key.objectid = btrfs_ino(inode);
6091 key.type = BTRFS_DIR_INDEX_KEY;
6092 key.offset = (u64)-1;
6094 path = btrfs_alloc_path();
6098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6101 /* FIXME: we should be able to handle this */
6107 * MAGIC NUMBER EXPLANATION:
6108 * since we search a directory based on f_pos we have to start at 2
6109 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6110 * else has to start at 2
6112 if (path->slots[0] == 0) {
6113 inode->index_cnt = 2;
6119 leaf = path->nodes[0];
6120 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6122 if (found_key.objectid != btrfs_ino(inode) ||
6123 found_key.type != BTRFS_DIR_INDEX_KEY) {
6124 inode->index_cnt = 2;
6128 inode->index_cnt = found_key.offset + 1;
6130 btrfs_free_path(path);
6135 * helper to find a free sequence number in a given directory. This current
6136 * code is very simple, later versions will do smarter things in the btree
6138 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6142 if (dir->index_cnt == (u64)-1) {
6143 ret = btrfs_inode_delayed_dir_index_count(dir);
6145 ret = btrfs_set_inode_index_count(dir);
6151 *index = dir->index_cnt;
6157 static int btrfs_insert_inode_locked(struct inode *inode)
6159 struct btrfs_iget_args args;
6160 args.location = &BTRFS_I(inode)->location;
6161 args.root = BTRFS_I(inode)->root;
6163 return insert_inode_locked4(inode,
6164 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6165 btrfs_find_actor, &args);
6169 * Inherit flags from the parent inode.
6171 * Currently only the compression flags and the cow flags are inherited.
6173 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6180 flags = BTRFS_I(dir)->flags;
6182 if (flags & BTRFS_INODE_NOCOMPRESS) {
6183 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6184 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6185 } else if (flags & BTRFS_INODE_COMPRESS) {
6186 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6187 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6190 if (flags & BTRFS_INODE_NODATACOW) {
6191 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6192 if (S_ISREG(inode->i_mode))
6193 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6196 btrfs_sync_inode_flags_to_i_flags(inode);
6199 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6200 struct btrfs_root *root,
6202 const char *name, int name_len,
6203 u64 ref_objectid, u64 objectid,
6204 umode_t mode, u64 *index)
6206 struct btrfs_fs_info *fs_info = root->fs_info;
6207 struct inode *inode;
6208 struct btrfs_inode_item *inode_item;
6209 struct btrfs_key *location;
6210 struct btrfs_path *path;
6211 struct btrfs_inode_ref *ref;
6212 struct btrfs_key key[2];
6214 int nitems = name ? 2 : 1;
6218 path = btrfs_alloc_path();
6220 return ERR_PTR(-ENOMEM);
6222 inode = new_inode(fs_info->sb);
6224 btrfs_free_path(path);
6225 return ERR_PTR(-ENOMEM);
6229 * O_TMPFILE, set link count to 0, so that after this point,
6230 * we fill in an inode item with the correct link count.
6233 set_nlink(inode, 0);
6236 * we have to initialize this early, so we can reclaim the inode
6237 * number if we fail afterwards in this function.
6239 inode->i_ino = objectid;
6242 trace_btrfs_inode_request(dir);
6244 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6246 btrfs_free_path(path);
6248 return ERR_PTR(ret);
6254 * index_cnt is ignored for everything but a dir,
6255 * btrfs_set_inode_index_count has an explanation for the magic
6258 BTRFS_I(inode)->index_cnt = 2;
6259 BTRFS_I(inode)->dir_index = *index;
6260 BTRFS_I(inode)->root = root;
6261 BTRFS_I(inode)->generation = trans->transid;
6262 inode->i_generation = BTRFS_I(inode)->generation;
6265 * We could have gotten an inode number from somebody who was fsynced
6266 * and then removed in this same transaction, so let's just set full
6267 * sync since it will be a full sync anyway and this will blow away the
6268 * old info in the log.
6270 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6272 key[0].objectid = objectid;
6273 key[0].type = BTRFS_INODE_ITEM_KEY;
6276 sizes[0] = sizeof(struct btrfs_inode_item);
6280 * Start new inodes with an inode_ref. This is slightly more
6281 * efficient for small numbers of hard links since they will
6282 * be packed into one item. Extended refs will kick in if we
6283 * add more hard links than can fit in the ref item.
6285 key[1].objectid = objectid;
6286 key[1].type = BTRFS_INODE_REF_KEY;
6287 key[1].offset = ref_objectid;
6289 sizes[1] = name_len + sizeof(*ref);
6292 location = &BTRFS_I(inode)->location;
6293 location->objectid = objectid;
6294 location->offset = 0;
6295 location->type = BTRFS_INODE_ITEM_KEY;
6297 ret = btrfs_insert_inode_locked(inode);
6303 path->leave_spinning = 1;
6304 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6308 inode_init_owner(inode, dir, mode);
6309 inode_set_bytes(inode, 0);
6311 inode->i_mtime = current_time(inode);
6312 inode->i_atime = inode->i_mtime;
6313 inode->i_ctime = inode->i_mtime;
6314 BTRFS_I(inode)->i_otime = inode->i_mtime;
6316 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6317 struct btrfs_inode_item);
6318 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6319 sizeof(*inode_item));
6320 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6323 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6324 struct btrfs_inode_ref);
6325 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6326 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6327 ptr = (unsigned long)(ref + 1);
6328 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6331 btrfs_mark_buffer_dirty(path->nodes[0]);
6332 btrfs_free_path(path);
6334 btrfs_inherit_iflags(inode, dir);
6336 if (S_ISREG(mode)) {
6337 if (btrfs_test_opt(fs_info, NODATASUM))
6338 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6339 if (btrfs_test_opt(fs_info, NODATACOW))
6340 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6341 BTRFS_INODE_NODATASUM;
6344 inode_tree_add(inode);
6346 trace_btrfs_inode_new(inode);
6347 btrfs_set_inode_last_trans(trans, inode);
6349 btrfs_update_root_times(trans, root);
6351 ret = btrfs_inode_inherit_props(trans, inode, dir);
6354 "error inheriting props for ino %llu (root %llu): %d",
6355 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6360 discard_new_inode(inode);
6363 BTRFS_I(dir)->index_cnt--;
6364 btrfs_free_path(path);
6365 return ERR_PTR(ret);
6368 static inline u8 btrfs_inode_type(struct inode *inode)
6370 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6374 * utility function to add 'inode' into 'parent_inode' with
6375 * a give name and a given sequence number.
6376 * if 'add_backref' is true, also insert a backref from the
6377 * inode to the parent directory.
6379 int btrfs_add_link(struct btrfs_trans_handle *trans,
6380 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6381 const char *name, int name_len, int add_backref, u64 index)
6384 struct btrfs_key key;
6385 struct btrfs_root *root = parent_inode->root;
6386 u64 ino = btrfs_ino(inode);
6387 u64 parent_ino = btrfs_ino(parent_inode);
6389 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6390 memcpy(&key, &inode->root->root_key, sizeof(key));
6393 key.type = BTRFS_INODE_ITEM_KEY;
6397 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6398 ret = btrfs_add_root_ref(trans, key.objectid,
6399 root->root_key.objectid, parent_ino,
6400 index, name, name_len);
6401 } else if (add_backref) {
6402 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6406 /* Nothing to clean up yet */
6410 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6412 btrfs_inode_type(&inode->vfs_inode), index);
6413 if (ret == -EEXIST || ret == -EOVERFLOW)
6416 btrfs_abort_transaction(trans, ret);
6420 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6422 inode_inc_iversion(&parent_inode->vfs_inode);
6423 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6424 current_time(&parent_inode->vfs_inode);
6425 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6427 btrfs_abort_transaction(trans, ret);
6431 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6434 err = btrfs_del_root_ref(trans, key.objectid,
6435 root->root_key.objectid, parent_ino,
6436 &local_index, name, name_len);
6438 } else if (add_backref) {
6442 err = btrfs_del_inode_ref(trans, root, name, name_len,
6443 ino, parent_ino, &local_index);
6448 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6449 struct btrfs_inode *dir, struct dentry *dentry,
6450 struct btrfs_inode *inode, int backref, u64 index)
6452 int err = btrfs_add_link(trans, dir, inode,
6453 dentry->d_name.name, dentry->d_name.len,
6460 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6461 umode_t mode, dev_t rdev)
6463 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6464 struct btrfs_trans_handle *trans;
6465 struct btrfs_root *root = BTRFS_I(dir)->root;
6466 struct inode *inode = NULL;
6472 * 2 for inode item and ref
6474 * 1 for xattr if selinux is on
6476 trans = btrfs_start_transaction(root, 5);
6478 return PTR_ERR(trans);
6480 err = btrfs_find_free_ino(root, &objectid);
6484 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6485 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6487 if (IS_ERR(inode)) {
6488 err = PTR_ERR(inode);
6494 * If the active LSM wants to access the inode during
6495 * d_instantiate it needs these. Smack checks to see
6496 * if the filesystem supports xattrs by looking at the
6499 inode->i_op = &btrfs_special_inode_operations;
6500 init_special_inode(inode, inode->i_mode, rdev);
6502 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6506 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6511 btrfs_update_inode(trans, root, inode);
6512 d_instantiate_new(dentry, inode);
6515 btrfs_end_transaction(trans);
6516 btrfs_btree_balance_dirty(fs_info);
6518 inode_dec_link_count(inode);
6519 discard_new_inode(inode);
6524 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6525 umode_t mode, bool excl)
6527 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6528 struct btrfs_trans_handle *trans;
6529 struct btrfs_root *root = BTRFS_I(dir)->root;
6530 struct inode *inode = NULL;
6536 * 2 for inode item and ref
6538 * 1 for xattr if selinux is on
6540 trans = btrfs_start_transaction(root, 5);
6542 return PTR_ERR(trans);
6544 err = btrfs_find_free_ino(root, &objectid);
6548 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6549 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6551 if (IS_ERR(inode)) {
6552 err = PTR_ERR(inode);
6557 * If the active LSM wants to access the inode during
6558 * d_instantiate it needs these. Smack checks to see
6559 * if the filesystem supports xattrs by looking at the
6562 inode->i_fop = &btrfs_file_operations;
6563 inode->i_op = &btrfs_file_inode_operations;
6564 inode->i_mapping->a_ops = &btrfs_aops;
6566 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6570 err = btrfs_update_inode(trans, root, inode);
6574 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6579 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6580 d_instantiate_new(dentry, inode);
6583 btrfs_end_transaction(trans);
6585 inode_dec_link_count(inode);
6586 discard_new_inode(inode);
6588 btrfs_btree_balance_dirty(fs_info);
6592 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6593 struct dentry *dentry)
6595 struct btrfs_trans_handle *trans = NULL;
6596 struct btrfs_root *root = BTRFS_I(dir)->root;
6597 struct inode *inode = d_inode(old_dentry);
6598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6603 /* do not allow sys_link's with other subvols of the same device */
6604 if (root->objectid != BTRFS_I(inode)->root->objectid)
6607 if (inode->i_nlink >= BTRFS_LINK_MAX)
6610 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6615 * 2 items for inode and inode ref
6616 * 2 items for dir items
6617 * 1 item for parent inode
6618 * 1 item for orphan item deletion if O_TMPFILE
6620 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6621 if (IS_ERR(trans)) {
6622 err = PTR_ERR(trans);
6627 /* There are several dir indexes for this inode, clear the cache. */
6628 BTRFS_I(inode)->dir_index = 0ULL;
6630 inode_inc_iversion(inode);
6631 inode->i_ctime = current_time(inode);
6633 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6635 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6641 struct dentry *parent = dentry->d_parent;
6642 err = btrfs_update_inode(trans, root, inode);
6645 if (inode->i_nlink == 1) {
6647 * If new hard link count is 1, it's a file created
6648 * with open(2) O_TMPFILE flag.
