2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
62 struct btrfs_iget_args {
64 struct btrfs_root *root;
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_dir_ro_inode_operations;
70 static const struct inode_operations btrfs_special_inode_operations;
71 static const struct inode_operations btrfs_file_inode_operations;
72 static const struct address_space_operations btrfs_aops;
73 static const struct address_space_operations btrfs_symlink_aops;
74 static const struct file_operations btrfs_dir_file_operations;
75 static struct extent_io_ops btrfs_extent_io_ops;
77 static struct kmem_cache *btrfs_inode_cachep;
78 static struct kmem_cache *btrfs_delalloc_work_cachep;
79 struct kmem_cache *btrfs_trans_handle_cachep;
80 struct kmem_cache *btrfs_transaction_cachep;
81 struct kmem_cache *btrfs_path_cachep;
82 struct kmem_cache *btrfs_free_space_cachep;
85 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
86 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
87 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
88 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
89 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
90 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
91 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
92 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
96 static int btrfs_truncate(struct inode *inode);
97 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
98 static noinline int cow_file_range(struct inode *inode,
99 struct page *locked_page,
100 u64 start, u64 end, int *page_started,
101 unsigned long *nr_written, int unlock);
102 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
103 u64 len, u64 orig_start,
104 u64 block_start, u64 block_len,
105 u64 orig_block_len, u64 ram_bytes,
108 static int btrfs_dirty_inode(struct inode *inode);
110 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
111 struct inode *inode, struct inode *dir,
112 const struct qstr *qstr)
116 err = btrfs_init_acl(trans, inode, dir);
118 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
123 * this does all the hard work for inserting an inline extent into
124 * the btree. The caller should have done a btrfs_drop_extents so that
125 * no overlapping inline items exist in the btree
127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
128 struct btrfs_root *root, struct inode *inode,
129 u64 start, size_t size, size_t compressed_size,
131 struct page **compressed_pages)
133 struct btrfs_key key;
134 struct btrfs_path *path;
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
139 struct btrfs_file_extent_item *ei;
142 size_t cur_size = size;
144 unsigned long offset;
146 if (compressed_size && compressed_pages)
147 cur_size = compressed_size;
149 path = btrfs_alloc_path();
153 path->leave_spinning = 1;
155 key.objectid = btrfs_ino(inode);
157 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
160 inode_add_bytes(inode, size);
161 ret = btrfs_insert_empty_item(trans, root, path, &key,
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
177 if (compress_type != BTRFS_COMPRESS_NONE) {
180 while (compressed_size > 0) {
181 cpage = compressed_pages[i];
182 cur_size = min_t(unsigned long, compressed_size,
185 kaddr = kmap_atomic(cpage);
186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 kunmap_atomic(kaddr);
191 compressed_size -= cur_size;
193 btrfs_set_file_extent_compression(leaf, ei,
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
199 kaddr = kmap_atomic(page);
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 kunmap_atomic(kaddr);
203 page_cache_release(page);
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_free_path(path);
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
217 BTRFS_I(inode)->disk_i_size = inode->i_size;
218 ret = btrfs_update_inode(trans, root, inode);
222 btrfs_free_path(path);
228 * conditionally insert an inline extent into the file. This
229 * does the checks required to make sure the data is small enough
230 * to fit as an inline extent.
232 static noinline int cow_file_range_inline(struct btrfs_root *root,
233 struct inode *inode, u64 start,
234 u64 end, size_t compressed_size,
236 struct page **compressed_pages)
238 struct btrfs_trans_handle *trans;
239 u64 isize = i_size_read(inode);
240 u64 actual_end = min(end + 1, isize);
241 u64 inline_len = actual_end - start;
242 u64 aligned_end = ALIGN(end, root->sectorsize);
243 u64 data_len = inline_len;
247 data_len = compressed_size;
250 actual_end >= PAGE_CACHE_SIZE ||
251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
253 (actual_end & (root->sectorsize - 1)) == 0) ||
255 data_len > root->fs_info->max_inline) {
259 trans = btrfs_join_transaction(root);
261 return PTR_ERR(trans);
262 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
264 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
266 btrfs_abort_transaction(trans, root, ret);
270 if (isize > actual_end)
271 inline_len = min_t(u64, isize, actual_end);
272 ret = insert_inline_extent(trans, root, inode, start,
273 inline_len, compressed_size,
274 compress_type, compressed_pages);
275 if (ret && ret != -ENOSPC) {
276 btrfs_abort_transaction(trans, root, ret);
278 } else if (ret == -ENOSPC) {
283 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
284 btrfs_delalloc_release_metadata(inode, end + 1 - start);
285 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
287 btrfs_end_transaction(trans, root);
291 struct async_extent {
296 unsigned long nr_pages;
298 struct list_head list;
303 struct btrfs_root *root;
304 struct page *locked_page;
307 struct list_head extents;
308 struct btrfs_work work;
311 static noinline int add_async_extent(struct async_cow *cow,
312 u64 start, u64 ram_size,
315 unsigned long nr_pages,
318 struct async_extent *async_extent;
320 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
321 BUG_ON(!async_extent); /* -ENOMEM */
322 async_extent->start = start;
323 async_extent->ram_size = ram_size;
324 async_extent->compressed_size = compressed_size;
325 async_extent->pages = pages;
326 async_extent->nr_pages = nr_pages;
327 async_extent->compress_type = compress_type;
328 list_add_tail(&async_extent->list, &cow->extents);
333 * we create compressed extents in two phases. The first
334 * phase compresses a range of pages that have already been
335 * locked (both pages and state bits are locked).
337 * This is done inside an ordered work queue, and the compression
338 * is spread across many cpus. The actual IO submission is step
339 * two, and the ordered work queue takes care of making sure that
340 * happens in the same order things were put onto the queue by
341 * writepages and friends.
343 * If this code finds it can't get good compression, it puts an
344 * entry onto the work queue to write the uncompressed bytes. This
345 * makes sure that both compressed inodes and uncompressed inodes
346 * are written in the same order that the flusher thread sent them
349 static noinline int compress_file_range(struct inode *inode,
350 struct page *locked_page,
352 struct async_cow *async_cow,
355 struct btrfs_root *root = BTRFS_I(inode)->root;
357 u64 blocksize = root->sectorsize;
359 u64 isize = i_size_read(inode);
361 struct page **pages = NULL;
362 unsigned long nr_pages;
363 unsigned long nr_pages_ret = 0;
364 unsigned long total_compressed = 0;
365 unsigned long total_in = 0;
366 unsigned long max_compressed = 128 * 1024;
367 unsigned long max_uncompressed = 128 * 1024;
370 int compress_type = root->fs_info->compress_type;
373 /* if this is a small write inside eof, kick off a defrag */
374 if ((end - start + 1) < 16 * 1024 &&
375 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
376 btrfs_add_inode_defrag(NULL, inode);
378 actual_end = min_t(u64, isize, end + 1);
381 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
382 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
385 * we don't want to send crud past the end of i_size through
386 * compression, that's just a waste of CPU time. So, if the
387 * end of the file is before the start of our current
388 * requested range of bytes, we bail out to the uncompressed
389 * cleanup code that can deal with all of this.
391 * It isn't really the fastest way to fix things, but this is a
392 * very uncommon corner.
394 if (actual_end <= start)
395 goto cleanup_and_bail_uncompressed;
397 total_compressed = actual_end - start;
399 /* we want to make sure that amount of ram required to uncompress
400 * an extent is reasonable, so we limit the total size in ram
401 * of a compressed extent to 128k. This is a crucial number
402 * because it also controls how easily we can spread reads across
403 * cpus for decompression.
405 * We also want to make sure the amount of IO required to do
406 * a random read is reasonably small, so we limit the size of
407 * a compressed extent to 128k.
409 total_compressed = min(total_compressed, max_uncompressed);
410 num_bytes = ALIGN(end - start + 1, blocksize);
411 num_bytes = max(blocksize, num_bytes);
416 * we do compression for mount -o compress and when the
417 * inode has not been flagged as nocompress. This flag can
418 * change at any time if we discover bad compression ratios.
420 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
421 (btrfs_test_opt(root, COMPRESS) ||
422 (BTRFS_I(inode)->force_compress) ||
423 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
425 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
427 /* just bail out to the uncompressed code */
431 if (BTRFS_I(inode)->force_compress)
432 compress_type = BTRFS_I(inode)->force_compress;
435 * we need to call clear_page_dirty_for_io on each
436 * page in the range. Otherwise applications with the file
437 * mmap'd can wander in and change the page contents while
438 * we are compressing them.
440 * If the compression fails for any reason, we set the pages
441 * dirty again later on.
443 extent_range_clear_dirty_for_io(inode, start, end);
445 ret = btrfs_compress_pages(compress_type,
446 inode->i_mapping, start,
447 total_compressed, pages,
448 nr_pages, &nr_pages_ret,
454 unsigned long offset = total_compressed &
455 (PAGE_CACHE_SIZE - 1);
456 struct page *page = pages[nr_pages_ret - 1];
459 /* zero the tail end of the last page, we might be
460 * sending it down to disk
463 kaddr = kmap_atomic(page);
464 memset(kaddr + offset, 0,
465 PAGE_CACHE_SIZE - offset);
466 kunmap_atomic(kaddr);
473 /* lets try to make an inline extent */
474 if (ret || total_in < (actual_end - start)) {
475 /* we didn't compress the entire range, try
476 * to make an uncompressed inline extent.
478 ret = cow_file_range_inline(root, inode, start, end,
481 /* try making a compressed inline extent */
482 ret = cow_file_range_inline(root, inode, start, end,
484 compress_type, pages);
487 unsigned long clear_flags = EXTENT_DELALLOC |
489 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
492 * inline extent creation worked or returned error,
493 * we don't need to create any more async work items.
494 * Unlock and free up our temp pages.
496 extent_clear_unlock_delalloc(inode, start, end, NULL,
497 clear_flags, PAGE_UNLOCK |
507 * we aren't doing an inline extent round the compressed size
508 * up to a block size boundary so the allocator does sane
511 total_compressed = ALIGN(total_compressed, blocksize);
514 * one last check to make sure the compression is really a
515 * win, compare the page count read with the blocks on disk
517 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
518 if (total_compressed >= total_in) {
521 num_bytes = total_in;
524 if (!will_compress && pages) {
526 * the compression code ran but failed to make things smaller,
527 * free any pages it allocated and our page pointer array
529 for (i = 0; i < nr_pages_ret; i++) {
530 WARN_ON(pages[i]->mapping);
531 page_cache_release(pages[i]);
535 total_compressed = 0;
538 /* flag the file so we don't compress in the future */
539 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540 !(BTRFS_I(inode)->force_compress)) {
541 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
547 /* the async work queues will take care of doing actual
548 * allocation on disk for these compressed pages,
549 * and will submit them to the elevator.
551 add_async_extent(async_cow, start, num_bytes,
552 total_compressed, pages, nr_pages_ret,
555 if (start + num_bytes < end) {
562 cleanup_and_bail_uncompressed:
564 * No compression, but we still need to write the pages in
565 * the file we've been given so far. redirty the locked
566 * page if it corresponds to our extent and set things up
567 * for the async work queue to run cow_file_range to do
568 * the normal delalloc dance
570 if (page_offset(locked_page) >= start &&
571 page_offset(locked_page) <= end) {
572 __set_page_dirty_nobuffers(locked_page);
573 /* unlocked later on in the async handlers */
576 extent_range_redirty_for_io(inode, start, end);
577 add_async_extent(async_cow, start, end - start + 1,
578 0, NULL, 0, BTRFS_COMPRESS_NONE);
586 for (i = 0; i < nr_pages_ret; i++) {
587 WARN_ON(pages[i]->mapping);
588 page_cache_release(pages[i]);
596 * phase two of compressed writeback. This is the ordered portion
597 * of the code, which only gets called in the order the work was
598 * queued. We walk all the async extents created by compress_file_range
599 * and send them down to the disk.
601 static noinline int submit_compressed_extents(struct inode *inode,
602 struct async_cow *async_cow)
604 struct async_extent *async_extent;
606 struct btrfs_key ins;
607 struct extent_map *em;
608 struct btrfs_root *root = BTRFS_I(inode)->root;
609 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
610 struct extent_io_tree *io_tree;
613 if (list_empty(&async_cow->extents))
617 while (!list_empty(&async_cow->extents)) {
618 async_extent = list_entry(async_cow->extents.next,
619 struct async_extent, list);
620 list_del(&async_extent->list);
622 io_tree = &BTRFS_I(inode)->io_tree;
625 /* did the compression code fall back to uncompressed IO? */
626 if (!async_extent->pages) {
627 int page_started = 0;
628 unsigned long nr_written = 0;
630 lock_extent(io_tree, async_extent->start,
631 async_extent->start +
632 async_extent->ram_size - 1);
634 /* allocate blocks */
635 ret = cow_file_range(inode, async_cow->locked_page,
637 async_extent->start +
638 async_extent->ram_size - 1,
639 &page_started, &nr_written, 0);
644 * if page_started, cow_file_range inserted an
645 * inline extent and took care of all the unlocking
646 * and IO for us. Otherwise, we need to submit
647 * all those pages down to the drive.
649 if (!page_started && !ret)
650 extent_write_locked_range(io_tree,
651 inode, async_extent->start,
652 async_extent->start +
653 async_extent->ram_size - 1,
657 unlock_page(async_cow->locked_page);
663 lock_extent(io_tree, async_extent->start,
664 async_extent->start + async_extent->ram_size - 1);
666 ret = btrfs_reserve_extent(root,
667 async_extent->compressed_size,
668 async_extent->compressed_size,
669 0, alloc_hint, &ins, 1);
673 for (i = 0; i < async_extent->nr_pages; i++) {
674 WARN_ON(async_extent->pages[i]->mapping);
675 page_cache_release(async_extent->pages[i]);
677 kfree(async_extent->pages);
678 async_extent->nr_pages = 0;
679 async_extent->pages = NULL;
681 if (ret == -ENOSPC) {
682 unlock_extent(io_tree, async_extent->start,
683 async_extent->start +
684 async_extent->ram_size - 1);
691 * here we're doing allocation and writeback of the
694 btrfs_drop_extent_cache(inode, async_extent->start,
695 async_extent->start +
696 async_extent->ram_size - 1, 0);
698 em = alloc_extent_map();
701 goto out_free_reserve;
703 em->start = async_extent->start;
704 em->len = async_extent->ram_size;
705 em->orig_start = em->start;
706 em->mod_start = em->start;
707 em->mod_len = em->len;
709 em->block_start = ins.objectid;
710 em->block_len = ins.offset;
711 em->orig_block_len = ins.offset;
712 em->ram_bytes = async_extent->ram_size;
713 em->bdev = root->fs_info->fs_devices->latest_bdev;
714 em->compress_type = async_extent->compress_type;
715 set_bit(EXTENT_FLAG_PINNED, &em->flags);
716 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
720 write_lock(&em_tree->lock);
721 ret = add_extent_mapping(em_tree, em, 1);
722 write_unlock(&em_tree->lock);
723 if (ret != -EEXIST) {
727 btrfs_drop_extent_cache(inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1, 0);
733 goto out_free_reserve;
735 ret = btrfs_add_ordered_extent_compress(inode,
738 async_extent->ram_size,
740 BTRFS_ORDERED_COMPRESSED,
741 async_extent->compress_type);
743 goto out_free_reserve;
746 * clear dirty, set writeback and unlock the pages.
748 extent_clear_unlock_delalloc(inode, async_extent->start,
749 async_extent->start +
750 async_extent->ram_size - 1,
751 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
752 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
754 ret = btrfs_submit_compressed_write(inode,
756 async_extent->ram_size,
758 ins.offset, async_extent->pages,
759 async_extent->nr_pages);
760 alloc_hint = ins.objectid + ins.offset;
770 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
772 extent_clear_unlock_delalloc(inode, async_extent->start,
773 async_extent->start +
774 async_extent->ram_size - 1,
775 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
776 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
777 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
778 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
783 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
786 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
787 struct extent_map *em;
790 read_lock(&em_tree->lock);
791 em = search_extent_mapping(em_tree, start, num_bytes);
794 * if block start isn't an actual block number then find the
795 * first block in this inode and use that as a hint. If that
796 * block is also bogus then just don't worry about it.
798 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
800 em = search_extent_mapping(em_tree, 0, 0);
801 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
802 alloc_hint = em->block_start;
806 alloc_hint = em->block_start;
810 read_unlock(&em_tree->lock);
816 * when extent_io.c finds a delayed allocation range in the file,
817 * the call backs end up in this code. The basic idea is to
818 * allocate extents on disk for the range, and create ordered data structs
819 * in ram to track those extents.
821 * locked_page is the page that writepage had locked already. We use
822 * it to make sure we don't do extra locks or unlocks.
