1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
40 #include "compression.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
49 struct btrfs_iget_args {
50 struct btrfs_key *location;
51 struct btrfs_root *root;
54 struct btrfs_dio_data {
56 u64 unsubmitted_oe_range_start;
57 u64 unsubmitted_oe_range_end;
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct address_space_operations btrfs_symlink_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, u64 delalloc_end,
93 int *page_started, unsigned long *nr_written,
94 int unlock, struct btrfs_dedupe_hash *hash);
95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 u64 orig_start, u64 block_start,
97 u64 block_len, u64 orig_block_len,
98 u64 ram_bytes, int compress_type,
101 static void __endio_write_update_ordered(struct inode *inode,
102 const u64 offset, const u64 bytes,
103 const bool uptodate);
106 * Cleanup all submitted ordered extents in specified range to handle errors
107 * from the fill_dellaloc() callback.
109 * NOTE: caller must ensure that when an error happens, it can not call
110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112 * to be released, which we want to happen only when finishing the ordered
113 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
114 * fill_delalloc() callback already does proper cleanup for the first page of
115 * the range, that is, it invokes the callback writepage_end_io_hook() for the
116 * range of the first page.
118 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
122 unsigned long index = offset >> PAGE_SHIFT;
123 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
126 while (index <= end_index) {
127 page = find_get_page(inode->i_mapping, index);
131 ClearPagePrivate2(page);
134 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
135 bytes - PAGE_SIZE, false);
138 static int btrfs_dirty_inode(struct inode *inode);
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode *inode)
143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148 struct inode *inode, struct inode *dir,
149 const struct qstr *qstr)
153 err = btrfs_init_acl(trans, inode, dir);
155 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
160 * this does all the hard work for inserting an inline extent into
161 * the btree. The caller should have done a btrfs_drop_extents so that
162 * no overlapping inline items exist in the btree
164 static int insert_inline_extent(struct btrfs_trans_handle *trans,
165 struct btrfs_path *path, int extent_inserted,
166 struct btrfs_root *root, struct inode *inode,
167 u64 start, size_t size, size_t compressed_size,
169 struct page **compressed_pages)
171 struct extent_buffer *leaf;
172 struct page *page = NULL;
175 struct btrfs_file_extent_item *ei;
177 size_t cur_size = size;
178 unsigned long offset;
180 if (compressed_size && compressed_pages)
181 cur_size = compressed_size;
183 inode_add_bytes(inode, size);
185 if (!extent_inserted) {
186 struct btrfs_key key;
189 key.objectid = btrfs_ino(BTRFS_I(inode));
191 key.type = BTRFS_EXTENT_DATA_KEY;
193 datasize = btrfs_file_extent_calc_inline_size(cur_size);
194 path->leave_spinning = 1;
195 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 leaf = path->nodes[0];
201 ei = btrfs_item_ptr(leaf, path->slots[0],
202 struct btrfs_file_extent_item);
203 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205 btrfs_set_file_extent_encryption(leaf, ei, 0);
206 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208 ptr = btrfs_file_extent_inline_start(ei);
210 if (compress_type != BTRFS_COMPRESS_NONE) {
213 while (compressed_size > 0) {
214 cpage = compressed_pages[i];
215 cur_size = min_t(unsigned long, compressed_size,
218 kaddr = kmap_atomic(cpage);
219 write_extent_buffer(leaf, kaddr, ptr, cur_size);
220 kunmap_atomic(kaddr);
224 compressed_size -= cur_size;
226 btrfs_set_file_extent_compression(leaf, ei,
229 page = find_get_page(inode->i_mapping,
230 start >> PAGE_SHIFT);
231 btrfs_set_file_extent_compression(leaf, ei, 0);
232 kaddr = kmap_atomic(page);
233 offset = start & (PAGE_SIZE - 1);
234 write_extent_buffer(leaf, kaddr + offset, ptr, size);
235 kunmap_atomic(kaddr);
238 btrfs_mark_buffer_dirty(leaf);
239 btrfs_release_path(path);
242 * we're an inline extent, so nobody can
243 * extend the file past i_size without locking
244 * a page we already have locked.
246 * We must do any isize and inode updates
247 * before we unlock the pages. Otherwise we
248 * could end up racing with unlink.
250 BTRFS_I(inode)->disk_i_size = inode->i_size;
251 ret = btrfs_update_inode(trans, root, inode);
259 * conditionally insert an inline extent into the file. This
260 * does the checks required to make sure the data is small enough
261 * to fit as an inline extent.
263 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
264 u64 end, size_t compressed_size,
266 struct page **compressed_pages)
268 struct btrfs_root *root = BTRFS_I(inode)->root;
269 struct btrfs_fs_info *fs_info = root->fs_info;
270 struct btrfs_trans_handle *trans;
271 u64 isize = i_size_read(inode);
272 u64 actual_end = min(end + 1, isize);
273 u64 inline_len = actual_end - start;
274 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
275 u64 data_len = inline_len;
277 struct btrfs_path *path;
278 int extent_inserted = 0;
279 u32 extent_item_size;
282 data_len = compressed_size;
285 actual_end > fs_info->sectorsize ||
286 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
288 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
290 data_len > fs_info->max_inline) {
294 path = btrfs_alloc_path();
298 trans = btrfs_join_transaction(root);
300 btrfs_free_path(path);
301 return PTR_ERR(trans);
303 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
305 if (compressed_size && compressed_pages)
306 extent_item_size = btrfs_file_extent_calc_inline_size(
309 extent_item_size = btrfs_file_extent_calc_inline_size(
312 ret = __btrfs_drop_extents(trans, root, inode, path,
313 start, aligned_end, NULL,
314 1, 1, extent_item_size, &extent_inserted);
316 btrfs_abort_transaction(trans, ret);
320 if (isize > actual_end)
321 inline_len = min_t(u64, isize, actual_end);
322 ret = insert_inline_extent(trans, path, extent_inserted,
324 inline_len, compressed_size,
325 compress_type, compressed_pages);
326 if (ret && ret != -ENOSPC) {
327 btrfs_abort_transaction(trans, ret);
329 } else if (ret == -ENOSPC) {
334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
335 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
338 * Don't forget to free the reserved space, as for inlined extent
339 * it won't count as data extent, free them directly here.
340 * And at reserve time, it's always aligned to page size, so
341 * just free one page here.
343 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
344 btrfs_free_path(path);
345 btrfs_end_transaction(trans);
349 struct async_extent {
354 unsigned long nr_pages;
356 struct list_head list;
361 struct btrfs_root *root;
362 struct page *locked_page;
365 unsigned int write_flags;
366 struct list_head extents;
367 struct btrfs_work work;
370 static noinline int add_async_extent(struct async_cow *cow,
371 u64 start, u64 ram_size,
374 unsigned long nr_pages,
377 struct async_extent *async_extent;
379 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
380 BUG_ON(!async_extent); /* -ENOMEM */
381 async_extent->start = start;
382 async_extent->ram_size = ram_size;
383 async_extent->compressed_size = compressed_size;
384 async_extent->pages = pages;
385 async_extent->nr_pages = nr_pages;
386 async_extent->compress_type = compress_type;
387 list_add_tail(&async_extent->list, &cow->extents);
391 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
396 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
399 if (BTRFS_I(inode)->defrag_compress)
401 /* bad compression ratios */
402 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
404 if (btrfs_test_opt(fs_info, COMPRESS) ||
405 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
406 BTRFS_I(inode)->prop_compress)
407 return btrfs_compress_heuristic(inode, start, end);
411 static inline void inode_should_defrag(struct btrfs_inode *inode,
412 u64 start, u64 end, u64 num_bytes, u64 small_write)
414 /* If this is a small write inside eof, kick off a defrag */
415 if (num_bytes < small_write &&
416 (start > 0 || end + 1 < inode->disk_i_size))
417 btrfs_add_inode_defrag(NULL, inode);
421 * we create compressed extents in two phases. The first
422 * phase compresses a range of pages that have already been
423 * locked (both pages and state bits are locked).
425 * This is done inside an ordered work queue, and the compression
426 * is spread across many cpus. The actual IO submission is step
427 * two, and the ordered work queue takes care of making sure that
428 * happens in the same order things were put onto the queue by
429 * writepages and friends.
431 * If this code finds it can't get good compression, it puts an
432 * entry onto the work queue to write the uncompressed bytes. This
433 * makes sure that both compressed inodes and uncompressed inodes
434 * are written in the same order that the flusher thread sent them
437 static noinline void compress_file_range(struct inode *inode,
438 struct page *locked_page,
440 struct async_cow *async_cow,
443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
444 u64 blocksize = fs_info->sectorsize;
446 u64 isize = i_size_read(inode);
448 struct page **pages = NULL;
449 unsigned long nr_pages;
450 unsigned long total_compressed = 0;
451 unsigned long total_in = 0;
454 int compress_type = fs_info->compress_type;
457 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
460 actual_end = min_t(u64, isize, end + 1);
463 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
464 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
465 nr_pages = min_t(unsigned long, nr_pages,
466 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
469 * we don't want to send crud past the end of i_size through
470 * compression, that's just a waste of CPU time. So, if the
471 * end of the file is before the start of our current
472 * requested range of bytes, we bail out to the uncompressed
473 * cleanup code that can deal with all of this.
475 * It isn't really the fastest way to fix things, but this is a
476 * very uncommon corner.
478 if (actual_end <= start)
479 goto cleanup_and_bail_uncompressed;
481 total_compressed = actual_end - start;
484 * skip compression for a small file range(<=blocksize) that
485 * isn't an inline extent, since it doesn't save disk space at all.
487 if (total_compressed <= blocksize &&
488 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
489 goto cleanup_and_bail_uncompressed;
491 total_compressed = min_t(unsigned long, total_compressed,
492 BTRFS_MAX_UNCOMPRESSED);
497 * we do compression for mount -o compress and when the
498 * inode has not been flagged as nocompress. This flag can
499 * change at any time if we discover bad compression ratios.
501 if (inode_need_compress(inode, start, end)) {
503 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
505 /* just bail out to the uncompressed code */
509 if (BTRFS_I(inode)->defrag_compress)
510 compress_type = BTRFS_I(inode)->defrag_compress;
511 else if (BTRFS_I(inode)->prop_compress)
512 compress_type = BTRFS_I(inode)->prop_compress;
515 * we need to call clear_page_dirty_for_io on each
516 * page in the range. Otherwise applications with the file
517 * mmap'd can wander in and change the page contents while
518 * we are compressing them.
520 * If the compression fails for any reason, we set the pages
521 * dirty again later on.
523 * Note that the remaining part is redirtied, the start pointer
524 * has moved, the end is the original one.
527 extent_range_clear_dirty_for_io(inode, start, end);
531 /* Compression level is applied here and only here */
532 ret = btrfs_compress_pages(
533 compress_type | (fs_info->compress_level << 4),
534 inode->i_mapping, start,
541 unsigned long offset = total_compressed &
543 struct page *page = pages[nr_pages - 1];
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
550 kaddr = kmap_atomic(page);
551 memset(kaddr + offset, 0,
553 kunmap_atomic(kaddr);
560 /* lets try to make an inline extent */
561 if (ret || total_in < actual_end) {
562 /* we didn't compress the entire range, try
563 * to make an uncompressed inline extent.
565 ret = cow_file_range_inline(inode, start, end, 0,
566 BTRFS_COMPRESS_NONE, NULL);
568 /* try making a compressed inline extent */
569 ret = cow_file_range_inline(inode, start, end,
571 compress_type, pages);
574 unsigned long clear_flags = EXTENT_DELALLOC |
575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
576 EXTENT_DO_ACCOUNTING;
577 unsigned long page_error_op;
579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
586 * We use DO_ACCOUNTING here because we need the
587 * delalloc_release_metadata to be done _after_ we drop
588 * our outstanding extent for clearing delalloc for this
591 extent_clear_unlock_delalloc(inode, start, end, end,
604 * we aren't doing an inline extent round the compressed size
605 * up to a block size boundary so the allocator does sane
608 total_compressed = ALIGN(total_compressed, blocksize);
611 * one last check to make sure the compression is really a
612 * win, compare the page count read with the blocks on disk,
613 * compression must free at least one sector size
615 total_in = ALIGN(total_in, PAGE_SIZE);
616 if (total_compressed + blocksize <= total_in) {
620 * The async work queues will take care of doing actual
621 * allocation on disk for these compressed pages, and
622 * will submit them to the elevator.
624 add_async_extent(async_cow, start, total_in,
625 total_compressed, pages, nr_pages,
628 if (start + total_in < end) {
639 * the compression code ran but failed to make things smaller,
640 * free any pages it allocated and our page pointer array
642 for (i = 0; i < nr_pages; i++) {
643 WARN_ON(pages[i]->mapping);
648 total_compressed = 0;
651 /* flag the file so we don't compress in the future */
652 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
653 !(BTRFS_I(inode)->prop_compress)) {
654 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
657 cleanup_and_bail_uncompressed:
659 * No compression, but we still need to write the pages in the file
660 * we've been given so far. redirty the locked page if it corresponds
661 * to our extent and set things up for the async work queue to run
662 * cow_file_range to do the normal delalloc dance.
664 if (page_offset(locked_page) >= start &&
665 page_offset(locked_page) <= end)
666 __set_page_dirty_nobuffers(locked_page);
667 /* unlocked later on in the async handlers */
670 extent_range_redirty_for_io(inode, start, end);
671 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672 BTRFS_COMPRESS_NONE);
678 for (i = 0; i < nr_pages; i++) {
679 WARN_ON(pages[i]->mapping);
685 static void free_async_extent_pages(struct async_extent *async_extent)
689 if (!async_extent->pages)
692 for (i = 0; i < async_extent->nr_pages; i++) {
693 WARN_ON(async_extent->pages[i]->mapping);
694 put_page(async_extent->pages[i]);
696 kfree(async_extent->pages);
697 async_extent->nr_pages = 0;
698 async_extent->pages = NULL;
702 * phase two of compressed writeback. This is the ordered portion
703 * of the code, which only gets called in the order the work was
704 * queued. We walk all the async extents created by compress_file_range
705 * and send them down to the disk.
707 static noinline void submit_compressed_extents(struct inode *inode,
708 struct async_cow *async_cow)
710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
711 struct async_extent *async_extent;
713 struct btrfs_key ins;
714 struct extent_map *em;
715 struct btrfs_root *root = BTRFS_I(inode)->root;
716 struct extent_io_tree *io_tree;
720 while (!list_empty(&async_cow->extents)) {
721 async_extent = list_entry(async_cow->extents.next,
722 struct async_extent, list);
723 list_del(&async_extent->list);
725 io_tree = &BTRFS_I(inode)->io_tree;
728 /* did the compression code fall back to uncompressed IO? */
729 if (!async_extent->pages) {
730 int page_started = 0;
731 unsigned long nr_written = 0;
733 lock_extent(io_tree, async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1);
737 /* allocate blocks */
738 ret = cow_file_range(inode, async_cow->locked_page,
740 async_extent->start +
741 async_extent->ram_size - 1,
742 async_extent->start +
743 async_extent->ram_size - 1,
744 &page_started, &nr_written, 0,
750 * if page_started, cow_file_range inserted an
751 * inline extent and took care of all the unlocking
752 * and IO for us. Otherwise, we need to submit
753 * all those pages down to the drive.
755 if (!page_started && !ret)
756 extent_write_locked_range(inode,
758 async_extent->start +
759 async_extent->ram_size - 1,
762 unlock_page(async_cow->locked_page);
768 lock_extent(io_tree, async_extent->start,
769 async_extent->start + async_extent->ram_size - 1);
771 ret = btrfs_reserve_extent(root, async_extent->ram_size,
772 async_extent->compressed_size,
773 async_extent->compressed_size,
774 0, alloc_hint, &ins, 1, 1);
776 free_async_extent_pages(async_extent);
778 if (ret == -ENOSPC) {
779 unlock_extent(io_tree, async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1);
784 * we need to redirty the pages if we decide to
785 * fallback to uncompressed IO, otherwise we
786 * will not submit these pages down to lower
789 extent_range_redirty_for_io(inode,
791 async_extent->start +
792 async_extent->ram_size - 1);
799 * here we're doing allocation and writeback of the
802 em = create_io_em(inode, async_extent->start,
803 async_extent->ram_size, /* len */
804 async_extent->start, /* orig_start */
805 ins.objectid, /* block_start */
806 ins.offset, /* block_len */
807 ins.offset, /* orig_block_len */
808 async_extent->ram_size, /* ram_bytes */
809 async_extent->compress_type,
810 BTRFS_ORDERED_COMPRESSED);
812 /* ret value is not necessary due to void function */
813 goto out_free_reserve;
816 ret = btrfs_add_ordered_extent_compress(inode,
819 async_extent->ram_size,
821 BTRFS_ORDERED_COMPRESSED,
822 async_extent->compress_type);
824 btrfs_drop_extent_cache(BTRFS_I(inode),
826 async_extent->start +
827 async_extent->ram_size - 1, 0);
828 goto out_free_reserve;
830 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
833 * clear dirty, set writeback and unlock the pages.
835 extent_clear_unlock_delalloc(inode, async_extent->start,
836 async_extent->start +
837 async_extent->ram_size - 1,
838 async_extent->start +
839 async_extent->ram_size - 1,
840 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
843 if (btrfs_submit_compressed_write(inode,
845 async_extent->ram_size,
847 ins.offset, async_extent->pages,
848 async_extent->nr_pages,
849 async_cow->write_flags)) {
850 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 struct page *p = async_extent->pages[0];
852 const u64 start = async_extent->start;
853 const u64 end = start + async_extent->ram_size - 1;
855 p->mapping = inode->i_mapping;
856 tree->ops->writepage_end_io_hook(p, start, end,
859 extent_clear_unlock_delalloc(inode, start, end, end,
863 free_async_extent_pages(async_extent);
865 alloc_hint = ins.objectid + ins.offset;
871 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
872 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
874 extent_clear_unlock_delalloc(inode, async_extent->start,
875 async_extent->start +
876 async_extent->ram_size - 1,
877 async_extent->start +
878 async_extent->ram_size - 1,
879 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
880 EXTENT_DELALLOC_NEW |
881 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
885 free_async_extent_pages(async_extent);
890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 struct extent_map *em;
897 read_lock(&em_tree->lock);
898 em = search_extent_mapping(em_tree, start, num_bytes);
901 * if block start isn't an actual block number then find the
902 * first block in this inode and use that as a hint. If that
903 * block is also bogus then just don't worry about it.
905 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
907 em = search_extent_mapping(em_tree, 0, 0);
908 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 alloc_hint = em->block_start;
913 alloc_hint = em->block_start;
917 read_unlock(&em_tree->lock);
923 * when extent_io.c finds a delayed allocation range in the file,
924 * the call backs end up in this code. The basic idea is to
925 * allocate extents on disk for the range, and create ordered data structs
926 * in ram to track those extents.
928 * locked_page is the page that writepage had locked already. We use
929 * it to make sure we don't do extra locks or unlocks.
931 * *page_started is set to one if we unlock locked_page and do everything
932 * required to start IO on it. It may be clean and already done with
935 static noinline int cow_file_range(struct inode *inode,
936 struct page *locked_page,
937 u64 start, u64 end, u64 delalloc_end,
938 int *page_started, unsigned long *nr_written,
939 int unlock, struct btrfs_dedupe_hash *hash)
941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
942 struct btrfs_root *root = BTRFS_I(inode)->root;
945 unsigned long ram_size;
946 u64 cur_alloc_size = 0;
947 u64 blocksize = fs_info->sectorsize;
948 struct btrfs_key ins;
949 struct extent_map *em;
951 unsigned long page_ops;
952 bool extent_reserved = false;
955 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
961 num_bytes = ALIGN(end - start + 1, blocksize);
962 num_bytes = max(blocksize, num_bytes);
963 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
965 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
968 /* lets try to make an inline extent */
969 ret = cow_file_range_inline(inode, start, end, 0,
970 BTRFS_COMPRESS_NONE, NULL);
973 * We use DO_ACCOUNTING here because we need the
974 * delalloc_release_metadata to be run _after_ we drop
975 * our outstanding extent for clearing delalloc for this
978 extent_clear_unlock_delalloc(inode, start, end,
980 EXTENT_LOCKED | EXTENT_DELALLOC |
981 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
982 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
983 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
985 *nr_written = *nr_written +
986 (end - start + PAGE_SIZE) / PAGE_SIZE;
989 } else if (ret < 0) {
994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
995 btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 start + num_bytes - 1, 0);
998 while (num_bytes > 0) {
999 cur_alloc_size = num_bytes;
1000 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1001 fs_info->sectorsize, 0, alloc_hint,
1005 cur_alloc_size = ins.offset;
1006 extent_reserved = true;
1008 ram_size = ins.offset;
1009 em = create_io_em(inode, start, ins.offset, /* len */
1010 start, /* orig_start */
1011 ins.objectid, /* block_start */
1012 ins.offset, /* block_len */
1013 ins.offset, /* orig_block_len */
1014 ram_size, /* ram_bytes */
1015 BTRFS_COMPRESS_NONE, /* compress_type */
1016 BTRFS_ORDERED_REGULAR /* type */);
1021 free_extent_map(em);
1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024 ram_size, cur_alloc_size, 0);
1026 goto out_drop_extent_cache;
1028 if (root->root_key.objectid ==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 ret = btrfs_reloc_clone_csums(inode, start,
1033 * Only drop cache here, and process as normal.
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1044 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 start + ram_size - 1, 0);
1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
1057 page_ops = unlock ? PAGE_UNLOCK : 0;
1058 page_ops |= PAGE_SET_PRIVATE2;
1060 extent_clear_unlock_delalloc(inode, start,
1061 start + ram_size - 1,
1062 delalloc_end, locked_page,
1063 EXTENT_LOCKED | EXTENT_DELALLOC,
1065 if (num_bytes < cur_alloc_size)
1068 num_bytes -= cur_alloc_size;
1069 alloc_hint = ins.objectid + ins.offset;
1070 start += cur_alloc_size;
1071 extent_reserved = false;
1074 * btrfs_reloc_clone_csums() error, since start is increased
1075 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 * free metadata of current ordered extent, we're OK to exit.
1084 out_drop_extent_cache:
1085 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1090 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 * If we reserved an extent for our delalloc range (or a subrange) and
1096 * failed to create the respective ordered extent, then it means that
1097 * when we reserved the extent we decremented the extent's size from
1098 * the data space_info's bytes_may_use counter and incremented the
1099 * space_info's bytes_reserved counter by the same amount. We must make
1100 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 if (extent_reserved) {
1105 extent_clear_unlock_delalloc(inode, start,
1106 start + cur_alloc_size,
1107 start + cur_alloc_size,
1111 start += cur_alloc_size;
1115 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1117 clear_bits | EXTENT_CLEAR_DATA_RESV,
1123 * work queue call back to started compression on a file and pages
1125 static noinline void async_cow_start(struct btrfs_work *work)
1127 struct async_cow *async_cow;
1129 async_cow = container_of(work, struct async_cow, work);
1131 compress_file_range(async_cow->inode, async_cow->locked_page,
1132 async_cow->start, async_cow->end, async_cow,
1134 if (num_added == 0) {
1135 btrfs_add_delayed_iput(async_cow->inode);
1136 async_cow->inode = NULL;
1141 * work queue call back to submit previously compressed pages
1143 static noinline void async_cow_submit(struct btrfs_work *work)
1145 struct btrfs_fs_info *fs_info;
1146 struct async_cow *async_cow;
1147 struct btrfs_root *root;
1148 unsigned long nr_pages;
1150 async_cow = container_of(work, struct async_cow, work);
1152 root = async_cow->root;
1153 fs_info = root->fs_info;
1154 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 /* atomic_sub_return implies a barrier */
1158 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1160 cond_wake_up_nomb(&fs_info->async_submit_wait);
1162 if (async_cow->inode)
1163 submit_compressed_extents(async_cow->inode, async_cow);
1166 static noinline void async_cow_free(struct btrfs_work *work)
1168 struct async_cow *async_cow;
1169 async_cow = container_of(work, struct async_cow, work);
1170 if (async_cow->inode)
1171 btrfs_add_delayed_iput(async_cow->inode);
1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1176 u64 start, u64 end, int *page_started,
1177 unsigned long *nr_written,
1178 unsigned int write_flags)
1180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1181 struct async_cow *async_cow;
1182 struct btrfs_root *root = BTRFS_I(inode)->root;
1183 unsigned long nr_pages;
1186 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1188 while (start < end) {
1189 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1190 BUG_ON(!async_cow); /* -ENOMEM */
1191 async_cow->inode = igrab(inode);
1192 async_cow->root = root;
1193 async_cow->locked_page = locked_page;
1194 async_cow->start = start;
1195 async_cow->write_flags = write_flags;
1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1201 cur_end = min(end, start + SZ_512K - 1);
1203 async_cow->end = cur_end;
1204 INIT_LIST_HEAD(&async_cow->extents);
1206 btrfs_init_work(&async_cow->work,
1207 btrfs_delalloc_helper,
1208 async_cow_start, async_cow_submit,
1211 nr_pages = (cur_end - start + PAGE_SIZE) >>
1213 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1215 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1217 *nr_written += nr_pages;
1218 start = cur_end + 1;
1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1225 u64 bytenr, u64 num_bytes)
1228 struct btrfs_ordered_sum *sums;
1231 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1232 bytenr + num_bytes - 1, &list, 0);
1233 if (ret == 0 && list_empty(&list))
1236 while (!list_empty(&list)) {
1237 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1238 list_del(&sums->list);
1247 * when nowcow writeback call back. This checks for snapshots or COW copies
1248 * of the extents that exist in the file, and COWs the file as required.
1250 * If no cow copies or snapshots exist, we write directly to the existing
1253 static noinline int run_delalloc_nocow(struct inode *inode,
1254 struct page *locked_page,
1255 u64 start, u64 end, int *page_started, int force,
1256 unsigned long *nr_written)
1258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1259 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 struct extent_buffer *leaf;
1261 struct btrfs_path *path;
1262 struct btrfs_file_extent_item *fi;
1263 struct btrfs_key found_key;
1264 struct extent_map *em;
1279 u64 ino = btrfs_ino(BTRFS_I(inode));
1281 path = btrfs_alloc_path();
1283 extent_clear_unlock_delalloc(inode, start, end, end,
1285 EXTENT_LOCKED | EXTENT_DELALLOC |
1286 EXTENT_DO_ACCOUNTING |
1287 EXTENT_DEFRAG, PAGE_UNLOCK |
1289 PAGE_SET_WRITEBACK |
1290 PAGE_END_WRITEBACK);
1294 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1296 cow_start = (u64)-1;
1299 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1303 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &found_key,
1306 path->slots[0] - 1);
1307 if (found_key.objectid == ino &&
1308 found_key.type == BTRFS_EXTENT_DATA_KEY)
1313 leaf = path->nodes[0];
1314 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315 ret = btrfs_next_leaf(root, path);
1317 if (cow_start != (u64)-1)
1318 cur_offset = cow_start;
1323 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1331 if (found_key.objectid > ino)
1333 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1334 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1338 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1339 found_key.offset > end)
1342 if (found_key.offset > cur_offset) {
1343 extent_end = found_key.offset;
1348 fi = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_file_extent_item);
1350 extent_type = btrfs_file_extent_type(leaf, fi);
1352 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1353 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1354 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1355 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1356 extent_offset = btrfs_file_extent_offset(leaf, fi);
1357 extent_end = found_key.offset +
1358 btrfs_file_extent_num_bytes(leaf, fi);
1360 btrfs_file_extent_disk_num_bytes(leaf, fi);
1361 if (extent_end <= start) {
1365 if (disk_bytenr == 0)
1367 if (btrfs_file_extent_compression(leaf, fi) ||
1368 btrfs_file_extent_encryption(leaf, fi) ||
1369 btrfs_file_extent_other_encoding(leaf, fi))
1372 * Do the same check as in btrfs_cross_ref_exist but
1373 * without the unnecessary search.
1375 if (btrfs_file_extent_generation(leaf, fi) <=
1376 btrfs_root_last_snapshot(&root->root_item))
1378 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1380 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1382 ret = btrfs_cross_ref_exist(root, ino,
1384 extent_offset, disk_bytenr);
1387 * ret could be -EIO if the above fails to read
1391 if (cow_start != (u64)-1)
1392 cur_offset = cow_start;
1396 WARN_ON_ONCE(nolock);
1399 disk_bytenr += extent_offset;
1400 disk_bytenr += cur_offset - found_key.offset;
1401 num_bytes = min(end + 1, extent_end) - cur_offset;
1403 * if there are pending snapshots for this root,
1404 * we fall into common COW way.
1406 if (!nolock && atomic_read(&root->snapshot_force_cow))
1409 * force cow if csum exists in the range.
1410 * this ensure that csum for a given extent are
1411 * either valid or do not exist.