6650 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6654 d_instantiate(dentry, inode);
6655 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6660 btrfs_end_transaction(trans);
6662 inode_dec_link_count(inode);
6665 btrfs_btree_balance_dirty(fs_info);
6669 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6671 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6672 struct inode *inode = NULL;
6673 struct btrfs_trans_handle *trans;
6674 struct btrfs_root *root = BTRFS_I(dir)->root;
6676 int drop_on_err = 0;
6681 * 2 items for inode and ref
6682 * 2 items for dir items
6683 * 1 for xattr if selinux is on
6685 trans = btrfs_start_transaction(root, 5);
6687 return PTR_ERR(trans);
6689 err = btrfs_find_free_ino(root, &objectid);
6693 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6694 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6695 S_IFDIR | mode, &index);
6696 if (IS_ERR(inode)) {
6697 err = PTR_ERR(inode);
6703 /* these must be set before we unlock the inode */
6704 inode->i_op = &btrfs_dir_inode_operations;
6705 inode->i_fop = &btrfs_dir_file_operations;
6707 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6711 btrfs_i_size_write(BTRFS_I(inode), 0);
6712 err = btrfs_update_inode(trans, root, inode);
6716 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6717 dentry->d_name.name,
6718 dentry->d_name.len, 0, index);
6722 d_instantiate_new(dentry, inode);
6726 btrfs_end_transaction(trans);
6728 inode_dec_link_count(inode);
6729 discard_new_inode(inode);
6731 btrfs_btree_balance_dirty(fs_info);
6735 static noinline int uncompress_inline(struct btrfs_path *path,
6737 size_t pg_offset, u64 extent_offset,
6738 struct btrfs_file_extent_item *item)
6741 struct extent_buffer *leaf = path->nodes[0];
6744 unsigned long inline_size;
6748 WARN_ON(pg_offset != 0);
6749 compress_type = btrfs_file_extent_compression(leaf, item);
6750 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6751 inline_size = btrfs_file_extent_inline_item_len(leaf,
6752 btrfs_item_nr(path->slots[0]));
6753 tmp = kmalloc(inline_size, GFP_NOFS);
6756 ptr = btrfs_file_extent_inline_start(item);
6758 read_extent_buffer(leaf, tmp, ptr, inline_size);
6760 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6761 ret = btrfs_decompress(compress_type, tmp, page,
6762 extent_offset, inline_size, max_size);
6765 * decompression code contains a memset to fill in any space between the end
6766 * of the uncompressed data and the end of max_size in case the decompressed
6767 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6768 * the end of an inline extent and the beginning of the next block, so we
6769 * cover that region here.
6772 if (max_size + pg_offset < PAGE_SIZE) {
6773 char *map = kmap(page);
6774 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6782 * a bit scary, this does extent mapping from logical file offset to the disk.
6783 * the ugly parts come from merging extents from the disk with the in-ram
6784 * representation. This gets more complex because of the data=ordered code,
6785 * where the in-ram extents might be locked pending data=ordered completion.
6787 * This also copies inline extents directly into the page.
6789 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6791 size_t pg_offset, u64 start, u64 len,
6794 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6797 u64 extent_start = 0;
6799 u64 objectid = btrfs_ino(inode);
6801 struct btrfs_path *path = NULL;
6802 struct btrfs_root *root = inode->root;
6803 struct btrfs_file_extent_item *item;
6804 struct extent_buffer *leaf;
6805 struct btrfs_key found_key;
6806 struct extent_map *em = NULL;
6807 struct extent_map_tree *em_tree = &inode->extent_tree;
6808 struct extent_io_tree *io_tree = &inode->io_tree;
6809 const bool new_inline = !page || create;
6811 read_lock(&em_tree->lock);
6812 em = lookup_extent_mapping(em_tree, start, len);
6814 em->bdev = fs_info->fs_devices->latest_bdev;
6815 read_unlock(&em_tree->lock);
6818 if (em->start > start || em->start + em->len <= start)
6819 free_extent_map(em);
6820 else if (em->block_start == EXTENT_MAP_INLINE && page)
6821 free_extent_map(em);
6825 em = alloc_extent_map();
6830 em->bdev = fs_info->fs_devices->latest_bdev;
6831 em->start = EXTENT_MAP_HOLE;
6832 em->orig_start = EXTENT_MAP_HOLE;
6834 em->block_len = (u64)-1;
6837 path = btrfs_alloc_path();
6843 * Chances are we'll be called again, so go ahead and do
6846 path->reada = READA_FORWARD;
6849 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6856 if (path->slots[0] == 0)
6861 leaf = path->nodes[0];
6862 item = btrfs_item_ptr(leaf, path->slots[0],
6863 struct btrfs_file_extent_item);
6864 /* are we inside the extent that was found? */
6865 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6866 found_type = found_key.type;
6867 if (found_key.objectid != objectid ||
6868 found_type != BTRFS_EXTENT_DATA_KEY) {
6870 * If we backup past the first extent we want to move forward
6871 * and see if there is an extent in front of us, otherwise we'll
6872 * say there is a hole for our whole search range which can
6879 found_type = btrfs_file_extent_type(leaf, item);
6880 extent_start = found_key.offset;
6881 if (found_type == BTRFS_FILE_EXTENT_REG ||
6882 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6883 extent_end = extent_start +
6884 btrfs_file_extent_num_bytes(leaf, item);
6886 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6888 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6891 size = btrfs_file_extent_ram_bytes(leaf, item);
6892 extent_end = ALIGN(extent_start + size,
6893 fs_info->sectorsize);
6895 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6900 if (start >= extent_end) {
6902 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6903 ret = btrfs_next_leaf(root, path);
6910 leaf = path->nodes[0];
6912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6913 if (found_key.objectid != objectid ||
6914 found_key.type != BTRFS_EXTENT_DATA_KEY)
6916 if (start + len <= found_key.offset)
6918 if (start > found_key.offset)
6921 em->orig_start = start;
6922 em->len = found_key.offset - start;
6926 btrfs_extent_item_to_extent_map(inode, path, item,
6929 if (found_type == BTRFS_FILE_EXTENT_REG ||
6930 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6932 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6936 size_t extent_offset;
6942 size = btrfs_file_extent_ram_bytes(leaf, item);
6943 extent_offset = page_offset(page) + pg_offset - extent_start;
6944 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6945 size - extent_offset);
6946 em->start = extent_start + extent_offset;
6947 em->len = ALIGN(copy_size, fs_info->sectorsize);
6948 em->orig_block_len = em->len;
6949 em->orig_start = em->start;
6950 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6951 if (!PageUptodate(page)) {
6952 if (btrfs_file_extent_compression(leaf, item) !=
6953 BTRFS_COMPRESS_NONE) {
6954 ret = uncompress_inline(path, page, pg_offset,
6955 extent_offset, item);
6962 read_extent_buffer(leaf, map + pg_offset, ptr,
6964 if (pg_offset + copy_size < PAGE_SIZE) {
6965 memset(map + pg_offset + copy_size, 0,
6966 PAGE_SIZE - pg_offset -
6971 flush_dcache_page(page);
6973 set_extent_uptodate(io_tree, em->start,
6974 extent_map_end(em) - 1, NULL, GFP_NOFS);
6979 em->orig_start = start;
6982 em->block_start = EXTENT_MAP_HOLE;
6984 btrfs_release_path(path);
6985 if (em->start > start || extent_map_end(em) <= start) {
6987 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6988 em->start, em->len, start, len);
6994 write_lock(&em_tree->lock);
6995 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6996 write_unlock(&em_tree->lock);
6999 trace_btrfs_get_extent(root, inode, em);
7001 btrfs_free_path(path);
7003 free_extent_map(em);
7004 return ERR_PTR(err);
7006 BUG_ON(!em); /* Error is always set */
7010 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7012 size_t pg_offset, u64 start, u64 len,
7015 struct extent_map *em;
7016 struct extent_map *hole_em = NULL;
7017 u64 range_start = start;
7023 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7027 * If our em maps to:
7029 * - a pre-alloc extent,
7030 * there might actually be delalloc bytes behind it.
7032 if (em->block_start != EXTENT_MAP_HOLE &&
7033 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7038 /* check to see if we've wrapped (len == -1 or similar) */
7047 /* ok, we didn't find anything, lets look for delalloc */
7048 found = count_range_bits(&inode->io_tree, &range_start,
7049 end, len, EXTENT_DELALLOC, 1);
7050 found_end = range_start + found;
7051 if (found_end < range_start)
7052 found_end = (u64)-1;
7055 * we didn't find anything useful, return
7056 * the original results from get_extent()
7058 if (range_start > end || found_end <= start) {
7064 /* adjust the range_start to make sure it doesn't
7065 * go backwards from the start they passed in
7067 range_start = max(start, range_start);
7068 found = found_end - range_start;
7071 u64 hole_start = start;
7074 em = alloc_extent_map();
7080 * when btrfs_get_extent can't find anything it
7081 * returns one huge hole
7083 * make sure what it found really fits our range, and
7084 * adjust to make sure it is based on the start from
7088 u64 calc_end = extent_map_end(hole_em);
7090 if (calc_end <= start || (hole_em->start > end)) {
7091 free_extent_map(hole_em);
7094 hole_start = max(hole_em->start, start);
7095 hole_len = calc_end - hole_start;
7099 if (hole_em && range_start > hole_start) {
7100 /* our hole starts before our delalloc, so we
7101 * have to return just the parts of the hole
7102 * that go until the delalloc starts
7104 em->len = min(hole_len,
7105 range_start - hole_start);
7106 em->start = hole_start;
7107 em->orig_start = hole_start;
7109 * don't adjust block start at all,
7110 * it is fixed at EXTENT_MAP_HOLE
7112 em->block_start = hole_em->block_start;
7113 em->block_len = hole_len;
7114 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7115 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7117 em->start = range_start;
7119 em->orig_start = range_start;
7120 em->block_start = EXTENT_MAP_DELALLOC;
7121 em->block_len = found;
7128 free_extent_map(hole_em);
7130 free_extent_map(em);
7131 return ERR_PTR(err);
7136 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7139 const u64 orig_start,
7140 const u64 block_start,
7141 const u64 block_len,
7142 const u64 orig_block_len,
7143 const u64 ram_bytes,
7146 struct extent_map *em = NULL;
7149 if (type != BTRFS_ORDERED_NOCOW) {
7150 em = create_io_em(inode, start, len, orig_start,
7151 block_start, block_len, orig_block_len,
7153 BTRFS_COMPRESS_NONE, /* compress_type */
7158 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7159 len, block_len, type);
7162 free_extent_map(em);
7163 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7164 start + len - 1, 0);
7173 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7177 struct btrfs_root *root = BTRFS_I(inode)->root;
7178 struct extent_map *em;
7179 struct btrfs_key ins;
7183 alloc_hint = get_extent_allocation_hint(inode, start, len);
7184 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7185 0, alloc_hint, &ins, 1, 1);
7187 return ERR_PTR(ret);
7189 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7190 ins.objectid, ins.offset, ins.offset,
7191 ins.offset, BTRFS_ORDERED_REGULAR);
7192 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7194 btrfs_free_reserved_extent(fs_info, ins.objectid,
7201 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7202 * block must be cow'd
7204 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7205 u64 *orig_start, u64 *orig_block_len,
7208 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7209 struct btrfs_path *path;
7211 struct extent_buffer *leaf;
7212 struct btrfs_root *root = BTRFS_I(inode)->root;
7213 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7214 struct btrfs_file_extent_item *fi;
7215 struct btrfs_key key;
7222 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7224 path = btrfs_alloc_path();
7228 ret = btrfs_lookup_file_extent(NULL, root, path,
7229 btrfs_ino(BTRFS_I(inode)), offset, 0);
7233 slot = path->slots[0];
7236 /* can't find the item, must cow */
7243 leaf = path->nodes[0];
7244 btrfs_item_key_to_cpu(leaf, &key, slot);
7245 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7246 key.type != BTRFS_EXTENT_DATA_KEY) {
7247 /* not our file or wrong item type, must cow */
7251 if (key.offset > offset) {
7252 /* Wrong offset, must cow */
7256 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7257 found_type = btrfs_file_extent_type(leaf, fi);
7258 if (found_type != BTRFS_FILE_EXTENT_REG &&
7259 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7260 /* not a regular extent, must cow */
7264 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7267 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7268 if (extent_end <= offset)
7271 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7272 if (disk_bytenr == 0)
7275 if (btrfs_file_extent_compression(leaf, fi) ||
7276 btrfs_file_extent_encryption(leaf, fi) ||
7277 btrfs_file_extent_other_encoding(leaf, fi))
7281 * Do the same check as in btrfs_cross_ref_exist but without the
7282 * unnecessary search.
7284 if (btrfs_file_extent_generation(leaf, fi) <=
7285 btrfs_root_last_snapshot(&root->root_item))
7288 backref_offset = btrfs_file_extent_offset(leaf, fi);
7291 *orig_start = key.offset - backref_offset;
7292 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7293 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7296 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7299 num_bytes = min(offset + *len, extent_end) - offset;
7300 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7303 range_end = round_up(offset + num_bytes,
7304 root->fs_info->sectorsize) - 1;
7305 ret = test_range_bit(io_tree, offset, range_end,
7306 EXTENT_DELALLOC, 0, NULL);
7313 btrfs_release_path(path);
7316 * look for other files referencing this extent, if we
7317 * find any we must cow
7320 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7321 key.offset - backref_offset, disk_bytenr);
7328 * adjust disk_bytenr and num_bytes to cover just the bytes
7329 * in this extent we are about to write. If there
7330 * are any csums in that range we have to cow in order
7331 * to keep the csums correct
7333 disk_bytenr += backref_offset;
7334 disk_bytenr += offset - key.offset;
7335 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7338 * all of the above have passed, it is safe to overwrite this extent
7344 btrfs_free_path(path);
7348 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7349 struct extent_state **cached_state, int writing)
7351 struct btrfs_ordered_extent *ordered;
7355 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7358 * We're concerned with the entire range that we're going to be
7359 * doing DIO to, so we need to make sure there's no ordered
7360 * extents in this range.