824 * *page_started is set to one if we unlock locked_page and do everything
825 * required to start IO on it. It may be clean and already done with
828 static noinline int cow_file_range(struct inode *inode,
829 struct page *locked_page,
830 u64 start, u64 end, int *page_started,
831 unsigned long *nr_written,
834 struct btrfs_root *root = BTRFS_I(inode)->root;
837 unsigned long ram_size;
840 u64 blocksize = root->sectorsize;
841 struct btrfs_key ins;
842 struct extent_map *em;
843 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
846 if (btrfs_is_free_space_inode(inode)) {
851 num_bytes = ALIGN(end - start + 1, blocksize);
852 num_bytes = max(blocksize, num_bytes);
853 disk_num_bytes = num_bytes;
855 /* if this is a small write inside eof, kick off defrag */
856 if (num_bytes < 64 * 1024 &&
857 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
858 btrfs_add_inode_defrag(NULL, inode);
861 /* lets try to make an inline extent */
862 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
865 extent_clear_unlock_delalloc(inode, start, end, NULL,
866 EXTENT_LOCKED | EXTENT_DELALLOC |
867 EXTENT_DEFRAG, PAGE_UNLOCK |
868 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
871 *nr_written = *nr_written +
872 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
875 } else if (ret < 0) {
880 BUG_ON(disk_num_bytes >
881 btrfs_super_total_bytes(root->fs_info->super_copy));
883 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
884 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
886 while (disk_num_bytes > 0) {
889 cur_alloc_size = disk_num_bytes;
890 ret = btrfs_reserve_extent(root, cur_alloc_size,
891 root->sectorsize, 0, alloc_hint,
896 em = alloc_extent_map();
902 em->orig_start = em->start;
903 ram_size = ins.offset;
904 em->len = ins.offset;
905 em->mod_start = em->start;
906 em->mod_len = em->len;
908 em->block_start = ins.objectid;
909 em->block_len = ins.offset;
910 em->orig_block_len = ins.offset;
911 em->ram_bytes = ram_size;
912 em->bdev = root->fs_info->fs_devices->latest_bdev;
913 set_bit(EXTENT_FLAG_PINNED, &em->flags);
917 write_lock(&em_tree->lock);
918 ret = add_extent_mapping(em_tree, em, 1);
919 write_unlock(&em_tree->lock);
920 if (ret != -EEXIST) {
924 btrfs_drop_extent_cache(inode, start,
925 start + ram_size - 1, 0);
930 cur_alloc_size = ins.offset;
931 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
932 ram_size, cur_alloc_size, 0);
936 if (root->root_key.objectid ==
937 BTRFS_DATA_RELOC_TREE_OBJECTID) {
938 ret = btrfs_reloc_clone_csums(inode, start,
944 if (disk_num_bytes < cur_alloc_size)
947 /* we're not doing compressed IO, don't unlock the first
948 * page (which the caller expects to stay locked), don't
949 * clear any dirty bits and don't set any writeback bits
951 * Do set the Private2 bit so we know this page was properly
952 * setup for writepage
954 op = unlock ? PAGE_UNLOCK : 0;
955 op |= PAGE_SET_PRIVATE2;
957 extent_clear_unlock_delalloc(inode, start,
958 start + ram_size - 1, locked_page,
959 EXTENT_LOCKED | EXTENT_DELALLOC,
961 disk_num_bytes -= cur_alloc_size;
962 num_bytes -= cur_alloc_size;
963 alloc_hint = ins.objectid + ins.offset;
964 start += cur_alloc_size;
970 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
972 extent_clear_unlock_delalloc(inode, start, end, locked_page,
973 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
974 EXTENT_DELALLOC | EXTENT_DEFRAG,
975 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
976 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
981 * work queue call back to started compression on a file and pages
983 static noinline void async_cow_start(struct btrfs_work *work)
985 struct async_cow *async_cow;
987 async_cow = container_of(work, struct async_cow, work);
989 compress_file_range(async_cow->inode, async_cow->locked_page,
990 async_cow->start, async_cow->end, async_cow,
992 if (num_added == 0) {
993 btrfs_add_delayed_iput(async_cow->inode);
994 async_cow->inode = NULL;
999 * work queue call back to submit previously compressed pages
1001 static noinline void async_cow_submit(struct btrfs_work *work)
1003 struct async_cow *async_cow;
1004 struct btrfs_root *root;
1005 unsigned long nr_pages;
1007 async_cow = container_of(work, struct async_cow, work);
1009 root = async_cow->root;
1010 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1013 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1015 waitqueue_active(&root->fs_info->async_submit_wait))
1016 wake_up(&root->fs_info->async_submit_wait);
1018 if (async_cow->inode)
1019 submit_compressed_extents(async_cow->inode, async_cow);
1022 static noinline void async_cow_free(struct btrfs_work *work)
1024 struct async_cow *async_cow;
1025 async_cow = container_of(work, struct async_cow, work);
1026 if (async_cow->inode)
1027 btrfs_add_delayed_iput(async_cow->inode);
1031 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1032 u64 start, u64 end, int *page_started,
1033 unsigned long *nr_written)
1035 struct async_cow *async_cow;
1036 struct btrfs_root *root = BTRFS_I(inode)->root;
1037 unsigned long nr_pages;
1039 int limit = 10 * 1024 * 1024;
1041 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1042 1, 0, NULL, GFP_NOFS);
1043 while (start < end) {
1044 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1045 BUG_ON(!async_cow); /* -ENOMEM */
1046 async_cow->inode = igrab(inode);
1047 async_cow->root = root;
1048 async_cow->locked_page = locked_page;
1049 async_cow->start = start;
1051 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1054 cur_end = min(end, start + 512 * 1024 - 1);
1056 async_cow->end = cur_end;
1057 INIT_LIST_HEAD(&async_cow->extents);
1059 async_cow->work.func = async_cow_start;
1060 async_cow->work.ordered_func = async_cow_submit;
1061 async_cow->work.ordered_free = async_cow_free;
1062 async_cow->work.flags = 0;
1064 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1066 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1068 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1071 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1072 wait_event(root->fs_info->async_submit_wait,
1073 (atomic_read(&root->fs_info->async_delalloc_pages) <
1077 while (atomic_read(&root->fs_info->async_submit_draining) &&
1078 atomic_read(&root->fs_info->async_delalloc_pages)) {
1079 wait_event(root->fs_info->async_submit_wait,
1080 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1084 *nr_written += nr_pages;
1085 start = cur_end + 1;
1091 static noinline int csum_exist_in_range(struct btrfs_root *root,
1092 u64 bytenr, u64 num_bytes)
1095 struct btrfs_ordered_sum *sums;
1098 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1099 bytenr + num_bytes - 1, &list, 0);
1100 if (ret == 0 && list_empty(&list))
1103 while (!list_empty(&list)) {
1104 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1105 list_del(&sums->list);
1112 * when nowcow writeback call back. This checks for snapshots or COW copies
1113 * of the extents that exist in the file, and COWs the file as required.
1115 * If no cow copies or snapshots exist, we write directly to the existing
1118 static noinline int run_delalloc_nocow(struct inode *inode,
1119 struct page *locked_page,
1120 u64 start, u64 end, int *page_started, int force,
1121 unsigned long *nr_written)
1123 struct btrfs_root *root = BTRFS_I(inode)->root;
1124 struct btrfs_trans_handle *trans;
1125 struct extent_buffer *leaf;
1126 struct btrfs_path *path;
1127 struct btrfs_file_extent_item *fi;
1128 struct btrfs_key found_key;
1143 u64 ino = btrfs_ino(inode);
1145 path = btrfs_alloc_path();
1147 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1148 EXTENT_LOCKED | EXTENT_DELALLOC |
1149 EXTENT_DO_ACCOUNTING |
1150 EXTENT_DEFRAG, PAGE_UNLOCK |
1152 PAGE_SET_WRITEBACK |
1153 PAGE_END_WRITEBACK);
1157 nolock = btrfs_is_free_space_inode(inode);
1160 trans = btrfs_join_transaction_nolock(root);
1162 trans = btrfs_join_transaction(root);
1164 if (IS_ERR(trans)) {
1165 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166 EXTENT_LOCKED | EXTENT_DELALLOC |
1167 EXTENT_DO_ACCOUNTING |
1168 EXTENT_DEFRAG, PAGE_UNLOCK |
1170 PAGE_SET_WRITEBACK |
1171 PAGE_END_WRITEBACK);
1172 btrfs_free_path(path);
1173 return PTR_ERR(trans);
1176 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1178 cow_start = (u64)-1;
1181 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
1189 if (found_key.objectid == ino &&
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
1202 leaf = path->nodes[0];
1208 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1210 if (found_key.objectid > ino ||
1211 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1212 found_key.offset > end)
1215 if (found_key.offset > cur_offset) {
1216 extent_end = found_key.offset;
1221 fi = btrfs_item_ptr(leaf, path->slots[0],
1222 struct btrfs_file_extent_item);
1223 extent_type = btrfs_file_extent_type(leaf, fi);
1225 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1226 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1227 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1228 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1229 extent_offset = btrfs_file_extent_offset(leaf, fi);
1230 extent_end = found_key.offset +
1231 btrfs_file_extent_num_bytes(leaf, fi);
1233 btrfs_file_extent_disk_num_bytes(leaf, fi);
1234 if (extent_end <= start) {
1238 if (disk_bytenr == 0)
1240 if (btrfs_file_extent_compression(leaf, fi) ||
1241 btrfs_file_extent_encryption(leaf, fi) ||
1242 btrfs_file_extent_other_encoding(leaf, fi))
1244 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1246 if (btrfs_extent_readonly(root, disk_bytenr))
1248 if (btrfs_cross_ref_exist(trans, root, ino,
1250 extent_offset, disk_bytenr))
1252 disk_bytenr += extent_offset;
1253 disk_bytenr += cur_offset - found_key.offset;
1254 num_bytes = min(end + 1, extent_end) - cur_offset;
1256 * force cow if csum exists in the range.
1257 * this ensure that csum for a given extent are
1258 * either valid or do not exist.
1260 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1263 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1264 extent_end = found_key.offset +
1265 btrfs_file_extent_inline_len(leaf, fi);
1266 extent_end = ALIGN(extent_end, root->sectorsize);
1271 if (extent_end <= start) {
1276 if (cow_start == (u64)-1)
1277 cow_start = cur_offset;
1278 cur_offset = extent_end;
1279 if (cur_offset > end)
1285 btrfs_release_path(path);
1286 if (cow_start != (u64)-1) {
1287 ret = cow_file_range(inode, locked_page,
1288 cow_start, found_key.offset - 1,
1289 page_started, nr_written, 1);
1292 cow_start = (u64)-1;
1295 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1296 struct extent_map *em;
1297 struct extent_map_tree *em_tree;
1298 em_tree = &BTRFS_I(inode)->extent_tree;
1299 em = alloc_extent_map();
1300 BUG_ON(!em); /* -ENOMEM */
1301 em->start = cur_offset;
1302 em->orig_start = found_key.offset - extent_offset;
1303 em->len = num_bytes;
1304 em->block_len = num_bytes;
1305 em->block_start = disk_bytenr;
1306 em->orig_block_len = disk_num_bytes;
1307 em->ram_bytes = ram_bytes;
1308 em->bdev = root->fs_info->fs_devices->latest_bdev;
1309 em->mod_start = em->start;
1310 em->mod_len = em->len;
1311 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1312 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1313 em->generation = -1;
1315 write_lock(&em_tree->lock);
1316 ret = add_extent_mapping(em_tree, em, 1);
1317 write_unlock(&em_tree->lock);
1318 if (ret != -EEXIST) {
1319 free_extent_map(em);
1322 btrfs_drop_extent_cache(inode, em->start,
1323 em->start + em->len - 1, 0);
1325 type = BTRFS_ORDERED_PREALLOC;
1327 type = BTRFS_ORDERED_NOCOW;
1330 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1331 num_bytes, num_bytes, type);
1332 BUG_ON(ret); /* -ENOMEM */
1334 if (root->root_key.objectid ==
1335 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1336 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1342 extent_clear_unlock_delalloc(inode, cur_offset,
1343 cur_offset + num_bytes - 1,
1344 locked_page, EXTENT_LOCKED |
1345 EXTENT_DELALLOC, PAGE_UNLOCK |
1347 cur_offset = extent_end;
1348 if (cur_offset > end)
1351 btrfs_release_path(path);
1353 if (cur_offset <= end && cow_start == (u64)-1) {
1354 cow_start = cur_offset;
1358 if (cow_start != (u64)-1) {
1359 ret = cow_file_range(inode, locked_page, cow_start, end,
1360 page_started, nr_written, 1);
1366 err = btrfs_end_transaction(trans, root);
1370 if (ret && cur_offset < end)
1371 extent_clear_unlock_delalloc(inode, cur_offset, end,
1372 locked_page, EXTENT_LOCKED |
1373 EXTENT_DELALLOC | EXTENT_DEFRAG |
1374 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1376 PAGE_SET_WRITEBACK |
1377 PAGE_END_WRITEBACK);
1378 btrfs_free_path(path);
1383 * extent_io.c call back to do delayed allocation processing
1385 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1386 u64 start, u64 end, int *page_started,
1387 unsigned long *nr_written)
1390 struct btrfs_root *root = BTRFS_I(inode)->root;
1392 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1393 ret = run_delalloc_nocow(inode, locked_page, start, end,
1394 page_started, 1, nr_written);
1395 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1396 ret = run_delalloc_nocow(inode, locked_page, start, end,
1397 page_started, 0, nr_written);
1398 } else if (!btrfs_test_opt(root, COMPRESS) &&
1399 !(BTRFS_I(inode)->force_compress) &&
1400 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1401 ret = cow_file_range(inode, locked_page, start, end,
1402 page_started, nr_written, 1);
1404 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1405 &BTRFS_I(inode)->runtime_flags);
1406 ret = cow_file_range_async(inode, locked_page, start, end,
1407 page_started, nr_written);
1412 static void btrfs_split_extent_hook(struct inode *inode,
1413 struct extent_state *orig, u64 split)
1415 /* not delalloc, ignore it */
1416 if (!(orig->state & EXTENT_DELALLOC))
1419 spin_lock(&BTRFS_I(inode)->lock);
1420 BTRFS_I(inode)->outstanding_extents++;
1421 spin_unlock(&BTRFS_I(inode)->lock);
1425 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1426 * extents so we can keep track of new extents that are just merged onto old
1427 * extents, such as when we are doing sequential writes, so we can properly
1428 * account for the metadata space we'll need.
1430 static void btrfs_merge_extent_hook(struct inode *inode,
1431 struct extent_state *new,
1432 struct extent_state *other)
1434 /* not delalloc, ignore it */
1435 if (!(other->state & EXTENT_DELALLOC))
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents--;
1440 spin_unlock(&BTRFS_I(inode)->lock);
1443 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1444 struct inode *inode)
1446 spin_lock(&root->delalloc_lock);
1447 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1448 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1449 &root->delalloc_inodes);
1450 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1451 &BTRFS_I(inode)->runtime_flags);
1452 root->nr_delalloc_inodes++;
1453 if (root->nr_delalloc_inodes == 1) {
1454 spin_lock(&root->fs_info->delalloc_root_lock);
1455 BUG_ON(!list_empty(&root->delalloc_root));
1456 list_add_tail(&root->delalloc_root,
1457 &root->fs_info->delalloc_roots);
1458 spin_unlock(&root->fs_info->delalloc_root_lock);
1461 spin_unlock(&root->delalloc_lock);
1464 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1465 struct inode *inode)
1467 spin_lock(&root->delalloc_lock);
1468 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1469 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1470 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1471 &BTRFS_I(inode)->runtime_flags);
1472 root->nr_delalloc_inodes--;
1473 if (!root->nr_delalloc_inodes) {
1474 spin_lock(&root->fs_info->delalloc_root_lock);
1475 BUG_ON(list_empty(&root->delalloc_root));
1476 list_del_init(&root->delalloc_root);
1477 spin_unlock(&root->fs_info->delalloc_root_lock);
1480 spin_unlock(&root->delalloc_lock);
1484 * extent_io.c set_bit_hook, used to track delayed allocation
1485 * bytes in this file, and to maintain the list of inodes that
1486 * have pending delalloc work to be done.
1488 static void btrfs_set_bit_hook(struct inode *inode,
1489 struct extent_state *state, unsigned long *bits)
1493 * set_bit and clear bit hooks normally require _irqsave/restore
1494 * but in this case, we are only testing for the DELALLOC
1495 * bit, which is only set or cleared with irqs on
1497 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1498 struct btrfs_root *root = BTRFS_I(inode)->root;
1499 u64 len = state->end + 1 - state->start;
1500 bool do_list = !btrfs_is_free_space_inode(inode);
1502 if (*bits & EXTENT_FIRST_DELALLOC) {
1503 *bits &= ~EXTENT_FIRST_DELALLOC;
1505 spin_lock(&BTRFS_I(inode)->lock);
1506 BTRFS_I(inode)->outstanding_extents++;
1507 spin_unlock(&BTRFS_I(inode)->lock);
1510 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1511 root->fs_info->delalloc_batch);
1512 spin_lock(&BTRFS_I(inode)->lock);
1513 BTRFS_I(inode)->delalloc_bytes += len;
1514 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1515 &BTRFS_I(inode)->runtime_flags))
1516 btrfs_add_delalloc_inodes(root, inode);
1517 spin_unlock(&BTRFS_I(inode)->lock);
1522 * extent_io.c clear_bit_hook, see set_bit_hook for why
1524 static void btrfs_clear_bit_hook(struct inode *inode,
1525 struct extent_state *state,
1526 unsigned long *bits)
1529 * set_bit and clear bit hooks normally require _irqsave/restore
1530 * but in this case, we are only testing for the DELALLOC
1531 * bit, which is only set or cleared with irqs on
1533 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1534 struct btrfs_root *root = BTRFS_I(inode)->root;
1535 u64 len = state->end + 1 - state->start;
1536 bool do_list = !btrfs_is_free_space_inode(inode);
1538 if (*bits & EXTENT_FIRST_DELALLOC) {
1539 *bits &= ~EXTENT_FIRST_DELALLOC;
1540 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1541 spin_lock(&BTRFS_I(inode)->lock);
1542 BTRFS_I(inode)->outstanding_extents--;
1543 spin_unlock(&BTRFS_I(inode)->lock);
1547 * We don't reserve metadata space for space cache inodes so we
1548 * don't need to call dellalloc_release_metadata if there is an
1551 if (*bits & EXTENT_DO_ACCOUNTING &&
1552 root != root->fs_info->tree_root)
1553 btrfs_delalloc_release_metadata(inode, len);
1555 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1556 && do_list && !(state->state & EXTENT_NORESERVE))
1557 btrfs_free_reserved_data_space(inode, len);
1559 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1560 root->fs_info->delalloc_batch);
1561 spin_lock(&BTRFS_I(inode)->lock);
1562 BTRFS_I(inode)->delalloc_bytes -= len;
1563 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1564 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1565 &BTRFS_I(inode)->runtime_flags))
1566 btrfs_del_delalloc_inode(root, inode);
1567 spin_unlock(&BTRFS_I(inode)->lock);
1572 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1573 * we don't create bios that span stripes or chunks
1575 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1576 size_t size, struct bio *bio,
1577 unsigned long bio_flags)
1579 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1580 u64 logical = (u64)bio->bi_sector << 9;
1585 if (bio_flags & EXTENT_BIO_COMPRESSED)
1588 length = bio->bi_size;
1589 map_length = length;
1590 ret = btrfs_map_block(root->fs_info, rw, logical,
1591 &map_length, NULL, 0);
1592 /* Will always return 0 with map_multi == NULL */
1594 if (map_length < length + size)
1600 * in order to insert checksums into the metadata in large chunks,
1601 * we wait until bio submission time. All the pages in the bio are
1602 * checksummed and sums are attached onto the ordered extent record.
