btrfs: Add "barrier" option to support "-o remount,barrier"
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61
62 struct btrfs_iget_args {
63         u64 ino;
64         struct btrfs_root *root;
65 };
66
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_dir_ro_inode_operations;
70 static const struct inode_operations btrfs_special_inode_operations;
71 static const struct inode_operations btrfs_file_inode_operations;
72 static const struct address_space_operations btrfs_aops;
73 static const struct address_space_operations btrfs_symlink_aops;
74 static const struct file_operations btrfs_dir_file_operations;
75 static struct extent_io_ops btrfs_extent_io_ops;
76
77 static struct kmem_cache *btrfs_inode_cachep;
78 static struct kmem_cache *btrfs_delalloc_work_cachep;
79 struct kmem_cache *btrfs_trans_handle_cachep;
80 struct kmem_cache *btrfs_transaction_cachep;
81 struct kmem_cache *btrfs_path_cachep;
82 struct kmem_cache *btrfs_free_space_cachep;
83
84 #define S_SHIFT 12
85 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
86         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
87         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
88         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
89         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
90         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
91         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
92         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
93 };
94
95 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
96 static int btrfs_truncate(struct inode *inode);
97 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
98 static noinline int cow_file_range(struct inode *inode,
99                                    struct page *locked_page,
100                                    u64 start, u64 end, int *page_started,
101                                    unsigned long *nr_written, int unlock);
102 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
103                                            u64 len, u64 orig_start,
104                                            u64 block_start, u64 block_len,
105                                            u64 orig_block_len, u64 ram_bytes,
106                                            int type);
107
108 static int btrfs_dirty_inode(struct inode *inode);
109
110 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
111                                      struct inode *inode,  struct inode *dir,
112                                      const struct qstr *qstr)
113 {
114         int err;
115
116         err = btrfs_init_acl(trans, inode, dir);
117         if (!err)
118                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
119         return err;
120 }
121
122 /*
123  * this does all the hard work for inserting an inline extent into
124  * the btree.  The caller should have done a btrfs_drop_extents so that
125  * no overlapping inline items exist in the btree
126  */
127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
128                                 struct btrfs_root *root, struct inode *inode,
129                                 u64 start, size_t size, size_t compressed_size,
130                                 int compress_type,
131                                 struct page **compressed_pages)
132 {
133         struct btrfs_key key;
134         struct btrfs_path *path;
135         struct extent_buffer *leaf;
136         struct page *page = NULL;
137         char *kaddr;
138         unsigned long ptr;
139         struct btrfs_file_extent_item *ei;
140         int err = 0;
141         int ret;
142         size_t cur_size = size;
143         size_t datasize;
144         unsigned long offset;
145
146         if (compressed_size && compressed_pages)
147                 cur_size = compressed_size;
148
149         path = btrfs_alloc_path();
150         if (!path)
151                 return -ENOMEM;
152
153         path->leave_spinning = 1;
154
155         key.objectid = btrfs_ino(inode);
156         key.offset = start;
157         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
158         datasize = btrfs_file_extent_calc_inline_size(cur_size);
159
160         inode_add_bytes(inode, size);
161         ret = btrfs_insert_empty_item(trans, root, path, &key,
162                                       datasize);
163         if (ret) {
164                 err = ret;
165                 goto fail;
166         }
167         leaf = path->nodes[0];
168         ei = btrfs_item_ptr(leaf, path->slots[0],
169                             struct btrfs_file_extent_item);
170         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172         btrfs_set_file_extent_encryption(leaf, ei, 0);
173         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175         ptr = btrfs_file_extent_inline_start(ei);
176
177         if (compress_type != BTRFS_COMPRESS_NONE) {
178                 struct page *cpage;
179                 int i = 0;
180                 while (compressed_size > 0) {
181                         cpage = compressed_pages[i];
182                         cur_size = min_t(unsigned long, compressed_size,
183                                        PAGE_CACHE_SIZE);
184
185                         kaddr = kmap_atomic(cpage);
186                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
187                         kunmap_atomic(kaddr);
188
189                         i++;
190                         ptr += cur_size;
191                         compressed_size -= cur_size;
192                 }
193                 btrfs_set_file_extent_compression(leaf, ei,
194                                                   compress_type);
195         } else {
196                 page = find_get_page(inode->i_mapping,
197                                      start >> PAGE_CACHE_SHIFT);
198                 btrfs_set_file_extent_compression(leaf, ei, 0);
199                 kaddr = kmap_atomic(page);
200                 offset = start & (PAGE_CACHE_SIZE - 1);
201                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202                 kunmap_atomic(kaddr);
203                 page_cache_release(page);
204         }
205         btrfs_mark_buffer_dirty(leaf);
206         btrfs_free_path(path);
207
208         /*
209          * we're an inline extent, so nobody can
210          * extend the file past i_size without locking
211          * a page we already have locked.
212          *
213          * We must do any isize and inode updates
214          * before we unlock the pages.  Otherwise we
215          * could end up racing with unlink.
216          */
217         BTRFS_I(inode)->disk_i_size = inode->i_size;
218         ret = btrfs_update_inode(trans, root, inode);
219
220         return ret;
221 fail:
222         btrfs_free_path(path);
223         return err;
224 }
225
226
227 /*
228  * conditionally insert an inline extent into the file.  This
229  * does the checks required to make sure the data is small enough
230  * to fit as an inline extent.
231  */
232 static noinline int cow_file_range_inline(struct btrfs_root *root,
233                                           struct inode *inode, u64 start,
234                                           u64 end, size_t compressed_size,
235                                           int compress_type,
236                                           struct page **compressed_pages)
237 {
238         struct btrfs_trans_handle *trans;
239         u64 isize = i_size_read(inode);
240         u64 actual_end = min(end + 1, isize);
241         u64 inline_len = actual_end - start;
242         u64 aligned_end = ALIGN(end, root->sectorsize);
243         u64 data_len = inline_len;
244         int ret;
245
246         if (compressed_size)
247                 data_len = compressed_size;
248
249         if (start > 0 ||
250             actual_end >= PAGE_CACHE_SIZE ||
251             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252             (!compressed_size &&
253             (actual_end & (root->sectorsize - 1)) == 0) ||
254             end + 1 < isize ||
255             data_len > root->fs_info->max_inline) {
256                 return 1;
257         }
258
259         trans = btrfs_join_transaction(root);
260         if (IS_ERR(trans))
261                 return PTR_ERR(trans);
262         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
263
264         ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
265         if (ret) {
266                 btrfs_abort_transaction(trans, root, ret);
267                 goto out;
268         }
269
270         if (isize > actual_end)
271                 inline_len = min_t(u64, isize, actual_end);
272         ret = insert_inline_extent(trans, root, inode, start,
273                                    inline_len, compressed_size,
274                                    compress_type, compressed_pages);
275         if (ret && ret != -ENOSPC) {
276                 btrfs_abort_transaction(trans, root, ret);
277                 goto out;
278         } else if (ret == -ENOSPC) {
279                 ret = 1;
280                 goto out;
281         }
282
283         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
284         btrfs_delalloc_release_metadata(inode, end + 1 - start);
285         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
286 out:
287         btrfs_end_transaction(trans, root);
288         return ret;
289 }
290
291 struct async_extent {
292         u64 start;
293         u64 ram_size;
294         u64 compressed_size;
295         struct page **pages;
296         unsigned long nr_pages;
297         int compress_type;
298         struct list_head list;
299 };
300
301 struct async_cow {
302         struct inode *inode;
303         struct btrfs_root *root;
304         struct page *locked_page;
305         u64 start;
306         u64 end;
307         struct list_head extents;
308         struct btrfs_work work;
309 };
310
311 static noinline int add_async_extent(struct async_cow *cow,
312                                      u64 start, u64 ram_size,
313                                      u64 compressed_size,
314                                      struct page **pages,
315                                      unsigned long nr_pages,
316                                      int compress_type)
317 {
318         struct async_extent *async_extent;
319
320         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
321         BUG_ON(!async_extent); /* -ENOMEM */
322         async_extent->start = start;
323         async_extent->ram_size = ram_size;
324         async_extent->compressed_size = compressed_size;
325         async_extent->pages = pages;
326         async_extent->nr_pages = nr_pages;
327         async_extent->compress_type = compress_type;
328         list_add_tail(&async_extent->list, &cow->extents);
329         return 0;
330 }
331
332 /*
333  * we create compressed extents in two phases.  The first
334  * phase compresses a range of pages that have already been
335  * locked (both pages and state bits are locked).
336  *
337  * This is done inside an ordered work queue, and the compression
338  * is spread across many cpus.  The actual IO submission is step
339  * two, and the ordered work queue takes care of making sure that
340  * happens in the same order things were put onto the queue by
341  * writepages and friends.
342  *
343  * If this code finds it can't get good compression, it puts an
344  * entry onto the work queue to write the uncompressed bytes.  This
345  * makes sure that both compressed inodes and uncompressed inodes
346  * are written in the same order that the flusher thread sent them
347  * down.
348  */
349 static noinline int compress_file_range(struct inode *inode,
350                                         struct page *locked_page,
351                                         u64 start, u64 end,
352                                         struct async_cow *async_cow,
353                                         int *num_added)
354 {
355         struct btrfs_root *root = BTRFS_I(inode)->root;
356         u64 num_bytes;
357         u64 blocksize = root->sectorsize;
358         u64 actual_end;
359         u64 isize = i_size_read(inode);
360         int ret = 0;
361         struct page **pages = NULL;
362         unsigned long nr_pages;
363         unsigned long nr_pages_ret = 0;
364         unsigned long total_compressed = 0;
365         unsigned long total_in = 0;
366         unsigned long max_compressed = 128 * 1024;
367         unsigned long max_uncompressed = 128 * 1024;
368         int i;
369         int will_compress;
370         int compress_type = root->fs_info->compress_type;
371         int redirty = 0;
372
373         /* if this is a small write inside eof, kick off a defrag */
374         if ((end - start + 1) < 16 * 1024 &&
375             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
376                 btrfs_add_inode_defrag(NULL, inode);
377
378         actual_end = min_t(u64, isize, end + 1);
379 again:
380         will_compress = 0;
381         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
382         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
383
384         /*
385          * we don't want to send crud past the end of i_size through
386          * compression, that's just a waste of CPU time.  So, if the
387          * end of the file is before the start of our current
388          * requested range of bytes, we bail out to the uncompressed
389          * cleanup code that can deal with all of this.
390          *
391          * It isn't really the fastest way to fix things, but this is a
392          * very uncommon corner.
393          */
394         if (actual_end <= start)
395                 goto cleanup_and_bail_uncompressed;
396
397         total_compressed = actual_end - start;
398
399         /* we want to make sure that amount of ram required to uncompress
400          * an extent is reasonable, so we limit the total size in ram
401          * of a compressed extent to 128k.  This is a crucial number
402          * because it also controls how easily we can spread reads across
403          * cpus for decompression.
404          *
405          * We also want to make sure the amount of IO required to do
406          * a random read is reasonably small, so we limit the size of
407          * a compressed extent to 128k.
408          */
409         total_compressed = min(total_compressed, max_uncompressed);
410         num_bytes = ALIGN(end - start + 1, blocksize);
411         num_bytes = max(blocksize,  num_bytes);
412         total_in = 0;
413         ret = 0;
414
415         /*
416          * we do compression for mount -o compress and when the
417          * inode has not been flagged as nocompress.  This flag can
418          * change at any time if we discover bad compression ratios.
419          */
420         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
421             (btrfs_test_opt(root, COMPRESS) ||
422              (BTRFS_I(inode)->force_compress) ||
423              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
424                 WARN_ON(pages);
425                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
426                 if (!pages) {
427                         /* just bail out to the uncompressed code */
428                         goto cont;
429                 }
430
431                 if (BTRFS_I(inode)->force_compress)
432                         compress_type = BTRFS_I(inode)->force_compress;
433
434                 /*
435                  * we need to call clear_page_dirty_for_io on each
436                  * page in the range.  Otherwise applications with the file
437                  * mmap'd can wander in and change the page contents while
438                  * we are compressing them.
439                  *
440                  * If the compression fails for any reason, we set the pages
441                  * dirty again later on.
442                  */
443                 extent_range_clear_dirty_for_io(inode, start, end);
444                 redirty = 1;
445                 ret = btrfs_compress_pages(compress_type,
446                                            inode->i_mapping, start,
447                                            total_compressed, pages,
448                                            nr_pages, &nr_pages_ret,
449                                            &total_in,
450                                            &total_compressed,
451                                            max_compressed);
452
453                 if (!ret) {
454                         unsigned long offset = total_compressed &
455                                 (PAGE_CACHE_SIZE - 1);
456                         struct page *page = pages[nr_pages_ret - 1];
457                         char *kaddr;
458
459                         /* zero the tail end of the last page, we might be
460                          * sending it down to disk
461                          */
462                         if (offset) {
463                                 kaddr = kmap_atomic(page);
464                                 memset(kaddr + offset, 0,
465                                        PAGE_CACHE_SIZE - offset);
466                                 kunmap_atomic(kaddr);
467                         }
468                         will_compress = 1;
469                 }
470         }
471 cont:
472         if (start == 0) {
473                 /* lets try to make an inline extent */
474                 if (ret || total_in < (actual_end - start)) {
475                         /* we didn't compress the entire range, try
476                          * to make an uncompressed inline extent.
477                          */
478                         ret = cow_file_range_inline(root, inode, start, end,
479                                                     0, 0, NULL);
480                 } else {
481                         /* try making a compressed inline extent */
482                         ret = cow_file_range_inline(root, inode, start, end,
483                                                     total_compressed,
484                                                     compress_type, pages);
485                 }
486                 if (ret <= 0) {
487                         unsigned long clear_flags = EXTENT_DELALLOC |
488                                 EXTENT_DEFRAG;
489                         clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
490
491                         /*
492                          * inline extent creation worked or returned error,
493                          * we don't need to create any more async work items.
494                          * Unlock and free up our temp pages.
495                          */
496                         extent_clear_unlock_delalloc(inode, start, end, NULL,
497                                                      clear_flags, PAGE_UNLOCK |
498                                                      PAGE_CLEAR_DIRTY |
499                                                      PAGE_SET_WRITEBACK |
500                                                      PAGE_END_WRITEBACK);
501                         goto free_pages_out;
502                 }
503         }
504
505         if (will_compress) {
506                 /*
507                  * we aren't doing an inline extent round the compressed size
508                  * up to a block size boundary so the allocator does sane
509                  * things
510                  */
511                 total_compressed = ALIGN(total_compressed, blocksize);
512
513                 /*
514                  * one last check to make sure the compression is really a
515                  * win, compare the page count read with the blocks on disk
516                  */
517                 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
518                 if (total_compressed >= total_in) {
519                         will_compress = 0;
520                 } else {
521                         num_bytes = total_in;
522                 }
523         }
524         if (!will_compress && pages) {
525                 /*
526                  * the compression code ran but failed to make things smaller,
527                  * free any pages it allocated and our page pointer array
528                  */
529                 for (i = 0; i < nr_pages_ret; i++) {
530                         WARN_ON(pages[i]->mapping);
531                         page_cache_release(pages[i]);
532                 }
533                 kfree(pages);
534                 pages = NULL;
535                 total_compressed = 0;
536                 nr_pages_ret = 0;
537
538                 /* flag the file so we don't compress in the future */
539                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540                     !(BTRFS_I(inode)->force_compress)) {
541                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
542                 }
543         }
544         if (will_compress) {
545                 *num_added += 1;
546
547                 /* the async work queues will take care of doing actual
548                  * allocation on disk for these compressed pages,
549                  * and will submit them to the elevator.
550                  */
551                 add_async_extent(async_cow, start, num_bytes,
552                                  total_compressed, pages, nr_pages_ret,
553                                  compress_type);
554
555                 if (start + num_bytes < end) {
556                         start += num_bytes;
557                         pages = NULL;
558                         cond_resched();
559                         goto again;
560                 }
561         } else {
562 cleanup_and_bail_uncompressed:
563                 /*
564                  * No compression, but we still need to write the pages in
565                  * the file we've been given so far.  redirty the locked
566                  * page if it corresponds to our extent and set things up
567                  * for the async work queue to run cow_file_range to do
568                  * the normal delalloc dance
569                  */
570                 if (page_offset(locked_page) >= start &&
571                     page_offset(locked_page) <= end) {
572                         __set_page_dirty_nobuffers(locked_page);
573                         /* unlocked later on in the async handlers */
574                 }
575                 if (redirty)
576                         extent_range_redirty_for_io(inode, start, end);
577                 add_async_extent(async_cow, start, end - start + 1,
578                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
579                 *num_added += 1;
580         }
581
582 out:
583         return ret;
584
585 free_pages_out:
586         for (i = 0; i < nr_pages_ret; i++) {
587                 WARN_ON(pages[i]->mapping);
588                 page_cache_release(pages[i]);
589         }
590         kfree(pages);
591
592         goto out;
593 }
594
595 /*
596  * phase two of compressed writeback.  This is the ordered portion
597  * of the code, which only gets called in the order the work was
598  * queued.  We walk all the async extents created by compress_file_range
599  * and send them down to the disk.
600  */
601 static noinline int submit_compressed_extents(struct inode *inode,
602                                               struct async_cow *async_cow)
603 {
604         struct async_extent *async_extent;
605         u64 alloc_hint = 0;
606         struct btrfs_key ins;
607         struct extent_map *em;
608         struct btrfs_root *root = BTRFS_I(inode)->root;
609         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
610         struct extent_io_tree *io_tree;
611         int ret = 0;
612
613         if (list_empty(&async_cow->extents))
614                 return 0;
615
616 again:
617         while (!list_empty(&async_cow->extents)) {
618                 async_extent = list_entry(async_cow->extents.next,
619                                           struct async_extent, list);
620                 list_del(&async_extent->list);
621
622                 io_tree = &BTRFS_I(inode)->io_tree;
623
624 retry:
625                 /* did the compression code fall back to uncompressed IO? */
626                 if (!async_extent->pages) {
627                         int page_started = 0;
628                         unsigned long nr_written = 0;
629
630                         lock_extent(io_tree, async_extent->start,
631                                          async_extent->start +
632                                          async_extent->ram_size - 1);
633
634                         /* allocate blocks */
635                         ret = cow_file_range(inode, async_cow->locked_page,
636                                              async_extent->start,
637                                              async_extent->start +
638                                              async_extent->ram_size - 1,
639                                              &page_started, &nr_written, 0);
640
641                         /* JDM XXX */
642
643                         /*
644                          * if page_started, cow_file_range inserted an
645                          * inline extent and took care of all the unlocking
646                          * and IO for us.  Otherwise, we need to submit
647                          * all those pages down to the drive.
648                          */
649                         if (!page_started && !ret)
650                                 extent_write_locked_range(io_tree,
651                                                   inode, async_extent->start,
652                                                   async_extent->start +
653                                                   async_extent->ram_size - 1,
654                                                   btrfs_get_extent,
655                                                   WB_SYNC_ALL);
656                         else if (ret)
657                                 unlock_page(async_cow->locked_page);
658                         kfree(async_extent);
659                         cond_resched();
660                         continue;
661                 }
662
663                 lock_extent(io_tree, async_extent->start,
664                             async_extent->start + async_extent->ram_size - 1);
665
666                 ret = btrfs_reserve_extent(root,
667                                            async_extent->compressed_size,
668                                            async_extent->compressed_size,
669                                            0, alloc_hint, &ins, 1);
670                 if (ret) {
671                         int i;
672
673                         for (i = 0; i < async_extent->nr_pages; i++) {
674                                 WARN_ON(async_extent->pages[i]->mapping);
675                                 page_cache_release(async_extent->pages[i]);
676                         }
677                         kfree(async_extent->pages);
678                         async_extent->nr_pages = 0;
679                         async_extent->pages = NULL;
680
681                         if (ret == -ENOSPC) {
682                                 unlock_extent(io_tree, async_extent->start,
683                                               async_extent->start +
684                                               async_extent->ram_size - 1);
685                                 goto retry;
686                         }
687                         goto out_free;
688                 }
689
690                 /*
691                  * here we're doing allocation and writeback of the
692                  * compressed pages
693                  */
694                 btrfs_drop_extent_cache(inode, async_extent->start,
695                                         async_extent->start +
696                                         async_extent->ram_size - 1, 0);
697
698                 em = alloc_extent_map();
699                 if (!em) {
700                         ret = -ENOMEM;
701                         goto out_free_reserve;
702                 }
703                 em->start = async_extent->start;
704                 em->len = async_extent->ram_size;
705                 em->orig_start = em->start;
706                 em->mod_start = em->start;
707                 em->mod_len = em->len;
708
709                 em->block_start = ins.objectid;
710                 em->block_len = ins.offset;
711                 em->orig_block_len = ins.offset;
712                 em->ram_bytes = async_extent->ram_size;
713                 em->bdev = root->fs_info->fs_devices->latest_bdev;
714                 em->compress_type = async_extent->compress_type;
715                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
716                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
717                 em->generation = -1;
718
719                 while (1) {
720                         write_lock(&em_tree->lock);
721                         ret = add_extent_mapping(em_tree, em, 1);
722                         write_unlock(&em_tree->lock);
723                         if (ret != -EEXIST) {
724                                 free_extent_map(em);
725                                 break;
726                         }
727                         btrfs_drop_extent_cache(inode, async_extent->start,
728                                                 async_extent->start +
729                                                 async_extent->ram_size - 1, 0);
730                 }
731
732                 if (ret)
733                         goto out_free_reserve;
734
735                 ret = btrfs_add_ordered_extent_compress(inode,
736                                                 async_extent->start,
737                                                 ins.objectid,
738                                                 async_extent->ram_size,
739                                                 ins.offset,
740                                                 BTRFS_ORDERED_COMPRESSED,
741                                                 async_extent->compress_type);
742                 if (ret)
743                         goto out_free_reserve;
744
745                 /*
746                  * clear dirty, set writeback and unlock the pages.
747                  */
748                 extent_clear_unlock_delalloc(inode, async_extent->start,
749                                 async_extent->start +
750                                 async_extent->ram_size - 1,
751                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
752                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
753                                 PAGE_SET_WRITEBACK);
754                 ret = btrfs_submit_compressed_write(inode,
755                                     async_extent->start,
756                                     async_extent->ram_size,
757                                     ins.objectid,
758                                     ins.offset, async_extent->pages,
759                                     async_extent->nr_pages);
760                 alloc_hint = ins.objectid + ins.offset;
761                 kfree(async_extent);
762                 if (ret)
763                         goto out;
764                 cond_resched();
765         }
766         ret = 0;
767 out:
768         return ret;
769 out_free_reserve:
770         btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
771 out_free:
772         extent_clear_unlock_delalloc(inode, async_extent->start,
773                                      async_extent->start +
774                                      async_extent->ram_size - 1,
775                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
776                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
777                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
778                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
779         kfree(async_extent);
780         goto again;
781 }
782
783 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
784                                       u64 num_bytes)
785 {
786         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
787         struct extent_map *em;
788         u64 alloc_hint = 0;
789
790         read_lock(&em_tree->lock);
791         em = search_extent_mapping(em_tree, start, num_bytes);
792         if (em) {
793                 /*
794                  * if block start isn't an actual block number then find the
795                  * first block in this inode and use that as a hint.  If that
796                  * block is also bogus then just don't worry about it.
797                  */
798                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
799                         free_extent_map(em);
800                         em = search_extent_mapping(em_tree, 0, 0);
801                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
802                                 alloc_hint = em->block_start;
803                         if (em)
804                                 free_extent_map(em);
805                 } else {
806                         alloc_hint = em->block_start;
807                         free_extent_map(em);
808                 }
809         }
810         read_unlock(&em_tree->lock);
811
812         return alloc_hint;
813 }
814
815 /*
816  * when extent_io.c finds a delayed allocation range in the file,
817  * the call backs end up in this code.  The basic idea is to
818  * allocate extents on disk for the range, and create ordered data structs
819  * in ram to track those extents.
820  *
821  * locked_page is the page that writepage had locked already.  We use
822  * it to make sure we don't do extra locks or unlocks.
823  *
824  * *page_started is set to one if we unlock locked_page and do everything
825  * required to start IO on it.  It may be clean and already done with
826  * IO when we return.
827  */
828 static noinline int cow_file_range(struct inode *inode,
829                                    struct page *locked_page,
830                                    u64 start, u64 end, int *page_started,
831                                    unsigned long *nr_written,
832                                    int unlock)
833 {
834         struct btrfs_root *root = BTRFS_I(inode)->root;
835         u64 alloc_hint = 0;
836         u64 num_bytes;
837         unsigned long ram_size;
838         u64 disk_num_bytes;
839         u64 cur_alloc_size;
840         u64 blocksize = root->sectorsize;
841         struct btrfs_key ins;
842         struct extent_map *em;
843         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844         int ret = 0;
845
846         if (btrfs_is_free_space_inode(inode)) {
847                 WARN_ON_ONCE(1);
848                 return -EINVAL;
849         }
850
851         num_bytes = ALIGN(end - start + 1, blocksize);
852         num_bytes = max(blocksize,  num_bytes);
853         disk_num_bytes = num_bytes;
854
855         /* if this is a small write inside eof, kick off defrag */
856         if (num_bytes < 64 * 1024 &&
857             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
858                 btrfs_add_inode_defrag(NULL, inode);
859
860         if (start == 0) {
861                 /* lets try to make an inline extent */
862                 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
863                                             NULL);
864                 if (ret == 0) {
865                         extent_clear_unlock_delalloc(inode, start, end, NULL,
866                                      EXTENT_LOCKED | EXTENT_DELALLOC |
867                                      EXTENT_DEFRAG, PAGE_UNLOCK |
868                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
869                                      PAGE_END_WRITEBACK);
870
871                         *nr_written = *nr_written +
872                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
873                         *page_started = 1;
874                         goto out;
875                 } else if (ret < 0) {
876                         goto out_unlock;
877                 }
878         }
879
880         BUG_ON(disk_num_bytes >
881                btrfs_super_total_bytes(root->fs_info->super_copy));
882
883         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
884         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
885
886         while (disk_num_bytes > 0) {
887                 unsigned long op;
888
889                 cur_alloc_size = disk_num_bytes;
890                 ret = btrfs_reserve_extent(root, cur_alloc_size,
891                                            root->sectorsize, 0, alloc_hint,
892                                            &ins, 1);
893                 if (ret < 0)
894                         goto out_unlock;
895
896                 em = alloc_extent_map();
897                 if (!em) {
898                         ret = -ENOMEM;
899                         goto out_reserve;
900                 }
901                 em->start = start;
902                 em->orig_start = em->start;
903                 ram_size = ins.offset;
904                 em->len = ins.offset;
905                 em->mod_start = em->start;
906                 em->mod_len = em->len;
907
908                 em->block_start = ins.objectid;
909                 em->block_len = ins.offset;
910                 em->orig_block_len = ins.offset;
911                 em->ram_bytes = ram_size;
912                 em->bdev = root->fs_info->fs_devices->latest_bdev;
913                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
914                 em->generation = -1;
915
916                 while (1) {
917                         write_lock(&em_tree->lock);
918                         ret = add_extent_mapping(em_tree, em, 1);
919                         write_unlock(&em_tree->lock);
920                         if (ret != -EEXIST) {
921                                 free_extent_map(em);
922                                 break;
923                         }
924                         btrfs_drop_extent_cache(inode, start,
925                                                 start + ram_size - 1, 0);
926                 }
927                 if (ret)
928                         goto out_reserve;
929
930                 cur_alloc_size = ins.offset;
931                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
932                                                ram_size, cur_alloc_size, 0);
933                 if (ret)
934                         goto out_reserve;
935
936                 if (root->root_key.objectid ==
937                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
938                         ret = btrfs_reloc_clone_csums(inode, start,
939                                                       cur_alloc_size);
940                         if (ret)
941                                 goto out_reserve;
942                 }
943
944                 if (disk_num_bytes < cur_alloc_size)
945                         break;
946
947                 /* we're not doing compressed IO, don't unlock the first
948                  * page (which the caller expects to stay locked), don't
949                  * clear any dirty bits and don't set any writeback bits
950                  *
951                  * Do set the Private2 bit so we know this page was properly
952                  * setup for writepage
953                  */
954                 op = unlock ? PAGE_UNLOCK : 0;
955                 op |= PAGE_SET_PRIVATE2;
956
957                 extent_clear_unlock_delalloc(inode, start,
958                                              start + ram_size - 1, locked_page,
959                                              EXTENT_LOCKED | EXTENT_DELALLOC,
960                                              op);
961                 disk_num_bytes -= cur_alloc_size;
962                 num_bytes -= cur_alloc_size;
963                 alloc_hint = ins.objectid + ins.offset;
964                 start += cur_alloc_size;
965         }
966 out:
967         return ret;
968
969 out_reserve:
970         btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
971 out_unlock:
972         extent_clear_unlock_delalloc(inode, start, end, locked_page,
973                                      EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
974                                      EXTENT_DELALLOC | EXTENT_DEFRAG,
975                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
976                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
977         goto out;
978 }
979
980 /*
981  * work queue call back to started compression on a file and pages
982  */
983 static noinline void async_cow_start(struct btrfs_work *work)
984 {
985         struct async_cow *async_cow;
986         int num_added = 0;
987         async_cow = container_of(work, struct async_cow, work);
988
989         compress_file_range(async_cow->inode, async_cow->locked_page,
990                             async_cow->start, async_cow->end, async_cow,
991                             &num_added);
992         if (num_added == 0) {
993                 btrfs_add_delayed_iput(async_cow->inode);
994                 async_cow->inode = NULL;
995         }
996 }
997
998 /*
999  * work queue call back to submit previously compressed pages
1000  */
1001 static noinline void async_cow_submit(struct btrfs_work *work)
1002 {
1003         struct async_cow *async_cow;
1004         struct btrfs_root *root;
1005         unsigned long nr_pages;
1006
1007         async_cow = container_of(work, struct async_cow, work);
1008
1009         root = async_cow->root;
1010         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1011                 PAGE_CACHE_SHIFT;
1012
1013         if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1014             5 * 1024 * 1024 &&
1015             waitqueue_active(&root->fs_info->async_submit_wait))
1016                 wake_up(&root->fs_info->async_submit_wait);
1017
1018         if (async_cow->inode)
1019                 submit_compressed_extents(async_cow->inode, async_cow);
1020 }
1021
1022 static noinline void async_cow_free(struct btrfs_work *work)
1023 {
1024         struct async_cow *async_cow;
1025         async_cow = container_of(work, struct async_cow, work);
1026         if (async_cow->inode)
1027                 btrfs_add_delayed_iput(async_cow->inode);
1028         kfree(async_cow);
1029 }
1030
1031 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1032                                 u64 start, u64 end, int *page_started,
1033                                 unsigned long *nr_written)
1034 {
1035         struct async_cow *async_cow;
1036         struct btrfs_root *root = BTRFS_I(inode)->root;
1037         unsigned long nr_pages;
1038         u64 cur_end;
1039         int limit = 10 * 1024 * 1024;
1040
1041         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1042                          1, 0, NULL, GFP_NOFS);
1043         while (start < end) {
1044                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1045                 BUG_ON(!async_cow); /* -ENOMEM */
1046                 async_cow->inode = igrab(inode);
1047                 async_cow->root = root;
1048                 async_cow->locked_page = locked_page;
1049                 async_cow->start = start;
1050
1051                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1052                         cur_end = end;
1053                 else
1054                         cur_end = min(end, start + 512 * 1024 - 1);
1055
1056                 async_cow->end = cur_end;
1057                 INIT_LIST_HEAD(&async_cow->extents);
1058
1059                 async_cow->work.func = async_cow_start;
1060                 async_cow->work.ordered_func = async_cow_submit;
1061                 async_cow->work.ordered_free = async_cow_free;
1062                 async_cow->work.flags = 0;
1063
1064                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1065                         PAGE_CACHE_SHIFT;
1066                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1067
1068                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1069                                    &async_cow->work);
1070
1071                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1072                         wait_event(root->fs_info->async_submit_wait,
1073                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1074                             limit));
1075                 }
1076
1077                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1078                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1079                         wait_event(root->fs_info->async_submit_wait,
1080                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1081                            0));
1082                 }
1083
1084                 *nr_written += nr_pages;
1085                 start = cur_end + 1;
1086         }
1087         *page_started = 1;
1088         return 0;
1089 }
1090
1091 static noinline int csum_exist_in_range(struct btrfs_root *root,
1092                                         u64 bytenr, u64 num_bytes)
1093 {
1094         int ret;
1095         struct btrfs_ordered_sum *sums;
1096         LIST_HEAD(list);
1097
1098         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1099                                        bytenr + num_bytes - 1, &list, 0);
1100         if (ret == 0 && list_empty(&list))
1101                 return 0;
1102
1103         while (!list_empty(&list)) {
1104                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1105                 list_del(&sums->list);
1106                 kfree(sums);
1107         }
1108         return 1;
1109 }
1110
1111 /*
1112  * when nowcow writeback call back.  This checks for snapshots or COW copies
1113  * of the extents that exist in the file, and COWs the file as required.