1413 ret = csum_exist_in_range(fs_info, disk_bytenr,
1417 * ret could be -EIO if the above fails to read
1421 if (cow_start != (u64)-1)
1422 cur_offset = cow_start;
1425 WARN_ON_ONCE(nolock);
1428 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1431 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1432 extent_end = found_key.offset +
1433 btrfs_file_extent_ram_bytes(leaf, fi);
1434 extent_end = ALIGN(extent_end,
1435 fs_info->sectorsize);
1440 if (extent_end <= start) {
1443 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1447 if (cow_start == (u64)-1)
1448 cow_start = cur_offset;
1449 cur_offset = extent_end;
1450 if (cur_offset > end)
1456 btrfs_release_path(path);
1457 if (cow_start != (u64)-1) {
1458 ret = cow_file_range(inode, locked_page,
1459 cow_start, found_key.offset - 1,
1460 end, page_started, nr_written, 1,
1464 btrfs_dec_nocow_writers(fs_info,
1468 cow_start = (u64)-1;
1471 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1472 u64 orig_start = found_key.offset - extent_offset;
1474 em = create_io_em(inode, cur_offset, num_bytes,
1476 disk_bytenr, /* block_start */
1477 num_bytes, /* block_len */
1478 disk_num_bytes, /* orig_block_len */
1479 ram_bytes, BTRFS_COMPRESS_NONE,
1480 BTRFS_ORDERED_PREALLOC);
1483 btrfs_dec_nocow_writers(fs_info,
1488 free_extent_map(em);
1491 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1492 type = BTRFS_ORDERED_PREALLOC;
1494 type = BTRFS_ORDERED_NOCOW;
1497 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1498 num_bytes, num_bytes, type);
1500 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1501 BUG_ON(ret); /* -ENOMEM */
1503 if (root->root_key.objectid ==
1504 BTRFS_DATA_RELOC_TREE_OBJECTID)
1506 * Error handled later, as we must prevent
1507 * extent_clear_unlock_delalloc() in error handler
1508 * from freeing metadata of created ordered extent.
1510 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1513 extent_clear_unlock_delalloc(inode, cur_offset,
1514 cur_offset + num_bytes - 1, end,
1515 locked_page, EXTENT_LOCKED |
1517 EXTENT_CLEAR_DATA_RESV,
1518 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1520 cur_offset = extent_end;
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1529 if (cur_offset > end)
1532 btrfs_release_path(path);
1534 if (cur_offset <= end && cow_start == (u64)-1) {
1535 cow_start = cur_offset;
1539 if (cow_start != (u64)-1) {
1540 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 page_started, nr_written, 1, NULL);
1547 if (ret && cur_offset < end)
1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1549 locked_page, EXTENT_LOCKED |
1550 EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1553 PAGE_SET_WRITEBACK |
1554 PAGE_END_WRITEBACK);
1555 btrfs_free_path(path);
1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1567 * @defrag_bytes is a hint value, no spinlock held here,
1568 * if is not zero, it means the file is defragging.
1569 * Force cow if given extent needs to be defragged.
1571 if (BTRFS_I(inode)->defrag_bytes &&
1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 EXTENT_DEFRAG, 0, NULL))
1580 * extent_io.c call back to do delayed allocation processing
1582 static int run_delalloc_range(void *private_data, struct page *locked_page,
1583 u64 start, u64 end, int *page_started,
1584 unsigned long *nr_written,
1585 struct writeback_control *wbc)
1587 struct inode *inode = private_data;
1589 int force_cow = need_force_cow(inode, start, end);
1590 unsigned int write_flags = wbc_to_write_flags(wbc);
1592 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1593 ret = run_delalloc_nocow(inode, locked_page, start, end,
1594 page_started, 1, nr_written);
1595 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1596 ret = run_delalloc_nocow(inode, locked_page, start, end,
1597 page_started, 0, nr_written);
1598 } else if (!inode_need_compress(inode, start, end)) {
1599 ret = cow_file_range(inode, locked_page, start, end, end,
1600 page_started, nr_written, 1, NULL);
1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 &BTRFS_I(inode)->runtime_flags);
1604 ret = cow_file_range_async(inode, locked_page, start, end,
1605 page_started, nr_written,
1609 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1613 static void btrfs_split_extent_hook(void *private_data,
1614 struct extent_state *orig, u64 split)
1616 struct inode *inode = private_data;
1619 /* not delalloc, ignore it */
1620 if (!(orig->state & EXTENT_DELALLOC))
1623 size = orig->end - orig->start + 1;
1624 if (size > BTRFS_MAX_EXTENT_SIZE) {
1629 * See the explanation in btrfs_merge_extent_hook, the same
1630 * applies here, just in reverse.
1632 new_size = orig->end - split + 1;
1633 num_extents = count_max_extents(new_size);
1634 new_size = split - orig->start;
1635 num_extents += count_max_extents(new_size);
1636 if (count_max_extents(size) >= num_extents)
1640 spin_lock(&BTRFS_I(inode)->lock);
1641 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1642 spin_unlock(&BTRFS_I(inode)->lock);
1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647 * extents so we can keep track of new extents that are just merged onto old
1648 * extents, such as when we are doing sequential writes, so we can properly
1649 * account for the metadata space we'll need.
1651 static void btrfs_merge_extent_hook(void *private_data,
1652 struct extent_state *new,
1653 struct extent_state *other)
1655 struct inode *inode = private_data;
1656 u64 new_size, old_size;
1659 /* not delalloc, ignore it */
1660 if (!(other->state & EXTENT_DELALLOC))
1663 if (new->start > other->start)
1664 new_size = new->end - other->start + 1;
1666 new_size = other->end - new->start + 1;
1668 /* we're not bigger than the max, unreserve the space and go */
1669 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1670 spin_lock(&BTRFS_I(inode)->lock);
1671 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1672 spin_unlock(&BTRFS_I(inode)->lock);
1677 * We have to add up either side to figure out how many extents were
1678 * accounted for before we merged into one big extent. If the number of
1679 * extents we accounted for is <= the amount we need for the new range
1680 * then we can return, otherwise drop. Think of it like this
1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 * need 2 outstanding extents, on one side we have 1 and the other side
1686 * we have 1 so they are == and we can return. But in this case
1688 * [MAX_SIZE+4k][MAX_SIZE+4k]
1690 * Each range on their own accounts for 2 extents, but merged together
1691 * they are only 3 extents worth of accounting, so we need to drop in
1694 old_size = other->end - other->start + 1;
1695 num_extents = count_max_extents(old_size);
1696 old_size = new->end - new->start + 1;
1697 num_extents += count_max_extents(old_size);
1698 if (count_max_extents(new_size) >= num_extents)
1701 spin_lock(&BTRFS_I(inode)->lock);
1702 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1703 spin_unlock(&BTRFS_I(inode)->lock);
1706 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1707 struct inode *inode)
1709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1711 spin_lock(&root->delalloc_lock);
1712 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1713 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1714 &root->delalloc_inodes);
1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1716 &BTRFS_I(inode)->runtime_flags);
1717 root->nr_delalloc_inodes++;
1718 if (root->nr_delalloc_inodes == 1) {
1719 spin_lock(&fs_info->delalloc_root_lock);
1720 BUG_ON(!list_empty(&root->delalloc_root));
1721 list_add_tail(&root->delalloc_root,
1722 &fs_info->delalloc_roots);
1723 spin_unlock(&fs_info->delalloc_root_lock);
1726 spin_unlock(&root->delalloc_lock);
1730 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1731 struct btrfs_inode *inode)
1733 struct btrfs_fs_info *fs_info = root->fs_info;
1735 if (!list_empty(&inode->delalloc_inodes)) {
1736 list_del_init(&inode->delalloc_inodes);
1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1738 &inode->runtime_flags);
1739 root->nr_delalloc_inodes--;
1740 if (!root->nr_delalloc_inodes) {
1741 ASSERT(list_empty(&root->delalloc_inodes));
1742 spin_lock(&fs_info->delalloc_root_lock);
1743 BUG_ON(list_empty(&root->delalloc_root));
1744 list_del_init(&root->delalloc_root);
1745 spin_unlock(&fs_info->delalloc_root_lock);
1750 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1751 struct btrfs_inode *inode)
1753 spin_lock(&root->delalloc_lock);
1754 __btrfs_del_delalloc_inode(root, inode);
1755 spin_unlock(&root->delalloc_lock);
1759 * extent_io.c set_bit_hook, used to track delayed allocation
1760 * bytes in this file, and to maintain the list of inodes that
1761 * have pending delalloc work to be done.
1763 static void btrfs_set_bit_hook(void *private_data,
1764 struct extent_state *state, unsigned *bits)
1766 struct inode *inode = private_data;
1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1770 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1773 * set_bit and clear bit hooks normally require _irqsave/restore
1774 * but in this case, we are only testing for the DELALLOC
1775 * bit, which is only set or cleared with irqs on
1777 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1778 struct btrfs_root *root = BTRFS_I(inode)->root;
1779 u64 len = state->end + 1 - state->start;
1780 u32 num_extents = count_max_extents(len);
1781 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1783 spin_lock(&BTRFS_I(inode)->lock);
1784 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1785 spin_unlock(&BTRFS_I(inode)->lock);
1787 /* For sanity tests */
1788 if (btrfs_is_testing(fs_info))
1791 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1792 fs_info->delalloc_batch);
1793 spin_lock(&BTRFS_I(inode)->lock);
1794 BTRFS_I(inode)->delalloc_bytes += len;
1795 if (*bits & EXTENT_DEFRAG)
1796 BTRFS_I(inode)->defrag_bytes += len;
1797 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1798 &BTRFS_I(inode)->runtime_flags))
1799 btrfs_add_delalloc_inodes(root, inode);
1800 spin_unlock(&BTRFS_I(inode)->lock);
1803 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1804 (*bits & EXTENT_DELALLOC_NEW)) {
1805 spin_lock(&BTRFS_I(inode)->lock);
1806 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1808 spin_unlock(&BTRFS_I(inode)->lock);
1813 * extent_io.c clear_bit_hook, see set_bit_hook for why
1815 static void btrfs_clear_bit_hook(void *private_data,
1816 struct extent_state *state,
1819 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1821 u64 len = state->end + 1 - state->start;
1822 u32 num_extents = count_max_extents(len);
1824 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1825 spin_lock(&inode->lock);
1826 inode->defrag_bytes -= len;
1827 spin_unlock(&inode->lock);
1831 * set_bit and clear bit hooks normally require _irqsave/restore
1832 * but in this case, we are only testing for the DELALLOC
1833 * bit, which is only set or cleared with irqs on
1835 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1836 struct btrfs_root *root = inode->root;
1837 bool do_list = !btrfs_is_free_space_inode(inode);
1839 spin_lock(&inode->lock);
1840 btrfs_mod_outstanding_extents(inode, -num_extents);
1841 spin_unlock(&inode->lock);
1844 * We don't reserve metadata space for space cache inodes so we
1845 * don't need to call dellalloc_release_metadata if there is an
1848 if (*bits & EXTENT_CLEAR_META_RESV &&
1849 root != fs_info->tree_root)
1850 btrfs_delalloc_release_metadata(inode, len, false);
1852 /* For sanity tests. */
1853 if (btrfs_is_testing(fs_info))
1856 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1857 do_list && !(state->state & EXTENT_NORESERVE) &&
1858 (*bits & EXTENT_CLEAR_DATA_RESV))
1859 btrfs_free_reserved_data_space_noquota(
1863 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1864 fs_info->delalloc_batch);
1865 spin_lock(&inode->lock);
1866 inode->delalloc_bytes -= len;
1867 if (do_list && inode->delalloc_bytes == 0 &&
1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1869 &inode->runtime_flags))
1870 btrfs_del_delalloc_inode(root, inode);
1871 spin_unlock(&inode->lock);
1874 if ((state->state & EXTENT_DELALLOC_NEW) &&
1875 (*bits & EXTENT_DELALLOC_NEW)) {
1876 spin_lock(&inode->lock);
1877 ASSERT(inode->new_delalloc_bytes >= len);
1878 inode->new_delalloc_bytes -= len;
1879 spin_unlock(&inode->lock);
1884 * Merge bio hook, this must check the chunk tree to make sure we don't create
1885 * bios that span stripes or chunks
1887 * return 1 if page cannot be merged to bio
1888 * return 0 if page can be merged to bio
1889 * return error otherwise
1891 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1892 size_t size, struct bio *bio,
1893 unsigned long bio_flags)
1895 struct inode *inode = page->mapping->host;
1896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1897 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1902 if (bio_flags & EXTENT_BIO_COMPRESSED)
1905 length = bio->bi_iter.bi_size;
1906 map_length = length;
1907 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1911 if (map_length < length + size)
1917 * in order to insert checksums into the metadata in large chunks,
1918 * we wait until bio submission time. All the pages in the bio are
1919 * checksummed and sums are attached onto the ordered extent record.
1921 * At IO completion time the cums attached on the ordered extent record
1922 * are inserted into the btree
1924 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1927 struct inode *inode = private_data;
1928 blk_status_t ret = 0;
1930 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1931 BUG_ON(ret); /* -ENOMEM */
1936 * in order to insert checksums into the metadata in large chunks,
1937 * we wait until bio submission time. All the pages in the bio are
1938 * checksummed and sums are attached onto the ordered extent record.
1940 * At IO completion time the cums attached on the ordered extent record
1941 * are inserted into the btree
1943 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1946 struct inode *inode = private_data;
1947 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1950 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1952 bio->bi_status = ret;
1959 * extent_io.c submission hook. This does the right thing for csum calculation
1960 * on write, or reading the csums from the tree before a read.
1962 * Rules about async/sync submit,
1963 * a) read: sync submit
1965 * b) write without checksum: sync submit
1967 * c) write with checksum:
1968 * c-1) if bio is issued by fsync: sync submit
1969 * (sync_writers != 0)
1971 * c-2) if root is reloc root: sync submit
1972 * (only in case of buffered IO)
1974 * c-3) otherwise: async submit
1976 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1977 int mirror_num, unsigned long bio_flags,
1980 struct inode *inode = private_data;
1981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1982 struct btrfs_root *root = BTRFS_I(inode)->root;
1983 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1984 blk_status_t ret = 0;
1986 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1988 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1990 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1991 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1993 if (bio_op(bio) != REQ_OP_WRITE) {
1994 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1998 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1999 ret = btrfs_submit_compressed_read(inode, bio,
2003 } else if (!skip_sum) {
2004 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2009 } else if (async && !skip_sum) {
2010 /* csum items have already been cloned */
2011 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2013 /* we're doing a write, do the async checksumming */
2014 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2016 btrfs_submit_bio_start);
2018 } else if (!skip_sum) {
2019 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2025 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2029 bio->bi_status = ret;
2036 * given a list of ordered sums record them in the inode. This happens
2037 * at IO completion time based on sums calculated at bio submission time.
2039 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2040 struct inode *inode, struct list_head *list)
2042 struct btrfs_ordered_sum *sum;
2045 list_for_each_entry(sum, list, list) {
2046 trans->adding_csums = true;
2047 ret = btrfs_csum_file_blocks(trans,
2048 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2049 trans->adding_csums = false;
2056 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2057 unsigned int extra_bits,
2058 struct extent_state **cached_state, int dedupe)
2060 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2061 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2062 extra_bits, cached_state);
2065 /* see btrfs_writepage_start_hook for details on why this is required */
2066 struct btrfs_writepage_fixup {
2068 struct btrfs_work work;
2071 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2073 struct btrfs_writepage_fixup *fixup;
2074 struct btrfs_ordered_extent *ordered;
2075 struct extent_state *cached_state = NULL;
2076 struct extent_changeset *data_reserved = NULL;
2078 struct inode *inode;
2083 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2087 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2088 ClearPageChecked(page);
2092 inode = page->mapping->host;
2093 page_start = page_offset(page);
2094 page_end = page_offset(page) + PAGE_SIZE - 1;
2096 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2099 /* already ordered? We're done */
2100 if (PagePrivate2(page))
2103 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2106 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2107 page_end, &cached_state);
2109 btrfs_start_ordered_extent(inode, ordered, 1);
2110 btrfs_put_ordered_extent(ordered);
2114 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2117 mapping_set_error(page->mapping, ret);
2118 end_extent_writepage(page, ret, page_start, page_end);
2119 ClearPageChecked(page);
2123 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2126 mapping_set_error(page->mapping, ret);
2127 end_extent_writepage(page, ret, page_start, page_end);
2128 ClearPageChecked(page);
2132 ClearPageChecked(page);
2133 set_page_dirty(page);
2134 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2136 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2142 extent_changeset_free(data_reserved);
2146 * There are a few paths in the higher layers of the kernel that directly
2147 * set the page dirty bit without asking the filesystem if it is a
2148 * good idea. This causes problems because we want to make sure COW
2149 * properly happens and the data=ordered rules are followed.
2151 * In our case any range that doesn't have the ORDERED bit set
2152 * hasn't been properly setup for IO. We kick off an async process
2153 * to fix it up. The async helper will wait for ordered extents, set
2154 * the delalloc bit and make it safe to write the page.
2156 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2158 struct inode *inode = page->mapping->host;
2159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2160 struct btrfs_writepage_fixup *fixup;
2162 /* this page is properly in the ordered list */
2163 if (TestClearPagePrivate2(page))
2166 if (PageChecked(page))
2169 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2173 SetPageChecked(page);
2175 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2176 btrfs_writepage_fixup_worker, NULL, NULL);
2178 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2182 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2183 struct inode *inode, u64 file_pos,
2184 u64 disk_bytenr, u64 disk_num_bytes,
2185 u64 num_bytes, u64 ram_bytes,
2186 u8 compression, u8 encryption,
2187 u16 other_encoding, int extent_type)
2189 struct btrfs_root *root = BTRFS_I(inode)->root;
2190 struct btrfs_file_extent_item *fi;
2191 struct btrfs_path *path;
2192 struct extent_buffer *leaf;
2193 struct btrfs_key ins;
2195 int extent_inserted = 0;
2198 path = btrfs_alloc_path();
2203 * we may be replacing one extent in the tree with another.
2204 * The new extent is pinned in the extent map, and we don't want
2205 * to drop it from the cache until it is completely in the btree.
2207 * So, tell btrfs_drop_extents to leave this extent in the cache.
2208 * the caller is expected to unpin it and allow it to be merged
2211 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2212 file_pos + num_bytes, NULL, 0,
2213 1, sizeof(*fi), &extent_inserted);
2217 if (!extent_inserted) {
2218 ins.objectid = btrfs_ino(BTRFS_I(inode));
2219 ins.offset = file_pos;
2220 ins.type = BTRFS_EXTENT_DATA_KEY;
2222 path->leave_spinning = 1;
2223 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2228 leaf = path->nodes[0];
2229 fi = btrfs_item_ptr(leaf, path->slots[0],
2230 struct btrfs_file_extent_item);
2231 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2232 btrfs_set_file_extent_type(leaf, fi, extent_type);
2233 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2234 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2235 btrfs_set_file_extent_offset(leaf, fi, 0);
2236 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2237 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2238 btrfs_set_file_extent_compression(leaf, fi, compression);
2239 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2240 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2242 btrfs_mark_buffer_dirty(leaf);
2243 btrfs_release_path(path);
2245 inode_add_bytes(inode, num_bytes);
2247 ins.objectid = disk_bytenr;
2248 ins.offset = disk_num_bytes;
2249 ins.type = BTRFS_EXTENT_ITEM_KEY;
2252 * Release the reserved range from inode dirty range map, as it is
2253 * already moved into delayed_ref_head
2255 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2259 ret = btrfs_alloc_reserved_file_extent(trans, root,
2260 btrfs_ino(BTRFS_I(inode)),
2261 file_pos, qg_released, &ins);
2263 btrfs_free_path(path);
2268 /* snapshot-aware defrag */
2269 struct sa_defrag_extent_backref {
2270 struct rb_node node;
2271 struct old_sa_defrag_extent *old;
2280 struct old_sa_defrag_extent {
2281 struct list_head list;
2282 struct new_sa_defrag_extent *new;
2291 struct new_sa_defrag_extent {
2292 struct rb_root root;
2293 struct list_head head;
2294 struct btrfs_path *path;
2295 struct inode *inode;
2303 static int backref_comp(struct sa_defrag_extent_backref *b1,
2304 struct sa_defrag_extent_backref *b2)
2306 if (b1->root_id < b2->root_id)
2308 else if (b1->root_id > b2->root_id)
2311 if (b1->inum < b2->inum)
2313 else if (b1->inum > b2->inum)
2316 if (b1->file_pos < b2->file_pos)
2318 else if (b1->file_pos > b2->file_pos)
2322 * [------------------------------] ===> (a range of space)
2323 * |<--->| |<---->| =============> (fs/file tree A)
2324 * |<---------------------------->| ===> (fs/file tree B)
2326 * A range of space can refer to two file extents in one tree while
2327 * refer to only one file extent in another tree.
2329 * So we may process a disk offset more than one time(two extents in A)
2330 * and locate at the same extent(one extent in B), then insert two same
2331 * backrefs(both refer to the extent in B).
2336 static void backref_insert(struct rb_root *root,
2337 struct sa_defrag_extent_backref *backref)
2339 struct rb_node **p = &root->rb_node;
2340 struct rb_node *parent = NULL;
2341 struct sa_defrag_extent_backref *entry;
2346 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2348 ret = backref_comp(backref, entry);
2352 p = &(*p)->rb_right;
2355 rb_link_node(&backref->node, parent, p);
2356 rb_insert_color(&backref->node, root);
2360 * Note the backref might has changed, and in this case we just return 0.
2362 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2365 struct btrfs_file_extent_item *extent;
2366 struct old_sa_defrag_extent *old = ctx;
2367 struct new_sa_defrag_extent *new = old->new;
2368 struct btrfs_path *path = new->path;
2369 struct btrfs_key key;
2370 struct btrfs_root *root;
2371 struct sa_defrag_extent_backref *backref;
2372 struct extent_buffer *leaf;
2373 struct inode *inode = new->inode;
2374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2380 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2381 inum == btrfs_ino(BTRFS_I(inode)))
2384 key.objectid = root_id;
2385 key.type = BTRFS_ROOT_ITEM_KEY;
2386 key.offset = (u64)-1;
2388 root = btrfs_read_fs_root_no_name(fs_info, &key);
2390 if (PTR_ERR(root) == -ENOENT)
2393 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2394 inum, offset, root_id);
2395 return PTR_ERR(root);
2398 key.objectid = inum;
2399 key.type = BTRFS_EXTENT_DATA_KEY;
2400 if (offset > (u64)-1 << 32)
2403 key.offset = offset;
2405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2406 if (WARN_ON(ret < 0))
2413 leaf = path->nodes[0];
2414 slot = path->slots[0];
2416 if (slot >= btrfs_header_nritems(leaf)) {
2417 ret = btrfs_next_leaf(root, path);
2420 } else if (ret > 0) {
2429 btrfs_item_key_to_cpu(leaf, &key, slot);
2431 if (key.objectid > inum)
2434 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2437 extent = btrfs_item_ptr(leaf, slot,
2438 struct btrfs_file_extent_item);
2440 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2444 * 'offset' refers to the exact key.offset,
2445 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2446 * (key.offset - extent_offset).
2448 if (key.offset != offset)
2451 extent_offset = btrfs_file_extent_offset(leaf, extent);
2452 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2454 if (extent_offset >= old->extent_offset + old->offset +
2455 old->len || extent_offset + num_bytes <=
2456 old->extent_offset + old->offset)
2461 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2467 backref->root_id = root_id;
2468 backref->inum = inum;
2469 backref->file_pos = offset;
2470 backref->num_bytes = num_bytes;
2471 backref->extent_offset = extent_offset;
2472 backref->generation = btrfs_file_extent_generation(leaf, extent);
2474 backref_insert(&new->root, backref);
2477 btrfs_release_path(path);
2482 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2483 struct new_sa_defrag_extent *new)
2485 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2486 struct old_sa_defrag_extent *old, *tmp;
2491 list_for_each_entry_safe(old, tmp, &new->head, list) {
2492 ret = iterate_inodes_from_logical(old->bytenr +
2493 old->extent_offset, fs_info,
2494 path, record_one_backref,
2496 if (ret < 0 && ret != -ENOENT)
2499 /* no backref to be processed for this extent */
2501 list_del(&old->list);
2506 if (list_empty(&new->head))
2512 static int relink_is_mergable(struct extent_buffer *leaf,
2513 struct btrfs_file_extent_item *fi,
2514 struct new_sa_defrag_extent *new)
2516 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2519 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2522 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2525 if (btrfs_file_extent_encryption(leaf, fi) ||
2526 btrfs_file_extent_other_encoding(leaf, fi))
2533 * Note the backref might has changed, and in this case we just return 0.
2535 static noinline int relink_extent_backref(struct btrfs_path *path,
2536 struct sa_defrag_extent_backref *prev,
2537 struct sa_defrag_extent_backref *backref)
2539 struct btrfs_file_extent_item *extent;
2540 struct btrfs_file_extent_item *item;
2541 struct btrfs_ordered_extent *ordered;
2542 struct btrfs_trans_handle *trans;
2543 struct btrfs_root *root;
2544 struct btrfs_key key;
2545 struct extent_buffer *leaf;
2546 struct old_sa_defrag_extent *old = backref->old;
2547 struct new_sa_defrag_extent *new = old->new;
2548 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2549 struct inode *inode;
2550 struct extent_state *cached = NULL;
2559 if (prev && prev->root_id == backref->root_id &&
2560 prev->inum == backref->inum &&
2561 prev->file_pos + prev->num_bytes == backref->file_pos)
2564 /* step 1: get root */
2565 key.objectid = backref->root_id;
2566 key.type = BTRFS_ROOT_ITEM_KEY;
2567 key.offset = (u64)-1;
2569 index = srcu_read_lock(&fs_info->subvol_srcu);
2571 root = btrfs_read_fs_root_no_name(fs_info, &key);
2573 srcu_read_unlock(&fs_info->subvol_srcu, index);
2574 if (PTR_ERR(root) == -ENOENT)
2576 return PTR_ERR(root);
2579 if (btrfs_root_readonly(root)) {
2580 srcu_read_unlock(&fs_info->subvol_srcu, index);
2584 /* step 2: get inode */
2585 key.objectid = backref->inum;
2586 key.type = BTRFS_INODE_ITEM_KEY;
2589 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2590 if (IS_ERR(inode)) {
2591 srcu_read_unlock(&fs_info->subvol_srcu, index);
2595 srcu_read_unlock(&fs_info->subvol_srcu, index);
2597 /* step 3: relink backref */
2598 lock_start = backref->file_pos;
2599 lock_end = backref->file_pos + backref->num_bytes - 1;
2600 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2603 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2605 btrfs_put_ordered_extent(ordered);
2609 trans = btrfs_join_transaction(root);
2610 if (IS_ERR(trans)) {
2611 ret = PTR_ERR(trans);
2615 key.objectid = backref->inum;
2616 key.type = BTRFS_EXTENT_DATA_KEY;
2617 key.offset = backref->file_pos;
2619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2622 } else if (ret > 0) {
2627 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2628 struct btrfs_file_extent_item);
2630 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2631 backref->generation)
2634 btrfs_release_path(path);
2636 start = backref->file_pos;
2637 if (backref->extent_offset < old->extent_offset + old->offset)
2638 start += old->extent_offset + old->offset -
2639 backref->extent_offset;
2641 len = min(backref->extent_offset + backref->num_bytes,
2642 old->extent_offset + old->offset + old->len);
2643 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2645 ret = btrfs_drop_extents(trans, root, inode, start,
2650 key.objectid = btrfs_ino(BTRFS_I(inode));
2651 key.type = BTRFS_EXTENT_DATA_KEY;
2654 path->leave_spinning = 1;
2656 struct btrfs_file_extent_item *fi;
2658 struct btrfs_key found_key;
2660 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2665 leaf = path->nodes[0];
2666 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2668 fi = btrfs_item_ptr(leaf, path->slots[0],
2669 struct btrfs_file_extent_item);
2670 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2672 if (extent_len + found_key.offset == start &&
2673 relink_is_mergable(leaf, fi, new)) {
2674 btrfs_set_file_extent_num_bytes(leaf, fi,
2676 btrfs_mark_buffer_dirty(leaf);
2677 inode_add_bytes(inode, len);
2683 btrfs_release_path(path);
2688 ret = btrfs_insert_empty_item(trans, root, path, &key,
2691 btrfs_abort_transaction(trans, ret);
2695 leaf = path->nodes[0];
2696 item = btrfs_item_ptr(leaf, path->slots[0],
2697 struct btrfs_file_extent_item);
2698 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2699 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2700 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2701 btrfs_set_file_extent_num_bytes(leaf, item, len);
2702 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2703 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2704 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2705 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2706 btrfs_set_file_extent_encryption(leaf, item, 0);
2707 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2709 btrfs_mark_buffer_dirty(leaf);
2710 inode_add_bytes(inode, len);
2711 btrfs_release_path(path);
2713 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2715 backref->root_id, backref->inum,
2716 new->file_pos); /* start - extent_offset */
2718 btrfs_abort_transaction(trans, ret);
2724 btrfs_release_path(path);
2725 path->leave_spinning = 0;
2726 btrfs_end_transaction(trans);
2728 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2734 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2736 struct old_sa_defrag_extent *old, *tmp;
2741 list_for_each_entry_safe(old, tmp, &new->head, list) {
2747 static void relink_file_extents(struct new_sa_defrag_extent *new)
2749 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2750 struct btrfs_path *path;
2751 struct sa_defrag_extent_backref *backref;
2752 struct sa_defrag_extent_backref *prev = NULL;
2753 struct rb_node *node;
2756 path = btrfs_alloc_path();
2760 if (!record_extent_backrefs(path, new)) {
2761 btrfs_free_path(path);
2764 btrfs_release_path(path);
2767 node = rb_first(&new->root);
2770 rb_erase(node, &new->root);
2772 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2774 ret = relink_extent_backref(path, prev, backref);
2787 btrfs_free_path(path);
2789 free_sa_defrag_extent(new);
2791 atomic_dec(&fs_info->defrag_running);
2792 wake_up(&fs_info->transaction_wait);
2795 static struct new_sa_defrag_extent *
2796 record_old_file_extents(struct inode *inode,
2797 struct btrfs_ordered_extent *ordered)
2799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2800 struct btrfs_root *root = BTRFS_I(inode)->root;
2801 struct btrfs_path *path;
2802 struct btrfs_key key;
2803 struct old_sa_defrag_extent *old;
2804 struct new_sa_defrag_extent *new;
2807 new = kmalloc(sizeof(*new), GFP_NOFS);
2812 new->file_pos = ordered->file_offset;
2813 new->len = ordered->len;
2814 new->bytenr = ordered->start;
2815 new->disk_len = ordered->disk_len;
2816 new->compress_type = ordered->compress_type;
2817 new->root = RB_ROOT;
2818 INIT_LIST_HEAD(&new->head);
2820 path = btrfs_alloc_path();
2824 key.objectid = btrfs_ino(BTRFS_I(inode));
2825 key.type = BTRFS_EXTENT_DATA_KEY;
2826 key.offset = new->file_pos;
2828 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2831 if (ret > 0 && path->slots[0] > 0)
2834 /* find out all the old extents for the file range */
2836 struct btrfs_file_extent_item *extent;
2837 struct extent_buffer *l;
2846 slot = path->slots[0];
2848 if (slot >= btrfs_header_nritems(l)) {
2849 ret = btrfs_next_leaf(root, path);
2857 btrfs_item_key_to_cpu(l, &key, slot);
2859 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2861 if (key.type != BTRFS_EXTENT_DATA_KEY)
2863 if (key.offset >= new->file_pos + new->len)
2866 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2868 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2869 if (key.offset + num_bytes < new->file_pos)
2872 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2876 extent_offset = btrfs_file_extent_offset(l, extent);
2878 old = kmalloc(sizeof(*old), GFP_NOFS);
2882 offset = max(new->file_pos, key.offset);
2883 end = min(new->file_pos + new->len, key.offset + num_bytes);
2885 old->bytenr = disk_bytenr;
2886 old->extent_offset = extent_offset;
2887 old->offset = offset - key.offset;
2888 old->len = end - offset;
2891 list_add_tail(&old->list, &new->head);
2897 btrfs_free_path(path);
2898 atomic_inc(&fs_info->defrag_running);
2903 btrfs_free_path(path);
2905 free_sa_defrag_extent(new);
2909 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2912 struct btrfs_block_group_cache *cache;
2914 cache = btrfs_lookup_block_group(fs_info, start);
2917 spin_lock(&cache->lock);
2918 cache->delalloc_bytes -= len;
2919 spin_unlock(&cache->lock);
2921 btrfs_put_block_group(cache);
2924 /* as ordered data IO finishes, this gets called so we can finish
2925 * an ordered extent if the range of bytes in the file it covers are
2928 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2930 struct inode *inode = ordered_extent->inode;
2931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2932 struct btrfs_root *root = BTRFS_I(inode)->root;
2933 struct btrfs_trans_handle *trans = NULL;
2934 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2935 struct extent_state *cached_state = NULL;
2936 struct new_sa_defrag_extent *new = NULL;
2937 int compress_type = 0;
2939 u64 logical_len = ordered_extent->len;
2941 bool truncated = false;
2942 bool range_locked = false;
2943 bool clear_new_delalloc_bytes = false;
2945 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2946 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2947 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2948 clear_new_delalloc_bytes = true;
2950 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2952 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2957 btrfs_free_io_failure_record(BTRFS_I(inode),
2958 ordered_extent->file_offset,
2959 ordered_extent->file_offset +
2960 ordered_extent->len - 1);
2962 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2964 logical_len = ordered_extent->truncated_len;
2965 /* Truncated the entire extent, don't bother adding */
2970 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2971 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2974 * For mwrite(mmap + memset to write) case, we still reserve
2975 * space for NOCOW range.