1604 * At IO completion time the cums attached on the ordered extent record
1605 * are inserted into the btree
1607 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1608 struct bio *bio, int mirror_num,
1609 unsigned long bio_flags,
1612 struct btrfs_root *root = BTRFS_I(inode)->root;
1615 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1616 BUG_ON(ret); /* -ENOMEM */
1621 * in order to insert checksums into the metadata in large chunks,
1622 * we wait until bio submission time. All the pages in the bio are
1623 * checksummed and sums are attached onto the ordered extent record.
1625 * At IO completion time the cums attached on the ordered extent record
1626 * are inserted into the btree
1628 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1629 int mirror_num, unsigned long bio_flags,
1632 struct btrfs_root *root = BTRFS_I(inode)->root;
1635 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1637 bio_endio(bio, ret);
1642 * extent_io.c submission hook. This does the right thing for csum calculation
1643 * on write, or reading the csums from the tree before a read
1645 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1646 int mirror_num, unsigned long bio_flags,
1649 struct btrfs_root *root = BTRFS_I(inode)->root;
1653 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1655 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1657 if (btrfs_is_free_space_inode(inode))
1660 if (!(rw & REQ_WRITE)) {
1661 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1665 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1666 ret = btrfs_submit_compressed_read(inode, bio,
1670 } else if (!skip_sum) {
1671 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1676 } else if (async && !skip_sum) {
1677 /* csum items have already been cloned */
1678 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1680 /* we're doing a write, do the async checksumming */
1681 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1682 inode, rw, bio, mirror_num,
1683 bio_flags, bio_offset,
1684 __btrfs_submit_bio_start,
1685 __btrfs_submit_bio_done);
1687 } else if (!skip_sum) {
1688 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1694 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1698 bio_endio(bio, ret);
1703 * given a list of ordered sums record them in the inode. This happens
1704 * at IO completion time based on sums calculated at bio submission time.
1706 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1707 struct inode *inode, u64 file_offset,
1708 struct list_head *list)
1710 struct btrfs_ordered_sum *sum;
1712 list_for_each_entry(sum, list, list) {
1713 trans->adding_csums = 1;
1714 btrfs_csum_file_blocks(trans,
1715 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1716 trans->adding_csums = 0;
1721 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1722 struct extent_state **cached_state)
1724 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1725 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1726 cached_state, GFP_NOFS);
1729 /* see btrfs_writepage_start_hook for details on why this is required */
1730 struct btrfs_writepage_fixup {
1732 struct btrfs_work work;
1735 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1737 struct btrfs_writepage_fixup *fixup;
1738 struct btrfs_ordered_extent *ordered;
1739 struct extent_state *cached_state = NULL;
1741 struct inode *inode;
1746 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1750 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1751 ClearPageChecked(page);
1755 inode = page->mapping->host;
1756 page_start = page_offset(page);
1757 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1759 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1762 /* already ordered? We're done */
1763 if (PagePrivate2(page))
1766 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1768 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1769 page_end, &cached_state, GFP_NOFS);
1771 btrfs_start_ordered_extent(inode, ordered, 1);
1772 btrfs_put_ordered_extent(ordered);
1776 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1778 mapping_set_error(page->mapping, ret);
1779 end_extent_writepage(page, ret, page_start, page_end);
1780 ClearPageChecked(page);
1784 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1785 ClearPageChecked(page);
1786 set_page_dirty(page);
1788 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1789 &cached_state, GFP_NOFS);
1792 page_cache_release(page);
1797 * There are a few paths in the higher layers of the kernel that directly
1798 * set the page dirty bit without asking the filesystem if it is a
1799 * good idea. This causes problems because we want to make sure COW
1800 * properly happens and the data=ordered rules are followed.
1802 * In our case any range that doesn't have the ORDERED bit set
1803 * hasn't been properly setup for IO. We kick off an async process
1804 * to fix it up. The async helper will wait for ordered extents, set
1805 * the delalloc bit and make it safe to write the page.
1807 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1809 struct inode *inode = page->mapping->host;
1810 struct btrfs_writepage_fixup *fixup;
1811 struct btrfs_root *root = BTRFS_I(inode)->root;
1813 /* this page is properly in the ordered list */
1814 if (TestClearPagePrivate2(page))
1817 if (PageChecked(page))
1820 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1824 SetPageChecked(page);
1825 page_cache_get(page);
1826 fixup->work.func = btrfs_writepage_fixup_worker;
1828 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1832 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1833 struct inode *inode, u64 file_pos,
1834 u64 disk_bytenr, u64 disk_num_bytes,
1835 u64 num_bytes, u64 ram_bytes,
1836 u8 compression, u8 encryption,
1837 u16 other_encoding, int extent_type)
1839 struct btrfs_root *root = BTRFS_I(inode)->root;
1840 struct btrfs_file_extent_item *fi;
1841 struct btrfs_path *path;
1842 struct extent_buffer *leaf;
1843 struct btrfs_key ins;
1846 path = btrfs_alloc_path();
1850 path->leave_spinning = 1;
1853 * we may be replacing one extent in the tree with another.
1854 * The new extent is pinned in the extent map, and we don't want
1855 * to drop it from the cache until it is completely in the btree.
1857 * So, tell btrfs_drop_extents to leave this extent in the cache.
1858 * the caller is expected to unpin it and allow it to be merged
1861 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1862 file_pos + num_bytes, 0);
1866 ins.objectid = btrfs_ino(inode);
1867 ins.offset = file_pos;
1868 ins.type = BTRFS_EXTENT_DATA_KEY;
1869 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1872 leaf = path->nodes[0];
1873 fi = btrfs_item_ptr(leaf, path->slots[0],
1874 struct btrfs_file_extent_item);
1875 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1876 btrfs_set_file_extent_type(leaf, fi, extent_type);
1877 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1878 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1879 btrfs_set_file_extent_offset(leaf, fi, 0);
1880 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1881 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1882 btrfs_set_file_extent_compression(leaf, fi, compression);
1883 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1884 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1886 btrfs_mark_buffer_dirty(leaf);
1887 btrfs_release_path(path);
1889 inode_add_bytes(inode, num_bytes);
1891 ins.objectid = disk_bytenr;
1892 ins.offset = disk_num_bytes;
1893 ins.type = BTRFS_EXTENT_ITEM_KEY;
1894 ret = btrfs_alloc_reserved_file_extent(trans, root,
1895 root->root_key.objectid,
1896 btrfs_ino(inode), file_pos, &ins);
1898 btrfs_free_path(path);
1903 /* snapshot-aware defrag */
1904 struct sa_defrag_extent_backref {
1905 struct rb_node node;
1906 struct old_sa_defrag_extent *old;
1915 struct old_sa_defrag_extent {
1916 struct list_head list;
1917 struct new_sa_defrag_extent *new;
1926 struct new_sa_defrag_extent {
1927 struct rb_root root;
1928 struct list_head head;
1929 struct btrfs_path *path;
1930 struct inode *inode;
1938 static int backref_comp(struct sa_defrag_extent_backref *b1,
1939 struct sa_defrag_extent_backref *b2)
1941 if (b1->root_id < b2->root_id)
1943 else if (b1->root_id > b2->root_id)
1946 if (b1->inum < b2->inum)
1948 else if (b1->inum > b2->inum)
1951 if (b1->file_pos < b2->file_pos)
1953 else if (b1->file_pos > b2->file_pos)
1957 * [------------------------------] ===> (a range of space)
1958 * |<--->| |<---->| =============> (fs/file tree A)
1959 * |<---------------------------->| ===> (fs/file tree B)
1961 * A range of space can refer to two file extents in one tree while
1962 * refer to only one file extent in another tree.
1964 * So we may process a disk offset more than one time(two extents in A)
1965 * and locate at the same extent(one extent in B), then insert two same
1966 * backrefs(both refer to the extent in B).
1971 static void backref_insert(struct rb_root *root,
1972 struct sa_defrag_extent_backref *backref)
1974 struct rb_node **p = &root->rb_node;
1975 struct rb_node *parent = NULL;
1976 struct sa_defrag_extent_backref *entry;
1981 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1983 ret = backref_comp(backref, entry);
1987 p = &(*p)->rb_right;
1990 rb_link_node(&backref->node, parent, p);
1991 rb_insert_color(&backref->node, root);
1995 * Note the backref might has changed, and in this case we just return 0.
1997 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2000 struct btrfs_file_extent_item *extent;
2001 struct btrfs_fs_info *fs_info;
2002 struct old_sa_defrag_extent *old = ctx;
2003 struct new_sa_defrag_extent *new = old->new;
2004 struct btrfs_path *path = new->path;
2005 struct btrfs_key key;
2006 struct btrfs_root *root;
2007 struct sa_defrag_extent_backref *backref;
2008 struct extent_buffer *leaf;
2009 struct inode *inode = new->inode;
2015 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2016 inum == btrfs_ino(inode))
2019 key.objectid = root_id;
2020 key.type = BTRFS_ROOT_ITEM_KEY;
2021 key.offset = (u64)-1;
2023 fs_info = BTRFS_I(inode)->root->fs_info;
2024 root = btrfs_read_fs_root_no_name(fs_info, &key);
2026 if (PTR_ERR(root) == -ENOENT)
2029 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2030 inum, offset, root_id);
2031 return PTR_ERR(root);
2034 key.objectid = inum;
2035 key.type = BTRFS_EXTENT_DATA_KEY;
2036 if (offset > (u64)-1 << 32)
2039 key.offset = offset;
2041 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2042 if (WARN_ON(ret < 0))
2049 leaf = path->nodes[0];
2050 slot = path->slots[0];
2052 if (slot >= btrfs_header_nritems(leaf)) {
2053 ret = btrfs_next_leaf(root, path);
2056 } else if (ret > 0) {
2065 btrfs_item_key_to_cpu(leaf, &key, slot);
2067 if (key.objectid > inum)
2070 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2073 extent = btrfs_item_ptr(leaf, slot,
2074 struct btrfs_file_extent_item);
2076 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2080 * 'offset' refers to the exact key.offset,
2081 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2082 * (key.offset - extent_offset).
2084 if (key.offset != offset)
2087 extent_offset = btrfs_file_extent_offset(leaf, extent);
2088 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2090 if (extent_offset >= old->extent_offset + old->offset +
2091 old->len || extent_offset + num_bytes <=
2092 old->extent_offset + old->offset)
2097 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2103 backref->root_id = root_id;
2104 backref->inum = inum;
2105 backref->file_pos = offset;
2106 backref->num_bytes = num_bytes;
2107 backref->extent_offset = extent_offset;
2108 backref->generation = btrfs_file_extent_generation(leaf, extent);
2110 backref_insert(&new->root, backref);
2113 btrfs_release_path(path);
2118 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2119 struct new_sa_defrag_extent *new)
2121 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2122 struct old_sa_defrag_extent *old, *tmp;
2127 list_for_each_entry_safe(old, tmp, &new->head, list) {
2128 ret = iterate_inodes_from_logical(old->bytenr +
2129 old->extent_offset, fs_info,
2130 path, record_one_backref,
2132 if (ret < 0 && ret != -ENOENT)
2135 /* no backref to be processed for this extent */
2137 list_del(&old->list);
2142 if (list_empty(&new->head))
2148 static int relink_is_mergable(struct extent_buffer *leaf,
2149 struct btrfs_file_extent_item *fi,
2150 struct new_sa_defrag_extent *new)
2152 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2155 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2158 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2161 if (btrfs_file_extent_encryption(leaf, fi) ||
2162 btrfs_file_extent_other_encoding(leaf, fi))
2169 * Note the backref might has changed, and in this case we just return 0.
2171 static noinline int relink_extent_backref(struct btrfs_path *path,
2172 struct sa_defrag_extent_backref *prev,
2173 struct sa_defrag_extent_backref *backref)
2175 struct btrfs_file_extent_item *extent;
2176 struct btrfs_file_extent_item *item;
2177 struct btrfs_ordered_extent *ordered;
2178 struct btrfs_trans_handle *trans;
2179 struct btrfs_fs_info *fs_info;
2180 struct btrfs_root *root;
2181 struct btrfs_key key;
2182 struct extent_buffer *leaf;
2183 struct old_sa_defrag_extent *old = backref->old;
2184 struct new_sa_defrag_extent *new = old->new;
2185 struct inode *src_inode = new->inode;
2186 struct inode *inode;
2187 struct extent_state *cached = NULL;
2196 if (prev && prev->root_id == backref->root_id &&
2197 prev->inum == backref->inum &&
2198 prev->file_pos + prev->num_bytes == backref->file_pos)
2201 /* step 1: get root */
2202 key.objectid = backref->root_id;
2203 key.type = BTRFS_ROOT_ITEM_KEY;
2204 key.offset = (u64)-1;
2206 fs_info = BTRFS_I(src_inode)->root->fs_info;
2207 index = srcu_read_lock(&fs_info->subvol_srcu);
2209 root = btrfs_read_fs_root_no_name(fs_info, &key);
2211 srcu_read_unlock(&fs_info->subvol_srcu, index);
2212 if (PTR_ERR(root) == -ENOENT)
2214 return PTR_ERR(root);
2217 /* step 2: get inode */
2218 key.objectid = backref->inum;
2219 key.type = BTRFS_INODE_ITEM_KEY;
2222 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2223 if (IS_ERR(inode)) {
2224 srcu_read_unlock(&fs_info->subvol_srcu, index);
2228 srcu_read_unlock(&fs_info->subvol_srcu, index);
2230 /* step 3: relink backref */
2231 lock_start = backref->file_pos;
2232 lock_end = backref->file_pos + backref->num_bytes - 1;
2233 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2236 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2238 btrfs_put_ordered_extent(ordered);
2242 trans = btrfs_join_transaction(root);
2243 if (IS_ERR(trans)) {
2244 ret = PTR_ERR(trans);
2248 key.objectid = backref->inum;
2249 key.type = BTRFS_EXTENT_DATA_KEY;
2250 key.offset = backref->file_pos;
2252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2255 } else if (ret > 0) {
2260 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2261 struct btrfs_file_extent_item);
2263 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2264 backref->generation)
2267 btrfs_release_path(path);
2269 start = backref->file_pos;
2270 if (backref->extent_offset < old->extent_offset + old->offset)
2271 start += old->extent_offset + old->offset -
2272 backref->extent_offset;
2274 len = min(backref->extent_offset + backref->num_bytes,
2275 old->extent_offset + old->offset + old->len);
2276 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2278 ret = btrfs_drop_extents(trans, root, inode, start,
2283 key.objectid = btrfs_ino(inode);
2284 key.type = BTRFS_EXTENT_DATA_KEY;
2287 path->leave_spinning = 1;
2289 struct btrfs_file_extent_item *fi;
2291 struct btrfs_key found_key;
2293 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2298 leaf = path->nodes[0];
2299 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2301 fi = btrfs_item_ptr(leaf, path->slots[0],
2302 struct btrfs_file_extent_item);
2303 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2305 if (extent_len + found_key.offset == start &&
2306 relink_is_mergable(leaf, fi, new)) {
2307 btrfs_set_file_extent_num_bytes(leaf, fi,
2309 btrfs_mark_buffer_dirty(leaf);
2310 inode_add_bytes(inode, len);
2316 btrfs_release_path(path);
2321 ret = btrfs_insert_empty_item(trans, root, path, &key,
2324 btrfs_abort_transaction(trans, root, ret);
2328 leaf = path->nodes[0];
2329 item = btrfs_item_ptr(leaf, path->slots[0],
2330 struct btrfs_file_extent_item);
2331 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2332 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2333 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2334 btrfs_set_file_extent_num_bytes(leaf, item, len);
2335 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2336 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2337 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2338 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2339 btrfs_set_file_extent_encryption(leaf, item, 0);
2340 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2342 btrfs_mark_buffer_dirty(leaf);
2343 inode_add_bytes(inode, len);
2344 btrfs_release_path(path);
2346 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2348 backref->root_id, backref->inum,
2349 new->file_pos, 0); /* start - extent_offset */
2351 btrfs_abort_transaction(trans, root, ret);
2357 btrfs_release_path(path);
2358 path->leave_spinning = 0;
2359 btrfs_end_transaction(trans, root);
2361 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2367 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2369 struct old_sa_defrag_extent *old, *tmp;
2374 list_for_each_entry_safe(old, tmp, &new->head, list) {
2375 list_del(&old->list);
2381 static void relink_file_extents(struct new_sa_defrag_extent *new)
2383 struct btrfs_path *path;
2384 struct sa_defrag_extent_backref *backref;
2385 struct sa_defrag_extent_backref *prev = NULL;
2386 struct inode *inode;
2387 struct btrfs_root *root;
2388 struct rb_node *node;
2392 root = BTRFS_I(inode)->root;
2394 path = btrfs_alloc_path();
2398 if (!record_extent_backrefs(path, new)) {
2399 btrfs_free_path(path);
2402 btrfs_release_path(path);
2405 node = rb_first(&new->root);
2408 rb_erase(node, &new->root);
2410 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2412 ret = relink_extent_backref(path, prev, backref);
2425 btrfs_free_path(path);
2427 free_sa_defrag_extent(new);
2429 atomic_dec(&root->fs_info->defrag_running);
2430 wake_up(&root->fs_info->transaction_wait);
2433 static struct new_sa_defrag_extent *
2434 record_old_file_extents(struct inode *inode,
2435 struct btrfs_ordered_extent *ordered)
2437 struct btrfs_root *root = BTRFS_I(inode)->root;
2438 struct btrfs_path *path;
2439 struct btrfs_key key;
2440 struct old_sa_defrag_extent *old;
2441 struct new_sa_defrag_extent *new;