1114  *
1115  * If no cow copies or snapshots exist, we write directly to the existing
1116  * blocks on disk
1117  */
1118 static noinline int run_delalloc_nocow(struct inode *inode,
1119                                        struct page *locked_page,
1120                               u64 start, u64 end, int *page_started, int force,
1121                               unsigned long *nr_written)
1122 {
1123         struct btrfs_root *root = BTRFS_I(inode)->root;
1124         struct btrfs_trans_handle *trans;
1125         struct extent_buffer *leaf;
1126         struct btrfs_path *path;
1127         struct btrfs_file_extent_item *fi;
1128         struct btrfs_key found_key;
1129         u64 cow_start;
1130         u64 cur_offset;
1131         u64 extent_end;
1132         u64 extent_offset;
1133         u64 disk_bytenr;
1134         u64 num_bytes;
1135         u64 disk_num_bytes;
1136         u64 ram_bytes;
1137         int extent_type;
1138         int ret, err;
1139         int type;
1140         int nocow;
1141         int check_prev = 1;
1142         bool nolock;
1143         u64 ino = btrfs_ino(inode);
1144
1145         path = btrfs_alloc_path();
1146         if (!path) {
1147                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1148                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1149                                              EXTENT_DO_ACCOUNTING |
1150                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1151                                              PAGE_CLEAR_DIRTY |
1152                                              PAGE_SET_WRITEBACK |
1153                                              PAGE_END_WRITEBACK);
1154                 return -ENOMEM;
1155         }
1156
1157         nolock = btrfs_is_free_space_inode(inode);
1158
1159         if (nolock)
1160                 trans = btrfs_join_transaction_nolock(root);
1161         else
1162                 trans = btrfs_join_transaction(root);
1163
1164         if (IS_ERR(trans)) {
1165                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1167                                              EXTENT_DO_ACCOUNTING |
1168                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1169                                              PAGE_CLEAR_DIRTY |
1170                                              PAGE_SET_WRITEBACK |
1171                                              PAGE_END_WRITEBACK);
1172                 btrfs_free_path(path);
1173                 return PTR_ERR(trans);
1174         }
1175
1176         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1177
1178         cow_start = (u64)-1;
1179         cur_offset = start;
1180         while (1) {
1181                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1182                                                cur_offset, 0);
1183                 if (ret < 0)
1184                         goto error;
1185                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186                         leaf = path->nodes[0];
1187                         btrfs_item_key_to_cpu(leaf, &found_key,
1188                                               path->slots[0] - 1);
1189                         if (found_key.objectid == ino &&
1190                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1191                                 path->slots[0]--;
1192                 }
1193                 check_prev = 0;
1194 next_slot:
1195                 leaf = path->nodes[0];
1196                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197                         ret = btrfs_next_leaf(root, path);
1198                         if (ret < 0)
1199                                 goto error;
1200                         if (ret > 0)
1201                                 break;
1202                         leaf = path->nodes[0];
1203                 }
1204
1205                 nocow = 0;
1206                 disk_bytenr = 0;
1207                 num_bytes = 0;
1208                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1209
1210                 if (found_key.objectid > ino ||
1211                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1212                     found_key.offset > end)
1213                         break;
1214
1215                 if (found_key.offset > cur_offset) {
1216                         extent_end = found_key.offset;
1217                         extent_type = 0;
1218                         goto out_check;
1219                 }
1220
1221                 fi = btrfs_item_ptr(leaf, path->slots[0],
1222                                     struct btrfs_file_extent_item);
1223                 extent_type = btrfs_file_extent_type(leaf, fi);
1224
1225                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1226                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1227                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1228                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1229                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1230                         extent_end = found_key.offset +
1231                                 btrfs_file_extent_num_bytes(leaf, fi);
1232                         disk_num_bytes =
1233                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1234                         if (extent_end <= start) {
1235                                 path->slots[0]++;
1236                                 goto next_slot;
1237                         }
1238                         if (disk_bytenr == 0)
1239                                 goto out_check;
1240                         if (btrfs_file_extent_compression(leaf, fi) ||
1241                             btrfs_file_extent_encryption(leaf, fi) ||
1242                             btrfs_file_extent_other_encoding(leaf, fi))
1243                                 goto out_check;
1244                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1245                                 goto out_check;
1246                         if (btrfs_extent_readonly(root, disk_bytenr))
1247                                 goto out_check;
1248                         if (btrfs_cross_ref_exist(trans, root, ino,
1249                                                   found_key.offset -
1250                                                   extent_offset, disk_bytenr))
1251                                 goto out_check;
1252                         disk_bytenr += extent_offset;
1253                         disk_bytenr += cur_offset - found_key.offset;
1254                         num_bytes = min(end + 1, extent_end) - cur_offset;
1255                         /*
1256                          * force cow if csum exists in the range.
1257                          * this ensure that csum for a given extent are
1258                          * either valid or do not exist.
1259                          */
1260                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1261                                 goto out_check;
1262                         nocow = 1;
1263                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1264                         extent_end = found_key.offset +
1265                                 btrfs_file_extent_inline_len(leaf, fi);
1266                         extent_end = ALIGN(extent_end, root->sectorsize);
1267                 } else {
1268                         BUG_ON(1);
1269                 }
1270 out_check:
1271                 if (extent_end <= start) {
1272                         path->slots[0]++;
1273                         goto next_slot;
1274                 }
1275                 if (!nocow) {
1276                         if (cow_start == (u64)-1)
1277                                 cow_start = cur_offset;
1278                         cur_offset = extent_end;
1279                         if (cur_offset > end)
1280                                 break;
1281                         path->slots[0]++;
1282                         goto next_slot;
1283                 }
1284
1285                 btrfs_release_path(path);
1286                 if (cow_start != (u64)-1) {
1287                         ret = cow_file_range(inode, locked_page,
1288                                              cow_start, found_key.offset - 1,
1289                                              page_started, nr_written, 1);
1290                         if (ret)
1291                                 goto error;
1292                         cow_start = (u64)-1;
1293                 }
1294
1295                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1296                         struct extent_map *em;
1297                         struct extent_map_tree *em_tree;
1298                         em_tree = &BTRFS_I(inode)->extent_tree;
1299                         em = alloc_extent_map();
1300                         BUG_ON(!em); /* -ENOMEM */
1301                         em->start = cur_offset;
1302                         em->orig_start = found_key.offset - extent_offset;
1303                         em->len = num_bytes;
1304                         em->block_len = num_bytes;
1305                         em->block_start = disk_bytenr;
1306                         em->orig_block_len = disk_num_bytes;
1307                         em->ram_bytes = ram_bytes;
1308                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1309                         em->mod_start = em->start;
1310                         em->mod_len = em->len;
1311                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1312                         set_bit(EXTENT_FLAG_FILLING, &em->flags);
1313                         em->generation = -1;
1314                         while (1) {
1315                                 write_lock(&em_tree->lock);
1316                                 ret = add_extent_mapping(em_tree, em, 1);
1317                                 write_unlock(&em_tree->lock);
1318                                 if (ret != -EEXIST) {
1319                                         free_extent_map(em);
1320                                         break;
1321                                 }
1322                                 btrfs_drop_extent_cache(inode, em->start,
1323                                                 em->start + em->len - 1, 0);
1324                         }
1325                         type = BTRFS_ORDERED_PREALLOC;
1326                 } else {
1327                         type = BTRFS_ORDERED_NOCOW;
1328                 }
1329
1330                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1331                                                num_bytes, num_bytes, type);
1332                 BUG_ON(ret); /* -ENOMEM */
1333
1334                 if (root->root_key.objectid ==
1335                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1336                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1337                                                       num_bytes);
1338                         if (ret)
1339                                 goto error;
1340                 }
1341
1342                 extent_clear_unlock_delalloc(inode, cur_offset,
1343                                              cur_offset + num_bytes - 1,
1344                                              locked_page, EXTENT_LOCKED |
1345                                              EXTENT_DELALLOC, PAGE_UNLOCK |
1346                                              PAGE_SET_PRIVATE2);
1347                 cur_offset = extent_end;
1348                 if (cur_offset > end)
1349                         break;
1350         }
1351         btrfs_release_path(path);
1352
1353         if (cur_offset <= end && cow_start == (u64)-1) {
1354                 cow_start = cur_offset;
1355                 cur_offset = end;
1356         }
1357
1358         if (cow_start != (u64)-1) {
1359                 ret = cow_file_range(inode, locked_page, cow_start, end,
1360                                      page_started, nr_written, 1);
1361                 if (ret)
1362                         goto error;
1363         }
1364
1365 error:
1366         err = btrfs_end_transaction(trans, root);
1367         if (!ret)
1368                 ret = err;
1369
1370         if (ret && cur_offset < end)
1371                 extent_clear_unlock_delalloc(inode, cur_offset, end,
1372                                              locked_page, EXTENT_LOCKED |
1373                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1374                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1375                                              PAGE_CLEAR_DIRTY |
1376                                              PAGE_SET_WRITEBACK |
1377                                              PAGE_END_WRITEBACK);
1378         btrfs_free_path(path);
1379         return ret;
1380 }
1381
1382 /*
1383  * extent_io.c call back to do delayed allocation processing
1384  */
1385 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1386                               u64 start, u64 end, int *page_started,
1387                               unsigned long *nr_written)
1388 {
1389         int ret;
1390         struct btrfs_root *root = BTRFS_I(inode)->root;
1391
1392         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1393                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1394                                          page_started, 1, nr_written);
1395         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1396                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1397                                          page_started, 0, nr_written);
1398         } else if (!btrfs_test_opt(root, COMPRESS) &&
1399                    !(BTRFS_I(inode)->force_compress) &&
1400                    !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1401                 ret = cow_file_range(inode, locked_page, start, end,
1402                                       page_started, nr_written, 1);
1403         } else {
1404                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1405                         &BTRFS_I(inode)->runtime_flags);
1406                 ret = cow_file_range_async(inode, locked_page, start, end,
1407                                            page_started, nr_written);
1408         }
1409         return ret;
1410 }
1411
1412 static void btrfs_split_extent_hook(struct inode *inode,
1413                                     struct extent_state *orig, u64 split)
1414 {
1415         /* not delalloc, ignore it */
1416         if (!(orig->state & EXTENT_DELALLOC))
1417                 return;
1418
1419         spin_lock(&BTRFS_I(inode)->lock);
1420         BTRFS_I(inode)->outstanding_extents++;
1421         spin_unlock(&BTRFS_I(inode)->lock);
1422 }
1423
1424 /*
1425  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1426  * extents so we can keep track of new extents that are just merged onto old
1427  * extents, such as when we are doing sequential writes, so we can properly
1428  * account for the metadata space we'll need.
1429  */
1430 static void btrfs_merge_extent_hook(struct inode *inode,
1431                                     struct extent_state *new,
1432                                     struct extent_state *other)
1433 {
1434         /* not delalloc, ignore it */
1435         if (!(other->state & EXTENT_DELALLOC))
1436                 return;
1437
1438         spin_lock(&BTRFS_I(inode)->lock);
1439         BTRFS_I(inode)->outstanding_extents--;
1440         spin_unlock(&BTRFS_I(inode)->lock);
1441 }
1442
1443 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1444                                       struct inode *inode)
1445 {
1446         spin_lock(&root->delalloc_lock);
1447         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1448                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1449                               &root->delalloc_inodes);
1450                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1451                         &BTRFS_I(inode)->runtime_flags);
1452                 root->nr_delalloc_inodes++;
1453                 if (root->nr_delalloc_inodes == 1) {
1454                         spin_lock(&root->fs_info->delalloc_root_lock);
1455                         BUG_ON(!list_empty(&root->delalloc_root));
1456                         list_add_tail(&root->delalloc_root,
1457                                       &root->fs_info->delalloc_roots);
1458                         spin_unlock(&root->fs_info->delalloc_root_lock);
1459                 }
1460         }
1461         spin_unlock(&root->delalloc_lock);
1462 }
1463
1464 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1465                                      struct inode *inode)
1466 {
1467         spin_lock(&root->delalloc_lock);
1468         if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1469                 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1470                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1471                           &BTRFS_I(inode)->runtime_flags);
1472                 root->nr_delalloc_inodes--;
1473                 if (!root->nr_delalloc_inodes) {
1474                         spin_lock(&root->fs_info->delalloc_root_lock);
1475                         BUG_ON(list_empty(&root->delalloc_root));
1476                         list_del_init(&root->delalloc_root);
1477                         spin_unlock(&root->fs_info->delalloc_root_lock);
1478                 }
1479         }
1480         spin_unlock(&root->delalloc_lock);
1481 }
1482
1483 /*
1484  * extent_io.c set_bit_hook, used to track delayed allocation
1485  * bytes in this file, and to maintain the list of inodes that
1486  * have pending delalloc work to be done.
1487  */
1488 static void btrfs_set_bit_hook(struct inode *inode,
1489                                struct extent_state *state, unsigned long *bits)
1490 {
1491
1492         /*
1493          * set_bit and clear bit hooks normally require _irqsave/restore
1494          * but in this case, we are only testing for the DELALLOC
1495          * bit, which is only set or cleared with irqs on
1496          */
1497         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1498                 struct btrfs_root *root = BTRFS_I(inode)->root;
1499                 u64 len = state->end + 1 - state->start;
1500                 bool do_list = !btrfs_is_free_space_inode(inode);
1501
1502                 if (*bits & EXTENT_FIRST_DELALLOC) {
1503                         *bits &= ~EXTENT_FIRST_DELALLOC;
1504                 } else {
1505                         spin_lock(&BTRFS_I(inode)->lock);
1506                         BTRFS_I(inode)->outstanding_extents++;
1507                         spin_unlock(&BTRFS_I(inode)->lock);
1508                 }
1509
1510                 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1511                                      root->fs_info->delalloc_batch);
1512                 spin_lock(&BTRFS_I(inode)->lock);
1513                 BTRFS_I(inode)->delalloc_bytes += len;
1514                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1515                                          &BTRFS_I(inode)->runtime_flags))
1516                         btrfs_add_delalloc_inodes(root, inode);
1517                 spin_unlock(&BTRFS_I(inode)->lock);
1518         }
1519 }
1520
1521 /*
1522  * extent_io.c clear_bit_hook, see set_bit_hook for why
1523  */
1524 static void btrfs_clear_bit_hook(struct inode *inode,
1525                                  struct extent_state *state,
1526                                  unsigned long *bits)
1527 {
1528         /*
1529          * set_bit and clear bit hooks normally require _irqsave/restore
1530          * but in this case, we are only testing for the DELALLOC
1531          * bit, which is only set or cleared with irqs on
1532          */
1533         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1534                 struct btrfs_root *root = BTRFS_I(inode)->root;
1535                 u64 len = state->end + 1 - state->start;
1536                 bool do_list = !btrfs_is_free_space_inode(inode);
1537
1538                 if (*bits & EXTENT_FIRST_DELALLOC) {
1539                         *bits &= ~EXTENT_FIRST_DELALLOC;
1540                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1541                         spin_lock(&BTRFS_I(inode)->lock);
1542                         BTRFS_I(inode)->outstanding_extents--;
1543                         spin_unlock(&BTRFS_I(inode)->lock);
1544                 }
1545
1546                 /*
1547                  * We don't reserve metadata space for space cache inodes so we
1548                  * don't need to call dellalloc_release_metadata if there is an
1549                  * error.
1550                  */
1551                 if (*bits & EXTENT_DO_ACCOUNTING &&
1552                     root != root->fs_info->tree_root)
1553                         btrfs_delalloc_release_metadata(inode, len);
1554
1555                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1556                     && do_list && !(state->state & EXTENT_NORESERVE))
1557                         btrfs_free_reserved_data_space(inode, len);
1558
1559                 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1560                                      root->fs_info->delalloc_batch);
1561                 spin_lock(&BTRFS_I(inode)->lock);
1562                 BTRFS_I(inode)->delalloc_bytes -= len;
1563                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1564                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1565                              &BTRFS_I(inode)->runtime_flags))
1566                         btrfs_del_delalloc_inode(root, inode);
1567                 spin_unlock(&BTRFS_I(inode)->lock);
1568         }
1569 }
1570
1571 /*
1572  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1573  * we don't create bios that span stripes or chunks
1574  */
1575 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1576                          size_t size, struct bio *bio,
1577                          unsigned long bio_flags)
1578 {
1579         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1580         u64 logical = (u64)bio->bi_sector << 9;
1581         u64 length = 0;
1582         u64 map_length;
1583         int ret;
1584
1585         if (bio_flags & EXTENT_BIO_COMPRESSED)
1586                 return 0;
1587
1588         length = bio->bi_size;
1589         map_length = length;
1590         ret = btrfs_map_block(root->fs_info, rw, logical,
1591                               &map_length, NULL, 0);
1592         /* Will always return 0 with map_multi == NULL */
1593         BUG_ON(ret < 0);
1594         if (map_length < length + size)
1595                 return 1;
1596         return 0;
1597 }
1598
1599 /*
1600  * in order to insert checksums into the metadata in large chunks,
1601  * we wait until bio submission time.   All the pages in the bio are
1602  * checksummed and sums are attached onto the ordered extent record.
1603  *
1604  * At IO completion time the cums attached on the ordered extent record
1605  * are inserted into the btree
1606  */
1607 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1608                                     struct bio *bio, int mirror_num,
1609                                     unsigned long bio_flags,
1610                                     u64 bio_offset)
1611 {
1612         struct btrfs_root *root = BTRFS_I(inode)->root;
1613         int ret = 0;
1614
1615         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1616         BUG_ON(ret); /* -ENOMEM */
1617         return 0;
1618 }
1619
1620 /*
1621  * in order to insert checksums into the metadata in large chunks,
1622  * we wait until bio submission time.   All the pages in the bio are
1623  * checksummed and sums are attached onto the ordered extent record.
1624  *
1625  * At IO completion time the cums attached on the ordered extent record
1626  * are inserted into the btree
1627  */
1628 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1629                           int mirror_num, unsigned long bio_flags,
1630                           u64 bio_offset)
1631 {
1632         struct btrfs_root *root = BTRFS_I(inode)->root;
1633         int ret;
1634
1635         ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1636         if (ret)
1637                 bio_endio(bio, ret);
1638         return ret;
1639 }
1640
1641 /*
1642  * extent_io.c submission hook. This does the right thing for csum calculation
1643  * on write, or reading the csums from the tree before a read
1644  */
1645 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1646                           int mirror_num, unsigned long bio_flags,
1647                           u64 bio_offset)
1648 {
1649         struct btrfs_root *root = BTRFS_I(inode)->root;
1650         int ret = 0;
1651         int skip_sum;
1652         int metadata = 0;
1653         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1654
1655         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1656
1657         if (btrfs_is_free_space_inode(inode))
1658                 metadata = 2;
1659
1660         if (!(rw & REQ_WRITE)) {
1661                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1662                 if (ret)
1663                         goto out;
1664
1665                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1666                         ret = btrfs_submit_compressed_read(inode, bio,
1667                                                            mirror_num,
1668                                                            bio_flags);
1669                         goto out;
1670                 } else if (!skip_sum) {
1671                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1672                         if (ret)
1673                                 goto out;
1674                 }
1675                 goto mapit;
1676         } else if (async && !skip_sum) {
1677                 /* csum items have already been cloned */
1678                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1679                         goto mapit;
1680                 /* we're doing a write, do the async checksumming */
1681                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1682                                    inode, rw, bio, mirror_num,
1683                                    bio_flags, bio_offset,
1684                                    __btrfs_submit_bio_start,
1685                                    __btrfs_submit_bio_done);
1686                 goto out;
1687         } else if (!skip_sum) {
1688                 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1689                 if (ret)
1690                         goto out;
1691         }
1692
1693 mapit:
1694         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1695
1696 out:
1697         if (ret < 0)
1698                 bio_endio(bio, ret);
1699         return ret;
1700 }
1701
1702 /*
1703  * given a list of ordered sums record them in the inode.  This happens
1704  * at IO completion time based on sums calculated at bio submission time.
1705  */
1706 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1707                              struct inode *inode, u64 file_offset,
1708                              struct list_head *list)
1709 {
1710         struct btrfs_ordered_sum *sum;
1711
1712         list_for_each_entry(sum, list, list) {
1713                 trans->adding_csums = 1;
1714                 btrfs_csum_file_blocks(trans,
1715                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1716                 trans->adding_csums = 0;
1717         }
1718         return 0;
1719 }
1720
1721 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1722                               struct extent_state **cached_state)
1723 {
1724         WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1725         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1726                                    cached_state, GFP_NOFS);
1727 }
1728
1729 /* see btrfs_writepage_start_hook for details on why this is required */
1730 struct btrfs_writepage_fixup {
1731         struct page *page;
1732         struct btrfs_work work;
1733 };
1734
1735 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1736 {
1737         struct btrfs_writepage_fixup *fixup;
1738         struct btrfs_ordered_extent *ordered;
1739         struct extent_state *cached_state = NULL;
1740         struct page *page;
1741         struct inode *inode;
1742         u64 page_start;
1743         u64 page_end;
1744         int ret;
1745
1746         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1747         page = fixup->page;
1748 again:
1749         lock_page(page);
1750         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1751                 ClearPageChecked(page);
1752                 goto out_page;
1753         }
1754
1755         inode = page->mapping->host;
1756         page_start = page_offset(page);
1757         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1758
1759         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1760                          &cached_state);
1761
1762         /* already ordered? We're done */
1763         if (PagePrivate2(page))
1764                 goto out;
1765
1766         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1767         if (ordered) {
1768                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1769                                      page_end, &cached_state, GFP_NOFS);
1770                 unlock_page(page);
1771                 btrfs_start_ordered_extent(inode, ordered, 1);
1772                 btrfs_put_ordered_extent(ordered);
1773                 goto again;
1774         }
1775
1776         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1777         if (ret) {
1778                 mapping_set_error(page->mapping, ret);
1779                 end_extent_writepage(page, ret, page_start, page_end);
1780                 ClearPageChecked(page);
1781                 goto out;
1782          }
1783
1784         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1785         ClearPageChecked(page);
1786         set_page_dirty(page);
1787 out:
1788         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1789                              &cached_state, GFP_NOFS);
1790 out_page:
1791         unlock_page(page);
1792         page_cache_release(page);
1793         kfree(fixup);
1794 }
1795
1796 /*
1797  * There are a few paths in the higher layers of the kernel that directly
1798  * set the page dirty bit without asking the filesystem if it is a
1799  * good idea.  This causes problems because we want to make sure COW
1800  * properly happens and the data=ordered rules are followed.
1801  *
1802  * In our case any range that doesn't have the ORDERED bit set
1803  * hasn't been properly setup for IO.  We kick off an async process
1804  * to fix it up.  The async helper will wait for ordered extents, set
1805  * the delalloc bit and make it safe to write the page.
1806  */
1807 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1808 {
1809         struct inode *inode = page->mapping->host;
1810         struct btrfs_writepage_fixup *fixup;
1811         struct btrfs_root *root = BTRFS_I(inode)->root;
1812
1813         /* this page is properly in the ordered list */
1814         if (TestClearPagePrivate2(page))
1815                 return 0;
1816
1817         if (PageChecked(page))
1818                 return -EAGAIN;
1819
1820         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1821         if (!fixup)
1822                 return -EAGAIN;
1823
1824         SetPageChecked(page);
1825         page_cache_get(page);
1826         fixup->work.func = btrfs_writepage_fixup_worker;
1827         fixup->page = page;
1828         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1829         return -EBUSY;
1830 }
1831
1832 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1833                                        struct inode *inode, u64 file_pos,
1834                                        u64 disk_bytenr, u64 disk_num_bytes,
1835                                        u64 num_bytes, u64 ram_bytes,
1836                                        u8 compression, u8 encryption,
1837                                        u16 other_encoding, int extent_type)
1838 {
1839         struct btrfs_root *root = BTRFS_I(inode)->root;
1840         struct btrfs_file_extent_item *fi;
1841         struct btrfs_path *path;
1842         struct extent_buffer *leaf;
1843         struct btrfs_key ins;
1844         int ret;
1845
1846         path = btrfs_alloc_path();
1847         if (!path)
1848                 return -ENOMEM;
1849
1850         path->leave_spinning = 1;
1851
1852         /*
1853          * we may be replacing one extent in the tree with another.
1854          * The new extent is pinned in the extent map, and we don't want
1855          * to drop it from the cache until it is completely in the btree.
1856          *
1857          * So, tell btrfs_drop_extents to leave this extent in the cache.
1858          * the caller is expected to unpin it and allow it to be merged
1859          * with the others.
1860          */
1861         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1862                                  file_pos + num_bytes, 0);
1863         if (ret)
1864                 goto out;
1865
1866         ins.objectid = btrfs_ino(inode);
1867         ins.offset = file_pos;
1868         ins.type = BTRFS_EXTENT_DATA_KEY;
1869         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1870         if (ret)
1871                 goto out;
1872         leaf = path->nodes[0];
1873         fi = btrfs_item_ptr(leaf, path->slots[0],
1874                             struct btrfs_file_extent_item);
1875         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1876         btrfs_set_file_extent_type(leaf, fi, extent_type);
1877         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1878         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1879         btrfs_set_file_extent_offset(leaf, fi, 0);
1880         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1881         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1882         btrfs_set_file_extent_compression(leaf, fi, compression);
1883         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1884         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1885
1886         btrfs_mark_buffer_dirty(leaf);
1887         btrfs_release_path(path);
1888
1889         inode_add_bytes(inode, num_bytes);
1890
1891         ins.objectid = disk_bytenr;
1892         ins.offset = disk_num_bytes;
1893         ins.type = BTRFS_EXTENT_ITEM_KEY;
1894         ret = btrfs_alloc_reserved_file_extent(trans, root,
1895                                         root->root_key.objectid,
1896                                         btrfs_ino(inode), file_pos, &ins);
1897 out:
1898         btrfs_free_path(path);
1899
1900         return ret;
1901 }
1902
1903 /* snapshot-aware defrag */
1904 struct sa_defrag_extent_backref {
1905         struct rb_node node;
1906         struct old_sa_defrag_extent *old;
1907         u64 root_id;
1908         u64 inum;
1909         u64 file_pos;
1910         u64 extent_offset;
1911         u64 num_bytes;
1912         u64 generation;
1913 };
1914
1915 struct old_sa_defrag_extent {
1916         struct list_head list;
1917         struct new_sa_defrag_extent *new;
1918
1919         u64 extent_offset;
1920         u64 bytenr;
1921         u64 offset;
1922         u64 len;
1923         int count;
1924 };
1925
1926 struct new_sa_defrag_extent {
1927         struct rb_root root;
1928         struct list_head head;
1929         struct btrfs_path *path;
1930         struct inode *inode;
1931         u64 file_pos;
1932         u64 len;
1933         u64 bytenr;
1934         u64 disk_len;
1935         u8 compress_type;
1936 };
1937
1938 static int backref_comp(struct sa_defrag_extent_backref *b1,
1939                         struct sa_defrag_extent_backref *b2)
1940 {
1941         if (b1->root_id < b2->root_id)
1942                 return -1;
1943         else if (b1->root_id > b2->root_id)
1944                 return 1;
1945
1946         if (b1->inum < b2->inum)
1947                 return -1;
1948         else if (b1->inum > b2->inum)
1949                 return 1;
1950
1951         if (b1->file_pos < b2->file_pos)
1952                 return -1;
1953         else if (b1->file_pos > b2->file_pos)
1954                 return 1;
1955
1956         /*
1957          * [------------------------------] ===> (a range of space)
1958          *     |<--->|   |<---->| =============> (fs/file tree A)
1959          * |<---------------------------->| ===> (fs/file tree B)
1960          *
1961          * A range of space can refer to two file extents in one tree while
1962          * refer to only one file extent in another tree.
1963          *
1964          * So we may process a disk offset more than one time(two extents in A)
1965          * and locate at the same extent(one extent in B), then insert two same
1966          * backrefs(both refer to the extent in B).
1967          */
1968         return 0;
1969 }
1970
1971 static void backref_insert(struct rb_root *root,
1972                            struct sa_defrag_extent_backref *backref)
1973 {
1974         struct rb_node **p = &root->rb_node;
1975         struct rb_node *parent = NULL;
1976         struct sa_defrag_extent_backref *entry;
1977         int ret;
1978
1979         while (*p) {
1980                 parent = *p;
1981                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1982
1983                 ret = backref_comp(backref, entry);
1984                 if (ret < 0)
1985                         p = &(*p)->rb_left;
1986                 else
1987                         p = &(*p)->rb_right;
1988         }
1989
1990         rb_link_node(&backref->node, parent, p);
1991         rb_insert_color(&backref->node, root);
1992 }
1993
1994 /*
1995  * Note the backref might has changed, and in this case we just return 0.
1996  */
1997 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
1998                                        void *ctx)
1999 {
2000         struct btrfs_file_extent_item *extent;
2001         struct btrfs_fs_info *fs_info;
2002         struct old_sa_defrag_extent *old = ctx;
2003         struct new_sa_defrag_extent *new = old->new;
2004         struct btrfs_path *path = new->path;
2005         struct btrfs_key key;
2006         struct btrfs_root *root;
2007         struct sa_defrag_extent_backref *backref;
2008         struct extent_buffer *leaf;
2009         struct inode *inode = new->inode;
2010         int slot;
2011         int ret;
2012         u64 extent_offset;
2013         u64 num_bytes;
2014
2015         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2016             inum == btrfs_ino(inode))
2017                 return 0;
2018
2019         key.objectid = root_id;
2020         key.type = BTRFS_ROOT_ITEM_KEY;
2021         key.offset = (u64)-1;
2022
2023         fs_info = BTRFS_I(inode)->root->fs_info;
2024         root = btrfs_read_fs_root_no_name(fs_info, &key);
2025         if (IS_ERR(root)) {
2026                 if (PTR_ERR(root) == -ENOENT)
2027                         return 0;
2028                 WARN_ON(1);
2029                 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2030                          inum, offset, root_id);
2031                 return PTR_ERR(root);
2032         }
2033
2034         key.objectid = inum;
2035         key.type = BTRFS_EXTENT_DATA_KEY;
2036         if (offset > (u64)-1 << 32)
2037                 key.offset = 0;
2038         else
2039                 key.offset = offset;
2040
2041         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2042         if (WARN_ON(ret < 0))
2043                 return ret;
2044         ret = 0;
2045
2046         while (1) {
2047                 cond_resched();
2048
2049                 leaf = path->nodes[0];
2050                 slot = path->slots[0];
2051
2052                 if (slot >= btrfs_header_nritems(leaf)) {
2053                         ret = btrfs_next_leaf(root, path);
2054                         if (ret < 0) {
2055                                 goto out;
2056                         } else if (ret > 0) {
2057                                 ret = 0;
2058                                 goto out;
2059                         }
2060                         continue;
2061                 }
2062
2063                 path->slots[0]++;
2064
2065                 btrfs_item_key_to_cpu(leaf, &key, slot);
2066
2067                 if (key.objectid > inum)
2068                         goto out;
2069
2070                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2071                         continue;
2072
2073                 extent = btrfs_item_ptr(leaf, slot,
2074                                         struct btrfs_file_extent_item);
2075
2076                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2077                         continue;
2078
2079                 /*
2080                  * 'offset' refers to the exact key.offset,
2081                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2082                  * (key.offset - extent_offset).
2083                  */
2084                 if (key.offset != offset)
2085                         continue;
2086
2087                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2088                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2089
2090                 if (extent_offset >= old->extent_offset + old->offset +
2091                     old->len || extent_offset + num_bytes <=
2092                     old->extent_offset + old->offset)
2093                         continue;
2094                 break;
2095         }
2096
2097         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2098         if (!backref) {
2099                 ret = -ENOENT;
2100                 goto out;
2101         }
2102
2103         backref->root_id = root_id;
2104         backref->inum = inum;
2105         backref->file_pos = offset;
2106         backref->num_bytes = num_bytes;
2107         backref->extent_offset = extent_offset;
2108         backref->generation = btrfs_file_extent_generation(leaf, extent);
2109         backref->old = old;
2110         backref_insert(&new->root, backref);
2111         old->count++;
2112 out:
2113         btrfs_release_path(path);
2114         WARN_ON(ret);
2115         return ret;
2116 }
2117
2118 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2119                                    struct new_sa_defrag_extent *new)
2120 {
2121         struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2122         struct old_sa_defrag_extent *old, *tmp;
2123         int ret;
2124
2125         new->path = path;
2126
2127         list_for_each_entry_safe(old, tmp, &new->head, list) {
2128                 ret = iterate_inodes_from_logical(old->bytenr +
2129                                                   old->extent_offset, fs_info,
2130                                                   path, record_one_backref,
2131                                                   old);
2132                 if (ret < 0 && ret != -ENOENT)
2133                         return false;
2134
2135                 /* no backref to be processed for this extent */
2136                 if (!old->count) {
2137                         list_del(&old->list);
2138                         kfree(old);
2139                 }
2140         }
2141
2142         if (list_empty(&new->head))
2143                 return false;
2144
2145         return true;
2146 }
2147
2148 static int relink_is_mergable(struct extent_buffer *leaf,
2149                               struct btrfs_file_extent_item *fi,
2150                               struct new_sa_defrag_extent *new)
2151 {
2152         if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2153                 return 0;
2154
2155         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2156                 return 0;
2157
2158         if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2159                 return 0;
2160
2161         if (btrfs_file_extent_encryption(leaf, fi) ||
2162             btrfs_file_extent_other_encoding(leaf, fi))
2163                 return 0;
2164
2165         return 1;
2166 }
2167
2168 /*
2169  * Note the backref might has changed, and in this case we just return 0.