2976 * As NOCOW won't cause a new delayed ref, just free the space
2978 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2979 ordered_extent->len);
2980 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2982 trans = btrfs_join_transaction_nolock(root);
2984 trans = btrfs_join_transaction(root);
2985 if (IS_ERR(trans)) {
2986 ret = PTR_ERR(trans);
2990 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2991 ret = btrfs_update_inode_fallback(trans, root, inode);
2992 if (ret) /* -ENOMEM or corruption */
2993 btrfs_abort_transaction(trans, ret);
2997 range_locked = true;
2998 lock_extent_bits(io_tree, ordered_extent->file_offset,
2999 ordered_extent->file_offset + ordered_extent->len - 1,
3002 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3003 ordered_extent->file_offset + ordered_extent->len - 1,
3004 EXTENT_DEFRAG, 0, cached_state);
3006 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3007 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3008 /* the inode is shared */
3009 new = record_old_file_extents(inode, ordered_extent);
3011 clear_extent_bit(io_tree, ordered_extent->file_offset,
3012 ordered_extent->file_offset + ordered_extent->len - 1,
3013 EXTENT_DEFRAG, 0, 0, &cached_state);
3017 trans = btrfs_join_transaction_nolock(root);
3019 trans = btrfs_join_transaction(root);
3020 if (IS_ERR(trans)) {
3021 ret = PTR_ERR(trans);
3026 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3028 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3029 compress_type = ordered_extent->compress_type;
3030 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3031 BUG_ON(compress_type);
3032 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3033 ordered_extent->len);
3034 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3035 ordered_extent->file_offset,
3036 ordered_extent->file_offset +
3039 BUG_ON(root == fs_info->tree_root);
3040 ret = insert_reserved_file_extent(trans, inode,
3041 ordered_extent->file_offset,
3042 ordered_extent->start,
3043 ordered_extent->disk_len,
3044 logical_len, logical_len,
3045 compress_type, 0, 0,
3046 BTRFS_FILE_EXTENT_REG);
3048 btrfs_release_delalloc_bytes(fs_info,
3049 ordered_extent->start,
3050 ordered_extent->disk_len);
3052 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3053 ordered_extent->file_offset, ordered_extent->len,
3056 btrfs_abort_transaction(trans, ret);
3060 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3062 btrfs_abort_transaction(trans, ret);
3066 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3067 ret = btrfs_update_inode_fallback(trans, root, inode);
3068 if (ret) { /* -ENOMEM or corruption */
3069 btrfs_abort_transaction(trans, ret);
3074 if (range_locked || clear_new_delalloc_bytes) {
3075 unsigned int clear_bits = 0;
3078 clear_bits |= EXTENT_LOCKED;
3079 if (clear_new_delalloc_bytes)
3080 clear_bits |= EXTENT_DELALLOC_NEW;
3081 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3082 ordered_extent->file_offset,
3083 ordered_extent->file_offset +
3084 ordered_extent->len - 1,
3086 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3091 btrfs_end_transaction(trans);
3093 if (ret || truncated) {
3097 start = ordered_extent->file_offset + logical_len;
3099 start = ordered_extent->file_offset;
3100 end = ordered_extent->file_offset + ordered_extent->len - 1;
3101 clear_extent_uptodate(io_tree, start, end, NULL);
3103 /* Drop the cache for the part of the extent we didn't write. */
3104 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3107 * If the ordered extent had an IOERR or something else went
3108 * wrong we need to return the space for this ordered extent
3109 * back to the allocator. We only free the extent in the
3110 * truncated case if we didn't write out the extent at all.
3112 if ((ret || !logical_len) &&
3113 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3114 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3115 btrfs_free_reserved_extent(fs_info,
3116 ordered_extent->start,
3117 ordered_extent->disk_len, 1);
3122 * This needs to be done to make sure anybody waiting knows we are done
3123 * updating everything for this ordered extent.
3125 btrfs_remove_ordered_extent(inode, ordered_extent);
3127 /* for snapshot-aware defrag */
3130 free_sa_defrag_extent(new);
3131 atomic_dec(&fs_info->defrag_running);
3133 relink_file_extents(new);
3138 btrfs_put_ordered_extent(ordered_extent);
3139 /* once for the tree */
3140 btrfs_put_ordered_extent(ordered_extent);
3142 /* Try to release some metadata so we don't get an OOM but don't wait */
3143 btrfs_btree_balance_dirty_nodelay(fs_info);
3148 static void finish_ordered_fn(struct btrfs_work *work)
3150 struct btrfs_ordered_extent *ordered_extent;
3151 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3152 btrfs_finish_ordered_io(ordered_extent);
3155 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3156 struct extent_state *state, int uptodate)
3158 struct inode *inode = page->mapping->host;
3159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3160 struct btrfs_ordered_extent *ordered_extent = NULL;
3161 struct btrfs_workqueue *wq;
3162 btrfs_work_func_t func;
3164 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3166 ClearPagePrivate2(page);
3167 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3168 end - start + 1, uptodate))
3171 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3172 wq = fs_info->endio_freespace_worker;
3173 func = btrfs_freespace_write_helper;
3175 wq = fs_info->endio_write_workers;
3176 func = btrfs_endio_write_helper;
3179 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3181 btrfs_queue_work(wq, &ordered_extent->work);
3184 static int __readpage_endio_check(struct inode *inode,
3185 struct btrfs_io_bio *io_bio,
3186 int icsum, struct page *page,
3187 int pgoff, u64 start, size_t len)
3193 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3195 kaddr = kmap_atomic(page);
3196 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3197 btrfs_csum_final(csum, (u8 *)&csum);
3198 if (csum != csum_expected)
3201 kunmap_atomic(kaddr);
3204 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3205 io_bio->mirror_num);
3206 memset(kaddr + pgoff, 1, len);
3207 flush_dcache_page(page);
3208 kunmap_atomic(kaddr);
3213 * when reads are done, we need to check csums to verify the data is correct
3214 * if there's a match, we allow the bio to finish. If not, the code in
3215 * extent_io.c will try to find good copies for us.
3217 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3218 u64 phy_offset, struct page *page,
3219 u64 start, u64 end, int mirror)
3221 size_t offset = start - page_offset(page);
3222 struct inode *inode = page->mapping->host;
3223 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3224 struct btrfs_root *root = BTRFS_I(inode)->root;
3226 if (PageChecked(page)) {
3227 ClearPageChecked(page);
3231 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3234 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3235 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3236 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3240 phy_offset >>= inode->i_sb->s_blocksize_bits;
3241 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3242 start, (size_t)(end - start + 1));
3246 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3248 * @inode: The inode we want to perform iput on
3250 * This function uses the generic vfs_inode::i_count to track whether we should
3251 * just decrement it (in case it's > 1) or if this is the last iput then link
3252 * the inode to the delayed iput machinery. Delayed iputs are processed at
3253 * transaction commit time/superblock commit/cleaner kthread.
3255 void btrfs_add_delayed_iput(struct inode *inode)
3257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3258 struct btrfs_inode *binode = BTRFS_I(inode);
3260 if (atomic_add_unless(&inode->i_count, -1, 1))
3263 spin_lock(&fs_info->delayed_iput_lock);
3264 ASSERT(list_empty(&binode->delayed_iput));
3265 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3266 spin_unlock(&fs_info->delayed_iput_lock);
3269 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3272 spin_lock(&fs_info->delayed_iput_lock);
3273 while (!list_empty(&fs_info->delayed_iputs)) {
3274 struct btrfs_inode *inode;
3276 inode = list_first_entry(&fs_info->delayed_iputs,
3277 struct btrfs_inode, delayed_iput);
3278 list_del_init(&inode->delayed_iput);
3279 spin_unlock(&fs_info->delayed_iput_lock);
3280 iput(&inode->vfs_inode);
3281 spin_lock(&fs_info->delayed_iput_lock);
3283 spin_unlock(&fs_info->delayed_iput_lock);
3287 * This creates an orphan entry for the given inode in case something goes wrong
3288 * in the middle of an unlink.
3290 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3291 struct btrfs_inode *inode)
3295 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3296 if (ret && ret != -EEXIST) {
3297 btrfs_abort_transaction(trans, ret);
3305 * We have done the delete so we can go ahead and remove the orphan item for
3306 * this particular inode.
3308 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3309 struct btrfs_inode *inode)
3311 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3315 * this cleans up any orphans that may be left on the list from the last use
3318 int btrfs_orphan_cleanup(struct btrfs_root *root)
3320 struct btrfs_fs_info *fs_info = root->fs_info;
3321 struct btrfs_path *path;
3322 struct extent_buffer *leaf;
3323 struct btrfs_key key, found_key;
3324 struct btrfs_trans_handle *trans;
3325 struct inode *inode;
3326 u64 last_objectid = 0;
3327 int ret = 0, nr_unlink = 0;
3329 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3332 path = btrfs_alloc_path();
3337 path->reada = READA_BACK;
3339 key.objectid = BTRFS_ORPHAN_OBJECTID;
3340 key.type = BTRFS_ORPHAN_ITEM_KEY;
3341 key.offset = (u64)-1;
3344 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3349 * if ret == 0 means we found what we were searching for, which
3350 * is weird, but possible, so only screw with path if we didn't
3351 * find the key and see if we have stuff that matches
3355 if (path->slots[0] == 0)
3360 /* pull out the item */
3361 leaf = path->nodes[0];
3362 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3364 /* make sure the item matches what we want */
3365 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3367 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3370 /* release the path since we're done with it */
3371 btrfs_release_path(path);
3374 * this is where we are basically btrfs_lookup, without the
3375 * crossing root thing. we store the inode number in the
3376 * offset of the orphan item.
3379 if (found_key.offset == last_objectid) {
3381 "Error removing orphan entry, stopping orphan cleanup");
3386 last_objectid = found_key.offset;
3388 found_key.objectid = found_key.offset;
3389 found_key.type = BTRFS_INODE_ITEM_KEY;
3390 found_key.offset = 0;
3391 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3392 ret = PTR_ERR_OR_ZERO(inode);
3393 if (ret && ret != -ENOENT)
3396 if (ret == -ENOENT && root == fs_info->tree_root) {
3397 struct btrfs_root *dead_root;
3398 struct btrfs_fs_info *fs_info = root->fs_info;
3399 int is_dead_root = 0;
3402 * this is an orphan in the tree root. Currently these
3403 * could come from 2 sources:
3404 * a) a snapshot deletion in progress
3405 * b) a free space cache inode
3406 * We need to distinguish those two, as the snapshot
3407 * orphan must not get deleted.
3408 * find_dead_roots already ran before us, so if this
3409 * is a snapshot deletion, we should find the root
3410 * in the dead_roots list
3412 spin_lock(&fs_info->trans_lock);
3413 list_for_each_entry(dead_root, &fs_info->dead_roots,
3415 if (dead_root->root_key.objectid ==
3416 found_key.objectid) {
3421 spin_unlock(&fs_info->trans_lock);
3423 /* prevent this orphan from being found again */
3424 key.offset = found_key.objectid - 1;
3431 * If we have an inode with links, there are a couple of
3432 * possibilities. Old kernels (before v3.12) used to create an
3433 * orphan item for truncate indicating that there were possibly
3434 * extent items past i_size that needed to be deleted. In v3.12,
3435 * truncate was changed to update i_size in sync with the extent
3436 * items, but the (useless) orphan item was still created. Since
3437 * v4.18, we don't create the orphan item for truncate at all.
3439 * So, this item could mean that we need to do a truncate, but
3440 * only if this filesystem was last used on a pre-v3.12 kernel
3441 * and was not cleanly unmounted. The odds of that are quite
3442 * slim, and it's a pain to do the truncate now, so just delete
3445 * It's also possible that this orphan item was supposed to be
3446 * deleted but wasn't. The inode number may have been reused,
3447 * but either way, we can delete the orphan item.
3449 if (ret == -ENOENT || inode->i_nlink) {
3452 trans = btrfs_start_transaction(root, 1);
3453 if (IS_ERR(trans)) {
3454 ret = PTR_ERR(trans);
3457 btrfs_debug(fs_info, "auto deleting %Lu",
3458 found_key.objectid);
3459 ret = btrfs_del_orphan_item(trans, root,
3460 found_key.objectid);
3461 btrfs_end_transaction(trans);
3469 /* this will do delete_inode and everything for us */
3474 /* release the path since we're done with it */
3475 btrfs_release_path(path);
3477 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3479 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3480 trans = btrfs_join_transaction(root);
3482 btrfs_end_transaction(trans);
3486 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3490 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3491 btrfs_free_path(path);
3496 * very simple check to peek ahead in the leaf looking for xattrs. If we
3497 * don't find any xattrs, we know there can't be any acls.
3499 * slot is the slot the inode is in, objectid is the objectid of the inode
3501 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3502 int slot, u64 objectid,
3503 int *first_xattr_slot)
3505 u32 nritems = btrfs_header_nritems(leaf);
3506 struct btrfs_key found_key;
3507 static u64 xattr_access = 0;
3508 static u64 xattr_default = 0;
3511 if (!xattr_access) {
3512 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3513 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3514 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3515 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3519 *first_xattr_slot = -1;
3520 while (slot < nritems) {
3521 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3523 /* we found a different objectid, there must not be acls */
3524 if (found_key.objectid != objectid)
3527 /* we found an xattr, assume we've got an acl */
3528 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3529 if (*first_xattr_slot == -1)
3530 *first_xattr_slot = slot;
3531 if (found_key.offset == xattr_access ||
3532 found_key.offset == xattr_default)
3537 * we found a key greater than an xattr key, there can't
3538 * be any acls later on
3540 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3547 * it goes inode, inode backrefs, xattrs, extents,
3548 * so if there are a ton of hard links to an inode there can
3549 * be a lot of backrefs. Don't waste time searching too hard,
3550 * this is just an optimization
3555 /* we hit the end of the leaf before we found an xattr or
3556 * something larger than an xattr. We have to assume the inode
3559 if (*first_xattr_slot == -1)
3560 *first_xattr_slot = slot;
3565 * read an inode from the btree into the in-memory inode
3567 static int btrfs_read_locked_inode(struct inode *inode)
3569 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3570 struct btrfs_path *path;
3571 struct extent_buffer *leaf;
3572 struct btrfs_inode_item *inode_item;
3573 struct btrfs_root *root = BTRFS_I(inode)->root;
3574 struct btrfs_key location;
3579 bool filled = false;
3580 int first_xattr_slot;
3582 ret = btrfs_fill_inode(inode, &rdev);
3586 path = btrfs_alloc_path();
3590 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3592 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3594 btrfs_free_path(path);
3598 leaf = path->nodes[0];
3603 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3604 struct btrfs_inode_item);
3605 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3606 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3607 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3608 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3609 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3611 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3612 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3614 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3615 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3617 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3618 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3620 BTRFS_I(inode)->i_otime.tv_sec =
3621 btrfs_timespec_sec(leaf, &inode_item->otime);
3622 BTRFS_I(inode)->i_otime.tv_nsec =
3623 btrfs_timespec_nsec(leaf, &inode_item->otime);
3625 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3626 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3627 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3629 inode_set_iversion_queried(inode,
3630 btrfs_inode_sequence(leaf, inode_item));
3631 inode->i_generation = BTRFS_I(inode)->generation;
3633 rdev = btrfs_inode_rdev(leaf, inode_item);
3635 BTRFS_I(inode)->index_cnt = (u64)-1;
3636 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3640 * If we were modified in the current generation and evicted from memory
3641 * and then re-read we need to do a full sync since we don't have any
3642 * idea about which extents were modified before we were evicted from
3645 * This is required for both inode re-read from disk and delayed inode
3646 * in delayed_nodes_tree.
3648 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3649 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3650 &BTRFS_I(inode)->runtime_flags);
3653 * We don't persist the id of the transaction where an unlink operation
3654 * against the inode was last made. So here we assume the inode might
3655 * have been evicted, and therefore the exact value of last_unlink_trans
3656 * lost, and set it to last_trans to avoid metadata inconsistencies
3657 * between the inode and its parent if the inode is fsync'ed and the log
3658 * replayed. For example, in the scenario:
3661 * ln mydir/foo mydir/bar
3664 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3665 * xfs_io -c fsync mydir/foo
3667 * mount fs, triggers fsync log replay
3669 * We must make sure that when we fsync our inode foo we also log its
3670 * parent inode, otherwise after log replay the parent still has the
3671 * dentry with the "bar" name but our inode foo has a link count of 1
3672 * and doesn't have an inode ref with the name "bar" anymore.
3674 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3675 * but it guarantees correctness at the expense of occasional full
3676 * transaction commits on fsync if our inode is a directory, or if our
3677 * inode is not a directory, logging its parent unnecessarily.
3679 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3682 if (inode->i_nlink != 1 ||
3683 path->slots[0] >= btrfs_header_nritems(leaf))
3686 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3687 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3690 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3691 if (location.type == BTRFS_INODE_REF_KEY) {
3692 struct btrfs_inode_ref *ref;
3694 ref = (struct btrfs_inode_ref *)ptr;
3695 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3696 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3697 struct btrfs_inode_extref *extref;
3699 extref = (struct btrfs_inode_extref *)ptr;
3700 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3705 * try to precache a NULL acl entry for files that don't have
3706 * any xattrs or acls
3708 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3709 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3710 if (first_xattr_slot != -1) {
3711 path->slots[0] = first_xattr_slot;
3712 ret = btrfs_load_inode_props(inode, path);
3715 "error loading props for ino %llu (root %llu): %d",
3716 btrfs_ino(BTRFS_I(inode)),
3717 root->root_key.objectid, ret);
3719 btrfs_free_path(path);
3722 cache_no_acl(inode);
3724 switch (inode->i_mode & S_IFMT) {
3726 inode->i_mapping->a_ops = &btrfs_aops;
3727 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3728 inode->i_fop = &btrfs_file_operations;
3729 inode->i_op = &btrfs_file_inode_operations;
3732 inode->i_fop = &btrfs_dir_file_operations;
3733 inode->i_op = &btrfs_dir_inode_operations;
3736 inode->i_op = &btrfs_symlink_inode_operations;
3737 inode_nohighmem(inode);
3738 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3741 inode->i_op = &btrfs_special_inode_operations;
3742 init_special_inode(inode, inode->i_mode, rdev);
3746 btrfs_sync_inode_flags_to_i_flags(inode);
3751 * given a leaf and an inode, copy the inode fields into the leaf
3753 static void fill_inode_item(struct btrfs_trans_handle *trans,
3754 struct extent_buffer *leaf,
3755 struct btrfs_inode_item *item,
3756 struct inode *inode)
3758 struct btrfs_map_token token;
3760 btrfs_init_map_token(&token);
3762 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3763 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3764 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3766 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3767 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3769 btrfs_set_token_timespec_sec(leaf, &item->atime,
3770 inode->i_atime.tv_sec, &token);
3771 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3772 inode->i_atime.tv_nsec, &token);
3774 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3775 inode->i_mtime.tv_sec, &token);
3776 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3777 inode->i_mtime.tv_nsec, &token);
3779 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3780 inode->i_ctime.tv_sec, &token);
3781 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3782 inode->i_ctime.tv_nsec, &token);
3784 btrfs_set_token_timespec_sec(leaf, &item->otime,
3785 BTRFS_I(inode)->i_otime.tv_sec, &token);
3786 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3787 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3789 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3791 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3793 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3795 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3796 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3797 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3798 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3802 * copy everything in the in-memory inode into the btree.
3804 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3805 struct btrfs_root *root, struct inode *inode)
3807 struct btrfs_inode_item *inode_item;
3808 struct btrfs_path *path;
3809 struct extent_buffer *leaf;
3812 path = btrfs_alloc_path();
3816 path->leave_spinning = 1;
3817 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3825 leaf = path->nodes[0];
3826 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3827 struct btrfs_inode_item);
3829 fill_inode_item(trans, leaf, inode_item, inode);
3830 btrfs_mark_buffer_dirty(leaf);
3831 btrfs_set_inode_last_trans(trans, inode);
3834 btrfs_free_path(path);
3839 * copy everything in the in-memory inode into the btree.
3841 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3842 struct btrfs_root *root, struct inode *inode)
3844 struct btrfs_fs_info *fs_info = root->fs_info;
3848 * If the inode is a free space inode, we can deadlock during commit
3849 * if we put it into the delayed code.
3851 * The data relocation inode should also be directly updated
3854 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3855 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3856 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3857 btrfs_update_root_times(trans, root);
3859 ret = btrfs_delayed_update_inode(trans, root, inode);
3861 btrfs_set_inode_last_trans(trans, inode);
3865 return btrfs_update_inode_item(trans, root, inode);
3868 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3869 struct btrfs_root *root,
3870 struct inode *inode)
3874 ret = btrfs_update_inode(trans, root, inode);
3876 return btrfs_update_inode_item(trans, root, inode);
3881 * unlink helper that gets used here in inode.c and in the tree logging
3882 * recovery code. It remove a link in a directory with a given name, and
3883 * also drops the back refs in the inode to the directory
3885 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3886 struct btrfs_root *root,
3887 struct btrfs_inode *dir,
3888 struct btrfs_inode *inode,
3889 const char *name, int name_len)
3891 struct btrfs_fs_info *fs_info = root->fs_info;
3892 struct btrfs_path *path;
3894 struct extent_buffer *leaf;
3895 struct btrfs_dir_item *di;
3896 struct btrfs_key key;
3898 u64 ino = btrfs_ino(inode);
3899 u64 dir_ino = btrfs_ino(dir);
3901 path = btrfs_alloc_path();
3907 path->leave_spinning = 1;
3908 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3909 name, name_len, -1);
3910 if (IS_ERR_OR_NULL(di)) {
3911 ret = di ? PTR_ERR(di) : -ENOENT;
3914 leaf = path->nodes[0];
3915 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3916 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3919 btrfs_release_path(path);
3922 * If we don't have dir index, we have to get it by looking up
3923 * the inode ref, since we get the inode ref, remove it directly,
3924 * it is unnecessary to do delayed deletion.
3926 * But if we have dir index, needn't search inode ref to get it.
3927 * Since the inode ref is close to the inode item, it is better
3928 * that we delay to delete it, and just do this deletion when
3929 * we update the inode item.
3931 if (inode->dir_index) {
3932 ret = btrfs_delayed_delete_inode_ref(inode);
3934 index = inode->dir_index;
3939 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3943 "failed to delete reference to %.*s, inode %llu parent %llu",
3944 name_len, name, ino, dir_ino);
3945 btrfs_abort_transaction(trans, ret);
3949 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3951 btrfs_abort_transaction(trans, ret);
3955 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3957 if (ret != 0 && ret != -ENOENT) {
3958 btrfs_abort_transaction(trans, ret);
3962 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3967 btrfs_abort_transaction(trans, ret);
3969 btrfs_free_path(path);
3973 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3974 inode_inc_iversion(&inode->vfs_inode);
3975 inode_inc_iversion(&dir->vfs_inode);
3976 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3977 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3978 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3983 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3984 struct btrfs_root *root,
3985 struct btrfs_inode *dir, struct btrfs_inode *inode,
3986 const char *name, int name_len)
3989 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3991 drop_nlink(&inode->vfs_inode);
3992 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3998 * helper to start transaction for unlink and rmdir.
4000 * unlink and rmdir are special in btrfs, they do not always free space, so
4001 * if we cannot make our reservations the normal way try and see if there is
4002 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4003 * allow the unlink to occur.