2444 new = kmalloc(sizeof(*new), GFP_NOFS);
2449 new->file_pos = ordered->file_offset;
2450 new->len = ordered->len;
2451 new->bytenr = ordered->start;
2452 new->disk_len = ordered->disk_len;
2453 new->compress_type = ordered->compress_type;
2454 new->root = RB_ROOT;
2455 INIT_LIST_HEAD(&new->head);
2457 path = btrfs_alloc_path();
2461 key.objectid = btrfs_ino(inode);
2462 key.type = BTRFS_EXTENT_DATA_KEY;
2463 key.offset = new->file_pos;
2465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2468 if (ret > 0 && path->slots[0] > 0)
2471 /* find out all the old extents for the file range */
2473 struct btrfs_file_extent_item *extent;
2474 struct extent_buffer *l;
2483 slot = path->slots[0];
2485 if (slot >= btrfs_header_nritems(l)) {
2486 ret = btrfs_next_leaf(root, path);
2494 btrfs_item_key_to_cpu(l, &key, slot);
2496 if (key.objectid != btrfs_ino(inode))
2498 if (key.type != BTRFS_EXTENT_DATA_KEY)
2500 if (key.offset >= new->file_pos + new->len)
2503 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2505 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2506 if (key.offset + num_bytes < new->file_pos)
2509 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2513 extent_offset = btrfs_file_extent_offset(l, extent);
2515 old = kmalloc(sizeof(*old), GFP_NOFS);
2519 offset = max(new->file_pos, key.offset);
2520 end = min(new->file_pos + new->len, key.offset + num_bytes);
2522 old->bytenr = disk_bytenr;
2523 old->extent_offset = extent_offset;
2524 old->offset = offset - key.offset;
2525 old->len = end - offset;
2528 list_add_tail(&old->list, &new->head);
2534 btrfs_free_path(path);
2535 atomic_inc(&root->fs_info->defrag_running);
2540 btrfs_free_path(path);
2542 free_sa_defrag_extent(new);
2546 /* as ordered data IO finishes, this gets called so we can finish
2547 * an ordered extent if the range of bytes in the file it covers are
2550 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2552 struct inode *inode = ordered_extent->inode;
2553 struct btrfs_root *root = BTRFS_I(inode)->root;
2554 struct btrfs_trans_handle *trans = NULL;
2555 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2556 struct extent_state *cached_state = NULL;
2557 struct new_sa_defrag_extent *new = NULL;
2558 int compress_type = 0;
2560 u64 logical_len = ordered_extent->len;
2562 bool truncated = false;
2564 nolock = btrfs_is_free_space_inode(inode);
2566 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2571 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2573 logical_len = ordered_extent->truncated_len;
2574 /* Truncated the entire extent, don't bother adding */
2579 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2580 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2581 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2583 trans = btrfs_join_transaction_nolock(root);
2585 trans = btrfs_join_transaction(root);
2586 if (IS_ERR(trans)) {
2587 ret = PTR_ERR(trans);
2591 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2592 ret = btrfs_update_inode_fallback(trans, root, inode);
2593 if (ret) /* -ENOMEM or corruption */
2594 btrfs_abort_transaction(trans, root, ret);
2598 lock_extent_bits(io_tree, ordered_extent->file_offset,
2599 ordered_extent->file_offset + ordered_extent->len - 1,
2602 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2603 ordered_extent->file_offset + ordered_extent->len - 1,
2604 EXTENT_DEFRAG, 1, cached_state);
2606 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2607 if (last_snapshot >= BTRFS_I(inode)->generation)
2608 /* the inode is shared */
2609 new = record_old_file_extents(inode, ordered_extent);
2611 clear_extent_bit(io_tree, ordered_extent->file_offset,
2612 ordered_extent->file_offset + ordered_extent->len - 1,
2613 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2617 trans = btrfs_join_transaction_nolock(root);
2619 trans = btrfs_join_transaction(root);
2620 if (IS_ERR(trans)) {
2621 ret = PTR_ERR(trans);
2625 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2627 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2628 compress_type = ordered_extent->compress_type;
2629 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2630 BUG_ON(compress_type);
2631 ret = btrfs_mark_extent_written(trans, inode,
2632 ordered_extent->file_offset,
2633 ordered_extent->file_offset +
2636 BUG_ON(root == root->fs_info->tree_root);
2637 ret = insert_reserved_file_extent(trans, inode,
2638 ordered_extent->file_offset,
2639 ordered_extent->start,
2640 ordered_extent->disk_len,
2641 logical_len, logical_len,
2642 compress_type, 0, 0,
2643 BTRFS_FILE_EXTENT_REG);
2645 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2646 ordered_extent->file_offset, ordered_extent->len,
2649 btrfs_abort_transaction(trans, root, ret);
2653 add_pending_csums(trans, inode, ordered_extent->file_offset,
2654 &ordered_extent->list);
2656 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2657 ret = btrfs_update_inode_fallback(trans, root, inode);
2658 if (ret) { /* -ENOMEM or corruption */
2659 btrfs_abort_transaction(trans, root, ret);
2664 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2665 ordered_extent->file_offset +
2666 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2668 if (root != root->fs_info->tree_root)
2669 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2671 btrfs_end_transaction(trans, root);
2673 if (ret || truncated) {
2677 start = ordered_extent->file_offset + logical_len;
2679 start = ordered_extent->file_offset;
2680 end = ordered_extent->file_offset + ordered_extent->len - 1;
2681 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2683 /* Drop the cache for the part of the extent we didn't write. */
2684 btrfs_drop_extent_cache(inode, start, end, 0);
2687 * If the ordered extent had an IOERR or something else went
2688 * wrong we need to return the space for this ordered extent
2689 * back to the allocator. We only free the extent in the
2690 * truncated case if we didn't write out the extent at all.
2692 if ((ret || !logical_len) &&
2693 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2694 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2695 btrfs_free_reserved_extent(root, ordered_extent->start,
2696 ordered_extent->disk_len);
2701 * This needs to be done to make sure anybody waiting knows we are done
2702 * updating everything for this ordered extent.
2704 btrfs_remove_ordered_extent(inode, ordered_extent);
2706 /* for snapshot-aware defrag */
2709 free_sa_defrag_extent(new);
2710 atomic_dec(&root->fs_info->defrag_running);
2712 relink_file_extents(new);
2717 btrfs_put_ordered_extent(ordered_extent);
2718 /* once for the tree */
2719 btrfs_put_ordered_extent(ordered_extent);
2724 static void finish_ordered_fn(struct btrfs_work *work)
2726 struct btrfs_ordered_extent *ordered_extent;
2727 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2728 btrfs_finish_ordered_io(ordered_extent);
2731 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2732 struct extent_state *state, int uptodate)
2734 struct inode *inode = page->mapping->host;
2735 struct btrfs_root *root = BTRFS_I(inode)->root;
2736 struct btrfs_ordered_extent *ordered_extent = NULL;
2737 struct btrfs_workers *workers;
2739 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2741 ClearPagePrivate2(page);
2742 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2743 end - start + 1, uptodate))
2746 ordered_extent->work.func = finish_ordered_fn;
2747 ordered_extent->work.flags = 0;
2749 if (btrfs_is_free_space_inode(inode))
2750 workers = &root->fs_info->endio_freespace_worker;
2752 workers = &root->fs_info->endio_write_workers;
2753 btrfs_queue_worker(workers, &ordered_extent->work);
2759 * when reads are done, we need to check csums to verify the data is correct
2760 * if there's a match, we allow the bio to finish. If not, the code in
2761 * extent_io.c will try to find good copies for us.
2763 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2764 u64 phy_offset, struct page *page,
2765 u64 start, u64 end, int mirror)
2767 size_t offset = start - page_offset(page);
2768 struct inode *inode = page->mapping->host;
2769 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2771 struct btrfs_root *root = BTRFS_I(inode)->root;
2774 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2775 DEFAULT_RATELIMIT_BURST);
2777 if (PageChecked(page)) {
2778 ClearPageChecked(page);
2782 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2785 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2786 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2787 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2792 phy_offset >>= inode->i_sb->s_blocksize_bits;
2793 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2795 kaddr = kmap_atomic(page);
2796 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
2797 btrfs_csum_final(csum, (char *)&csum);
2798 if (csum != csum_expected)
2801 kunmap_atomic(kaddr);
2806 if (__ratelimit(&_rs))
2807 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2808 btrfs_ino(page->mapping->host), start, csum, csum_expected);
2809 memset(kaddr + offset, 1, end - start + 1);
2810 flush_dcache_page(page);
2811 kunmap_atomic(kaddr);
2812 if (csum_expected == 0)
2817 struct delayed_iput {
2818 struct list_head list;
2819 struct inode *inode;
2822 /* JDM: If this is fs-wide, why can't we add a pointer to
2823 * btrfs_inode instead and avoid the allocation? */
2824 void btrfs_add_delayed_iput(struct inode *inode)
2826 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2827 struct delayed_iput *delayed;
2829 if (atomic_add_unless(&inode->i_count, -1, 1))
2832 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2833 delayed->inode = inode;
2835 spin_lock(&fs_info->delayed_iput_lock);
2836 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2837 spin_unlock(&fs_info->delayed_iput_lock);
2840 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2843 struct btrfs_fs_info *fs_info = root->fs_info;
2844 struct delayed_iput *delayed;
2847 spin_lock(&fs_info->delayed_iput_lock);
2848 empty = list_empty(&fs_info->delayed_iputs);
2849 spin_unlock(&fs_info->delayed_iput_lock);
2853 spin_lock(&fs_info->delayed_iput_lock);
2854 list_splice_init(&fs_info->delayed_iputs, &list);
2855 spin_unlock(&fs_info->delayed_iput_lock);
2857 while (!list_empty(&list)) {
2858 delayed = list_entry(list.next, struct delayed_iput, list);
2859 list_del(&delayed->list);
2860 iput(delayed->inode);
2866 * This is called in transaction commit time. If there are no orphan
2867 * files in the subvolume, it removes orphan item and frees block_rsv
2870 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2871 struct btrfs_root *root)
2873 struct btrfs_block_rsv *block_rsv;
2876 if (atomic_read(&root->orphan_inodes) ||
2877 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2880 spin_lock(&root->orphan_lock);
2881 if (atomic_read(&root->orphan_inodes)) {
2882 spin_unlock(&root->orphan_lock);
2886 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2887 spin_unlock(&root->orphan_lock);
2891 block_rsv = root->orphan_block_rsv;
2892 root->orphan_block_rsv = NULL;
2893 spin_unlock(&root->orphan_lock);
2895 if (root->orphan_item_inserted &&
2896 btrfs_root_refs(&root->root_item) > 0) {
2897 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2898 root->root_key.objectid);
2900 btrfs_abort_transaction(trans, root, ret);
2902 root->orphan_item_inserted = 0;
2906 WARN_ON(block_rsv->size > 0);
2907 btrfs_free_block_rsv(root, block_rsv);
2912 * This creates an orphan entry for the given inode in case something goes
2913 * wrong in the middle of an unlink/truncate.
2915 * NOTE: caller of this function should reserve 5 units of metadata for
2918 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2920 struct btrfs_root *root = BTRFS_I(inode)->root;
2921 struct btrfs_block_rsv *block_rsv = NULL;
2926 if (!root->orphan_block_rsv) {
2927 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2932 spin_lock(&root->orphan_lock);
2933 if (!root->orphan_block_rsv) {
2934 root->orphan_block_rsv = block_rsv;
2935 } else if (block_rsv) {
2936 btrfs_free_block_rsv(root, block_rsv);
2940 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2941 &BTRFS_I(inode)->runtime_flags)) {
2944 * For proper ENOSPC handling, we should do orphan
2945 * cleanup when mounting. But this introduces backward
2946 * compatibility issue.
2948 if (!xchg(&root->orphan_item_inserted, 1))
2954 atomic_inc(&root->orphan_inodes);
2957 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2958 &BTRFS_I(inode)->runtime_flags))
2960 spin_unlock(&root->orphan_lock);
2962 /* grab metadata reservation from transaction handle */
2964 ret = btrfs_orphan_reserve_metadata(trans, inode);
2965 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2968 /* insert an orphan item to track this unlinked/truncated file */
2970 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2972 atomic_dec(&root->orphan_inodes);
2974 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2975 &BTRFS_I(inode)->runtime_flags);
2976 btrfs_orphan_release_metadata(inode);
2978 if (ret != -EEXIST) {
2979 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2980 &BTRFS_I(inode)->runtime_flags);
2981 btrfs_abort_transaction(trans, root, ret);
2988 /* insert an orphan item to track subvolume contains orphan files */
2990 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2991 root->root_key.objectid);
2992 if (ret && ret != -EEXIST) {
2993 btrfs_abort_transaction(trans, root, ret);
3001 * We have done the truncate/delete so we can go ahead and remove the orphan
3002 * item for this particular inode.
3004 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3005 struct inode *inode)
3007 struct btrfs_root *root = BTRFS_I(inode)->root;
3008 int delete_item = 0;
3009 int release_rsv = 0;
3012 spin_lock(&root->orphan_lock);
3013 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3014 &BTRFS_I(inode)->runtime_flags))
3017 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3018 &BTRFS_I(inode)->runtime_flags))
3020 spin_unlock(&root->orphan_lock);
3023 atomic_dec(&root->orphan_inodes);
3025 ret = btrfs_del_orphan_item(trans, root,
3030 btrfs_orphan_release_metadata(inode);
3036 * this cleans up any orphans that may be left on the list from the last use
3039 int btrfs_orphan_cleanup(struct btrfs_root *root)
3041 struct btrfs_path *path;
3042 struct extent_buffer *leaf;
3043 struct btrfs_key key, found_key;
3044 struct btrfs_trans_handle *trans;
3045 struct inode *inode;
3046 u64 last_objectid = 0;
3047 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3049 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3052 path = btrfs_alloc_path();
3059 key.objectid = BTRFS_ORPHAN_OBJECTID;
3060 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3061 key.offset = (u64)-1;
3064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3069 * if ret == 0 means we found what we were searching for, which
3070 * is weird, but possible, so only screw with path if we didn't
3071 * find the key and see if we have stuff that matches
3075 if (path->slots[0] == 0)
3080 /* pull out the item */
3081 leaf = path->nodes[0];
3082 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3084 /* make sure the item matches what we want */
3085 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3087 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3090 /* release the path since we're done with it */
3091 btrfs_release_path(path);
3094 * this is where we are basically btrfs_lookup, without the
3095 * crossing root thing. we store the inode number in the
3096 * offset of the orphan item.
3099 if (found_key.offset == last_objectid) {
3100 btrfs_err(root->fs_info,
3101 "Error removing orphan entry, stopping orphan cleanup");
3106 last_objectid = found_key.offset;
3108 found_key.objectid = found_key.offset;
3109 found_key.type = BTRFS_INODE_ITEM_KEY;
3110 found_key.offset = 0;
3111 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3112 ret = PTR_ERR_OR_ZERO(inode);
3113 if (ret && ret != -ESTALE)
3116 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3117 struct btrfs_root *dead_root;
3118 struct btrfs_fs_info *fs_info = root->fs_info;
3119 int is_dead_root = 0;
3122 * this is an orphan in the tree root. Currently these
3123 * could come from 2 sources:
3124 * a) a snapshot deletion in progress
3125 * b) a free space cache inode
3126 * We need to distinguish those two, as the snapshot
3127 * orphan must not get deleted.
3128 * find_dead_roots already ran before us, so if this
3129 * is a snapshot deletion, we should find the root
3130 * in the dead_roots list
3132 spin_lock(&fs_info->trans_lock);
3133 list_for_each_entry(dead_root, &fs_info->dead_roots,
3135 if (dead_root->root_key.objectid ==
3136 found_key.objectid) {
3141 spin_unlock(&fs_info->trans_lock);
3143 /* prevent this orphan from being found again */
3144 key.offset = found_key.objectid - 1;
3149 * Inode is already gone but the orphan item is still there,
3150 * kill the orphan item.
3152 if (ret == -ESTALE) {
3153 trans = btrfs_start_transaction(root, 1);
3154 if (IS_ERR(trans)) {
3155 ret = PTR_ERR(trans);
3158 btrfs_debug(root->fs_info, "auto deleting %Lu",
3159 found_key.objectid);
3160 ret = btrfs_del_orphan_item(trans, root,
3161 found_key.objectid);
3162 btrfs_end_transaction(trans, root);
3169 * add this inode to the orphan list so btrfs_orphan_del does
3170 * the proper thing when we hit it
3172 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3173 &BTRFS_I(inode)->runtime_flags);
3174 atomic_inc(&root->orphan_inodes);
3176 /* if we have links, this was a truncate, lets do that */
3177 if (inode->i_nlink) {
3178 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3184 /* 1 for the orphan item deletion. */
3185 trans = btrfs_start_transaction(root, 1);
3186 if (IS_ERR(trans)) {
3188 ret = PTR_ERR(trans);
3191 ret = btrfs_orphan_add(trans, inode);
3192 btrfs_end_transaction(trans, root);
3198 ret = btrfs_truncate(inode);
3200 btrfs_orphan_del(NULL, inode);
3205 /* this will do delete_inode and everything for us */
3210 /* release the path since we're done with it */
3211 btrfs_release_path(path);
3213 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3215 if (root->orphan_block_rsv)
3216 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3219 if (root->orphan_block_rsv || root->orphan_item_inserted) {
3220 trans = btrfs_join_transaction(root);
3222 btrfs_end_transaction(trans, root);
3226 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3228 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3232 btrfs_crit(root->fs_info,
3233 "could not do orphan cleanup %d", ret);
3234 btrfs_free_path(path);
3239 * very simple check to peek ahead in the leaf looking for xattrs. If we
3240 * don't find any xattrs, we know there can't be any acls.