2170  */
2171 static noinline int relink_extent_backref(struct btrfs_path *path,
2172                                  struct sa_defrag_extent_backref *prev,
2173                                  struct sa_defrag_extent_backref *backref)
2174 {
2175         struct btrfs_file_extent_item *extent;
2176         struct btrfs_file_extent_item *item;
2177         struct btrfs_ordered_extent *ordered;
2178         struct btrfs_trans_handle *trans;
2179         struct btrfs_fs_info *fs_info;
2180         struct btrfs_root *root;
2181         struct btrfs_key key;
2182         struct extent_buffer *leaf;
2183         struct old_sa_defrag_extent *old = backref->old;
2184         struct new_sa_defrag_extent *new = old->new;
2185         struct inode *src_inode = new->inode;
2186         struct inode *inode;
2187         struct extent_state *cached = NULL;
2188         int ret = 0;
2189         u64 start;
2190         u64 len;
2191         u64 lock_start;
2192         u64 lock_end;
2193         bool merge = false;
2194         int index;
2195
2196         if (prev && prev->root_id == backref->root_id &&
2197             prev->inum == backref->inum &&
2198             prev->file_pos + prev->num_bytes == backref->file_pos)
2199                 merge = true;
2200
2201         /* step 1: get root */
2202         key.objectid = backref->root_id;
2203         key.type = BTRFS_ROOT_ITEM_KEY;
2204         key.offset = (u64)-1;
2205
2206         fs_info = BTRFS_I(src_inode)->root->fs_info;
2207         index = srcu_read_lock(&fs_info->subvol_srcu);
2208
2209         root = btrfs_read_fs_root_no_name(fs_info, &key);
2210         if (IS_ERR(root)) {
2211                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2212                 if (PTR_ERR(root) == -ENOENT)
2213                         return 0;
2214                 return PTR_ERR(root);
2215         }
2216
2217         /* step 2: get inode */
2218         key.objectid = backref->inum;
2219         key.type = BTRFS_INODE_ITEM_KEY;
2220         key.offset = 0;
2221
2222         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2223         if (IS_ERR(inode)) {
2224                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2225                 return 0;
2226         }
2227
2228         srcu_read_unlock(&fs_info->subvol_srcu, index);
2229
2230         /* step 3: relink backref */
2231         lock_start = backref->file_pos;
2232         lock_end = backref->file_pos + backref->num_bytes - 1;
2233         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2234                          0, &cached);
2235
2236         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2237         if (ordered) {
2238                 btrfs_put_ordered_extent(ordered);
2239                 goto out_unlock;
2240         }
2241
2242         trans = btrfs_join_transaction(root);
2243         if (IS_ERR(trans)) {
2244                 ret = PTR_ERR(trans);
2245                 goto out_unlock;
2246         }
2247
2248         key.objectid = backref->inum;
2249         key.type = BTRFS_EXTENT_DATA_KEY;
2250         key.offset = backref->file_pos;
2251
2252         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2253         if (ret < 0) {
2254                 goto out_free_path;
2255         } else if (ret > 0) {
2256                 ret = 0;
2257                 goto out_free_path;
2258         }
2259
2260         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2261                                 struct btrfs_file_extent_item);
2262
2263         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2264             backref->generation)
2265                 goto out_free_path;
2266
2267         btrfs_release_path(path);
2268
2269         start = backref->file_pos;
2270         if (backref->extent_offset < old->extent_offset + old->offset)
2271                 start += old->extent_offset + old->offset -
2272                          backref->extent_offset;
2273
2274         len = min(backref->extent_offset + backref->num_bytes,
2275                   old->extent_offset + old->offset + old->len);
2276         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2277
2278         ret = btrfs_drop_extents(trans, root, inode, start,
2279                                  start + len, 1);
2280         if (ret)
2281                 goto out_free_path;
2282 again:
2283         key.objectid = btrfs_ino(inode);
2284         key.type = BTRFS_EXTENT_DATA_KEY;
2285         key.offset = start;
2286
2287         path->leave_spinning = 1;
2288         if (merge) {
2289                 struct btrfs_file_extent_item *fi;
2290                 u64 extent_len;
2291                 struct btrfs_key found_key;
2292
2293                 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2294                 if (ret < 0)
2295                         goto out_free_path;
2296
2297                 path->slots[0]--;
2298                 leaf = path->nodes[0];
2299                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2300
2301                 fi = btrfs_item_ptr(leaf, path->slots[0],
2302                                     struct btrfs_file_extent_item);
2303                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2304
2305                 if (extent_len + found_key.offset == start &&
2306                     relink_is_mergable(leaf, fi, new)) {
2307                         btrfs_set_file_extent_num_bytes(leaf, fi,
2308                                                         extent_len + len);
2309                         btrfs_mark_buffer_dirty(leaf);
2310                         inode_add_bytes(inode, len);
2311
2312                         ret = 1;
2313                         goto out_free_path;
2314                 } else {
2315                         merge = false;
2316                         btrfs_release_path(path);
2317                         goto again;
2318                 }
2319         }
2320
2321         ret = btrfs_insert_empty_item(trans, root, path, &key,
2322                                         sizeof(*extent));
2323         if (ret) {
2324                 btrfs_abort_transaction(trans, root, ret);
2325                 goto out_free_path;
2326         }
2327
2328         leaf = path->nodes[0];
2329         item = btrfs_item_ptr(leaf, path->slots[0],
2330                                 struct btrfs_file_extent_item);
2331         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2332         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2333         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2334         btrfs_set_file_extent_num_bytes(leaf, item, len);
2335         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2336         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2337         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2338         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2339         btrfs_set_file_extent_encryption(leaf, item, 0);
2340         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2341
2342         btrfs_mark_buffer_dirty(leaf);
2343         inode_add_bytes(inode, len);
2344         btrfs_release_path(path);
2345
2346         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2347                         new->disk_len, 0,
2348                         backref->root_id, backref->inum,
2349                         new->file_pos, 0);      /* start - extent_offset */
2350         if (ret) {
2351                 btrfs_abort_transaction(trans, root, ret);
2352                 goto out_free_path;
2353         }
2354
2355         ret = 1;
2356 out_free_path:
2357         btrfs_release_path(path);
2358         path->leave_spinning = 0;
2359         btrfs_end_transaction(trans, root);
2360 out_unlock:
2361         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2362                              &cached, GFP_NOFS);
2363         iput(inode);
2364         return ret;
2365 }
2366
2367 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2368 {
2369         struct old_sa_defrag_extent *old, *tmp;
2370
2371         if (!new)
2372                 return;
2373
2374         list_for_each_entry_safe(old, tmp, &new->head, list) {
2375                 list_del(&old->list);
2376                 kfree(old);
2377         }
2378         kfree(new);
2379 }
2380
2381 static void relink_file_extents(struct new_sa_defrag_extent *new)
2382 {
2383         struct btrfs_path *path;
2384         struct sa_defrag_extent_backref *backref;
2385         struct sa_defrag_extent_backref *prev = NULL;
2386         struct inode *inode;
2387         struct btrfs_root *root;
2388         struct rb_node *node;
2389         int ret;
2390
2391         inode = new->inode;
2392         root = BTRFS_I(inode)->root;
2393
2394         path = btrfs_alloc_path();
2395         if (!path)
2396                 return;
2397
2398         if (!record_extent_backrefs(path, new)) {
2399                 btrfs_free_path(path);
2400                 goto out;
2401         }
2402         btrfs_release_path(path);
2403
2404         while (1) {
2405                 node = rb_first(&new->root);
2406                 if (!node)
2407                         break;
2408                 rb_erase(node, &new->root);
2409
2410                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2411
2412                 ret = relink_extent_backref(path, prev, backref);
2413                 WARN_ON(ret < 0);
2414
2415                 kfree(prev);
2416
2417                 if (ret == 1)
2418                         prev = backref;
2419                 else
2420                         prev = NULL;
2421                 cond_resched();
2422         }
2423         kfree(prev);
2424
2425         btrfs_free_path(path);
2426 out:
2427         free_sa_defrag_extent(new);
2428
2429         atomic_dec(&root->fs_info->defrag_running);
2430         wake_up(&root->fs_info->transaction_wait);
2431 }
2432
2433 static struct new_sa_defrag_extent *
2434 record_old_file_extents(struct inode *inode,
2435                         struct btrfs_ordered_extent *ordered)
2436 {
2437         struct btrfs_root *root = BTRFS_I(inode)->root;
2438         struct btrfs_path *path;
2439         struct btrfs_key key;
2440         struct old_sa_defrag_extent *old;
2441         struct new_sa_defrag_extent *new;
2442         int ret;
2443
2444         new = kmalloc(sizeof(*new), GFP_NOFS);
2445         if (!new)
2446                 return NULL;
2447
2448         new->inode = inode;
2449         new->file_pos = ordered->file_offset;
2450         new->len = ordered->len;
2451         new->bytenr = ordered->start;
2452         new->disk_len = ordered->disk_len;
2453         new->compress_type = ordered->compress_type;
2454         new->root = RB_ROOT;
2455         INIT_LIST_HEAD(&new->head);
2456
2457         path = btrfs_alloc_path();
2458         if (!path)
2459                 goto out_kfree;
2460
2461         key.objectid = btrfs_ino(inode);
2462         key.type = BTRFS_EXTENT_DATA_KEY;
2463         key.offset = new->file_pos;
2464
2465         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2466         if (ret < 0)
2467                 goto out_free_path;
2468         if (ret > 0 && path->slots[0] > 0)
2469                 path->slots[0]--;
2470
2471         /* find out all the old extents for the file range */
2472         while (1) {
2473                 struct btrfs_file_extent_item *extent;
2474                 struct extent_buffer *l;
2475                 int slot;
2476                 u64 num_bytes;
2477                 u64 offset;
2478                 u64 end;
2479                 u64 disk_bytenr;
2480                 u64 extent_offset;
2481
2482                 l = path->nodes[0];
2483                 slot = path->slots[0];
2484
2485                 if (slot >= btrfs_header_nritems(l)) {
2486                         ret = btrfs_next_leaf(root, path);
2487                         if (ret < 0)
2488                                 goto out_free_path;
2489                         else if (ret > 0)
2490                                 break;
2491                         continue;
2492                 }
2493
2494                 btrfs_item_key_to_cpu(l, &key, slot);
2495
2496                 if (key.objectid != btrfs_ino(inode))
2497                         break;
2498                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2499                         break;
2500                 if (key.offset >= new->file_pos + new->len)
2501                         break;
2502
2503                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2504
2505                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2506                 if (key.offset + num_bytes < new->file_pos)
2507                         goto next;
2508
2509                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2510                 if (!disk_bytenr)
2511                         goto next;
2512
2513                 extent_offset = btrfs_file_extent_offset(l, extent);
2514
2515                 old = kmalloc(sizeof(*old), GFP_NOFS);
2516                 if (!old)
2517                         goto out_free_path;
2518
2519                 offset = max(new->file_pos, key.offset);
2520                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2521
2522                 old->bytenr = disk_bytenr;
2523                 old->extent_offset = extent_offset;
2524                 old->offset = offset - key.offset;
2525                 old->len = end - offset;
2526                 old->new = new;
2527                 old->count = 0;
2528                 list_add_tail(&old->list, &new->head);
2529 next:
2530                 path->slots[0]++;
2531                 cond_resched();
2532         }
2533
2534         btrfs_free_path(path);
2535         atomic_inc(&root->fs_info->defrag_running);
2536
2537         return new;
2538
2539 out_free_path:
2540         btrfs_free_path(path);
2541 out_kfree:
2542         free_sa_defrag_extent(new);
2543         return NULL;
2544 }
2545
2546 /* as ordered data IO finishes, this gets called so we can finish
2547  * an ordered extent if the range of bytes in the file it covers are
2548  * fully written.
2549  */
2550 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2551 {
2552         struct inode *inode = ordered_extent->inode;
2553         struct btrfs_root *root = BTRFS_I(inode)->root;
2554         struct btrfs_trans_handle *trans = NULL;
2555         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2556         struct extent_state *cached_state = NULL;
2557         struct new_sa_defrag_extent *new = NULL;
2558         int compress_type = 0;
2559         int ret = 0;
2560         u64 logical_len = ordered_extent->len;
2561         bool nolock;
2562         bool truncated = false;
2563
2564         nolock = btrfs_is_free_space_inode(inode);
2565
2566         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2567                 ret = -EIO;
2568                 goto out;
2569         }
2570
2571         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2572                 truncated = true;
2573                 logical_len = ordered_extent->truncated_len;
2574                 /* Truncated the entire extent, don't bother adding */
2575                 if (!logical_len)
2576                         goto out;
2577         }
2578
2579         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2580                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2581                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2582                 if (nolock)
2583                         trans = btrfs_join_transaction_nolock(root);
2584                 else
2585                         trans = btrfs_join_transaction(root);
2586                 if (IS_ERR(trans)) {
2587                         ret = PTR_ERR(trans);
2588                         trans = NULL;
2589                         goto out;
2590                 }
2591                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2592                 ret = btrfs_update_inode_fallback(trans, root, inode);
2593                 if (ret) /* -ENOMEM or corruption */
2594                         btrfs_abort_transaction(trans, root, ret);
2595                 goto out;
2596         }
2597
2598         lock_extent_bits(io_tree, ordered_extent->file_offset,
2599                          ordered_extent->file_offset + ordered_extent->len - 1,
2600                          0, &cached_state);
2601
2602         ret = test_range_bit(io_tree, ordered_extent->file_offset,
2603                         ordered_extent->file_offset + ordered_extent->len - 1,
2604                         EXTENT_DEFRAG, 1, cached_state);
2605         if (ret) {
2606                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2607                 if (last_snapshot >= BTRFS_I(inode)->generation)
2608                         /* the inode is shared */
2609                         new = record_old_file_extents(inode, ordered_extent);
2610
2611                 clear_extent_bit(io_tree, ordered_extent->file_offset,
2612                         ordered_extent->file_offset + ordered_extent->len - 1,
2613                         EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2614         }
2615
2616         if (nolock)
2617                 trans = btrfs_join_transaction_nolock(root);
2618         else
2619                 trans = btrfs_join_transaction(root);
2620         if (IS_ERR(trans)) {
2621                 ret = PTR_ERR(trans);
2622                 trans = NULL;
2623                 goto out_unlock;
2624         }
2625         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2626
2627         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2628                 compress_type = ordered_extent->compress_type;
2629         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2630                 BUG_ON(compress_type);
2631                 ret = btrfs_mark_extent_written(trans, inode,
2632                                                 ordered_extent->file_offset,
2633                                                 ordered_extent->file_offset +
2634                                                 logical_len);
2635         } else {
2636                 BUG_ON(root == root->fs_info->tree_root);
2637                 ret = insert_reserved_file_extent(trans, inode,
2638                                                 ordered_extent->file_offset,
2639                                                 ordered_extent->start,
2640                                                 ordered_extent->disk_len,
2641                                                 logical_len, logical_len,
2642                                                 compress_type, 0, 0,
2643                                                 BTRFS_FILE_EXTENT_REG);
2644         }
2645         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2646                            ordered_extent->file_offset, ordered_extent->len,
2647                            trans->transid);
2648         if (ret < 0) {
2649                 btrfs_abort_transaction(trans, root, ret);
2650                 goto out_unlock;
2651         }
2652
2653         add_pending_csums(trans, inode, ordered_extent->file_offset,
2654                           &ordered_extent->list);
2655
2656         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2657         ret = btrfs_update_inode_fallback(trans, root, inode);
2658         if (ret) { /* -ENOMEM or corruption */
2659                 btrfs_abort_transaction(trans, root, ret);
2660                 goto out_unlock;
2661         }
2662         ret = 0;
2663 out_unlock:
2664         unlock_extent_cached(io_tree, ordered_extent->file_offset,
2665                              ordered_extent->file_offset +
2666                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
2667 out:
2668         if (root != root->fs_info->tree_root)
2669                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2670         if (trans)
2671                 btrfs_end_transaction(trans, root);
2672
2673         if (ret || truncated) {
2674                 u64 start, end;
2675
2676                 if (truncated)
2677                         start = ordered_extent->file_offset + logical_len;
2678                 else
2679                         start = ordered_extent->file_offset;
2680                 end = ordered_extent->file_offset + ordered_extent->len - 1;
2681                 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2682
2683                 /* Drop the cache for the part of the extent we didn't write. */
2684                 btrfs_drop_extent_cache(inode, start, end, 0);
2685
2686                 /*
2687                  * If the ordered extent had an IOERR or something else went
2688                  * wrong we need to return the space for this ordered extent
2689                  * back to the allocator.  We only free the extent in the
2690                  * truncated case if we didn't write out the extent at all.
2691                  */
2692                 if ((ret || !logical_len) &&
2693                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2694                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2695                         btrfs_free_reserved_extent(root, ordered_extent->start,
2696                                                    ordered_extent->disk_len);
2697         }
2698
2699
2700         /*
2701          * This needs to be done to make sure anybody waiting knows we are done
2702          * updating everything for this ordered extent.
2703          */
2704         btrfs_remove_ordered_extent(inode, ordered_extent);
2705
2706         /* for snapshot-aware defrag */
2707         if (new) {
2708                 if (ret) {
2709                         free_sa_defrag_extent(new);
2710                         atomic_dec(&root->fs_info->defrag_running);
2711                 } else {
2712                         relink_file_extents(new);
2713                 }
2714         }
2715
2716         /* once for us */
2717         btrfs_put_ordered_extent(ordered_extent);
2718         /* once for the tree */
2719         btrfs_put_ordered_extent(ordered_extent);
2720
2721         return ret;
2722 }
2723
2724 static void finish_ordered_fn(struct btrfs_work *work)
2725 {
2726         struct btrfs_ordered_extent *ordered_extent;
2727         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2728         btrfs_finish_ordered_io(ordered_extent);
2729 }
2730
2731 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2732                                 struct extent_state *state, int uptodate)
2733 {
2734         struct inode *inode = page->mapping->host;
2735         struct btrfs_root *root = BTRFS_I(inode)->root;
2736         struct btrfs_ordered_extent *ordered_extent = NULL;
2737         struct btrfs_workers *workers;
2738
2739         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2740
2741         ClearPagePrivate2(page);
2742         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2743                                             end - start + 1, uptodate))
2744                 return 0;
2745
2746         ordered_extent->work.func = finish_ordered_fn;
2747         ordered_extent->work.flags = 0;
2748
2749         if (btrfs_is_free_space_inode(inode))
2750                 workers = &root->fs_info->endio_freespace_worker;
2751         else
2752                 workers = &root->fs_info->endio_write_workers;
2753         btrfs_queue_worker(workers, &ordered_extent->work);
2754
2755         return 0;
2756 }
2757
2758 /*
2759  * when reads are done, we need to check csums to verify the data is correct
2760  * if there's a match, we allow the bio to finish.  If not, the code in
2761  * extent_io.c will try to find good copies for us.
2762  */
2763 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2764                                       u64 phy_offset, struct page *page,
2765                                       u64 start, u64 end, int mirror)
2766 {
2767         size_t offset = start - page_offset(page);
2768         struct inode *inode = page->mapping->host;
2769         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2770         char *kaddr;
2771         struct btrfs_root *root = BTRFS_I(inode)->root;
2772         u32 csum_expected;
2773         u32 csum = ~(u32)0;
2774         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2775                                       DEFAULT_RATELIMIT_BURST);
2776
2777         if (PageChecked(page)) {
2778                 ClearPageChecked(page);
2779                 goto good;
2780         }
2781
2782         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2783                 goto good;
2784
2785         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2786             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2787                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2788                                   GFP_NOFS);
2789                 return 0;
2790         }
2791
2792         phy_offset >>= inode->i_sb->s_blocksize_bits;
2793         csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2794
2795         kaddr = kmap_atomic(page);
2796         csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2797         btrfs_csum_final(csum, (char *)&csum);
2798         if (csum != csum_expected)
2799                 goto zeroit;
2800
2801         kunmap_atomic(kaddr);
2802 good:
2803         return 0;
2804
2805 zeroit:
2806         if (__ratelimit(&_rs))
2807                 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2808                         btrfs_ino(page->mapping->host), start, csum, csum_expected);
2809         memset(kaddr + offset, 1, end - start + 1);
2810         flush_dcache_page(page);
2811         kunmap_atomic(kaddr);
2812         if (csum_expected == 0)
2813                 return 0;
2814         return -EIO;
2815 }
2816
2817 struct delayed_iput {
2818         struct list_head list;
2819         struct inode *inode;
2820 };
2821
2822 /* JDM: If this is fs-wide, why can't we add a pointer to
2823  * btrfs_inode instead and avoid the allocation? */
2824 void btrfs_add_delayed_iput(struct inode *inode)
2825 {
2826         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2827         struct delayed_iput *delayed;
2828
2829         if (atomic_add_unless(&inode->i_count, -1, 1))
2830                 return;
2831
2832         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2833         delayed->inode = inode;
2834
2835         spin_lock(&fs_info->delayed_iput_lock);
2836         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2837         spin_unlock(&fs_info->delayed_iput_lock);
2838 }
2839
2840 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2841 {
2842         LIST_HEAD(list);
2843         struct btrfs_fs_info *fs_info = root->fs_info;
2844         struct delayed_iput *delayed;
2845         int empty;
2846
2847         spin_lock(&fs_info->delayed_iput_lock);
2848         empty = list_empty(&fs_info->delayed_iputs);
2849         spin_unlock(&fs_info->delayed_iput_lock);
2850         if (empty)
2851                 return;
2852
2853         spin_lock(&fs_info->delayed_iput_lock);
2854         list_splice_init(&fs_info->delayed_iputs, &list);
2855         spin_unlock(&fs_info->delayed_iput_lock);
2856
2857         while (!list_empty(&list)) {
2858                 delayed = list_entry(list.next, struct delayed_iput, list);
2859                 list_del(&delayed->list);
2860                 iput(delayed->inode);
2861                 kfree(delayed);
2862         }
2863 }
2864
2865 /*
2866  * This is called in transaction commit time. If there are no orphan
2867  * files in the subvolume, it removes orphan item and frees block_rsv
2868  * structure.
2869  */
2870 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2871                               struct btrfs_root *root)
2872 {
2873         struct btrfs_block_rsv *block_rsv;
2874         int ret;
2875
2876         if (atomic_read(&root->orphan_inodes) ||
2877             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2878                 return;
2879
2880         spin_lock(&root->orphan_lock);
2881         if (atomic_read(&root->orphan_inodes)) {
2882                 spin_unlock(&root->orphan_lock);
2883                 return;
2884         }
2885
2886         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2887                 spin_unlock(&root->orphan_lock);
2888                 return;
2889         }
2890
2891         block_rsv = root->orphan_block_rsv;
2892         root->orphan_block_rsv = NULL;
2893         spin_unlock(&root->orphan_lock);
2894
2895         if (root->orphan_item_inserted &&
2896             btrfs_root_refs(&root->root_item) > 0) {
2897                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2898                                             root->root_key.objectid);
2899                 if (ret)
2900                         btrfs_abort_transaction(trans, root, ret);
2901                 else
2902                         root->orphan_item_inserted = 0;
2903         }
2904
2905         if (block_rsv) {
2906                 WARN_ON(block_rsv->size > 0);
2907                 btrfs_free_block_rsv(root, block_rsv);
2908         }
2909 }
2910
2911 /*
2912  * This creates an orphan entry for the given inode in case something goes
2913  * wrong in the middle of an unlink/truncate.
2914  *
2915  * NOTE: caller of this function should reserve 5 units of metadata for
2916  *       this function.
2917  */
2918 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2919 {
2920         struct btrfs_root *root = BTRFS_I(inode)->root;
2921         struct btrfs_block_rsv *block_rsv = NULL;
2922         int reserve = 0;
2923         int insert = 0;
2924         int ret;
2925
2926         if (!root->orphan_block_rsv) {
2927                 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2928                 if (!block_rsv)
2929                         return -ENOMEM;
2930         }
2931
2932         spin_lock(&root->orphan_lock);
2933         if (!root->orphan_block_rsv) {
2934                 root->orphan_block_rsv = block_rsv;
2935         } else if (block_rsv) {
2936                 btrfs_free_block_rsv(root, block_rsv);
2937                 block_rsv = NULL;
2938         }
2939
2940         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2941                               &BTRFS_I(inode)->runtime_flags)) {
2942 #if 0
2943                 /*
2944                  * For proper ENOSPC handling, we should do orphan
2945                  * cleanup when mounting. But this introduces backward
2946                  * compatibility issue.
2947                  */
2948                 if (!xchg(&root->orphan_item_inserted, 1))
2949                         insert = 2;
2950                 else
2951                         insert = 1;
2952 #endif
2953                 insert = 1;
2954                 atomic_inc(&root->orphan_inodes);
2955         }
2956
2957         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2958                               &BTRFS_I(inode)->runtime_flags))
2959                 reserve = 1;
2960         spin_unlock(&root->orphan_lock);
2961
2962         /* grab metadata reservation from transaction handle */
2963         if (reserve) {
2964                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2965                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2966         }
2967
2968         /* insert an orphan item to track this unlinked/truncated file */
2969         if (insert >= 1) {
2970                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2971                 if (ret) {
2972                         atomic_dec(&root->orphan_inodes);
2973                         if (reserve) {
2974                                 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2975                                           &BTRFS_I(inode)->runtime_flags);
2976                                 btrfs_orphan_release_metadata(inode);
2977                         }
2978                         if (ret != -EEXIST) {
2979                                 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2980                                           &BTRFS_I(inode)->runtime_flags);
2981                                 btrfs_abort_transaction(trans, root, ret);
2982                                 return ret;
2983                         }
2984                 }
2985                 ret = 0;
2986         }
2987
2988         /* insert an orphan item to track subvolume contains orphan files */
2989         if (insert >= 2) {
2990                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2991                                                root->root_key.objectid);
2992                 if (ret && ret != -EEXIST) {
2993                         btrfs_abort_transaction(trans, root, ret);
2994                         return ret;
2995                 }
2996         }
2997         return 0;
2998 }
2999
3000 /*
3001  * We have done the truncate/delete so we can go ahead and remove the orphan
3002  * item for this particular inode.
3003  */
3004 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3005                             struct inode *inode)
3006 {
3007         struct btrfs_root *root = BTRFS_I(inode)->root;
3008         int delete_item = 0;
3009         int release_rsv = 0;
3010         int ret = 0;
3011
3012         spin_lock(&root->orphan_lock);
3013         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3014                                &BTRFS_I(inode)->runtime_flags))
3015                 delete_item = 1;
3016
3017         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3018                                &BTRFS_I(inode)->runtime_flags))
3019                 release_rsv = 1;
3020         spin_unlock(&root->orphan_lock);
3021
3022         if (delete_item) {
3023                 atomic_dec(&root->orphan_inodes);
3024                 if (trans)
3025                         ret = btrfs_del_orphan_item(trans, root,
3026                                                     btrfs_ino(inode));
3027         }
3028
3029         if (release_rsv)
3030                 btrfs_orphan_release_metadata(inode);
3031
3032         return ret;
3033 }
3034
3035 /*
3036  * this cleans up any orphans that may be left on the list from the last use
3037  * of this root.
3038  */
3039 int btrfs_orphan_cleanup(struct btrfs_root *root)
3040 {
3041         struct btrfs_path *path;
3042         struct extent_buffer *leaf;
3043         struct btrfs_key key, found_key;
3044         struct btrfs_trans_handle *trans;
3045         struct inode *inode;
3046         u64 last_objectid = 0;
3047         int ret = 0, nr_unlink = 0, nr_truncate = 0;
3048
3049         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3050                 return 0;
3051
3052         path = btrfs_alloc_path();
3053         if (!path) {
3054                 ret = -ENOMEM;
3055                 goto out;
3056         }
3057         path->reada = -1;
3058
3059         key.objectid = BTRFS_ORPHAN_OBJECTID;
3060         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3061         key.offset = (u64)-1;
3062
3063         while (1) {
3064                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3065                 if (ret < 0)
3066                         goto out;
3067
3068                 /*
3069                  * if ret == 0 means we found what we were searching for, which
3070                  * is weird, but possible, so only screw with path if we didn't
3071                  * find the key and see if we have stuff that matches
3072                  */
3073                 if (ret > 0) {
3074                         ret = 0;
3075                         if (path->slots[0] == 0)
3076                                 break;
3077                         path->slots[0]--;
3078                 }
3079
3080                 /* pull out the item */
3081                 leaf = path->nodes[0];
3082                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3083
3084                 /* make sure the item matches what we want */
3085                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3086                         break;
3087                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3088                         break;
3089
3090                 /* release the path since we're done with it */
3091                 btrfs_release_path(path);
3092
3093                 /*
3094                  * this is where we are basically btrfs_lookup, without the
3095                  * crossing root thing.  we store the inode number in the
3096                  * offset of the orphan item.
3097                  */
3098
3099                 if (found_key.offset == last_objectid) {
3100                         btrfs_err(root->fs_info,
3101                                 "Error removing orphan entry, stopping orphan cleanup");
3102                         ret = -EINVAL;
3103                         goto out;
3104                 }
3105
3106                 last_objectid = found_key.offset;
3107
3108                 found_key.objectid = found_key.offset;
3109                 found_key.type = BTRFS_INODE_ITEM_KEY;
3110                 found_key.offset = 0;
3111                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3112                 ret = PTR_ERR_OR_ZERO(inode);
3113                 if (ret && ret != -ESTALE)
3114                         goto out;
3115
3116                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3117                         struct btrfs_root *dead_root;
3118                         struct btrfs_fs_info *fs_info = root->fs_info;
3119                         int is_dead_root = 0;
3120
3121                         /*
3122                          * this is an orphan in the tree root. Currently these
3123                          * could come from 2 sources:
3124                          *  a) a snapshot deletion in progress
3125                          *  b) a free space cache inode
3126                          * We need to distinguish those two, as the snapshot
3127                          * orphan must not get deleted.
3128                          * find_dead_roots already ran before us, so if this
3129                          * is a snapshot deletion, we should find the root
3130                          * in the dead_roots list
3131                          */
3132                         spin_lock(&fs_info->trans_lock);
3133                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3134                                             root_list) {
3135                                 if (dead_root->root_key.objectid ==
3136                                     found_key.objectid) {
3137                                         is_dead_root = 1;
3138                                         break;
3139                                 }
3140                         }
3141                         spin_unlock(&fs_info->trans_lock);
3142                         if (is_dead_root) {
3143                                 /* prevent this orphan from being found again */
3144                                 key.offset = found_key.objectid - 1;
3145                                 continue;
3146                         }
3147                 }
3148                 /*
3149                  * Inode is already gone but the orphan item is still there,
3150                  * kill the orphan item.
3151                  */
3152                 if (ret == -ESTALE) {
3153                         trans = btrfs_start_transaction(root, 1);
3154                         if (IS_ERR(trans)) {
3155                                 ret = PTR_ERR(trans);
3156                                 goto out;
3157                         }
3158                         btrfs_debug(root->fs_info, "auto deleting %Lu",
3159                                 found_key.objectid);
3160                         ret = btrfs_del_orphan_item(trans, root,
3161                                                     found_key.objectid);
3162                         btrfs_end_transaction(trans, root);
3163                         if (ret)
3164                                 goto out;
3165                         continue;
3166                 }
3167
3168                 /*
3169                  * add this inode to the orphan list so btrfs_orphan_del does
3170                  * the proper thing when we hit it
3171                  */
3172                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3173                         &BTRFS_I(inode)->runtime_flags);
3174                 atomic_inc(&root->orphan_inodes);
3175
3176                 /* if we have links, this was a truncate, lets do that */
3177                 if (inode->i_nlink) {
3178                         if (WARN_ON(!S_ISREG(inode->i_mode))) {
3179                                 iput(inode);
3180                                 continue;
3181                         }
3182                         nr_truncate++;
3183
3184                         /* 1 for the orphan item deletion. */
3185                         trans = btrfs_start_transaction(root, 1);
3186                         if (IS_ERR(trans)) {
3187                                 iput(inode);
3188                                 ret = PTR_ERR(trans);
3189                                 goto out;
3190                         }
3191                         ret = btrfs_orphan_add(trans, inode);
3192                         btrfs_end_transaction(trans, root);
3193                         if (ret) {
3194                                 iput(inode);
3195                                 goto out;
3196                         }
3197
3198                         ret = btrfs_truncate(inode);
3199                         if (ret)
3200                                 btrfs_orphan_del(NULL, inode);
3201                 } else {
3202                         nr_unlink++;
3203                 }
3204
3205                 /* this will do delete_inode and everything for us */
3206                 iput(inode);
3207                 if (ret)
3208                         goto out;
3209         }
3210         /* release the path since we're done with it */
3211         btrfs_release_path(path);
3212
3213         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3214
3215         if (root->orphan_block_rsv)
3216                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3217                                         (u64)-1);
3218
3219         if (root->orphan_block_rsv || root->orphan_item_inserted) {
3220                 trans = btrfs_join_transaction(root);
3221                 if (!IS_ERR(trans))
3222                         btrfs_end_transaction(trans, root);
3223         }
3224
3225         if (nr_unlink)
3226                 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3227         if (nr_truncate)
3228                 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3229
3230 out:
3231         if (ret)
3232                 btrfs_crit(root->fs_info,
3233                         "could not do orphan cleanup %d", ret);
3234         btrfs_free_path(path);
3235         return ret;
3236 }
3237
3238 /*
3239  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3240  * don't find any xattrs, we know there can't be any acls.
3241  *
3242  * slot is the slot the inode is in, objectid is the objectid of the inode
3243  */
3244 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3245                                           int slot, u64 objectid)
3246 {
3247         u32 nritems = btrfs_header_nritems(leaf);
3248         struct btrfs_key found_key;
3249         static u64 xattr_access = 0;
3250         static u64 xattr_default = 0;
3251         int scanned = 0;
3252
3253         if (!xattr_access) {
3254                 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3255                                         strlen(POSIX_ACL_XATTR_ACCESS));
3256                 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3257                                         strlen(POSIX_ACL_XATTR_DEFAULT));
3258         }
3259
3260         slot++;
3261         while (slot < nritems) {
3262                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3263
3264                 /* we found a different objectid, there must not be acls */
3265                 if (found_key.objectid != objectid)
3266                         return 0;
3267
3268                 /* we found an xattr, assume we've got an acl */
3269                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3270                         if (found_key.offset == xattr_access ||
3271                             found_key.offset == xattr_default)
3272                                 return 1;
3273                 }
3274
3275                 /*
3276                  * we found a key greater than an xattr key, there can't
3277                  * be any acls later on
3278                  */
3279                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3280                         return 0;
3281
3282                 slot++;
3283                 scanned++;
3284
3285                 /*
3286                  * it goes inode, inode backrefs, xattrs, extents,
3287                  * so if there are a ton of hard links to an inode there can
3288                  * be a lot of backrefs.  Don't waste time searching too hard,
3289                  * this is just an optimization
3290                  */
3291                 if (scanned >= 8)
3292                         break;
3293         }
3294         /* we hit the end of the leaf before we found an xattr or
3295          * something larger than an xattr.  We have to assume the inode
3296          * has acls
3297          */
3298         return 1;
3299 }
3300
3301 /*
3302  * read an inode from the btree into the in-memory inode
3303  */
3304 static void btrfs_read_locked_inode(struct inode *inode)
3305 {
3306         struct btrfs_path *path;
3307         struct extent_buffer *leaf;
3308         struct btrfs_inode_item *inode_item;
3309         struct btrfs_timespec *tspec;
3310         struct btrfs_root *root = BTRFS_I(inode)->root;
3311         struct btrfs_key location;
3312         unsigned long ptr;
3313         int maybe_acls;
3314         u32 rdev;
3315         int ret;
3316         bool filled = false;
3317
3318         ret = btrfs_fill_inode(inode, &rdev);
3319         if (!ret)
3320                 filled = true;
3321
3322         path = btrfs_alloc_path();
3323         if (!path)
3324                 goto make_bad;
3325
3326         path->leave_spinning = 1;
3327         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3328
3329         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3330         if (ret)
3331                 goto make_bad;
3332
3333         leaf = path->nodes[0];
3334
3335         if (filled)
3336                 goto cache_index;
3337
3338         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3339                                     struct btrfs_inode_item);
3340         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3341         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3342         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3343         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3344         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3345
3346         tspec = btrfs_inode_atime(inode_item);
3347         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3348         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3349
3350         tspec = btrfs_inode_mtime(inode_item);
3351         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3352         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3353
3354         tspec = btrfs_inode_ctime(inode_item);
3355         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3356         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3357
3358         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3359         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3360         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3361
3362         /*
3363          * If we were modified in the current generation and evicted from memory
3364          * and then re-read we need to do a full sync since we don't have any
3365          * idea about which extents were modified before we were evicted from
3366          * cache.