4005 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4007 struct btrfs_root *root = BTRFS_I(dir)->root;
4010 * 1 for the possible orphan item
4011 * 1 for the dir item
4012 * 1 for the dir index
4013 * 1 for the inode ref
4016 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4019 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4021 struct btrfs_root *root = BTRFS_I(dir)->root;
4022 struct btrfs_trans_handle *trans;
4023 struct inode *inode = d_inode(dentry);
4026 trans = __unlink_start_trans(dir);
4028 return PTR_ERR(trans);
4030 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4033 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4034 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4035 dentry->d_name.len);
4039 if (inode->i_nlink == 0) {
4040 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4046 btrfs_end_transaction(trans);
4047 btrfs_btree_balance_dirty(root->fs_info);
4051 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4052 struct inode *dir, u64 objectid,
4053 const char *name, int name_len)
4055 struct btrfs_root *root = BTRFS_I(dir)->root;
4056 struct btrfs_path *path;
4057 struct extent_buffer *leaf;
4058 struct btrfs_dir_item *di;
4059 struct btrfs_key key;
4062 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4064 path = btrfs_alloc_path();
4068 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4069 name, name_len, -1);
4070 if (IS_ERR_OR_NULL(di)) {
4071 ret = di ? PTR_ERR(di) : -ENOENT;
4075 leaf = path->nodes[0];
4076 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4077 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4078 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4080 btrfs_abort_transaction(trans, ret);
4083 btrfs_release_path(path);
4085 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4086 dir_ino, &index, name, name_len);
4088 if (ret != -ENOENT) {
4089 btrfs_abort_transaction(trans, ret);
4092 di = btrfs_search_dir_index_item(root, path, dir_ino,
4094 if (IS_ERR_OR_NULL(di)) {
4099 btrfs_abort_transaction(trans, ret);
4103 leaf = path->nodes[0];
4104 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4107 btrfs_release_path(path);
4109 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4111 btrfs_abort_transaction(trans, ret);
4115 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4116 inode_inc_iversion(dir);
4117 dir->i_mtime = dir->i_ctime = current_time(dir);
4118 ret = btrfs_update_inode_fallback(trans, root, dir);
4120 btrfs_abort_transaction(trans, ret);
4122 btrfs_free_path(path);
4127 * Helper to check if the subvolume references other subvolumes or if it's
4130 static noinline int may_destroy_subvol(struct btrfs_root *root)
4132 struct btrfs_fs_info *fs_info = root->fs_info;
4133 struct btrfs_path *path;
4134 struct btrfs_dir_item *di;
4135 struct btrfs_key key;
4139 path = btrfs_alloc_path();
4143 /* Make sure this root isn't set as the default subvol */
4144 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4145 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4146 dir_id, "default", 7, 0);
4147 if (di && !IS_ERR(di)) {
4148 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4149 if (key.objectid == root->root_key.objectid) {
4152 "deleting default subvolume %llu is not allowed",
4156 btrfs_release_path(path);
4159 key.objectid = root->root_key.objectid;
4160 key.type = BTRFS_ROOT_REF_KEY;
4161 key.offset = (u64)-1;
4163 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4169 if (path->slots[0] > 0) {
4171 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4172 if (key.objectid == root->root_key.objectid &&
4173 key.type == BTRFS_ROOT_REF_KEY)
4177 btrfs_free_path(path);
4181 /* Delete all dentries for inodes belonging to the root */
4182 static void btrfs_prune_dentries(struct btrfs_root *root)
4184 struct btrfs_fs_info *fs_info = root->fs_info;
4185 struct rb_node *node;
4186 struct rb_node *prev;
4187 struct btrfs_inode *entry;
4188 struct inode *inode;
4191 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4192 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4194 spin_lock(&root->inode_lock);
4196 node = root->inode_tree.rb_node;
4200 entry = rb_entry(node, struct btrfs_inode, rb_node);
4202 if (objectid < btrfs_ino(entry))
4203 node = node->rb_left;
4204 else if (objectid > btrfs_ino(entry))
4205 node = node->rb_right;
4211 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4212 if (objectid <= btrfs_ino(entry)) {
4216 prev = rb_next(prev);
4220 entry = rb_entry(node, struct btrfs_inode, rb_node);
4221 objectid = btrfs_ino(entry) + 1;
4222 inode = igrab(&entry->vfs_inode);
4224 spin_unlock(&root->inode_lock);
4225 if (atomic_read(&inode->i_count) > 1)
4226 d_prune_aliases(inode);
4228 * btrfs_drop_inode will have it removed from the inode
4229 * cache when its usage count hits zero.
4233 spin_lock(&root->inode_lock);
4237 if (cond_resched_lock(&root->inode_lock))
4240 node = rb_next(node);
4242 spin_unlock(&root->inode_lock);
4245 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4247 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4248 struct btrfs_root *root = BTRFS_I(dir)->root;
4249 struct inode *inode = d_inode(dentry);
4250 struct btrfs_root *dest = BTRFS_I(inode)->root;
4251 struct btrfs_trans_handle *trans;
4252 struct btrfs_block_rsv block_rsv;
4258 * Don't allow to delete a subvolume with send in progress. This is
4259 * inside the inode lock so the error handling that has to drop the bit
4260 * again is not run concurrently.
4262 spin_lock(&dest->root_item_lock);
4263 if (dest->send_in_progress) {
4264 spin_unlock(&dest->root_item_lock);
4266 "attempt to delete subvolume %llu during send",
4267 dest->root_key.objectid);
4270 root_flags = btrfs_root_flags(&dest->root_item);
4271 btrfs_set_root_flags(&dest->root_item,
4272 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4273 spin_unlock(&dest->root_item_lock);
4275 down_write(&fs_info->subvol_sem);
4277 err = may_destroy_subvol(dest);
4281 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4283 * One for dir inode,
4284 * two for dir entries,
4285 * two for root ref/backref.
4287 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4291 trans = btrfs_start_transaction(root, 0);
4292 if (IS_ERR(trans)) {
4293 err = PTR_ERR(trans);
4296 trans->block_rsv = &block_rsv;
4297 trans->bytes_reserved = block_rsv.size;
4299 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4301 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4302 dentry->d_name.name, dentry->d_name.len);
4305 btrfs_abort_transaction(trans, ret);
4309 btrfs_record_root_in_trans(trans, dest);
4311 memset(&dest->root_item.drop_progress, 0,
4312 sizeof(dest->root_item.drop_progress));
4313 dest->root_item.drop_level = 0;
4314 btrfs_set_root_refs(&dest->root_item, 0);
4316 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4317 ret = btrfs_insert_orphan_item(trans,
4319 dest->root_key.objectid);
4321 btrfs_abort_transaction(trans, ret);
4327 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4328 BTRFS_UUID_KEY_SUBVOL,
4329 dest->root_key.objectid);
4330 if (ret && ret != -ENOENT) {
4331 btrfs_abort_transaction(trans, ret);
4335 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4336 ret = btrfs_uuid_tree_remove(trans,
4337 dest->root_item.received_uuid,
4338 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4339 dest->root_key.objectid);
4340 if (ret && ret != -ENOENT) {
4341 btrfs_abort_transaction(trans, ret);
4348 trans->block_rsv = NULL;
4349 trans->bytes_reserved = 0;
4350 ret = btrfs_end_transaction(trans);
4353 inode->i_flags |= S_DEAD;
4355 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4357 up_write(&fs_info->subvol_sem);
4359 spin_lock(&dest->root_item_lock);
4360 root_flags = btrfs_root_flags(&dest->root_item);
4361 btrfs_set_root_flags(&dest->root_item,
4362 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4363 spin_unlock(&dest->root_item_lock);
4365 d_invalidate(dentry);
4366 btrfs_prune_dentries(dest);
4367 ASSERT(dest->send_in_progress == 0);
4370 if (dest->ino_cache_inode) {
4371 iput(dest->ino_cache_inode);
4372 dest->ino_cache_inode = NULL;
4379 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4381 struct inode *inode = d_inode(dentry);
4383 struct btrfs_root *root = BTRFS_I(dir)->root;
4384 struct btrfs_trans_handle *trans;
4385 u64 last_unlink_trans;
4387 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4389 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4390 return btrfs_delete_subvolume(dir, dentry);
4392 trans = __unlink_start_trans(dir);
4394 return PTR_ERR(trans);
4396 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4397 err = btrfs_unlink_subvol(trans, dir,
4398 BTRFS_I(inode)->location.objectid,
4399 dentry->d_name.name,
4400 dentry->d_name.len);
4404 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4408 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4410 /* now the directory is empty */
4411 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4412 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4413 dentry->d_name.len);
4415 btrfs_i_size_write(BTRFS_I(inode), 0);
4417 * Propagate the last_unlink_trans value of the deleted dir to
4418 * its parent directory. This is to prevent an unrecoverable
4419 * log tree in the case we do something like this:
4421 * 2) create snapshot under dir foo
4422 * 3) delete the snapshot
4425 * 6) fsync foo or some file inside foo
4427 if (last_unlink_trans >= trans->transid)
4428 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4431 btrfs_end_transaction(trans);
4432 btrfs_btree_balance_dirty(root->fs_info);
4437 static int truncate_space_check(struct btrfs_trans_handle *trans,
4438 struct btrfs_root *root,
4441 struct btrfs_fs_info *fs_info = root->fs_info;
4445 * This is only used to apply pressure to the enospc system, we don't
4446 * intend to use this reservation at all.
4448 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4449 bytes_deleted *= fs_info->nodesize;
4450 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4451 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4453 trace_btrfs_space_reservation(fs_info, "transaction",
4456 trans->bytes_reserved += bytes_deleted;
4463 * Return this if we need to call truncate_block for the last bit of the
4466 #define NEED_TRUNCATE_BLOCK 1
4469 * this can truncate away extent items, csum items and directory items.
4470 * It starts at a high offset and removes keys until it can't find
4471 * any higher than new_size
4473 * csum items that cross the new i_size are truncated to the new size
4476 * min_type is the minimum key type to truncate down to. If set to 0, this
4477 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4479 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4480 struct btrfs_root *root,
4481 struct inode *inode,
4482 u64 new_size, u32 min_type)
4484 struct btrfs_fs_info *fs_info = root->fs_info;
4485 struct btrfs_path *path;
4486 struct extent_buffer *leaf;
4487 struct btrfs_file_extent_item *fi;
4488 struct btrfs_key key;
4489 struct btrfs_key found_key;
4490 u64 extent_start = 0;
4491 u64 extent_num_bytes = 0;
4492 u64 extent_offset = 0;
4494 u64 last_size = new_size;
4495 u32 found_type = (u8)-1;
4498 int pending_del_nr = 0;
4499 int pending_del_slot = 0;
4500 int extent_type = -1;
4502 u64 ino = btrfs_ino(BTRFS_I(inode));
4503 u64 bytes_deleted = 0;
4504 bool be_nice = false;
4505 bool should_throttle = false;
4506 bool should_end = false;
4508 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4511 * for non-free space inodes and ref cows, we want to back off from
4514 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4515 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4518 path = btrfs_alloc_path();
4521 path->reada = READA_BACK;
4524 * We want to drop from the next block forward in case this new size is
4525 * not block aligned since we will be keeping the last block of the
4526 * extent just the way it is.
4528 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4529 root == fs_info->tree_root)
4530 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4531 fs_info->sectorsize),
4535 * This function is also used to drop the items in the log tree before
4536 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4537 * it is used to drop the loged items. So we shouldn't kill the delayed
4540 if (min_type == 0 && root == BTRFS_I(inode)->root)
4541 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4544 key.offset = (u64)-1;
4549 * with a 16K leaf size and 128MB extents, you can actually queue
4550 * up a huge file in a single leaf. Most of the time that
4551 * bytes_deleted is > 0, it will be huge by the time we get here
4553 if (be_nice && bytes_deleted > SZ_32M &&
4554 btrfs_should_end_transaction(trans)) {
4559 path->leave_spinning = 1;
4560 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4566 /* there are no items in the tree for us to truncate, we're
4569 if (path->slots[0] == 0)
4576 leaf = path->nodes[0];
4577 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4578 found_type = found_key.type;
4580 if (found_key.objectid != ino)
4583 if (found_type < min_type)
4586 item_end = found_key.offset;
4587 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4588 fi = btrfs_item_ptr(leaf, path->slots[0],
4589 struct btrfs_file_extent_item);
4590 extent_type = btrfs_file_extent_type(leaf, fi);
4591 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4593 btrfs_file_extent_num_bytes(leaf, fi);
4595 trace_btrfs_truncate_show_fi_regular(
4596 BTRFS_I(inode), leaf, fi,
4598 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4599 item_end += btrfs_file_extent_ram_bytes(leaf,
4602 trace_btrfs_truncate_show_fi_inline(
4603 BTRFS_I(inode), leaf, fi, path->slots[0],
4608 if (found_type > min_type) {
4611 if (item_end < new_size)
4613 if (found_key.offset >= new_size)
4619 /* FIXME, shrink the extent if the ref count is only 1 */
4620 if (found_type != BTRFS_EXTENT_DATA_KEY)
4623 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4625 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4627 u64 orig_num_bytes =
4628 btrfs_file_extent_num_bytes(leaf, fi);
4629 extent_num_bytes = ALIGN(new_size -
4631 fs_info->sectorsize);
4632 btrfs_set_file_extent_num_bytes(leaf, fi,
4634 num_dec = (orig_num_bytes -
4636 if (test_bit(BTRFS_ROOT_REF_COWS,
4639 inode_sub_bytes(inode, num_dec);
4640 btrfs_mark_buffer_dirty(leaf);
4643 btrfs_file_extent_disk_num_bytes(leaf,
4645 extent_offset = found_key.offset -
4646 btrfs_file_extent_offset(leaf, fi);
4648 /* FIXME blocksize != 4096 */
4649 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4650 if (extent_start != 0) {
4652 if (test_bit(BTRFS_ROOT_REF_COWS,
4654 inode_sub_bytes(inode, num_dec);
4657 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4659 * we can't truncate inline items that have had
4663 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4664 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4665 btrfs_file_extent_compression(leaf, fi) == 0) {
4666 u32 size = (u32)(new_size - found_key.offset);
4668 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4669 size = btrfs_file_extent_calc_inline_size(size);
4670 btrfs_truncate_item(root->fs_info, path, size, 1);
4671 } else if (!del_item) {
4673 * We have to bail so the last_size is set to
4674 * just before this extent.
4676 ret = NEED_TRUNCATE_BLOCK;
4680 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4681 inode_sub_bytes(inode, item_end + 1 - new_size);
4685 last_size = found_key.offset;
4687 last_size = new_size;
4689 if (!pending_del_nr) {
4690 /* no pending yet, add ourselves */
4691 pending_del_slot = path->slots[0];
4693 } else if (pending_del_nr &&
4694 path->slots[0] + 1 == pending_del_slot) {
4695 /* hop on the pending chunk */
4697 pending_del_slot = path->slots[0];
4704 should_throttle = false;
4707 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4708 root == fs_info->tree_root)) {
4709 btrfs_set_path_blocking(path);
4710 bytes_deleted += extent_num_bytes;
4711 ret = btrfs_free_extent(trans, root, extent_start,
4712 extent_num_bytes, 0,
4713 btrfs_header_owner(leaf),
4714 ino, extent_offset);
4716 btrfs_abort_transaction(trans, ret);
4719 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4720 btrfs_async_run_delayed_refs(fs_info,
4721 trans->delayed_ref_updates * 2,
4724 if (truncate_space_check(trans, root,
4725 extent_num_bytes)) {
4728 if (btrfs_should_throttle_delayed_refs(trans,
4730 should_throttle = true;
4734 if (found_type == BTRFS_INODE_ITEM_KEY)
4737 if (path->slots[0] == 0 ||
4738 path->slots[0] != pending_del_slot ||
4739 should_throttle || should_end) {
4740 if (pending_del_nr) {
4741 ret = btrfs_del_items(trans, root, path,
4745 btrfs_abort_transaction(trans, ret);
4750 btrfs_release_path(path);
4751 if (should_throttle) {
4752 unsigned long updates = trans->delayed_ref_updates;
4754 trans->delayed_ref_updates = 0;
4755 ret = btrfs_run_delayed_refs(trans,
4762 * if we failed to refill our space rsv, bail out
4763 * and let the transaction restart
4775 if (ret >= 0 && pending_del_nr) {
4778 err = btrfs_del_items(trans, root, path, pending_del_slot,
4781 btrfs_abort_transaction(trans, err);
4785 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4786 ASSERT(last_size >= new_size);
4787 if (!ret && last_size > new_size)
4788 last_size = new_size;
4789 btrfs_ordered_update_i_size(inode, last_size, NULL);
4792 btrfs_free_path(path);
4794 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4795 unsigned long updates = trans->delayed_ref_updates;
4799 trans->delayed_ref_updates = 0;
4800 err = btrfs_run_delayed_refs(trans, updates * 2);
4809 * btrfs_truncate_block - read, zero a chunk and write a block
4810 * @inode - inode that we're zeroing
4811 * @from - the offset to start zeroing
4812 * @len - the length to zero, 0 to zero the entire range respective to the
4814 * @front - zero up to the offset instead of from the offset on
4816 * This will find the block for the "from" offset and cow the block and zero the
4817 * part we want to zero. This is used with truncate and hole punching.
4819 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4822 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4823 struct address_space *mapping = inode->i_mapping;
4824 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4825 struct btrfs_ordered_extent *ordered;
4826 struct extent_state *cached_state = NULL;
4827 struct extent_changeset *data_reserved = NULL;
4829 u32 blocksize = fs_info->sectorsize;
4830 pgoff_t index = from >> PAGE_SHIFT;
4831 unsigned offset = from & (blocksize - 1);
4833 gfp_t mask = btrfs_alloc_write_mask(mapping);
4838 if (IS_ALIGNED(offset, blocksize) &&
4839 (!len || IS_ALIGNED(len, blocksize)))
4842 block_start = round_down(from, blocksize);
4843 block_end = block_start + blocksize - 1;
4845 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4846 block_start, blocksize);
4851 page = find_or_create_page(mapping, index, mask);
4853 btrfs_delalloc_release_space(inode, data_reserved,
4854 block_start, blocksize, true);
4855 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4860 if (!PageUptodate(page)) {
4861 ret = btrfs_readpage(NULL, page);
4863 if (page->mapping != mapping) {
4868 if (!PageUptodate(page)) {
4873 wait_on_page_writeback(page);
4875 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4876 set_page_extent_mapped(page);
4878 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4880 unlock_extent_cached(io_tree, block_start, block_end,
4884 btrfs_start_ordered_extent(inode, ordered, 1);
4885 btrfs_put_ordered_extent(ordered);
4889 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4890 EXTENT_DIRTY | EXTENT_DELALLOC |
4891 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4892 0, 0, &cached_state);
4894 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4897 unlock_extent_cached(io_tree, block_start, block_end,
4902 if (offset != blocksize) {
4904 len = blocksize - offset;
4907 memset(kaddr + (block_start - page_offset(page)),
4910 memset(kaddr + (block_start - page_offset(page)) + offset,
4912 flush_dcache_page(page);
4915 ClearPageChecked(page);
4916 set_page_dirty(page);
4917 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4921 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4923 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4927 extent_changeset_free(data_reserved);
4931 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4932 u64 offset, u64 len)
4934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4935 struct btrfs_trans_handle *trans;
4939 * Still need to make sure the inode looks like it's been updated so
4940 * that any holes get logged if we fsync.
4942 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4943 BTRFS_I(inode)->last_trans = fs_info->generation;
4944 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4945 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4950 * 1 - for the one we're dropping
4951 * 1 - for the one we're adding
4952 * 1 - for updating the inode.
4954 trans = btrfs_start_transaction(root, 3);
4956 return PTR_ERR(trans);
4958 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4960 btrfs_abort_transaction(trans, ret);
4961 btrfs_end_transaction(trans);
4965 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4966 offset, 0, 0, len, 0, len, 0, 0, 0);
4968 btrfs_abort_transaction(trans, ret);
4970 btrfs_update_inode(trans, root, inode);
4971 btrfs_end_transaction(trans);
4976 * This function puts in dummy file extents for the area we're creating a hole
4977 * for. So if we are truncating this file to a larger size we need to insert
4978 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4979 * the range between oldsize and size
4981 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4983 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4984 struct btrfs_root *root = BTRFS_I(inode)->root;
4985 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4986 struct extent_map *em = NULL;
4987 struct extent_state *cached_state = NULL;
4988 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4989 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4990 u64 block_end = ALIGN(size, fs_info->sectorsize);
4997 * If our size started in the middle of a block we need to zero out the
4998 * rest of the block before we expand the i_size, otherwise we could
4999 * expose stale data.
5001 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5005 if (size <= hole_start)
5009 struct btrfs_ordered_extent *ordered;
5011 lock_extent_bits(io_tree, hole_start, block_end - 1,
5013 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5014 block_end - hole_start);
5017 unlock_extent_cached(io_tree, hole_start, block_end - 1,
5019 btrfs_start_ordered_extent(inode, ordered, 1);
5020 btrfs_put_ordered_extent(ordered);
5023 cur_offset = hole_start;
5025 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5026 block_end - cur_offset, 0);
5032 last_byte = min(extent_map_end(em), block_end);
5033 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5034 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5035 struct extent_map *hole_em;
5036 hole_size = last_byte - cur_offset;
5038 err = maybe_insert_hole(root, inode, cur_offset,
5042 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5043 cur_offset + hole_size - 1, 0);
5044 hole_em = alloc_extent_map();
5046 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5047 &BTRFS_I(inode)->runtime_flags);
5050 hole_em->start = cur_offset;
5051 hole_em->len = hole_size;
5052 hole_em->orig_start = cur_offset;
5054 hole_em->block_start = EXTENT_MAP_HOLE;
5055 hole_em->block_len = 0;
5056 hole_em->orig_block_len = 0;
5057 hole_em->ram_bytes = hole_size;
5058 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5059 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5060 hole_em->generation = fs_info->generation;
5063 write_lock(&em_tree->lock);
5064 err = add_extent_mapping(em_tree, hole_em, 1);
5065 write_unlock(&em_tree->lock);
5068 btrfs_drop_extent_cache(BTRFS_I(inode),
5073 free_extent_map(hole_em);
5076 free_extent_map(em);
5078 cur_offset = last_byte;
5079 if (cur_offset >= block_end)
5082 free_extent_map(em);
5083 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5087 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5089 struct btrfs_root *root = BTRFS_I(inode)->root;
5090 struct btrfs_trans_handle *trans;
5091 loff_t oldsize = i_size_read(inode);
5092 loff_t newsize = attr->ia_size;
5093 int mask = attr->ia_valid;
5097 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5098 * special case where we need to update the times despite not having
5099 * these flags set. For all other operations the VFS set these flags
5100 * explicitly if it wants a timestamp update.
5102 if (newsize != oldsize) {
5103 inode_inc_iversion(inode);
5104 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5105 inode->i_ctime = inode->i_mtime =
5106 current_time(inode);
5109 if (newsize > oldsize) {
5111 * Don't do an expanding truncate while snapshotting is ongoing.
5112 * This is to ensure the snapshot captures a fully consistent
5113 * state of this file - if the snapshot captures this expanding
5114 * truncation, it must capture all writes that happened before
5117 btrfs_wait_for_snapshot_creation(root);
5118 ret = btrfs_cont_expand(inode, oldsize, newsize);
5120 btrfs_end_write_no_snapshotting(root);
5124 trans = btrfs_start_transaction(root, 1);
5125 if (IS_ERR(trans)) {
5126 btrfs_end_write_no_snapshotting(root);
5127 return PTR_ERR(trans);
5130 i_size_write(inode, newsize);
5131 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5132 pagecache_isize_extended(inode, oldsize, newsize);
5133 ret = btrfs_update_inode(trans, root, inode);
5134 btrfs_end_write_no_snapshotting(root);
5135 btrfs_end_transaction(trans);
5139 * We're truncating a file that used to have good data down to
5140 * zero. Make sure it gets into the ordered flush list so that
5141 * any new writes get down to disk quickly.
5144 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5145 &BTRFS_I(inode)->runtime_flags);
5147 truncate_setsize(inode, newsize);
5149 /* Disable nonlocked read DIO to avoid the end less truncate */
5150 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5151 inode_dio_wait(inode);
5152 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5154 ret = btrfs_truncate(inode, newsize == oldsize);
5155 if (ret && inode->i_nlink) {
5159 * Truncate failed, so fix up the in-memory size. We
5160 * adjusted disk_i_size down as we removed extents, so
5161 * wait for disk_i_size to be stable and then update the
5162 * in-memory size to match.
5164 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5167 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5174 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5176 struct inode *inode = d_inode(dentry);
5177 struct btrfs_root *root = BTRFS_I(inode)->root;
5180 if (btrfs_root_readonly(root))
5183 err = setattr_prepare(dentry, attr);
5187 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5188 err = btrfs_setsize(inode, attr);
5193 if (attr->ia_valid) {
5194 setattr_copy(inode, attr);
5195 inode_inc_iversion(inode);
5196 err = btrfs_dirty_inode(inode);
5198 if (!err && attr->ia_valid & ATTR_MODE)
5199 err = posix_acl_chmod(inode, inode->i_mode);
5206 * While truncating the inode pages during eviction, we get the VFS calling
5207 * btrfs_invalidatepage() against each page of the inode. This is slow because
5208 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5209 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5210 * extent_state structures over and over, wasting lots of time.
5212 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5213 * those expensive operations on a per page basis and do only the ordered io
5214 * finishing, while we release here the extent_map and extent_state structures,
5215 * without the excessive merging and splitting.
5217 static void evict_inode_truncate_pages(struct inode *inode)
5219 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5220 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5221 struct rb_node *node;
5223 ASSERT(inode->i_state & I_FREEING);
5224 truncate_inode_pages_final(&inode->i_data);
5226 write_lock(&map_tree->lock);
5227 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5228 struct extent_map *em;
5230 node = rb_first(&map_tree->map);
5231 em = rb_entry(node, struct extent_map, rb_node);
5232 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5233 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5234 remove_extent_mapping(map_tree, em);
5235 free_extent_map(em);
5236 if (need_resched()) {
5237 write_unlock(&map_tree->lock);
5239 write_lock(&map_tree->lock);
5242 write_unlock(&map_tree->lock);
5245 * Keep looping until we have no more ranges in the io tree.
5246 * We can have ongoing bios started by readpages (called from readahead)
5247 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5248 * still in progress (unlocked the pages in the bio but did not yet
5249 * unlocked the ranges in the io tree). Therefore this means some
5250 * ranges can still be locked and eviction started because before
5251 * submitting those bios, which are executed by a separate task (work
5252 * queue kthread), inode references (inode->i_count) were not taken
5253 * (which would be dropped in the end io callback of each bio).
5254 * Therefore here we effectively end up waiting for those bios and
5255 * anyone else holding locked ranges without having bumped the inode's
5256 * reference count - if we don't do it, when they access the inode's
5257 * io_tree to unlock a range it may be too late, leading to an
5258 * use-after-free issue.
5260 spin_lock(&io_tree->lock);
5261 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5262 struct extent_state *state;
5263 struct extent_state *cached_state = NULL;
5267 node = rb_first(&io_tree->state);
5268 state = rb_entry(node, struct extent_state, rb_node);
5269 start = state->start;
5271 spin_unlock(&io_tree->lock);
5273 lock_extent_bits(io_tree, start, end, &cached_state);
5276 * If still has DELALLOC flag, the extent didn't reach disk,
5277 * and its reserved space won't be freed by delayed_ref.
5278 * So we need to free its reserved space here.
5279 * (Refer to comment in btrfs_invalidatepage, case 2)
5281 * Note, end is the bytenr of last byte, so we need + 1 here.
5283 if (state->state & EXTENT_DELALLOC)
5284 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5286 clear_extent_bit(io_tree, start, end,
5287 EXTENT_LOCKED | EXTENT_DIRTY |
5288 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5289 EXTENT_DEFRAG, 1, 1, &cached_state);
5292 spin_lock(&io_tree->lock);
5294 spin_unlock(&io_tree->lock);
5297 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5298 struct btrfs_block_rsv *rsv,
5301 struct btrfs_fs_info *fs_info = root->fs_info;
5302 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5306 struct btrfs_trans_handle *trans;
5309 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5310 BTRFS_RESERVE_FLUSH_LIMIT);
5312 if (ret && ++failures > 2) {
5314 "could not allocate space for a delete; will truncate on mount");
5315 return ERR_PTR(-ENOSPC);
5318 trans = btrfs_join_transaction(root);
5319 if (IS_ERR(trans) || !ret)
5323 * Try to steal from the global reserve if there is space for
5326 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5327 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, false))
5330 /* If not, commit and try again. */
5331 ret = btrfs_commit_transaction(trans);
5333 return ERR_PTR(ret);
5337 void btrfs_evict_inode(struct inode *inode)
5339 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5340 struct btrfs_trans_handle *trans;
5341 struct btrfs_root *root = BTRFS_I(inode)->root;
5342 struct btrfs_block_rsv *rsv;
5346 trace_btrfs_inode_evict(inode);
5353 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5355 evict_inode_truncate_pages(inode);
5357 if (inode->i_nlink &&
5358 ((btrfs_root_refs(&root->root_item) != 0 &&
5359 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5360 btrfs_is_free_space_inode(BTRFS_I(inode))))
5363 if (is_bad_inode(inode))
5365 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5366 if (!special_file(inode->i_mode))
5367 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5369 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5371 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5374 if (inode->i_nlink > 0) {
5375 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5376 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5380 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5384 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5387 rsv->size = min_size;
5390 btrfs_i_size_write(BTRFS_I(inode), 0);
5393 trans = evict_refill_and_join(root, rsv, min_size);
5397 trans->block_rsv = rsv;
5399 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5400 trans->block_rsv = &fs_info->trans_block_rsv;
5401 btrfs_end_transaction(trans);
5402 btrfs_btree_balance_dirty(fs_info);
5403 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5410 * Errors here aren't a big deal, it just means we leave orphan items in
5411 * the tree. They will be cleaned up on the next mount. If the inode
5412 * number gets reused, cleanup deletes the orphan item without doing
5413 * anything, and unlink reuses the existing orphan item.
5415 * If it turns out that we are dropping too many of these, we might want
5416 * to add a mechanism for retrying these after a commit.