3242 * slot is the slot the inode is in, objectid is the objectid of the inode
3244 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3245 int slot, u64 objectid)
3247 u32 nritems = btrfs_header_nritems(leaf);
3248 struct btrfs_key found_key;
3249 static u64 xattr_access = 0;
3250 static u64 xattr_default = 0;
3253 if (!xattr_access) {
3254 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3255 strlen(POSIX_ACL_XATTR_ACCESS));
3256 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3257 strlen(POSIX_ACL_XATTR_DEFAULT));
3261 while (slot < nritems) {
3262 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3264 /* we found a different objectid, there must not be acls */
3265 if (found_key.objectid != objectid)
3268 /* we found an xattr, assume we've got an acl */
3269 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3270 if (found_key.offset == xattr_access ||
3271 found_key.offset == xattr_default)
3276 * we found a key greater than an xattr key, there can't
3277 * be any acls later on
3279 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3286 * it goes inode, inode backrefs, xattrs, extents,
3287 * so if there are a ton of hard links to an inode there can
3288 * be a lot of backrefs. Don't waste time searching too hard,
3289 * this is just an optimization
3294 /* we hit the end of the leaf before we found an xattr or
3295 * something larger than an xattr. We have to assume the inode
3302 * read an inode from the btree into the in-memory inode
3304 static void btrfs_read_locked_inode(struct inode *inode)
3306 struct btrfs_path *path;
3307 struct extent_buffer *leaf;
3308 struct btrfs_inode_item *inode_item;
3309 struct btrfs_timespec *tspec;
3310 struct btrfs_root *root = BTRFS_I(inode)->root;
3311 struct btrfs_key location;
3316 bool filled = false;
3318 ret = btrfs_fill_inode(inode, &rdev);
3322 path = btrfs_alloc_path();
3326 path->leave_spinning = 1;
3327 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3329 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3333 leaf = path->nodes[0];
3338 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3339 struct btrfs_inode_item);
3340 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3341 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3342 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3343 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3344 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3346 tspec = btrfs_inode_atime(inode_item);
3347 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3348 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3350 tspec = btrfs_inode_mtime(inode_item);
3351 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3352 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3354 tspec = btrfs_inode_ctime(inode_item);
3355 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3356 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3358 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3359 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3360 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3363 * If we were modified in the current generation and evicted from memory
3364 * and then re-read we need to do a full sync since we don't have any
3365 * idea about which extents were modified before we were evicted from
3368 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370 &BTRFS_I(inode)->runtime_flags);
3372 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3373 inode->i_generation = BTRFS_I(inode)->generation;
3375 rdev = btrfs_inode_rdev(leaf, inode_item);
3377 BTRFS_I(inode)->index_cnt = (u64)-1;
3378 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3382 if (inode->i_nlink != 1 ||
3383 path->slots[0] >= btrfs_header_nritems(leaf))
3386 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3387 if (location.objectid != btrfs_ino(inode))
3390 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3391 if (location.type == BTRFS_INODE_REF_KEY) {
3392 struct btrfs_inode_ref *ref;
3394 ref = (struct btrfs_inode_ref *)ptr;
3395 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3396 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3397 struct btrfs_inode_extref *extref;
3399 extref = (struct btrfs_inode_extref *)ptr;
3400 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3405 * try to precache a NULL acl entry for files that don't have
3406 * any xattrs or acls
3408 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3411 cache_no_acl(inode);
3413 btrfs_free_path(path);
3415 switch (inode->i_mode & S_IFMT) {
3417 inode->i_mapping->a_ops = &btrfs_aops;
3418 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3419 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3420 inode->i_fop = &btrfs_file_operations;
3421 inode->i_op = &btrfs_file_inode_operations;
3424 inode->i_fop = &btrfs_dir_file_operations;
3425 if (root == root->fs_info->tree_root)
3426 inode->i_op = &btrfs_dir_ro_inode_operations;
3428 inode->i_op = &btrfs_dir_inode_operations;
3431 inode->i_op = &btrfs_symlink_inode_operations;
3432 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3433 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3436 inode->i_op = &btrfs_special_inode_operations;
3437 init_special_inode(inode, inode->i_mode, rdev);
3441 btrfs_update_iflags(inode);
3445 btrfs_free_path(path);
3446 make_bad_inode(inode);
3450 * given a leaf and an inode, copy the inode fields into the leaf
3452 static void fill_inode_item(struct btrfs_trans_handle *trans,
3453 struct extent_buffer *leaf,
3454 struct btrfs_inode_item *item,
3455 struct inode *inode)
3457 struct btrfs_map_token token;
3459 btrfs_init_map_token(&token);
3461 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3462 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3463 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3465 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3466 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3468 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3469 inode->i_atime.tv_sec, &token);
3470 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3471 inode->i_atime.tv_nsec, &token);
3473 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3474 inode->i_mtime.tv_sec, &token);
3475 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3476 inode->i_mtime.tv_nsec, &token);
3478 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3479 inode->i_ctime.tv_sec, &token);
3480 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3481 inode->i_ctime.tv_nsec, &token);
3483 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3485 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3487 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3488 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3489 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3490 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3491 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3495 * copy everything in the in-memory inode into the btree.
3497 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3498 struct btrfs_root *root, struct inode *inode)
3500 struct btrfs_inode_item *inode_item;
3501 struct btrfs_path *path;
3502 struct extent_buffer *leaf;
3505 path = btrfs_alloc_path();
3509 path->leave_spinning = 1;
3510 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3518 leaf = path->nodes[0];
3519 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3520 struct btrfs_inode_item);
3522 fill_inode_item(trans, leaf, inode_item, inode);
3523 btrfs_mark_buffer_dirty(leaf);
3524 btrfs_set_inode_last_trans(trans, inode);
3527 btrfs_free_path(path);
3532 * copy everything in the in-memory inode into the btree.
3534 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3535 struct btrfs_root *root, struct inode *inode)
3540 * If the inode is a free space inode, we can deadlock during commit
3541 * if we put it into the delayed code.
3543 * The data relocation inode should also be directly updated
3546 if (!btrfs_is_free_space_inode(inode)
3547 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3548 btrfs_update_root_times(trans, root);
3550 ret = btrfs_delayed_update_inode(trans, root, inode);
3552 btrfs_set_inode_last_trans(trans, inode);
3556 return btrfs_update_inode_item(trans, root, inode);
3559 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3560 struct btrfs_root *root,
3561 struct inode *inode)
3565 ret = btrfs_update_inode(trans, root, inode);
3567 return btrfs_update_inode_item(trans, root, inode);
3572 * unlink helper that gets used here in inode.c and in the tree logging
3573 * recovery code. It remove a link in a directory with a given name, and
3574 * also drops the back refs in the inode to the directory
3576 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3577 struct btrfs_root *root,
3578 struct inode *dir, struct inode *inode,
3579 const char *name, int name_len)
3581 struct btrfs_path *path;
3583 struct extent_buffer *leaf;
3584 struct btrfs_dir_item *di;
3585 struct btrfs_key key;
3587 u64 ino = btrfs_ino(inode);
3588 u64 dir_ino = btrfs_ino(dir);
3590 path = btrfs_alloc_path();
3596 path->leave_spinning = 1;
3597 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3598 name, name_len, -1);
3607 leaf = path->nodes[0];
3608 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3609 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3612 btrfs_release_path(path);
3615 * If we don't have dir index, we have to get it by looking up
3616 * the inode ref, since we get the inode ref, remove it directly,
3617 * it is unnecessary to do delayed deletion.
3619 * But if we have dir index, needn't search inode ref to get it.
3620 * Since the inode ref is close to the inode item, it is better
3621 * that we delay to delete it, and just do this deletion when
3622 * we update the inode item.
3624 if (BTRFS_I(inode)->dir_index) {
3625 ret = btrfs_delayed_delete_inode_ref(inode);
3627 index = BTRFS_I(inode)->dir_index;
3632 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3635 btrfs_info(root->fs_info,
3636 "failed to delete reference to %.*s, inode %llu parent %llu",
3637 name_len, name, ino, dir_ino);
3638 btrfs_abort_transaction(trans, root, ret);
3642 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3644 btrfs_abort_transaction(trans, root, ret);
3648 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3650 if (ret != 0 && ret != -ENOENT) {
3651 btrfs_abort_transaction(trans, root, ret);
3655 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3660 btrfs_abort_transaction(trans, root, ret);
3662 btrfs_free_path(path);
3666 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3667 inode_inc_iversion(inode);
3668 inode_inc_iversion(dir);
3669 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3670 ret = btrfs_update_inode(trans, root, dir);
3675 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3676 struct btrfs_root *root,
3677 struct inode *dir, struct inode *inode,
3678 const char *name, int name_len)
3681 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3684 ret = btrfs_update_inode(trans, root, inode);
3690 * helper to start transaction for unlink and rmdir.
3692 * unlink and rmdir are special in btrfs, they do not always free space, so
3693 * if we cannot make our reservations the normal way try and see if there is
3694 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3695 * allow the unlink to occur.
3697 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3699 struct btrfs_trans_handle *trans;
3700 struct btrfs_root *root = BTRFS_I(dir)->root;
3704 * 1 for the possible orphan item
3705 * 1 for the dir item
3706 * 1 for the dir index
3707 * 1 for the inode ref
3710 trans = btrfs_start_transaction(root, 5);
3711 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3714 if (PTR_ERR(trans) == -ENOSPC) {
3715 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3717 trans = btrfs_start_transaction(root, 0);
3720 ret = btrfs_cond_migrate_bytes(root->fs_info,
3721 &root->fs_info->trans_block_rsv,
3724 btrfs_end_transaction(trans, root);
3725 return ERR_PTR(ret);
3727 trans->block_rsv = &root->fs_info->trans_block_rsv;
3728 trans->bytes_reserved = num_bytes;
3733 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3735 struct btrfs_root *root = BTRFS_I(dir)->root;
3736 struct btrfs_trans_handle *trans;
3737 struct inode *inode = dentry->d_inode;
3740 trans = __unlink_start_trans(dir);
3742 return PTR_ERR(trans);
3744 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3746 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3747 dentry->d_name.name, dentry->d_name.len);
3751 if (inode->i_nlink == 0) {
3752 ret = btrfs_orphan_add(trans, inode);
3758 btrfs_end_transaction(trans, root);
3759 btrfs_btree_balance_dirty(root);
3763 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3764 struct btrfs_root *root,
3765 struct inode *dir, u64 objectid,
3766 const char *name, int name_len)
3768 struct btrfs_path *path;
3769 struct extent_buffer *leaf;
3770 struct btrfs_dir_item *di;
3771 struct btrfs_key key;
3774 u64 dir_ino = btrfs_ino(dir);
3776 path = btrfs_alloc_path();
3780 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3781 name, name_len, -1);
3782 if (IS_ERR_OR_NULL(di)) {
3790 leaf = path->nodes[0];
3791 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3792 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3793 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3795 btrfs_abort_transaction(trans, root, ret);
3798 btrfs_release_path(path);
3800 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3801 objectid, root->root_key.objectid,
3802 dir_ino, &index, name, name_len);
3804 if (ret != -ENOENT) {
3805 btrfs_abort_transaction(trans, root, ret);
3808 di = btrfs_search_dir_index_item(root, path, dir_ino,
3810 if (IS_ERR_OR_NULL(di)) {
3815 btrfs_abort_transaction(trans, root, ret);
3819 leaf = path->nodes[0];
3820 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3821 btrfs_release_path(path);
3824 btrfs_release_path(path);
3826 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3828 btrfs_abort_transaction(trans, root, ret);
3832 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3833 inode_inc_iversion(dir);
3834 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3835 ret = btrfs_update_inode_fallback(trans, root, dir);
3837 btrfs_abort_transaction(trans, root, ret);
3839 btrfs_free_path(path);
3843 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3845 struct inode *inode = dentry->d_inode;
3847 struct btrfs_root *root = BTRFS_I(dir)->root;
3848 struct btrfs_trans_handle *trans;
3850 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3852 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3855 trans = __unlink_start_trans(dir);
3857 return PTR_ERR(trans);
3859 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3860 err = btrfs_unlink_subvol(trans, root, dir,
3861 BTRFS_I(inode)->location.objectid,
3862 dentry->d_name.name,
3863 dentry->d_name.len);
3867 err = btrfs_orphan_add(trans, inode);
3871 /* now the directory is empty */
3872 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3873 dentry->d_name.name, dentry->d_name.len);
3875 btrfs_i_size_write(inode, 0);
3877 btrfs_end_transaction(trans, root);
3878 btrfs_btree_balance_dirty(root);
3884 * this can truncate away extent items, csum items and directory items.
3885 * It starts at a high offset and removes keys until it can't find
3886 * any higher than new_size
3888 * csum items that cross the new i_size are truncated to the new size
3891 * min_type is the minimum key type to truncate down to. If set to 0, this
3892 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3894 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3895 struct btrfs_root *root,
3896 struct inode *inode,
3897 u64 new_size, u32 min_type)
3899 struct btrfs_path *path;
3900 struct extent_buffer *leaf;
3901 struct btrfs_file_extent_item *fi;
3902 struct btrfs_key key;
3903 struct btrfs_key found_key;
3904 u64 extent_start = 0;
3905 u64 extent_num_bytes = 0;
3906 u64 extent_offset = 0;
3908 u64 last_size = (u64)-1;
3909 u32 found_type = (u8)-1;
3912 int pending_del_nr = 0;
3913 int pending_del_slot = 0;
3914 int extent_type = -1;
3917 u64 ino = btrfs_ino(inode);
3919 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3921 path = btrfs_alloc_path();
3927 * We want to drop from the next block forward in case this new size is
3928 * not block aligned since we will be keeping the last block of the
3929 * extent just the way it is.
3931 if (root->ref_cows || root == root->fs_info->tree_root)
3932 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3933 root->sectorsize), (u64)-1, 0);
3936 * This function is also used to drop the items in the log tree before
3937 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3938 * it is used to drop the loged items. So we shouldn't kill the delayed
3941 if (min_type == 0 && root == BTRFS_I(inode)->root)
3942 btrfs_kill_delayed_inode_items(inode);
3945 key.offset = (u64)-1;
3949 path->leave_spinning = 1;
3950 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3957 /* there are no items in the tree for us to truncate, we're
3960 if (path->slots[0] == 0)
3967 leaf = path->nodes[0];
3968 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3969 found_type = btrfs_key_type(&found_key);
3971 if (found_key.objectid != ino)
3974 if (found_type < min_type)
3977 item_end = found_key.offset;
3978 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3979 fi = btrfs_item_ptr(leaf, path->slots[0],
3980 struct btrfs_file_extent_item);
3981 extent_type = btrfs_file_extent_type(leaf, fi);
3982 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3984 btrfs_file_extent_num_bytes(leaf, fi);
3985 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3986 item_end += btrfs_file_extent_inline_len(leaf,
3991 if (found_type > min_type) {
3994 if (item_end < new_size)
3996 if (found_key.offset >= new_size)
4002 /* FIXME, shrink the extent if the ref count is only 1 */
4003 if (found_type != BTRFS_EXTENT_DATA_KEY)
4007 last_size = found_key.offset;
4009 last_size = new_size;
4011 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4013 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4015 u64 orig_num_bytes =
4016 btrfs_file_extent_num_bytes(leaf, fi);
4017 extent_num_bytes = ALIGN(new_size -
4020 btrfs_set_file_extent_num_bytes(leaf, fi,
4022 num_dec = (orig_num_bytes -
4024 if (root->ref_cows && extent_start != 0)
4025 inode_sub_bytes(inode, num_dec);
4026 btrfs_mark_buffer_dirty(leaf);
4029 btrfs_file_extent_disk_num_bytes(leaf,
4031 extent_offset = found_key.offset -
4032 btrfs_file_extent_offset(leaf, fi);
4034 /* FIXME blocksize != 4096 */
4035 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4036 if (extent_start != 0) {
4039 inode_sub_bytes(inode, num_dec);
4042 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4044 * we can't truncate inline items that have had
4048 btrfs_file_extent_compression(leaf, fi) == 0 &&
4049 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4050 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4051 u32 size = new_size - found_key.offset;
4053 if (root->ref_cows) {
4054 inode_sub_bytes(inode, item_end + 1 -
4058 btrfs_file_extent_calc_inline_size(size);
4059 btrfs_truncate_item(root, path, size, 1);
4060 } else if (root->ref_cows) {
4061 inode_sub_bytes(inode, item_end + 1 -
4067 if (!pending_del_nr) {
4068 /* no pending yet, add ourselves */
4069 pending_del_slot = path->slots[0];
4071 } else if (pending_del_nr &&
4072 path->slots[0] + 1 == pending_del_slot) {
4073 /* hop on the pending chunk */
4075 pending_del_slot = path->slots[0];
4082 if (found_extent && (root->ref_cows ||
4083 root == root->fs_info->tree_root)) {
4084 btrfs_set_path_blocking(path);
4085 ret = btrfs_free_extent(trans, root, extent_start,
4086 extent_num_bytes, 0,
4087 btrfs_header_owner(leaf),
4088 ino, extent_offset, 0);
4092 if (found_type == BTRFS_INODE_ITEM_KEY)
4095 if (path->slots[0] == 0 ||
4096 path->slots[0] != pending_del_slot) {
4097 if (pending_del_nr) {
4098 ret = btrfs_del_items(trans, root, path,
4102 btrfs_abort_transaction(trans,
4108 btrfs_release_path(path);
4115 if (pending_del_nr) {
4116 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4119 btrfs_abort_transaction(trans, root, ret);
4122 if (last_size != (u64)-1)
4123 btrfs_ordered_update_i_size(inode, last_size, NULL);
4124 btrfs_free_path(path);
4129 * btrfs_truncate_page - read, zero a chunk and write a page
4130 * @inode - inode that we're zeroing
4131 * @from - the offset to start zeroing
4132 * @len - the length to zero, 0 to zero the entire range respective to the
4134 * @front - zero up to the offset instead of from the offset on
4136 * This will find the page for the "from" offset and cow the page and zero the
4137 * part we want to zero. This is used with truncate and hole punching.