3367          */
3368         if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3369                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370                         &BTRFS_I(inode)->runtime_flags);
3371
3372         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3373         inode->i_generation = BTRFS_I(inode)->generation;
3374         inode->i_rdev = 0;
3375         rdev = btrfs_inode_rdev(leaf, inode_item);
3376
3377         BTRFS_I(inode)->index_cnt = (u64)-1;
3378         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3379
3380 cache_index:
3381         path->slots[0]++;
3382         if (inode->i_nlink != 1 ||
3383             path->slots[0] >= btrfs_header_nritems(leaf))
3384                 goto cache_acl;
3385
3386         btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3387         if (location.objectid != btrfs_ino(inode))
3388                 goto cache_acl;
3389
3390         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3391         if (location.type == BTRFS_INODE_REF_KEY) {
3392                 struct btrfs_inode_ref *ref;
3393
3394                 ref = (struct btrfs_inode_ref *)ptr;
3395                 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3396         } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3397                 struct btrfs_inode_extref *extref;
3398
3399                 extref = (struct btrfs_inode_extref *)ptr;
3400                 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3401                                                                      extref);
3402         }
3403 cache_acl:
3404         /*
3405          * try to precache a NULL acl entry for files that don't have
3406          * any xattrs or acls
3407          */
3408         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3409                                            btrfs_ino(inode));
3410         if (!maybe_acls)
3411                 cache_no_acl(inode);
3412
3413         btrfs_free_path(path);
3414
3415         switch (inode->i_mode & S_IFMT) {
3416         case S_IFREG:
3417                 inode->i_mapping->a_ops = &btrfs_aops;
3418                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3419                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3420                 inode->i_fop = &btrfs_file_operations;
3421                 inode->i_op = &btrfs_file_inode_operations;
3422                 break;
3423         case S_IFDIR:
3424                 inode->i_fop = &btrfs_dir_file_operations;
3425                 if (root == root->fs_info->tree_root)
3426                         inode->i_op = &btrfs_dir_ro_inode_operations;
3427                 else
3428                         inode->i_op = &btrfs_dir_inode_operations;
3429                 break;
3430         case S_IFLNK:
3431                 inode->i_op = &btrfs_symlink_inode_operations;
3432                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3433                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3434                 break;
3435         default:
3436                 inode->i_op = &btrfs_special_inode_operations;
3437                 init_special_inode(inode, inode->i_mode, rdev);
3438                 break;
3439         }
3440
3441         btrfs_update_iflags(inode);
3442         return;
3443
3444 make_bad:
3445         btrfs_free_path(path);
3446         make_bad_inode(inode);
3447 }
3448
3449 /*
3450  * given a leaf and an inode, copy the inode fields into the leaf
3451  */
3452 static void fill_inode_item(struct btrfs_trans_handle *trans,
3453                             struct extent_buffer *leaf,
3454                             struct btrfs_inode_item *item,
3455                             struct inode *inode)
3456 {
3457         struct btrfs_map_token token;
3458
3459         btrfs_init_map_token(&token);
3460
3461         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3462         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3463         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3464                                    &token);
3465         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3466         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3467
3468         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3469                                      inode->i_atime.tv_sec, &token);
3470         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3471                                       inode->i_atime.tv_nsec, &token);
3472
3473         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3474                                      inode->i_mtime.tv_sec, &token);
3475         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3476                                       inode->i_mtime.tv_nsec, &token);
3477
3478         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3479                                      inode->i_ctime.tv_sec, &token);
3480         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3481                                       inode->i_ctime.tv_nsec, &token);
3482
3483         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3484                                      &token);
3485         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3486                                          &token);
3487         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3488         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3489         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3490         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3491         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3492 }
3493
3494 /*
3495  * copy everything in the in-memory inode into the btree.
3496  */
3497 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3498                                 struct btrfs_root *root, struct inode *inode)
3499 {
3500         struct btrfs_inode_item *inode_item;
3501         struct btrfs_path *path;
3502         struct extent_buffer *leaf;
3503         int ret;
3504
3505         path = btrfs_alloc_path();
3506         if (!path)
3507                 return -ENOMEM;
3508
3509         path->leave_spinning = 1;
3510         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3511                                  1);
3512         if (ret) {
3513                 if (ret > 0)
3514                         ret = -ENOENT;
3515                 goto failed;
3516         }
3517
3518         leaf = path->nodes[0];
3519         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3520                                     struct btrfs_inode_item);
3521
3522         fill_inode_item(trans, leaf, inode_item, inode);
3523         btrfs_mark_buffer_dirty(leaf);
3524         btrfs_set_inode_last_trans(trans, inode);
3525         ret = 0;
3526 failed:
3527         btrfs_free_path(path);
3528         return ret;
3529 }
3530
3531 /*
3532  * copy everything in the in-memory inode into the btree.
3533  */
3534 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3535                                 struct btrfs_root *root, struct inode *inode)
3536 {
3537         int ret;
3538
3539         /*
3540          * If the inode is a free space inode, we can deadlock during commit
3541          * if we put it into the delayed code.
3542          *
3543          * The data relocation inode should also be directly updated
3544          * without delay
3545          */
3546         if (!btrfs_is_free_space_inode(inode)
3547             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3548                 btrfs_update_root_times(trans, root);
3549
3550                 ret = btrfs_delayed_update_inode(trans, root, inode);
3551                 if (!ret)
3552                         btrfs_set_inode_last_trans(trans, inode);
3553                 return ret;
3554         }
3555
3556         return btrfs_update_inode_item(trans, root, inode);
3557 }
3558
3559 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3560                                          struct btrfs_root *root,
3561                                          struct inode *inode)
3562 {
3563         int ret;
3564
3565         ret = btrfs_update_inode(trans, root, inode);
3566         if (ret == -ENOSPC)
3567                 return btrfs_update_inode_item(trans, root, inode);
3568         return ret;
3569 }
3570
3571 /*
3572  * unlink helper that gets used here in inode.c and in the tree logging
3573  * recovery code.  It remove a link in a directory with a given name, and
3574  * also drops the back refs in the inode to the directory
3575  */
3576 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3577                                 struct btrfs_root *root,
3578                                 struct inode *dir, struct inode *inode,
3579                                 const char *name, int name_len)
3580 {
3581         struct btrfs_path *path;
3582         int ret = 0;
3583         struct extent_buffer *leaf;
3584         struct btrfs_dir_item *di;
3585         struct btrfs_key key;
3586         u64 index;
3587         u64 ino = btrfs_ino(inode);
3588         u64 dir_ino = btrfs_ino(dir);
3589
3590         path = btrfs_alloc_path();
3591         if (!path) {
3592                 ret = -ENOMEM;
3593                 goto out;
3594         }
3595
3596         path->leave_spinning = 1;
3597         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3598                                     name, name_len, -1);
3599         if (IS_ERR(di)) {
3600                 ret = PTR_ERR(di);
3601                 goto err;
3602         }
3603         if (!di) {
3604                 ret = -ENOENT;
3605                 goto err;
3606         }
3607         leaf = path->nodes[0];
3608         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3609         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3610         if (ret)
3611                 goto err;
3612         btrfs_release_path(path);
3613
3614         /*
3615          * If we don't have dir index, we have to get it by looking up
3616          * the inode ref, since we get the inode ref, remove it directly,
3617          * it is unnecessary to do delayed deletion.
3618          *
3619          * But if we have dir index, needn't search inode ref to get it.
3620          * Since the inode ref is close to the inode item, it is better
3621          * that we delay to delete it, and just do this deletion when
3622          * we update the inode item.
3623          */
3624         if (BTRFS_I(inode)->dir_index) {
3625                 ret = btrfs_delayed_delete_inode_ref(inode);
3626                 if (!ret) {
3627                         index = BTRFS_I(inode)->dir_index;
3628                         goto skip_backref;
3629                 }
3630         }
3631
3632         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3633                                   dir_ino, &index);
3634         if (ret) {
3635                 btrfs_info(root->fs_info,
3636                         "failed to delete reference to %.*s, inode %llu parent %llu",
3637                         name_len, name, ino, dir_ino);
3638                 btrfs_abort_transaction(trans, root, ret);
3639                 goto err;
3640         }
3641 skip_backref:
3642         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3643         if (ret) {
3644                 btrfs_abort_transaction(trans, root, ret);
3645                 goto err;
3646         }
3647
3648         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3649                                          inode, dir_ino);
3650         if (ret != 0 && ret != -ENOENT) {
3651                 btrfs_abort_transaction(trans, root, ret);
3652                 goto err;
3653         }
3654
3655         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3656                                            dir, index);
3657         if (ret == -ENOENT)
3658                 ret = 0;
3659         else if (ret)
3660                 btrfs_abort_transaction(trans, root, ret);
3661 err:
3662         btrfs_free_path(path);
3663         if (ret)
3664                 goto out;
3665
3666         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3667         inode_inc_iversion(inode);
3668         inode_inc_iversion(dir);
3669         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3670         ret = btrfs_update_inode(trans, root, dir);
3671 out:
3672         return ret;
3673 }
3674
3675 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3676                        struct btrfs_root *root,
3677                        struct inode *dir, struct inode *inode,
3678                        const char *name, int name_len)
3679 {
3680         int ret;
3681         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3682         if (!ret) {
3683                 drop_nlink(inode);
3684                 ret = btrfs_update_inode(trans, root, inode);
3685         }
3686         return ret;
3687 }
3688
3689 /*
3690  * helper to start transaction for unlink and rmdir.
3691  *
3692  * unlink and rmdir are special in btrfs, they do not always free space, so
3693  * if we cannot make our reservations the normal way try and see if there is
3694  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3695  * allow the unlink to occur.
3696  */
3697 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3698 {
3699         struct btrfs_trans_handle *trans;
3700         struct btrfs_root *root = BTRFS_I(dir)->root;
3701         int ret;
3702
3703         /*
3704          * 1 for the possible orphan item
3705          * 1 for the dir item
3706          * 1 for the dir index
3707          * 1 for the inode ref
3708          * 1 for the inode
3709          */
3710         trans = btrfs_start_transaction(root, 5);
3711         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3712                 return trans;
3713
3714         if (PTR_ERR(trans) == -ENOSPC) {
3715                 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3716
3717                 trans = btrfs_start_transaction(root, 0);
3718                 if (IS_ERR(trans))
3719                         return trans;
3720                 ret = btrfs_cond_migrate_bytes(root->fs_info,
3721                                                &root->fs_info->trans_block_rsv,
3722                                                num_bytes, 5);
3723                 if (ret) {
3724                         btrfs_end_transaction(trans, root);
3725                         return ERR_PTR(ret);
3726                 }
3727                 trans->block_rsv = &root->fs_info->trans_block_rsv;
3728                 trans->bytes_reserved = num_bytes;
3729         }
3730         return trans;
3731 }
3732
3733 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3734 {
3735         struct btrfs_root *root = BTRFS_I(dir)->root;
3736         struct btrfs_trans_handle *trans;
3737         struct inode *inode = dentry->d_inode;
3738         int ret;
3739
3740         trans = __unlink_start_trans(dir);
3741         if (IS_ERR(trans))
3742                 return PTR_ERR(trans);
3743
3744         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3745
3746         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3747                                  dentry->d_name.name, dentry->d_name.len);
3748         if (ret)
3749                 goto out;
3750
3751         if (inode->i_nlink == 0) {
3752                 ret = btrfs_orphan_add(trans, inode);
3753                 if (ret)
3754                         goto out;
3755         }
3756
3757 out:
3758         btrfs_end_transaction(trans, root);
3759         btrfs_btree_balance_dirty(root);
3760         return ret;
3761 }
3762
3763 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3764                         struct btrfs_root *root,
3765                         struct inode *dir, u64 objectid,
3766                         const char *name, int name_len)
3767 {
3768         struct btrfs_path *path;
3769         struct extent_buffer *leaf;
3770         struct btrfs_dir_item *di;
3771         struct btrfs_key key;
3772         u64 index;
3773         int ret;
3774         u64 dir_ino = btrfs_ino(dir);
3775
3776         path = btrfs_alloc_path();
3777         if (!path)
3778                 return -ENOMEM;
3779
3780         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3781                                    name, name_len, -1);
3782         if (IS_ERR_OR_NULL(di)) {
3783                 if (!di)
3784                         ret = -ENOENT;
3785                 else
3786                         ret = PTR_ERR(di);
3787                 goto out;
3788         }
3789
3790         leaf = path->nodes[0];
3791         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3792         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3793         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3794         if (ret) {
3795                 btrfs_abort_transaction(trans, root, ret);
3796                 goto out;
3797         }
3798         btrfs_release_path(path);
3799
3800         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3801                                  objectid, root->root_key.objectid,
3802                                  dir_ino, &index, name, name_len);
3803         if (ret < 0) {
3804                 if (ret != -ENOENT) {
3805                         btrfs_abort_transaction(trans, root, ret);
3806                         goto out;
3807                 }
3808                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3809                                                  name, name_len);
3810                 if (IS_ERR_OR_NULL(di)) {
3811                         if (!di)
3812                                 ret = -ENOENT;
3813                         else
3814                                 ret = PTR_ERR(di);
3815                         btrfs_abort_transaction(trans, root, ret);
3816                         goto out;
3817                 }
3818
3819                 leaf = path->nodes[0];
3820                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3821                 btrfs_release_path(path);
3822                 index = key.offset;
3823         }
3824         btrfs_release_path(path);
3825
3826         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3827         if (ret) {
3828                 btrfs_abort_transaction(trans, root, ret);
3829                 goto out;
3830         }
3831
3832         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3833         inode_inc_iversion(dir);
3834         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3835         ret = btrfs_update_inode_fallback(trans, root, dir);
3836         if (ret)
3837                 btrfs_abort_transaction(trans, root, ret);
3838 out:
3839         btrfs_free_path(path);
3840         return ret;
3841 }
3842
3843 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3844 {
3845         struct inode *inode = dentry->d_inode;
3846         int err = 0;
3847         struct btrfs_root *root = BTRFS_I(dir)->root;
3848         struct btrfs_trans_handle *trans;
3849
3850         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3851                 return -ENOTEMPTY;
3852         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3853                 return -EPERM;
3854
3855         trans = __unlink_start_trans(dir);
3856         if (IS_ERR(trans))
3857                 return PTR_ERR(trans);
3858
3859         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3860                 err = btrfs_unlink_subvol(trans, root, dir,
3861                                           BTRFS_I(inode)->location.objectid,
3862                                           dentry->d_name.name,
3863                                           dentry->d_name.len);
3864                 goto out;
3865         }
3866
3867         err = btrfs_orphan_add(trans, inode);
3868         if (err)
3869                 goto out;
3870
3871         /* now the directory is empty */
3872         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3873                                  dentry->d_name.name, dentry->d_name.len);
3874         if (!err)
3875                 btrfs_i_size_write(inode, 0);
3876 out:
3877         btrfs_end_transaction(trans, root);
3878         btrfs_btree_balance_dirty(root);
3879
3880         return err;
3881 }
3882
3883 /*
3884  * this can truncate away extent items, csum items and directory items.
3885  * It starts at a high offset and removes keys until it can't find
3886  * any higher than new_size
3887  *
3888  * csum items that cross the new i_size are truncated to the new size
3889  * as well.
3890  *
3891  * min_type is the minimum key type to truncate down to.  If set to 0, this
3892  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3893  */
3894 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3895                                struct btrfs_root *root,
3896                                struct inode *inode,
3897                                u64 new_size, u32 min_type)
3898 {
3899         struct btrfs_path *path;
3900         struct extent_buffer *leaf;
3901         struct btrfs_file_extent_item *fi;
3902         struct btrfs_key key;
3903         struct btrfs_key found_key;
3904         u64 extent_start = 0;
3905         u64 extent_num_bytes = 0;
3906         u64 extent_offset = 0;
3907         u64 item_end = 0;
3908         u64 last_size = (u64)-1;
3909         u32 found_type = (u8)-1;
3910         int found_extent;
3911         int del_item;
3912         int pending_del_nr = 0;
3913         int pending_del_slot = 0;
3914         int extent_type = -1;
3915         int ret;
3916         int err = 0;
3917         u64 ino = btrfs_ino(inode);
3918
3919         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3920
3921         path = btrfs_alloc_path();
3922         if (!path)
3923                 return -ENOMEM;
3924         path->reada = -1;
3925
3926         /*
3927          * We want to drop from the next block forward in case this new size is
3928          * not block aligned since we will be keeping the last block of the
3929          * extent just the way it is.
3930          */
3931         if (root->ref_cows || root == root->fs_info->tree_root)
3932                 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3933                                         root->sectorsize), (u64)-1, 0);
3934
3935         /*
3936          * This function is also used to drop the items in the log tree before
3937          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3938          * it is used to drop the loged items. So we shouldn't kill the delayed
3939          * items.
3940          */
3941         if (min_type == 0 && root == BTRFS_I(inode)->root)
3942                 btrfs_kill_delayed_inode_items(inode);
3943
3944         key.objectid = ino;
3945         key.offset = (u64)-1;
3946         key.type = (u8)-1;
3947
3948 search_again:
3949         path->leave_spinning = 1;
3950         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3951         if (ret < 0) {
3952                 err = ret;
3953                 goto out;
3954         }
3955
3956         if (ret > 0) {
3957                 /* there are no items in the tree for us to truncate, we're
3958                  * done
3959                  */
3960                 if (path->slots[0] == 0)
3961                         goto out;
3962                 path->slots[0]--;
3963         }
3964
3965         while (1) {
3966                 fi = NULL;
3967                 leaf = path->nodes[0];
3968                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3969                 found_type = btrfs_key_type(&found_key);
3970
3971                 if (found_key.objectid != ino)
3972                         break;
3973
3974                 if (found_type < min_type)
3975                         break;
3976
3977                 item_end = found_key.offset;
3978                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3979                         fi = btrfs_item_ptr(leaf, path->slots[0],
3980                                             struct btrfs_file_extent_item);
3981                         extent_type = btrfs_file_extent_type(leaf, fi);
3982                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3983                                 item_end +=
3984                                     btrfs_file_extent_num_bytes(leaf, fi);
3985                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3986                                 item_end += btrfs_file_extent_inline_len(leaf,
3987                                                                          fi);
3988                         }
3989                         item_end--;
3990                 }
3991                 if (found_type > min_type) {
3992                         del_item = 1;
3993                 } else {
3994                         if (item_end < new_size)
3995                                 break;
3996                         if (found_key.offset >= new_size)
3997                                 del_item = 1;
3998                         else
3999                                 del_item = 0;
4000                 }
4001                 found_extent = 0;
4002                 /* FIXME, shrink the extent if the ref count is only 1 */
4003                 if (found_type != BTRFS_EXTENT_DATA_KEY)
4004                         goto delete;
4005
4006                 if (del_item)
4007                         last_size = found_key.offset;
4008                 else
4009                         last_size = new_size;
4010
4011                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4012                         u64 num_dec;
4013                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4014                         if (!del_item) {
4015                                 u64 orig_num_bytes =
4016                                         btrfs_file_extent_num_bytes(leaf, fi);
4017                                 extent_num_bytes = ALIGN(new_size -
4018                                                 found_key.offset,
4019                                                 root->sectorsize);
4020                                 btrfs_set_file_extent_num_bytes(leaf, fi,
4021                                                          extent_num_bytes);
4022                                 num_dec = (orig_num_bytes -
4023                                            extent_num_bytes);
4024                                 if (root->ref_cows && extent_start != 0)
4025                                         inode_sub_bytes(inode, num_dec);
4026                                 btrfs_mark_buffer_dirty(leaf);
4027                         } else {
4028                                 extent_num_bytes =
4029                                         btrfs_file_extent_disk_num_bytes(leaf,
4030                                                                          fi);
4031                                 extent_offset = found_key.offset -
4032                                         btrfs_file_extent_offset(leaf, fi);
4033
4034                                 /* FIXME blocksize != 4096 */
4035                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4036                                 if (extent_start != 0) {
4037                                         found_extent = 1;
4038                                         if (root->ref_cows)
4039                                                 inode_sub_bytes(inode, num_dec);
4040                                 }
4041                         }
4042                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4043                         /*
4044                          * we can't truncate inline items that have had
4045                          * special encodings
4046                          */
4047                         if (!del_item &&
4048                             btrfs_file_extent_compression(leaf, fi) == 0 &&
4049                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4050                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4051                                 u32 size = new_size - found_key.offset;
4052
4053                                 if (root->ref_cows) {
4054                                         inode_sub_bytes(inode, item_end + 1 -
4055                                                         new_size);
4056                                 }
4057                                 size =
4058                                     btrfs_file_extent_calc_inline_size(size);
4059                                 btrfs_truncate_item(root, path, size, 1);
4060                         } else if (root->ref_cows) {
4061                                 inode_sub_bytes(inode, item_end + 1 -
4062                                                 found_key.offset);
4063                         }
4064                 }
4065 delete:
4066                 if (del_item) {
4067                         if (!pending_del_nr) {
4068                                 /* no pending yet, add ourselves */
4069                                 pending_del_slot = path->slots[0];
4070                                 pending_del_nr = 1;
4071                         } else if (pending_del_nr &&
4072                                    path->slots[0] + 1 == pending_del_slot) {
4073                                 /* hop on the pending chunk */
4074                                 pending_del_nr++;
4075                                 pending_del_slot = path->slots[0];
4076                         } else {
4077                                 BUG();
4078                         }
4079                 } else {
4080                         break;
4081                 }
4082                 if (found_extent && (root->ref_cows ||
4083                                      root == root->fs_info->tree_root)) {
4084                         btrfs_set_path_blocking(path);
4085                         ret = btrfs_free_extent(trans, root, extent_start,
4086                                                 extent_num_bytes, 0,
4087                                                 btrfs_header_owner(leaf),
4088                                                 ino, extent_offset, 0);
4089                         BUG_ON(ret);
4090                 }
4091
4092                 if (found_type == BTRFS_INODE_ITEM_KEY)
4093                         break;
4094
4095                 if (path->slots[0] == 0 ||
4096                     path->slots[0] != pending_del_slot) {
4097                         if (pending_del_nr) {
4098                                 ret = btrfs_del_items(trans, root, path,
4099                                                 pending_del_slot,
4100                                                 pending_del_nr);
4101                                 if (ret) {
4102                                         btrfs_abort_transaction(trans,
4103                                                                 root, ret);
4104                                         goto error;
4105                                 }
4106                                 pending_del_nr = 0;
4107                         }
4108                         btrfs_release_path(path);
4109                         goto search_again;
4110                 } else {
4111                         path->slots[0]--;
4112                 }
4113         }
4114 out:
4115         if (pending_del_nr) {
4116                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4117                                       pending_del_nr);
4118                 if (ret)
4119                         btrfs_abort_transaction(trans, root, ret);
4120         }
4121 error:
4122         if (last_size != (u64)-1)
4123                 btrfs_ordered_update_i_size(inode, last_size, NULL);
4124         btrfs_free_path(path);
4125         return err;
4126 }
4127
4128 /*
4129  * btrfs_truncate_page - read, zero a chunk and write a page
4130  * @inode - inode that we're zeroing
4131  * @from - the offset to start zeroing
4132  * @len - the length to zero, 0 to zero the entire range respective to the
4133  *      offset
4134  * @front - zero up to the offset instead of from the offset on
4135  *
4136  * This will find the page for the "from" offset and cow the page and zero the
4137  * part we want to zero.  This is used with truncate and hole punching.
4138  */
4139 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4140                         int front)
4141 {
4142         struct address_space *mapping = inode->i_mapping;
4143         struct btrfs_root *root = BTRFS_I(inode)->root;
4144         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4145         struct btrfs_ordered_extent *ordered;
4146         struct extent_state *cached_state = NULL;
4147         char *kaddr;
4148         u32 blocksize = root->sectorsize;
4149         pgoff_t index = from >> PAGE_CACHE_SHIFT;
4150         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4151         struct page *page;
4152         gfp_t mask = btrfs_alloc_write_mask(mapping);
4153         int ret = 0;
4154         u64 page_start;
4155         u64 page_end;
4156
4157         if ((offset & (blocksize - 1)) == 0 &&
4158             (!len || ((len & (blocksize - 1)) == 0)))
4159                 goto out;
4160         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4161         if (ret)
4162                 goto out;
4163
4164 again:
4165         page = find_or_create_page(mapping, index, mask);
4166         if (!page) {
4167                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4168                 ret = -ENOMEM;
4169                 goto out;
4170         }
4171
4172         page_start = page_offset(page);
4173         page_end = page_start + PAGE_CACHE_SIZE - 1;
4174
4175         if (!PageUptodate(page)) {
4176                 ret = btrfs_readpage(NULL, page);
4177                 lock_page(page);
4178                 if (page->mapping != mapping) {
4179                         unlock_page(page);
4180                         page_cache_release(page);
4181                         goto again;
4182                 }
4183                 if (!PageUptodate(page)) {
4184                         ret = -EIO;
4185                         goto out_unlock;
4186                 }
4187         }
4188         wait_on_page_writeback(page);
4189
4190         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4191         set_page_extent_mapped(page);
4192
4193         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4194         if (ordered) {
4195                 unlock_extent_cached(io_tree, page_start, page_end,
4196                                      &cached_state, GFP_NOFS);
4197                 unlock_page(page);
4198                 page_cache_release(page);
4199                 btrfs_start_ordered_extent(inode, ordered, 1);
4200                 btrfs_put_ordered_extent(ordered);
4201                 goto again;
4202         }
4203
4204         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4205                           EXTENT_DIRTY | EXTENT_DELALLOC |
4206                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4207                           0, 0, &cached_state, GFP_NOFS);
4208
4209         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4210                                         &cached_state);
4211         if (ret) {
4212                 unlock_extent_cached(io_tree, page_start, page_end,
4213                                      &cached_state, GFP_NOFS);
4214                 goto out_unlock;
4215         }
4216
4217         if (offset != PAGE_CACHE_SIZE) {
4218                 if (!len)
4219                         len = PAGE_CACHE_SIZE - offset;
4220                 kaddr = kmap(page);
4221                 if (front)
4222                         memset(kaddr, 0, offset);
4223                 else
4224                         memset(kaddr + offset, 0, len);
4225                 flush_dcache_page(page);
4226                 kunmap(page);
4227         }
4228         ClearPageChecked(page);
4229         set_page_dirty(page);
4230         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4231                              GFP_NOFS);
4232
4233 out_unlock:
4234         if (ret)
4235                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4236         unlock_page(page);
4237         page_cache_release(page);
4238 out:
4239         return ret;
4240 }
4241
4242 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4243                              u64 offset, u64 len)
4244 {
4245         struct btrfs_trans_handle *trans;
4246         int ret;
4247
4248         /*
4249          * Still need to make sure the inode looks like it's been updated so
4250          * that any holes get logged if we fsync.
4251          */
4252         if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4253                 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4254                 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4255                 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4256                 return 0;
4257         }
4258
4259         /*
4260          * 1 - for the one we're dropping
4261          * 1 - for the one we're adding
4262          * 1 - for updating the inode.
4263          */
4264         trans = btrfs_start_transaction(root, 3);
4265         if (IS_ERR(trans))
4266                 return PTR_ERR(trans);
4267
4268         ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4269         if (ret) {
4270                 btrfs_abort_transaction(trans, root, ret);
4271                 btrfs_end_transaction(trans, root);
4272                 return ret;
4273         }
4274
4275         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4276                                        0, 0, len, 0, len, 0, 0, 0);
4277         if (ret)
4278                 btrfs_abort_transaction(trans, root, ret);
4279         else
4280                 btrfs_update_inode(trans, root, inode);
4281         btrfs_end_transaction(trans, root);
4282         return ret;
4283 }
4284
4285 /*
4286  * This function puts in dummy file extents for the area we're creating a hole
4287  * for.  So if we are truncating this file to a larger size we need to insert
4288  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4289  * the range between oldsize and size
4290  */
4291 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4292 {
4293         struct btrfs_root *root = BTRFS_I(inode)->root;
4294         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4295         struct extent_map *em = NULL;
4296         struct extent_state *cached_state = NULL;
4297         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4298         u64 hole_start = ALIGN(oldsize, root->sectorsize);
4299         u64 block_end = ALIGN(size, root->sectorsize);
4300         u64 last_byte;
4301         u64 cur_offset;
4302         u64 hole_size;
4303         int err = 0;
4304
4305         /*
4306          * If our size started in the middle of a page we need to zero out the
4307          * rest of the page before we expand the i_size, otherwise we could
4308          * expose stale data.
4309          */
4310         err = btrfs_truncate_page(inode, oldsize, 0, 0);
4311         if (err)
4312                 return err;
4313
4314         if (size <= hole_start)
4315                 return 0;
4316
4317         while (1) {
4318                 struct btrfs_ordered_extent *ordered;
4319
4320                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4321                                  &cached_state);
4322                 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4323                                                      block_end - hole_start);
4324                 if (!ordered)
4325                         break;
4326                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4327                                      &cached_state, GFP_NOFS);
4328                 btrfs_start_ordered_extent(inode, ordered, 1);
4329                 btrfs_put_ordered_extent(ordered);
4330         }
4331
4332         cur_offset = hole_start;
4333         while (1) {
4334                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4335                                 block_end - cur_offset, 0);
4336                 if (IS_ERR(em)) {
4337                         err = PTR_ERR(em);
4338                         em = NULL;
4339                         break;
4340                 }
4341                 last_byte = min(extent_map_end(em), block_end);
4342                 last_byte = ALIGN(last_byte , root->sectorsize);
4343                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4344                         struct extent_map *hole_em;
4345                         hole_size = last_byte - cur_offset;
4346
4347                         err = maybe_insert_hole(root, inode, cur_offset,
4348                                                 hole_size);
4349                         if (err)
4350                                 break;
4351                         btrfs_drop_extent_cache(inode, cur_offset,
4352                                                 cur_offset + hole_size - 1, 0);
4353                         hole_em = alloc_extent_map();
4354                         if (!hole_em) {
4355                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4356                                         &BTRFS_I(inode)->runtime_flags);
4357                                 goto next;
4358                         }
4359                         hole_em->start = cur_offset;
4360                         hole_em->len = hole_size;
4361                         hole_em->orig_start = cur_offset;
4362
4363                         hole_em->block_start = EXTENT_MAP_HOLE;
4364                         hole_em->block_len = 0;
4365                         hole_em->orig_block_len = 0;
4366                         hole_em->ram_bytes = hole_size;
4367                         hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4368                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4369                         hole_em->generation = root->fs_info->generation;
4370
4371                         while (1) {
4372                                 write_lock(&em_tree->lock);
4373                                 err = add_extent_mapping(em_tree, hole_em, 1);
4374                                 write_unlock(&em_tree->lock);
4375                                 if (err != -EEXIST)
4376                                         break;
4377                                 btrfs_drop_extent_cache(inode, cur_offset,
4378                                                         cur_offset +
4379                                                         hole_size - 1, 0);
4380                         }
4381                         free_extent_map(hole_em);
4382                 }
4383 next:
4384                 free_extent_map(em);
4385                 em = NULL;
4386                 cur_offset = last_byte;
4387                 if (cur_offset >= block_end)
4388                         break;
4389         }
4390         free_extent_map(em);
4391         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4392                              GFP_NOFS);
4393         return err;
4394 }
4395
4396 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4397 {
4398         struct btrfs_root *root = BTRFS_I(inode)->root;
4399         struct btrfs_trans_handle *trans;
4400         loff_t oldsize = i_size_read(inode);
4401         loff_t newsize = attr->ia_size;
4402         int mask = attr->ia_valid;
4403         int ret;
4404
4405         /*
4406          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4407          * special case where we need to update the times despite not having
4408          * these flags set.  For all other operations the VFS set these flags
4409          * explicitly if it wants a timestamp update.
4410          */
4411         if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4412                 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4413
4414         if (newsize > oldsize) {
4415                 truncate_pagecache(inode, newsize);
4416                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4417                 if (ret)
4418                         return ret;
4419
4420                 trans = btrfs_start_transaction(root, 1);
4421                 if (IS_ERR(trans))
4422                         return PTR_ERR(trans);
4423
4424                 i_size_write(inode, newsize);
4425                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4426                 ret = btrfs_update_inode(trans, root, inode);
4427                 btrfs_end_transaction(trans, root);
4428         } else {
4429
4430                 /*
4431                  * We're truncating a file that used to have good data down to
4432                  * zero. Make sure it gets into the ordered flush list so that
4433                  * any new writes get down to disk quickly.
4434                  */
4435                 if (newsize == 0)
4436                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4437                                 &BTRFS_I(inode)->runtime_flags);
4438
4439                 /*
4440                  * 1 for the orphan item we're going to add
4441                  * 1 for the orphan item deletion.
4442                  */
4443                 trans = btrfs_start_transaction(root, 2);
4444                 if (IS_ERR(trans))
4445                         return PTR_ERR(trans);
4446
4447                 /*
4448                  * We need to do this in case we fail at _any_ point during the
4449                  * actual truncate.  Once we do the truncate_setsize we could
4450                  * invalidate pages which forces any outstanding ordered io to
4451                  * be instantly completed which will give us extents that need
4452                  * to be truncated.  If we fail to get an orphan inode down we
4453                  * could have left over extents that were never meant to live,
4454                  * so we need to garuntee from this point on that everything
4455                  * will be consistent.
4456                  */
4457                 ret = btrfs_orphan_add(trans, inode);
4458                 btrfs_end_transaction(trans, root);
4459                 if (ret)
4460                         return ret;
4461
4462                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4463                 truncate_setsize(inode, newsize);
4464
4465                 /* Disable nonlocked read DIO to avoid the end less truncate */
4466                 btrfs_inode_block_unlocked_dio(inode);
4467                 inode_dio_wait(inode);
4468                 btrfs_inode_resume_unlocked_dio(inode);
4469
4470                 ret = btrfs_truncate(inode);
4471                 if (ret && inode->i_nlink) {
4472                         int err;
4473
4474                         /*
4475                          * failed to truncate, disk_i_size is only adjusted down
4476                          * as we remove extents, so it should represent the true
4477                          * size of the inode, so reset the in memory size and
4478                          * delete our orphan entry.
4479                          */
4480                         trans = btrfs_join_transaction(root);
4481                         if (IS_ERR(trans)) {
4482                                 btrfs_orphan_del(NULL, inode);
4483                                 return ret;
4484                         }
4485                         i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4486                         err = btrfs_orphan_del(trans, inode);
4487                         if (err)
4488                                 btrfs_abort_transaction(trans, root, err);
4489                         btrfs_end_transaction(trans, root);
4490                 }
4491         }
4492
4493         return ret;
4494 }
4495
4496 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4497 {
4498         struct inode *inode = dentry->d_inode;
4499         struct btrfs_root *root = BTRFS_I(inode)->root;
4500         int err;
4501
4502         if (btrfs_root_readonly(root))
4503                 return -EROFS;
4504
4505         err = inode_change_ok(inode, attr);
4506         if (err)
4507                 return err;
4508
4509         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4510                 err = btrfs_setsize(inode, attr);
4511                 if (err)
4512                         return err;
4513         }
4514
4515         if (attr->ia_valid) {
4516                 setattr_copy(inode, attr);
4517                 inode_inc_iversion(inode);
4518                 err = btrfs_dirty_inode(inode);
4519
4520                 if (!err && attr->ia_valid & ATTR_MODE)
4521                         err = btrfs_acl_chmod(inode);
4522         }
4523
4524         return err;
4525 }
4526
4527 /*
4528  * While truncating the inode pages during eviction, we get the VFS calling
4529  * btrfs_invalidatepage() against each page of the inode. This is slow because
4530  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4531  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4532  * extent_state structures over and over, wasting lots of time.
4533  *
4534  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4535  * those expensive operations on a per page basis and do only the ordered io
4536  * finishing, while we release here the extent_map and extent_state structures,
4537  * without the excessive merging and splitting.