7362 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7363 lockend - lockstart + 1);
7366 * We need to make sure there are no buffered pages in this
7367 * range either, we could have raced between the invalidate in
7368 * generic_file_direct_write and locking the extent. The
7369 * invalidate needs to happen so that reads after a write do not
7373 (!writing || !filemap_range_has_page(inode->i_mapping,
7374 lockstart, lockend)))
7377 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7382 * If we are doing a DIO read and the ordered extent we
7383 * found is for a buffered write, we can not wait for it
7384 * to complete and retry, because if we do so we can
7385 * deadlock with concurrent buffered writes on page
7386 * locks. This happens only if our DIO read covers more
7387 * than one extent map, if at this point has already
7388 * created an ordered extent for a previous extent map
7389 * and locked its range in the inode's io tree, and a
7390 * concurrent write against that previous extent map's
7391 * range and this range started (we unlock the ranges
7392 * in the io tree only when the bios complete and
7393 * buffered writes always lock pages before attempting
7394 * to lock range in the io tree).
7397 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7398 btrfs_start_ordered_extent(inode, ordered, 1);
7401 btrfs_put_ordered_extent(ordered);
7404 * We could trigger writeback for this range (and wait
7405 * for it to complete) and then invalidate the pages for
7406 * this range (through invalidate_inode_pages2_range()),
7407 * but that can lead us to a deadlock with a concurrent
7408 * call to readpages() (a buffered read or a defrag call
7409 * triggered a readahead) on a page lock due to an
7410 * ordered dio extent we created before but did not have
7411 * yet a corresponding bio submitted (whence it can not
7412 * complete), which makes readpages() wait for that
7413 * ordered extent to complete while holding a lock on
7428 /* The callers of this must take lock_extent() */
7429 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7430 u64 orig_start, u64 block_start,
7431 u64 block_len, u64 orig_block_len,
7432 u64 ram_bytes, int compress_type,
7435 struct extent_map_tree *em_tree;
7436 struct extent_map *em;
7437 struct btrfs_root *root = BTRFS_I(inode)->root;
7440 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7441 type == BTRFS_ORDERED_COMPRESSED ||
7442 type == BTRFS_ORDERED_NOCOW ||
7443 type == BTRFS_ORDERED_REGULAR);
7445 em_tree = &BTRFS_I(inode)->extent_tree;
7446 em = alloc_extent_map();
7448 return ERR_PTR(-ENOMEM);
7451 em->orig_start = orig_start;
7453 em->block_len = block_len;
7454 em->block_start = block_start;
7455 em->bdev = root->fs_info->fs_devices->latest_bdev;
7456 em->orig_block_len = orig_block_len;
7457 em->ram_bytes = ram_bytes;
7458 em->generation = -1;
7459 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7460 if (type == BTRFS_ORDERED_PREALLOC) {
7461 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7462 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7463 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7464 em->compress_type = compress_type;
7468 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7469 em->start + em->len - 1, 0);
7470 write_lock(&em_tree->lock);
7471 ret = add_extent_mapping(em_tree, em, 1);
7472 write_unlock(&em_tree->lock);
7474 * The caller has taken lock_extent(), who could race with us
7477 } while (ret == -EEXIST);
7480 free_extent_map(em);
7481 return ERR_PTR(ret);
7484 /* em got 2 refs now, callers needs to do free_extent_map once. */
7489 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7490 struct buffer_head *bh_result,
7491 struct inode *inode,
7494 if (em->block_start == EXTENT_MAP_HOLE ||
7495 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7498 len = min(len, em->len - (start - em->start));
7500 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7502 bh_result->b_size = len;
7503 bh_result->b_bdev = em->bdev;
7504 set_buffer_mapped(bh_result);
7509 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7510 struct buffer_head *bh_result,
7511 struct inode *inode,
7512 struct btrfs_dio_data *dio_data,
7515 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7516 struct extent_map *em = *map;
7520 * We don't allocate a new extent in the following cases
7522 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7524 * 2) The extent is marked as PREALLOC. We're good to go here and can
7525 * just use the extent.
7528 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7529 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7530 em->block_start != EXTENT_MAP_HOLE)) {
7532 u64 block_start, orig_start, orig_block_len, ram_bytes;
7534 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7535 type = BTRFS_ORDERED_PREALLOC;
7537 type = BTRFS_ORDERED_NOCOW;
7538 len = min(len, em->len - (start - em->start));
7539 block_start = em->block_start + (start - em->start);
7541 if (can_nocow_extent(inode, start, &len, &orig_start,
7542 &orig_block_len, &ram_bytes) == 1 &&
7543 btrfs_inc_nocow_writers(fs_info, block_start)) {
7544 struct extent_map *em2;
7546 em2 = btrfs_create_dio_extent(inode, start, len,
7547 orig_start, block_start,
7548 len, orig_block_len,
7550 btrfs_dec_nocow_writers(fs_info, block_start);
7551 if (type == BTRFS_ORDERED_PREALLOC) {
7552 free_extent_map(em);
7556 if (em2 && IS_ERR(em2)) {
7561 * For inode marked NODATACOW or extent marked PREALLOC,
7562 * use the existing or preallocated extent, so does not
7563 * need to adjust btrfs_space_info's bytes_may_use.
7565 btrfs_free_reserved_data_space_noquota(inode, start,
7571 /* this will cow the extent */
7572 len = bh_result->b_size;
7573 free_extent_map(em);
7574 *map = em = btrfs_new_extent_direct(inode, start, len);
7580 len = min(len, em->len - (start - em->start));
7583 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7585 bh_result->b_size = len;
7586 bh_result->b_bdev = em->bdev;
7587 set_buffer_mapped(bh_result);
7589 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7590 set_buffer_new(bh_result);
7593 * Need to update the i_size under the extent lock so buffered
7594 * readers will get the updated i_size when we unlock.
7596 if (!dio_data->overwrite && start + len > i_size_read(inode))
7597 i_size_write(inode, start + len);
7599 WARN_ON(dio_data->reserve < len);
7600 dio_data->reserve -= len;
7601 dio_data->unsubmitted_oe_range_end = start + len;
7602 current->journal_info = dio_data;
7607 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7608 struct buffer_head *bh_result, int create)
7610 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7611 struct extent_map *em;
7612 struct extent_state *cached_state = NULL;
7613 struct btrfs_dio_data *dio_data = NULL;
7614 u64 start = iblock << inode->i_blkbits;
7615 u64 lockstart, lockend;
7616 u64 len = bh_result->b_size;
7617 int unlock_bits = EXTENT_LOCKED;
7621 unlock_bits |= EXTENT_DIRTY;
7623 len = min_t(u64, len, fs_info->sectorsize);
7626 lockend = start + len - 1;
7628 if (current->journal_info) {
7630 * Need to pull our outstanding extents and set journal_info to NULL so
7631 * that anything that needs to check if there's a transaction doesn't get
7634 dio_data = current->journal_info;
7635 current->journal_info = NULL;
7639 * If this errors out it's because we couldn't invalidate pagecache for
7640 * this range and we need to fallback to buffered.
7642 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7648 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7655 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7656 * io. INLINE is special, and we could probably kludge it in here, but
7657 * it's still buffered so for safety lets just fall back to the generic
7660 * For COMPRESSED we _have_ to read the entire extent in so we can
7661 * decompress it, so there will be buffering required no matter what we
7662 * do, so go ahead and fallback to buffered.
7664 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7665 * to buffered IO. Don't blame me, this is the price we pay for using
7668 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7669 em->block_start == EXTENT_MAP_INLINE) {
7670 free_extent_map(em);
7676 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7677 dio_data, start, len);
7681 /* clear and unlock the entire range */
7682 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7683 unlock_bits, 1, 0, &cached_state);
7685 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7687 /* Can be negative only if we read from a hole */
7690 free_extent_map(em);
7694 * We need to unlock only the end area that we aren't using.
7695 * The rest is going to be unlocked by the endio routine.
7697 lockstart = start + bh_result->b_size;
7698 if (lockstart < lockend) {
7699 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7700 lockend, unlock_bits, 1, 0,
7703 free_extent_state(cached_state);
7707 free_extent_map(em);
7712 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7713 unlock_bits, 1, 0, &cached_state);
7716 current->journal_info = dio_data;
7720 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7724 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7727 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7729 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7733 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7738 static int btrfs_check_dio_repairable(struct inode *inode,
7739 struct bio *failed_bio,
7740 struct io_failure_record *failrec,
7743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7746 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7747 if (num_copies == 1) {
7749 * we only have a single copy of the data, so don't bother with
7750 * all the retry and error correction code that follows. no
7751 * matter what the error is, it is very likely to persist.