5418 trans = evict_refill_and_join(root, rsv, min_size);
5419 if (!IS_ERR(trans)) {
5420 trans->block_rsv = rsv;
5421 btrfs_orphan_del(trans, BTRFS_I(inode));
5422 trans->block_rsv = &fs_info->trans_block_rsv;
5423 btrfs_end_transaction(trans);
5426 if (!(root == fs_info->tree_root ||
5427 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5428 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5431 btrfs_free_block_rsv(fs_info, rsv);
5434 * If we didn't successfully delete, the orphan item will still be in
5435 * the tree and we'll retry on the next mount. Again, we might also want
5436 * to retry these periodically in the future.
5438 btrfs_remove_delayed_node(BTRFS_I(inode));
5443 * this returns the key found in the dir entry in the location pointer.
5444 * If no dir entries were found, returns -ENOENT.
5445 * If found a corrupted location in dir entry, returns -EUCLEAN.
5447 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5448 struct btrfs_key *location)
5450 const char *name = dentry->d_name.name;
5451 int namelen = dentry->d_name.len;
5452 struct btrfs_dir_item *di;
5453 struct btrfs_path *path;
5454 struct btrfs_root *root = BTRFS_I(dir)->root;
5457 path = btrfs_alloc_path();
5461 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5463 if (IS_ERR_OR_NULL(di)) {
5464 ret = di ? PTR_ERR(di) : -ENOENT;
5468 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5469 if (location->type != BTRFS_INODE_ITEM_KEY &&
5470 location->type != BTRFS_ROOT_ITEM_KEY) {
5472 btrfs_warn(root->fs_info,
5473 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5474 __func__, name, btrfs_ino(BTRFS_I(dir)),
5475 location->objectid, location->type, location->offset);
5478 btrfs_free_path(path);
5483 * when we hit a tree root in a directory, the btrfs part of the inode
5484 * needs to be changed to reflect the root directory of the tree root. This
5485 * is kind of like crossing a mount point.
5487 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5489 struct dentry *dentry,
5490 struct btrfs_key *location,
5491 struct btrfs_root **sub_root)
5493 struct btrfs_path *path;
5494 struct btrfs_root *new_root;
5495 struct btrfs_root_ref *ref;
5496 struct extent_buffer *leaf;
5497 struct btrfs_key key;
5501 path = btrfs_alloc_path();
5508 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5509 key.type = BTRFS_ROOT_REF_KEY;
5510 key.offset = location->objectid;
5512 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5519 leaf = path->nodes[0];
5520 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5521 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5522 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5525 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5526 (unsigned long)(ref + 1),
5527 dentry->d_name.len);
5531 btrfs_release_path(path);
5533 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5534 if (IS_ERR(new_root)) {
5535 err = PTR_ERR(new_root);
5539 *sub_root = new_root;
5540 location->objectid = btrfs_root_dirid(&new_root->root_item);
5541 location->type = BTRFS_INODE_ITEM_KEY;
5542 location->offset = 0;
5545 btrfs_free_path(path);
5549 static void inode_tree_add(struct inode *inode)
5551 struct btrfs_root *root = BTRFS_I(inode)->root;
5552 struct btrfs_inode *entry;
5554 struct rb_node *parent;
5555 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5556 u64 ino = btrfs_ino(BTRFS_I(inode));
5558 if (inode_unhashed(inode))
5561 spin_lock(&root->inode_lock);
5562 p = &root->inode_tree.rb_node;
5565 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5567 if (ino < btrfs_ino(entry))
5568 p = &parent->rb_left;
5569 else if (ino > btrfs_ino(entry))
5570 p = &parent->rb_right;
5572 WARN_ON(!(entry->vfs_inode.i_state &
5573 (I_WILL_FREE | I_FREEING)));
5574 rb_replace_node(parent, new, &root->inode_tree);
5575 RB_CLEAR_NODE(parent);
5576 spin_unlock(&root->inode_lock);
5580 rb_link_node(new, parent, p);
5581 rb_insert_color(new, &root->inode_tree);
5582 spin_unlock(&root->inode_lock);
5585 static void inode_tree_del(struct inode *inode)
5587 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5588 struct btrfs_root *root = BTRFS_I(inode)->root;
5591 spin_lock(&root->inode_lock);
5592 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5593 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5594 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5595 empty = RB_EMPTY_ROOT(&root->inode_tree);
5597 spin_unlock(&root->inode_lock);
5599 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5600 synchronize_srcu(&fs_info->subvol_srcu);
5601 spin_lock(&root->inode_lock);
5602 empty = RB_EMPTY_ROOT(&root->inode_tree);
5603 spin_unlock(&root->inode_lock);
5605 btrfs_add_dead_root(root);
5610 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5612 struct btrfs_iget_args *args = p;
5613 inode->i_ino = args->location->objectid;
5614 memcpy(&BTRFS_I(inode)->location, args->location,
5615 sizeof(*args->location));
5616 BTRFS_I(inode)->root = args->root;
5620 static int btrfs_find_actor(struct inode *inode, void *opaque)
5622 struct btrfs_iget_args *args = opaque;
5623 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5624 args->root == BTRFS_I(inode)->root;
5627 static struct inode *btrfs_iget_locked(struct super_block *s,
5628 struct btrfs_key *location,
5629 struct btrfs_root *root)
5631 struct inode *inode;
5632 struct btrfs_iget_args args;
5633 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5635 args.location = location;
5638 inode = iget5_locked(s, hashval, btrfs_find_actor,
5639 btrfs_init_locked_inode,
5644 /* Get an inode object given its location and corresponding root.
5645 * Returns in *is_new if the inode was read from disk
5647 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5648 struct btrfs_root *root, int *new)
5650 struct inode *inode;
5652 inode = btrfs_iget_locked(s, location, root);
5654 return ERR_PTR(-ENOMEM);
5656 if (inode->i_state & I_NEW) {
5659 ret = btrfs_read_locked_inode(inode);
5661 inode_tree_add(inode);
5662 unlock_new_inode(inode);
5668 * ret > 0 can come from btrfs_search_slot called by
5669 * btrfs_read_locked_inode, this means the inode item
5674 inode = ERR_PTR(ret);
5681 static struct inode *new_simple_dir(struct super_block *s,
5682 struct btrfs_key *key,
5683 struct btrfs_root *root)
5685 struct inode *inode = new_inode(s);
5688 return ERR_PTR(-ENOMEM);
5690 BTRFS_I(inode)->root = root;
5691 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5692 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5694 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5695 inode->i_op = &btrfs_dir_ro_inode_operations;
5696 inode->i_opflags &= ~IOP_XATTR;
5697 inode->i_fop = &simple_dir_operations;
5698 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5699 inode->i_mtime = current_time(inode);
5700 inode->i_atime = inode->i_mtime;
5701 inode->i_ctime = inode->i_mtime;
5702 BTRFS_I(inode)->i_otime = inode->i_mtime;
5707 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5709 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5710 struct inode *inode;
5711 struct btrfs_root *root = BTRFS_I(dir)->root;
5712 struct btrfs_root *sub_root = root;
5713 struct btrfs_key location;
5717 if (dentry->d_name.len > BTRFS_NAME_LEN)
5718 return ERR_PTR(-ENAMETOOLONG);
5720 ret = btrfs_inode_by_name(dir, dentry, &location);
5722 return ERR_PTR(ret);
5724 if (location.type == BTRFS_INODE_ITEM_KEY) {
5725 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5729 index = srcu_read_lock(&fs_info->subvol_srcu);
5730 ret = fixup_tree_root_location(fs_info, dir, dentry,
5731 &location, &sub_root);
5734 inode = ERR_PTR(ret);
5736 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5738 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5740 srcu_read_unlock(&fs_info->subvol_srcu, index);
5742 if (!IS_ERR(inode) && root != sub_root) {
5743 down_read(&fs_info->cleanup_work_sem);
5744 if (!sb_rdonly(inode->i_sb))
5745 ret = btrfs_orphan_cleanup(sub_root);
5746 up_read(&fs_info->cleanup_work_sem);
5749 inode = ERR_PTR(ret);
5756 static int btrfs_dentry_delete(const struct dentry *dentry)
5758 struct btrfs_root *root;
5759 struct inode *inode = d_inode(dentry);
5761 if (!inode && !IS_ROOT(dentry))
5762 inode = d_inode(dentry->d_parent);
5765 root = BTRFS_I(inode)->root;
5766 if (btrfs_root_refs(&root->root_item) == 0)
5769 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5775 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5778 struct inode *inode;
5780 inode = btrfs_lookup_dentry(dir, dentry);
5781 if (IS_ERR(inode)) {
5782 if (PTR_ERR(inode) == -ENOENT)
5785 return ERR_CAST(inode);
5788 return d_splice_alias(inode, dentry);
5791 unsigned char btrfs_filetype_table[] = {
5792 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5796 * All this infrastructure exists because dir_emit can fault, and we are holding
5797 * the tree lock when doing readdir. For now just allocate a buffer and copy
5798 * our information into that, and then dir_emit from the buffer. This is
5799 * similar to what NFS does, only we don't keep the buffer around in pagecache
5800 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5801 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5804 static int btrfs_opendir(struct inode *inode, struct file *file)
5806 struct btrfs_file_private *private;
5808 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5811 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5812 if (!private->filldir_buf) {
5816 file->private_data = private;
5827 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5830 struct dir_entry *entry = addr;
5831 char *name = (char *)(entry + 1);
5833 ctx->pos = get_unaligned(&entry->offset);
5834 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5835 get_unaligned(&entry->ino),
5836 get_unaligned(&entry->type)))
5838 addr += sizeof(struct dir_entry) +
5839 get_unaligned(&entry->name_len);
5845 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5847 struct inode *inode = file_inode(file);
5848 struct btrfs_root *root = BTRFS_I(inode)->root;
5849 struct btrfs_file_private *private = file->private_data;
5850 struct btrfs_dir_item *di;
5851 struct btrfs_key key;
5852 struct btrfs_key found_key;
5853 struct btrfs_path *path;
5855 struct list_head ins_list;
5856 struct list_head del_list;
5858 struct extent_buffer *leaf;
5865 struct btrfs_key location;
5867 if (!dir_emit_dots(file, ctx))
5870 path = btrfs_alloc_path();
5874 addr = private->filldir_buf;
5875 path->reada = READA_FORWARD;
5877 INIT_LIST_HEAD(&ins_list);
5878 INIT_LIST_HEAD(&del_list);
5879 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5882 key.type = BTRFS_DIR_INDEX_KEY;
5883 key.offset = ctx->pos;
5884 key.objectid = btrfs_ino(BTRFS_I(inode));
5886 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5891 struct dir_entry *entry;
5893 leaf = path->nodes[0];
5894 slot = path->slots[0];
5895 if (slot >= btrfs_header_nritems(leaf)) {
5896 ret = btrfs_next_leaf(root, path);
5904 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5906 if (found_key.objectid != key.objectid)
5908 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5910 if (found_key.offset < ctx->pos)
5912 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5914 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5915 name_len = btrfs_dir_name_len(leaf, di);
5916 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5918 btrfs_release_path(path);
5919 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5922 addr = private->filldir_buf;
5929 put_unaligned(name_len, &entry->name_len);
5930 name_ptr = (char *)(entry + 1);
5931 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5933 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5935 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5936 put_unaligned(location.objectid, &entry->ino);
5937 put_unaligned(found_key.offset, &entry->offset);
5939 addr += sizeof(struct dir_entry) + name_len;
5940 total_len += sizeof(struct dir_entry) + name_len;
5944 btrfs_release_path(path);
5946 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5950 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5955 * Stop new entries from being returned after we return the last
5958 * New directory entries are assigned a strictly increasing
5959 * offset. This means that new entries created during readdir
5960 * are *guaranteed* to be seen in the future by that readdir.
5961 * This has broken buggy programs which operate on names as
5962 * they're returned by readdir. Until we re-use freed offsets
5963 * we have this hack to stop new entries from being returned
5964 * under the assumption that they'll never reach this huge
5967 * This is being careful not to overflow 32bit loff_t unless the
5968 * last entry requires it because doing so has broken 32bit apps
5971 if (ctx->pos >= INT_MAX)
5972 ctx->pos = LLONG_MAX;
5979 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5980 btrfs_free_path(path);
5985 * This is somewhat expensive, updating the tree every time the
5986 * inode changes. But, it is most likely to find the inode in cache.
5987 * FIXME, needs more benchmarking...there are no reasons other than performance
5988 * to keep or drop this code.
5990 static int btrfs_dirty_inode(struct inode *inode)
5992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5993 struct btrfs_root *root = BTRFS_I(inode)->root;
5994 struct btrfs_trans_handle *trans;
5997 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6000 trans = btrfs_join_transaction(root);
6002 return PTR_ERR(trans);
6004 ret = btrfs_update_inode(trans, root, inode);
6005 if (ret && ret == -ENOSPC) {
6006 /* whoops, lets try again with the full transaction */
6007 btrfs_end_transaction(trans);
6008 trans = btrfs_start_transaction(root, 1);
6010 return PTR_ERR(trans);
6012 ret = btrfs_update_inode(trans, root, inode);
6014 btrfs_end_transaction(trans);
6015 if (BTRFS_I(inode)->delayed_node)
6016 btrfs_balance_delayed_items(fs_info);
6022 * This is a copy of file_update_time. We need this so we can return error on
6023 * ENOSPC for updating the inode in the case of file write and mmap writes.
6025 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6028 struct btrfs_root *root = BTRFS_I(inode)->root;
6029 bool dirty = flags & ~S_VERSION;
6031 if (btrfs_root_readonly(root))
6034 if (flags & S_VERSION)
6035 dirty |= inode_maybe_inc_iversion(inode, dirty);
6036 if (flags & S_CTIME)
6037 inode->i_ctime = *now;
6038 if (flags & S_MTIME)
6039 inode->i_mtime = *now;
6040 if (flags & S_ATIME)
6041 inode->i_atime = *now;
6042 return dirty ? btrfs_dirty_inode(inode) : 0;
6046 * find the highest existing sequence number in a directory
6047 * and then set the in-memory index_cnt variable to reflect
6048 * free sequence numbers
6050 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6052 struct btrfs_root *root = inode->root;
6053 struct btrfs_key key, found_key;
6054 struct btrfs_path *path;
6055 struct extent_buffer *leaf;
6058 key.objectid = btrfs_ino(inode);
6059 key.type = BTRFS_DIR_INDEX_KEY;
6060 key.offset = (u64)-1;
6062 path = btrfs_alloc_path();
6066 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6069 /* FIXME: we should be able to handle this */
6075 * MAGIC NUMBER EXPLANATION:
6076 * since we search a directory based on f_pos we have to start at 2
6077 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6078 * else has to start at 2
6080 if (path->slots[0] == 0) {
6081 inode->index_cnt = 2;
6087 leaf = path->nodes[0];
6088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6090 if (found_key.objectid != btrfs_ino(inode) ||
6091 found_key.type != BTRFS_DIR_INDEX_KEY) {
6092 inode->index_cnt = 2;
6096 inode->index_cnt = found_key.offset + 1;
6098 btrfs_free_path(path);
6103 * helper to find a free sequence number in a given directory. This current
6104 * code is very simple, later versions will do smarter things in the btree
6106 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6110 if (dir->index_cnt == (u64)-1) {
6111 ret = btrfs_inode_delayed_dir_index_count(dir);
6113 ret = btrfs_set_inode_index_count(dir);
6119 *index = dir->index_cnt;
6125 static int btrfs_insert_inode_locked(struct inode *inode)
6127 struct btrfs_iget_args args;
6128 args.location = &BTRFS_I(inode)->location;
6129 args.root = BTRFS_I(inode)->root;
6131 return insert_inode_locked4(inode,
6132 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6133 btrfs_find_actor, &args);
6137 * Inherit flags from the parent inode.
6139 * Currently only the compression flags and the cow flags are inherited.
6141 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6148 flags = BTRFS_I(dir)->flags;
6150 if (flags & BTRFS_INODE_NOCOMPRESS) {
6151 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6152 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6153 } else if (flags & BTRFS_INODE_COMPRESS) {
6154 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6155 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6158 if (flags & BTRFS_INODE_NODATACOW) {
6159 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6160 if (S_ISREG(inode->i_mode))
6161 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6164 btrfs_sync_inode_flags_to_i_flags(inode);
6167 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6168 struct btrfs_root *root,
6170 const char *name, int name_len,
6171 u64 ref_objectid, u64 objectid,
6172 umode_t mode, u64 *index)
6174 struct btrfs_fs_info *fs_info = root->fs_info;
6175 struct inode *inode;
6176 struct btrfs_inode_item *inode_item;
6177 struct btrfs_key *location;
6178 struct btrfs_path *path;
6179 struct btrfs_inode_ref *ref;
6180 struct btrfs_key key[2];
6182 int nitems = name ? 2 : 1;
6186 path = btrfs_alloc_path();
6188 return ERR_PTR(-ENOMEM);
6190 inode = new_inode(fs_info->sb);
6192 btrfs_free_path(path);
6193 return ERR_PTR(-ENOMEM);
6197 * O_TMPFILE, set link count to 0, so that after this point,
6198 * we fill in an inode item with the correct link count.
6201 set_nlink(inode, 0);
6204 * we have to initialize this early, so we can reclaim the inode
6205 * number if we fail afterwards in this function.
6207 inode->i_ino = objectid;
6210 trace_btrfs_inode_request(dir);
6212 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6214 btrfs_free_path(path);
6216 return ERR_PTR(ret);
6222 * index_cnt is ignored for everything but a dir,
6223 * btrfs_set_inode_index_count has an explanation for the magic
6226 BTRFS_I(inode)->index_cnt = 2;
6227 BTRFS_I(inode)->dir_index = *index;
6228 BTRFS_I(inode)->root = root;
6229 BTRFS_I(inode)->generation = trans->transid;
6230 inode->i_generation = BTRFS_I(inode)->generation;
6233 * We could have gotten an inode number from somebody who was fsynced
6234 * and then removed in this same transaction, so let's just set full
6235 * sync since it will be a full sync anyway and this will blow away the
6236 * old info in the log.
6238 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6240 key[0].objectid = objectid;
6241 key[0].type = BTRFS_INODE_ITEM_KEY;
6244 sizes[0] = sizeof(struct btrfs_inode_item);
6248 * Start new inodes with an inode_ref. This is slightly more
6249 * efficient for small numbers of hard links since they will
6250 * be packed into one item. Extended refs will kick in if we
6251 * add more hard links than can fit in the ref item.
6253 key[1].objectid = objectid;
6254 key[1].type = BTRFS_INODE_REF_KEY;
6255 key[1].offset = ref_objectid;
6257 sizes[1] = name_len + sizeof(*ref);
6260 location = &BTRFS_I(inode)->location;
6261 location->objectid = objectid;
6262 location->offset = 0;
6263 location->type = BTRFS_INODE_ITEM_KEY;
6265 ret = btrfs_insert_inode_locked(inode);
6271 path->leave_spinning = 1;
6272 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6276 inode_init_owner(inode, dir, mode);
6277 inode_set_bytes(inode, 0);
6279 inode->i_mtime = current_time(inode);
6280 inode->i_atime = inode->i_mtime;
6281 inode->i_ctime = inode->i_mtime;
6282 BTRFS_I(inode)->i_otime = inode->i_mtime;
6284 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6285 struct btrfs_inode_item);
6286 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6287 sizeof(*inode_item));
6288 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6291 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6292 struct btrfs_inode_ref);
6293 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6294 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6295 ptr = (unsigned long)(ref + 1);
6296 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6299 btrfs_mark_buffer_dirty(path->nodes[0]);
6300 btrfs_free_path(path);
6302 btrfs_inherit_iflags(inode, dir);
6304 if (S_ISREG(mode)) {
6305 if (btrfs_test_opt(fs_info, NODATASUM))
6306 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6307 if (btrfs_test_opt(fs_info, NODATACOW))
6308 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6309 BTRFS_INODE_NODATASUM;
6312 inode_tree_add(inode);
6314 trace_btrfs_inode_new(inode);
6315 btrfs_set_inode_last_trans(trans, inode);
6317 btrfs_update_root_times(trans, root);
6319 ret = btrfs_inode_inherit_props(trans, inode, dir);
6322 "error inheriting props for ino %llu (root %llu): %d",
6323 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6328 discard_new_inode(inode);
6331 BTRFS_I(dir)->index_cnt--;
6332 btrfs_free_path(path);
6333 return ERR_PTR(ret);
6336 static inline u8 btrfs_inode_type(struct inode *inode)
6338 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6342 * utility function to add 'inode' into 'parent_inode' with
6343 * a give name and a given sequence number.
6344 * if 'add_backref' is true, also insert a backref from the
6345 * inode to the parent directory.
6347 int btrfs_add_link(struct btrfs_trans_handle *trans,
6348 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6349 const char *name, int name_len, int add_backref, u64 index)
6352 struct btrfs_key key;
6353 struct btrfs_root *root = parent_inode->root;
6354 u64 ino = btrfs_ino(inode);
6355 u64 parent_ino = btrfs_ino(parent_inode);
6357 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6358 memcpy(&key, &inode->root->root_key, sizeof(key));
6361 key.type = BTRFS_INODE_ITEM_KEY;
6365 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6366 ret = btrfs_add_root_ref(trans, key.objectid,
6367 root->root_key.objectid, parent_ino,
6368 index, name, name_len);
6369 } else if (add_backref) {
6370 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6374 /* Nothing to clean up yet */
6378 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6379 btrfs_inode_type(&inode->vfs_inode), index);
6380 if (ret == -EEXIST || ret == -EOVERFLOW)
6383 btrfs_abort_transaction(trans, ret);
6387 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6389 inode_inc_iversion(&parent_inode->vfs_inode);
6390 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6391 current_time(&parent_inode->vfs_inode);
6392 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6394 btrfs_abort_transaction(trans, ret);
6398 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6401 err = btrfs_del_root_ref(trans, key.objectid,
6402 root->root_key.objectid, parent_ino,
6403 &local_index, name, name_len);
6405 } else if (add_backref) {
6409 err = btrfs_del_inode_ref(trans, root, name, name_len,
6410 ino, parent_ino, &local_index);
6415 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6416 struct btrfs_inode *dir, struct dentry *dentry,
6417 struct btrfs_inode *inode, int backref, u64 index)
6419 int err = btrfs_add_link(trans, dir, inode,
6420 dentry->d_name.name, dentry->d_name.len,
6427 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6428 umode_t mode, dev_t rdev)
6430 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6431 struct btrfs_trans_handle *trans;
6432 struct btrfs_root *root = BTRFS_I(dir)->root;
6433 struct inode *inode = NULL;
6439 * 2 for inode item and ref
6441 * 1 for xattr if selinux is on
6443 trans = btrfs_start_transaction(root, 5);
6445 return PTR_ERR(trans);
6447 err = btrfs_find_free_ino(root, &objectid);
6451 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6452 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6454 if (IS_ERR(inode)) {
6455 err = PTR_ERR(inode);
6461 * If the active LSM wants to access the inode during
6462 * d_instantiate it needs these. Smack checks to see
6463 * if the filesystem supports xattrs by looking at the
6466 inode->i_op = &btrfs_special_inode_operations;
6467 init_special_inode(inode, inode->i_mode, rdev);
6469 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6473 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6478 btrfs_update_inode(trans, root, inode);
6479 d_instantiate_new(dentry, inode);
6482 btrfs_end_transaction(trans);
6483 btrfs_btree_balance_dirty(fs_info);
6485 inode_dec_link_count(inode);
6486 discard_new_inode(inode);
6491 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6492 umode_t mode, bool excl)
6494 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6495 struct btrfs_trans_handle *trans;
6496 struct btrfs_root *root = BTRFS_I(dir)->root;
6497 struct inode *inode = NULL;
6503 * 2 for inode item and ref
6505 * 1 for xattr if selinux is on
6507 trans = btrfs_start_transaction(root, 5);
6509 return PTR_ERR(trans);
6511 err = btrfs_find_free_ino(root, &objectid);
6515 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6516 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6518 if (IS_ERR(inode)) {
6519 err = PTR_ERR(inode);
6524 * If the active LSM wants to access the inode during
6525 * d_instantiate it needs these. Smack checks to see
6526 * if the filesystem supports xattrs by looking at the
6529 inode->i_fop = &btrfs_file_operations;
6530 inode->i_op = &btrfs_file_inode_operations;
6531 inode->i_mapping->a_ops = &btrfs_aops;
6533 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6537 err = btrfs_update_inode(trans, root, inode);
6541 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6546 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6547 d_instantiate_new(dentry, inode);
6550 btrfs_end_transaction(trans);
6552 inode_dec_link_count(inode);
6553 discard_new_inode(inode);
6555 btrfs_btree_balance_dirty(fs_info);
6559 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6560 struct dentry *dentry)
6562 struct btrfs_trans_handle *trans = NULL;
6563 struct btrfs_root *root = BTRFS_I(dir)->root;
6564 struct inode *inode = d_inode(old_dentry);
6565 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6570 /* do not allow sys_link's with other subvols of the same device */
6571 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6574 if (inode->i_nlink >= BTRFS_LINK_MAX)
6577 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6582 * 2 items for inode and inode ref
6583 * 2 items for dir items
6584 * 1 item for parent inode
6585 * 1 item for orphan item deletion if O_TMPFILE
6587 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6588 if (IS_ERR(trans)) {
6589 err = PTR_ERR(trans);
6594 /* There are several dir indexes for this inode, clear the cache. */
6595 BTRFS_I(inode)->dir_index = 0ULL;
6597 inode_inc_iversion(inode);
6598 inode->i_ctime = current_time(inode);
6600 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6602 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6608 struct dentry *parent = dentry->d_parent;
6611 err = btrfs_update_inode(trans, root, inode);
6614 if (inode->i_nlink == 1) {
6616 * If new hard link count is 1, it's a file created
6617 * with open(2) O_TMPFILE flag.
6619 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6623 d_instantiate(dentry, inode);
6624 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6626 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6627 err = btrfs_commit_transaction(trans);
6634 btrfs_end_transaction(trans);
6636 inode_dec_link_count(inode);
6639 btrfs_btree_balance_dirty(fs_info);
6643 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6645 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6646 struct inode *inode = NULL;
6647 struct btrfs_trans_handle *trans;
6648 struct btrfs_root *root = BTRFS_I(dir)->root;
6650 int drop_on_err = 0;
6655 * 2 items for inode and ref
6656 * 2 items for dir items
6657 * 1 for xattr if selinux is on
6659 trans = btrfs_start_transaction(root, 5);
6661 return PTR_ERR(trans);
6663 err = btrfs_find_free_ino(root, &objectid);
6667 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6668 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6669 S_IFDIR | mode, &index);
6670 if (IS_ERR(inode)) {
6671 err = PTR_ERR(inode);
6677 /* these must be set before we unlock the inode */
6678 inode->i_op = &btrfs_dir_inode_operations;
6679 inode->i_fop = &btrfs_dir_file_operations;
6681 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6685 btrfs_i_size_write(BTRFS_I(inode), 0);
6686 err = btrfs_update_inode(trans, root, inode);
6690 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6691 dentry->d_name.name,
6692 dentry->d_name.len, 0, index);
6696 d_instantiate_new(dentry, inode);
6700 btrfs_end_transaction(trans);
6702 inode_dec_link_count(inode);
6703 discard_new_inode(inode);
6705 btrfs_btree_balance_dirty(fs_info);
6709 static noinline int uncompress_inline(struct btrfs_path *path,
6711 size_t pg_offset, u64 extent_offset,
6712 struct btrfs_file_extent_item *item)
6715 struct extent_buffer *leaf = path->nodes[0];
6718 unsigned long inline_size;
6722 WARN_ON(pg_offset != 0);
6723 compress_type = btrfs_file_extent_compression(leaf, item);
6724 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6725 inline_size = btrfs_file_extent_inline_item_len(leaf,
6726 btrfs_item_nr(path->slots[0]));
6727 tmp = kmalloc(inline_size, GFP_NOFS);
6730 ptr = btrfs_file_extent_inline_start(item);
6732 read_extent_buffer(leaf, tmp, ptr, inline_size);
6734 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6735 ret = btrfs_decompress(compress_type, tmp, page,
6736 extent_offset, inline_size, max_size);
6739 * decompression code contains a memset to fill in any space between the end
6740 * of the uncompressed data and the end of max_size in case the decompressed
6741 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6742 * the end of an inline extent and the beginning of the next block, so we
6743 * cover that region here.
6746 if (max_size + pg_offset < PAGE_SIZE) {
6747 char *map = kmap(page);
6748 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6756 * a bit scary, this does extent mapping from logical file offset to the disk.
6757 * the ugly parts come from merging extents from the disk with the in-ram
6758 * representation. This gets more complex because of the data=ordered code,
6759 * where the in-ram extents might be locked pending data=ordered completion.
6761 * This also copies inline extents directly into the page.