4538  */
4539 static void evict_inode_truncate_pages(struct inode *inode)
4540 {
4541         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4542         struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4543         struct rb_node *node;
4544
4545         ASSERT(inode->i_state & I_FREEING);
4546         truncate_inode_pages(&inode->i_data, 0);
4547
4548         write_lock(&map_tree->lock);
4549         while (!RB_EMPTY_ROOT(&map_tree->map)) {
4550                 struct extent_map *em;
4551
4552                 node = rb_first(&map_tree->map);
4553                 em = rb_entry(node, struct extent_map, rb_node);
4554                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4555                 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4556                 remove_extent_mapping(map_tree, em);
4557                 free_extent_map(em);
4558         }
4559         write_unlock(&map_tree->lock);
4560
4561         spin_lock(&io_tree->lock);
4562         while (!RB_EMPTY_ROOT(&io_tree->state)) {
4563                 struct extent_state *state;
4564                 struct extent_state *cached_state = NULL;
4565
4566                 node = rb_first(&io_tree->state);
4567                 state = rb_entry(node, struct extent_state, rb_node);
4568                 atomic_inc(&state->refs);
4569                 spin_unlock(&io_tree->lock);
4570
4571                 lock_extent_bits(io_tree, state->start, state->end,
4572                                  0, &cached_state);
4573                 clear_extent_bit(io_tree, state->start, state->end,
4574                                  EXTENT_LOCKED | EXTENT_DIRTY |
4575                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4576                                  EXTENT_DEFRAG, 1, 1,
4577                                  &cached_state, GFP_NOFS);
4578                 free_extent_state(state);
4579
4580                 spin_lock(&io_tree->lock);
4581         }
4582         spin_unlock(&io_tree->lock);
4583 }
4584
4585 void btrfs_evict_inode(struct inode *inode)
4586 {
4587         struct btrfs_trans_handle *trans;
4588         struct btrfs_root *root = BTRFS_I(inode)->root;
4589         struct btrfs_block_rsv *rsv, *global_rsv;
4590         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4591         int ret;
4592
4593         trace_btrfs_inode_evict(inode);
4594
4595         evict_inode_truncate_pages(inode);
4596
4597         if (inode->i_nlink &&
4598             ((btrfs_root_refs(&root->root_item) != 0 &&
4599               root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4600              btrfs_is_free_space_inode(inode)))
4601                 goto no_delete;
4602
4603         if (is_bad_inode(inode)) {
4604                 btrfs_orphan_del(NULL, inode);
4605                 goto no_delete;
4606         }
4607         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4608         btrfs_wait_ordered_range(inode, 0, (u64)-1);
4609
4610         if (root->fs_info->log_root_recovering) {
4611                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4612                                  &BTRFS_I(inode)->runtime_flags));
4613                 goto no_delete;
4614         }
4615
4616         if (inode->i_nlink > 0) {
4617                 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4618                        root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4619                 goto no_delete;
4620         }
4621
4622         ret = btrfs_commit_inode_delayed_inode(inode);
4623         if (ret) {
4624                 btrfs_orphan_del(NULL, inode);
4625                 goto no_delete;
4626         }
4627
4628         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4629         if (!rsv) {
4630                 btrfs_orphan_del(NULL, inode);
4631                 goto no_delete;
4632         }
4633         rsv->size = min_size;
4634         rsv->failfast = 1;
4635         global_rsv = &root->fs_info->global_block_rsv;
4636
4637         btrfs_i_size_write(inode, 0);
4638
4639         /*
4640          * This is a bit simpler than btrfs_truncate since we've already
4641          * reserved our space for our orphan item in the unlink, so we just
4642          * need to reserve some slack space in case we add bytes and update
4643          * inode item when doing the truncate.
4644          */
4645         while (1) {
4646                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4647                                              BTRFS_RESERVE_FLUSH_LIMIT);
4648
4649                 /*
4650                  * Try and steal from the global reserve since we will
4651                  * likely not use this space anyway, we want to try as
4652                  * hard as possible to get this to work.
4653                  */
4654                 if (ret)
4655                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4656
4657                 if (ret) {
4658                         btrfs_warn(root->fs_info,
4659                                 "Could not get space for a delete, will truncate on mount %d",
4660                                 ret);
4661                         btrfs_orphan_del(NULL, inode);
4662                         btrfs_free_block_rsv(root, rsv);
4663                         goto no_delete;
4664                 }
4665
4666                 trans = btrfs_join_transaction(root);
4667                 if (IS_ERR(trans)) {
4668                         btrfs_orphan_del(NULL, inode);
4669                         btrfs_free_block_rsv(root, rsv);
4670                         goto no_delete;
4671                 }
4672
4673                 trans->block_rsv = rsv;
4674
4675                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4676                 if (ret != -ENOSPC)
4677                         break;
4678
4679                 trans->block_rsv = &root->fs_info->trans_block_rsv;
4680                 btrfs_end_transaction(trans, root);
4681                 trans = NULL;
4682                 btrfs_btree_balance_dirty(root);
4683         }
4684
4685         btrfs_free_block_rsv(root, rsv);
4686
4687         /*
4688          * Errors here aren't a big deal, it just means we leave orphan items
4689          * in the tree.  They will be cleaned up on the next mount.
4690          */
4691         if (ret == 0) {
4692                 trans->block_rsv = root->orphan_block_rsv;
4693                 btrfs_orphan_del(trans, inode);
4694         } else {
4695                 btrfs_orphan_del(NULL, inode);
4696         }
4697
4698         trans->block_rsv = &root->fs_info->trans_block_rsv;
4699         if (!(root == root->fs_info->tree_root ||
4700               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4701                 btrfs_return_ino(root, btrfs_ino(inode));
4702
4703         btrfs_end_transaction(trans, root);
4704         btrfs_btree_balance_dirty(root);
4705 no_delete:
4706         btrfs_remove_delayed_node(inode);
4707         clear_inode(inode);
4708         return;
4709 }
4710
4711 /*
4712  * this returns the key found in the dir entry in the location pointer.
4713  * If no dir entries were found, location->objectid is 0.
4714  */
4715 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4716                                struct btrfs_key *location)
4717 {
4718         const char *name = dentry->d_name.name;
4719         int namelen = dentry->d_name.len;
4720         struct btrfs_dir_item *di;
4721         struct btrfs_path *path;
4722         struct btrfs_root *root = BTRFS_I(dir)->root;
4723         int ret = 0;
4724
4725         path = btrfs_alloc_path();
4726         if (!path)
4727                 return -ENOMEM;
4728
4729         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4730                                     namelen, 0);
4731         if (IS_ERR(di))
4732                 ret = PTR_ERR(di);
4733
4734         if (IS_ERR_OR_NULL(di))
4735                 goto out_err;
4736
4737         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4738 out:
4739         btrfs_free_path(path);
4740         return ret;
4741 out_err:
4742         location->objectid = 0;
4743         goto out;
4744 }
4745
4746 /*
4747  * when we hit a tree root in a directory, the btrfs part of the inode
4748  * needs to be changed to reflect the root directory of the tree root.  This
4749  * is kind of like crossing a mount point.
4750  */
4751 static int fixup_tree_root_location(struct btrfs_root *root,
4752                                     struct inode *dir,
4753                                     struct dentry *dentry,
4754                                     struct btrfs_key *location,
4755                                     struct btrfs_root **sub_root)
4756 {
4757         struct btrfs_path *path;
4758         struct btrfs_root *new_root;
4759         struct btrfs_root_ref *ref;
4760         struct extent_buffer *leaf;
4761         int ret;
4762         int err = 0;
4763
4764         path = btrfs_alloc_path();
4765         if (!path) {
4766                 err = -ENOMEM;
4767                 goto out;
4768         }
4769
4770         err = -ENOENT;
4771         ret = btrfs_find_item(root->fs_info->tree_root, path,
4772                                 BTRFS_I(dir)->root->root_key.objectid,
4773                                 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4774         if (ret) {
4775                 if (ret < 0)
4776                         err = ret;
4777                 goto out;
4778         }
4779
4780         leaf = path->nodes[0];
4781         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4782         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4783             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4784                 goto out;
4785
4786         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4787                                    (unsigned long)(ref + 1),
4788                                    dentry->d_name.len);
4789         if (ret)
4790                 goto out;
4791
4792         btrfs_release_path(path);
4793
4794         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4795         if (IS_ERR(new_root)) {
4796                 err = PTR_ERR(new_root);
4797                 goto out;
4798         }
4799
4800         *sub_root = new_root;
4801         location->objectid = btrfs_root_dirid(&new_root->root_item);
4802         location->type = BTRFS_INODE_ITEM_KEY;
4803         location->offset = 0;
4804         err = 0;
4805 out:
4806         btrfs_free_path(path);
4807         return err;
4808 }
4809
4810 static void inode_tree_add(struct inode *inode)
4811 {
4812         struct btrfs_root *root = BTRFS_I(inode)->root;
4813         struct btrfs_inode *entry;
4814         struct rb_node **p;
4815         struct rb_node *parent;
4816         struct rb_node *new = &BTRFS_I(inode)->rb_node;
4817         u64 ino = btrfs_ino(inode);
4818
4819         if (inode_unhashed(inode))
4820                 return;
4821         parent = NULL;
4822         spin_lock(&root->inode_lock);
4823         p = &root->inode_tree.rb_node;
4824         while (*p) {
4825                 parent = *p;
4826                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4827
4828                 if (ino < btrfs_ino(&entry->vfs_inode))
4829                         p = &parent->rb_left;
4830                 else if (ino > btrfs_ino(&entry->vfs_inode))
4831                         p = &parent->rb_right;
4832                 else {
4833                         WARN_ON(!(entry->vfs_inode.i_state &
4834                                   (I_WILL_FREE | I_FREEING)));
4835                         rb_replace_node(parent, new, &root->inode_tree);
4836                         RB_CLEAR_NODE(parent);
4837                         spin_unlock(&root->inode_lock);
4838                         return;
4839                 }
4840         }
4841         rb_link_node(new, parent, p);
4842         rb_insert_color(new, &root->inode_tree);
4843         spin_unlock(&root->inode_lock);
4844 }
4845
4846 static void inode_tree_del(struct inode *inode)
4847 {
4848         struct btrfs_root *root = BTRFS_I(inode)->root;
4849         int empty = 0;
4850
4851         spin_lock(&root->inode_lock);
4852         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4853                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4854                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4855                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4856         }
4857         spin_unlock(&root->inode_lock);
4858
4859         if (empty && btrfs_root_refs(&root->root_item) == 0) {
4860                 synchronize_srcu(&root->fs_info->subvol_srcu);
4861                 spin_lock(&root->inode_lock);
4862                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4863                 spin_unlock(&root->inode_lock);
4864                 if (empty)
4865                         btrfs_add_dead_root(root);
4866         }
4867 }
4868
4869 void btrfs_invalidate_inodes(struct btrfs_root *root)
4870 {
4871         struct rb_node *node;
4872         struct rb_node *prev;
4873         struct btrfs_inode *entry;
4874         struct inode *inode;
4875         u64 objectid = 0;
4876
4877         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4878
4879         spin_lock(&root->inode_lock);
4880 again:
4881         node = root->inode_tree.rb_node;
4882         prev = NULL;
4883         while (node) {
4884                 prev = node;
4885                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4886
4887                 if (objectid < btrfs_ino(&entry->vfs_inode))
4888                         node = node->rb_left;
4889                 else if (objectid > btrfs_ino(&entry->vfs_inode))
4890                         node = node->rb_right;
4891                 else
4892                         break;
4893         }
4894         if (!node) {
4895                 while (prev) {
4896                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4897                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4898                                 node = prev;
4899                                 break;
4900                         }
4901                         prev = rb_next(prev);
4902                 }
4903         }
4904         while (node) {
4905                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4906                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4907                 inode = igrab(&entry->vfs_inode);
4908                 if (inode) {
4909                         spin_unlock(&root->inode_lock);
4910                         if (atomic_read(&inode->i_count) > 1)
4911                                 d_prune_aliases(inode);
4912                         /*
4913                          * btrfs_drop_inode will have it removed from
4914                          * the inode cache when its usage count
4915                          * hits zero.
4916                          */
4917                         iput(inode);
4918                         cond_resched();
4919                         spin_lock(&root->inode_lock);
4920                         goto again;
4921                 }
4922
4923                 if (cond_resched_lock(&root->inode_lock))
4924                         goto again;
4925
4926                 node = rb_next(node);
4927         }
4928         spin_unlock(&root->inode_lock);
4929 }
4930
4931 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4932 {
4933         struct btrfs_iget_args *args = p;
4934         inode->i_ino = args->ino;
4935         BTRFS_I(inode)->root = args->root;
4936         return 0;
4937 }
4938
4939 static int btrfs_find_actor(struct inode *inode, void *opaque)
4940 {
4941         struct btrfs_iget_args *args = opaque;
4942         return args->ino == btrfs_ino(inode) &&
4943                 args->root == BTRFS_I(inode)->root;
4944 }
4945
4946 static struct inode *btrfs_iget_locked(struct super_block *s,
4947                                        u64 objectid,
4948                                        struct btrfs_root *root)
4949 {
4950         struct inode *inode;
4951         struct btrfs_iget_args args;
4952         unsigned long hashval = btrfs_inode_hash(objectid, root);
4953
4954         args.ino = objectid;
4955         args.root = root;
4956
4957         inode = iget5_locked(s, hashval, btrfs_find_actor,
4958                              btrfs_init_locked_inode,
4959                              (void *)&args);
4960         return inode;
4961 }
4962
4963 /* Get an inode object given its location and corresponding root.
4964  * Returns in *is_new if the inode was read from disk
4965  */
4966 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4967                          struct btrfs_root *root, int *new)
4968 {
4969         struct inode *inode;
4970
4971         inode = btrfs_iget_locked(s, location->objectid, root);
4972         if (!inode)
4973                 return ERR_PTR(-ENOMEM);
4974
4975         if (inode->i_state & I_NEW) {
4976                 BTRFS_I(inode)->root = root;
4977                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4978                 btrfs_read_locked_inode(inode);
4979                 if (!is_bad_inode(inode)) {
4980                         inode_tree_add(inode);
4981                         unlock_new_inode(inode);
4982                         if (new)
4983                                 *new = 1;
4984                 } else {
4985                         unlock_new_inode(inode);
4986                         iput(inode);
4987                         inode = ERR_PTR(-ESTALE);
4988                 }
4989         }
4990
4991         return inode;
4992 }
4993
4994 static struct inode *new_simple_dir(struct super_block *s,
4995                                     struct btrfs_key *key,
4996                                     struct btrfs_root *root)
4997 {
4998         struct inode *inode = new_inode(s);
4999
5000         if (!inode)
5001                 return ERR_PTR(-ENOMEM);
5002
5003         BTRFS_I(inode)->root = root;
5004         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5005         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5006
5007         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5008         inode->i_op = &btrfs_dir_ro_inode_operations;
5009         inode->i_fop = &simple_dir_operations;
5010         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5011         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5012
5013         return inode;
5014 }
5015
5016 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5017 {
5018         struct inode *inode;
5019         struct btrfs_root *root = BTRFS_I(dir)->root;
5020         struct btrfs_root *sub_root = root;
5021         struct btrfs_key location;
5022         int index;
5023         int ret = 0;
5024
5025         if (dentry->d_name.len > BTRFS_NAME_LEN)
5026                 return ERR_PTR(-ENAMETOOLONG);
5027
5028         ret = btrfs_inode_by_name(dir, dentry, &location);
5029         if (ret < 0)
5030                 return ERR_PTR(ret);
5031
5032         if (location.objectid == 0)
5033                 return ERR_PTR(-ENOENT);
5034
5035         if (location.type == BTRFS_INODE_ITEM_KEY) {
5036                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5037                 return inode;
5038         }
5039
5040         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5041
5042         index = srcu_read_lock(&root->fs_info->subvol_srcu);
5043         ret = fixup_tree_root_location(root, dir, dentry,
5044                                        &location, &sub_root);
5045         if (ret < 0) {
5046                 if (ret != -ENOENT)
5047                         inode = ERR_PTR(ret);
5048                 else
5049                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
5050         } else {
5051                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5052         }
5053         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5054
5055         if (!IS_ERR(inode) && root != sub_root) {
5056                 down_read(&root->fs_info->cleanup_work_sem);
5057                 if (!(inode->i_sb->s_flags & MS_RDONLY))
5058                         ret = btrfs_orphan_cleanup(sub_root);
5059                 up_read(&root->fs_info->cleanup_work_sem);
5060                 if (ret) {
5061                         iput(inode);
5062                         inode = ERR_PTR(ret);
5063                 }
5064         }
5065
5066         return inode;
5067 }
5068
5069 static int btrfs_dentry_delete(const struct dentry *dentry)
5070 {
5071         struct btrfs_root *root;
5072         struct inode *inode = dentry->d_inode;
5073
5074         if (!inode && !IS_ROOT(dentry))
5075                 inode = dentry->d_parent->d_inode;
5076
5077         if (inode) {
5078                 root = BTRFS_I(inode)->root;
5079                 if (btrfs_root_refs(&root->root_item) == 0)
5080                         return 1;
5081
5082                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5083                         return 1;
5084         }
5085         return 0;
5086 }
5087
5088 static void btrfs_dentry_release(struct dentry *dentry)
5089 {
5090         if (dentry->d_fsdata)
5091                 kfree(dentry->d_fsdata);
5092 }
5093
5094 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5095                                    unsigned int flags)
5096 {
5097         struct inode *inode;
5098
5099         inode = btrfs_lookup_dentry(dir, dentry);
5100         if (IS_ERR(inode)) {
5101                 if (PTR_ERR(inode) == -ENOENT)
5102                         inode = NULL;
5103                 else
5104                         return ERR_CAST(inode);
5105         }
5106
5107         return d_splice_alias(inode, dentry);
5108 }
5109
5110 unsigned char btrfs_filetype_table[] = {
5111         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5112 };
5113
5114 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5115 {
5116         struct inode *inode = file_inode(file);
5117         struct btrfs_root *root = BTRFS_I(inode)->root;
5118         struct btrfs_item *item;
5119         struct btrfs_dir_item *di;
5120         struct btrfs_key key;
5121         struct btrfs_key found_key;
5122         struct btrfs_path *path;
5123         struct list_head ins_list;
5124         struct list_head del_list;
5125         int ret;
5126         struct extent_buffer *leaf;
5127         int slot;
5128         unsigned char d_type;
5129         int over = 0;
5130         u32 di_cur;
5131         u32 di_total;
5132         u32 di_len;
5133         int key_type = BTRFS_DIR_INDEX_KEY;
5134         char tmp_name[32];
5135         char *name_ptr;
5136         int name_len;
5137         int is_curr = 0;        /* ctx->pos points to the current index? */
5138
5139         /* FIXME, use a real flag for deciding about the key type */
5140         if (root->fs_info->tree_root == root)
5141                 key_type = BTRFS_DIR_ITEM_KEY;
5142
5143         if (!dir_emit_dots(file, ctx))
5144                 return 0;
5145
5146         path = btrfs_alloc_path();
5147         if (!path)
5148                 return -ENOMEM;
5149
5150         path->reada = 1;
5151
5152         if (key_type == BTRFS_DIR_INDEX_KEY) {
5153                 INIT_LIST_HEAD(&ins_list);
5154                 INIT_LIST_HEAD(&del_list);
5155                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5156         }
5157
5158         btrfs_set_key_type(&key, key_type);
5159         key.offset = ctx->pos;
5160         key.objectid = btrfs_ino(inode);
5161
5162         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5163         if (ret < 0)
5164                 goto err;
5165
5166         while (1) {
5167                 leaf = path->nodes[0];
5168                 slot = path->slots[0];
5169                 if (slot >= btrfs_header_nritems(leaf)) {
5170                         ret = btrfs_next_leaf(root, path);
5171                         if (ret < 0)
5172                                 goto err;
5173                         else if (ret > 0)
5174                                 break;
5175                         continue;
5176                 }
5177
5178                 item = btrfs_item_nr(slot);
5179                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5180
5181                 if (found_key.objectid != key.objectid)
5182                         break;
5183                 if (btrfs_key_type(&found_key) != key_type)
5184                         break;
5185                 if (found_key.offset < ctx->pos)
5186                         goto next;
5187                 if (key_type == BTRFS_DIR_INDEX_KEY &&
5188                     btrfs_should_delete_dir_index(&del_list,
5189                                                   found_key.offset))
5190                         goto next;
5191
5192                 ctx->pos = found_key.offset;
5193                 is_curr = 1;
5194
5195                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5196                 di_cur = 0;
5197                 di_total = btrfs_item_size(leaf, item);
5198
5199                 while (di_cur < di_total) {
5200                         struct btrfs_key location;
5201
5202                         if (verify_dir_item(root, leaf, di))
5203                                 break;
5204
5205                         name_len = btrfs_dir_name_len(leaf, di);
5206                         if (name_len <= sizeof(tmp_name)) {
5207                                 name_ptr = tmp_name;
5208                         } else {
5209                                 name_ptr = kmalloc(name_len, GFP_NOFS);
5210                                 if (!name_ptr) {
5211                                         ret = -ENOMEM;
5212                                         goto err;
5213                                 }
5214                         }
5215                         read_extent_buffer(leaf, name_ptr,
5216                                            (unsigned long)(di + 1), name_len);
5217
5218                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5219                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
5220
5221
5222                         /* is this a reference to our own snapshot? If so
5223                          * skip it.
5224                          *
5225                          * In contrast to old kernels, we insert the snapshot's
5226                          * dir item and dir index after it has been created, so
5227                          * we won't find a reference to our own snapshot. We
5228                          * still keep the following code for backward
5229                          * compatibility.
5230                          */
5231                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
5232                             location.objectid == root->root_key.objectid) {
5233                                 over = 0;
5234                                 goto skip;
5235                         }
5236                         over = !dir_emit(ctx, name_ptr, name_len,
5237                                        location.objectid, d_type);
5238
5239 skip:
5240                         if (name_ptr != tmp_name)
5241                                 kfree(name_ptr);
5242
5243                         if (over)
5244                                 goto nopos;
5245                         di_len = btrfs_dir_name_len(leaf, di) +
5246                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
5247                         di_cur += di_len;
5248                         di = (struct btrfs_dir_item *)((char *)di + di_len);
5249                 }
5250 next:
5251                 path->slots[0]++;
5252         }
5253
5254         if (key_type == BTRFS_DIR_INDEX_KEY) {
5255                 if (is_curr)
5256                         ctx->pos++;
5257                 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5258                 if (ret)
5259                         goto nopos;
5260         }
5261
5262         /* Reached end of directory/root. Bump pos past the last item. */
5263         ctx->pos++;
5264
5265         /*
5266          * Stop new entries from being returned after we return the last
5267          * entry.
5268          *
5269          * New directory entries are assigned a strictly increasing
5270          * offset.  This means that new entries created during readdir
5271          * are *guaranteed* to be seen in the future by that readdir.
5272          * This has broken buggy programs which operate on names as
5273          * they're returned by readdir.  Until we re-use freed offsets
5274          * we have this hack to stop new entries from being returned
5275          * under the assumption that they'll never reach this huge
5276          * offset.
5277          *
5278          * This is being careful not to overflow 32bit loff_t unless the
5279          * last entry requires it because doing so has broken 32bit apps
5280          * in the past.
5281          */
5282         if (key_type == BTRFS_DIR_INDEX_KEY) {
5283                 if (ctx->pos >= INT_MAX)
5284                         ctx->pos = LLONG_MAX;
5285                 else
5286                         ctx->pos = INT_MAX;
5287         }
5288 nopos:
5289         ret = 0;
5290 err:
5291         if (key_type == BTRFS_DIR_INDEX_KEY)
5292                 btrfs_put_delayed_items(&ins_list, &del_list);
5293         btrfs_free_path(path);
5294         return ret;
5295 }
5296
5297 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5298 {
5299         struct btrfs_root *root = BTRFS_I(inode)->root;
5300         struct btrfs_trans_handle *trans;
5301         int ret = 0;
5302         bool nolock = false;
5303
5304         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5305                 return 0;
5306
5307         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5308                 nolock = true;
5309
5310         if (wbc->sync_mode == WB_SYNC_ALL) {
5311                 if (nolock)
5312                         trans = btrfs_join_transaction_nolock(root);
5313                 else
5314                         trans = btrfs_join_transaction(root);
5315                 if (IS_ERR(trans))
5316                         return PTR_ERR(trans);
5317                 ret = btrfs_commit_transaction(trans, root);
5318         }
5319         return ret;
5320 }
5321
5322 /*
5323  * This is somewhat expensive, updating the tree every time the
5324  * inode changes.  But, it is most likely to find the inode in cache.
5325  * FIXME, needs more benchmarking...there are no reasons other than performance
5326  * to keep or drop this code.
5327  */
5328 static int btrfs_dirty_inode(struct inode *inode)
5329 {
5330         struct btrfs_root *root = BTRFS_I(inode)->root;
5331         struct btrfs_trans_handle *trans;
5332         int ret;
5333
5334         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5335                 return 0;
5336
5337         trans = btrfs_join_transaction(root);
5338         if (IS_ERR(trans))
5339                 return PTR_ERR(trans);
5340
5341         ret = btrfs_update_inode(trans, root, inode);
5342         if (ret && ret == -ENOSPC) {
5343                 /* whoops, lets try again with the full transaction */
5344                 btrfs_end_transaction(trans, root);
5345                 trans = btrfs_start_transaction(root, 1);
5346                 if (IS_ERR(trans))
5347                         return PTR_ERR(trans);
5348
5349                 ret = btrfs_update_inode(trans, root, inode);
5350         }
5351         btrfs_end_transaction(trans, root);
5352         if (BTRFS_I(inode)->delayed_node)
5353                 btrfs_balance_delayed_items(root);
5354
5355         return ret;
5356 }
5357
5358 /*
5359  * This is a copy of file_update_time.  We need this so we can return error on
5360  * ENOSPC for updating the inode in the case of file write and mmap writes.
5361  */
5362 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5363                              int flags)
5364 {
5365         struct btrfs_root *root = BTRFS_I(inode)->root;
5366
5367         if (btrfs_root_readonly(root))
5368                 return -EROFS;
5369
5370         if (flags & S_VERSION)
5371                 inode_inc_iversion(inode);
5372         if (flags & S_CTIME)
5373                 inode->i_ctime = *now;
5374         if (flags & S_MTIME)
5375                 inode->i_mtime = *now;
5376         if (flags & S_ATIME)
5377                 inode->i_atime = *now;
5378         return btrfs_dirty_inode(inode);
5379 }
5380
5381 /*
5382  * find the highest existing sequence number in a directory
5383  * and then set the in-memory index_cnt variable to reflect
5384  * free sequence numbers
5385  */
5386 static int btrfs_set_inode_index_count(struct inode *inode)
5387 {
5388         struct btrfs_root *root = BTRFS_I(inode)->root;
5389         struct btrfs_key key, found_key;
5390         struct btrfs_path *path;
5391         struct extent_buffer *leaf;
5392         int ret;
5393
5394         key.objectid = btrfs_ino(inode);
5395         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5396         key.offset = (u64)-1;
5397
5398         path = btrfs_alloc_path();
5399         if (!path)
5400                 return -ENOMEM;
5401
5402         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5403         if (ret < 0)
5404                 goto out;
5405         /* FIXME: we should be able to handle this */
5406         if (ret == 0)
5407                 goto out;
5408         ret = 0;
5409
5410         /*
5411          * MAGIC NUMBER EXPLANATION:
5412          * since we search a directory based on f_pos we have to start at 2
5413          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5414          * else has to start at 2
5415          */
5416         if (path->slots[0] == 0) {
5417                 BTRFS_I(inode)->index_cnt = 2;
5418                 goto out;
5419         }
5420
5421         path->slots[0]--;
5422
5423         leaf = path->nodes[0];
5424         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5425
5426         if (found_key.objectid != btrfs_ino(inode) ||
5427             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5428                 BTRFS_I(inode)->index_cnt = 2;
5429                 goto out;
5430         }
5431
5432         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5433 out:
5434         btrfs_free_path(path);
5435         return ret;
5436 }
5437
5438 /*
5439  * helper to find a free sequence number in a given directory.  This current
5440  * code is very simple, later versions will do smarter things in the btree
5441  */
5442 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5443 {
5444         int ret = 0;
5445
5446         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5447                 ret = btrfs_inode_delayed_dir_index_count(dir);
5448                 if (ret) {
5449                         ret = btrfs_set_inode_index_count(dir);
5450                         if (ret)
5451                                 return ret;
5452                 }
5453         }
5454
5455         *index = BTRFS_I(dir)->index_cnt;
5456         BTRFS_I(dir)->index_cnt++;
5457
5458         return ret;
5459 }
5460
5461 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5462                                      struct btrfs_root *root,
5463                                      struct inode *dir,
5464                                      const char *name, int name_len,
5465                                      u64 ref_objectid, u64 objectid,
5466                                      umode_t mode, u64 *index)
5467 {
5468         struct inode *inode;
5469         struct btrfs_inode_item *inode_item;
5470         struct btrfs_key *location;
5471         struct btrfs_path *path;
5472         struct btrfs_inode_ref *ref;
5473         struct btrfs_key key[2];
5474         u32 sizes[2];
5475         unsigned long ptr;
5476         int ret;
5477
5478         path = btrfs_alloc_path();
5479         if (!path)
5480                 return ERR_PTR(-ENOMEM);
5481
5482         inode = new_inode(root->fs_info->sb);
5483         if (!inode) {
5484                 btrfs_free_path(path);
5485                 return ERR_PTR(-ENOMEM);
5486         }
5487
5488         /*
5489          * we have to initialize this early, so we can reclaim the inode
5490          * number if we fail afterwards in this function.
5491          */
5492         inode->i_ino = objectid;
5493
5494         if (dir) {
5495                 trace_btrfs_inode_request(dir);
5496
5497                 ret = btrfs_set_inode_index(dir, index);
5498                 if (ret) {
5499                         btrfs_free_path(path);
5500                         iput(inode);
5501                         return ERR_PTR(ret);
5502                 }
5503         }
5504         /*
5505          * index_cnt is ignored for everything but a dir,
5506          * btrfs_get_inode_index_count has an explanation for the magic
5507          * number
5508          */
5509         BTRFS_I(inode)->index_cnt = 2;
5510         BTRFS_I(inode)->dir_index = *index;
5511         BTRFS_I(inode)->root = root;
5512         BTRFS_I(inode)->generation = trans->transid;
5513         inode->i_generation = BTRFS_I(inode)->generation;
5514
5515         /*
5516          * We could have gotten an inode number from somebody who was fsynced
5517          * and then removed in this same transaction, so let's just set full
5518          * sync since it will be a full sync anyway and this will blow away the
5519          * old info in the log.
5520          */
5521         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5522
5523         key[0].objectid = objectid;
5524         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5525         key[0].offset = 0;
5526
5527         /*
5528          * Start new inodes with an inode_ref. This is slightly more
5529          * efficient for small numbers of hard links since they will
5530          * be packed into one item. Extended refs will kick in if we
5531          * add more hard links than can fit in the ref item.
5532          */
5533         key[1].objectid = objectid;
5534         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5535         key[1].offset = ref_objectid;
5536
5537         sizes[0] = sizeof(struct btrfs_inode_item);
5538         sizes[1] = name_len + sizeof(*ref);
5539
5540         path->leave_spinning = 1;
5541         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5542         if (ret != 0)
5543                 goto fail;
5544
5545         inode_init_owner(inode, dir, mode);
5546         inode_set_bytes(inode, 0);
5547         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5548         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5549                                   struct btrfs_inode_item);
5550         memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5551                              sizeof(*inode_item));
5552         fill_inode_item(trans, path->nodes[0], inode_item, inode);
5553
5554         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5555                              struct btrfs_inode_ref);
5556         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5557         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5558         ptr = (unsigned long)(ref + 1);
5559         write_extent_buffer(path->nodes[0], name, ptr, name_len);
5560
5561         btrfs_mark_buffer_dirty(path->nodes[0]);
5562         btrfs_free_path(path);
5563
5564         location = &BTRFS_I(inode)->location;
5565         location->objectid = objectid;
5566         location->offset = 0;
5567         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5568
5569         btrfs_inherit_iflags(inode, dir);
5570
5571         if (S_ISREG(mode)) {
5572                 if (btrfs_test_opt(root, NODATASUM))
5573                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5574                 if (btrfs_test_opt(root, NODATACOW))
5575                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5576                                 BTRFS_INODE_NODATASUM;
5577         }
5578
5579         btrfs_insert_inode_hash(inode);
5580         inode_tree_add(inode);
5581
5582         trace_btrfs_inode_new(inode);
5583         btrfs_set_inode_last_trans(trans, inode);
5584
5585         btrfs_update_root_times(trans, root);
5586
5587         return inode;
5588 fail:
5589         if (dir)
5590                 BTRFS_I(dir)->index_cnt--;
5591         btrfs_free_path(path);
5592         iput(inode);
5593         return ERR_PTR(ret);
5594 }
5595
5596 static inline u8 btrfs_inode_type(struct inode *inode)
5597 {
5598         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5599 }
5600
5601 /*
5602  * utility function to add 'inode' into 'parent_inode' with
5603  * a give name and a given sequence number.
5604  * if 'add_backref' is true, also insert a backref from the
5605  * inode to the parent directory.