7753 btrfs_debug(fs_info,
7754 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7755 num_copies, failrec->this_mirror, failed_mirror);
7759 failrec->failed_mirror = failed_mirror;
7760 failrec->this_mirror++;
7761 if (failrec->this_mirror == failed_mirror)
7762 failrec->this_mirror++;
7764 if (failrec->this_mirror > num_copies) {
7765 btrfs_debug(fs_info,
7766 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7767 num_copies, failrec->this_mirror, failed_mirror);
7774 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7775 struct page *page, unsigned int pgoff,
7776 u64 start, u64 end, int failed_mirror,
7777 bio_end_io_t *repair_endio, void *repair_arg)
7779 struct io_failure_record *failrec;
7780 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7781 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7784 unsigned int read_mode = 0;
7787 blk_status_t status;
7788 struct bio_vec bvec;
7790 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7792 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7794 return errno_to_blk_status(ret);
7796 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7799 free_io_failure(failure_tree, io_tree, failrec);
7800 return BLK_STS_IOERR;
7803 segs = bio_segments(failed_bio);
7804 bio_get_first_bvec(failed_bio, &bvec);
7806 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7807 read_mode |= REQ_FAILFAST_DEV;
7809 isector = start - btrfs_io_bio(failed_bio)->logical;
7810 isector >>= inode->i_sb->s_blocksize_bits;
7811 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7812 pgoff, isector, repair_endio, repair_arg);
7813 bio->bi_opf = REQ_OP_READ | read_mode;
7815 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7816 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7817 read_mode, failrec->this_mirror, failrec->in_validation);
7819 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7821 free_io_failure(failure_tree, io_tree, failrec);
7828 struct btrfs_retry_complete {
7829 struct completion done;
7830 struct inode *inode;
7835 static void btrfs_retry_endio_nocsum(struct bio *bio)
7837 struct btrfs_retry_complete *done = bio->bi_private;
7838 struct inode *inode = done->inode;
7839 struct bio_vec *bvec;
7840 struct extent_io_tree *io_tree, *failure_tree;
7846 ASSERT(bio->bi_vcnt == 1);
7847 io_tree = &BTRFS_I(inode)->io_tree;
7848 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7849 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7852 ASSERT(!bio_flagged(bio, BIO_CLONED));
7853 bio_for_each_segment_all(bvec, bio, i)
7854 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7855 io_tree, done->start, bvec->bv_page,
7856 btrfs_ino(BTRFS_I(inode)), 0);
7858 complete(&done->done);
7862 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7863 struct btrfs_io_bio *io_bio)
7865 struct btrfs_fs_info *fs_info;
7866 struct bio_vec bvec;
7867 struct bvec_iter iter;
7868 struct btrfs_retry_complete done;
7874 blk_status_t err = BLK_STS_OK;
7876 fs_info = BTRFS_I(inode)->root->fs_info;
7877 sectorsize = fs_info->sectorsize;
7879 start = io_bio->logical;
7881 io_bio->bio.bi_iter = io_bio->iter;
7883 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7884 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7885 pgoff = bvec.bv_offset;
7887 next_block_or_try_again:
7890 init_completion(&done.done);
7892 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7893 pgoff, start, start + sectorsize - 1,
7895 btrfs_retry_endio_nocsum, &done);
7901 wait_for_completion_io(&done.done);
7903 if (!done.uptodate) {
7904 /* We might have another mirror, so try again */
7905 goto next_block_or_try_again;
7909 start += sectorsize;
7913 pgoff += sectorsize;
7914 ASSERT(pgoff < PAGE_SIZE);
7915 goto next_block_or_try_again;
7922 static void btrfs_retry_endio(struct bio *bio)
7924 struct btrfs_retry_complete *done = bio->bi_private;
7925 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7926 struct extent_io_tree *io_tree, *failure_tree;
7927 struct inode *inode = done->inode;
7928 struct bio_vec *bvec;
7938 ASSERT(bio->bi_vcnt == 1);
7939 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7941 io_tree = &BTRFS_I(inode)->io_tree;
7942 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7944 ASSERT(!bio_flagged(bio, BIO_CLONED));
7945 bio_for_each_segment_all(bvec, bio, i) {
7946 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7947 bvec->bv_offset, done->start,
7950 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7951 failure_tree, io_tree, done->start,
7953 btrfs_ino(BTRFS_I(inode)),
7959 done->uptodate = uptodate;
7961 complete(&done->done);
7965 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7966 struct btrfs_io_bio *io_bio, blk_status_t err)
7968 struct btrfs_fs_info *fs_info;
7969 struct bio_vec bvec;
7970 struct bvec_iter iter;
7971 struct btrfs_retry_complete done;
7978 bool uptodate = (err == 0);
7980 blk_status_t status;
7982 fs_info = BTRFS_I(inode)->root->fs_info;
7983 sectorsize = fs_info->sectorsize;
7986 start = io_bio->logical;
7988 io_bio->bio.bi_iter = io_bio->iter;
7990 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7991 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7993 pgoff = bvec.bv_offset;
7996 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7997 ret = __readpage_endio_check(inode, io_bio, csum_pos,
7998 bvec.bv_page, pgoff, start, sectorsize);
8005 init_completion(&done.done);
8007 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8008 pgoff, start, start + sectorsize - 1,
8009 io_bio->mirror_num, btrfs_retry_endio,
8016 wait_for_completion_io(&done.done);
8018 if (!done.uptodate) {
8019 /* We might have another mirror, so try again */
8023 offset += sectorsize;
8024 start += sectorsize;
8030 pgoff += sectorsize;
8031 ASSERT(pgoff < PAGE_SIZE);
8039 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8040 struct btrfs_io_bio *io_bio, blk_status_t err)
8042 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8046 return __btrfs_correct_data_nocsum(inode, io_bio);
8050 return __btrfs_subio_endio_read(inode, io_bio, err);
8054 static void btrfs_endio_direct_read(struct bio *bio)
8056 struct btrfs_dio_private *dip = bio->bi_private;
8057 struct inode *inode = dip->inode;
8058 struct bio *dio_bio;
8059 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8060 blk_status_t err = bio->bi_status;
8062 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8063 err = btrfs_subio_endio_read(inode, io_bio, err);
8065 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8066 dip->logical_offset + dip->bytes - 1);
8067 dio_bio = dip->dio_bio;
8071 dio_bio->bi_status = err;
8072 dio_end_io(dio_bio);
8075 io_bio->end_io(io_bio, blk_status_to_errno(err));
8079 static void __endio_write_update_ordered(struct inode *inode,
8080 const u64 offset, const u64 bytes,
8081 const bool uptodate)
8083 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8084 struct btrfs_ordered_extent *ordered = NULL;
8085 struct btrfs_workqueue *wq;
8086 btrfs_work_func_t func;
8087 u64 ordered_offset = offset;
8088 u64 ordered_bytes = bytes;
8091 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8092 wq = fs_info->endio_freespace_worker;
8093 func = btrfs_freespace_write_helper;
8095 wq = fs_info->endio_write_workers;
8096 func = btrfs_endio_write_helper;
8099 while (ordered_offset < offset + bytes) {
8100 last_offset = ordered_offset;
8101 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8105 btrfs_init_work(&ordered->work, func,
8108 btrfs_queue_work(wq, &ordered->work);
8111 * If btrfs_dec_test_ordered_pending does not find any ordered
8112 * extent in the range, we can exit.
8114 if (ordered_offset == last_offset)
8117 * Our bio might span multiple ordered extents. In this case
8118 * we keep goin until we have accounted the whole dio.
8120 if (ordered_offset < offset + bytes) {
8121 ordered_bytes = offset + bytes - ordered_offset;
8127 static void btrfs_endio_direct_write(struct bio *bio)
8129 struct btrfs_dio_private *dip = bio->bi_private;
8130 struct bio *dio_bio = dip->dio_bio;
8132 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8133 dip->bytes, !bio->bi_status);
8137 dio_bio->bi_status = bio->bi_status;
8138 dio_end_io(dio_bio);
8142 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8143 struct bio *bio, u64 offset)
8145 struct inode *inode = private_data;
8147 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8148 BUG_ON(ret); /* -ENOMEM */
8152 static void btrfs_end_dio_bio(struct bio *bio)
8154 struct btrfs_dio_private *dip = bio->bi_private;
8155 blk_status_t err = bio->bi_status;
8158 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8159 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8160 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8162 (unsigned long long)bio->bi_iter.bi_sector,
8163 bio->bi_iter.bi_size, err);
8165 if (dip->subio_endio)
8166 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8170 * We want to perceive the errors flag being set before
8171 * decrementing the reference count. We don't need a barrier
8172 * since atomic operations with a return value are fully
8173 * ordered as per atomic_t.txt
8178 /* if there are more bios still pending for this dio, just exit */
8179 if (!atomic_dec_and_test(&dip->pending_bios))
8183 bio_io_error(dip->orig_bio);
8185 dip->dio_bio->bi_status = BLK_STS_OK;
8186 bio_endio(dip->orig_bio);
8192 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8193 struct btrfs_dio_private *dip,
8197 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8198 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8202 * We load all the csum data we need when we submit
8203 * the first bio to reduce the csum tree search and
8206 if (dip->logical_offset == file_offset) {
8207 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8213 if (bio == dip->orig_bio)
8216 file_offset -= dip->logical_offset;
8217 file_offset >>= inode->i_sb->s_blocksize_bits;
8218 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8223 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8224 struct inode *inode, u64 file_offset, int async_submit)
8226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8227 struct btrfs_dio_private *dip = bio->bi_private;
8228 bool write = bio_op(bio) == REQ_OP_WRITE;
8231 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8233 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8236 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8241 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8244 if (write && async_submit) {
8245 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8247 btrfs_submit_bio_start_direct_io);
8251 * If we aren't doing async submit, calculate the csum of the
8254 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8258 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8264 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8269 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8271 struct inode *inode = dip->inode;
8272 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8274 struct bio *orig_bio = dip->orig_bio;
8275 u64 start_sector = orig_bio->bi_iter.bi_sector;
8276 u64 file_offset = dip->logical_offset;
8278 int async_submit = 0;
8280 int clone_offset = 0;
8283 blk_status_t status;
8285 map_length = orig_bio->bi_iter.bi_size;
8286 submit_len = map_length;
8287 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8288 &map_length, NULL, 0);
8292 if (map_length >= submit_len) {
8294 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8298 /* async crcs make it difficult to collect full stripe writes. */
8299 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8305 ASSERT(map_length <= INT_MAX);
8306 atomic_inc(&dip->pending_bios);
8308 clone_len = min_t(int, submit_len, map_length);
8311 * This will never fail as it's passing GPF_NOFS and
8312 * the allocation is backed by btrfs_bioset.
8314 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8316 bio->bi_private = dip;
8317 bio->bi_end_io = btrfs_end_dio_bio;
8318 btrfs_io_bio(bio)->logical = file_offset;
8320 ASSERT(submit_len >= clone_len);
8321 submit_len -= clone_len;
8322 if (submit_len == 0)
8326 * Increase the count before we submit the bio so we know
8327 * the end IO handler won't happen before we increase the
8328 * count. Otherwise, the dip might get freed before we're
8329 * done setting it up.
8331 atomic_inc(&dip->pending_bios);
8333 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8337 atomic_dec(&dip->pending_bios);
8341 clone_offset += clone_len;
8342 start_sector += clone_len >> 9;
8343 file_offset += clone_len;
8345 map_length = submit_len;
8346 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8347 start_sector << 9, &map_length, NULL, 0);
8350 } while (submit_len > 0);
8353 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8361 * Before atomic variable goto zero, we must make sure dip->errors is
8362 * perceived to be set. This ordering is ensured by the fact that an
8363 * atomic operations with a return value are fully ordered as per
8366 if (atomic_dec_and_test(&dip->pending_bios))
8367 bio_io_error(dip->orig_bio);
8369 /* bio_end_io() will handle error, so we needn't return it */
8373 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8376 struct btrfs_dio_private *dip = NULL;
8377 struct bio *bio = NULL;
8378 struct btrfs_io_bio *io_bio;
8379 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8382 bio = btrfs_bio_clone(dio_bio);
8384 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8390 dip->private = dio_bio->bi_private;
8392 dip->logical_offset = file_offset;
8393 dip->bytes = dio_bio->bi_iter.bi_size;
8394 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8395 bio->bi_private = dip;
8396 dip->orig_bio = bio;
8397 dip->dio_bio = dio_bio;
8398 atomic_set(&dip->pending_bios, 0);
8399 io_bio = btrfs_io_bio(bio);
8400 io_bio->logical = file_offset;
8403 bio->bi_end_io = btrfs_endio_direct_write;
8405 bio->bi_end_io = btrfs_endio_direct_read;
8406 dip->subio_endio = btrfs_subio_endio_read;
8410 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8411 * even if we fail to submit a bio, because in such case we do the
8412 * corresponding error handling below and it must not be done a second
8413 * time by btrfs_direct_IO().
8416 struct btrfs_dio_data *dio_data = current->journal_info;
8418 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8420 dio_data->unsubmitted_oe_range_start =
8421 dio_data->unsubmitted_oe_range_end;
8424 ret = btrfs_submit_direct_hook(dip);
8429 io_bio->end_io(io_bio, ret);
8433 * If we arrived here it means either we failed to submit the dip
8434 * or we either failed to clone the dio_bio or failed to allocate the
8435 * dip. If we cloned the dio_bio and allocated the dip, we can just
8436 * call bio_endio against our io_bio so that we get proper resource
8437 * cleanup if we fail to submit the dip, otherwise, we must do the
8438 * same as btrfs_endio_direct_[write|read] because we can't call these
8439 * callbacks - they require an allocated dip and a clone of dio_bio.
8444 * The end io callbacks free our dip, do the final put on bio
8445 * and all the cleanup and final put for dio_bio (through
8452 __endio_write_update_ordered(inode,
8454 dio_bio->bi_iter.bi_size,
8457 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8458 file_offset + dio_bio->bi_iter.bi_size - 1);
8460 dio_bio->bi_status = BLK_STS_IOERR;
8462 * Releases and cleans up our dio_bio, no need to bio_put()
8463 * nor bio_endio()/bio_io_error() against dio_bio.
8465 dio_end_io(dio_bio);
8472 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8473 const struct iov_iter *iter, loff_t offset)
8477 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8478 ssize_t retval = -EINVAL;
8480 if (offset & blocksize_mask)
8483 if (iov_iter_alignment(iter) & blocksize_mask)
8486 /* If this is a write we don't need to check anymore */
8487 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8490 * Check to make sure we don't have duplicate iov_base's in this
8491 * iovec, if so return EINVAL, otherwise we'll get csum errors
8492 * when reading back.
8494 for (seg = 0; seg < iter->nr_segs; seg++) {
8495 for (i = seg + 1; i < iter->nr_segs; i++) {
8496 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8505 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8507 struct file *file = iocb->ki_filp;
8508 struct inode *inode = file->f_mapping->host;
8509 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8510 struct btrfs_dio_data dio_data = { 0 };
8511 struct extent_changeset *data_reserved = NULL;
8512 loff_t offset = iocb->ki_pos;
8516 bool relock = false;
8519 if (check_direct_IO(fs_info, iter, offset))
8522 inode_dio_begin(inode);
8525 * The generic stuff only does filemap_write_and_wait_range, which
8526 * isn't enough if we've written compressed pages to this area, so
8527 * we need to flush the dirty pages again to make absolutely sure
8528 * that any outstanding dirty pages are on disk.
8530 count = iov_iter_count(iter);
8531 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8532 &BTRFS_I(inode)->runtime_flags))
8533 filemap_fdatawrite_range(inode->i_mapping, offset,
8534 offset + count - 1);
8536 if (iov_iter_rw(iter) == WRITE) {
8538 * If the write DIO is beyond the EOF, we need update
8539 * the isize, but it is protected by i_mutex. So we can
8540 * not unlock the i_mutex at this case.
8542 if (offset + count <= inode->i_size) {
8543 dio_data.overwrite = 1;
8544 inode_unlock(inode);
8546 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8550 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8556 * We need to know how many extents we reserved so that we can
8557 * do the accounting properly if we go over the number we
8558 * originally calculated. Abuse current->journal_info for this.