6763 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6765 size_t pg_offset, u64 start, u64 len,
6768 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6771 u64 extent_start = 0;
6773 u64 objectid = btrfs_ino(inode);
6775 struct btrfs_path *path = NULL;
6776 struct btrfs_root *root = inode->root;
6777 struct btrfs_file_extent_item *item;
6778 struct extent_buffer *leaf;
6779 struct btrfs_key found_key;
6780 struct extent_map *em = NULL;
6781 struct extent_map_tree *em_tree = &inode->extent_tree;
6782 struct extent_io_tree *io_tree = &inode->io_tree;
6783 const bool new_inline = !page || create;
6785 read_lock(&em_tree->lock);
6786 em = lookup_extent_mapping(em_tree, start, len);
6788 em->bdev = fs_info->fs_devices->latest_bdev;
6789 read_unlock(&em_tree->lock);
6792 if (em->start > start || em->start + em->len <= start)
6793 free_extent_map(em);
6794 else if (em->block_start == EXTENT_MAP_INLINE && page)
6795 free_extent_map(em);
6799 em = alloc_extent_map();
6804 em->bdev = fs_info->fs_devices->latest_bdev;
6805 em->start = EXTENT_MAP_HOLE;
6806 em->orig_start = EXTENT_MAP_HOLE;
6808 em->block_len = (u64)-1;
6810 path = btrfs_alloc_path();
6816 /* Chances are we'll be called again, so go ahead and do readahead */
6817 path->reada = READA_FORWARD;
6820 * Unless we're going to uncompress the inline extent, no sleep would
6823 path->leave_spinning = 1;
6825 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6832 if (path->slots[0] == 0)
6837 leaf = path->nodes[0];
6838 item = btrfs_item_ptr(leaf, path->slots[0],
6839 struct btrfs_file_extent_item);
6840 /* are we inside the extent that was found? */
6841 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6842 found_type = found_key.type;
6843 if (found_key.objectid != objectid ||
6844 found_type != BTRFS_EXTENT_DATA_KEY) {
6846 * If we backup past the first extent we want to move forward
6847 * and see if there is an extent in front of us, otherwise we'll
6848 * say there is a hole for our whole search range which can
6855 found_type = btrfs_file_extent_type(leaf, item);
6856 extent_start = found_key.offset;
6857 if (found_type == BTRFS_FILE_EXTENT_REG ||
6858 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6859 extent_end = extent_start +
6860 btrfs_file_extent_num_bytes(leaf, item);
6862 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6864 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6867 size = btrfs_file_extent_ram_bytes(leaf, item);
6868 extent_end = ALIGN(extent_start + size,
6869 fs_info->sectorsize);
6871 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6876 if (start >= extent_end) {
6878 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6879 ret = btrfs_next_leaf(root, path);
6886 leaf = path->nodes[0];
6888 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6889 if (found_key.objectid != objectid ||
6890 found_key.type != BTRFS_EXTENT_DATA_KEY)
6892 if (start + len <= found_key.offset)
6894 if (start > found_key.offset)
6897 em->orig_start = start;
6898 em->len = found_key.offset - start;
6902 btrfs_extent_item_to_extent_map(inode, path, item,
6905 if (found_type == BTRFS_FILE_EXTENT_REG ||
6906 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6908 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6912 size_t extent_offset;
6918 size = btrfs_file_extent_ram_bytes(leaf, item);
6919 extent_offset = page_offset(page) + pg_offset - extent_start;
6920 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6921 size - extent_offset);
6922 em->start = extent_start + extent_offset;
6923 em->len = ALIGN(copy_size, fs_info->sectorsize);
6924 em->orig_block_len = em->len;
6925 em->orig_start = em->start;
6926 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6928 btrfs_set_path_blocking(path);
6929 if (!PageUptodate(page)) {
6930 if (btrfs_file_extent_compression(leaf, item) !=
6931 BTRFS_COMPRESS_NONE) {
6932 ret = uncompress_inline(path, page, pg_offset,
6933 extent_offset, item);
6940 read_extent_buffer(leaf, map + pg_offset, ptr,
6942 if (pg_offset + copy_size < PAGE_SIZE) {
6943 memset(map + pg_offset + copy_size, 0,
6944 PAGE_SIZE - pg_offset -
6949 flush_dcache_page(page);
6951 set_extent_uptodate(io_tree, em->start,
6952 extent_map_end(em) - 1, NULL, GFP_NOFS);
6957 em->orig_start = start;
6960 em->block_start = EXTENT_MAP_HOLE;
6962 btrfs_release_path(path);
6963 if (em->start > start || extent_map_end(em) <= start) {
6965 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6966 em->start, em->len, start, len);
6972 write_lock(&em_tree->lock);
6973 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6974 write_unlock(&em_tree->lock);
6976 btrfs_free_path(path);
6978 trace_btrfs_get_extent(root, inode, em);
6981 free_extent_map(em);
6982 return ERR_PTR(err);
6984 BUG_ON(!em); /* Error is always set */
6988 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6990 size_t pg_offset, u64 start, u64 len,
6993 struct extent_map *em;
6994 struct extent_map *hole_em = NULL;
6995 u64 range_start = start;
7001 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7005 * If our em maps to:
7007 * - a pre-alloc extent,
7008 * there might actually be delalloc bytes behind it.
7010 if (em->block_start != EXTENT_MAP_HOLE &&
7011 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7016 /* check to see if we've wrapped (len == -1 or similar) */
7025 /* ok, we didn't find anything, lets look for delalloc */
7026 found = count_range_bits(&inode->io_tree, &range_start,
7027 end, len, EXTENT_DELALLOC, 1);
7028 found_end = range_start + found;
7029 if (found_end < range_start)
7030 found_end = (u64)-1;
7033 * we didn't find anything useful, return
7034 * the original results from get_extent()
7036 if (range_start > end || found_end <= start) {
7042 /* adjust the range_start to make sure it doesn't
7043 * go backwards from the start they passed in
7045 range_start = max(start, range_start);
7046 found = found_end - range_start;
7049 u64 hole_start = start;
7052 em = alloc_extent_map();
7058 * when btrfs_get_extent can't find anything it
7059 * returns one huge hole
7061 * make sure what it found really fits our range, and
7062 * adjust to make sure it is based on the start from
7066 u64 calc_end = extent_map_end(hole_em);
7068 if (calc_end <= start || (hole_em->start > end)) {
7069 free_extent_map(hole_em);
7072 hole_start = max(hole_em->start, start);
7073 hole_len = calc_end - hole_start;
7077 if (hole_em && range_start > hole_start) {
7078 /* our hole starts before our delalloc, so we
7079 * have to return just the parts of the hole
7080 * that go until the delalloc starts
7082 em->len = min(hole_len,
7083 range_start - hole_start);
7084 em->start = hole_start;
7085 em->orig_start = hole_start;
7087 * don't adjust block start at all,
7088 * it is fixed at EXTENT_MAP_HOLE
7090 em->block_start = hole_em->block_start;
7091 em->block_len = hole_len;
7092 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7093 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7095 em->start = range_start;
7097 em->orig_start = range_start;
7098 em->block_start = EXTENT_MAP_DELALLOC;
7099 em->block_len = found;
7106 free_extent_map(hole_em);
7108 free_extent_map(em);
7109 return ERR_PTR(err);
7114 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7117 const u64 orig_start,
7118 const u64 block_start,
7119 const u64 block_len,
7120 const u64 orig_block_len,
7121 const u64 ram_bytes,
7124 struct extent_map *em = NULL;
7127 if (type != BTRFS_ORDERED_NOCOW) {
7128 em = create_io_em(inode, start, len, orig_start,
7129 block_start, block_len, orig_block_len,
7131 BTRFS_COMPRESS_NONE, /* compress_type */
7136 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7137 len, block_len, type);
7140 free_extent_map(em);
7141 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7142 start + len - 1, 0);
7151 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7155 struct btrfs_root *root = BTRFS_I(inode)->root;
7156 struct extent_map *em;
7157 struct btrfs_key ins;
7161 alloc_hint = get_extent_allocation_hint(inode, start, len);
7162 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7163 0, alloc_hint, &ins, 1, 1);
7165 return ERR_PTR(ret);
7167 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7168 ins.objectid, ins.offset, ins.offset,
7169 ins.offset, BTRFS_ORDERED_REGULAR);
7170 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7172 btrfs_free_reserved_extent(fs_info, ins.objectid,
7179 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7180 * block must be cow'd
7182 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7183 u64 *orig_start, u64 *orig_block_len,
7186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7187 struct btrfs_path *path;
7189 struct extent_buffer *leaf;
7190 struct btrfs_root *root = BTRFS_I(inode)->root;
7191 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7192 struct btrfs_file_extent_item *fi;
7193 struct btrfs_key key;
7200 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7202 path = btrfs_alloc_path();
7206 ret = btrfs_lookup_file_extent(NULL, root, path,
7207 btrfs_ino(BTRFS_I(inode)), offset, 0);
7211 slot = path->slots[0];
7214 /* can't find the item, must cow */
7221 leaf = path->nodes[0];
7222 btrfs_item_key_to_cpu(leaf, &key, slot);
7223 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7224 key.type != BTRFS_EXTENT_DATA_KEY) {
7225 /* not our file or wrong item type, must cow */
7229 if (key.offset > offset) {
7230 /* Wrong offset, must cow */
7234 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7235 found_type = btrfs_file_extent_type(leaf, fi);
7236 if (found_type != BTRFS_FILE_EXTENT_REG &&
7237 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7238 /* not a regular extent, must cow */
7242 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7245 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7246 if (extent_end <= offset)
7249 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7250 if (disk_bytenr == 0)
7253 if (btrfs_file_extent_compression(leaf, fi) ||
7254 btrfs_file_extent_encryption(leaf, fi) ||
7255 btrfs_file_extent_other_encoding(leaf, fi))
7259 * Do the same check as in btrfs_cross_ref_exist but without the
7260 * unnecessary search.
7262 if (btrfs_file_extent_generation(leaf, fi) <=
7263 btrfs_root_last_snapshot(&root->root_item))
7266 backref_offset = btrfs_file_extent_offset(leaf, fi);
7269 *orig_start = key.offset - backref_offset;
7270 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7271 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7274 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7277 num_bytes = min(offset + *len, extent_end) - offset;
7278 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7281 range_end = round_up(offset + num_bytes,
7282 root->fs_info->sectorsize) - 1;
7283 ret = test_range_bit(io_tree, offset, range_end,
7284 EXTENT_DELALLOC, 0, NULL);
7291 btrfs_release_path(path);
7294 * look for other files referencing this extent, if we
7295 * find any we must cow
7298 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7299 key.offset - backref_offset, disk_bytenr);
7306 * adjust disk_bytenr and num_bytes to cover just the bytes
7307 * in this extent we are about to write. If there
7308 * are any csums in that range we have to cow in order
7309 * to keep the csums correct
7311 disk_bytenr += backref_offset;
7312 disk_bytenr += offset - key.offset;
7313 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7316 * all of the above have passed, it is safe to overwrite this extent
7322 btrfs_free_path(path);
7326 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7327 struct extent_state **cached_state, int writing)
7329 struct btrfs_ordered_extent *ordered;
7333 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7336 * We're concerned with the entire range that we're going to be
7337 * doing DIO to, so we need to make sure there's no ordered
7338 * extents in this range.
7340 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7341 lockend - lockstart + 1);
7344 * We need to make sure there are no buffered pages in this
7345 * range either, we could have raced between the invalidate in
7346 * generic_file_direct_write and locking the extent. The
7347 * invalidate needs to happen so that reads after a write do not
7351 (!writing || !filemap_range_has_page(inode->i_mapping,
7352 lockstart, lockend)))
7355 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7360 * If we are doing a DIO read and the ordered extent we
7361 * found is for a buffered write, we can not wait for it
7362 * to complete and retry, because if we do so we can
7363 * deadlock with concurrent buffered writes on page
7364 * locks. This happens only if our DIO read covers more
7365 * than one extent map, if at this point has already
7366 * created an ordered extent for a previous extent map
7367 * and locked its range in the inode's io tree, and a
7368 * concurrent write against that previous extent map's
7369 * range and this range started (we unlock the ranges
7370 * in the io tree only when the bios complete and
7371 * buffered writes always lock pages before attempting
7372 * to lock range in the io tree).
7375 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7376 btrfs_start_ordered_extent(inode, ordered, 1);
7379 btrfs_put_ordered_extent(ordered);
7382 * We could trigger writeback for this range (and wait
7383 * for it to complete) and then invalidate the pages for
7384 * this range (through invalidate_inode_pages2_range()),
7385 * but that can lead us to a deadlock with a concurrent
7386 * call to readpages() (a buffered read or a defrag call
7387 * triggered a readahead) on a page lock due to an
7388 * ordered dio extent we created before but did not have
7389 * yet a corresponding bio submitted (whence it can not
7390 * complete), which makes readpages() wait for that
7391 * ordered extent to complete while holding a lock on
7406 /* The callers of this must take lock_extent() */
7407 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7408 u64 orig_start, u64 block_start,
7409 u64 block_len, u64 orig_block_len,
7410 u64 ram_bytes, int compress_type,
7413 struct extent_map_tree *em_tree;
7414 struct extent_map *em;
7415 struct btrfs_root *root = BTRFS_I(inode)->root;
7418 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7419 type == BTRFS_ORDERED_COMPRESSED ||
7420 type == BTRFS_ORDERED_NOCOW ||
7421 type == BTRFS_ORDERED_REGULAR);
7423 em_tree = &BTRFS_I(inode)->extent_tree;
7424 em = alloc_extent_map();
7426 return ERR_PTR(-ENOMEM);
7429 em->orig_start = orig_start;
7431 em->block_len = block_len;
7432 em->block_start = block_start;
7433 em->bdev = root->fs_info->fs_devices->latest_bdev;
7434 em->orig_block_len = orig_block_len;
7435 em->ram_bytes = ram_bytes;
7436 em->generation = -1;
7437 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7438 if (type == BTRFS_ORDERED_PREALLOC) {
7439 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7440 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7441 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7442 em->compress_type = compress_type;
7446 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7447 em->start + em->len - 1, 0);
7448 write_lock(&em_tree->lock);
7449 ret = add_extent_mapping(em_tree, em, 1);
7450 write_unlock(&em_tree->lock);
7452 * The caller has taken lock_extent(), who could race with us
7455 } while (ret == -EEXIST);
7458 free_extent_map(em);
7459 return ERR_PTR(ret);
7462 /* em got 2 refs now, callers needs to do free_extent_map once. */
7467 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7468 struct buffer_head *bh_result,
7469 struct inode *inode,
7472 if (em->block_start == EXTENT_MAP_HOLE ||
7473 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7476 len = min(len, em->len - (start - em->start));
7478 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7480 bh_result->b_size = len;
7481 bh_result->b_bdev = em->bdev;
7482 set_buffer_mapped(bh_result);
7487 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7488 struct buffer_head *bh_result,
7489 struct inode *inode,
7490 struct btrfs_dio_data *dio_data,
7493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7494 struct extent_map *em = *map;
7498 * We don't allocate a new extent in the following cases
7500 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7502 * 2) The extent is marked as PREALLOC. We're good to go here and can
7503 * just use the extent.
7506 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7507 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7508 em->block_start != EXTENT_MAP_HOLE)) {
7510 u64 block_start, orig_start, orig_block_len, ram_bytes;
7512 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7513 type = BTRFS_ORDERED_PREALLOC;
7515 type = BTRFS_ORDERED_NOCOW;
7516 len = min(len, em->len - (start - em->start));
7517 block_start = em->block_start + (start - em->start);
7519 if (can_nocow_extent(inode, start, &len, &orig_start,
7520 &orig_block_len, &ram_bytes) == 1 &&
7521 btrfs_inc_nocow_writers(fs_info, block_start)) {
7522 struct extent_map *em2;
7524 em2 = btrfs_create_dio_extent(inode, start, len,
7525 orig_start, block_start,
7526 len, orig_block_len,
7528 btrfs_dec_nocow_writers(fs_info, block_start);
7529 if (type == BTRFS_ORDERED_PREALLOC) {
7530 free_extent_map(em);
7534 if (em2 && IS_ERR(em2)) {
7539 * For inode marked NODATACOW or extent marked PREALLOC,
7540 * use the existing or preallocated extent, so does not
7541 * need to adjust btrfs_space_info's bytes_may_use.
7543 btrfs_free_reserved_data_space_noquota(inode, start,
7549 /* this will cow the extent */
7550 len = bh_result->b_size;
7551 free_extent_map(em);
7552 *map = em = btrfs_new_extent_direct(inode, start, len);
7558 len = min(len, em->len - (start - em->start));
7561 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7563 bh_result->b_size = len;
7564 bh_result->b_bdev = em->bdev;
7565 set_buffer_mapped(bh_result);
7567 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7568 set_buffer_new(bh_result);
7571 * Need to update the i_size under the extent lock so buffered
7572 * readers will get the updated i_size when we unlock.
7574 if (!dio_data->overwrite && start + len > i_size_read(inode))
7575 i_size_write(inode, start + len);
7577 WARN_ON(dio_data->reserve < len);
7578 dio_data->reserve -= len;
7579 dio_data->unsubmitted_oe_range_end = start + len;
7580 current->journal_info = dio_data;
7585 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7586 struct buffer_head *bh_result, int create)
7588 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7589 struct extent_map *em;
7590 struct extent_state *cached_state = NULL;
7591 struct btrfs_dio_data *dio_data = NULL;
7592 u64 start = iblock << inode->i_blkbits;
7593 u64 lockstart, lockend;
7594 u64 len = bh_result->b_size;
7595 int unlock_bits = EXTENT_LOCKED;
7599 unlock_bits |= EXTENT_DIRTY;
7601 len = min_t(u64, len, fs_info->sectorsize);
7604 lockend = start + len - 1;
7606 if (current->journal_info) {
7608 * Need to pull our outstanding extents and set journal_info to NULL so
7609 * that anything that needs to check if there's a transaction doesn't get
7612 dio_data = current->journal_info;
7613 current->journal_info = NULL;
7617 * If this errors out it's because we couldn't invalidate pagecache for
7618 * this range and we need to fallback to buffered.
7620 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7626 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7633 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7634 * io. INLINE is special, and we could probably kludge it in here, but
7635 * it's still buffered so for safety lets just fall back to the generic
7638 * For COMPRESSED we _have_ to read the entire extent in so we can
7639 * decompress it, so there will be buffering required no matter what we
7640 * do, so go ahead and fallback to buffered.
7642 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7643 * to buffered IO. Don't blame me, this is the price we pay for using
7646 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7647 em->block_start == EXTENT_MAP_INLINE) {
7648 free_extent_map(em);
7654 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7655 dio_data, start, len);
7659 /* clear and unlock the entire range */
7660 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7661 unlock_bits, 1, 0, &cached_state);
7663 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7665 /* Can be negative only if we read from a hole */
7668 free_extent_map(em);
7672 * We need to unlock only the end area that we aren't using.
7673 * The rest is going to be unlocked by the endio routine.
7675 lockstart = start + bh_result->b_size;
7676 if (lockstart < lockend) {
7677 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7678 lockend, unlock_bits, 1, 0,
7681 free_extent_state(cached_state);
7685 free_extent_map(em);
7690 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7691 unlock_bits, 1, 0, &cached_state);
7694 current->journal_info = dio_data;
7698 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7702 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7705 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7707 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7711 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7716 static int btrfs_check_dio_repairable(struct inode *inode,
7717 struct bio *failed_bio,
7718 struct io_failure_record *failrec,
7721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7724 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7725 if (num_copies == 1) {
7727 * we only have a single copy of the data, so don't bother with
7728 * all the retry and error correction code that follows. no
7729 * matter what the error is, it is very likely to persist.
7731 btrfs_debug(fs_info,
7732 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7733 num_copies, failrec->this_mirror, failed_mirror);
7737 failrec->failed_mirror = failed_mirror;
7738 failrec->this_mirror++;
7739 if (failrec->this_mirror == failed_mirror)
7740 failrec->this_mirror++;
7742 if (failrec->this_mirror > num_copies) {
7743 btrfs_debug(fs_info,
7744 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7745 num_copies, failrec->this_mirror, failed_mirror);
7752 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7753 struct page *page, unsigned int pgoff,
7754 u64 start, u64 end, int failed_mirror,
7755 bio_end_io_t *repair_endio, void *repair_arg)
7757 struct io_failure_record *failrec;
7758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7759 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7762 unsigned int read_mode = 0;
7765 blk_status_t status;
7766 struct bio_vec bvec;
7768 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7770 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7772 return errno_to_blk_status(ret);
7774 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7777 free_io_failure(failure_tree, io_tree, failrec);
7778 return BLK_STS_IOERR;
7781 segs = bio_segments(failed_bio);
7782 bio_get_first_bvec(failed_bio, &bvec);
7784 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7785 read_mode |= REQ_FAILFAST_DEV;
7787 isector = start - btrfs_io_bio(failed_bio)->logical;
7788 isector >>= inode->i_sb->s_blocksize_bits;
7789 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7790 pgoff, isector, repair_endio, repair_arg);
7791 bio->bi_opf = REQ_OP_READ | read_mode;
7793 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7794 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7795 read_mode, failrec->this_mirror, failrec->in_validation);
7797 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7799 free_io_failure(failure_tree, io_tree, failrec);
7806 struct btrfs_retry_complete {
7807 struct completion done;
7808 struct inode *inode;
7813 static void btrfs_retry_endio_nocsum(struct bio *bio)
7815 struct btrfs_retry_complete *done = bio->bi_private;
7816 struct inode *inode = done->inode;
7817 struct bio_vec *bvec;
7818 struct extent_io_tree *io_tree, *failure_tree;
7824 ASSERT(bio->bi_vcnt == 1);
7825 io_tree = &BTRFS_I(inode)->io_tree;
7826 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7827 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7830 ASSERT(!bio_flagged(bio, BIO_CLONED));
7831 bio_for_each_segment_all(bvec, bio, i)
7832 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7833 io_tree, done->start, bvec->bv_page,
7834 btrfs_ino(BTRFS_I(inode)), 0);
7836 complete(&done->done);
7840 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7841 struct btrfs_io_bio *io_bio)
7843 struct btrfs_fs_info *fs_info;
7844 struct bio_vec bvec;
7845 struct bvec_iter iter;
7846 struct btrfs_retry_complete done;
7852 blk_status_t err = BLK_STS_OK;
7854 fs_info = BTRFS_I(inode)->root->fs_info;
7855 sectorsize = fs_info->sectorsize;
7857 start = io_bio->logical;
7859 io_bio->bio.bi_iter = io_bio->iter;
7861 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7862 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7863 pgoff = bvec.bv_offset;
7865 next_block_or_try_again:
7868 init_completion(&done.done);
7870 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7871 pgoff, start, start + sectorsize - 1,
7873 btrfs_retry_endio_nocsum, &done);
7879 wait_for_completion_io(&done.done);
7881 if (!done.uptodate) {
7882 /* We might have another mirror, so try again */
7883 goto next_block_or_try_again;
7887 start += sectorsize;
7891 pgoff += sectorsize;
7892 ASSERT(pgoff < PAGE_SIZE);
7893 goto next_block_or_try_again;
7900 static void btrfs_retry_endio(struct bio *bio)
7902 struct btrfs_retry_complete *done = bio->bi_private;
7903 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7904 struct extent_io_tree *io_tree, *failure_tree;
7905 struct inode *inode = done->inode;
7906 struct bio_vec *bvec;
7916 ASSERT(bio->bi_vcnt == 1);
7917 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7919 io_tree = &BTRFS_I(inode)->io_tree;
7920 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7922 ASSERT(!bio_flagged(bio, BIO_CLONED));
7923 bio_for_each_segment_all(bvec, bio, i) {
7924 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7925 bvec->bv_offset, done->start,
7928 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7929 failure_tree, io_tree, done->start,
7931 btrfs_ino(BTRFS_I(inode)),
7937 done->uptodate = uptodate;
7939 complete(&done->done);
7943 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7944 struct btrfs_io_bio *io_bio, blk_status_t err)
7946 struct btrfs_fs_info *fs_info;
7947 struct bio_vec bvec;
7948 struct bvec_iter iter;
7949 struct btrfs_retry_complete done;
7956 bool uptodate = (err == 0);
7958 blk_status_t status;
7960 fs_info = BTRFS_I(inode)->root->fs_info;
7961 sectorsize = fs_info->sectorsize;
7964 start = io_bio->logical;
7966 io_bio->bio.bi_iter = io_bio->iter;
7968 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7969 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7971 pgoff = bvec.bv_offset;
7974 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7975 ret = __readpage_endio_check(inode, io_bio, csum_pos,
7976 bvec.bv_page, pgoff, start, sectorsize);
7983 init_completion(&done.done);
7985 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7986 pgoff, start, start + sectorsize - 1,
7987 io_bio->mirror_num, btrfs_retry_endio,
7994 wait_for_completion_io(&done.done);
7996 if (!done.uptodate) {
7997 /* We might have another mirror, so try again */
8001 offset += sectorsize;
8002 start += sectorsize;
8008 pgoff += sectorsize;
8009 ASSERT(pgoff < PAGE_SIZE);
8017 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8018 struct btrfs_io_bio *io_bio, blk_status_t err)
8020 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8024 return __btrfs_correct_data_nocsum(inode, io_bio);
8028 return __btrfs_subio_endio_read(inode, io_bio, err);
8032 static void btrfs_endio_direct_read(struct bio *bio)
8034 struct btrfs_dio_private *dip = bio->bi_private;
8035 struct inode *inode = dip->inode;
8036 struct bio *dio_bio;
8037 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8038 blk_status_t err = bio->bi_status;
8040 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8041 err = btrfs_subio_endio_read(inode, io_bio, err);
8043 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8044 dip->logical_offset + dip->bytes - 1);
8045 dio_bio = dip->dio_bio;
8049 dio_bio->bi_status = err;
8050 dio_end_io(dio_bio);
8053 io_bio->end_io(io_bio, blk_status_to_errno(err));
8057 static void __endio_write_update_ordered(struct inode *inode,
8058 const u64 offset, const u64 bytes,
8059 const bool uptodate)
8061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8062 struct btrfs_ordered_extent *ordered = NULL;
8063 struct btrfs_workqueue *wq;
8064 btrfs_work_func_t func;
8065 u64 ordered_offset = offset;
8066 u64 ordered_bytes = bytes;
8069 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8070 wq = fs_info->endio_freespace_worker;
8071 func = btrfs_freespace_write_helper;
8073 wq = fs_info->endio_write_workers;
8074 func = btrfs_endio_write_helper;
8077 while (ordered_offset < offset + bytes) {
8078 last_offset = ordered_offset;
8079 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8083 btrfs_init_work(&ordered->work, func,
8086 btrfs_queue_work(wq, &ordered->work);
8089 * If btrfs_dec_test_ordered_pending does not find any ordered
8090 * extent in the range, we can exit.
8092 if (ordered_offset == last_offset)
8095 * Our bio might span multiple ordered extents. In this case
8096 * we keep goin until we have accounted the whole dio.
8098 if (ordered_offset < offset + bytes) {
8099 ordered_bytes = offset + bytes - ordered_offset;
8105 static void btrfs_endio_direct_write(struct bio *bio)
8107 struct btrfs_dio_private *dip = bio->bi_private;
8108 struct bio *dio_bio = dip->dio_bio;
8110 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8111 dip->bytes, !bio->bi_status);
8115 dio_bio->bi_status = bio->bi_status;
8116 dio_end_io(dio_bio);
8120 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8121 struct bio *bio, u64 offset)
8123 struct inode *inode = private_data;
8125 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8126 BUG_ON(ret); /* -ENOMEM */
8130 static void btrfs_end_dio_bio(struct bio *bio)
8132 struct btrfs_dio_private *dip = bio->bi_private;
8133 blk_status_t err = bio->bi_status;
8136 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8137 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8138 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8140 (unsigned long long)bio->bi_iter.bi_sector,
8141 bio->bi_iter.bi_size, err);
8143 if (dip->subio_endio)
8144 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8148 * We want to perceive the errors flag being set before
8149 * decrementing the reference count. We don't need a barrier
8150 * since atomic operations with a return value are fully
8151 * ordered as per atomic_t.txt
8156 /* if there are more bios still pending for this dio, just exit */
8157 if (!atomic_dec_and_test(&dip->pending_bios))
8161 bio_io_error(dip->orig_bio);
8163 dip->dio_bio->bi_status = BLK_STS_OK;
8164 bio_endio(dip->orig_bio);
8170 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8171 struct btrfs_dio_private *dip,
8175 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8176 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8180 * We load all the csum data we need when we submit
8181 * the first bio to reduce the csum tree search and
8184 if (dip->logical_offset == file_offset) {
8185 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8191 if (bio == dip->orig_bio)
8194 file_offset -= dip->logical_offset;
8195 file_offset >>= inode->i_sb->s_blocksize_bits;
8196 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8201 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8202 struct inode *inode, u64 file_offset, int async_submit)
8204 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8205 struct btrfs_dio_private *dip = bio->bi_private;
8206 bool write = bio_op(bio) == REQ_OP_WRITE;
8209 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8211 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8214 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8219 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8222 if (write && async_submit) {
8223 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8225 btrfs_submit_bio_start_direct_io);
8229 * If we aren't doing async submit, calculate the csum of the
8232 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8236 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8242 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8247 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8249 struct inode *inode = dip->inode;
8250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8252 struct bio *orig_bio = dip->orig_bio;
8253 u64 start_sector = orig_bio->bi_iter.bi_sector;
8254 u64 file_offset = dip->logical_offset;
8256 int async_submit = 0;
8258 int clone_offset = 0;
8261 blk_status_t status;
8263 map_length = orig_bio->bi_iter.bi_size;
8264 submit_len = map_length;
8265 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8266 &map_length, NULL, 0);
8270 if (map_length >= submit_len) {
8272 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8276 /* async crcs make it difficult to collect full stripe writes. */
8277 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8283 ASSERT(map_length <= INT_MAX);
8284 atomic_inc(&dip->pending_bios);
8286 clone_len = min_t(int, submit_len, map_length);
8289 * This will never fail as it's passing GPF_NOFS and
8290 * the allocation is backed by btrfs_bioset.