4139 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4142 struct address_space *mapping = inode->i_mapping;
4143 struct btrfs_root *root = BTRFS_I(inode)->root;
4144 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4145 struct btrfs_ordered_extent *ordered;
4146 struct extent_state *cached_state = NULL;
4148 u32 blocksize = root->sectorsize;
4149 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4150 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4152 gfp_t mask = btrfs_alloc_write_mask(mapping);
4157 if ((offset & (blocksize - 1)) == 0 &&
4158 (!len || ((len & (blocksize - 1)) == 0)))
4160 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4165 page = find_or_create_page(mapping, index, mask);
4167 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4172 page_start = page_offset(page);
4173 page_end = page_start + PAGE_CACHE_SIZE - 1;
4175 if (!PageUptodate(page)) {
4176 ret = btrfs_readpage(NULL, page);
4178 if (page->mapping != mapping) {
4180 page_cache_release(page);
4183 if (!PageUptodate(page)) {
4188 wait_on_page_writeback(page);
4190 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4191 set_page_extent_mapped(page);
4193 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4195 unlock_extent_cached(io_tree, page_start, page_end,
4196 &cached_state, GFP_NOFS);
4198 page_cache_release(page);
4199 btrfs_start_ordered_extent(inode, ordered, 1);
4200 btrfs_put_ordered_extent(ordered);
4204 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4205 EXTENT_DIRTY | EXTENT_DELALLOC |
4206 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4207 0, 0, &cached_state, GFP_NOFS);
4209 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4212 unlock_extent_cached(io_tree, page_start, page_end,
4213 &cached_state, GFP_NOFS);
4217 if (offset != PAGE_CACHE_SIZE) {
4219 len = PAGE_CACHE_SIZE - offset;
4222 memset(kaddr, 0, offset);
4224 memset(kaddr + offset, 0, len);
4225 flush_dcache_page(page);
4228 ClearPageChecked(page);
4229 set_page_dirty(page);
4230 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4235 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4237 page_cache_release(page);
4242 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4243 u64 offset, u64 len)
4245 struct btrfs_trans_handle *trans;
4249 * Still need to make sure the inode looks like it's been updated so
4250 * that any holes get logged if we fsync.
4252 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4253 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4254 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4255 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4260 * 1 - for the one we're dropping
4261 * 1 - for the one we're adding
4262 * 1 - for updating the inode.
4264 trans = btrfs_start_transaction(root, 3);
4266 return PTR_ERR(trans);
4268 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4270 btrfs_abort_transaction(trans, root, ret);
4271 btrfs_end_transaction(trans, root);
4275 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4276 0, 0, len, 0, len, 0, 0, 0);
4278 btrfs_abort_transaction(trans, root, ret);
4280 btrfs_update_inode(trans, root, inode);
4281 btrfs_end_transaction(trans, root);
4286 * This function puts in dummy file extents for the area we're creating a hole
4287 * for. So if we are truncating this file to a larger size we need to insert
4288 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4289 * the range between oldsize and size
4291 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4293 struct btrfs_root *root = BTRFS_I(inode)->root;
4294 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4295 struct extent_map *em = NULL;
4296 struct extent_state *cached_state = NULL;
4297 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4298 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4299 u64 block_end = ALIGN(size, root->sectorsize);
4306 * If our size started in the middle of a page we need to zero out the
4307 * rest of the page before we expand the i_size, otherwise we could
4308 * expose stale data.
4310 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4314 if (size <= hole_start)
4318 struct btrfs_ordered_extent *ordered;
4320 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4322 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4323 block_end - hole_start);
4326 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4327 &cached_state, GFP_NOFS);
4328 btrfs_start_ordered_extent(inode, ordered, 1);
4329 btrfs_put_ordered_extent(ordered);
4332 cur_offset = hole_start;
4334 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4335 block_end - cur_offset, 0);
4341 last_byte = min(extent_map_end(em), block_end);
4342 last_byte = ALIGN(last_byte , root->sectorsize);
4343 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4344 struct extent_map *hole_em;
4345 hole_size = last_byte - cur_offset;
4347 err = maybe_insert_hole(root, inode, cur_offset,
4351 btrfs_drop_extent_cache(inode, cur_offset,
4352 cur_offset + hole_size - 1, 0);
4353 hole_em = alloc_extent_map();
4355 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4356 &BTRFS_I(inode)->runtime_flags);
4359 hole_em->start = cur_offset;
4360 hole_em->len = hole_size;
4361 hole_em->orig_start = cur_offset;
4363 hole_em->block_start = EXTENT_MAP_HOLE;
4364 hole_em->block_len = 0;
4365 hole_em->orig_block_len = 0;
4366 hole_em->ram_bytes = hole_size;
4367 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4368 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4369 hole_em->generation = root->fs_info->generation;
4372 write_lock(&em_tree->lock);
4373 err = add_extent_mapping(em_tree, hole_em, 1);
4374 write_unlock(&em_tree->lock);
4377 btrfs_drop_extent_cache(inode, cur_offset,
4381 free_extent_map(hole_em);
4384 free_extent_map(em);
4386 cur_offset = last_byte;
4387 if (cur_offset >= block_end)
4390 free_extent_map(em);
4391 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4396 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4398 struct btrfs_root *root = BTRFS_I(inode)->root;
4399 struct btrfs_trans_handle *trans;
4400 loff_t oldsize = i_size_read(inode);
4401 loff_t newsize = attr->ia_size;
4402 int mask = attr->ia_valid;
4406 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4407 * special case where we need to update the times despite not having
4408 * these flags set. For all other operations the VFS set these flags
4409 * explicitly if it wants a timestamp update.
4411 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4412 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4414 if (newsize > oldsize) {
4415 truncate_pagecache(inode, newsize);
4416 ret = btrfs_cont_expand(inode, oldsize, newsize);
4420 trans = btrfs_start_transaction(root, 1);
4422 return PTR_ERR(trans);
4424 i_size_write(inode, newsize);
4425 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4426 ret = btrfs_update_inode(trans, root, inode);
4427 btrfs_end_transaction(trans, root);
4431 * We're truncating a file that used to have good data down to
4432 * zero. Make sure it gets into the ordered flush list so that
4433 * any new writes get down to disk quickly.
4436 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4437 &BTRFS_I(inode)->runtime_flags);
4440 * 1 for the orphan item we're going to add
4441 * 1 for the orphan item deletion.
4443 trans = btrfs_start_transaction(root, 2);
4445 return PTR_ERR(trans);
4448 * We need to do this in case we fail at _any_ point during the
4449 * actual truncate. Once we do the truncate_setsize we could
4450 * invalidate pages which forces any outstanding ordered io to
4451 * be instantly completed which will give us extents that need
4452 * to be truncated. If we fail to get an orphan inode down we
4453 * could have left over extents that were never meant to live,
4454 * so we need to garuntee from this point on that everything
4455 * will be consistent.
4457 ret = btrfs_orphan_add(trans, inode);
4458 btrfs_end_transaction(trans, root);
4462 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4463 truncate_setsize(inode, newsize);
4465 /* Disable nonlocked read DIO to avoid the end less truncate */
4466 btrfs_inode_block_unlocked_dio(inode);
4467 inode_dio_wait(inode);
4468 btrfs_inode_resume_unlocked_dio(inode);
4470 ret = btrfs_truncate(inode);
4471 if (ret && inode->i_nlink) {
4475 * failed to truncate, disk_i_size is only adjusted down
4476 * as we remove extents, so it should represent the true
4477 * size of the inode, so reset the in memory size and
4478 * delete our orphan entry.
4480 trans = btrfs_join_transaction(root);
4481 if (IS_ERR(trans)) {
4482 btrfs_orphan_del(NULL, inode);
4485 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4486 err = btrfs_orphan_del(trans, inode);
4488 btrfs_abort_transaction(trans, root, err);
4489 btrfs_end_transaction(trans, root);
4496 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4498 struct inode *inode = dentry->d_inode;
4499 struct btrfs_root *root = BTRFS_I(inode)->root;
4502 if (btrfs_root_readonly(root))
4505 err = inode_change_ok(inode, attr);
4509 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4510 err = btrfs_setsize(inode, attr);
4515 if (attr->ia_valid) {
4516 setattr_copy(inode, attr);
4517 inode_inc_iversion(inode);
4518 err = btrfs_dirty_inode(inode);
4520 if (!err && attr->ia_valid & ATTR_MODE)
4521 err = btrfs_acl_chmod(inode);
4528 * While truncating the inode pages during eviction, we get the VFS calling
4529 * btrfs_invalidatepage() against each page of the inode. This is slow because
4530 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4531 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4532 * extent_state structures over and over, wasting lots of time.
4534 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4535 * those expensive operations on a per page basis and do only the ordered io
4536 * finishing, while we release here the extent_map and extent_state structures,
4537 * without the excessive merging and splitting.
4539 static void evict_inode_truncate_pages(struct inode *inode)
4541 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4542 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4543 struct rb_node *node;
4545 ASSERT(inode->i_state & I_FREEING);
4546 truncate_inode_pages(&inode->i_data, 0);
4548 write_lock(&map_tree->lock);
4549 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4550 struct extent_map *em;
4552 node = rb_first(&map_tree->map);
4553 em = rb_entry(node, struct extent_map, rb_node);
4554 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4555 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4556 remove_extent_mapping(map_tree, em);
4557 free_extent_map(em);
4559 write_unlock(&map_tree->lock);
4561 spin_lock(&io_tree->lock);
4562 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4563 struct extent_state *state;
4564 struct extent_state *cached_state = NULL;
4566 node = rb_first(&io_tree->state);
4567 state = rb_entry(node, struct extent_state, rb_node);
4568 atomic_inc(&state->refs);
4569 spin_unlock(&io_tree->lock);
4571 lock_extent_bits(io_tree, state->start, state->end,
4573 clear_extent_bit(io_tree, state->start, state->end,
4574 EXTENT_LOCKED | EXTENT_DIRTY |
4575 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4576 EXTENT_DEFRAG, 1, 1,
4577 &cached_state, GFP_NOFS);
4578 free_extent_state(state);
4580 spin_lock(&io_tree->lock);
4582 spin_unlock(&io_tree->lock);
4585 void btrfs_evict_inode(struct inode *inode)
4587 struct btrfs_trans_handle *trans;
4588 struct btrfs_root *root = BTRFS_I(inode)->root;
4589 struct btrfs_block_rsv *rsv, *global_rsv;
4590 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4593 trace_btrfs_inode_evict(inode);
4595 evict_inode_truncate_pages(inode);
4597 if (inode->i_nlink &&
4598 ((btrfs_root_refs(&root->root_item) != 0 &&
4599 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4600 btrfs_is_free_space_inode(inode)))
4603 if (is_bad_inode(inode)) {
4604 btrfs_orphan_del(NULL, inode);
4607 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4608 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4610 if (root->fs_info->log_root_recovering) {
4611 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4612 &BTRFS_I(inode)->runtime_flags));
4616 if (inode->i_nlink > 0) {
4617 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4618 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4622 ret = btrfs_commit_inode_delayed_inode(inode);
4624 btrfs_orphan_del(NULL, inode);
4628 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4630 btrfs_orphan_del(NULL, inode);
4633 rsv->size = min_size;
4635 global_rsv = &root->fs_info->global_block_rsv;
4637 btrfs_i_size_write(inode, 0);
4640 * This is a bit simpler than btrfs_truncate since we've already
4641 * reserved our space for our orphan item in the unlink, so we just
4642 * need to reserve some slack space in case we add bytes and update
4643 * inode item when doing the truncate.
4646 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4647 BTRFS_RESERVE_FLUSH_LIMIT);
4650 * Try and steal from the global reserve since we will
4651 * likely not use this space anyway, we want to try as
4652 * hard as possible to get this to work.
4655 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4658 btrfs_warn(root->fs_info,
4659 "Could not get space for a delete, will truncate on mount %d",
4661 btrfs_orphan_del(NULL, inode);
4662 btrfs_free_block_rsv(root, rsv);
4666 trans = btrfs_join_transaction(root);
4667 if (IS_ERR(trans)) {
4668 btrfs_orphan_del(NULL, inode);
4669 btrfs_free_block_rsv(root, rsv);
4673 trans->block_rsv = rsv;
4675 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4679 trans->block_rsv = &root->fs_info->trans_block_rsv;
4680 btrfs_end_transaction(trans, root);
4682 btrfs_btree_balance_dirty(root);
4685 btrfs_free_block_rsv(root, rsv);
4688 * Errors here aren't a big deal, it just means we leave orphan items
4689 * in the tree. They will be cleaned up on the next mount.
4692 trans->block_rsv = root->orphan_block_rsv;
4693 btrfs_orphan_del(trans, inode);
4695 btrfs_orphan_del(NULL, inode);
4698 trans->block_rsv = &root->fs_info->trans_block_rsv;
4699 if (!(root == root->fs_info->tree_root ||
4700 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4701 btrfs_return_ino(root, btrfs_ino(inode));
4703 btrfs_end_transaction(trans, root);
4704 btrfs_btree_balance_dirty(root);
4706 btrfs_remove_delayed_node(inode);
4712 * this returns the key found in the dir entry in the location pointer.
4713 * If no dir entries were found, location->objectid is 0.
4715 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4716 struct btrfs_key *location)
4718 const char *name = dentry->d_name.name;
4719 int namelen = dentry->d_name.len;
4720 struct btrfs_dir_item *di;
4721 struct btrfs_path *path;
4722 struct btrfs_root *root = BTRFS_I(dir)->root;
4725 path = btrfs_alloc_path();
4729 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4734 if (IS_ERR_OR_NULL(di))
4737 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4739 btrfs_free_path(path);
4742 location->objectid = 0;
4747 * when we hit a tree root in a directory, the btrfs part of the inode
4748 * needs to be changed to reflect the root directory of the tree root. This
4749 * is kind of like crossing a mount point.
4751 static int fixup_tree_root_location(struct btrfs_root *root,
4753 struct dentry *dentry,
4754 struct btrfs_key *location,
4755 struct btrfs_root **sub_root)
4757 struct btrfs_path *path;
4758 struct btrfs_root *new_root;
4759 struct btrfs_root_ref *ref;
4760 struct extent_buffer *leaf;
4764 path = btrfs_alloc_path();
4771 ret = btrfs_find_item(root->fs_info->tree_root, path,
4772 BTRFS_I(dir)->root->root_key.objectid,
4773 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4780 leaf = path->nodes[0];
4781 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4782 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4783 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4786 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4787 (unsigned long)(ref + 1),
4788 dentry->d_name.len);
4792 btrfs_release_path(path);
4794 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4795 if (IS_ERR(new_root)) {
4796 err = PTR_ERR(new_root);
4800 *sub_root = new_root;
4801 location->objectid = btrfs_root_dirid(&new_root->root_item);
4802 location->type = BTRFS_INODE_ITEM_KEY;
4803 location->offset = 0;
4806 btrfs_free_path(path);
4810 static void inode_tree_add(struct inode *inode)
4812 struct btrfs_root *root = BTRFS_I(inode)->root;
4813 struct btrfs_inode *entry;
4815 struct rb_node *parent;
4816 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4817 u64 ino = btrfs_ino(inode);
4819 if (inode_unhashed(inode))
4822 spin_lock(&root->inode_lock);
4823 p = &root->inode_tree.rb_node;
4826 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4828 if (ino < btrfs_ino(&entry->vfs_inode))
4829 p = &parent->rb_left;
4830 else if (ino > btrfs_ino(&entry->vfs_inode))
4831 p = &parent->rb_right;
4833 WARN_ON(!(entry->vfs_inode.i_state &
4834 (I_WILL_FREE | I_FREEING)));
4835 rb_replace_node(parent, new, &root->inode_tree);
4836 RB_CLEAR_NODE(parent);
4837 spin_unlock(&root->inode_lock);
4841 rb_link_node(new, parent, p);
4842 rb_insert_color(new, &root->inode_tree);
4843 spin_unlock(&root->inode_lock);
4846 static void inode_tree_del(struct inode *inode)
4848 struct btrfs_root *root = BTRFS_I(inode)->root;
4851 spin_lock(&root->inode_lock);
4852 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4853 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4854 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4855 empty = RB_EMPTY_ROOT(&root->inode_tree);
4857 spin_unlock(&root->inode_lock);
4859 if (empty && btrfs_root_refs(&root->root_item) == 0) {
4860 synchronize_srcu(&root->fs_info->subvol_srcu);
4861 spin_lock(&root->inode_lock);
4862 empty = RB_EMPTY_ROOT(&root->inode_tree);
4863 spin_unlock(&root->inode_lock);
4865 btrfs_add_dead_root(root);
4869 void btrfs_invalidate_inodes(struct btrfs_root *root)
4871 struct rb_node *node;
4872 struct rb_node *prev;
4873 struct btrfs_inode *entry;
4874 struct inode *inode;
4877 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4879 spin_lock(&root->inode_lock);
4881 node = root->inode_tree.rb_node;
4885 entry = rb_entry(node, struct btrfs_inode, rb_node);
4887 if (objectid < btrfs_ino(&entry->vfs_inode))
4888 node = node->rb_left;
4889 else if (objectid > btrfs_ino(&entry->vfs_inode))
4890 node = node->rb_right;
4896 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4897 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4901 prev = rb_next(prev);
4905 entry = rb_entry(node, struct btrfs_inode, rb_node);
4906 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4907 inode = igrab(&entry->vfs_inode);
4909 spin_unlock(&root->inode_lock);
4910 if (atomic_read(&inode->i_count) > 1)
4911 d_prune_aliases(inode);
4913 * btrfs_drop_inode will have it removed from
4914 * the inode cache when its usage count
4919 spin_lock(&root->inode_lock);
4923 if (cond_resched_lock(&root->inode_lock))
4926 node = rb_next(node);
4928 spin_unlock(&root->inode_lock);
4931 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4933 struct btrfs_iget_args *args = p;
4934 inode->i_ino = args->ino;
4935 BTRFS_I(inode)->root = args->root;
4939 static int btrfs_find_actor(struct inode *inode, void *opaque)
4941 struct btrfs_iget_args *args = opaque;
4942 return args->ino == btrfs_ino(inode) &&
4943 args->root == BTRFS_I(inode)->root;
4946 static struct inode *btrfs_iget_locked(struct super_block *s,
4948 struct btrfs_root *root)
4950 struct inode *inode;
4951 struct btrfs_iget_args args;
4952 unsigned long hashval = btrfs_inode_hash(objectid, root);
4954 args.ino = objectid;
4957 inode = iget5_locked(s, hashval, btrfs_find_actor,
4958 btrfs_init_locked_inode,
4963 /* Get an inode object given its location and corresponding root.