8560 dio_data.reserve = round_up(count,
8561 fs_info->sectorsize);
8562 dio_data.unsubmitted_oe_range_start = (u64)offset;
8563 dio_data.unsubmitted_oe_range_end = (u64)offset;
8564 current->journal_info = &dio_data;
8565 down_read(&BTRFS_I(inode)->dio_sem);
8566 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8567 &BTRFS_I(inode)->runtime_flags)) {
8568 inode_dio_end(inode);
8569 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8573 ret = __blockdev_direct_IO(iocb, inode,
8574 fs_info->fs_devices->latest_bdev,
8575 iter, btrfs_get_blocks_direct, NULL,
8576 btrfs_submit_direct, flags);
8577 if (iov_iter_rw(iter) == WRITE) {
8578 up_read(&BTRFS_I(inode)->dio_sem);
8579 current->journal_info = NULL;
8580 if (ret < 0 && ret != -EIOCBQUEUED) {
8581 if (dio_data.reserve)
8582 btrfs_delalloc_release_space(inode, data_reserved,
8583 offset, dio_data.reserve, true);
8585 * On error we might have left some ordered extents
8586 * without submitting corresponding bios for them, so
8587 * cleanup them up to avoid other tasks getting them
8588 * and waiting for them to complete forever.
8590 if (dio_data.unsubmitted_oe_range_start <
8591 dio_data.unsubmitted_oe_range_end)
8592 __endio_write_update_ordered(inode,
8593 dio_data.unsubmitted_oe_range_start,
8594 dio_data.unsubmitted_oe_range_end -
8595 dio_data.unsubmitted_oe_range_start,
8597 } else if (ret >= 0 && (size_t)ret < count)
8598 btrfs_delalloc_release_space(inode, data_reserved,
8599 offset, count - (size_t)ret, true);
8600 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8604 inode_dio_end(inode);
8608 extent_changeset_free(data_reserved);
8612 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8614 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8615 __u64 start, __u64 len)
8619 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8623 return extent_fiemap(inode, fieinfo, start, len);
8626 int btrfs_readpage(struct file *file, struct page *page)
8628 struct extent_io_tree *tree;
8629 tree = &BTRFS_I(page->mapping->host)->io_tree;
8630 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8633 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8635 struct inode *inode = page->mapping->host;
8638 if (current->flags & PF_MEMALLOC) {
8639 redirty_page_for_writepage(wbc, page);
8645 * If we are under memory pressure we will call this directly from the
8646 * VM, we need to make sure we have the inode referenced for the ordered
8647 * extent. If not just return like we didn't do anything.
8649 if (!igrab(inode)) {
8650 redirty_page_for_writepage(wbc, page);
8651 return AOP_WRITEPAGE_ACTIVATE;
8653 ret = extent_write_full_page(page, wbc);
8654 btrfs_add_delayed_iput(inode);
8658 static int btrfs_writepages(struct address_space *mapping,
8659 struct writeback_control *wbc)
8661 return extent_writepages(mapping, wbc);
8665 btrfs_readpages(struct file *file, struct address_space *mapping,
8666 struct list_head *pages, unsigned nr_pages)
8668 return extent_readpages(mapping, pages, nr_pages);
8671 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8673 int ret = try_release_extent_mapping(page, gfp_flags);
8675 ClearPagePrivate(page);
8676 set_page_private(page, 0);
8682 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8684 if (PageWriteback(page) || PageDirty(page))
8686 return __btrfs_releasepage(page, gfp_flags);
8689 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8690 unsigned int length)
8692 struct inode *inode = page->mapping->host;
8693 struct extent_io_tree *tree;
8694 struct btrfs_ordered_extent *ordered;
8695 struct extent_state *cached_state = NULL;
8696 u64 page_start = page_offset(page);
8697 u64 page_end = page_start + PAGE_SIZE - 1;
8700 int inode_evicting = inode->i_state & I_FREEING;
8703 * we have the page locked, so new writeback can't start,
8704 * and the dirty bit won't be cleared while we are here.
8706 * Wait for IO on this page so that we can safely clear
8707 * the PagePrivate2 bit and do ordered accounting
8709 wait_on_page_writeback(page);
8711 tree = &BTRFS_I(inode)->io_tree;
8713 btrfs_releasepage(page, GFP_NOFS);
8717 if (!inode_evicting)
8718 lock_extent_bits(tree, page_start, page_end, &cached_state);
8721 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8722 page_end - start + 1);
8724 end = min(page_end, ordered->file_offset + ordered->len - 1);
8726 * IO on this page will never be started, so we need
8727 * to account for any ordered extents now
8729 if (!inode_evicting)
8730 clear_extent_bit(tree, start, end,
8731 EXTENT_DIRTY | EXTENT_DELALLOC |
8732 EXTENT_DELALLOC_NEW |
8733 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8734 EXTENT_DEFRAG, 1, 0, &cached_state);
8736 * whoever cleared the private bit is responsible
8737 * for the finish_ordered_io
8739 if (TestClearPagePrivate2(page)) {
8740 struct btrfs_ordered_inode_tree *tree;
8743 tree = &BTRFS_I(inode)->ordered_tree;
8745 spin_lock_irq(&tree->lock);
8746 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8747 new_len = start - ordered->file_offset;
8748 if (new_len < ordered->truncated_len)
8749 ordered->truncated_len = new_len;
8750 spin_unlock_irq(&tree->lock);
8752 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8754 end - start + 1, 1))
8755 btrfs_finish_ordered_io(ordered);
8757 btrfs_put_ordered_extent(ordered);
8758 if (!inode_evicting) {
8759 cached_state = NULL;
8760 lock_extent_bits(tree, start, end,
8765 if (start < page_end)
8770 * Qgroup reserved space handler
8771 * Page here will be either
8772 * 1) Already written to disk
8773 * In this case, its reserved space is released from data rsv map
8774 * and will be freed by delayed_ref handler finally.
8775 * So even we call qgroup_free_data(), it won't decrease reserved
8777 * 2) Not written to disk
8778 * This means the reserved space should be freed here. However,
8779 * if a truncate invalidates the page (by clearing PageDirty)
8780 * and the page is accounted for while allocating extent
8781 * in btrfs_check_data_free_space() we let delayed_ref to
8782 * free the entire extent.
8784 if (PageDirty(page))
8785 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8786 if (!inode_evicting) {
8787 clear_extent_bit(tree, page_start, page_end,
8788 EXTENT_LOCKED | EXTENT_DIRTY |
8789 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8790 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8793 __btrfs_releasepage(page, GFP_NOFS);
8796 ClearPageChecked(page);
8797 if (PagePrivate(page)) {
8798 ClearPagePrivate(page);
8799 set_page_private(page, 0);
8805 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8806 * called from a page fault handler when a page is first dirtied. Hence we must
8807 * be careful to check for EOF conditions here. We set the page up correctly
8808 * for a written page which means we get ENOSPC checking when writing into
8809 * holes and correct delalloc and unwritten extent mapping on filesystems that
8810 * support these features.
8812 * We are not allowed to take the i_mutex here so we have to play games to
8813 * protect against truncate races as the page could now be beyond EOF. Because
8814 * truncate_setsize() writes the inode size before removing pages, once we have
8815 * the page lock we can determine safely if the page is beyond EOF. If it is not
8816 * beyond EOF, then the page is guaranteed safe against truncation until we
8819 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8821 struct page *page = vmf->page;
8822 struct inode *inode = file_inode(vmf->vma->vm_file);
8823 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8824 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8825 struct btrfs_ordered_extent *ordered;
8826 struct extent_state *cached_state = NULL;
8827 struct extent_changeset *data_reserved = NULL;
8829 unsigned long zero_start;
8839 reserved_space = PAGE_SIZE;
8841 sb_start_pagefault(inode->i_sb);
8842 page_start = page_offset(page);
8843 page_end = page_start + PAGE_SIZE - 1;
8847 * Reserving delalloc space after obtaining the page lock can lead to
8848 * deadlock. For example, if a dirty page is locked by this function
8849 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8850 * dirty page write out, then the btrfs_writepage() function could
8851 * end up waiting indefinitely to get a lock on the page currently
8852 * being processed by btrfs_page_mkwrite() function.
8854 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8857 ret2 = file_update_time(vmf->vma->vm_file);
8861 ret = vmf_error(ret2);
8867 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8870 size = i_size_read(inode);
8872 if ((page->mapping != inode->i_mapping) ||
8873 (page_start >= size)) {
8874 /* page got truncated out from underneath us */
8877 wait_on_page_writeback(page);
8879 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8880 set_page_extent_mapped(page);
8883 * we can't set the delalloc bits if there are pending ordered
8884 * extents. Drop our locks and wait for them to finish
8886 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8889 unlock_extent_cached(io_tree, page_start, page_end,
8892 btrfs_start_ordered_extent(inode, ordered, 1);
8893 btrfs_put_ordered_extent(ordered);
8897 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8898 reserved_space = round_up(size - page_start,
8899 fs_info->sectorsize);
8900 if (reserved_space < PAGE_SIZE) {
8901 end = page_start + reserved_space - 1;
8902 btrfs_delalloc_release_space(inode, data_reserved,
8903 page_start, PAGE_SIZE - reserved_space,
8909 * page_mkwrite gets called when the page is firstly dirtied after it's
8910 * faulted in, but write(2) could also dirty a page and set delalloc
8911 * bits, thus in this case for space account reason, we still need to
8912 * clear any delalloc bits within this page range since we have to
8913 * reserve data&meta space before lock_page() (see above comments).
8915 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8916 EXTENT_DIRTY | EXTENT_DELALLOC |
8917 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8918 0, 0, &cached_state);
8920 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8923 unlock_extent_cached(io_tree, page_start, page_end,
8925 ret = VM_FAULT_SIGBUS;
8930 /* page is wholly or partially inside EOF */
8931 if (page_start + PAGE_SIZE > size)
8932 zero_start = size & ~PAGE_MASK;
8934 zero_start = PAGE_SIZE;
8936 if (zero_start != PAGE_SIZE) {
8938 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8939 flush_dcache_page(page);
8942 ClearPageChecked(page);
8943 set_page_dirty(page);
8944 SetPageUptodate(page);
8946 BTRFS_I(inode)->last_trans = fs_info->generation;
8947 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8948 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8950 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8953 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8954 sb_end_pagefault(inode->i_sb);
8955 extent_changeset_free(data_reserved);
8956 return VM_FAULT_LOCKED;
8962 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8963 btrfs_delalloc_release_space(inode, data_reserved, page_start,
8964 reserved_space, (ret != 0));
8966 sb_end_pagefault(inode->i_sb);
8967 extent_changeset_free(data_reserved);
8971 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8974 struct btrfs_root *root = BTRFS_I(inode)->root;
8975 struct btrfs_block_rsv *rsv;
8977 struct btrfs_trans_handle *trans;
8978 u64 mask = fs_info->sectorsize - 1;
8979 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8981 if (!skip_writeback) {
8982 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8989 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8990 * things going on here:
8992 * 1) We need to reserve space to update our inode.
8994 * 2) We need to have something to cache all the space that is going to
8995 * be free'd up by the truncate operation, but also have some slack
8996 * space reserved in case it uses space during the truncate (thank you
8997 * very much snapshotting).
8999 * And we need these to be separate. The fact is we can use a lot of
9000 * space doing the truncate, and we have no earthly idea how much space
9001 * we will use, so we need the truncate reservation to be separate so it
9002 * doesn't end up using space reserved for updating the inode. We also
9003 * need to be able to stop the transaction and start a new one, which
9004 * means we need to be able to update the inode several times, and we
9005 * have no idea of knowing how many times that will be, so we can't just
9006 * reserve 1 item for the entirety of the operation, so that has to be
9007 * done separately as well.
9009 * So that leaves us with
9011 * 1) rsv - for the truncate reservation, which we will steal from the
9012 * transaction reservation.
9013 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9014 * updating the inode.
9016 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9019 rsv->size = min_size;
9023 * 1 for the truncate slack space
9024 * 1 for updating the inode.
9026 trans = btrfs_start_transaction(root, 2);
9027 if (IS_ERR(trans)) {
9028 ret = PTR_ERR(trans);
9032 /* Migrate the slack space for the truncate to our reserve */
9033 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9038 * So if we truncate and then write and fsync we normally would just
9039 * write the extents that changed, which is a problem if we need to
9040 * first truncate that entire inode. So set this flag so we write out
9041 * all of the extents in the inode to the sync log so we're completely
9044 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9045 trans->block_rsv = rsv;
9048 ret = btrfs_truncate_inode_items(trans, root, inode,
9050 BTRFS_EXTENT_DATA_KEY);
9051 trans->block_rsv = &fs_info->trans_block_rsv;
9052 if (ret != -ENOSPC && ret != -EAGAIN)
9055 ret = btrfs_update_inode(trans, root, inode);
9059 btrfs_end_transaction(trans);
9060 btrfs_btree_balance_dirty(fs_info);
9062 trans = btrfs_start_transaction(root, 2);
9063 if (IS_ERR(trans)) {
9064 ret = PTR_ERR(trans);
9069 btrfs_block_rsv_release(fs_info, rsv, -1);
9070 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9072 BUG_ON(ret); /* shouldn't happen */
9073 trans->block_rsv = rsv;
9077 * We can't call btrfs_truncate_block inside a trans handle as we could
9078 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9079 * we've truncated everything except the last little bit, and can do
9080 * btrfs_truncate_block and then update the disk_i_size.