5606  */
5607 int btrfs_add_link(struct btrfs_trans_handle *trans,
5608                    struct inode *parent_inode, struct inode *inode,
5609                    const char *name, int name_len, int add_backref, u64 index)
5610 {
5611         int ret = 0;
5612         struct btrfs_key key;
5613         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5614         u64 ino = btrfs_ino(inode);
5615         u64 parent_ino = btrfs_ino(parent_inode);
5616
5617         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5618                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5619         } else {
5620                 key.objectid = ino;
5621                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5622                 key.offset = 0;
5623         }
5624
5625         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5626                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5627                                          key.objectid, root->root_key.objectid,
5628                                          parent_ino, index, name, name_len);
5629         } else if (add_backref) {
5630                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5631                                              parent_ino, index);
5632         }
5633
5634         /* Nothing to clean up yet */
5635         if (ret)
5636                 return ret;
5637
5638         ret = btrfs_insert_dir_item(trans, root, name, name_len,
5639                                     parent_inode, &key,
5640                                     btrfs_inode_type(inode), index);
5641         if (ret == -EEXIST || ret == -EOVERFLOW)
5642                 goto fail_dir_item;
5643         else if (ret) {
5644                 btrfs_abort_transaction(trans, root, ret);
5645                 return ret;
5646         }
5647
5648         btrfs_i_size_write(parent_inode, parent_inode->i_size +
5649                            name_len * 2);
5650         inode_inc_iversion(parent_inode);
5651         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5652         ret = btrfs_update_inode(trans, root, parent_inode);
5653         if (ret)
5654                 btrfs_abort_transaction(trans, root, ret);
5655         return ret;
5656
5657 fail_dir_item:
5658         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5659                 u64 local_index;
5660                 int err;
5661                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5662                                  key.objectid, root->root_key.objectid,
5663                                  parent_ino, &local_index, name, name_len);
5664
5665         } else if (add_backref) {
5666                 u64 local_index;
5667                 int err;
5668
5669                 err = btrfs_del_inode_ref(trans, root, name, name_len,
5670                                           ino, parent_ino, &local_index);
5671         }
5672         return ret;
5673 }
5674
5675 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5676                             struct inode *dir, struct dentry *dentry,
5677                             struct inode *inode, int backref, u64 index)
5678 {
5679         int err = btrfs_add_link(trans, dir, inode,
5680                                  dentry->d_name.name, dentry->d_name.len,
5681                                  backref, index);
5682         if (err > 0)
5683                 err = -EEXIST;
5684         return err;
5685 }
5686
5687 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5688                         umode_t mode, dev_t rdev)
5689 {
5690         struct btrfs_trans_handle *trans;
5691         struct btrfs_root *root = BTRFS_I(dir)->root;
5692         struct inode *inode = NULL;
5693         int err;
5694         int drop_inode = 0;
5695         u64 objectid;
5696         u64 index = 0;
5697
5698         if (!new_valid_dev(rdev))
5699                 return -EINVAL;
5700
5701         /*
5702          * 2 for inode item and ref
5703          * 2 for dir items
5704          * 1 for xattr if selinux is on
5705          */
5706         trans = btrfs_start_transaction(root, 5);
5707         if (IS_ERR(trans))
5708                 return PTR_ERR(trans);
5709
5710         err = btrfs_find_free_ino(root, &objectid);
5711         if (err)
5712                 goto out_unlock;
5713
5714         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5715                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5716                                 mode, &index);
5717         if (IS_ERR(inode)) {
5718                 err = PTR_ERR(inode);
5719                 goto out_unlock;
5720         }
5721
5722         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5723         if (err) {
5724                 drop_inode = 1;
5725                 goto out_unlock;
5726         }
5727
5728         /*
5729         * If the active LSM wants to access the inode during
5730         * d_instantiate it needs these. Smack checks to see
5731         * if the filesystem supports xattrs by looking at the
5732         * ops vector.
5733         */
5734
5735         inode->i_op = &btrfs_special_inode_operations;
5736         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5737         if (err)
5738                 drop_inode = 1;
5739         else {
5740                 init_special_inode(inode, inode->i_mode, rdev);
5741                 btrfs_update_inode(trans, root, inode);
5742                 d_instantiate(dentry, inode);
5743         }
5744 out_unlock:
5745         btrfs_end_transaction(trans, root);
5746         btrfs_btree_balance_dirty(root);
5747         if (drop_inode) {
5748                 inode_dec_link_count(inode);
5749                 iput(inode);
5750         }
5751         return err;
5752 }
5753
5754 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5755                         umode_t mode, bool excl)
5756 {
5757         struct btrfs_trans_handle *trans;
5758         struct btrfs_root *root = BTRFS_I(dir)->root;
5759         struct inode *inode = NULL;
5760         int drop_inode_on_err = 0;
5761         int err;
5762         u64 objectid;
5763         u64 index = 0;
5764
5765         /*
5766          * 2 for inode item and ref
5767          * 2 for dir items
5768          * 1 for xattr if selinux is on
5769          */
5770         trans = btrfs_start_transaction(root, 5);
5771         if (IS_ERR(trans))
5772                 return PTR_ERR(trans);
5773
5774         err = btrfs_find_free_ino(root, &objectid);
5775         if (err)
5776                 goto out_unlock;
5777
5778         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5779                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5780                                 mode, &index);
5781         if (IS_ERR(inode)) {
5782                 err = PTR_ERR(inode);
5783                 goto out_unlock;
5784         }
5785         drop_inode_on_err = 1;
5786
5787         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5788         if (err)
5789                 goto out_unlock;
5790
5791         err = btrfs_update_inode(trans, root, inode);
5792         if (err)
5793                 goto out_unlock;
5794
5795         /*
5796         * If the active LSM wants to access the inode during
5797         * d_instantiate it needs these. Smack checks to see
5798         * if the filesystem supports xattrs by looking at the
5799         * ops vector.
5800         */
5801         inode->i_fop = &btrfs_file_operations;
5802         inode->i_op = &btrfs_file_inode_operations;
5803
5804         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5805         if (err)
5806                 goto out_unlock;
5807
5808         inode->i_mapping->a_ops = &btrfs_aops;
5809         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5810         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5811         d_instantiate(dentry, inode);
5812
5813 out_unlock:
5814         btrfs_end_transaction(trans, root);
5815         if (err && drop_inode_on_err) {
5816                 inode_dec_link_count(inode);
5817                 iput(inode);
5818         }
5819         btrfs_btree_balance_dirty(root);
5820         return err;
5821 }
5822
5823 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5824                       struct dentry *dentry)
5825 {
5826         struct btrfs_trans_handle *trans;
5827         struct btrfs_root *root = BTRFS_I(dir)->root;
5828         struct inode *inode = old_dentry->d_inode;
5829         u64 index;
5830         int err;
5831         int drop_inode = 0;
5832
5833         /* do not allow sys_link's with other subvols of the same device */
5834         if (root->objectid != BTRFS_I(inode)->root->objectid)
5835                 return -EXDEV;
5836
5837         if (inode->i_nlink >= BTRFS_LINK_MAX)
5838                 return -EMLINK;
5839
5840         err = btrfs_set_inode_index(dir, &index);
5841         if (err)
5842                 goto fail;
5843
5844         /*
5845          * 2 items for inode and inode ref
5846          * 2 items for dir items
5847          * 1 item for parent inode
5848          */
5849         trans = btrfs_start_transaction(root, 5);
5850         if (IS_ERR(trans)) {
5851                 err = PTR_ERR(trans);
5852                 goto fail;
5853         }
5854
5855         /* There are several dir indexes for this inode, clear the cache. */
5856         BTRFS_I(inode)->dir_index = 0ULL;
5857         inc_nlink(inode);
5858         inode_inc_iversion(inode);
5859         inode->i_ctime = CURRENT_TIME;
5860         ihold(inode);
5861         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5862
5863         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5864
5865         if (err) {
5866                 drop_inode = 1;
5867         } else {
5868                 struct dentry *parent = dentry->d_parent;
5869                 err = btrfs_update_inode(trans, root, inode);
5870                 if (err)
5871                         goto fail;
5872                 d_instantiate(dentry, inode);
5873                 btrfs_log_new_name(trans, inode, NULL, parent);
5874         }
5875
5876         btrfs_end_transaction(trans, root);
5877 fail:
5878         if (drop_inode) {
5879                 inode_dec_link_count(inode);
5880                 iput(inode);
5881         }
5882         btrfs_btree_balance_dirty(root);
5883         return err;
5884 }
5885
5886 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5887 {
5888         struct inode *inode = NULL;
5889         struct btrfs_trans_handle *trans;
5890         struct btrfs_root *root = BTRFS_I(dir)->root;
5891         int err = 0;
5892         int drop_on_err = 0;
5893         u64 objectid = 0;
5894         u64 index = 0;
5895
5896         /*
5897          * 2 items for inode and ref
5898          * 2 items for dir items
5899          * 1 for xattr if selinux is on
5900          */
5901         trans = btrfs_start_transaction(root, 5);
5902         if (IS_ERR(trans))
5903                 return PTR_ERR(trans);
5904
5905         err = btrfs_find_free_ino(root, &objectid);
5906         if (err)
5907                 goto out_fail;
5908
5909         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5910                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5911                                 S_IFDIR | mode, &index);
5912         if (IS_ERR(inode)) {
5913                 err = PTR_ERR(inode);
5914                 goto out_fail;
5915         }
5916
5917         drop_on_err = 1;
5918
5919         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5920         if (err)
5921                 goto out_fail;
5922
5923         inode->i_op = &btrfs_dir_inode_operations;
5924         inode->i_fop = &btrfs_dir_file_operations;
5925
5926         btrfs_i_size_write(inode, 0);
5927         err = btrfs_update_inode(trans, root, inode);
5928         if (err)
5929                 goto out_fail;
5930
5931         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5932                              dentry->d_name.len, 0, index);
5933         if (err)
5934                 goto out_fail;
5935
5936         d_instantiate(dentry, inode);
5937         drop_on_err = 0;
5938
5939 out_fail:
5940         btrfs_end_transaction(trans, root);
5941         if (drop_on_err)
5942                 iput(inode);
5943         btrfs_btree_balance_dirty(root);
5944         return err;
5945 }
5946
5947 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5948  * and an extent that you want to insert, deal with overlap and insert
5949  * the new extent into the tree.
5950  */
5951 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5952                                 struct extent_map *existing,
5953                                 struct extent_map *em,
5954                                 u64 map_start, u64 map_len)
5955 {
5956         u64 start_diff;
5957
5958         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5959         start_diff = map_start - em->start;
5960         em->start = map_start;
5961         em->len = map_len;
5962         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5963             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5964                 em->block_start += start_diff;
5965                 em->block_len -= start_diff;
5966         }
5967         return add_extent_mapping(em_tree, em, 0);
5968 }
5969
5970 static noinline int uncompress_inline(struct btrfs_path *path,
5971                                       struct inode *inode, struct page *page,
5972                                       size_t pg_offset, u64 extent_offset,
5973                                       struct btrfs_file_extent_item *item)
5974 {
5975         int ret;
5976         struct extent_buffer *leaf = path->nodes[0];
5977         char *tmp;
5978         size_t max_size;
5979         unsigned long inline_size;
5980         unsigned long ptr;
5981         int compress_type;
5982
5983         WARN_ON(pg_offset != 0);
5984         compress_type = btrfs_file_extent_compression(leaf, item);
5985         max_size = btrfs_file_extent_ram_bytes(leaf, item);
5986         inline_size = btrfs_file_extent_inline_item_len(leaf,
5987                                         btrfs_item_nr(path->slots[0]));
5988         tmp = kmalloc(inline_size, GFP_NOFS);
5989         if (!tmp)
5990                 return -ENOMEM;
5991         ptr = btrfs_file_extent_inline_start(item);
5992
5993         read_extent_buffer(leaf, tmp, ptr, inline_size);
5994
5995         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5996         ret = btrfs_decompress(compress_type, tmp, page,
5997                                extent_offset, inline_size, max_size);
5998         if (ret) {
5999                 char *kaddr = kmap_atomic(page);
6000                 unsigned long copy_size = min_t(u64,
6001                                   PAGE_CACHE_SIZE - pg_offset,
6002                                   max_size - extent_offset);
6003                 memset(kaddr + pg_offset, 0, copy_size);
6004                 kunmap_atomic(kaddr);
6005         }
6006         kfree(tmp);
6007         return 0;
6008 }
6009
6010 /*
6011  * a bit scary, this does extent mapping from logical file offset to the disk.
6012  * the ugly parts come from merging extents from the disk with the in-ram
6013  * representation.  This gets more complex because of the data=ordered code,
6014  * where the in-ram extents might be locked pending data=ordered completion.
6015  *
6016  * This also copies inline extents directly into the page.
6017  */
6018
6019 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6020                                     size_t pg_offset, u64 start, u64 len,
6021                                     int create)
6022 {
6023         int ret;
6024         int err = 0;
6025         u64 bytenr;
6026         u64 extent_start = 0;
6027         u64 extent_end = 0;
6028         u64 objectid = btrfs_ino(inode);
6029         u32 found_type;
6030         struct btrfs_path *path = NULL;
6031         struct btrfs_root *root = BTRFS_I(inode)->root;
6032         struct btrfs_file_extent_item *item;
6033         struct extent_buffer *leaf;
6034         struct btrfs_key found_key;
6035         struct extent_map *em = NULL;
6036         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6037         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6038         struct btrfs_trans_handle *trans = NULL;
6039         int compress_type;
6040
6041 again:
6042         read_lock(&em_tree->lock);
6043         em = lookup_extent_mapping(em_tree, start, len);
6044         if (em)
6045                 em->bdev = root->fs_info->fs_devices->latest_bdev;
6046         read_unlock(&em_tree->lock);
6047
6048         if (em) {
6049                 if (em->start > start || em->start + em->len <= start)
6050                         free_extent_map(em);
6051                 else if (em->block_start == EXTENT_MAP_INLINE && page)
6052                         free_extent_map(em);
6053                 else
6054                         goto out;
6055         }
6056         em = alloc_extent_map();
6057         if (!em) {
6058                 err = -ENOMEM;
6059                 goto out;
6060         }
6061         em->bdev = root->fs_info->fs_devices->latest_bdev;
6062         em->start = EXTENT_MAP_HOLE;
6063         em->orig_start = EXTENT_MAP_HOLE;
6064         em->len = (u64)-1;
6065         em->block_len = (u64)-1;
6066
6067         if (!path) {
6068                 path = btrfs_alloc_path();
6069                 if (!path) {
6070                         err = -ENOMEM;
6071                         goto out;
6072                 }
6073                 /*
6074                  * Chances are we'll be called again, so go ahead and do
6075                  * readahead
6076                  */
6077                 path->reada = 1;
6078         }
6079
6080         ret = btrfs_lookup_file_extent(trans, root, path,
6081                                        objectid, start, trans != NULL);
6082         if (ret < 0) {
6083                 err = ret;
6084                 goto out;
6085         }
6086
6087         if (ret != 0) {
6088                 if (path->slots[0] == 0)
6089                         goto not_found;
6090                 path->slots[0]--;
6091         }
6092
6093         leaf = path->nodes[0];
6094         item = btrfs_item_ptr(leaf, path->slots[0],
6095                               struct btrfs_file_extent_item);
6096         /* are we inside the extent that was found? */
6097         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6098         found_type = btrfs_key_type(&found_key);
6099         if (found_key.objectid != objectid ||
6100             found_type != BTRFS_EXTENT_DATA_KEY) {
6101                 /*
6102                  * If we backup past the first extent we want to move forward
6103                  * and see if there is an extent in front of us, otherwise we'll
6104                  * say there is a hole for our whole search range which can
6105                  * cause problems.
6106                  */
6107                 extent_end = start;
6108                 goto next;
6109         }
6110
6111         found_type = btrfs_file_extent_type(leaf, item);
6112         extent_start = found_key.offset;
6113         compress_type = btrfs_file_extent_compression(leaf, item);
6114         if (found_type == BTRFS_FILE_EXTENT_REG ||
6115             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6116                 extent_end = extent_start +
6117                        btrfs_file_extent_num_bytes(leaf, item);
6118         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6119                 size_t size;
6120                 size = btrfs_file_extent_inline_len(leaf, item);
6121                 extent_end = ALIGN(extent_start + size, root->sectorsize);
6122         }
6123 next:
6124         if (start >= extent_end) {
6125                 path->slots[0]++;
6126                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6127                         ret = btrfs_next_leaf(root, path);
6128                         if (ret < 0) {
6129                                 err = ret;
6130                                 goto out;
6131                         }
6132                         if (ret > 0)
6133                                 goto not_found;
6134                         leaf = path->nodes[0];
6135                 }
6136                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6137                 if (found_key.objectid != objectid ||
6138                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6139                         goto not_found;
6140                 if (start + len <= found_key.offset)
6141                         goto not_found;
6142                 em->start = start;
6143                 em->orig_start = start;
6144                 em->len = found_key.offset - start;
6145                 goto not_found_em;
6146         }
6147
6148         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6149         if (found_type == BTRFS_FILE_EXTENT_REG ||
6150             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6151                 em->start = extent_start;
6152                 em->len = extent_end - extent_start;
6153                 em->orig_start = extent_start -
6154                                  btrfs_file_extent_offset(leaf, item);
6155                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6156                                                                       item);
6157                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6158                 if (bytenr == 0) {
6159                         em->block_start = EXTENT_MAP_HOLE;
6160                         goto insert;
6161                 }
6162                 if (compress_type != BTRFS_COMPRESS_NONE) {
6163                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6164                         em->compress_type = compress_type;
6165                         em->block_start = bytenr;
6166                         em->block_len = em->orig_block_len;
6167                 } else {
6168                         bytenr += btrfs_file_extent_offset(leaf, item);
6169                         em->block_start = bytenr;
6170                         em->block_len = em->len;
6171                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6172                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6173                 }
6174                 goto insert;
6175         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6176                 unsigned long ptr;
6177                 char *map;
6178                 size_t size;
6179                 size_t extent_offset;
6180                 size_t copy_size;
6181
6182                 em->block_start = EXTENT_MAP_INLINE;
6183                 if (!page || create) {
6184                         em->start = extent_start;
6185                         em->len = extent_end - extent_start;
6186                         goto out;
6187                 }
6188
6189                 size = btrfs_file_extent_inline_len(leaf, item);
6190                 extent_offset = page_offset(page) + pg_offset - extent_start;
6191                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6192                                 size - extent_offset);
6193                 em->start = extent_start + extent_offset;
6194                 em->len = ALIGN(copy_size, root->sectorsize);
6195                 em->orig_block_len = em->len;
6196                 em->orig_start = em->start;
6197                 if (compress_type) {
6198                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6199                         em->compress_type = compress_type;
6200                 }
6201                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6202                 if (create == 0 && !PageUptodate(page)) {
6203                         if (btrfs_file_extent_compression(leaf, item) !=
6204                             BTRFS_COMPRESS_NONE) {
6205                                 ret = uncompress_inline(path, inode, page,
6206                                                         pg_offset,
6207                                                         extent_offset, item);
6208                                 BUG_ON(ret); /* -ENOMEM */
6209                         } else {
6210                                 map = kmap(page);
6211                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6212                                                    copy_size);
6213                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6214                                         memset(map + pg_offset + copy_size, 0,
6215                                                PAGE_CACHE_SIZE - pg_offset -
6216                                                copy_size);
6217                                 }
6218                                 kunmap(page);
6219                         }
6220                         flush_dcache_page(page);
6221                 } else if (create && PageUptodate(page)) {
6222                         BUG();
6223                         if (!trans) {
6224                                 kunmap(page);
6225                                 free_extent_map(em);
6226                                 em = NULL;
6227
6228                                 btrfs_release_path(path);
6229                                 trans = btrfs_join_transaction(root);
6230
6231                                 if (IS_ERR(trans))
6232                                         return ERR_CAST(trans);
6233                                 goto again;
6234                         }
6235                         map = kmap(page);
6236                         write_extent_buffer(leaf, map + pg_offset, ptr,
6237                                             copy_size);
6238                         kunmap(page);
6239                         btrfs_mark_buffer_dirty(leaf);
6240                 }
6241                 set_extent_uptodate(io_tree, em->start,
6242                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6243                 goto insert;
6244         } else {
6245                 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6246         }
6247 not_found:
6248         em->start = start;
6249         em->orig_start = start;
6250         em->len = len;
6251 not_found_em:
6252         em->block_start = EXTENT_MAP_HOLE;
6253         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6254 insert:
6255         btrfs_release_path(path);
6256         if (em->start > start || extent_map_end(em) <= start) {
6257                 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6258                         em->start, em->len, start, len);
6259                 err = -EIO;
6260                 goto out;
6261         }
6262
6263         err = 0;
6264         write_lock(&em_tree->lock);
6265         ret = add_extent_mapping(em_tree, em, 0);
6266         /* it is possible that someone inserted the extent into the tree
6267          * while we had the lock dropped.  It is also possible that
6268          * an overlapping map exists in the tree
6269          */
6270         if (ret == -EEXIST) {
6271                 struct extent_map *existing;
6272
6273                 ret = 0;
6274
6275                 existing = lookup_extent_mapping(em_tree, start, len);
6276                 if (existing && (existing->start > start ||
6277                     existing->start + existing->len <= start)) {
6278                         free_extent_map(existing);
6279                         existing = NULL;
6280                 }
6281                 if (!existing) {
6282                         existing = lookup_extent_mapping(em_tree, em->start,
6283                                                          em->len);
6284                         if (existing) {
6285                                 err = merge_extent_mapping(em_tree, existing,
6286                                                            em, start,
6287                                                            root->sectorsize);
6288                                 free_extent_map(existing);
6289                                 if (err) {
6290                                         free_extent_map(em);
6291                                         em = NULL;
6292                                 }
6293                         } else {
6294                                 err = -EIO;
6295                                 free_extent_map(em);
6296                                 em = NULL;
6297                         }
6298                 } else {
6299                         free_extent_map(em);
6300                         em = existing;
6301                         err = 0;
6302                 }
6303         }
6304         write_unlock(&em_tree->lock);
6305 out:
6306
6307         trace_btrfs_get_extent(root, em);
6308
6309         if (path)
6310                 btrfs_free_path(path);
6311         if (trans) {
6312                 ret = btrfs_end_transaction(trans, root);
6313                 if (!err)
6314                         err = ret;
6315         }
6316         if (err) {
6317                 free_extent_map(em);
6318                 return ERR_PTR(err);
6319         }
6320         BUG_ON(!em); /* Error is always set */
6321         return em;
6322 }
6323
6324 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6325                                            size_t pg_offset, u64 start, u64 len,
6326                                            int create)
6327 {
6328         struct extent_map *em;
6329         struct extent_map *hole_em = NULL;
6330         u64 range_start = start;
6331         u64 end;
6332         u64 found;
6333         u64 found_end;
6334         int err = 0;
6335
6336         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6337         if (IS_ERR(em))
6338                 return em;
6339         if (em) {
6340                 /*
6341                  * if our em maps to
6342                  * -  a hole or
6343                  * -  a pre-alloc extent,
6344                  * there might actually be delalloc bytes behind it.
6345                  */
6346                 if (em->block_start != EXTENT_MAP_HOLE &&
6347                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6348                         return em;
6349                 else
6350                         hole_em = em;
6351         }
6352
6353         /* check to see if we've wrapped (len == -1 or similar) */
6354         end = start + len;
6355         if (end < start)
6356                 end = (u64)-1;
6357         else
6358                 end -= 1;
6359
6360         em = NULL;
6361
6362         /* ok, we didn't find anything, lets look for delalloc */
6363         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6364                                  end, len, EXTENT_DELALLOC, 1);
6365         found_end = range_start + found;
6366         if (found_end < range_start)
6367                 found_end = (u64)-1;
6368
6369         /*
6370          * we didn't find anything useful, return
6371          * the original results from get_extent()
6372          */
6373         if (range_start > end || found_end <= start) {
6374                 em = hole_em;
6375                 hole_em = NULL;
6376                 goto out;
6377         }
6378
6379         /* adjust the range_start to make sure it doesn't
6380          * go backwards from the start they passed in
6381          */
6382         range_start = max(start, range_start);
6383         found = found_end - range_start;
6384
6385         if (found > 0) {
6386                 u64 hole_start = start;
6387                 u64 hole_len = len;
6388
6389                 em = alloc_extent_map();
6390                 if (!em) {
6391                         err = -ENOMEM;
6392                         goto out;
6393                 }
6394                 /*
6395                  * when btrfs_get_extent can't find anything it
6396                  * returns one huge hole
6397                  *
6398                  * make sure what it found really fits our range, and
6399                  * adjust to make sure it is based on the start from
6400                  * the caller
6401                  */
6402                 if (hole_em) {
6403                         u64 calc_end = extent_map_end(hole_em);
6404
6405                         if (calc_end <= start || (hole_em->start > end)) {
6406                                 free_extent_map(hole_em);
6407                                 hole_em = NULL;
6408                         } else {
6409                                 hole_start = max(hole_em->start, start);
6410                                 hole_len = calc_end - hole_start;
6411                         }
6412                 }
6413                 em->bdev = NULL;
6414                 if (hole_em && range_start > hole_start) {
6415                         /* our hole starts before our delalloc, so we
6416                          * have to return just the parts of the hole
6417                          * that go until  the delalloc starts
6418                          */
6419                         em->len = min(hole_len,
6420                                       range_start - hole_start);
6421                         em->start = hole_start;
6422                         em->orig_start = hole_start;
6423                         /*
6424                          * don't adjust block start at all,
6425                          * it is fixed at EXTENT_MAP_HOLE
6426                          */
6427                         em->block_start = hole_em->block_start;
6428                         em->block_len = hole_len;
6429                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6430                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6431                 } else {
6432                         em->start = range_start;
6433                         em->len = found;
6434                         em->orig_start = range_start;
6435                         em->block_start = EXTENT_MAP_DELALLOC;
6436                         em->block_len = found;
6437                 }
6438         } else if (hole_em) {
6439                 return hole_em;
6440         }
6441 out:
6442
6443         free_extent_map(hole_em);
6444         if (err) {
6445                 free_extent_map(em);
6446                 return ERR_PTR(err);
6447         }
6448         return em;
6449 }
6450
6451 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6452                                                   u64 start, u64 len)
6453 {
6454         struct btrfs_root *root = BTRFS_I(inode)->root;
6455         struct extent_map *em;
6456         struct btrfs_key ins;
6457         u64 alloc_hint;
6458         int ret;
6459
6460         alloc_hint = get_extent_allocation_hint(inode, start, len);
6461         ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6462                                    alloc_hint, &ins, 1);
6463         if (ret)
6464                 return ERR_PTR(ret);
6465
6466         em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6467                               ins.offset, ins.offset, ins.offset, 0);
6468         if (IS_ERR(em)) {
6469                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6470                 return em;
6471         }
6472
6473         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6474                                            ins.offset, ins.offset, 0);
6475         if (ret) {
6476                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6477                 free_extent_map(em);
6478                 return ERR_PTR(ret);
6479         }
6480
6481         return em;
6482 }
6483
6484 /*
6485  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6486  * block must be cow'd
6487  */
6488 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6489                               u64 *orig_start, u64 *orig_block_len,
6490                               u64 *ram_bytes)
6491 {
6492         struct btrfs_trans_handle *trans;
6493         struct btrfs_path *path;
6494         int ret;
6495         struct extent_buffer *leaf;
6496         struct btrfs_root *root = BTRFS_I(inode)->root;
6497         struct btrfs_file_extent_item *fi;
6498         struct btrfs_key key;
6499         u64 disk_bytenr;
6500         u64 backref_offset;
6501         u64 extent_end;
6502         u64 num_bytes;
6503         int slot;
6504         int found_type;
6505         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6506
6507         path = btrfs_alloc_path();
6508         if (!path)
6509                 return -ENOMEM;
6510
6511         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6512                                        offset, 0);
6513         if (ret < 0)
6514                 goto out;
6515
6516         slot = path->slots[0];
6517         if (ret == 1) {
6518                 if (slot == 0) {
6519                         /* can't find the item, must cow */
6520                         ret = 0;
6521                         goto out;
6522                 }
6523                 slot--;
6524         }
6525         ret = 0;
6526         leaf = path->nodes[0];
6527         btrfs_item_key_to_cpu(leaf, &key, slot);
6528         if (key.objectid != btrfs_ino(inode) ||
6529             key.type != BTRFS_EXTENT_DATA_KEY) {
6530                 /* not our file or wrong item type, must cow */
6531                 goto out;
6532         }
6533
6534         if (key.offset > offset) {
6535                 /* Wrong offset, must cow */
6536                 goto out;
6537         }
6538
6539         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6540         found_type = btrfs_file_extent_type(leaf, fi);
6541         if (found_type != BTRFS_FILE_EXTENT_REG &&
6542             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6543                 /* not a regular extent, must cow */
6544                 goto out;
6545         }
6546
6547         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6548                 goto out;
6549
6550         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6551         if (extent_end <= offset)
6552                 goto out;
6553
6554         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6555         if (disk_bytenr == 0)
6556                 goto out;
6557
6558         if (btrfs_file_extent_compression(leaf, fi) ||
6559             btrfs_file_extent_encryption(leaf, fi) ||
6560             btrfs_file_extent_other_encoding(leaf, fi))
6561                 goto out;
6562
6563         backref_offset = btrfs_file_extent_offset(leaf, fi);
6564
6565         if (orig_start) {
6566                 *orig_start = key.offset - backref_offset;
6567                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6568                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6569         }
6570
6571         if (btrfs_extent_readonly(root, disk_bytenr))
6572                 goto out;
6573         btrfs_release_path(path);
6574
6575         /*
6576          * look for other files referencing this extent, if we
6577          * find any we must cow
6578          */
6579         trans = btrfs_join_transaction(root);
6580         if (IS_ERR(trans)) {
6581                 ret = 0;
6582                 goto out;
6583         }
6584
6585         ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6586                                     key.offset - backref_offset, disk_bytenr);
6587         btrfs_end_transaction(trans, root);
6588         if (ret) {
6589                 ret = 0;
6590                 goto out;
6591         }
6592
6593         /*
6594          * adjust disk_bytenr and num_bytes to cover just the bytes
6595          * in this extent we are about to write.  If there
6596          * are any csums in that range we have to cow in order
6597          * to keep the csums correct
6598          */
6599         disk_bytenr += backref_offset;
6600         disk_bytenr += offset - key.offset;
6601         num_bytes = min(offset + *len, extent_end) - offset;
6602         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6603                                 goto out;
6604         /*
6605          * all of the above have passed, it is safe to overwrite this extent
6606          * without cow
6607          */
6608         *len = num_bytes;
6609         ret = 1;
6610 out:
6611         btrfs_free_path(path);
6612         return ret;
6613 }
6614
6615 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6616                               struct extent_state **cached_state, int writing)
6617 {
6618         struct btrfs_ordered_extent *ordered;
6619         int ret = 0;
6620
6621         while (1) {
6622                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6623                                  0, cached_state);
6624                 /*
6625                  * We're concerned with the entire range that we're going to be
6626                  * doing DIO to, so we need to make sure theres no ordered
6627                  * extents in this range.
6628                  */
6629                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6630                                                      lockend - lockstart + 1);
6631
6632                 /*
6633                  * We need to make sure there are no buffered pages in this
6634                  * range either, we could have raced between the invalidate in
6635                  * generic_file_direct_write and locking the extent.  The
6636                  * invalidate needs to happen so that reads after a write do not
6637                  * get stale data.
6638                  */
6639                 if (!ordered && (!writing ||
6640                     !test_range_bit(&BTRFS_I(inode)->io_tree,
6641                                     lockstart, lockend, EXTENT_UPTODATE, 0,
6642                                     *cached_state)))
6643                         break;
6644
6645                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6646                                      cached_state, GFP_NOFS);
6647
6648                 if (ordered) {
6649                         btrfs_start_ordered_extent(inode, ordered, 1);
6650                         btrfs_put_ordered_extent(ordered);
6651                 } else {
6652                         /* Screw you mmap */
6653                         ret = filemap_write_and_wait_range(inode->i_mapping,
6654                                                            lockstart,
6655                                                            lockend);
6656                         if (ret)
6657                                 break;
6658
6659                         /*
6660                          * If we found a page that couldn't be invalidated just
6661                          * fall back to buffered.
6662                          */
6663                         ret = invalidate_inode_pages2_range(inode->i_mapping,
6664                                         lockstart >> PAGE_CACHE_SHIFT,
6665                                         lockend >> PAGE_CACHE_SHIFT);
6666                         if (ret)
6667                                 break;
6668                 }
6669
6670                 cond_resched();
6671         }
6672
6673         return ret;
6674 }
6675
6676 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6677                                            u64 len, u64 orig_start,
6678                                            u64 block_start, u64 block_len,
6679                                            u64 orig_block_len, u64 ram_bytes,
6680                                            int type)
6681 {
6682         struct extent_map_tree *em_tree;
6683         struct extent_map *em;
6684         struct btrfs_root *root = BTRFS_I(inode)->root;
6685         int ret;
6686
6687         em_tree = &BTRFS_I(inode)->extent_tree;
6688         em = alloc_extent_map();
6689         if (!em)
6690                 return ERR_PTR(-ENOMEM);
6691
6692         em->start = start;
6693         em->orig_start = orig_start;
6694         em->mod_start = start;
6695         em->mod_len = len;
6696         em->len = len;
6697         em->block_len = block_len;
6698         em->block_start = block_start;
6699         em->bdev = root->fs_info->fs_devices->latest_bdev;
6700         em->orig_block_len = orig_block_len;
6701         em->ram_bytes = ram_bytes;
6702         em->generation = -1;
6703         set_bit(EXTENT_FLAG_PINNED, &em->flags);
6704         if (type == BTRFS_ORDERED_PREALLOC)
6705                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6706
6707         do {
6708                 btrfs_drop_extent_cache(inode, em->start,
6709                                 em->start + em->len - 1, 0);
6710                 write_lock(&em_tree->lock);
6711                 ret = add_extent_mapping(em_tree, em, 1);
6712                 write_unlock(&em_tree->lock);
6713         } while (ret == -EEXIST);
6714
6715         if (ret) {
6716                 free_extent_map(em);
6717                 return ERR_PTR(ret);
6718         }
6719
6720         return em;
6721 }
6722
6723
6724 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6725                                    struct buffer_head *bh_result, int create)
6726 {
6727         struct extent_map *em;
6728         struct btrfs_root *root = BTRFS_I(inode)->root;
6729         struct extent_state *cached_state = NULL;
6730         u64 start = iblock << inode->i_blkbits;
6731         u64 lockstart, lockend;
6732         u64 len = bh_result->b_size;
6733         int unlock_bits = EXTENT_LOCKED;
6734         int ret = 0;
6735
6736         if (create)
6737                 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6738         else
6739                 len = min_t(u64, len, root->sectorsize);
6740
6741         lockstart = start;
6742         lockend = start + len - 1;
6743
6744         /*
6745          * If this errors out it's because we couldn't invalidate pagecache for
6746          * this range and we need to fallback to buffered.
6747          */
6748         if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6749                 return -ENOTBLK;
6750
6751         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6752         if (IS_ERR(em)) {
6753                 ret = PTR_ERR(em);
6754                 goto unlock_err;
6755         }
6756
6757         /*
6758          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6759          * io.  INLINE is special, and we could probably kludge it in here, but
6760          * it's still buffered so for safety lets just fall back to the generic
6761          * buffered path.
6762          *
6763          * For COMPRESSED we _have_ to read the entire extent in so we can
6764          * decompress it, so there will be buffering required no matter what we
6765          * do, so go ahead and fallback to buffered.
6766          *
6767          * We return -ENOTBLK because thats what makes DIO go ahead and go back
6768          * to buffered IO.  Don't blame me, this is the price we pay for using
6769          * the generic code.
6770          */
6771         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6772             em->block_start == EXTENT_MAP_INLINE) {
6773                 free_extent_map(em);
6774                 ret = -ENOTBLK;
6775                 goto unlock_err;
6776         }
6777
6778         /* Just a good old fashioned hole, return */
6779         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6780                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6781                 free_extent_map(em);
6782                 goto unlock_err;
6783         }
6784
6785         /*
6786          * We don't allocate a new extent in the following cases
6787          *
6788          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6789          * existing extent.
6790          * 2) The extent is marked as PREALLOC.  We're good to go here and can
6791          * just use the extent.