4964 * Returns in *is_new if the inode was read from disk
4966 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4967 struct btrfs_root *root, int *new)
4969 struct inode *inode;
4971 inode = btrfs_iget_locked(s, location->objectid, root);
4973 return ERR_PTR(-ENOMEM);
4975 if (inode->i_state & I_NEW) {
4976 BTRFS_I(inode)->root = root;
4977 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4978 btrfs_read_locked_inode(inode);
4979 if (!is_bad_inode(inode)) {
4980 inode_tree_add(inode);
4981 unlock_new_inode(inode);
4985 unlock_new_inode(inode);
4987 inode = ERR_PTR(-ESTALE);
4994 static struct inode *new_simple_dir(struct super_block *s,
4995 struct btrfs_key *key,
4996 struct btrfs_root *root)
4998 struct inode *inode = new_inode(s);
5001 return ERR_PTR(-ENOMEM);
5003 BTRFS_I(inode)->root = root;
5004 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5005 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5007 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5008 inode->i_op = &btrfs_dir_ro_inode_operations;
5009 inode->i_fop = &simple_dir_operations;
5010 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5011 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5016 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5018 struct inode *inode;
5019 struct btrfs_root *root = BTRFS_I(dir)->root;
5020 struct btrfs_root *sub_root = root;
5021 struct btrfs_key location;
5025 if (dentry->d_name.len > BTRFS_NAME_LEN)
5026 return ERR_PTR(-ENAMETOOLONG);
5028 ret = btrfs_inode_by_name(dir, dentry, &location);
5030 return ERR_PTR(ret);
5032 if (location.objectid == 0)
5033 return ERR_PTR(-ENOENT);
5035 if (location.type == BTRFS_INODE_ITEM_KEY) {
5036 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5040 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5042 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5043 ret = fixup_tree_root_location(root, dir, dentry,
5044 &location, &sub_root);
5047 inode = ERR_PTR(ret);
5049 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5051 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5053 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5055 if (!IS_ERR(inode) && root != sub_root) {
5056 down_read(&root->fs_info->cleanup_work_sem);
5057 if (!(inode->i_sb->s_flags & MS_RDONLY))
5058 ret = btrfs_orphan_cleanup(sub_root);
5059 up_read(&root->fs_info->cleanup_work_sem);
5062 inode = ERR_PTR(ret);
5069 static int btrfs_dentry_delete(const struct dentry *dentry)
5071 struct btrfs_root *root;
5072 struct inode *inode = dentry->d_inode;
5074 if (!inode && !IS_ROOT(dentry))
5075 inode = dentry->d_parent->d_inode;
5078 root = BTRFS_I(inode)->root;
5079 if (btrfs_root_refs(&root->root_item) == 0)
5082 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5088 static void btrfs_dentry_release(struct dentry *dentry)
5090 if (dentry->d_fsdata)
5091 kfree(dentry->d_fsdata);
5094 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5097 struct inode *inode;
5099 inode = btrfs_lookup_dentry(dir, dentry);
5100 if (IS_ERR(inode)) {
5101 if (PTR_ERR(inode) == -ENOENT)
5104 return ERR_CAST(inode);
5107 return d_splice_alias(inode, dentry);
5110 unsigned char btrfs_filetype_table[] = {
5111 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5114 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5116 struct inode *inode = file_inode(file);
5117 struct btrfs_root *root = BTRFS_I(inode)->root;
5118 struct btrfs_item *item;
5119 struct btrfs_dir_item *di;
5120 struct btrfs_key key;
5121 struct btrfs_key found_key;
5122 struct btrfs_path *path;
5123 struct list_head ins_list;
5124 struct list_head del_list;
5126 struct extent_buffer *leaf;
5128 unsigned char d_type;
5133 int key_type = BTRFS_DIR_INDEX_KEY;
5137 int is_curr = 0; /* ctx->pos points to the current index? */
5139 /* FIXME, use a real flag for deciding about the key type */
5140 if (root->fs_info->tree_root == root)
5141 key_type = BTRFS_DIR_ITEM_KEY;
5143 if (!dir_emit_dots(file, ctx))
5146 path = btrfs_alloc_path();
5152 if (key_type == BTRFS_DIR_INDEX_KEY) {
5153 INIT_LIST_HEAD(&ins_list);
5154 INIT_LIST_HEAD(&del_list);
5155 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5158 btrfs_set_key_type(&key, key_type);
5159 key.offset = ctx->pos;
5160 key.objectid = btrfs_ino(inode);
5162 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5167 leaf = path->nodes[0];
5168 slot = path->slots[0];
5169 if (slot >= btrfs_header_nritems(leaf)) {
5170 ret = btrfs_next_leaf(root, path);
5178 item = btrfs_item_nr(slot);
5179 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5181 if (found_key.objectid != key.objectid)
5183 if (btrfs_key_type(&found_key) != key_type)
5185 if (found_key.offset < ctx->pos)
5187 if (key_type == BTRFS_DIR_INDEX_KEY &&
5188 btrfs_should_delete_dir_index(&del_list,
5192 ctx->pos = found_key.offset;
5195 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5197 di_total = btrfs_item_size(leaf, item);
5199 while (di_cur < di_total) {
5200 struct btrfs_key location;
5202 if (verify_dir_item(root, leaf, di))
5205 name_len = btrfs_dir_name_len(leaf, di);
5206 if (name_len <= sizeof(tmp_name)) {
5207 name_ptr = tmp_name;
5209 name_ptr = kmalloc(name_len, GFP_NOFS);
5215 read_extent_buffer(leaf, name_ptr,
5216 (unsigned long)(di + 1), name_len);
5218 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5219 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5222 /* is this a reference to our own snapshot? If so
5225 * In contrast to old kernels, we insert the snapshot's
5226 * dir item and dir index after it has been created, so
5227 * we won't find a reference to our own snapshot. We
5228 * still keep the following code for backward
5231 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5232 location.objectid == root->root_key.objectid) {
5236 over = !dir_emit(ctx, name_ptr, name_len,
5237 location.objectid, d_type);
5240 if (name_ptr != tmp_name)
5245 di_len = btrfs_dir_name_len(leaf, di) +
5246 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5248 di = (struct btrfs_dir_item *)((char *)di + di_len);
5254 if (key_type == BTRFS_DIR_INDEX_KEY) {
5257 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5262 /* Reached end of directory/root. Bump pos past the last item. */
5266 * Stop new entries from being returned after we return the last
5269 * New directory entries are assigned a strictly increasing
5270 * offset. This means that new entries created during readdir
5271 * are *guaranteed* to be seen in the future by that readdir.
5272 * This has broken buggy programs which operate on names as
5273 * they're returned by readdir. Until we re-use freed offsets
5274 * we have this hack to stop new entries from being returned
5275 * under the assumption that they'll never reach this huge
5278 * This is being careful not to overflow 32bit loff_t unless the
5279 * last entry requires it because doing so has broken 32bit apps
5282 if (key_type == BTRFS_DIR_INDEX_KEY) {
5283 if (ctx->pos >= INT_MAX)
5284 ctx->pos = LLONG_MAX;
5291 if (key_type == BTRFS_DIR_INDEX_KEY)
5292 btrfs_put_delayed_items(&ins_list, &del_list);
5293 btrfs_free_path(path);
5297 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5299 struct btrfs_root *root = BTRFS_I(inode)->root;
5300 struct btrfs_trans_handle *trans;
5302 bool nolock = false;
5304 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5307 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5310 if (wbc->sync_mode == WB_SYNC_ALL) {
5312 trans = btrfs_join_transaction_nolock(root);
5314 trans = btrfs_join_transaction(root);
5316 return PTR_ERR(trans);
5317 ret = btrfs_commit_transaction(trans, root);
5323 * This is somewhat expensive, updating the tree every time the
5324 * inode changes. But, it is most likely to find the inode in cache.
5325 * FIXME, needs more benchmarking...there are no reasons other than performance
5326 * to keep or drop this code.
5328 static int btrfs_dirty_inode(struct inode *inode)
5330 struct btrfs_root *root = BTRFS_I(inode)->root;
5331 struct btrfs_trans_handle *trans;
5334 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5337 trans = btrfs_join_transaction(root);
5339 return PTR_ERR(trans);
5341 ret = btrfs_update_inode(trans, root, inode);
5342 if (ret && ret == -ENOSPC) {
5343 /* whoops, lets try again with the full transaction */
5344 btrfs_end_transaction(trans, root);
5345 trans = btrfs_start_transaction(root, 1);
5347 return PTR_ERR(trans);
5349 ret = btrfs_update_inode(trans, root, inode);
5351 btrfs_end_transaction(trans, root);
5352 if (BTRFS_I(inode)->delayed_node)
5353 btrfs_balance_delayed_items(root);
5359 * This is a copy of file_update_time. We need this so we can return error on
5360 * ENOSPC for updating the inode in the case of file write and mmap writes.
5362 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5365 struct btrfs_root *root = BTRFS_I(inode)->root;
5367 if (btrfs_root_readonly(root))
5370 if (flags & S_VERSION)
5371 inode_inc_iversion(inode);
5372 if (flags & S_CTIME)
5373 inode->i_ctime = *now;
5374 if (flags & S_MTIME)
5375 inode->i_mtime = *now;
5376 if (flags & S_ATIME)
5377 inode->i_atime = *now;
5378 return btrfs_dirty_inode(inode);
5382 * find the highest existing sequence number in a directory
5383 * and then set the in-memory index_cnt variable to reflect
5384 * free sequence numbers
5386 static int btrfs_set_inode_index_count(struct inode *inode)
5388 struct btrfs_root *root = BTRFS_I(inode)->root;
5389 struct btrfs_key key, found_key;
5390 struct btrfs_path *path;
5391 struct extent_buffer *leaf;
5394 key.objectid = btrfs_ino(inode);
5395 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5396 key.offset = (u64)-1;
5398 path = btrfs_alloc_path();
5402 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5405 /* FIXME: we should be able to handle this */
5411 * MAGIC NUMBER EXPLANATION:
5412 * since we search a directory based on f_pos we have to start at 2
5413 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5414 * else has to start at 2
5416 if (path->slots[0] == 0) {
5417 BTRFS_I(inode)->index_cnt = 2;
5423 leaf = path->nodes[0];
5424 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5426 if (found_key.objectid != btrfs_ino(inode) ||
5427 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5428 BTRFS_I(inode)->index_cnt = 2;
5432 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5434 btrfs_free_path(path);
5439 * helper to find a free sequence number in a given directory. This current
5440 * code is very simple, later versions will do smarter things in the btree
5442 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5446 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5447 ret = btrfs_inode_delayed_dir_index_count(dir);
5449 ret = btrfs_set_inode_index_count(dir);
5455 *index = BTRFS_I(dir)->index_cnt;
5456 BTRFS_I(dir)->index_cnt++;
5461 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5462 struct btrfs_root *root,
5464 const char *name, int name_len,
5465 u64 ref_objectid, u64 objectid,
5466 umode_t mode, u64 *index)
5468 struct inode *inode;
5469 struct btrfs_inode_item *inode_item;
5470 struct btrfs_key *location;
5471 struct btrfs_path *path;
5472 struct btrfs_inode_ref *ref;
5473 struct btrfs_key key[2];
5478 path = btrfs_alloc_path();
5480 return ERR_PTR(-ENOMEM);
5482 inode = new_inode(root->fs_info->sb);
5484 btrfs_free_path(path);
5485 return ERR_PTR(-ENOMEM);
5489 * we have to initialize this early, so we can reclaim the inode
5490 * number if we fail afterwards in this function.
5492 inode->i_ino = objectid;
5495 trace_btrfs_inode_request(dir);
5497 ret = btrfs_set_inode_index(dir, index);
5499 btrfs_free_path(path);
5501 return ERR_PTR(ret);
5505 * index_cnt is ignored for everything but a dir,
5506 * btrfs_get_inode_index_count has an explanation for the magic
5509 BTRFS_I(inode)->index_cnt = 2;
5510 BTRFS_I(inode)->dir_index = *index;
5511 BTRFS_I(inode)->root = root;
5512 BTRFS_I(inode)->generation = trans->transid;
5513 inode->i_generation = BTRFS_I(inode)->generation;
5516 * We could have gotten an inode number from somebody who was fsynced
5517 * and then removed in this same transaction, so let's just set full
5518 * sync since it will be a full sync anyway and this will blow away the
5519 * old info in the log.
5521 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5523 key[0].objectid = objectid;
5524 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5528 * Start new inodes with an inode_ref. This is slightly more
5529 * efficient for small numbers of hard links since they will
5530 * be packed into one item. Extended refs will kick in if we
5531 * add more hard links than can fit in the ref item.
5533 key[1].objectid = objectid;
5534 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5535 key[1].offset = ref_objectid;
5537 sizes[0] = sizeof(struct btrfs_inode_item);
5538 sizes[1] = name_len + sizeof(*ref);
5540 path->leave_spinning = 1;
5541 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5545 inode_init_owner(inode, dir, mode);
5546 inode_set_bytes(inode, 0);
5547 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5548 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5549 struct btrfs_inode_item);
5550 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5551 sizeof(*inode_item));
5552 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5554 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5555 struct btrfs_inode_ref);
5556 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5557 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5558 ptr = (unsigned long)(ref + 1);
5559 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5561 btrfs_mark_buffer_dirty(path->nodes[0]);
5562 btrfs_free_path(path);
5564 location = &BTRFS_I(inode)->location;
5565 location->objectid = objectid;
5566 location->offset = 0;
5567 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5569 btrfs_inherit_iflags(inode, dir);
5571 if (S_ISREG(mode)) {
5572 if (btrfs_test_opt(root, NODATASUM))
5573 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5574 if (btrfs_test_opt(root, NODATACOW))
5575 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5576 BTRFS_INODE_NODATASUM;
5579 btrfs_insert_inode_hash(inode);
5580 inode_tree_add(inode);
5582 trace_btrfs_inode_new(inode);
5583 btrfs_set_inode_last_trans(trans, inode);
5585 btrfs_update_root_times(trans, root);
5590 BTRFS_I(dir)->index_cnt--;
5591 btrfs_free_path(path);
5593 return ERR_PTR(ret);
5596 static inline u8 btrfs_inode_type(struct inode *inode)
5598 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5602 * utility function to add 'inode' into 'parent_inode' with
5603 * a give name and a given sequence number.
5604 * if 'add_backref' is true, also insert a backref from the
5605 * inode to the parent directory.
5607 int btrfs_add_link(struct btrfs_trans_handle *trans,
5608 struct inode *parent_inode, struct inode *inode,
5609 const char *name, int name_len, int add_backref, u64 index)
5612 struct btrfs_key key;
5613 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5614 u64 ino = btrfs_ino(inode);
5615 u64 parent_ino = btrfs_ino(parent_inode);
5617 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5618 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5621 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5625 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5626 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5627 key.objectid, root->root_key.objectid,
5628 parent_ino, index, name, name_len);
5629 } else if (add_backref) {
5630 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5634 /* Nothing to clean up yet */
5638 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5640 btrfs_inode_type(inode), index);
5641 if (ret == -EEXIST || ret == -EOVERFLOW)
5644 btrfs_abort_transaction(trans, root, ret);
5648 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5650 inode_inc_iversion(parent_inode);
5651 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5652 ret = btrfs_update_inode(trans, root, parent_inode);
5654 btrfs_abort_transaction(trans, root, ret);
5658 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5661 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5662 key.objectid, root->root_key.objectid,
5663 parent_ino, &local_index, name, name_len);
5665 } else if (add_backref) {
5669 err = btrfs_del_inode_ref(trans, root, name, name_len,
5670 ino, parent_ino, &local_index);
5675 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5676 struct inode *dir, struct dentry *dentry,
5677 struct inode *inode, int backref, u64 index)
5679 int err = btrfs_add_link(trans, dir, inode,
5680 dentry->d_name.name, dentry->d_name.len,
5687 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5688 umode_t mode, dev_t rdev)
5690 struct btrfs_trans_handle *trans;
5691 struct btrfs_root *root = BTRFS_I(dir)->root;
5692 struct inode *inode = NULL;
5698 if (!new_valid_dev(rdev))
5702 * 2 for inode item and ref
5704 * 1 for xattr if selinux is on
5706 trans = btrfs_start_transaction(root, 5);
5708 return PTR_ERR(trans);
5710 err = btrfs_find_free_ino(root, &objectid);
5714 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5715 dentry->d_name.len, btrfs_ino(dir), objectid,
5717 if (IS_ERR(inode)) {
5718 err = PTR_ERR(inode);
5722 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5729 * If the active LSM wants to access the inode during
5730 * d_instantiate it needs these. Smack checks to see
5731 * if the filesystem supports xattrs by looking at the
5735 inode->i_op = &btrfs_special_inode_operations;
5736 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5740 init_special_inode(inode, inode->i_mode, rdev);
5741 btrfs_update_inode(trans, root, inode);
5742 d_instantiate(dentry, inode);
5745 btrfs_end_transaction(trans, root);
5746 btrfs_btree_balance_dirty(root);
5748 inode_dec_link_count(inode);
5754 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5755 umode_t mode, bool excl)
5757 struct btrfs_trans_handle *trans;
5758 struct btrfs_root *root = BTRFS_I(dir)->root;
5759 struct inode *inode = NULL;
5760 int drop_inode_on_err = 0;
5766 * 2 for inode item and ref
5768 * 1 for xattr if selinux is on
5770 trans = btrfs_start_transaction(root, 5);
5772 return PTR_ERR(trans);
5774 err = btrfs_find_free_ino(root, &objectid);
5778 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5779 dentry->d_name.len, btrfs_ino(dir), objectid,
5781 if (IS_ERR(inode)) {
5782 err = PTR_ERR(inode);
5785 drop_inode_on_err = 1;
5787 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5791 err = btrfs_update_inode(trans, root, inode);
5796 * If the active LSM wants to access the inode during
5797 * d_instantiate it needs these. Smack checks to see
5798 * if the filesystem supports xattrs by looking at the
5801 inode->i_fop = &btrfs_file_operations;
5802 inode->i_op = &btrfs_file_inode_operations;
5804 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5808 inode->i_mapping->a_ops = &btrfs_aops;
5809 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5810 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5811 d_instantiate(dentry, inode);
5814 btrfs_end_transaction(trans, root);
5815 if (err && drop_inode_on_err) {
5816 inode_dec_link_count(inode);
5819 btrfs_btree_balance_dirty(root);
5823 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5824 struct dentry *dentry)
5826 struct btrfs_trans_handle *trans;
5827 struct btrfs_root *root = BTRFS_I(dir)->root;
5828 struct inode *inode = old_dentry->d_inode;
5833 /* do not allow sys_link's with other subvols of the same device */
5834 if (root->objectid != BTRFS_I(inode)->root->objectid)
5837 if (inode->i_nlink >= BTRFS_LINK_MAX)
5840 err = btrfs_set_inode_index(dir, &index);
5845 * 2 items for inode and inode ref
5846 * 2 items for dir items
5847 * 1 item for parent inode
5849 trans = btrfs_start_transaction(root, 5);
5850 if (IS_ERR(trans)) {
5851 err = PTR_ERR(trans);
5855 /* There are several dir indexes for this inode, clear the cache. */
5856 BTRFS_I(inode)->dir_index = 0ULL;
5858 inode_inc_iversion(inode);
5859 inode->i_ctime = CURRENT_TIME;
5861 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5863 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5868 struct dentry *parent = dentry->d_parent;
5869 err = btrfs_update_inode(trans, root, inode);
5872 d_instantiate(dentry, inode);
5873 btrfs_log_new_name(trans, inode, NULL, parent);
5876 btrfs_end_transaction(trans, root);
5879 inode_dec_link_count(inode);
5882 btrfs_btree_balance_dirty(root);
5886 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5888 struct inode *inode = NULL;
5889 struct btrfs_trans_handle *trans;
5890 struct btrfs_root *root = BTRFS_I(dir)->root;
5892 int drop_on_err = 0;
5897 * 2 items for inode and ref
5898 * 2 items for dir items
5899 * 1 for xattr if selinux is on
5901 trans = btrfs_start_transaction(root, 5);
5903 return PTR_ERR(trans);
5905 err = btrfs_find_free_ino(root, &objectid);
5909 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5910 dentry->d_name.len, btrfs_ino(dir), objectid,
5911 S_IFDIR | mode, &index);
5912 if (IS_ERR(inode)) {
5913 err = PTR_ERR(inode);
5919 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5923 inode->i_op = &btrfs_dir_inode_operations;
5924 inode->i_fop = &btrfs_dir_file_operations;
5926 btrfs_i_size_write(inode, 0);
5927 err = btrfs_update_inode(trans, root, inode);
5931 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5932 dentry->d_name.len, 0, index);
5936 d_instantiate(dentry, inode);
5940 btrfs_end_transaction(trans, root);
5943 btrfs_btree_balance_dirty(root);
5947 /* helper for btfs_get_extent. Given an existing extent in the tree,
5948 * and an extent that you want to insert, deal with overlap and insert
5949 * the new extent into the tree.