9082 if (ret == NEED_TRUNCATE_BLOCK) {
9083 btrfs_end_transaction(trans);
9084 btrfs_btree_balance_dirty(fs_info);
9086 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9089 trans = btrfs_start_transaction(root, 1);
9090 if (IS_ERR(trans)) {
9091 ret = PTR_ERR(trans);
9094 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9100 trans->block_rsv = &fs_info->trans_block_rsv;
9101 ret2 = btrfs_update_inode(trans, root, inode);
9105 ret2 = btrfs_end_transaction(trans);
9108 btrfs_btree_balance_dirty(fs_info);
9111 btrfs_free_block_rsv(fs_info, rsv);
9117 * create a new subvolume directory/inode (helper for the ioctl).
9119 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9120 struct btrfs_root *new_root,
9121 struct btrfs_root *parent_root,
9124 struct inode *inode;
9128 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9129 new_dirid, new_dirid,
9130 S_IFDIR | (~current_umask() & S_IRWXUGO),
9133 return PTR_ERR(inode);
9134 inode->i_op = &btrfs_dir_inode_operations;
9135 inode->i_fop = &btrfs_dir_file_operations;
9137 set_nlink(inode, 1);
9138 btrfs_i_size_write(BTRFS_I(inode), 0);
9139 unlock_new_inode(inode);
9141 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9143 btrfs_err(new_root->fs_info,
9144 "error inheriting subvolume %llu properties: %d",
9145 new_root->root_key.objectid, err);
9147 err = btrfs_update_inode(trans, new_root, inode);
9153 struct inode *btrfs_alloc_inode(struct super_block *sb)
9155 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9156 struct btrfs_inode *ei;
9157 struct inode *inode;
9159 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9166 ei->last_sub_trans = 0;
9167 ei->logged_trans = 0;
9168 ei->delalloc_bytes = 0;
9169 ei->new_delalloc_bytes = 0;
9170 ei->defrag_bytes = 0;
9171 ei->disk_i_size = 0;
9174 ei->index_cnt = (u64)-1;
9176 ei->last_unlink_trans = 0;
9177 ei->last_log_commit = 0;
9179 spin_lock_init(&ei->lock);
9180 ei->outstanding_extents = 0;
9181 if (sb->s_magic != BTRFS_TEST_MAGIC)
9182 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9183 BTRFS_BLOCK_RSV_DELALLOC);
9184 ei->runtime_flags = 0;
9185 ei->prop_compress = BTRFS_COMPRESS_NONE;
9186 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9188 ei->delayed_node = NULL;
9190 ei->i_otime.tv_sec = 0;
9191 ei->i_otime.tv_nsec = 0;
9193 inode = &ei->vfs_inode;
9194 extent_map_tree_init(&ei->extent_tree);
9195 extent_io_tree_init(&ei->io_tree, inode);
9196 extent_io_tree_init(&ei->io_failure_tree, inode);
9197 ei->io_tree.track_uptodate = 1;
9198 ei->io_failure_tree.track_uptodate = 1;
9199 atomic_set(&ei->sync_writers, 0);
9200 mutex_init(&ei->log_mutex);
9201 mutex_init(&ei->delalloc_mutex);
9202 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9203 INIT_LIST_HEAD(&ei->delalloc_inodes);
9204 INIT_LIST_HEAD(&ei->delayed_iput);
9205 RB_CLEAR_NODE(&ei->rb_node);
9206 init_rwsem(&ei->dio_sem);
9211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9212 void btrfs_test_destroy_inode(struct inode *inode)
9214 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9215 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9219 static void btrfs_i_callback(struct rcu_head *head)
9221 struct inode *inode = container_of(head, struct inode, i_rcu);
9222 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9225 void btrfs_destroy_inode(struct inode *inode)
9227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9228 struct btrfs_ordered_extent *ordered;
9229 struct btrfs_root *root = BTRFS_I(inode)->root;
9231 WARN_ON(!hlist_empty(&inode->i_dentry));
9232 WARN_ON(inode->i_data.nrpages);
9233 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9234 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9235 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9236 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9237 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9238 WARN_ON(BTRFS_I(inode)->csum_bytes);
9239 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9242 * This can happen where we create an inode, but somebody else also
9243 * created the same inode and we need to destroy the one we already
9250 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9255 "found ordered extent %llu %llu on inode cleanup",
9256 ordered->file_offset, ordered->len);
9257 btrfs_remove_ordered_extent(inode, ordered);
9258 btrfs_put_ordered_extent(ordered);
9259 btrfs_put_ordered_extent(ordered);
9262 btrfs_qgroup_check_reserved_leak(inode);
9263 inode_tree_del(inode);
9264 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9266 call_rcu(&inode->i_rcu, btrfs_i_callback);
9269 int btrfs_drop_inode(struct inode *inode)
9271 struct btrfs_root *root = BTRFS_I(inode)->root;
9276 /* the snap/subvol tree is on deleting */
9277 if (btrfs_root_refs(&root->root_item) == 0)
9280 return generic_drop_inode(inode);
9283 static void init_once(void *foo)
9285 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9287 inode_init_once(&ei->vfs_inode);
9290 void __cold btrfs_destroy_cachep(void)
9293 * Make sure all delayed rcu free inodes are flushed before we
9297 kmem_cache_destroy(btrfs_inode_cachep);
9298 kmem_cache_destroy(btrfs_trans_handle_cachep);
9299 kmem_cache_destroy(btrfs_path_cachep);
9300 kmem_cache_destroy(btrfs_free_space_cachep);
9303 int __init btrfs_init_cachep(void)
9305 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9306 sizeof(struct btrfs_inode), 0,
9307 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9309 if (!btrfs_inode_cachep)
9312 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9313 sizeof(struct btrfs_trans_handle), 0,
9314 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9315 if (!btrfs_trans_handle_cachep)
9318 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9319 sizeof(struct btrfs_path), 0,
9320 SLAB_MEM_SPREAD, NULL);
9321 if (!btrfs_path_cachep)
9324 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9325 sizeof(struct btrfs_free_space), 0,
9326 SLAB_MEM_SPREAD, NULL);
9327 if (!btrfs_free_space_cachep)
9332 btrfs_destroy_cachep();
9336 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9337 u32 request_mask, unsigned int flags)
9340 struct inode *inode = d_inode(path->dentry);
9341 u32 blocksize = inode->i_sb->s_blocksize;
9342 u32 bi_flags = BTRFS_I(inode)->flags;
9344 stat->result_mask |= STATX_BTIME;
9345 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9346 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9347 if (bi_flags & BTRFS_INODE_APPEND)
9348 stat->attributes |= STATX_ATTR_APPEND;
9349 if (bi_flags & BTRFS_INODE_COMPRESS)
9350 stat->attributes |= STATX_ATTR_COMPRESSED;
9351 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9352 stat->attributes |= STATX_ATTR_IMMUTABLE;
9353 if (bi_flags & BTRFS_INODE_NODUMP)
9354 stat->attributes |= STATX_ATTR_NODUMP;
9356 stat->attributes_mask |= (STATX_ATTR_APPEND |
9357 STATX_ATTR_COMPRESSED |
9358 STATX_ATTR_IMMUTABLE |
9361 generic_fillattr(inode, stat);
9362 stat->dev = BTRFS_I(inode)->root->anon_dev;
9364 spin_lock(&BTRFS_I(inode)->lock);
9365 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9366 spin_unlock(&BTRFS_I(inode)->lock);
9367 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9368 ALIGN(delalloc_bytes, blocksize)) >> 9;
9372 static int btrfs_rename_exchange(struct inode *old_dir,
9373 struct dentry *old_dentry,
9374 struct inode *new_dir,
9375 struct dentry *new_dentry)
9377 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9378 struct btrfs_trans_handle *trans;
9379 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9380 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9381 struct inode *new_inode = new_dentry->d_inode;
9382 struct inode *old_inode = old_dentry->d_inode;
9383 struct timespec64 ctime = current_time(old_inode);
9384 struct dentry *parent;
9385 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9386 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9392 bool root_log_pinned = false;
9393 bool dest_log_pinned = false;
9395 /* we only allow rename subvolume link between subvolumes */
9396 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9399 /* close the race window with snapshot create/destroy ioctl */
9400 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9401 down_read(&fs_info->subvol_sem);
9402 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9403 down_read(&fs_info->subvol_sem);
9406 * We want to reserve the absolute worst case amount of items. So if
9407 * both inodes are subvols and we need to unlink them then that would
9408 * require 4 item modifications, but if they are both normal inodes it
9409 * would require 5 item modifications, so we'll assume their normal
9410 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9411 * should cover the worst case number of items we'll modify.
9413 trans = btrfs_start_transaction(root, 12);
9414 if (IS_ERR(trans)) {
9415 ret = PTR_ERR(trans);
9420 * We need to find a free sequence number both in the source and
9421 * in the destination directory for the exchange.
9423 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9426 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9430 BTRFS_I(old_inode)->dir_index = 0ULL;
9431 BTRFS_I(new_inode)->dir_index = 0ULL;
9433 /* Reference for the source. */
9434 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9435 /* force full log commit if subvolume involved. */
9436 btrfs_set_log_full_commit(fs_info, trans);
9438 btrfs_pin_log_trans(root);
9439 root_log_pinned = true;
9440 ret = btrfs_insert_inode_ref(trans, dest,
9441 new_dentry->d_name.name,
9442 new_dentry->d_name.len,
9444 btrfs_ino(BTRFS_I(new_dir)),
9450 /* And now for the dest. */
9451 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9452 /* force full log commit if subvolume involved. */
9453 btrfs_set_log_full_commit(fs_info, trans);
9455 btrfs_pin_log_trans(dest);
9456 dest_log_pinned = true;
9457 ret = btrfs_insert_inode_ref(trans, root,
9458 old_dentry->d_name.name,
9459 old_dentry->d_name.len,
9461 btrfs_ino(BTRFS_I(old_dir)),
9467 /* Update inode version and ctime/mtime. */
9468 inode_inc_iversion(old_dir);
9469 inode_inc_iversion(new_dir);
9470 inode_inc_iversion(old_inode);
9471 inode_inc_iversion(new_inode);
9472 old_dir->i_ctime = old_dir->i_mtime = ctime;
9473 new_dir->i_ctime = new_dir->i_mtime = ctime;
9474 old_inode->i_ctime = ctime;
9475 new_inode->i_ctime = ctime;
9477 if (old_dentry->d_parent != new_dentry->d_parent) {
9478 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9479 BTRFS_I(old_inode), 1);
9480 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9481 BTRFS_I(new_inode), 1);
9484 /* src is a subvolume */
9485 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9486 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9487 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9488 old_dentry->d_name.name,
9489 old_dentry->d_name.len);
9490 } else { /* src is an inode */
9491 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9492 BTRFS_I(old_dentry->d_inode),
9493 old_dentry->d_name.name,
9494 old_dentry->d_name.len);
9496 ret = btrfs_update_inode(trans, root, old_inode);
9499 btrfs_abort_transaction(trans, ret);
9503 /* dest is a subvolume */
9504 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9505 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9506 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9507 new_dentry->d_name.name,
9508 new_dentry->d_name.len);
9509 } else { /* dest is an inode */
9510 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9511 BTRFS_I(new_dentry->d_inode),
9512 new_dentry->d_name.name,
9513 new_dentry->d_name.len);
9515 ret = btrfs_update_inode(trans, dest, new_inode);
9518 btrfs_abort_transaction(trans, ret);
9522 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9523 new_dentry->d_name.name,
9524 new_dentry->d_name.len, 0, old_idx);
9526 btrfs_abort_transaction(trans, ret);
9530 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9531 old_dentry->d_name.name,
9532 old_dentry->d_name.len, 0, new_idx);
9534 btrfs_abort_transaction(trans, ret);
9538 if (old_inode->i_nlink == 1)
9539 BTRFS_I(old_inode)->dir_index = old_idx;
9540 if (new_inode->i_nlink == 1)
9541 BTRFS_I(new_inode)->dir_index = new_idx;
9543 if (root_log_pinned) {
9544 parent = new_dentry->d_parent;
9545 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9547 btrfs_end_log_trans(root);
9548 root_log_pinned = false;
9550 if (dest_log_pinned) {
9551 parent = old_dentry->d_parent;
9552 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9554 btrfs_end_log_trans(dest);
9555 dest_log_pinned = false;
9559 * If we have pinned a log and an error happened, we unpin tasks
9560 * trying to sync the log and force them to fallback to a transaction
9561 * commit if the log currently contains any of the inodes involved in
9562 * this rename operation (to ensure we do not persist a log with an
9563 * inconsistent state for any of these inodes or leading to any
9564 * inconsistencies when replayed). If the transaction was aborted, the
9565 * abortion reason is propagated to userspace when attempting to commit
9566 * the transaction. If the log does not contain any of these inodes, we
9567 * allow the tasks to sync it.