8292 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8294 bio->bi_private = dip;
8295 bio->bi_end_io = btrfs_end_dio_bio;
8296 btrfs_io_bio(bio)->logical = file_offset;
8298 ASSERT(submit_len >= clone_len);
8299 submit_len -= clone_len;
8300 if (submit_len == 0)
8304 * Increase the count before we submit the bio so we know
8305 * the end IO handler won't happen before we increase the
8306 * count. Otherwise, the dip might get freed before we're
8307 * done setting it up.
8309 atomic_inc(&dip->pending_bios);
8311 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8315 atomic_dec(&dip->pending_bios);
8319 clone_offset += clone_len;
8320 start_sector += clone_len >> 9;
8321 file_offset += clone_len;
8323 map_length = submit_len;
8324 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8325 start_sector << 9, &map_length, NULL, 0);
8328 } while (submit_len > 0);
8331 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8339 * Before atomic variable goto zero, we must make sure dip->errors is
8340 * perceived to be set. This ordering is ensured by the fact that an
8341 * atomic operations with a return value are fully ordered as per
8344 if (atomic_dec_and_test(&dip->pending_bios))
8345 bio_io_error(dip->orig_bio);
8347 /* bio_end_io() will handle error, so we needn't return it */
8351 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8354 struct btrfs_dio_private *dip = NULL;
8355 struct bio *bio = NULL;
8356 struct btrfs_io_bio *io_bio;
8357 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8360 bio = btrfs_bio_clone(dio_bio);
8362 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8368 dip->private = dio_bio->bi_private;
8370 dip->logical_offset = file_offset;
8371 dip->bytes = dio_bio->bi_iter.bi_size;
8372 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8373 bio->bi_private = dip;
8374 dip->orig_bio = bio;
8375 dip->dio_bio = dio_bio;
8376 atomic_set(&dip->pending_bios, 0);
8377 io_bio = btrfs_io_bio(bio);
8378 io_bio->logical = file_offset;
8381 bio->bi_end_io = btrfs_endio_direct_write;
8383 bio->bi_end_io = btrfs_endio_direct_read;
8384 dip->subio_endio = btrfs_subio_endio_read;
8388 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8389 * even if we fail to submit a bio, because in such case we do the
8390 * corresponding error handling below and it must not be done a second
8391 * time by btrfs_direct_IO().
8394 struct btrfs_dio_data *dio_data = current->journal_info;
8396 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8398 dio_data->unsubmitted_oe_range_start =
8399 dio_data->unsubmitted_oe_range_end;
8402 ret = btrfs_submit_direct_hook(dip);
8407 io_bio->end_io(io_bio, ret);
8411 * If we arrived here it means either we failed to submit the dip
8412 * or we either failed to clone the dio_bio or failed to allocate the
8413 * dip. If we cloned the dio_bio and allocated the dip, we can just
8414 * call bio_endio against our io_bio so that we get proper resource
8415 * cleanup if we fail to submit the dip, otherwise, we must do the
8416 * same as btrfs_endio_direct_[write|read] because we can't call these
8417 * callbacks - they require an allocated dip and a clone of dio_bio.
8422 * The end io callbacks free our dip, do the final put on bio
8423 * and all the cleanup and final put for dio_bio (through
8430 __endio_write_update_ordered(inode,
8432 dio_bio->bi_iter.bi_size,
8435 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8436 file_offset + dio_bio->bi_iter.bi_size - 1);
8438 dio_bio->bi_status = BLK_STS_IOERR;
8440 * Releases and cleans up our dio_bio, no need to bio_put()
8441 * nor bio_endio()/bio_io_error() against dio_bio.
8443 dio_end_io(dio_bio);
8450 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8451 const struct iov_iter *iter, loff_t offset)
8455 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8456 ssize_t retval = -EINVAL;
8458 if (offset & blocksize_mask)
8461 if (iov_iter_alignment(iter) & blocksize_mask)
8464 /* If this is a write we don't need to check anymore */
8465 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8468 * Check to make sure we don't have duplicate iov_base's in this
8469 * iovec, if so return EINVAL, otherwise we'll get csum errors
8470 * when reading back.
8472 for (seg = 0; seg < iter->nr_segs; seg++) {
8473 for (i = seg + 1; i < iter->nr_segs; i++) {
8474 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8483 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8485 struct file *file = iocb->ki_filp;
8486 struct inode *inode = file->f_mapping->host;
8487 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8488 struct btrfs_dio_data dio_data = { 0 };
8489 struct extent_changeset *data_reserved = NULL;
8490 loff_t offset = iocb->ki_pos;
8494 bool relock = false;
8497 if (check_direct_IO(fs_info, iter, offset))
8500 inode_dio_begin(inode);
8503 * The generic stuff only does filemap_write_and_wait_range, which
8504 * isn't enough if we've written compressed pages to this area, so
8505 * we need to flush the dirty pages again to make absolutely sure
8506 * that any outstanding dirty pages are on disk.
8508 count = iov_iter_count(iter);
8509 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8510 &BTRFS_I(inode)->runtime_flags))
8511 filemap_fdatawrite_range(inode->i_mapping, offset,
8512 offset + count - 1);
8514 if (iov_iter_rw(iter) == WRITE) {
8516 * If the write DIO is beyond the EOF, we need update
8517 * the isize, but it is protected by i_mutex. So we can
8518 * not unlock the i_mutex at this case.
8520 if (offset + count <= inode->i_size) {
8521 dio_data.overwrite = 1;
8522 inode_unlock(inode);
8524 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8528 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8534 * We need to know how many extents we reserved so that we can
8535 * do the accounting properly if we go over the number we
8536 * originally calculated. Abuse current->journal_info for this.
8538 dio_data.reserve = round_up(count,
8539 fs_info->sectorsize);
8540 dio_data.unsubmitted_oe_range_start = (u64)offset;
8541 dio_data.unsubmitted_oe_range_end = (u64)offset;
8542 current->journal_info = &dio_data;
8543 down_read(&BTRFS_I(inode)->dio_sem);
8544 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8545 &BTRFS_I(inode)->runtime_flags)) {
8546 inode_dio_end(inode);
8547 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8551 ret = __blockdev_direct_IO(iocb, inode,
8552 fs_info->fs_devices->latest_bdev,
8553 iter, btrfs_get_blocks_direct, NULL,
8554 btrfs_submit_direct, flags);
8555 if (iov_iter_rw(iter) == WRITE) {
8556 up_read(&BTRFS_I(inode)->dio_sem);
8557 current->journal_info = NULL;
8558 if (ret < 0 && ret != -EIOCBQUEUED) {
8559 if (dio_data.reserve)
8560 btrfs_delalloc_release_space(inode, data_reserved,
8561 offset, dio_data.reserve, true);
8563 * On error we might have left some ordered extents
8564 * without submitting corresponding bios for them, so
8565 * cleanup them up to avoid other tasks getting them
8566 * and waiting for them to complete forever.
8568 if (dio_data.unsubmitted_oe_range_start <
8569 dio_data.unsubmitted_oe_range_end)
8570 __endio_write_update_ordered(inode,
8571 dio_data.unsubmitted_oe_range_start,
8572 dio_data.unsubmitted_oe_range_end -
8573 dio_data.unsubmitted_oe_range_start,
8575 } else if (ret >= 0 && (size_t)ret < count)
8576 btrfs_delalloc_release_space(inode, data_reserved,
8577 offset, count - (size_t)ret, true);
8578 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8582 inode_dio_end(inode);
8586 extent_changeset_free(data_reserved);
8590 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8592 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8593 __u64 start, __u64 len)
8597 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8601 return extent_fiemap(inode, fieinfo, start, len);
8604 int btrfs_readpage(struct file *file, struct page *page)
8606 struct extent_io_tree *tree;
8607 tree = &BTRFS_I(page->mapping->host)->io_tree;
8608 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8611 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8613 struct inode *inode = page->mapping->host;
8616 if (current->flags & PF_MEMALLOC) {
8617 redirty_page_for_writepage(wbc, page);
8623 * If we are under memory pressure we will call this directly from the
8624 * VM, we need to make sure we have the inode referenced for the ordered
8625 * extent. If not just return like we didn't do anything.
8627 if (!igrab(inode)) {
8628 redirty_page_for_writepage(wbc, page);
8629 return AOP_WRITEPAGE_ACTIVATE;
8631 ret = extent_write_full_page(page, wbc);
8632 btrfs_add_delayed_iput(inode);
8636 static int btrfs_writepages(struct address_space *mapping,
8637 struct writeback_control *wbc)
8639 return extent_writepages(mapping, wbc);
8643 btrfs_readpages(struct file *file, struct address_space *mapping,
8644 struct list_head *pages, unsigned nr_pages)
8646 return extent_readpages(mapping, pages, nr_pages);
8649 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8651 int ret = try_release_extent_mapping(page, gfp_flags);
8653 ClearPagePrivate(page);
8654 set_page_private(page, 0);
8660 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8662 if (PageWriteback(page) || PageDirty(page))
8664 return __btrfs_releasepage(page, gfp_flags);
8667 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8668 unsigned int length)
8670 struct inode *inode = page->mapping->host;
8671 struct extent_io_tree *tree;
8672 struct btrfs_ordered_extent *ordered;
8673 struct extent_state *cached_state = NULL;
8674 u64 page_start = page_offset(page);
8675 u64 page_end = page_start + PAGE_SIZE - 1;
8678 int inode_evicting = inode->i_state & I_FREEING;
8681 * we have the page locked, so new writeback can't start,
8682 * and the dirty bit won't be cleared while we are here.
8684 * Wait for IO on this page so that we can safely clear
8685 * the PagePrivate2 bit and do ordered accounting
8687 wait_on_page_writeback(page);
8689 tree = &BTRFS_I(inode)->io_tree;
8691 btrfs_releasepage(page, GFP_NOFS);
8695 if (!inode_evicting)
8696 lock_extent_bits(tree, page_start, page_end, &cached_state);
8699 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8700 page_end - start + 1);
8702 end = min(page_end, ordered->file_offset + ordered->len - 1);
8704 * IO on this page will never be started, so we need
8705 * to account for any ordered extents now
8707 if (!inode_evicting)
8708 clear_extent_bit(tree, start, end,
8709 EXTENT_DIRTY | EXTENT_DELALLOC |
8710 EXTENT_DELALLOC_NEW |
8711 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8712 EXTENT_DEFRAG, 1, 0, &cached_state);
8714 * whoever cleared the private bit is responsible
8715 * for the finish_ordered_io
8717 if (TestClearPagePrivate2(page)) {
8718 struct btrfs_ordered_inode_tree *tree;
8721 tree = &BTRFS_I(inode)->ordered_tree;
8723 spin_lock_irq(&tree->lock);
8724 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8725 new_len = start - ordered->file_offset;
8726 if (new_len < ordered->truncated_len)
8727 ordered->truncated_len = new_len;
8728 spin_unlock_irq(&tree->lock);
8730 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8732 end - start + 1, 1))
8733 btrfs_finish_ordered_io(ordered);
8735 btrfs_put_ordered_extent(ordered);
8736 if (!inode_evicting) {
8737 cached_state = NULL;
8738 lock_extent_bits(tree, start, end,
8743 if (start < page_end)
8748 * Qgroup reserved space handler
8749 * Page here will be either
8750 * 1) Already written to disk
8751 * In this case, its reserved space is released from data rsv map
8752 * and will be freed by delayed_ref handler finally.
8753 * So even we call qgroup_free_data(), it won't decrease reserved
8755 * 2) Not written to disk
8756 * This means the reserved space should be freed here. However,
8757 * if a truncate invalidates the page (by clearing PageDirty)
8758 * and the page is accounted for while allocating extent
8759 * in btrfs_check_data_free_space() we let delayed_ref to
8760 * free the entire extent.
8762 if (PageDirty(page))
8763 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8764 if (!inode_evicting) {
8765 clear_extent_bit(tree, page_start, page_end,
8766 EXTENT_LOCKED | EXTENT_DIRTY |
8767 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8768 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8771 __btrfs_releasepage(page, GFP_NOFS);
8774 ClearPageChecked(page);
8775 if (PagePrivate(page)) {
8776 ClearPagePrivate(page);
8777 set_page_private(page, 0);
8783 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8784 * called from a page fault handler when a page is first dirtied. Hence we must
8785 * be careful to check for EOF conditions here. We set the page up correctly
8786 * for a written page which means we get ENOSPC checking when writing into
8787 * holes and correct delalloc and unwritten extent mapping on filesystems that
8788 * support these features.
8790 * We are not allowed to take the i_mutex here so we have to play games to
8791 * protect against truncate races as the page could now be beyond EOF. Because
8792 * truncate_setsize() writes the inode size before removing pages, once we have
8793 * the page lock we can determine safely if the page is beyond EOF. If it is not
8794 * beyond EOF, then the page is guaranteed safe against truncation until we
8797 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8799 struct page *page = vmf->page;
8800 struct inode *inode = file_inode(vmf->vma->vm_file);
8801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8802 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8803 struct btrfs_ordered_extent *ordered;
8804 struct extent_state *cached_state = NULL;
8805 struct extent_changeset *data_reserved = NULL;
8807 unsigned long zero_start;
8817 reserved_space = PAGE_SIZE;
8819 sb_start_pagefault(inode->i_sb);
8820 page_start = page_offset(page);
8821 page_end = page_start + PAGE_SIZE - 1;
8825 * Reserving delalloc space after obtaining the page lock can lead to
8826 * deadlock. For example, if a dirty page is locked by this function
8827 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8828 * dirty page write out, then the btrfs_writepage() function could
8829 * end up waiting indefinitely to get a lock on the page currently
8830 * being processed by btrfs_page_mkwrite() function.
8832 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8835 ret2 = file_update_time(vmf->vma->vm_file);
8839 ret = vmf_error(ret2);
8845 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8848 size = i_size_read(inode);
8850 if ((page->mapping != inode->i_mapping) ||
8851 (page_start >= size)) {
8852 /* page got truncated out from underneath us */
8855 wait_on_page_writeback(page);
8857 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8858 set_page_extent_mapped(page);
8861 * we can't set the delalloc bits if there are pending ordered
8862 * extents. Drop our locks and wait for them to finish
8864 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8867 unlock_extent_cached(io_tree, page_start, page_end,
8870 btrfs_start_ordered_extent(inode, ordered, 1);
8871 btrfs_put_ordered_extent(ordered);
8875 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8876 reserved_space = round_up(size - page_start,
8877 fs_info->sectorsize);
8878 if (reserved_space < PAGE_SIZE) {
8879 end = page_start + reserved_space - 1;
8880 btrfs_delalloc_release_space(inode, data_reserved,
8881 page_start, PAGE_SIZE - reserved_space,
8887 * page_mkwrite gets called when the page is firstly dirtied after it's
8888 * faulted in, but write(2) could also dirty a page and set delalloc
8889 * bits, thus in this case for space account reason, we still need to
8890 * clear any delalloc bits within this page range since we have to
8891 * reserve data&meta space before lock_page() (see above comments).
8893 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8894 EXTENT_DIRTY | EXTENT_DELALLOC |
8895 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8896 0, 0, &cached_state);
8898 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8901 unlock_extent_cached(io_tree, page_start, page_end,
8903 ret = VM_FAULT_SIGBUS;
8908 /* page is wholly or partially inside EOF */
8909 if (page_start + PAGE_SIZE > size)
8910 zero_start = size & ~PAGE_MASK;
8912 zero_start = PAGE_SIZE;
8914 if (zero_start != PAGE_SIZE) {
8916 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8917 flush_dcache_page(page);
8920 ClearPageChecked(page);
8921 set_page_dirty(page);
8922 SetPageUptodate(page);
8924 BTRFS_I(inode)->last_trans = fs_info->generation;
8925 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8926 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8928 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8931 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8932 sb_end_pagefault(inode->i_sb);
8933 extent_changeset_free(data_reserved);
8934 return VM_FAULT_LOCKED;
8940 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8941 btrfs_delalloc_release_space(inode, data_reserved, page_start,
8942 reserved_space, (ret != 0));
8944 sb_end_pagefault(inode->i_sb);
8945 extent_changeset_free(data_reserved);
8949 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8952 struct btrfs_root *root = BTRFS_I(inode)->root;
8953 struct btrfs_block_rsv *rsv;
8955 struct btrfs_trans_handle *trans;
8956 u64 mask = fs_info->sectorsize - 1;
8957 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8959 if (!skip_writeback) {
8960 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8967 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8968 * things going on here:
8970 * 1) We need to reserve space to update our inode.
8972 * 2) We need to have something to cache all the space that is going to
8973 * be free'd up by the truncate operation, but also have some slack
8974 * space reserved in case it uses space during the truncate (thank you
8975 * very much snapshotting).
8977 * And we need these to be separate. The fact is we can use a lot of
8978 * space doing the truncate, and we have no earthly idea how much space
8979 * we will use, so we need the truncate reservation to be separate so it
8980 * doesn't end up using space reserved for updating the inode. We also
8981 * need to be able to stop the transaction and start a new one, which
8982 * means we need to be able to update the inode several times, and we
8983 * have no idea of knowing how many times that will be, so we can't just
8984 * reserve 1 item for the entirety of the operation, so that has to be
8985 * done separately as well.
8987 * So that leaves us with
8989 * 1) rsv - for the truncate reservation, which we will steal from the
8990 * transaction reservation.
8991 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8992 * updating the inode.
8994 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8997 rsv->size = min_size;
9001 * 1 for the truncate slack space
9002 * 1 for updating the inode.
9004 trans = btrfs_start_transaction(root, 2);
9005 if (IS_ERR(trans)) {
9006 ret = PTR_ERR(trans);
9010 /* Migrate the slack space for the truncate to our reserve */
9011 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9016 * So if we truncate and then write and fsync we normally would just
9017 * write the extents that changed, which is a problem if we need to
9018 * first truncate that entire inode. So set this flag so we write out
9019 * all of the extents in the inode to the sync log so we're completely
9022 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9023 trans->block_rsv = rsv;
9026 ret = btrfs_truncate_inode_items(trans, root, inode,
9028 BTRFS_EXTENT_DATA_KEY);
9029 trans->block_rsv = &fs_info->trans_block_rsv;
9030 if (ret != -ENOSPC && ret != -EAGAIN)
9033 ret = btrfs_update_inode(trans, root, inode);
9037 btrfs_end_transaction(trans);
9038 btrfs_btree_balance_dirty(fs_info);
9040 trans = btrfs_start_transaction(root, 2);
9041 if (IS_ERR(trans)) {
9042 ret = PTR_ERR(trans);
9047 btrfs_block_rsv_release(fs_info, rsv, -1);
9048 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9049 rsv, min_size, false);
9050 BUG_ON(ret); /* shouldn't happen */
9051 trans->block_rsv = rsv;
9055 * We can't call btrfs_truncate_block inside a trans handle as we could
9056 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9057 * we've truncated everything except the last little bit, and can do
9058 * btrfs_truncate_block and then update the disk_i_size.
9060 if (ret == NEED_TRUNCATE_BLOCK) {
9061 btrfs_end_transaction(trans);
9062 btrfs_btree_balance_dirty(fs_info);
9064 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9067 trans = btrfs_start_transaction(root, 1);
9068 if (IS_ERR(trans)) {
9069 ret = PTR_ERR(trans);
9072 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9078 trans->block_rsv = &fs_info->trans_block_rsv;
9079 ret2 = btrfs_update_inode(trans, root, inode);
9083 ret2 = btrfs_end_transaction(trans);
9086 btrfs_btree_balance_dirty(fs_info);
9089 btrfs_free_block_rsv(fs_info, rsv);
9095 * create a new subvolume directory/inode (helper for the ioctl).
9097 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9098 struct btrfs_root *new_root,
9099 struct btrfs_root *parent_root,
9102 struct inode *inode;
9106 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9107 new_dirid, new_dirid,
9108 S_IFDIR | (~current_umask() & S_IRWXUGO),
9111 return PTR_ERR(inode);
9112 inode->i_op = &btrfs_dir_inode_operations;
9113 inode->i_fop = &btrfs_dir_file_operations;
9115 set_nlink(inode, 1);
9116 btrfs_i_size_write(BTRFS_I(inode), 0);
9117 unlock_new_inode(inode);
9119 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9121 btrfs_err(new_root->fs_info,
9122 "error inheriting subvolume %llu properties: %d",
9123 new_root->root_key.objectid, err);
9125 err = btrfs_update_inode(trans, new_root, inode);
9131 struct inode *btrfs_alloc_inode(struct super_block *sb)
9133 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9134 struct btrfs_inode *ei;
9135 struct inode *inode;
9137 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9144 ei->last_sub_trans = 0;
9145 ei->logged_trans = 0;
9146 ei->delalloc_bytes = 0;
9147 ei->new_delalloc_bytes = 0;
9148 ei->defrag_bytes = 0;
9149 ei->disk_i_size = 0;
9152 ei->index_cnt = (u64)-1;
9154 ei->last_unlink_trans = 0;
9155 ei->last_log_commit = 0;
9157 spin_lock_init(&ei->lock);
9158 ei->outstanding_extents = 0;
9159 if (sb->s_magic != BTRFS_TEST_MAGIC)
9160 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9161 BTRFS_BLOCK_RSV_DELALLOC);
9162 ei->runtime_flags = 0;
9163 ei->prop_compress = BTRFS_COMPRESS_NONE;
9164 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9166 ei->delayed_node = NULL;
9168 ei->i_otime.tv_sec = 0;
9169 ei->i_otime.tv_nsec = 0;
9171 inode = &ei->vfs_inode;
9172 extent_map_tree_init(&ei->extent_tree);
9173 extent_io_tree_init(&ei->io_tree, inode);
9174 extent_io_tree_init(&ei->io_failure_tree, inode);
9175 ei->io_tree.track_uptodate = 1;
9176 ei->io_failure_tree.track_uptodate = 1;
9177 atomic_set(&ei->sync_writers, 0);
9178 mutex_init(&ei->log_mutex);
9179 mutex_init(&ei->delalloc_mutex);
9180 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9181 INIT_LIST_HEAD(&ei->delalloc_inodes);
9182 INIT_LIST_HEAD(&ei->delayed_iput);
9183 RB_CLEAR_NODE(&ei->rb_node);
9184 init_rwsem(&ei->dio_sem);
9189 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9190 void btrfs_test_destroy_inode(struct inode *inode)
9192 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9193 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9197 static void btrfs_i_callback(struct rcu_head *head)
9199 struct inode *inode = container_of(head, struct inode, i_rcu);
9200 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9203 void btrfs_destroy_inode(struct inode *inode)
9205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9206 struct btrfs_ordered_extent *ordered;
9207 struct btrfs_root *root = BTRFS_I(inode)->root;
9209 WARN_ON(!hlist_empty(&inode->i_dentry));
9210 WARN_ON(inode->i_data.nrpages);
9211 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9212 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9213 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9214 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9215 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9216 WARN_ON(BTRFS_I(inode)->csum_bytes);
9217 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9220 * This can happen where we create an inode, but somebody else also
9221 * created the same inode and we need to destroy the one we already
9228 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9233 "found ordered extent %llu %llu on inode cleanup",
9234 ordered->file_offset, ordered->len);
9235 btrfs_remove_ordered_extent(inode, ordered);
9236 btrfs_put_ordered_extent(ordered);
9237 btrfs_put_ordered_extent(ordered);
9240 btrfs_qgroup_check_reserved_leak(inode);
9241 inode_tree_del(inode);
9242 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9244 call_rcu(&inode->i_rcu, btrfs_i_callback);
9247 int btrfs_drop_inode(struct inode *inode)
9249 struct btrfs_root *root = BTRFS_I(inode)->root;
9254 /* the snap/subvol tree is on deleting */
9255 if (btrfs_root_refs(&root->root_item) == 0)
9258 return generic_drop_inode(inode);
9261 static void init_once(void *foo)
9263 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9265 inode_init_once(&ei->vfs_inode);
9268 void __cold btrfs_destroy_cachep(void)
9271 * Make sure all delayed rcu free inodes are flushed before we
9275 kmem_cache_destroy(btrfs_inode_cachep);
9276 kmem_cache_destroy(btrfs_trans_handle_cachep);
9277 kmem_cache_destroy(btrfs_path_cachep);
9278 kmem_cache_destroy(btrfs_free_space_cachep);
9281 int __init btrfs_init_cachep(void)
9283 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9284 sizeof(struct btrfs_inode), 0,
9285 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9287 if (!btrfs_inode_cachep)
9290 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9291 sizeof(struct btrfs_trans_handle), 0,
9292 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9293 if (!btrfs_trans_handle_cachep)
9296 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9297 sizeof(struct btrfs_path), 0,
9298 SLAB_MEM_SPREAD, NULL);
9299 if (!btrfs_path_cachep)
9302 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9303 sizeof(struct btrfs_free_space), 0,
9304 SLAB_MEM_SPREAD, NULL);
9305 if (!btrfs_free_space_cachep)
9310 btrfs_destroy_cachep();
9314 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9315 u32 request_mask, unsigned int flags)
9318 struct inode *inode = d_inode(path->dentry);
9319 u32 blocksize = inode->i_sb->s_blocksize;
9320 u32 bi_flags = BTRFS_I(inode)->flags;
9322 stat->result_mask |= STATX_BTIME;
9323 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9324 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9325 if (bi_flags & BTRFS_INODE_APPEND)
9326 stat->attributes |= STATX_ATTR_APPEND;
9327 if (bi_flags & BTRFS_INODE_COMPRESS)
9328 stat->attributes |= STATX_ATTR_COMPRESSED;
9329 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9330 stat->attributes |= STATX_ATTR_IMMUTABLE;
9331 if (bi_flags & BTRFS_INODE_NODUMP)
9332 stat->attributes |= STATX_ATTR_NODUMP;
9334 stat->attributes_mask |= (STATX_ATTR_APPEND |
9335 STATX_ATTR_COMPRESSED |
9336 STATX_ATTR_IMMUTABLE |
9339 generic_fillattr(inode, stat);
9340 stat->dev = BTRFS_I(inode)->root->anon_dev;
9342 spin_lock(&BTRFS_I(inode)->lock);
9343 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9344 spin_unlock(&BTRFS_I(inode)->lock);
9345 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9346 ALIGN(delalloc_bytes, blocksize)) >> 9;
9350 static int btrfs_rename_exchange(struct inode *old_dir,
9351 struct dentry *old_dentry,
9352 struct inode *new_dir,
9353 struct dentry *new_dentry)
9355 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9356 struct btrfs_trans_handle *trans;
9357 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9358 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9359 struct inode *new_inode = new_dentry->d_inode;
9360 struct inode *old_inode = old_dentry->d_inode;
9361 struct timespec64 ctime = current_time(old_inode);
9362 struct dentry *parent;
9363 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9364 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9369 bool root_log_pinned = false;
9370 bool dest_log_pinned = false;
9371 struct btrfs_log_ctx ctx_root;
9372 struct btrfs_log_ctx ctx_dest;
9373 bool sync_log_root = false;
9374 bool sync_log_dest = false;
9375 bool commit_transaction = false;
9377 /* we only allow rename subvolume link between subvolumes */
9378 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9381 btrfs_init_log_ctx(&ctx_root, old_inode);
9382 btrfs_init_log_ctx(&ctx_dest, new_inode);
9384 /* close the race window with snapshot create/destroy ioctl */
9385 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9386 down_read(&fs_info->subvol_sem);
9387 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9388 down_read(&fs_info->subvol_sem);
9391 * We want to reserve the absolute worst case amount of items. So if
9392 * both inodes are subvols and we need to unlink them then that would
9393 * require 4 item modifications, but if they are both normal inodes it
9394 * would require 5 item modifications, so we'll assume their normal
9395 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9396 * should cover the worst case number of items we'll modify.
9398 trans = btrfs_start_transaction(root, 12);
9399 if (IS_ERR(trans)) {
9400 ret = PTR_ERR(trans);
9405 * We need to find a free sequence number both in the source and
9406 * in the destination directory for the exchange.