6792          *
6793          */
6794         if (!create) {
6795                 len = min(len, em->len - (start - em->start));
6796                 lockstart = start + len;
6797                 goto unlock;
6798         }
6799
6800         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6801             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6802              em->block_start != EXTENT_MAP_HOLE)) {
6803                 int type;
6804                 int ret;
6805                 u64 block_start, orig_start, orig_block_len, ram_bytes;
6806
6807                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6808                         type = BTRFS_ORDERED_PREALLOC;
6809                 else
6810                         type = BTRFS_ORDERED_NOCOW;
6811                 len = min(len, em->len - (start - em->start));
6812                 block_start = em->block_start + (start - em->start);
6813
6814                 if (can_nocow_extent(inode, start, &len, &orig_start,
6815                                      &orig_block_len, &ram_bytes) == 1) {
6816                         if (type == BTRFS_ORDERED_PREALLOC) {
6817                                 free_extent_map(em);
6818                                 em = create_pinned_em(inode, start, len,
6819                                                        orig_start,
6820                                                        block_start, len,
6821                                                        orig_block_len,
6822                                                        ram_bytes, type);
6823                                 if (IS_ERR(em))
6824                                         goto unlock_err;
6825                         }
6826
6827                         ret = btrfs_add_ordered_extent_dio(inode, start,
6828                                            block_start, len, len, type);
6829                         if (ret) {
6830                                 free_extent_map(em);
6831                                 goto unlock_err;
6832                         }
6833                         goto unlock;
6834                 }
6835         }
6836
6837         /*
6838          * this will cow the extent, reset the len in case we changed
6839          * it above
6840          */
6841         len = bh_result->b_size;
6842         free_extent_map(em);
6843         em = btrfs_new_extent_direct(inode, start, len);
6844         if (IS_ERR(em)) {
6845                 ret = PTR_ERR(em);
6846                 goto unlock_err;
6847         }
6848         len = min(len, em->len - (start - em->start));
6849 unlock:
6850         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6851                 inode->i_blkbits;
6852         bh_result->b_size = len;
6853         bh_result->b_bdev = em->bdev;
6854         set_buffer_mapped(bh_result);
6855         if (create) {
6856                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6857                         set_buffer_new(bh_result);
6858
6859                 /*
6860                  * Need to update the i_size under the extent lock so buffered
6861                  * readers will get the updated i_size when we unlock.
6862                  */
6863                 if (start + len > i_size_read(inode))
6864                         i_size_write(inode, start + len);
6865
6866                 spin_lock(&BTRFS_I(inode)->lock);
6867                 BTRFS_I(inode)->outstanding_extents++;
6868                 spin_unlock(&BTRFS_I(inode)->lock);
6869
6870                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6871                                      lockstart + len - 1, EXTENT_DELALLOC, NULL,
6872                                      &cached_state, GFP_NOFS);
6873                 BUG_ON(ret);
6874         }
6875
6876         /*
6877          * In the case of write we need to clear and unlock the entire range,
6878          * in the case of read we need to unlock only the end area that we
6879          * aren't using if there is any left over space.
6880          */
6881         if (lockstart < lockend) {
6882                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6883                                  lockend, unlock_bits, 1, 0,
6884                                  &cached_state, GFP_NOFS);
6885         } else {
6886                 free_extent_state(cached_state);
6887         }
6888
6889         free_extent_map(em);
6890
6891         return 0;
6892
6893 unlock_err:
6894         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6895                          unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6896         return ret;
6897 }
6898
6899 static void btrfs_endio_direct_read(struct bio *bio, int err)
6900 {
6901         struct btrfs_dio_private *dip = bio->bi_private;
6902         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6903         struct bio_vec *bvec = bio->bi_io_vec;
6904         struct inode *inode = dip->inode;
6905         struct btrfs_root *root = BTRFS_I(inode)->root;
6906         struct bio *dio_bio;
6907         u32 *csums = (u32 *)dip->csum;
6908         int index = 0;
6909         u64 start;
6910
6911         start = dip->logical_offset;
6912         do {
6913                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6914                         struct page *page = bvec->bv_page;
6915                         char *kaddr;
6916                         u32 csum = ~(u32)0;
6917                         unsigned long flags;
6918
6919                         local_irq_save(flags);
6920                         kaddr = kmap_atomic(page);
6921                         csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6922                                                csum, bvec->bv_len);
6923                         btrfs_csum_final(csum, (char *)&csum);
6924                         kunmap_atomic(kaddr);
6925                         local_irq_restore(flags);
6926
6927                         flush_dcache_page(bvec->bv_page);
6928                         if (csum != csums[index]) {
6929                                 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
6930                                           btrfs_ino(inode), start, csum,
6931                                           csums[index]);
6932                                 err = -EIO;
6933                         }
6934                 }
6935
6936                 start += bvec->bv_len;
6937                 bvec++;
6938                 index++;
6939         } while (bvec <= bvec_end);
6940
6941         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6942                       dip->logical_offset + dip->bytes - 1);
6943         dio_bio = dip->dio_bio;
6944
6945         kfree(dip);
6946
6947         /* If we had a csum failure make sure to clear the uptodate flag */
6948         if (err)
6949                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6950         dio_end_io(dio_bio, err);
6951         bio_put(bio);
6952 }
6953
6954 static void btrfs_endio_direct_write(struct bio *bio, int err)
6955 {
6956         struct btrfs_dio_private *dip = bio->bi_private;
6957         struct inode *inode = dip->inode;
6958         struct btrfs_root *root = BTRFS_I(inode)->root;
6959         struct btrfs_ordered_extent *ordered = NULL;
6960         u64 ordered_offset = dip->logical_offset;
6961         u64 ordered_bytes = dip->bytes;
6962         struct bio *dio_bio;
6963         int ret;
6964
6965         if (err)
6966                 goto out_done;
6967 again:
6968         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6969                                                    &ordered_offset,
6970                                                    ordered_bytes, !err);
6971         if (!ret)
6972                 goto out_test;
6973
6974         ordered->work.func = finish_ordered_fn;
6975         ordered->work.flags = 0;
6976         btrfs_queue_worker(&root->fs_info->endio_write_workers,
6977                            &ordered->work);
6978 out_test:
6979         /*
6980          * our bio might span multiple ordered extents.  If we haven't
6981          * completed the accounting for the whole dio, go back and try again
6982          */
6983         if (ordered_offset < dip->logical_offset + dip->bytes) {
6984                 ordered_bytes = dip->logical_offset + dip->bytes -
6985                         ordered_offset;
6986                 ordered = NULL;
6987                 goto again;
6988         }
6989 out_done:
6990         dio_bio = dip->dio_bio;
6991
6992         kfree(dip);
6993
6994         /* If we had an error make sure to clear the uptodate flag */
6995         if (err)
6996                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6997         dio_end_io(dio_bio, err);
6998         bio_put(bio);
6999 }
7000
7001 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7002                                     struct bio *bio, int mirror_num,
7003                                     unsigned long bio_flags, u64 offset)
7004 {
7005         int ret;
7006         struct btrfs_root *root = BTRFS_I(inode)->root;
7007         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7008         BUG_ON(ret); /* -ENOMEM */
7009         return 0;
7010 }
7011
7012 static void btrfs_end_dio_bio(struct bio *bio, int err)
7013 {
7014         struct btrfs_dio_private *dip = bio->bi_private;
7015
7016         if (err) {
7017                 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7018                           "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7019                       btrfs_ino(dip->inode), bio->bi_rw,
7020                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
7021                 dip->errors = 1;
7022
7023                 /*
7024                  * before atomic variable goto zero, we must make sure
7025                  * dip->errors is perceived to be set.
7026                  */
7027                 smp_mb__before_atomic_dec();
7028         }
7029
7030         /* if there are more bios still pending for this dio, just exit */
7031         if (!atomic_dec_and_test(&dip->pending_bios))
7032                 goto out;
7033
7034         if (dip->errors) {
7035                 bio_io_error(dip->orig_bio);
7036         } else {
7037                 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7038                 bio_endio(dip->orig_bio, 0);
7039         }
7040 out:
7041         bio_put(bio);
7042 }
7043
7044 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7045                                        u64 first_sector, gfp_t gfp_flags)
7046 {
7047         int nr_vecs = bio_get_nr_vecs(bdev);
7048         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7049 }
7050
7051 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7052                                          int rw, u64 file_offset, int skip_sum,
7053                                          int async_submit)
7054 {
7055         struct btrfs_dio_private *dip = bio->bi_private;
7056         int write = rw & REQ_WRITE;
7057         struct btrfs_root *root = BTRFS_I(inode)->root;
7058         int ret;
7059
7060         if (async_submit)
7061                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7062
7063         bio_get(bio);
7064
7065         if (!write) {
7066                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7067                 if (ret)
7068                         goto err;
7069         }
7070
7071         if (skip_sum)
7072                 goto map;
7073
7074         if (write && async_submit) {
7075                 ret = btrfs_wq_submit_bio(root->fs_info,
7076                                    inode, rw, bio, 0, 0,
7077                                    file_offset,
7078                                    __btrfs_submit_bio_start_direct_io,
7079                                    __btrfs_submit_bio_done);
7080                 goto err;
7081         } else if (write) {
7082                 /*
7083                  * If we aren't doing async submit, calculate the csum of the
7084                  * bio now.
7085                  */
7086                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7087                 if (ret)
7088                         goto err;
7089         } else if (!skip_sum) {
7090                 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7091                                                 file_offset);
7092                 if (ret)
7093                         goto err;
7094         }
7095
7096 map:
7097         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7098 err:
7099         bio_put(bio);
7100         return ret;
7101 }
7102
7103 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7104                                     int skip_sum)
7105 {
7106         struct inode *inode = dip->inode;
7107         struct btrfs_root *root = BTRFS_I(inode)->root;
7108         struct bio *bio;
7109         struct bio *orig_bio = dip->orig_bio;
7110         struct bio_vec *bvec = orig_bio->bi_io_vec;
7111         u64 start_sector = orig_bio->bi_sector;
7112         u64 file_offset = dip->logical_offset;
7113         u64 submit_len = 0;
7114         u64 map_length;
7115         int nr_pages = 0;
7116         int ret = 0;
7117         int async_submit = 0;
7118
7119         map_length = orig_bio->bi_size;
7120         ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7121                               &map_length, NULL, 0);
7122         if (ret) {
7123                 bio_put(orig_bio);
7124                 return -EIO;
7125         }
7126
7127         if (map_length >= orig_bio->bi_size) {
7128                 bio = orig_bio;
7129                 goto submit;
7130         }
7131
7132         /* async crcs make it difficult to collect full stripe writes. */
7133         if (btrfs_get_alloc_profile(root, 1) &
7134             (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7135                 async_submit = 0;
7136         else
7137                 async_submit = 1;
7138
7139         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7140         if (!bio)
7141                 return -ENOMEM;
7142         bio->bi_private = dip;
7143         bio->bi_end_io = btrfs_end_dio_bio;
7144         atomic_inc(&dip->pending_bios);
7145
7146         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7147                 if (unlikely(map_length < submit_len + bvec->bv_len ||
7148                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7149                                  bvec->bv_offset) < bvec->bv_len)) {
7150                         /*
7151                          * inc the count before we submit the bio so
7152                          * we know the end IO handler won't happen before
7153                          * we inc the count. Otherwise, the dip might get freed
7154                          * before we're done setting it up
7155                          */
7156                         atomic_inc(&dip->pending_bios);
7157                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
7158                                                      file_offset, skip_sum,
7159                                                      async_submit);
7160                         if (ret) {
7161                                 bio_put(bio);
7162                                 atomic_dec(&dip->pending_bios);
7163                                 goto out_err;
7164                         }
7165
7166                         start_sector += submit_len >> 9;
7167                         file_offset += submit_len;
7168
7169                         submit_len = 0;
7170                         nr_pages = 0;
7171
7172                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7173                                                   start_sector, GFP_NOFS);
7174                         if (!bio)
7175                                 goto out_err;
7176                         bio->bi_private = dip;
7177                         bio->bi_end_io = btrfs_end_dio_bio;
7178
7179                         map_length = orig_bio->bi_size;
7180                         ret = btrfs_map_block(root->fs_info, rw,
7181                                               start_sector << 9,
7182                                               &map_length, NULL, 0);
7183                         if (ret) {
7184                                 bio_put(bio);
7185                                 goto out_err;
7186                         }
7187                 } else {
7188                         submit_len += bvec->bv_len;
7189                         nr_pages++;
7190                         bvec++;
7191                 }
7192         }
7193
7194 submit:
7195         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7196                                      async_submit);
7197         if (!ret)
7198                 return 0;
7199
7200         bio_put(bio);
7201 out_err:
7202         dip->errors = 1;
7203         /*
7204          * before atomic variable goto zero, we must
7205          * make sure dip->errors is perceived to be set.
7206          */
7207         smp_mb__before_atomic_dec();
7208         if (atomic_dec_and_test(&dip->pending_bios))
7209                 bio_io_error(dip->orig_bio);
7210
7211         /* bio_end_io() will handle error, so we needn't return it */
7212         return 0;
7213 }
7214
7215 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7216                                 struct inode *inode, loff_t file_offset)
7217 {
7218         struct btrfs_root *root = BTRFS_I(inode)->root;
7219         struct btrfs_dio_private *dip;
7220         struct bio *io_bio;
7221         int skip_sum;
7222         int sum_len;
7223         int write = rw & REQ_WRITE;
7224         int ret = 0;
7225         u16 csum_size;
7226
7227         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7228
7229         io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7230         if (!io_bio) {
7231                 ret = -ENOMEM;
7232                 goto free_ordered;
7233         }
7234
7235         if (!skip_sum && !write) {
7236                 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7237                 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7238                 sum_len *= csum_size;
7239         } else {
7240                 sum_len = 0;
7241         }
7242
7243         dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7244         if (!dip) {
7245                 ret = -ENOMEM;
7246                 goto free_io_bio;
7247         }
7248
7249         dip->private = dio_bio->bi_private;
7250         dip->inode = inode;
7251         dip->logical_offset = file_offset;
7252         dip->bytes = dio_bio->bi_size;
7253         dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7254         io_bio->bi_private = dip;
7255         dip->errors = 0;
7256         dip->orig_bio = io_bio;
7257         dip->dio_bio = dio_bio;
7258         atomic_set(&dip->pending_bios, 0);
7259
7260         if (write)
7261                 io_bio->bi_end_io = btrfs_endio_direct_write;
7262         else
7263                 io_bio->bi_end_io = btrfs_endio_direct_read;
7264
7265         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7266         if (!ret)
7267                 return;
7268
7269 free_io_bio:
7270         bio_put(io_bio);
7271
7272 free_ordered:
7273         /*
7274          * If this is a write, we need to clean up the reserved space and kill
7275          * the ordered extent.
7276          */
7277         if (write) {
7278                 struct btrfs_ordered_extent *ordered;
7279                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7280                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7281                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7282                         btrfs_free_reserved_extent(root, ordered->start,
7283                                                    ordered->disk_len);
7284                 btrfs_put_ordered_extent(ordered);
7285                 btrfs_put_ordered_extent(ordered);
7286         }
7287         bio_endio(dio_bio, ret);
7288 }
7289
7290 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7291                         const struct iovec *iov, loff_t offset,
7292                         unsigned long nr_segs)
7293 {
7294         int seg;
7295         int i;
7296         size_t size;
7297         unsigned long addr;
7298         unsigned blocksize_mask = root->sectorsize - 1;
7299         ssize_t retval = -EINVAL;
7300         loff_t end = offset;
7301
7302         if (offset & blocksize_mask)
7303                 goto out;
7304
7305         /* Check the memory alignment.  Blocks cannot straddle pages */
7306         for (seg = 0; seg < nr_segs; seg++) {
7307                 addr = (unsigned long)iov[seg].iov_base;
7308                 size = iov[seg].iov_len;
7309                 end += size;
7310                 if ((addr & blocksize_mask) || (size & blocksize_mask))
7311                         goto out;
7312
7313                 /* If this is a write we don't need to check anymore */
7314                 if (rw & WRITE)
7315                         continue;
7316
7317                 /*
7318                  * Check to make sure we don't have duplicate iov_base's in this
7319                  * iovec, if so return EINVAL, otherwise we'll get csum errors
7320                  * when reading back.
7321                  */
7322                 for (i = seg + 1; i < nr_segs; i++) {
7323                         if (iov[seg].iov_base == iov[i].iov_base)
7324                                 goto out;
7325                 }
7326         }
7327         retval = 0;
7328 out:
7329         return retval;
7330 }
7331
7332 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7333                         const struct iovec *iov, loff_t offset,
7334                         unsigned long nr_segs)
7335 {
7336         struct file *file = iocb->ki_filp;
7337         struct inode *inode = file->f_mapping->host;
7338         size_t count = 0;
7339         int flags = 0;
7340         bool wakeup = true;
7341         bool relock = false;
7342         ssize_t ret;
7343
7344         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7345                             offset, nr_segs))
7346                 return 0;
7347
7348         atomic_inc(&inode->i_dio_count);
7349         smp_mb__after_atomic_inc();
7350
7351         /*
7352          * The generic stuff only does filemap_write_and_wait_range, which isn't
7353          * enough if we've written compressed pages to this area, so we need to
7354          * call btrfs_wait_ordered_range to make absolutely sure that any
7355          * outstanding dirty pages are on disk.
7356          */
7357         count = iov_length(iov, nr_segs);
7358         ret = btrfs_wait_ordered_range(inode, offset, count);
7359         if (ret)
7360                 return ret;
7361
7362         if (rw & WRITE) {
7363                 /*
7364                  * If the write DIO is beyond the EOF, we need update
7365                  * the isize, but it is protected by i_mutex. So we can
7366                  * not unlock the i_mutex at this case.
7367                  */
7368                 if (offset + count <= inode->i_size) {
7369                         mutex_unlock(&inode->i_mutex);
7370                         relock = true;
7371                 }
7372                 ret = btrfs_delalloc_reserve_space(inode, count);
7373                 if (ret)
7374                         goto out;
7375         } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7376                                      &BTRFS_I(inode)->runtime_flags))) {
7377                 inode_dio_done(inode);
7378                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7379                 wakeup = false;
7380         }
7381
7382         ret = __blockdev_direct_IO(rw, iocb, inode,
7383                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7384                         iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7385                         btrfs_submit_direct, flags);
7386         if (rw & WRITE) {
7387                 if (ret < 0 && ret != -EIOCBQUEUED)
7388                         btrfs_delalloc_release_space(inode, count);
7389                 else if (ret >= 0 && (size_t)ret < count)
7390                         btrfs_delalloc_release_space(inode,
7391                                                      count - (size_t)ret);
7392                 else
7393                         btrfs_delalloc_release_metadata(inode, 0);
7394         }
7395 out:
7396         if (wakeup)
7397                 inode_dio_done(inode);
7398         if (relock)
7399                 mutex_lock(&inode->i_mutex);
7400
7401         return ret;
7402 }
7403
7404 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
7405
7406 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7407                 __u64 start, __u64 len)
7408 {
7409         int     ret;
7410
7411         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7412         if (ret)
7413                 return ret;
7414
7415         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7416 }
7417
7418 int btrfs_readpage(struct file *file, struct page *page)
7419 {
7420         struct extent_io_tree *tree;
7421         tree = &BTRFS_I(page->mapping->host)->io_tree;
7422         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7423 }
7424
7425 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7426 {
7427         struct extent_io_tree *tree;
7428
7429
7430         if (current->flags & PF_MEMALLOC) {
7431                 redirty_page_for_writepage(wbc, page);
7432                 unlock_page(page);
7433                 return 0;
7434         }
7435         tree = &BTRFS_I(page->mapping->host)->io_tree;
7436         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7437 }
7438
7439 static int btrfs_writepages(struct address_space *mapping,
7440                             struct writeback_control *wbc)
7441 {
7442         struct extent_io_tree *tree;
7443
7444         tree = &BTRFS_I(mapping->host)->io_tree;
7445         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7446 }
7447
7448 static int
7449 btrfs_readpages(struct file *file, struct address_space *mapping,
7450                 struct list_head *pages, unsigned nr_pages)
7451 {
7452         struct extent_io_tree *tree;
7453         tree = &BTRFS_I(mapping->host)->io_tree;
7454         return extent_readpages(tree, mapping, pages, nr_pages,
7455                                 btrfs_get_extent);
7456 }
7457 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7458 {
7459         struct extent_io_tree *tree;
7460         struct extent_map_tree *map;
7461         int ret;
7462
7463         tree = &BTRFS_I(page->mapping->host)->io_tree;
7464         map = &BTRFS_I(page->mapping->host)->extent_tree;
7465         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7466         if (ret == 1) {
7467                 ClearPagePrivate(page);
7468                 set_page_private(page, 0);
7469                 page_cache_release(page);
7470         }
7471         return ret;
7472 }
7473
7474 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7475 {
7476         if (PageWriteback(page) || PageDirty(page))
7477                 return 0;
7478         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7479 }
7480
7481 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7482                                  unsigned int length)
7483 {
7484         struct inode *inode = page->mapping->host;
7485         struct extent_io_tree *tree;
7486         struct btrfs_ordered_extent *ordered;
7487         struct extent_state *cached_state = NULL;
7488         u64 page_start = page_offset(page);
7489         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7490         int inode_evicting = inode->i_state & I_FREEING;
7491
7492         /*
7493          * we have the page locked, so new writeback can't start,
7494          * and the dirty bit won't be cleared while we are here.
7495          *
7496          * Wait for IO on this page so that we can safely clear
7497          * the PagePrivate2 bit and do ordered accounting
7498          */
7499         wait_on_page_writeback(page);
7500
7501         tree = &BTRFS_I(inode)->io_tree;
7502         if (offset) {
7503                 btrfs_releasepage(page, GFP_NOFS);
7504                 return;
7505         }
7506
7507         if (!inode_evicting)
7508                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7509         ordered = btrfs_lookup_ordered_extent(inode, page_start);
7510         if (ordered) {
7511                 /*
7512                  * IO on this page will never be started, so we need
7513                  * to account for any ordered extents now
7514                  */
7515                 if (!inode_evicting)
7516                         clear_extent_bit(tree, page_start, page_end,
7517                                          EXTENT_DIRTY | EXTENT_DELALLOC |
7518                                          EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7519                                          EXTENT_DEFRAG, 1, 0, &cached_state,
7520                                          GFP_NOFS);
7521                 /*
7522                  * whoever cleared the private bit is responsible
7523                  * for the finish_ordered_io
7524                  */
7525                 if (TestClearPagePrivate2(page)) {
7526                         struct btrfs_ordered_inode_tree *tree;
7527                         u64 new_len;
7528
7529                         tree = &BTRFS_I(inode)->ordered_tree;
7530
7531                         spin_lock_irq(&tree->lock);
7532                         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7533                         new_len = page_start - ordered->file_offset;
7534                         if (new_len < ordered->truncated_len)
7535                                 ordered->truncated_len = new_len;
7536                         spin_unlock_irq(&tree->lock);
7537
7538                         if (btrfs_dec_test_ordered_pending(inode, &ordered,
7539                                                            page_start,
7540                                                            PAGE_CACHE_SIZE, 1))
7541                                 btrfs_finish_ordered_io(ordered);
7542                 }
7543                 btrfs_put_ordered_extent(ordered);
7544                 if (!inode_evicting) {
7545                         cached_state = NULL;
7546                         lock_extent_bits(tree, page_start, page_end, 0,
7547                                          &cached_state);
7548                 }
7549         }
7550
7551         if (!inode_evicting) {
7552                 clear_extent_bit(tree, page_start, page_end,
7553                                  EXTENT_LOCKED | EXTENT_DIRTY |
7554                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7555                                  EXTENT_DEFRAG, 1, 1,
7556                                  &cached_state, GFP_NOFS);
7557
7558                 __btrfs_releasepage(page, GFP_NOFS);
7559         }
7560
7561         ClearPageChecked(page);
7562         if (PagePrivate(page)) {
7563                 ClearPagePrivate(page);
7564                 set_page_private(page, 0);
7565                 page_cache_release(page);
7566         }
7567 }
7568
7569 /*
7570  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7571  * called from a page fault handler when a page is first dirtied. Hence we must
7572  * be careful to check for EOF conditions here. We set the page up correctly
7573  * for a written page which means we get ENOSPC checking when writing into
7574  * holes and correct delalloc and unwritten extent mapping on filesystems that
7575  * support these features.
7576  *
7577  * We are not allowed to take the i_mutex here so we have to play games to
7578  * protect against truncate races as the page could now be beyond EOF.  Because
7579  * vmtruncate() writes the inode size before removing pages, once we have the
7580  * page lock we can determine safely if the page is beyond EOF. If it is not
7581  * beyond EOF, then the page is guaranteed safe against truncation until we
7582  * unlock the page.
7583  */
7584 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7585 {
7586         struct page *page = vmf->page;
7587         struct inode *inode = file_inode(vma->vm_file);
7588         struct btrfs_root *root = BTRFS_I(inode)->root;
7589         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7590         struct btrfs_ordered_extent *ordered;
7591         struct extent_state *cached_state = NULL;
7592         char *kaddr;
7593         unsigned long zero_start;
7594         loff_t size;
7595         int ret;
7596         int reserved = 0;
7597         u64 page_start;
7598         u64 page_end;
7599
7600         sb_start_pagefault(inode->i_sb);
7601         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7602         if (!ret) {
7603                 ret = file_update_time(vma->vm_file);
7604                 reserved = 1;
7605         }
7606         if (ret) {
7607                 if (ret == -ENOMEM)
7608                         ret = VM_FAULT_OOM;
7609                 else /* -ENOSPC, -EIO, etc */
7610                         ret = VM_FAULT_SIGBUS;
7611                 if (reserved)
7612                         goto out;
7613                 goto out_noreserve;
7614         }
7615
7616         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7617 again:
7618         lock_page(page);
7619         size = i_size_read(inode);
7620         page_start = page_offset(page);
7621         page_end = page_start + PAGE_CACHE_SIZE - 1;
7622
7623         if ((page->mapping != inode->i_mapping) ||
7624             (page_start >= size)) {
7625                 /* page got truncated out from underneath us */
7626                 goto out_unlock;
7627         }
7628         wait_on_page_writeback(page);
7629
7630         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7631         set_page_extent_mapped(page);
7632
7633         /*
7634          * we can't set the delalloc bits if there are pending ordered
7635          * extents.  Drop our locks and wait for them to finish
7636          */
7637         ordered = btrfs_lookup_ordered_extent(inode, page_start);
7638         if (ordered) {
7639                 unlock_extent_cached(io_tree, page_start, page_end,
7640                                      &cached_state, GFP_NOFS);
7641                 unlock_page(page);
7642                 btrfs_start_ordered_extent(inode, ordered, 1);
7643                 btrfs_put_ordered_extent(ordered);
7644                 goto again;
7645         }
7646
7647         /*
7648          * XXX - page_mkwrite gets called every time the page is dirtied, even
7649          * if it was already dirty, so for space accounting reasons we need to
7650          * clear any delalloc bits for the range we are fixing to save.  There
7651          * is probably a better way to do this, but for now keep consistent with
7652          * prepare_pages in the normal write path.
7653          */
7654         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7655                           EXTENT_DIRTY | EXTENT_DELALLOC |
7656                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7657                           0, 0, &cached_state, GFP_NOFS);
7658
7659         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7660                                         &cached_state);
7661         if (ret) {
7662                 unlock_extent_cached(io_tree, page_start, page_end,
7663                                      &cached_state, GFP_NOFS);
7664                 ret = VM_FAULT_SIGBUS;
7665                 goto out_unlock;
7666         }
7667         ret = 0;
7668
7669         /* page is wholly or partially inside EOF */
7670         if (page_start + PAGE_CACHE_SIZE > size)
7671                 zero_start = size & ~PAGE_CACHE_MASK;
7672         else
7673                 zero_start = PAGE_CACHE_SIZE;
7674
7675         if (zero_start != PAGE_CACHE_SIZE) {
7676                 kaddr = kmap(page);
7677                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7678                 flush_dcache_page(page);
7679                 kunmap(page);
7680         }
7681         ClearPageChecked(page);
7682         set_page_dirty(page);
7683         SetPageUptodate(page);
7684
7685         BTRFS_I(inode)->last_trans = root->fs_info->generation;
7686         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7687         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7688
7689         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7690
7691 out_unlock:
7692         if (!ret) {
7693                 sb_end_pagefault(inode->i_sb);
7694                 return VM_FAULT_LOCKED;
7695         }
7696         unlock_page(page);
7697 out:
7698         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7699 out_noreserve:
7700         sb_end_pagefault(inode->i_sb);
7701         return ret;
7702 }
7703
7704 static int btrfs_truncate(struct inode *inode)
7705 {
7706         struct btrfs_root *root = BTRFS_I(inode)->root;
7707         struct btrfs_block_rsv *rsv;
7708         int ret = 0;
7709         int err = 0;
7710         struct btrfs_trans_handle *trans;
7711         u64 mask = root->sectorsize - 1;
7712         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7713
7714         ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7715                                        (u64)-1);
7716         if (ret)
7717                 return ret;
7718
7719         /*
7720          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7721          * 3 things going on here
7722          *
7723          * 1) We need to reserve space for our orphan item and the space to
7724          * delete our orphan item.  Lord knows we don't want to have a dangling
7725          * orphan item because we didn't reserve space to remove it.
7726          *
7727          * 2) We need to reserve space to update our inode.
7728          *
7729          * 3) We need to have something to cache all the space that is going to
7730          * be free'd up by the truncate operation, but also have some slack
7731          * space reserved in case it uses space during the truncate (thank you
7732          * very much snapshotting).
7733          *
7734          * And we need these to all be seperate.  The fact is we can use alot of
7735          * space doing the truncate, and we have no earthly idea how much space
7736          * we will use, so we need the truncate reservation to be seperate so it
7737          * doesn't end up using space reserved for updating the inode or
7738          * removing the orphan item.  We also need to be able to stop the
7739          * transaction and start a new one, which means we need to be able to
7740          * update the inode several times, and we have no idea of knowing how
7741          * many times that will be, so we can't just reserve 1 item for the
7742          * entirety of the opration, so that has to be done seperately as well.
7743          * Then there is the orphan item, which does indeed need to be held on
7744          * to for the whole operation, and we need nobody to touch this reserved
7745          * space except the orphan code.
7746          *
7747          * So that leaves us with
7748          *
7749          * 1) root->orphan_block_rsv - for the orphan deletion.
7750          * 2) rsv - for the truncate reservation, which we will steal from the
7751          * transaction reservation.
7752          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7753          * updating the inode.
7754          */
7755         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7756         if (!rsv)
7757                 return -ENOMEM;
7758         rsv->size = min_size;
7759         rsv->failfast = 1;
7760
7761         /*
7762          * 1 for the truncate slack space
7763          * 1 for updating the inode.
7764          */
7765         trans = btrfs_start_transaction(root, 2);
7766         if (IS_ERR(trans)) {
7767                 err = PTR_ERR(trans);
7768                 goto out;
7769         }
7770
7771         /* Migrate the slack space for the truncate to our reserve */
7772         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7773                                       min_size);
7774         BUG_ON(ret);
7775
7776         /*
7777          * setattr is responsible for setting the ordered_data_close flag,
7778          * but that is only tested during the last file release.  That
7779          * could happen well after the next commit, leaving a great big
7780          * window where new writes may get lost if someone chooses to write
7781          * to this file after truncating to zero
7782          *
7783          * The inode doesn't have any dirty data here, and so if we commit
7784          * this is a noop.  If someone immediately starts writing to the inode
7785          * it is very likely we'll catch some of their writes in this
7786          * transaction, and the commit will find this file on the ordered
7787          * data list with good things to send down.
7788          *
7789          * This is a best effort solution, there is still a window where
7790          * using truncate to replace the contents of the file will
7791          * end up with a zero length file after a crash.
7792          */
7793         if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7794                                            &BTRFS_I(inode)->runtime_flags))
7795                 btrfs_add_ordered_operation(trans, root, inode);
7796
7797         /*
7798          * So if we truncate and then write and fsync we normally would just
7799          * write the extents that changed, which is a problem if we need to
7800          * first truncate that entire inode.  So set this flag so we write out
7801          * all of the extents in the inode to the sync log so we're completely
7802          * safe.
7803          */
7804         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7805         trans->block_rsv = rsv;
7806
7807         while (1) {
7808                 ret = btrfs_truncate_inode_items(trans, root, inode,
7809                                                  inode->i_size,
7810                                                  BTRFS_EXTENT_DATA_KEY);
7811                 if (ret != -ENOSPC) {
7812                         err = ret;
7813                         break;
7814                 }
7815
7816                 trans->block_rsv = &root->fs_info->trans_block_rsv;
7817                 ret = btrfs_update_inode(trans, root, inode);
7818                 if (ret) {
7819                         err = ret;
7820                         break;
7821                 }
7822
7823                 btrfs_end_transaction(trans, root);
7824                 btrfs_btree_balance_dirty(root);
7825
7826                 trans = btrfs_start_transaction(root, 2);
7827                 if (IS_ERR(trans)) {
7828                         ret = err = PTR_ERR(trans);
7829                         trans = NULL;
7830                         break;
7831                 }
7832
7833                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7834                                               rsv, min_size);
7835                 BUG_ON(ret);    /* shouldn't happen */
7836                 trans->block_rsv = rsv;
7837         }
7838
7839         if (ret == 0 && inode->i_nlink > 0) {
7840                 trans->block_rsv = root->orphan_block_rsv;
7841                 ret = btrfs_orphan_del(trans, inode);
7842                 if (ret)
7843                         err = ret;
7844         }
7845
7846         if (trans) {
7847                 trans->block_rsv = &root->fs_info->trans_block_rsv;
7848                 ret = btrfs_update_inode(trans, root, inode);
7849                 if (ret && !err)
7850                         err = ret;
7851
7852                 ret = btrfs_end_transaction(trans, root);
7853                 btrfs_btree_balance_dirty(root);
7854         }
7855
7856 out:
7857         btrfs_free_block_rsv(root, rsv);
7858
7859         if (ret && !err)
7860                 err = ret;
7861
7862         return err;
7863 }
7864
7865 /*
7866  * create a new subvolume directory/inode (helper for the ioctl).