9569 if (ret && (root_log_pinned || dest_log_pinned)) {
9570 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9571 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9572 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9574 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9575 btrfs_set_log_full_commit(fs_info, trans);
9577 if (root_log_pinned) {
9578 btrfs_end_log_trans(root);
9579 root_log_pinned = false;
9581 if (dest_log_pinned) {
9582 btrfs_end_log_trans(dest);
9583 dest_log_pinned = false;
9586 ret2 = btrfs_end_transaction(trans);
9587 ret = ret ? ret : ret2;
9589 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9590 up_read(&fs_info->subvol_sem);
9591 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9592 up_read(&fs_info->subvol_sem);
9597 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9598 struct btrfs_root *root,
9600 struct dentry *dentry)
9603 struct inode *inode;
9607 ret = btrfs_find_free_ino(root, &objectid);
9611 inode = btrfs_new_inode(trans, root, dir,
9612 dentry->d_name.name,
9614 btrfs_ino(BTRFS_I(dir)),
9616 S_IFCHR | WHITEOUT_MODE,
9619 if (IS_ERR(inode)) {
9620 ret = PTR_ERR(inode);
9624 inode->i_op = &btrfs_special_inode_operations;
9625 init_special_inode(inode, inode->i_mode,
9628 ret = btrfs_init_inode_security(trans, inode, dir,
9633 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9634 BTRFS_I(inode), 0, index);
9638 ret = btrfs_update_inode(trans, root, inode);
9640 unlock_new_inode(inode);
9642 inode_dec_link_count(inode);
9648 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9649 struct inode *new_dir, struct dentry *new_dentry,
9652 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9653 struct btrfs_trans_handle *trans;
9654 unsigned int trans_num_items;
9655 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9656 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9657 struct inode *new_inode = d_inode(new_dentry);
9658 struct inode *old_inode = d_inode(old_dentry);
9662 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9663 bool log_pinned = false;
9665 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9668 /* we only allow rename subvolume link between subvolumes */
9669 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9672 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9673 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9676 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9677 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9681 /* check for collisions, even if the name isn't there */
9682 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9683 new_dentry->d_name.name,
9684 new_dentry->d_name.len);
9687 if (ret == -EEXIST) {
9689 * eexist without a new_inode */
9690 if (WARN_ON(!new_inode)) {
9694 /* maybe -EOVERFLOW */
9701 * we're using rename to replace one file with another. Start IO on it
9702 * now so we don't add too much work to the end of the transaction
9704 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9705 filemap_flush(old_inode->i_mapping);
9707 /* close the racy window with snapshot create/destroy ioctl */
9708 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9709 down_read(&fs_info->subvol_sem);
9711 * We want to reserve the absolute worst case amount of items. So if
9712 * both inodes are subvols and we need to unlink them then that would
9713 * require 4 item modifications, but if they are both normal inodes it
9714 * would require 5 item modifications, so we'll assume they are normal
9715 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9716 * should cover the worst case number of items we'll modify.
9717 * If our rename has the whiteout flag, we need more 5 units for the
9718 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9719 * when selinux is enabled).
9721 trans_num_items = 11;
9722 if (flags & RENAME_WHITEOUT)
9723 trans_num_items += 5;
9724 trans = btrfs_start_transaction(root, trans_num_items);
9725 if (IS_ERR(trans)) {
9726 ret = PTR_ERR(trans);
9731 btrfs_record_root_in_trans(trans, dest);
9733 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9737 BTRFS_I(old_inode)->dir_index = 0ULL;
9738 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9739 /* force full log commit if subvolume involved. */
9740 btrfs_set_log_full_commit(fs_info, trans);
9742 btrfs_pin_log_trans(root);
9744 ret = btrfs_insert_inode_ref(trans, dest,
9745 new_dentry->d_name.name,
9746 new_dentry->d_name.len,
9748 btrfs_ino(BTRFS_I(new_dir)), index);
9753 inode_inc_iversion(old_dir);
9754 inode_inc_iversion(new_dir);
9755 inode_inc_iversion(old_inode);
9756 old_dir->i_ctime = old_dir->i_mtime =
9757 new_dir->i_ctime = new_dir->i_mtime =
9758 old_inode->i_ctime = current_time(old_dir);
9760 if (old_dentry->d_parent != new_dentry->d_parent)
9761 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9762 BTRFS_I(old_inode), 1);
9764 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9765 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9766 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9767 old_dentry->d_name.name,
9768 old_dentry->d_name.len);
9770 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9771 BTRFS_I(d_inode(old_dentry)),
9772 old_dentry->d_name.name,
9773 old_dentry->d_name.len);
9775 ret = btrfs_update_inode(trans, root, old_inode);
9778 btrfs_abort_transaction(trans, ret);
9783 inode_inc_iversion(new_inode);
9784 new_inode->i_ctime = current_time(new_inode);
9785 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9786 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9787 root_objectid = BTRFS_I(new_inode)->location.objectid;
9788 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9789 new_dentry->d_name.name,
9790 new_dentry->d_name.len);
9791 BUG_ON(new_inode->i_nlink == 0);
9793 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9794 BTRFS_I(d_inode(new_dentry)),
9795 new_dentry->d_name.name,
9796 new_dentry->d_name.len);
9798 if (!ret && new_inode->i_nlink == 0)
9799 ret = btrfs_orphan_add(trans,
9800 BTRFS_I(d_inode(new_dentry)));
9802 btrfs_abort_transaction(trans, ret);
9807 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9808 new_dentry->d_name.name,
9809 new_dentry->d_name.len, 0, index);
9811 btrfs_abort_transaction(trans, ret);
9815 if (old_inode->i_nlink == 1)
9816 BTRFS_I(old_inode)->dir_index = index;
9819 struct dentry *parent = new_dentry->d_parent;
9821 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9823 btrfs_end_log_trans(root);
9827 if (flags & RENAME_WHITEOUT) {
9828 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9832 btrfs_abort_transaction(trans, ret);
9838 * If we have pinned the log and an error happened, we unpin tasks
9839 * trying to sync the log and force them to fallback to a transaction
9840 * commit if the log currently contains any of the inodes involved in
9841 * this rename operation (to ensure we do not persist a log with an
9842 * inconsistent state for any of these inodes or leading to any
9843 * inconsistencies when replayed). If the transaction was aborted, the
9844 * abortion reason is propagated to userspace when attempting to commit
9845 * the transaction. If the log does not contain any of these inodes, we
9846 * allow the tasks to sync it.
9848 if (ret && log_pinned) {
9849 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9850 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9851 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9853 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9854 btrfs_set_log_full_commit(fs_info, trans);
9856 btrfs_end_log_trans(root);
9859 btrfs_end_transaction(trans);
9861 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9862 up_read(&fs_info->subvol_sem);
9867 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9868 struct inode *new_dir, struct dentry *new_dentry,
9871 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9874 if (flags & RENAME_EXCHANGE)
9875 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9878 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9881 struct btrfs_delalloc_work {
9882 struct inode *inode;
9883 struct completion completion;
9884 struct list_head list;
9885 struct btrfs_work work;
9888 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9890 struct btrfs_delalloc_work *delalloc_work;
9891 struct inode *inode;
9893 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9895 inode = delalloc_work->inode;
9896 filemap_flush(inode->i_mapping);
9897 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9898 &BTRFS_I(inode)->runtime_flags))
9899 filemap_flush(inode->i_mapping);
9902 complete(&delalloc_work->completion);
9905 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9907 struct btrfs_delalloc_work *work;
9909 work = kmalloc(sizeof(*work), GFP_NOFS);
9913 init_completion(&work->completion);
9914 INIT_LIST_HEAD(&work->list);
9915 work->inode = inode;
9916 WARN_ON_ONCE(!inode);
9917 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9918 btrfs_run_delalloc_work, NULL, NULL);
9924 * some fairly slow code that needs optimization. This walks the list
9925 * of all the inodes with pending delalloc and forces them to disk.
9927 static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9929 struct btrfs_inode *binode;
9930 struct inode *inode;
9931 struct btrfs_delalloc_work *work, *next;
9932 struct list_head works;
9933 struct list_head splice;
9936 INIT_LIST_HEAD(&works);
9937 INIT_LIST_HEAD(&splice);
9939 mutex_lock(&root->delalloc_mutex);
9940 spin_lock(&root->delalloc_lock);
9941 list_splice_init(&root->delalloc_inodes, &splice);
9942 while (!list_empty(&splice)) {
9943 binode = list_entry(splice.next, struct btrfs_inode,
9946 list_move_tail(&binode->delalloc_inodes,
9947 &root->delalloc_inodes);
9948 inode = igrab(&binode->vfs_inode);
9950 cond_resched_lock(&root->delalloc_lock);
9953 spin_unlock(&root->delalloc_lock);
9955 work = btrfs_alloc_delalloc_work(inode);
9961 list_add_tail(&work->list, &works);
9962 btrfs_queue_work(root->fs_info->flush_workers,
9965 if (nr != -1 && ret >= nr)
9968 spin_lock(&root->delalloc_lock);
9970 spin_unlock(&root->delalloc_lock);
9973 list_for_each_entry_safe(work, next, &works, list) {
9974 list_del_init(&work->list);
9975 wait_for_completion(&work->completion);
9979 if (!list_empty(&splice)) {
9980 spin_lock(&root->delalloc_lock);
9981 list_splice_tail(&splice, &root->delalloc_inodes);
9982 spin_unlock(&root->delalloc_lock);
9984 mutex_unlock(&root->delalloc_mutex);
9988 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
9990 struct btrfs_fs_info *fs_info = root->fs_info;
9993 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9996 ret = start_delalloc_inodes(root, -1);
10002 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10004 struct btrfs_root *root;
10005 struct list_head splice;
10008 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10011 INIT_LIST_HEAD(&splice);
10013 mutex_lock(&fs_info->delalloc_root_mutex);
10014 spin_lock(&fs_info->delalloc_root_lock);
10015 list_splice_init(&fs_info->delalloc_roots, &splice);
10016 while (!list_empty(&splice) && nr) {
10017 root = list_first_entry(&splice, struct btrfs_root,
10019 root = btrfs_grab_fs_root(root);
10021 list_move_tail(&root->delalloc_root,
10022 &fs_info->delalloc_roots);
10023 spin_unlock(&fs_info->delalloc_root_lock);
10025 ret = start_delalloc_inodes(root, nr);
10026 btrfs_put_fs_root(root);
10034 spin_lock(&fs_info->delalloc_root_lock);
10036 spin_unlock(&fs_info->delalloc_root_lock);
10040 if (!list_empty(&splice)) {
10041 spin_lock(&fs_info->delalloc_root_lock);
10042 list_splice_tail(&splice, &fs_info->delalloc_roots);
10043 spin_unlock(&fs_info->delalloc_root_lock);
10045 mutex_unlock(&fs_info->delalloc_root_mutex);
10049 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10050 const char *symname)
10052 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10053 struct btrfs_trans_handle *trans;
10054 struct btrfs_root *root = BTRFS_I(dir)->root;
10055 struct btrfs_path *path;
10056 struct btrfs_key key;
10057 struct inode *inode = NULL;
10064 struct btrfs_file_extent_item *ei;
10065 struct extent_buffer *leaf;
10067 name_len = strlen(symname);
10068 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10069 return -ENAMETOOLONG;
10072 * 2 items for inode item and ref
10073 * 2 items for dir items
10074 * 1 item for updating parent inode item
10075 * 1 item for the inline extent item
10076 * 1 item for xattr if selinux is on
10078 trans = btrfs_start_transaction(root, 7);
10080 return PTR_ERR(trans);
10082 err = btrfs_find_free_ino(root, &objectid);
10086 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10087 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10088 objectid, S_IFLNK|S_IRWXUGO, &index);
10089 if (IS_ERR(inode)) {
10090 err = PTR_ERR(inode);
10096 * If the active LSM wants to access the inode during