9408 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9411 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9415 BTRFS_I(old_inode)->dir_index = 0ULL;
9416 BTRFS_I(new_inode)->dir_index = 0ULL;
9418 /* Reference for the source. */
9419 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9420 /* force full log commit if subvolume involved. */
9421 btrfs_set_log_full_commit(fs_info, trans);
9423 btrfs_pin_log_trans(root);
9424 root_log_pinned = true;
9425 ret = btrfs_insert_inode_ref(trans, dest,
9426 new_dentry->d_name.name,
9427 new_dentry->d_name.len,
9429 btrfs_ino(BTRFS_I(new_dir)),
9435 /* And now for the dest. */
9436 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9437 /* force full log commit if subvolume involved. */
9438 btrfs_set_log_full_commit(fs_info, trans);
9440 btrfs_pin_log_trans(dest);
9441 dest_log_pinned = true;
9442 ret = btrfs_insert_inode_ref(trans, root,
9443 old_dentry->d_name.name,
9444 old_dentry->d_name.len,
9446 btrfs_ino(BTRFS_I(old_dir)),
9452 /* Update inode version and ctime/mtime. */
9453 inode_inc_iversion(old_dir);
9454 inode_inc_iversion(new_dir);
9455 inode_inc_iversion(old_inode);
9456 inode_inc_iversion(new_inode);
9457 old_dir->i_ctime = old_dir->i_mtime = ctime;
9458 new_dir->i_ctime = new_dir->i_mtime = ctime;
9459 old_inode->i_ctime = ctime;
9460 new_inode->i_ctime = ctime;
9462 if (old_dentry->d_parent != new_dentry->d_parent) {
9463 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9464 BTRFS_I(old_inode), 1);
9465 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9466 BTRFS_I(new_inode), 1);
9469 /* src is a subvolume */
9470 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9471 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9472 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9473 old_dentry->d_name.name,
9474 old_dentry->d_name.len);
9475 } else { /* src is an inode */
9476 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9477 BTRFS_I(old_dentry->d_inode),
9478 old_dentry->d_name.name,
9479 old_dentry->d_name.len);
9481 ret = btrfs_update_inode(trans, root, old_inode);
9484 btrfs_abort_transaction(trans, ret);
9488 /* dest is a subvolume */
9489 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9490 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9491 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9492 new_dentry->d_name.name,
9493 new_dentry->d_name.len);
9494 } else { /* dest is an inode */
9495 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9496 BTRFS_I(new_dentry->d_inode),
9497 new_dentry->d_name.name,
9498 new_dentry->d_name.len);
9500 ret = btrfs_update_inode(trans, dest, new_inode);
9503 btrfs_abort_transaction(trans, ret);
9507 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9508 new_dentry->d_name.name,
9509 new_dentry->d_name.len, 0, old_idx);
9511 btrfs_abort_transaction(trans, ret);
9515 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9516 old_dentry->d_name.name,
9517 old_dentry->d_name.len, 0, new_idx);
9519 btrfs_abort_transaction(trans, ret);
9523 if (old_inode->i_nlink == 1)
9524 BTRFS_I(old_inode)->dir_index = old_idx;
9525 if (new_inode->i_nlink == 1)
9526 BTRFS_I(new_inode)->dir_index = new_idx;
9528 if (root_log_pinned) {
9529 parent = new_dentry->d_parent;
9530 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9531 BTRFS_I(old_dir), parent,
9533 if (ret == BTRFS_NEED_LOG_SYNC)
9534 sync_log_root = true;
9535 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9536 commit_transaction = true;
9538 btrfs_end_log_trans(root);
9539 root_log_pinned = false;
9541 if (dest_log_pinned) {
9542 if (!commit_transaction) {
9543 parent = old_dentry->d_parent;
9544 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9545 BTRFS_I(new_dir), parent,
9547 if (ret == BTRFS_NEED_LOG_SYNC)
9548 sync_log_dest = true;
9549 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9550 commit_transaction = true;
9553 btrfs_end_log_trans(dest);
9554 dest_log_pinned = false;
9558 * If we have pinned a log and an error happened, we unpin tasks
9559 * trying to sync the log and force them to fallback to a transaction
9560 * commit if the log currently contains any of the inodes involved in
9561 * this rename operation (to ensure we do not persist a log with an
9562 * inconsistent state for any of these inodes or leading to any
9563 * inconsistencies when replayed). If the transaction was aborted, the
9564 * abortion reason is propagated to userspace when attempting to commit
9565 * the transaction. If the log does not contain any of these inodes, we
9566 * allow the tasks to sync it.
9568 if (ret && (root_log_pinned || dest_log_pinned)) {
9569 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9570 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9571 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9573 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9574 btrfs_set_log_full_commit(fs_info, trans);
9576 if (root_log_pinned) {
9577 btrfs_end_log_trans(root);
9578 root_log_pinned = false;
9580 if (dest_log_pinned) {
9581 btrfs_end_log_trans(dest);
9582 dest_log_pinned = false;
9585 if (!ret && sync_log_root && !commit_transaction) {
9586 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9589 commit_transaction = true;
9591 if (!ret && sync_log_dest && !commit_transaction) {
9592 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9595 commit_transaction = true;
9597 if (commit_transaction) {
9598 ret = btrfs_commit_transaction(trans);
9602 ret2 = btrfs_end_transaction(trans);
9603 ret = ret ? ret : ret2;
9606 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9607 up_read(&fs_info->subvol_sem);
9608 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9609 up_read(&fs_info->subvol_sem);
9614 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9615 struct btrfs_root *root,
9617 struct dentry *dentry)
9620 struct inode *inode;
9624 ret = btrfs_find_free_ino(root, &objectid);
9628 inode = btrfs_new_inode(trans, root, dir,
9629 dentry->d_name.name,
9631 btrfs_ino(BTRFS_I(dir)),
9633 S_IFCHR | WHITEOUT_MODE,
9636 if (IS_ERR(inode)) {
9637 ret = PTR_ERR(inode);
9641 inode->i_op = &btrfs_special_inode_operations;
9642 init_special_inode(inode, inode->i_mode,
9645 ret = btrfs_init_inode_security(trans, inode, dir,
9650 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9651 BTRFS_I(inode), 0, index);
9655 ret = btrfs_update_inode(trans, root, inode);
9657 unlock_new_inode(inode);
9659 inode_dec_link_count(inode);
9665 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9666 struct inode *new_dir, struct dentry *new_dentry,
9669 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9670 struct btrfs_trans_handle *trans;
9671 unsigned int trans_num_items;
9672 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9673 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9674 struct inode *new_inode = d_inode(new_dentry);
9675 struct inode *old_inode = d_inode(old_dentry);
9679 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9680 bool log_pinned = false;
9681 struct btrfs_log_ctx ctx;
9682 bool sync_log = false;
9683 bool commit_transaction = false;
9685 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9688 /* we only allow rename subvolume link between subvolumes */
9689 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9692 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9693 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9696 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9697 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9701 /* check for collisions, even if the name isn't there */
9702 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9703 new_dentry->d_name.name,
9704 new_dentry->d_name.len);
9707 if (ret == -EEXIST) {
9709 * eexist without a new_inode */
9710 if (WARN_ON(!new_inode)) {
9714 /* maybe -EOVERFLOW */
9721 * we're using rename to replace one file with another. Start IO on it
9722 * now so we don't add too much work to the end of the transaction
9724 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9725 filemap_flush(old_inode->i_mapping);
9727 /* close the racy window with snapshot create/destroy ioctl */
9728 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9729 down_read(&fs_info->subvol_sem);
9731 * We want to reserve the absolute worst case amount of items. So if
9732 * both inodes are subvols and we need to unlink them then that would
9733 * require 4 item modifications, but if they are both normal inodes it
9734 * would require 5 item modifications, so we'll assume they are normal
9735 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9736 * should cover the worst case number of items we'll modify.
9737 * If our rename has the whiteout flag, we need more 5 units for the
9738 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9739 * when selinux is enabled).
9741 trans_num_items = 11;
9742 if (flags & RENAME_WHITEOUT)
9743 trans_num_items += 5;
9744 trans = btrfs_start_transaction(root, trans_num_items);
9745 if (IS_ERR(trans)) {
9746 ret = PTR_ERR(trans);
9751 btrfs_record_root_in_trans(trans, dest);
9753 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9757 BTRFS_I(old_inode)->dir_index = 0ULL;
9758 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9759 /* force full log commit if subvolume involved. */
9760 btrfs_set_log_full_commit(fs_info, trans);
9762 btrfs_pin_log_trans(root);
9764 ret = btrfs_insert_inode_ref(trans, dest,
9765 new_dentry->d_name.name,
9766 new_dentry->d_name.len,
9768 btrfs_ino(BTRFS_I(new_dir)), index);
9773 inode_inc_iversion(old_dir);
9774 inode_inc_iversion(new_dir);
9775 inode_inc_iversion(old_inode);
9776 old_dir->i_ctime = old_dir->i_mtime =
9777 new_dir->i_ctime = new_dir->i_mtime =
9778 old_inode->i_ctime = current_time(old_dir);
9780 if (old_dentry->d_parent != new_dentry->d_parent)
9781 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9782 BTRFS_I(old_inode), 1);
9784 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9785 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9786 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9787 old_dentry->d_name.name,
9788 old_dentry->d_name.len);
9790 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9791 BTRFS_I(d_inode(old_dentry)),
9792 old_dentry->d_name.name,
9793 old_dentry->d_name.len);
9795 ret = btrfs_update_inode(trans, root, old_inode);
9798 btrfs_abort_transaction(trans, ret);
9803 inode_inc_iversion(new_inode);
9804 new_inode->i_ctime = current_time(new_inode);
9805 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9806 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9807 root_objectid = BTRFS_I(new_inode)->location.objectid;
9808 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9809 new_dentry->d_name.name,
9810 new_dentry->d_name.len);
9811 BUG_ON(new_inode->i_nlink == 0);
9813 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9814 BTRFS_I(d_inode(new_dentry)),
9815 new_dentry->d_name.name,
9816 new_dentry->d_name.len);
9818 if (!ret && new_inode->i_nlink == 0)
9819 ret = btrfs_orphan_add(trans,
9820 BTRFS_I(d_inode(new_dentry)));
9822 btrfs_abort_transaction(trans, ret);
9827 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9828 new_dentry->d_name.name,
9829 new_dentry->d_name.len, 0, index);
9831 btrfs_abort_transaction(trans, ret);
9835 if (old_inode->i_nlink == 1)
9836 BTRFS_I(old_inode)->dir_index = index;
9839 struct dentry *parent = new_dentry->d_parent;
9841 btrfs_init_log_ctx(&ctx, old_inode);
9842 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9843 BTRFS_I(old_dir), parent,
9845 if (ret == BTRFS_NEED_LOG_SYNC)
9847 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9848 commit_transaction = true;
9850 btrfs_end_log_trans(root);
9854 if (flags & RENAME_WHITEOUT) {
9855 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9859 btrfs_abort_transaction(trans, ret);
9865 * If we have pinned the log and an error happened, we unpin tasks
9866 * trying to sync the log and force them to fallback to a transaction
9867 * commit if the log currently contains any of the inodes involved in
9868 * this rename operation (to ensure we do not persist a log with an
9869 * inconsistent state for any of these inodes or leading to any
9870 * inconsistencies when replayed). If the transaction was aborted, the
9871 * abortion reason is propagated to userspace when attempting to commit
9872 * the transaction. If the log does not contain any of these inodes, we
9873 * allow the tasks to sync it.
9875 if (ret && log_pinned) {
9876 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9877 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9878 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9880 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9881 btrfs_set_log_full_commit(fs_info, trans);
9883 btrfs_end_log_trans(root);
9886 if (!ret && sync_log) {
9887 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9889 commit_transaction = true;
9891 if (commit_transaction) {
9892 ret = btrfs_commit_transaction(trans);
9896 ret2 = btrfs_end_transaction(trans);
9897 ret = ret ? ret : ret2;
9900 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9901 up_read(&fs_info->subvol_sem);
9906 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9907 struct inode *new_dir, struct dentry *new_dentry,
9910 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9913 if (flags & RENAME_EXCHANGE)
9914 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9917 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9920 struct btrfs_delalloc_work {
9921 struct inode *inode;
9922 struct completion completion;
9923 struct list_head list;
9924 struct btrfs_work work;
9927 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9929 struct btrfs_delalloc_work *delalloc_work;
9930 struct inode *inode;
9932 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9934 inode = delalloc_work->inode;
9935 filemap_flush(inode->i_mapping);
9936 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9937 &BTRFS_I(inode)->runtime_flags))
9938 filemap_flush(inode->i_mapping);
9941 complete(&delalloc_work->completion);
9944 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9946 struct btrfs_delalloc_work *work;
9948 work = kmalloc(sizeof(*work), GFP_NOFS);
9952 init_completion(&work->completion);
9953 INIT_LIST_HEAD(&work->list);
9954 work->inode = inode;
9955 WARN_ON_ONCE(!inode);
9956 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9957 btrfs_run_delalloc_work, NULL, NULL);
9963 * some fairly slow code that needs optimization. This walks the list
9964 * of all the inodes with pending delalloc and forces them to disk.
9966 static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9968 struct btrfs_inode *binode;
9969 struct inode *inode;
9970 struct btrfs_delalloc_work *work, *next;
9971 struct list_head works;
9972 struct list_head splice;
9975 INIT_LIST_HEAD(&works);
9976 INIT_LIST_HEAD(&splice);
9978 mutex_lock(&root->delalloc_mutex);
9979 spin_lock(&root->delalloc_lock);
9980 list_splice_init(&root->delalloc_inodes, &splice);
9981 while (!list_empty(&splice)) {
9982 binode = list_entry(splice.next, struct btrfs_inode,
9985 list_move_tail(&binode->delalloc_inodes,
9986 &root->delalloc_inodes);
9987 inode = igrab(&binode->vfs_inode);
9989 cond_resched_lock(&root->delalloc_lock);
9992 spin_unlock(&root->delalloc_lock);
9994 work = btrfs_alloc_delalloc_work(inode);
10000 list_add_tail(&work->list, &works);
10001 btrfs_queue_work(root->fs_info->flush_workers,
10004 if (nr != -1 && ret >= nr)
10007 spin_lock(&root->delalloc_lock);
10009 spin_unlock(&root->delalloc_lock);
10012 list_for_each_entry_safe(work, next, &works, list) {
10013 list_del_init(&work->list);
10014 wait_for_completion(&work->completion);
10018 if (!list_empty(&splice)) {
10019 spin_lock(&root->delalloc_lock);
10020 list_splice_tail(&splice, &root->delalloc_inodes);
10021 spin_unlock(&root->delalloc_lock);
10023 mutex_unlock(&root->delalloc_mutex);
10027 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
10029 struct btrfs_fs_info *fs_info = root->fs_info;
10032 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10035 ret = start_delalloc_inodes(root, -1);
10041 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10043 struct btrfs_root *root;
10044 struct list_head splice;
10047 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10050 INIT_LIST_HEAD(&splice);
10052 mutex_lock(&fs_info->delalloc_root_mutex);
10053 spin_lock(&fs_info->delalloc_root_lock);
10054 list_splice_init(&fs_info->delalloc_roots, &splice);
10055 while (!list_empty(&splice) && nr) {
10056 root = list_first_entry(&splice, struct btrfs_root,
10058 root = btrfs_grab_fs_root(root);
10060 list_move_tail(&root->delalloc_root,
10061 &fs_info->delalloc_roots);
10062 spin_unlock(&fs_info->delalloc_root_lock);
10064 ret = start_delalloc_inodes(root, nr);
10065 btrfs_put_fs_root(root);
10073 spin_lock(&fs_info->delalloc_root_lock);
10075 spin_unlock(&fs_info->delalloc_root_lock);
10079 if (!list_empty(&splice)) {
10080 spin_lock(&fs_info->delalloc_root_lock);
10081 list_splice_tail(&splice, &fs_info->delalloc_roots);
10082 spin_unlock(&fs_info->delalloc_root_lock);
10084 mutex_unlock(&fs_info->delalloc_root_mutex);
10088 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10089 const char *symname)
10091 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10092 struct btrfs_trans_handle *trans;
10093 struct btrfs_root *root = BTRFS_I(dir)->root;
10094 struct btrfs_path *path;
10095 struct btrfs_key key;
10096 struct inode *inode = NULL;
10103 struct btrfs_file_extent_item *ei;
10104 struct extent_buffer *leaf;
10106 name_len = strlen(symname);
10107 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10108 return -ENAMETOOLONG;
10111 * 2 items for inode item and ref
10112 * 2 items for dir items
10113 * 1 item for updating parent inode item
10114 * 1 item for the inline extent item
10115 * 1 item for xattr if selinux is on
10117 trans = btrfs_start_transaction(root, 7);
10119 return PTR_ERR(trans);
10121 err = btrfs_find_free_ino(root, &objectid);
10125 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10126 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10127 objectid, S_IFLNK|S_IRWXUGO, &index);
10128 if (IS_ERR(inode)) {
10129 err = PTR_ERR(inode);
10135 * If the active LSM wants to access the inode during
10136 * d_instantiate it needs these. Smack checks to see
10137 * if the filesystem supports xattrs by looking at the
10140 inode->i_fop = &btrfs_file_operations;
10141 inode->i_op = &btrfs_file_inode_operations;
10142 inode->i_mapping->a_ops = &btrfs_aops;
10143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10145 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10149 path = btrfs_alloc_path();
10154 key.objectid = btrfs_ino(BTRFS_I(inode));
10156 key.type = BTRFS_EXTENT_DATA_KEY;
10157 datasize = btrfs_file_extent_calc_inline_size(name_len);
10158 err = btrfs_insert_empty_item(trans, root, path, &key,
10161 btrfs_free_path(path);
10164 leaf = path->nodes[0];
10165 ei = btrfs_item_ptr(leaf, path->slots[0],
10166 struct btrfs_file_extent_item);
10167 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10168 btrfs_set_file_extent_type(leaf, ei,
10169 BTRFS_FILE_EXTENT_INLINE);
10170 btrfs_set_file_extent_encryption(leaf, ei, 0);
10171 btrfs_set_file_extent_compression(leaf, ei, 0);
10172 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10173 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10175 ptr = btrfs_file_extent_inline_start(ei);
10176 write_extent_buffer(leaf, symname, ptr, name_len);
10177 btrfs_mark_buffer_dirty(leaf);
10178 btrfs_free_path(path);
10180 inode->i_op = &btrfs_symlink_inode_operations;
10181 inode_nohighmem(inode);
10182 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10183 inode_set_bytes(inode, name_len);
10184 btrfs_i_size_write(BTRFS_I(inode), name_len);
10185 err = btrfs_update_inode(trans, root, inode);
10187 * Last step, add directory indexes for our symlink inode. This is the
10188 * last step to avoid extra cleanup of these indexes if an error happens
10192 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10193 BTRFS_I(inode), 0, index);
10197 d_instantiate_new(dentry, inode);
10200 btrfs_end_transaction(trans);
10201 if (err && inode) {
10202 inode_dec_link_count(inode);
10203 discard_new_inode(inode);
10205 btrfs_btree_balance_dirty(fs_info);
10209 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10210 u64 start, u64 num_bytes, u64 min_size,
10211 loff_t actual_len, u64 *alloc_hint,
10212 struct btrfs_trans_handle *trans)
10214 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10215 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10216 struct extent_map *em;
10217 struct btrfs_root *root = BTRFS_I(inode)->root;
10218 struct btrfs_key ins;
10219 u64 cur_offset = start;
10222 u64 last_alloc = (u64)-1;
10224 bool own_trans = true;
10225 u64 end = start + num_bytes - 1;
10229 while (num_bytes > 0) {
10231 trans = btrfs_start_transaction(root, 3);
10232 if (IS_ERR(trans)) {
10233 ret = PTR_ERR(trans);
10238 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10239 cur_bytes = max(cur_bytes, min_size);
10241 * If we are severely fragmented we could end up with really
10242 * small allocations, so if the allocator is returning small
10243 * chunks lets make its job easier by only searching for those
10246 cur_bytes = min(cur_bytes, last_alloc);
10247 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10248 min_size, 0, *alloc_hint, &ins, 1, 0);
10251 btrfs_end_transaction(trans);
10254 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10256 last_alloc = ins.offset;
10257 ret = insert_reserved_file_extent(trans, inode,
10258 cur_offset, ins.objectid,
10259 ins.offset, ins.offset,
10260 ins.offset, 0, 0, 0,
10261 BTRFS_FILE_EXTENT_PREALLOC);
10263 btrfs_free_reserved_extent(fs_info, ins.objectid,
10265 btrfs_abort_transaction(trans, ret);
10267 btrfs_end_transaction(trans);
10271 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10272 cur_offset + ins.offset -1, 0);
10274 em = alloc_extent_map();
10276 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10277 &BTRFS_I(inode)->runtime_flags);
10281 em->start = cur_offset;
10282 em->orig_start = cur_offset;
10283 em->len = ins.offset;
10284 em->block_start = ins.objectid;
10285 em->block_len = ins.offset;
10286 em->orig_block_len = ins.offset;
10287 em->ram_bytes = ins.offset;
10288 em->bdev = fs_info->fs_devices->latest_bdev;
10289 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10290 em->generation = trans->transid;
10293 write_lock(&em_tree->lock);
10294 ret = add_extent_mapping(em_tree, em, 1);
10295 write_unlock(&em_tree->lock);
10296 if (ret != -EEXIST)
10298 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10299 cur_offset + ins.offset - 1,
10302 free_extent_map(em);
10304 num_bytes -= ins.offset;
10305 cur_offset += ins.offset;
10306 *alloc_hint = ins.objectid + ins.offset;
10308 inode_inc_iversion(inode);
10309 inode->i_ctime = current_time(inode);
10310 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10311 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10312 (actual_len > inode->i_size) &&
10313 (cur_offset > inode->i_size)) {
10314 if (cur_offset > actual_len)
10315 i_size = actual_len;
10317 i_size = cur_offset;
10318 i_size_write(inode, i_size);
10319 btrfs_ordered_update_i_size(inode, i_size, NULL);
10322 ret = btrfs_update_inode(trans, root, inode);
10325 btrfs_abort_transaction(trans, ret);
10327 btrfs_end_transaction(trans);
10332 btrfs_end_transaction(trans);
10334 if (cur_offset < end)
10335 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10336 end - cur_offset + 1);
10340 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10341 u64 start, u64 num_bytes, u64 min_size,
10342 loff_t actual_len, u64 *alloc_hint)
10344 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10345 min_size, actual_len, alloc_hint,
10349 int btrfs_prealloc_file_range_trans(struct inode *inode,
10350 struct btrfs_trans_handle *trans, int mode,
10351 u64 start, u64 num_bytes, u64 min_size,
10352 loff_t actual_len, u64 *alloc_hint)
10354 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10355 min_size, actual_len, alloc_hint, trans);
10358 static int btrfs_set_page_dirty(struct page *page)
10360 return __set_page_dirty_nobuffers(page);
10363 static int btrfs_permission(struct inode *inode, int mask)
10365 struct btrfs_root *root = BTRFS_I(inode)->root;
10366 umode_t mode = inode->i_mode;
10368 if (mask & MAY_WRITE &&
10369 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10370 if (btrfs_root_readonly(root))
10372 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10375 return generic_permission(inode, mask);
10378 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10380 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10381 struct btrfs_trans_handle *trans;
10382 struct btrfs_root *root = BTRFS_I(dir)->root;
10383 struct inode *inode = NULL;
10389 * 5 units required for adding orphan entry
10391 trans = btrfs_start_transaction(root, 5);
10393 return PTR_ERR(trans);
10395 ret = btrfs_find_free_ino(root, &objectid);
10399 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10400 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10401 if (IS_ERR(inode)) {
10402 ret = PTR_ERR(inode);
10407 inode->i_fop = &btrfs_file_operations;
10408 inode->i_op = &btrfs_file_inode_operations;
10410 inode->i_mapping->a_ops = &btrfs_aops;
10411 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10413 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10417 ret = btrfs_update_inode(trans, root, inode);
10420 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10425 * We set number of links to 0 in btrfs_new_inode(), and here we set
10426 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10429 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10431 set_nlink(inode, 1);
10432 d_tmpfile(dentry, inode);
10433 unlock_new_inode(inode);
10434 mark_inode_dirty(inode);
10436 btrfs_end_transaction(trans);
10438 discard_new_inode(inode);
10439 btrfs_btree_balance_dirty(fs_info);
10443 __attribute__((const))
10444 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10449 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10450 u64 start, u64 end)
10452 struct inode *inode = private_data;
10455 isize = i_size_read(inode);
10456 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10457 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10458 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10459 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10463 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10465 struct inode *inode = tree->private_data;
10466 unsigned long index = start >> PAGE_SHIFT;
10467 unsigned long end_index = end >> PAGE_SHIFT;
10470 while (index <= end_index) {
10471 page = find_get_page(inode->i_mapping, index);
10472 ASSERT(page); /* Pages should be in the extent_io_tree */
10473 set_page_writeback(page);
10479 static const struct inode_operations btrfs_dir_inode_operations = {
10480 .getattr = btrfs_getattr,
10481 .lookup = btrfs_lookup,
10482 .create = btrfs_create,
10483 .unlink = btrfs_unlink,
10484 .link = btrfs_link,
10485 .mkdir = btrfs_mkdir,
10486 .rmdir = btrfs_rmdir,
10487 .rename = btrfs_rename2,
10488 .symlink = btrfs_symlink,
10489 .setattr = btrfs_setattr,
10490 .mknod = btrfs_mknod,
10491 .listxattr = btrfs_listxattr,
10492 .permission = btrfs_permission,
10493 .get_acl = btrfs_get_acl,
10494 .set_acl = btrfs_set_acl,
10495 .update_time = btrfs_update_time,
10496 .tmpfile = btrfs_tmpfile,
10498 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10499 .lookup = btrfs_lookup,
10500 .permission = btrfs_permission,
10501 .update_time = btrfs_update_time,
10504 static const struct file_operations btrfs_dir_file_operations = {
10505 .llseek = generic_file_llseek,
10506 .read = generic_read_dir,
10507 .iterate_shared = btrfs_real_readdir,
10508 .open = btrfs_opendir,
10509 .unlocked_ioctl = btrfs_ioctl,
10510 #ifdef CONFIG_COMPAT
10511 .compat_ioctl = btrfs_compat_ioctl,
10513 .release = btrfs_release_file,
10514 .fsync = btrfs_sync_file,
10517 static const struct extent_io_ops btrfs_extent_io_ops = {
10518 /* mandatory callbacks */
10519 .submit_bio_hook = btrfs_submit_bio_hook,
10520 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10521 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10523 /* optional callbacks */
10524 .fill_delalloc = run_delalloc_range,
10525 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10526 .writepage_start_hook = btrfs_writepage_start_hook,
10527 .set_bit_hook = btrfs_set_bit_hook,
10528 .clear_bit_hook = btrfs_clear_bit_hook,
10529 .merge_extent_hook = btrfs_merge_extent_hook,
10530 .split_extent_hook = btrfs_split_extent_hook,
10531 .check_extent_io_range = btrfs_check_extent_io_range,
10535 * btrfs doesn't support the bmap operation because swapfiles
10536 * use bmap to make a mapping of extents in the file. They assume
10537 * these extents won't change over the life of the file and they
10538 * use the bmap result to do IO directly to the drive.
10540 * the btrfs bmap call would return logical addresses that aren't
10541 * suitable for IO and they also will change frequently as COW
10542 * operations happen. So, swapfile + btrfs == corruption.
10544 * For now we're avoiding this by dropping bmap.
10546 static const struct address_space_operations btrfs_aops = {
10547 .readpage = btrfs_readpage,
10548 .writepage = btrfs_writepage,
10549 .writepages = btrfs_writepages,
10550 .readpages = btrfs_readpages,
10551 .direct_IO = btrfs_direct_IO,
10552 .invalidatepage = btrfs_invalidatepage,
10553 .releasepage = btrfs_releasepage,
10554 .set_page_dirty = btrfs_set_page_dirty,
10555 .error_remove_page = generic_error_remove_page,
10558 static const struct address_space_operations btrfs_symlink_aops = {
10559 .readpage = btrfs_readpage,
10560 .writepage = btrfs_writepage,
10561 .invalidatepage = btrfs_invalidatepage,
10562 .releasepage = btrfs_releasepage,
10565 static const struct inode_operations btrfs_file_inode_operations = {
10566 .getattr = btrfs_getattr,
10567 .setattr = btrfs_setattr,
10568 .listxattr = btrfs_listxattr,
10569 .permission = btrfs_permission,
10570 .fiemap = btrfs_fiemap,
10571 .get_acl = btrfs_get_acl,
10572 .set_acl = btrfs_set_acl,
10573 .update_time = btrfs_update_time,
10575 static const struct inode_operations btrfs_special_inode_operations = {
10576 .getattr = btrfs_getattr,
10577 .setattr = btrfs_setattr,
10578 .permission = btrfs_permission,
10579 .listxattr = btrfs_listxattr,
10580 .get_acl = btrfs_get_acl,
10581 .set_acl = btrfs_set_acl,
10582 .update_time = btrfs_update_time,
10584 static const struct inode_operations btrfs_symlink_inode_operations = {
10585 .get_link = page_get_link,
10586 .getattr = btrfs_getattr,
10587 .setattr = btrfs_setattr,
10588 .permission = btrfs_permission,
10589 .listxattr = btrfs_listxattr,
10590 .update_time = btrfs_update_time,
10593 const struct dentry_operations btrfs_dentry_operations = {
10594 .d_delete = btrfs_dentry_delete,