7867  */
7868 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7869                              struct btrfs_root *new_root, u64 new_dirid)
7870 {
7871         struct inode *inode;
7872         int err;
7873         u64 index = 0;
7874
7875         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7876                                 new_dirid, new_dirid,
7877                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
7878                                 &index);
7879         if (IS_ERR(inode))
7880                 return PTR_ERR(inode);
7881         inode->i_op = &btrfs_dir_inode_operations;
7882         inode->i_fop = &btrfs_dir_file_operations;
7883
7884         set_nlink(inode, 1);
7885         btrfs_i_size_write(inode, 0);
7886
7887         err = btrfs_update_inode(trans, new_root, inode);
7888
7889         iput(inode);
7890         return err;
7891 }
7892
7893 struct inode *btrfs_alloc_inode(struct super_block *sb)
7894 {
7895         struct btrfs_inode *ei;
7896         struct inode *inode;
7897
7898         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7899         if (!ei)
7900                 return NULL;
7901
7902         ei->root = NULL;
7903         ei->generation = 0;
7904         ei->last_trans = 0;
7905         ei->last_sub_trans = 0;
7906         ei->logged_trans = 0;
7907         ei->delalloc_bytes = 0;
7908         ei->disk_i_size = 0;
7909         ei->flags = 0;
7910         ei->csum_bytes = 0;
7911         ei->index_cnt = (u64)-1;
7912         ei->dir_index = 0;
7913         ei->last_unlink_trans = 0;
7914         ei->last_log_commit = 0;
7915
7916         spin_lock_init(&ei->lock);
7917         ei->outstanding_extents = 0;
7918         ei->reserved_extents = 0;
7919
7920         ei->runtime_flags = 0;
7921         ei->force_compress = BTRFS_COMPRESS_NONE;
7922
7923         ei->delayed_node = NULL;
7924
7925         inode = &ei->vfs_inode;
7926         extent_map_tree_init(&ei->extent_tree);
7927         extent_io_tree_init(&ei->io_tree, &inode->i_data);
7928         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7929         ei->io_tree.track_uptodate = 1;
7930         ei->io_failure_tree.track_uptodate = 1;
7931         atomic_set(&ei->sync_writers, 0);
7932         mutex_init(&ei->log_mutex);
7933         mutex_init(&ei->delalloc_mutex);
7934         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7935         INIT_LIST_HEAD(&ei->delalloc_inodes);
7936         INIT_LIST_HEAD(&ei->ordered_operations);
7937         RB_CLEAR_NODE(&ei->rb_node);
7938
7939         return inode;
7940 }
7941
7942 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7943 void btrfs_test_destroy_inode(struct inode *inode)
7944 {
7945         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7946         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7947 }
7948 #endif
7949
7950 static void btrfs_i_callback(struct rcu_head *head)
7951 {
7952         struct inode *inode = container_of(head, struct inode, i_rcu);
7953         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7954 }
7955
7956 void btrfs_destroy_inode(struct inode *inode)
7957 {
7958         struct btrfs_ordered_extent *ordered;
7959         struct btrfs_root *root = BTRFS_I(inode)->root;
7960
7961         WARN_ON(!hlist_empty(&inode->i_dentry));
7962         WARN_ON(inode->i_data.nrpages);
7963         WARN_ON(BTRFS_I(inode)->outstanding_extents);
7964         WARN_ON(BTRFS_I(inode)->reserved_extents);
7965         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7966         WARN_ON(BTRFS_I(inode)->csum_bytes);
7967
7968         /*
7969          * This can happen where we create an inode, but somebody else also
7970          * created the same inode and we need to destroy the one we already
7971          * created.
7972          */
7973         if (!root)
7974                 goto free;
7975
7976         /*
7977          * Make sure we're properly removed from the ordered operation
7978          * lists.
7979          */
7980         smp_mb();
7981         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7982                 spin_lock(&root->fs_info->ordered_root_lock);
7983                 list_del_init(&BTRFS_I(inode)->ordered_operations);
7984                 spin_unlock(&root->fs_info->ordered_root_lock);
7985         }
7986
7987         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7988                      &BTRFS_I(inode)->runtime_flags)) {
7989                 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7990                         btrfs_ino(inode));
7991                 atomic_dec(&root->orphan_inodes);
7992         }
7993
7994         while (1) {
7995                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7996                 if (!ordered)
7997                         break;
7998                 else {
7999                         btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8000                                 ordered->file_offset, ordered->len);
8001                         btrfs_remove_ordered_extent(inode, ordered);
8002                         btrfs_put_ordered_extent(ordered);
8003                         btrfs_put_ordered_extent(ordered);
8004                 }
8005         }
8006         inode_tree_del(inode);
8007         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8008 free:
8009         call_rcu(&inode->i_rcu, btrfs_i_callback);
8010 }
8011
8012 int btrfs_drop_inode(struct inode *inode)
8013 {
8014         struct btrfs_root *root = BTRFS_I(inode)->root;
8015
8016         if (root == NULL)
8017                 return 1;
8018
8019         /* the snap/subvol tree is on deleting */
8020         if (btrfs_root_refs(&root->root_item) == 0)
8021                 return 1;
8022         else
8023                 return generic_drop_inode(inode);
8024 }
8025
8026 static void init_once(void *foo)
8027 {
8028         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8029
8030         inode_init_once(&ei->vfs_inode);
8031 }
8032
8033 void btrfs_destroy_cachep(void)
8034 {
8035         /*
8036          * Make sure all delayed rcu free inodes are flushed before we
8037          * destroy cache.
8038          */
8039         rcu_barrier();
8040         if (btrfs_inode_cachep)
8041                 kmem_cache_destroy(btrfs_inode_cachep);
8042         if (btrfs_trans_handle_cachep)
8043                 kmem_cache_destroy(btrfs_trans_handle_cachep);
8044         if (btrfs_transaction_cachep)
8045                 kmem_cache_destroy(btrfs_transaction_cachep);
8046         if (btrfs_path_cachep)
8047                 kmem_cache_destroy(btrfs_path_cachep);
8048         if (btrfs_free_space_cachep)
8049                 kmem_cache_destroy(btrfs_free_space_cachep);
8050         if (btrfs_delalloc_work_cachep)
8051                 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8052 }
8053
8054 int btrfs_init_cachep(void)
8055 {
8056         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8057                         sizeof(struct btrfs_inode), 0,
8058                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8059         if (!btrfs_inode_cachep)
8060                 goto fail;
8061
8062         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8063                         sizeof(struct btrfs_trans_handle), 0,
8064                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8065         if (!btrfs_trans_handle_cachep)
8066                 goto fail;
8067
8068         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8069                         sizeof(struct btrfs_transaction), 0,
8070                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8071         if (!btrfs_transaction_cachep)
8072                 goto fail;
8073
8074         btrfs_path_cachep = kmem_cache_create("btrfs_path",
8075                         sizeof(struct btrfs_path), 0,
8076                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8077         if (!btrfs_path_cachep)
8078                 goto fail;
8079
8080         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8081                         sizeof(struct btrfs_free_space), 0,
8082                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8083         if (!btrfs_free_space_cachep)
8084                 goto fail;
8085
8086         btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8087                         sizeof(struct btrfs_delalloc_work), 0,
8088                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8089                         NULL);
8090         if (!btrfs_delalloc_work_cachep)
8091                 goto fail;
8092
8093         return 0;
8094 fail:
8095         btrfs_destroy_cachep();
8096         return -ENOMEM;
8097 }
8098
8099 static int btrfs_getattr(struct vfsmount *mnt,
8100                          struct dentry *dentry, struct kstat *stat)
8101 {
8102         u64 delalloc_bytes;
8103         struct inode *inode = dentry->d_inode;
8104         u32 blocksize = inode->i_sb->s_blocksize;
8105
8106         generic_fillattr(inode, stat);
8107         stat->dev = BTRFS_I(inode)->root->anon_dev;
8108         stat->blksize = PAGE_CACHE_SIZE;
8109
8110         spin_lock(&BTRFS_I(inode)->lock);
8111         delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8112         spin_unlock(&BTRFS_I(inode)->lock);
8113         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8114                         ALIGN(delalloc_bytes, blocksize)) >> 9;
8115         return 0;
8116 }
8117
8118 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8119                            struct inode *new_dir, struct dentry *new_dentry)
8120 {
8121         struct btrfs_trans_handle *trans;
8122         struct btrfs_root *root = BTRFS_I(old_dir)->root;
8123         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8124         struct inode *new_inode = new_dentry->d_inode;
8125         struct inode *old_inode = old_dentry->d_inode;
8126         struct timespec ctime = CURRENT_TIME;
8127         u64 index = 0;
8128         u64 root_objectid;
8129         int ret;
8130         u64 old_ino = btrfs_ino(old_inode);
8131
8132         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8133                 return -EPERM;
8134
8135         /* we only allow rename subvolume link between subvolumes */
8136         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8137                 return -EXDEV;
8138
8139         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8140             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8141                 return -ENOTEMPTY;
8142
8143         if (S_ISDIR(old_inode->i_mode) && new_inode &&
8144             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8145                 return -ENOTEMPTY;
8146
8147
8148         /* check for collisions, even if the  name isn't there */
8149         ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8150                              new_dentry->d_name.name,
8151                              new_dentry->d_name.len);
8152
8153         if (ret) {
8154                 if (ret == -EEXIST) {
8155                         /* we shouldn't get
8156                          * eexist without a new_inode */
8157                         if (WARN_ON(!new_inode)) {
8158                                 return ret;
8159                         }
8160                 } else {
8161                         /* maybe -EOVERFLOW */
8162                         return ret;
8163                 }
8164         }
8165         ret = 0;
8166
8167         /*
8168          * we're using rename to replace one file with another.
8169          * and the replacement file is large.  Start IO on it now so
8170          * we don't add too much work to the end of the transaction
8171          */
8172         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8173             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8174                 filemap_flush(old_inode->i_mapping);
8175
8176         /* close the racy window with snapshot create/destroy ioctl */
8177         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8178                 down_read(&root->fs_info->subvol_sem);
8179         /*
8180          * We want to reserve the absolute worst case amount of items.  So if
8181          * both inodes are subvols and we need to unlink them then that would
8182          * require 4 item modifications, but if they are both normal inodes it
8183          * would require 5 item modifications, so we'll assume their normal
8184          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8185          * should cover the worst case number of items we'll modify.
8186          */
8187         trans = btrfs_start_transaction(root, 11);
8188         if (IS_ERR(trans)) {
8189                 ret = PTR_ERR(trans);
8190                 goto out_notrans;
8191         }
8192
8193         if (dest != root)
8194                 btrfs_record_root_in_trans(trans, dest);
8195
8196         ret = btrfs_set_inode_index(new_dir, &index);
8197         if (ret)
8198                 goto out_fail;
8199
8200         BTRFS_I(old_inode)->dir_index = 0ULL;
8201         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8202                 /* force full log commit if subvolume involved. */
8203                 root->fs_info->last_trans_log_full_commit = trans->transid;
8204         } else {
8205                 ret = btrfs_insert_inode_ref(trans, dest,
8206                                              new_dentry->d_name.name,
8207                                              new_dentry->d_name.len,
8208                                              old_ino,
8209                                              btrfs_ino(new_dir), index);
8210                 if (ret)
8211                         goto out_fail;
8212                 /*
8213                  * this is an ugly little race, but the rename is required
8214                  * to make sure that if we crash, the inode is either at the
8215                  * old name or the new one.  pinning the log transaction lets
8216                  * us make sure we don't allow a log commit to come in after
8217                  * we unlink the name but before we add the new name back in.
8218                  */
8219                 btrfs_pin_log_trans(root);
8220         }
8221         /*
8222          * make sure the inode gets flushed if it is replacing
8223          * something.
8224          */
8225         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8226                 btrfs_add_ordered_operation(trans, root, old_inode);
8227
8228         inode_inc_iversion(old_dir);
8229         inode_inc_iversion(new_dir);
8230         inode_inc_iversion(old_inode);
8231         old_dir->i_ctime = old_dir->i_mtime = ctime;
8232         new_dir->i_ctime = new_dir->i_mtime = ctime;
8233         old_inode->i_ctime = ctime;
8234
8235         if (old_dentry->d_parent != new_dentry->d_parent)
8236                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8237
8238         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8239                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8240                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8241                                         old_dentry->d_name.name,
8242                                         old_dentry->d_name.len);
8243         } else {
8244                 ret = __btrfs_unlink_inode(trans, root, old_dir,
8245                                         old_dentry->d_inode,
8246                                         old_dentry->d_name.name,
8247                                         old_dentry->d_name.len);
8248                 if (!ret)
8249                         ret = btrfs_update_inode(trans, root, old_inode);
8250         }
8251         if (ret) {
8252                 btrfs_abort_transaction(trans, root, ret);
8253                 goto out_fail;
8254         }
8255
8256         if (new_inode) {
8257                 inode_inc_iversion(new_inode);
8258                 new_inode->i_ctime = CURRENT_TIME;
8259                 if (unlikely(btrfs_ino(new_inode) ==
8260                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8261                         root_objectid = BTRFS_I(new_inode)->location.objectid;
8262                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
8263                                                 root_objectid,
8264                                                 new_dentry->d_name.name,
8265                                                 new_dentry->d_name.len);
8266                         BUG_ON(new_inode->i_nlink == 0);
8267                 } else {
8268                         ret = btrfs_unlink_inode(trans, dest, new_dir,
8269                                                  new_dentry->d_inode,
8270                                                  new_dentry->d_name.name,
8271                                                  new_dentry->d_name.len);
8272                 }
8273                 if (!ret && new_inode->i_nlink == 0)
8274                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8275                 if (ret) {
8276                         btrfs_abort_transaction(trans, root, ret);
8277                         goto out_fail;
8278                 }
8279         }
8280
8281         ret = btrfs_add_link(trans, new_dir, old_inode,
8282                              new_dentry->d_name.name,
8283                              new_dentry->d_name.len, 0, index);
8284         if (ret) {
8285                 btrfs_abort_transaction(trans, root, ret);
8286                 goto out_fail;
8287         }
8288
8289         if (old_inode->i_nlink == 1)
8290                 BTRFS_I(old_inode)->dir_index = index;
8291
8292         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8293                 struct dentry *parent = new_dentry->d_parent;
8294                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8295                 btrfs_end_log_trans(root);
8296         }
8297 out_fail:
8298         btrfs_end_transaction(trans, root);
8299 out_notrans:
8300         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8301                 up_read(&root->fs_info->subvol_sem);
8302
8303         return ret;
8304 }
8305
8306 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8307 {
8308         struct btrfs_delalloc_work *delalloc_work;
8309         struct inode *inode;
8310
8311         delalloc_work = container_of(work, struct btrfs_delalloc_work,
8312                                      work);
8313         inode = delalloc_work->inode;
8314         if (delalloc_work->wait) {
8315                 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8316         } else {
8317                 filemap_flush(inode->i_mapping);
8318                 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8319                              &BTRFS_I(inode)->runtime_flags))
8320                         filemap_flush(inode->i_mapping);
8321         }
8322
8323         if (delalloc_work->delay_iput)
8324                 btrfs_add_delayed_iput(inode);
8325         else
8326                 iput(inode);
8327         complete(&delalloc_work->completion);
8328 }
8329
8330 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8331                                                     int wait, int delay_iput)
8332 {
8333         struct btrfs_delalloc_work *work;
8334
8335         work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8336         if (!work)
8337                 return NULL;
8338
8339         init_completion(&work->completion);
8340         INIT_LIST_HEAD(&work->list);
8341         work->inode = inode;
8342         work->wait = wait;
8343         work->delay_iput = delay_iput;
8344         work->work.func = btrfs_run_delalloc_work;
8345
8346         return work;
8347 }
8348
8349 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8350 {
8351         wait_for_completion(&work->completion);
8352         kmem_cache_free(btrfs_delalloc_work_cachep, work);
8353 }
8354
8355 /*
8356  * some fairly slow code that needs optimization. This walks the list
8357  * of all the inodes with pending delalloc and forces them to disk.
8358  */
8359 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8360 {
8361         struct btrfs_inode *binode;
8362         struct inode *inode;
8363         struct btrfs_delalloc_work *work, *next;
8364         struct list_head works;
8365         struct list_head splice;
8366         int ret = 0;
8367
8368         INIT_LIST_HEAD(&works);
8369         INIT_LIST_HEAD(&splice);
8370
8371         spin_lock(&root->delalloc_lock);
8372         list_splice_init(&root->delalloc_inodes, &splice);
8373         while (!list_empty(&splice)) {
8374                 binode = list_entry(splice.next, struct btrfs_inode,
8375                                     delalloc_inodes);
8376
8377                 list_move_tail(&binode->delalloc_inodes,
8378                                &root->delalloc_inodes);
8379                 inode = igrab(&binode->vfs_inode);
8380                 if (!inode) {
8381                         cond_resched_lock(&root->delalloc_lock);
8382                         continue;
8383                 }
8384                 spin_unlock(&root->delalloc_lock);
8385
8386                 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8387                 if (unlikely(!work)) {
8388                         if (delay_iput)
8389                                 btrfs_add_delayed_iput(inode);
8390                         else
8391                                 iput(inode);
8392                         ret = -ENOMEM;
8393                         goto out;
8394                 }
8395                 list_add_tail(&work->list, &works);
8396                 btrfs_queue_worker(&root->fs_info->flush_workers,
8397                                    &work->work);
8398
8399                 cond_resched();
8400                 spin_lock(&root->delalloc_lock);
8401         }
8402         spin_unlock(&root->delalloc_lock);
8403
8404         list_for_each_entry_safe(work, next, &works, list) {
8405                 list_del_init(&work->list);
8406                 btrfs_wait_and_free_delalloc_work(work);
8407         }
8408         return 0;
8409 out:
8410         list_for_each_entry_safe(work, next, &works, list) {
8411                 list_del_init(&work->list);
8412                 btrfs_wait_and_free_delalloc_work(work);
8413         }
8414
8415         if (!list_empty_careful(&splice)) {
8416                 spin_lock(&root->delalloc_lock);
8417                 list_splice_tail(&splice, &root->delalloc_inodes);
8418                 spin_unlock(&root->delalloc_lock);
8419         }
8420         return ret;
8421 }
8422
8423 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8424 {
8425         int ret;
8426
8427         if (root->fs_info->sb->s_flags & MS_RDONLY)
8428                 return -EROFS;
8429
8430         ret = __start_delalloc_inodes(root, delay_iput);
8431         /*
8432          * the filemap_flush will queue IO into the worker threads, but
8433          * we have to make sure the IO is actually started and that
8434          * ordered extents get created before we return
8435          */
8436         atomic_inc(&root->fs_info->async_submit_draining);
8437         while (atomic_read(&root->fs_info->nr_async_submits) ||
8438               atomic_read(&root->fs_info->async_delalloc_pages)) {
8439                 wait_event(root->fs_info->async_submit_wait,
8440                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8441                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8442         }
8443         atomic_dec(&root->fs_info->async_submit_draining);
8444         return ret;
8445 }
8446
8447 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput)
8448 {
8449         struct btrfs_root *root;
8450         struct list_head splice;
8451         int ret;
8452
8453         if (fs_info->sb->s_flags & MS_RDONLY)
8454                 return -EROFS;
8455
8456         INIT_LIST_HEAD(&splice);
8457
8458         spin_lock(&fs_info->delalloc_root_lock);
8459         list_splice_init(&fs_info->delalloc_roots, &splice);
8460         while (!list_empty(&splice)) {
8461                 root = list_first_entry(&splice, struct btrfs_root,
8462                                         delalloc_root);
8463                 root = btrfs_grab_fs_root(root);
8464                 BUG_ON(!root);
8465                 list_move_tail(&root->delalloc_root,
8466                                &fs_info->delalloc_roots);
8467                 spin_unlock(&fs_info->delalloc_root_lock);
8468
8469                 ret = __start_delalloc_inodes(root, delay_iput);
8470                 btrfs_put_fs_root(root);
8471                 if (ret)
8472                         goto out;
8473
8474                 spin_lock(&fs_info->delalloc_root_lock);
8475         }
8476         spin_unlock(&fs_info->delalloc_root_lock);
8477
8478         atomic_inc(&fs_info->async_submit_draining);
8479         while (atomic_read(&fs_info->nr_async_submits) ||
8480               atomic_read(&fs_info->async_delalloc_pages)) {
8481                 wait_event(fs_info->async_submit_wait,
8482                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
8483                     atomic_read(&fs_info->async_delalloc_pages) == 0));
8484         }
8485         atomic_dec(&fs_info->async_submit_draining);
8486         return 0;
8487 out:
8488         if (!list_empty_careful(&splice)) {
8489                 spin_lock(&fs_info->delalloc_root_lock);
8490                 list_splice_tail(&splice, &fs_info->delalloc_roots);
8491                 spin_unlock(&fs_info->delalloc_root_lock);
8492         }
8493         return ret;
8494 }
8495
8496 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8497                          const char *symname)
8498 {
8499         struct btrfs_trans_handle *trans;
8500         struct btrfs_root *root = BTRFS_I(dir)->root;
8501         struct btrfs_path *path;
8502         struct btrfs_key key;
8503         struct inode *inode = NULL;
8504         int err;
8505         int drop_inode = 0;
8506         u64 objectid;
8507         u64 index = 0;
8508         int name_len;
8509         int datasize;
8510         unsigned long ptr;
8511         struct btrfs_file_extent_item *ei;
8512         struct extent_buffer *leaf;
8513
8514         name_len = strlen(symname);
8515         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8516                 return -ENAMETOOLONG;
8517
8518         /*
8519          * 2 items for inode item and ref
8520          * 2 items for dir items
8521          * 1 item for xattr if selinux is on
8522          */
8523         trans = btrfs_start_transaction(root, 5);
8524         if (IS_ERR(trans))
8525                 return PTR_ERR(trans);
8526
8527         err = btrfs_find_free_ino(root, &objectid);
8528         if (err)
8529                 goto out_unlock;
8530
8531         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8532                                 dentry->d_name.len, btrfs_ino(dir), objectid,
8533                                 S_IFLNK|S_IRWXUGO, &index);
8534         if (IS_ERR(inode)) {
8535                 err = PTR_ERR(inode);
8536                 goto out_unlock;
8537         }
8538
8539         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8540         if (err) {
8541                 drop_inode = 1;
8542                 goto out_unlock;
8543         }
8544
8545         /*
8546         * If the active LSM wants to access the inode during
8547         * d_instantiate it needs these. Smack checks to see
8548         * if the filesystem supports xattrs by looking at the
8549         * ops vector.
8550         */
8551         inode->i_fop = &btrfs_file_operations;
8552         inode->i_op = &btrfs_file_inode_operations;
8553
8554         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8555         if (err)
8556                 drop_inode = 1;
8557         else {
8558                 inode->i_mapping->a_ops = &btrfs_aops;
8559                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8560                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8561         }
8562         if (drop_inode)
8563                 goto out_unlock;
8564
8565         path = btrfs_alloc_path();
8566         if (!path) {
8567                 err = -ENOMEM;
8568                 drop_inode = 1;
8569                 goto out_unlock;
8570         }
8571         key.objectid = btrfs_ino(inode);
8572         key.offset = 0;
8573         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8574         datasize = btrfs_file_extent_calc_inline_size(name_len);
8575         err = btrfs_insert_empty_item(trans, root, path, &key,
8576                                       datasize);
8577         if (err) {
8578                 drop_inode = 1;
8579                 btrfs_free_path(path);
8580                 goto out_unlock;
8581         }
8582         leaf = path->nodes[0];
8583         ei = btrfs_item_ptr(leaf, path->slots[0],
8584                             struct btrfs_file_extent_item);
8585         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8586         btrfs_set_file_extent_type(leaf, ei,
8587                                    BTRFS_FILE_EXTENT_INLINE);
8588         btrfs_set_file_extent_encryption(leaf, ei, 0);
8589         btrfs_set_file_extent_compression(leaf, ei, 0);
8590         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8591         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8592
8593         ptr = btrfs_file_extent_inline_start(ei);
8594         write_extent_buffer(leaf, symname, ptr, name_len);
8595         btrfs_mark_buffer_dirty(leaf);
8596         btrfs_free_path(path);
8597
8598         inode->i_op = &btrfs_symlink_inode_operations;
8599         inode->i_mapping->a_ops = &btrfs_symlink_aops;
8600         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8601         inode_set_bytes(inode, name_len);
8602         btrfs_i_size_write(inode, name_len);
8603         err = btrfs_update_inode(trans, root, inode);
8604         if (err)
8605                 drop_inode = 1;
8606
8607 out_unlock:
8608         if (!err)
8609                 d_instantiate(dentry, inode);
8610         btrfs_end_transaction(trans, root);
8611         if (drop_inode) {
8612                 inode_dec_link_count(inode);
8613                 iput(inode);
8614         }
8615         btrfs_btree_balance_dirty(root);
8616         return err;
8617 }
8618
8619 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8620                                        u64 start, u64 num_bytes, u64 min_size,
8621                                        loff_t actual_len, u64 *alloc_hint,
8622                                        struct btrfs_trans_handle *trans)
8623 {
8624         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8625         struct extent_map *em;
8626         struct btrfs_root *root = BTRFS_I(inode)->root;
8627         struct btrfs_key ins;
8628         u64 cur_offset = start;
8629         u64 i_size;
8630         u64 cur_bytes;
8631         int ret = 0;
8632         bool own_trans = true;
8633
8634         if (trans)
8635                 own_trans = false;
8636         while (num_bytes > 0) {
8637                 if (own_trans) {
8638                         trans = btrfs_start_transaction(root, 3);
8639                         if (IS_ERR(trans)) {
8640                                 ret = PTR_ERR(trans);
8641                                 break;
8642                         }
8643                 }
8644
8645                 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8646                 cur_bytes = max(cur_bytes, min_size);
8647                 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8648                                            *alloc_hint, &ins, 1);
8649                 if (ret) {
8650                         if (own_trans)
8651                                 btrfs_end_transaction(trans, root);
8652                         break;
8653                 }
8654
8655                 ret = insert_reserved_file_extent(trans, inode,
8656                                                   cur_offset, ins.objectid,
8657                                                   ins.offset, ins.offset,
8658                                                   ins.offset, 0, 0, 0,
8659                                                   BTRFS_FILE_EXTENT_PREALLOC);
8660                 if (ret) {
8661                         btrfs_free_reserved_extent(root, ins.objectid,
8662                                                    ins.offset);
8663                         btrfs_abort_transaction(trans, root, ret);
8664                         if (own_trans)
8665                                 btrfs_end_transaction(trans, root);
8666                         break;
8667                 }
8668                 btrfs_drop_extent_cache(inode, cur_offset,
8669                                         cur_offset + ins.offset -1, 0);
8670
8671                 em = alloc_extent_map();
8672                 if (!em) {
8673                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8674                                 &BTRFS_I(inode)->runtime_flags);
8675                         goto next;
8676                 }
8677
8678                 em->start = cur_offset;
8679                 em->orig_start = cur_offset;
8680                 em->len = ins.offset;
8681                 em->block_start = ins.objectid;
8682                 em->block_len = ins.offset;
8683                 em->orig_block_len = ins.offset;
8684                 em->ram_bytes = ins.offset;
8685                 em->bdev = root->fs_info->fs_devices->latest_bdev;
8686                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8687                 em->generation = trans->transid;
8688
8689                 while (1) {
8690                         write_lock(&em_tree->lock);
8691                         ret = add_extent_mapping(em_tree, em, 1);
8692                         write_unlock(&em_tree->lock);
8693                         if (ret != -EEXIST)
8694                                 break;
8695                         btrfs_drop_extent_cache(inode, cur_offset,
8696                                                 cur_offset + ins.offset - 1,
8697                                                 0);
8698                 }
8699                 free_extent_map(em);
8700 next:
8701                 num_bytes -= ins.offset;
8702                 cur_offset += ins.offset;
8703                 *alloc_hint = ins.objectid + ins.offset;
8704
8705                 inode_inc_iversion(inode);
8706                 inode->i_ctime = CURRENT_TIME;
8707                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8708                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8709                     (actual_len > inode->i_size) &&
8710                     (cur_offset > inode->i_size)) {
8711                         if (cur_offset > actual_len)
8712                                 i_size = actual_len;
8713                         else
8714                                 i_size = cur_offset;
8715                         i_size_write(inode, i_size);
8716                         btrfs_ordered_update_i_size(inode, i_size, NULL);
8717                 }
8718
8719                 ret = btrfs_update_inode(trans, root, inode);
8720
8721                 if (ret) {
8722                         btrfs_abort_transaction(trans, root, ret);
8723                         if (own_trans)
8724                                 btrfs_end_transaction(trans, root);
8725                         break;
8726                 }
8727
8728                 if (own_trans)
8729                         btrfs_end_transaction(trans, root);
8730         }
8731         return ret;
8732 }
8733
8734 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8735                               u64 start, u64 num_bytes, u64 min_size,
8736                               loff_t actual_len, u64 *alloc_hint)
8737 {
8738         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8739                                            min_size, actual_len, alloc_hint,
8740                                            NULL);
8741 }
8742
8743 int btrfs_prealloc_file_range_trans(struct inode *inode,
8744                                     struct btrfs_trans_handle *trans, int mode,
8745                                     u64 start, u64 num_bytes, u64 min_size,
8746                                     loff_t actual_len, u64 *alloc_hint)
8747 {
8748         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8749                                            min_size, actual_len, alloc_hint, trans);
8750 }
8751
8752 static int btrfs_set_page_dirty(struct page *page)
8753 {
8754         return __set_page_dirty_nobuffers(page);
8755 }
8756
8757 static int btrfs_permission(struct inode *inode, int mask)
8758 {
8759         struct btrfs_root *root = BTRFS_I(inode)->root;
8760         umode_t mode = inode->i_mode;
8761
8762         if (mask & MAY_WRITE &&
8763             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8764                 if (btrfs_root_readonly(root))
8765                         return -EROFS;
8766                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8767                         return -EACCES;
8768         }
8769         return generic_permission(inode, mask);
8770 }
8771
8772 static const struct inode_operations btrfs_dir_inode_operations = {
8773         .getattr        = btrfs_getattr,
8774         .lookup         = btrfs_lookup,
8775         .create         = btrfs_create,
8776         .unlink         = btrfs_unlink,
8777         .link           = btrfs_link,
8778         .mkdir          = btrfs_mkdir,
8779         .rmdir          = btrfs_rmdir,
8780         .rename         = btrfs_rename,
8781         .symlink        = btrfs_symlink,
8782         .setattr        = btrfs_setattr,
8783         .mknod          = btrfs_mknod,
8784         .setxattr       = btrfs_setxattr,
8785         .getxattr       = btrfs_getxattr,
8786         .listxattr      = btrfs_listxattr,
8787         .removexattr    = btrfs_removexattr,
8788         .permission     = btrfs_permission,
8789         .get_acl        = btrfs_get_acl,
8790         .update_time    = btrfs_update_time,
8791 };
8792 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8793         .lookup         = btrfs_lookup,
8794         .permission     = btrfs_permission,
8795         .get_acl        = btrfs_get_acl,
8796         .update_time    = btrfs_update_time,
8797 };
8798
8799 static const struct file_operations btrfs_dir_file_operations = {
8800         .llseek         = generic_file_llseek,
8801         .read           = generic_read_dir,
8802         .iterate        = btrfs_real_readdir,
8803         .unlocked_ioctl = btrfs_ioctl,
8804 #ifdef CONFIG_COMPAT
8805         .compat_ioctl   = btrfs_ioctl,
8806 #endif
8807         .release        = btrfs_release_file,
8808         .fsync          = btrfs_sync_file,
8809 };
8810
8811 static struct extent_io_ops btrfs_extent_io_ops = {
8812         .fill_delalloc = run_delalloc_range,
8813         .submit_bio_hook = btrfs_submit_bio_hook,
8814         .merge_bio_hook = btrfs_merge_bio_hook,
8815         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8816         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8817         .writepage_start_hook = btrfs_writepage_start_hook,
8818         .set_bit_hook = btrfs_set_bit_hook,
8819         .clear_bit_hook = btrfs_clear_bit_hook,
8820         .merge_extent_hook = btrfs_merge_extent_hook,
8821         .split_extent_hook = btrfs_split_extent_hook,
8822 };
8823
8824 /*
8825  * btrfs doesn't support the bmap operation because swapfiles
8826  * use bmap to make a mapping of extents in the file.  They assume
8827  * these extents won't change over the life of the file and they
8828  * use the bmap result to do IO directly to the drive.
8829  *
8830  * the btrfs bmap call would return logical addresses that aren't
8831  * suitable for IO and they also will change frequently as COW
8832  * operations happen.  So, swapfile + btrfs == corruption.
8833  *
8834  * For now we're avoiding this by dropping bmap.
8835  */
8836 static const struct address_space_operations btrfs_aops = {
8837         .readpage       = btrfs_readpage,
8838         .writepage      = btrfs_writepage,
8839         .writepages     = btrfs_writepages,
8840         .readpages      = btrfs_readpages,
8841         .direct_IO      = btrfs_direct_IO,
8842         .invalidatepage = btrfs_invalidatepage,
8843         .releasepage    = btrfs_releasepage,
8844         .set_page_dirty = btrfs_set_page_dirty,
8845         .error_remove_page = generic_error_remove_page,
8846 };
8847
8848 static const struct address_space_operations btrfs_symlink_aops = {
8849         .readpage       = btrfs_readpage,
8850         .writepage      = btrfs_writepage,
8851         .invalidatepage = btrfs_invalidatepage,
8852         .releasepage    = btrfs_releasepage,
8853 };
8854
8855 static const struct inode_operations btrfs_file_inode_operations = {
8856         .getattr        = btrfs_getattr,
8857         .setattr        = btrfs_setattr,
8858         .setxattr       = btrfs_setxattr,
8859         .getxattr       = btrfs_getxattr,
8860         .listxattr      = btrfs_listxattr,
8861         .removexattr    = btrfs_removexattr,
8862         .permission     = btrfs_permission,
8863         .fiemap         = btrfs_fiemap,
8864         .get_acl        = btrfs_get_acl,
8865         .update_time    = btrfs_update_time,
8866 };
8867 static const struct inode_operations btrfs_special_inode_operations = {
8868         .getattr        = btrfs_getattr,
8869         .setattr        = btrfs_setattr,
8870         .permission     = btrfs_permission,
8871         .setxattr       = btrfs_setxattr,
8872         .getxattr       = btrfs_getxattr,
8873         .listxattr      = btrfs_listxattr,
8874         .removexattr    = btrfs_removexattr,
8875         .get_acl        = btrfs_get_acl,
8876         .update_time    = btrfs_update_time,
8877 };
8878 static const struct inode_operations btrfs_symlink_inode_operations = {
8879         .readlink       = generic_readlink,
8880         .follow_link    = page_follow_link_light,
8881         .put_link       = page_put_link,
8882         .getattr        = btrfs_getattr,
8883         .setattr        = btrfs_setattr,
8884         .permission     = btrfs_permission,
8885         .setxattr       = btrfs_setxattr,
8886         .getxattr       = btrfs_getxattr,
8887         .listxattr      = btrfs_listxattr,
8888         .removexattr    = btrfs_removexattr,
8889         .get_acl        = btrfs_get_acl,
8890         .update_time    = btrfs_update_time,
8891 };
8892
8893 const struct dentry_operations btrfs_dentry_operations = {
8894         .d_delete       = btrfs_dentry_delete,
8895         .d_release      = btrfs_dentry_release,
8896 };