10097 * d_instantiate it needs these. Smack checks to see
10098 * if the filesystem supports xattrs by looking at the
10101 inode->i_fop = &btrfs_file_operations;
10102 inode->i_op = &btrfs_file_inode_operations;
10103 inode->i_mapping->a_ops = &btrfs_aops;
10104 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10106 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10110 path = btrfs_alloc_path();
10115 key.objectid = btrfs_ino(BTRFS_I(inode));
10117 key.type = BTRFS_EXTENT_DATA_KEY;
10118 datasize = btrfs_file_extent_calc_inline_size(name_len);
10119 err = btrfs_insert_empty_item(trans, root, path, &key,
10122 btrfs_free_path(path);
10125 leaf = path->nodes[0];
10126 ei = btrfs_item_ptr(leaf, path->slots[0],
10127 struct btrfs_file_extent_item);
10128 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10129 btrfs_set_file_extent_type(leaf, ei,
10130 BTRFS_FILE_EXTENT_INLINE);
10131 btrfs_set_file_extent_encryption(leaf, ei, 0);
10132 btrfs_set_file_extent_compression(leaf, ei, 0);
10133 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10134 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10136 ptr = btrfs_file_extent_inline_start(ei);
10137 write_extent_buffer(leaf, symname, ptr, name_len);
10138 btrfs_mark_buffer_dirty(leaf);
10139 btrfs_free_path(path);
10141 inode->i_op = &btrfs_symlink_inode_operations;
10142 inode_nohighmem(inode);
10143 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10144 inode_set_bytes(inode, name_len);
10145 btrfs_i_size_write(BTRFS_I(inode), name_len);
10146 err = btrfs_update_inode(trans, root, inode);
10148 * Last step, add directory indexes for our symlink inode. This is the
10149 * last step to avoid extra cleanup of these indexes if an error happens
10153 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10154 BTRFS_I(inode), 0, index);
10158 d_instantiate_new(dentry, inode);
10161 btrfs_end_transaction(trans);
10162 if (err && inode) {
10163 inode_dec_link_count(inode);
10164 discard_new_inode(inode);
10166 btrfs_btree_balance_dirty(fs_info);
10170 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10171 u64 start, u64 num_bytes, u64 min_size,
10172 loff_t actual_len, u64 *alloc_hint,
10173 struct btrfs_trans_handle *trans)
10175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10176 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10177 struct extent_map *em;
10178 struct btrfs_root *root = BTRFS_I(inode)->root;
10179 struct btrfs_key ins;
10180 u64 cur_offset = start;
10183 u64 last_alloc = (u64)-1;
10185 bool own_trans = true;
10186 u64 end = start + num_bytes - 1;
10190 while (num_bytes > 0) {
10192 trans = btrfs_start_transaction(root, 3);
10193 if (IS_ERR(trans)) {
10194 ret = PTR_ERR(trans);
10199 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10200 cur_bytes = max(cur_bytes, min_size);
10202 * If we are severely fragmented we could end up with really
10203 * small allocations, so if the allocator is returning small
10204 * chunks lets make its job easier by only searching for those
10207 cur_bytes = min(cur_bytes, last_alloc);
10208 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10209 min_size, 0, *alloc_hint, &ins, 1, 0);
10212 btrfs_end_transaction(trans);
10215 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10217 last_alloc = ins.offset;
10218 ret = insert_reserved_file_extent(trans, inode,
10219 cur_offset, ins.objectid,
10220 ins.offset, ins.offset,
10221 ins.offset, 0, 0, 0,
10222 BTRFS_FILE_EXTENT_PREALLOC);
10224 btrfs_free_reserved_extent(fs_info, ins.objectid,
10226 btrfs_abort_transaction(trans, ret);
10228 btrfs_end_transaction(trans);
10232 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10233 cur_offset + ins.offset -1, 0);
10235 em = alloc_extent_map();
10237 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10238 &BTRFS_I(inode)->runtime_flags);
10242 em->start = cur_offset;
10243 em->orig_start = cur_offset;
10244 em->len = ins.offset;
10245 em->block_start = ins.objectid;
10246 em->block_len = ins.offset;
10247 em->orig_block_len = ins.offset;
10248 em->ram_bytes = ins.offset;
10249 em->bdev = fs_info->fs_devices->latest_bdev;
10250 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10251 em->generation = trans->transid;
10254 write_lock(&em_tree->lock);
10255 ret = add_extent_mapping(em_tree, em, 1);
10256 write_unlock(&em_tree->lock);
10257 if (ret != -EEXIST)
10259 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10260 cur_offset + ins.offset - 1,
10263 free_extent_map(em);
10265 num_bytes -= ins.offset;
10266 cur_offset += ins.offset;
10267 *alloc_hint = ins.objectid + ins.offset;
10269 inode_inc_iversion(inode);
10270 inode->i_ctime = current_time(inode);
10271 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10272 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10273 (actual_len > inode->i_size) &&
10274 (cur_offset > inode->i_size)) {
10275 if (cur_offset > actual_len)
10276 i_size = actual_len;
10278 i_size = cur_offset;
10279 i_size_write(inode, i_size);
10280 btrfs_ordered_update_i_size(inode, i_size, NULL);
10283 ret = btrfs_update_inode(trans, root, inode);
10286 btrfs_abort_transaction(trans, ret);
10288 btrfs_end_transaction(trans);
10293 btrfs_end_transaction(trans);
10295 if (cur_offset < end)
10296 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10297 end - cur_offset + 1);
10301 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10302 u64 start, u64 num_bytes, u64 min_size,
10303 loff_t actual_len, u64 *alloc_hint)
10305 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10306 min_size, actual_len, alloc_hint,
10310 int btrfs_prealloc_file_range_trans(struct inode *inode,
10311 struct btrfs_trans_handle *trans, int mode,
10312 u64 start, u64 num_bytes, u64 min_size,
10313 loff_t actual_len, u64 *alloc_hint)
10315 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10316 min_size, actual_len, alloc_hint, trans);
10319 static int btrfs_set_page_dirty(struct page *page)
10321 return __set_page_dirty_nobuffers(page);
10324 static int btrfs_permission(struct inode *inode, int mask)
10326 struct btrfs_root *root = BTRFS_I(inode)->root;
10327 umode_t mode = inode->i_mode;
10329 if (mask & MAY_WRITE &&
10330 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10331 if (btrfs_root_readonly(root))
10333 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10336 return generic_permission(inode, mask);
10339 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10341 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10342 struct btrfs_trans_handle *trans;
10343 struct btrfs_root *root = BTRFS_I(dir)->root;
10344 struct inode *inode = NULL;
10350 * 5 units required for adding orphan entry
10352 trans = btrfs_start_transaction(root, 5);
10354 return PTR_ERR(trans);
10356 ret = btrfs_find_free_ino(root, &objectid);
10360 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10361 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10362 if (IS_ERR(inode)) {
10363 ret = PTR_ERR(inode);
10368 inode->i_fop = &btrfs_file_operations;
10369 inode->i_op = &btrfs_file_inode_operations;
10371 inode->i_mapping->a_ops = &btrfs_aops;
10372 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10374 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10378 ret = btrfs_update_inode(trans, root, inode);
10381 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10386 * We set number of links to 0 in btrfs_new_inode(), and here we set
10387 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10390 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10392 set_nlink(inode, 1);
10393 d_tmpfile(dentry, inode);
10394 unlock_new_inode(inode);
10395 mark_inode_dirty(inode);
10397 btrfs_end_transaction(trans);
10399 discard_new_inode(inode);
10400 btrfs_btree_balance_dirty(fs_info);
10404 __attribute__((const))
10405 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10410 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10411 u64 start, u64 end)
10413 struct inode *inode = private_data;
10416 isize = i_size_read(inode);
10417 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10418 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10419 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10420 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10424 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10426 struct inode *inode = tree->private_data;
10427 unsigned long index = start >> PAGE_SHIFT;
10428 unsigned long end_index = end >> PAGE_SHIFT;
10431 while (index <= end_index) {
10432 page = find_get_page(inode->i_mapping, index);
10433 ASSERT(page); /* Pages should be in the extent_io_tree */
10434 set_page_writeback(page);
10440 static const struct inode_operations btrfs_dir_inode_operations = {
10441 .getattr = btrfs_getattr,
10442 .lookup = btrfs_lookup,
10443 .create = btrfs_create,
10444 .unlink = btrfs_unlink,
10445 .link = btrfs_link,
10446 .mkdir = btrfs_mkdir,
10447 .rmdir = btrfs_rmdir,
10448 .rename = btrfs_rename2,
10449 .symlink = btrfs_symlink,
10450 .setattr = btrfs_setattr,
10451 .mknod = btrfs_mknod,
10452 .listxattr = btrfs_listxattr,
10453 .permission = btrfs_permission,
10454 .get_acl = btrfs_get_acl,
10455 .set_acl = btrfs_set_acl,
10456 .update_time = btrfs_update_time,
10457 .tmpfile = btrfs_tmpfile,
10459 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10460 .lookup = btrfs_lookup,
10461 .permission = btrfs_permission,
10462 .update_time = btrfs_update_time,
10465 static const struct file_operations btrfs_dir_file_operations = {
10466 .llseek = generic_file_llseek,
10467 .read = generic_read_dir,
10468 .iterate_shared = btrfs_real_readdir,
10469 .open = btrfs_opendir,
10470 .unlocked_ioctl = btrfs_ioctl,
10471 #ifdef CONFIG_COMPAT
10472 .compat_ioctl = btrfs_compat_ioctl,
10474 .release = btrfs_release_file,
10475 .fsync = btrfs_sync_file,
10478 static const struct extent_io_ops btrfs_extent_io_ops = {
10479 /* mandatory callbacks */
10480 .submit_bio_hook = btrfs_submit_bio_hook,
10481 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10482 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10484 /* optional callbacks */
10485 .fill_delalloc = run_delalloc_range,
10486 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10487 .writepage_start_hook = btrfs_writepage_start_hook,
10488 .set_bit_hook = btrfs_set_bit_hook,
10489 .clear_bit_hook = btrfs_clear_bit_hook,
10490 .merge_extent_hook = btrfs_merge_extent_hook,
10491 .split_extent_hook = btrfs_split_extent_hook,
10492 .check_extent_io_range = btrfs_check_extent_io_range,
10496 * btrfs doesn't support the bmap operation because swapfiles
10497 * use bmap to make a mapping of extents in the file. They assume
10498 * these extents won't change over the life of the file and they
10499 * use the bmap result to do IO directly to the drive.
10501 * the btrfs bmap call would return logical addresses that aren't
10502 * suitable for IO and they also will change frequently as COW
10503 * operations happen. So, swapfile + btrfs == corruption.
10505 * For now we're avoiding this by dropping bmap.
10507 static const struct address_space_operations btrfs_aops = {
10508 .readpage = btrfs_readpage,
10509 .writepage = btrfs_writepage,
10510 .writepages = btrfs_writepages,
10511 .readpages = btrfs_readpages,
10512 .direct_IO = btrfs_direct_IO,
10513 .invalidatepage = btrfs_invalidatepage,
10514 .releasepage = btrfs_releasepage,
10515 .set_page_dirty = btrfs_set_page_dirty,
10516 .error_remove_page = generic_error_remove_page,
10519 static const struct address_space_operations btrfs_symlink_aops = {
10520 .readpage = btrfs_readpage,
10521 .writepage = btrfs_writepage,
10522 .invalidatepage = btrfs_invalidatepage,
10523 .releasepage = btrfs_releasepage,
10526 static const struct inode_operations btrfs_file_inode_operations = {
10527 .getattr = btrfs_getattr,
10528 .setattr = btrfs_setattr,
10529 .listxattr = btrfs_listxattr,
10530 .permission = btrfs_permission,
10531 .fiemap = btrfs_fiemap,
10532 .get_acl = btrfs_get_acl,
10533 .set_acl = btrfs_set_acl,
10534 .update_time = btrfs_update_time,
10536 static const struct inode_operations btrfs_special_inode_operations = {
10537 .getattr = btrfs_getattr,
10538 .setattr = btrfs_setattr,
10539 .permission = btrfs_permission,
10540 .listxattr = btrfs_listxattr,
10541 .get_acl = btrfs_get_acl,
10542 .set_acl = btrfs_set_acl,
10543 .update_time = btrfs_update_time,
10545 static const struct inode_operations btrfs_symlink_inode_operations = {
10546 .get_link = page_get_link,
10547 .getattr = btrfs_getattr,
10548 .setattr = btrfs_setattr,
10549 .permission = btrfs_permission,
10550 .listxattr = btrfs_listxattr,
10551 .update_time = btrfs_update_time,
10554 const struct dentry_operations btrfs_dentry_operations = {
10555 .d_delete = btrfs_dentry_delete,