5951 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5952 struct extent_map *existing,
5953 struct extent_map *em,
5954 u64 map_start, u64 map_len)
5958 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5959 start_diff = map_start - em->start;
5960 em->start = map_start;
5962 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5963 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5964 em->block_start += start_diff;
5965 em->block_len -= start_diff;
5967 return add_extent_mapping(em_tree, em, 0);
5970 static noinline int uncompress_inline(struct btrfs_path *path,
5971 struct inode *inode, struct page *page,
5972 size_t pg_offset, u64 extent_offset,
5973 struct btrfs_file_extent_item *item)
5976 struct extent_buffer *leaf = path->nodes[0];
5979 unsigned long inline_size;
5983 WARN_ON(pg_offset != 0);
5984 compress_type = btrfs_file_extent_compression(leaf, item);
5985 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5986 inline_size = btrfs_file_extent_inline_item_len(leaf,
5987 btrfs_item_nr(path->slots[0]));
5988 tmp = kmalloc(inline_size, GFP_NOFS);
5991 ptr = btrfs_file_extent_inline_start(item);
5993 read_extent_buffer(leaf, tmp, ptr, inline_size);
5995 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5996 ret = btrfs_decompress(compress_type, tmp, page,
5997 extent_offset, inline_size, max_size);
5999 char *kaddr = kmap_atomic(page);
6000 unsigned long copy_size = min_t(u64,
6001 PAGE_CACHE_SIZE - pg_offset,
6002 max_size - extent_offset);
6003 memset(kaddr + pg_offset, 0, copy_size);
6004 kunmap_atomic(kaddr);
6011 * a bit scary, this does extent mapping from logical file offset to the disk.
6012 * the ugly parts come from merging extents from the disk with the in-ram
6013 * representation. This gets more complex because of the data=ordered code,
6014 * where the in-ram extents might be locked pending data=ordered completion.
6016 * This also copies inline extents directly into the page.
6019 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6020 size_t pg_offset, u64 start, u64 len,
6026 u64 extent_start = 0;
6028 u64 objectid = btrfs_ino(inode);
6030 struct btrfs_path *path = NULL;
6031 struct btrfs_root *root = BTRFS_I(inode)->root;
6032 struct btrfs_file_extent_item *item;
6033 struct extent_buffer *leaf;
6034 struct btrfs_key found_key;
6035 struct extent_map *em = NULL;
6036 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6037 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6038 struct btrfs_trans_handle *trans = NULL;
6042 read_lock(&em_tree->lock);
6043 em = lookup_extent_mapping(em_tree, start, len);
6045 em->bdev = root->fs_info->fs_devices->latest_bdev;
6046 read_unlock(&em_tree->lock);
6049 if (em->start > start || em->start + em->len <= start)
6050 free_extent_map(em);
6051 else if (em->block_start == EXTENT_MAP_INLINE && page)
6052 free_extent_map(em);
6056 em = alloc_extent_map();
6061 em->bdev = root->fs_info->fs_devices->latest_bdev;
6062 em->start = EXTENT_MAP_HOLE;
6063 em->orig_start = EXTENT_MAP_HOLE;
6065 em->block_len = (u64)-1;
6068 path = btrfs_alloc_path();
6074 * Chances are we'll be called again, so go ahead and do
6080 ret = btrfs_lookup_file_extent(trans, root, path,
6081 objectid, start, trans != NULL);
6088 if (path->slots[0] == 0)
6093 leaf = path->nodes[0];
6094 item = btrfs_item_ptr(leaf, path->slots[0],
6095 struct btrfs_file_extent_item);
6096 /* are we inside the extent that was found? */
6097 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6098 found_type = btrfs_key_type(&found_key);
6099 if (found_key.objectid != objectid ||
6100 found_type != BTRFS_EXTENT_DATA_KEY) {
6102 * If we backup past the first extent we want to move forward
6103 * and see if there is an extent in front of us, otherwise we'll
6104 * say there is a hole for our whole search range which can
6111 found_type = btrfs_file_extent_type(leaf, item);
6112 extent_start = found_key.offset;
6113 compress_type = btrfs_file_extent_compression(leaf, item);
6114 if (found_type == BTRFS_FILE_EXTENT_REG ||
6115 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6116 extent_end = extent_start +
6117 btrfs_file_extent_num_bytes(leaf, item);
6118 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6120 size = btrfs_file_extent_inline_len(leaf, item);
6121 extent_end = ALIGN(extent_start + size, root->sectorsize);
6124 if (start >= extent_end) {
6126 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6127 ret = btrfs_next_leaf(root, path);
6134 leaf = path->nodes[0];
6136 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6137 if (found_key.objectid != objectid ||
6138 found_key.type != BTRFS_EXTENT_DATA_KEY)
6140 if (start + len <= found_key.offset)
6143 em->orig_start = start;
6144 em->len = found_key.offset - start;
6148 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6149 if (found_type == BTRFS_FILE_EXTENT_REG ||
6150 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6151 em->start = extent_start;
6152 em->len = extent_end - extent_start;
6153 em->orig_start = extent_start -
6154 btrfs_file_extent_offset(leaf, item);
6155 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6157 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6159 em->block_start = EXTENT_MAP_HOLE;
6162 if (compress_type != BTRFS_COMPRESS_NONE) {
6163 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6164 em->compress_type = compress_type;
6165 em->block_start = bytenr;
6166 em->block_len = em->orig_block_len;
6168 bytenr += btrfs_file_extent_offset(leaf, item);
6169 em->block_start = bytenr;
6170 em->block_len = em->len;
6171 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6172 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6175 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6179 size_t extent_offset;
6182 em->block_start = EXTENT_MAP_INLINE;
6183 if (!page || create) {
6184 em->start = extent_start;
6185 em->len = extent_end - extent_start;
6189 size = btrfs_file_extent_inline_len(leaf, item);
6190 extent_offset = page_offset(page) + pg_offset - extent_start;
6191 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6192 size - extent_offset);
6193 em->start = extent_start + extent_offset;
6194 em->len = ALIGN(copy_size, root->sectorsize);
6195 em->orig_block_len = em->len;
6196 em->orig_start = em->start;
6197 if (compress_type) {
6198 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6199 em->compress_type = compress_type;
6201 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6202 if (create == 0 && !PageUptodate(page)) {
6203 if (btrfs_file_extent_compression(leaf, item) !=
6204 BTRFS_COMPRESS_NONE) {
6205 ret = uncompress_inline(path, inode, page,
6207 extent_offset, item);
6208 BUG_ON(ret); /* -ENOMEM */
6211 read_extent_buffer(leaf, map + pg_offset, ptr,
6213 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6214 memset(map + pg_offset + copy_size, 0,
6215 PAGE_CACHE_SIZE - pg_offset -
6220 flush_dcache_page(page);
6221 } else if (create && PageUptodate(page)) {
6225 free_extent_map(em);
6228 btrfs_release_path(path);
6229 trans = btrfs_join_transaction(root);
6232 return ERR_CAST(trans);
6236 write_extent_buffer(leaf, map + pg_offset, ptr,
6239 btrfs_mark_buffer_dirty(leaf);
6241 set_extent_uptodate(io_tree, em->start,
6242 extent_map_end(em) - 1, NULL, GFP_NOFS);
6245 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6249 em->orig_start = start;
6252 em->block_start = EXTENT_MAP_HOLE;
6253 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6255 btrfs_release_path(path);
6256 if (em->start > start || extent_map_end(em) <= start) {
6257 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6258 em->start, em->len, start, len);
6264 write_lock(&em_tree->lock);
6265 ret = add_extent_mapping(em_tree, em, 0);
6266 /* it is possible that someone inserted the extent into the tree
6267 * while we had the lock dropped. It is also possible that
6268 * an overlapping map exists in the tree
6270 if (ret == -EEXIST) {
6271 struct extent_map *existing;
6275 existing = lookup_extent_mapping(em_tree, start, len);
6276 if (existing && (existing->start > start ||
6277 existing->start + existing->len <= start)) {
6278 free_extent_map(existing);
6282 existing = lookup_extent_mapping(em_tree, em->start,
6285 err = merge_extent_mapping(em_tree, existing,
6288 free_extent_map(existing);
6290 free_extent_map(em);
6295 free_extent_map(em);
6299 free_extent_map(em);
6304 write_unlock(&em_tree->lock);
6307 trace_btrfs_get_extent(root, em);
6310 btrfs_free_path(path);
6312 ret = btrfs_end_transaction(trans, root);
6317 free_extent_map(em);
6318 return ERR_PTR(err);
6320 BUG_ON(!em); /* Error is always set */
6324 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6325 size_t pg_offset, u64 start, u64 len,
6328 struct extent_map *em;
6329 struct extent_map *hole_em = NULL;
6330 u64 range_start = start;
6336 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6343 * - a pre-alloc extent,
6344 * there might actually be delalloc bytes behind it.
6346 if (em->block_start != EXTENT_MAP_HOLE &&
6347 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6353 /* check to see if we've wrapped (len == -1 or similar) */
6362 /* ok, we didn't find anything, lets look for delalloc */
6363 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6364 end, len, EXTENT_DELALLOC, 1);
6365 found_end = range_start + found;
6366 if (found_end < range_start)
6367 found_end = (u64)-1;
6370 * we didn't find anything useful, return
6371 * the original results from get_extent()
6373 if (range_start > end || found_end <= start) {
6379 /* adjust the range_start to make sure it doesn't
6380 * go backwards from the start they passed in
6382 range_start = max(start, range_start);
6383 found = found_end - range_start;
6386 u64 hole_start = start;
6389 em = alloc_extent_map();
6395 * when btrfs_get_extent can't find anything it
6396 * returns one huge hole
6398 * make sure what it found really fits our range, and
6399 * adjust to make sure it is based on the start from
6403 u64 calc_end = extent_map_end(hole_em);
6405 if (calc_end <= start || (hole_em->start > end)) {
6406 free_extent_map(hole_em);
6409 hole_start = max(hole_em->start, start);
6410 hole_len = calc_end - hole_start;
6414 if (hole_em && range_start > hole_start) {
6415 /* our hole starts before our delalloc, so we
6416 * have to return just the parts of the hole
6417 * that go until the delalloc starts
6419 em->len = min(hole_len,
6420 range_start - hole_start);
6421 em->start = hole_start;
6422 em->orig_start = hole_start;
6424 * don't adjust block start at all,
6425 * it is fixed at EXTENT_MAP_HOLE
6427 em->block_start = hole_em->block_start;
6428 em->block_len = hole_len;
6429 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6430 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6432 em->start = range_start;
6434 em->orig_start = range_start;
6435 em->block_start = EXTENT_MAP_DELALLOC;
6436 em->block_len = found;
6438 } else if (hole_em) {
6443 free_extent_map(hole_em);
6445 free_extent_map(em);
6446 return ERR_PTR(err);
6451 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6454 struct btrfs_root *root = BTRFS_I(inode)->root;
6455 struct extent_map *em;
6456 struct btrfs_key ins;
6460 alloc_hint = get_extent_allocation_hint(inode, start, len);
6461 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6462 alloc_hint, &ins, 1);
6464 return ERR_PTR(ret);
6466 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6467 ins.offset, ins.offset, ins.offset, 0);
6469 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6473 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6474 ins.offset, ins.offset, 0);
6476 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6477 free_extent_map(em);
6478 return ERR_PTR(ret);
6485 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6486 * block must be cow'd
6488 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6489 u64 *orig_start, u64 *orig_block_len,
6492 struct btrfs_trans_handle *trans;
6493 struct btrfs_path *path;
6495 struct extent_buffer *leaf;
6496 struct btrfs_root *root = BTRFS_I(inode)->root;
6497 struct btrfs_file_extent_item *fi;
6498 struct btrfs_key key;
6505 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6507 path = btrfs_alloc_path();
6511 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6516 slot = path->slots[0];
6519 /* can't find the item, must cow */
6526 leaf = path->nodes[0];
6527 btrfs_item_key_to_cpu(leaf, &key, slot);
6528 if (key.objectid != btrfs_ino(inode) ||
6529 key.type != BTRFS_EXTENT_DATA_KEY) {
6530 /* not our file or wrong item type, must cow */
6534 if (key.offset > offset) {
6535 /* Wrong offset, must cow */
6539 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6540 found_type = btrfs_file_extent_type(leaf, fi);
6541 if (found_type != BTRFS_FILE_EXTENT_REG &&
6542 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6543 /* not a regular extent, must cow */
6547 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6550 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6551 if (extent_end <= offset)
6554 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6555 if (disk_bytenr == 0)
6558 if (btrfs_file_extent_compression(leaf, fi) ||
6559 btrfs_file_extent_encryption(leaf, fi) ||
6560 btrfs_file_extent_other_encoding(leaf, fi))
6563 backref_offset = btrfs_file_extent_offset(leaf, fi);
6566 *orig_start = key.offset - backref_offset;
6567 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6568 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6571 if (btrfs_extent_readonly(root, disk_bytenr))
6573 btrfs_release_path(path);
6576 * look for other files referencing this extent, if we
6577 * find any we must cow
6579 trans = btrfs_join_transaction(root);
6580 if (IS_ERR(trans)) {
6585 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6586 key.offset - backref_offset, disk_bytenr);
6587 btrfs_end_transaction(trans, root);
6594 * adjust disk_bytenr and num_bytes to cover just the bytes
6595 * in this extent we are about to write. If there
6596 * are any csums in that range we have to cow in order
6597 * to keep the csums correct
6599 disk_bytenr += backref_offset;
6600 disk_bytenr += offset - key.offset;
6601 num_bytes = min(offset + *len, extent_end) - offset;
6602 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6605 * all of the above have passed, it is safe to overwrite this extent
6611 btrfs_free_path(path);
6615 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6616 struct extent_state **cached_state, int writing)
6618 struct btrfs_ordered_extent *ordered;
6622 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6625 * We're concerned with the entire range that we're going to be
6626 * doing DIO to, so we need to make sure theres no ordered
6627 * extents in this range.
6629 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6630 lockend - lockstart + 1);
6633 * We need to make sure there are no buffered pages in this
6634 * range either, we could have raced between the invalidate in
6635 * generic_file_direct_write and locking the extent. The
6636 * invalidate needs to happen so that reads after a write do not
6639 if (!ordered && (!writing ||
6640 !test_range_bit(&BTRFS_I(inode)->io_tree,
6641 lockstart, lockend, EXTENT_UPTODATE, 0,
6645 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6646 cached_state, GFP_NOFS);
6649 btrfs_start_ordered_extent(inode, ordered, 1);
6650 btrfs_put_ordered_extent(ordered);
6652 /* Screw you mmap */
6653 ret = filemap_write_and_wait_range(inode->i_mapping,
6660 * If we found a page that couldn't be invalidated just
6661 * fall back to buffered.
6663 ret = invalidate_inode_pages2_range(inode->i_mapping,
6664 lockstart >> PAGE_CACHE_SHIFT,
6665 lockend >> PAGE_CACHE_SHIFT);
6676 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6677 u64 len, u64 orig_start,
6678 u64 block_start, u64 block_len,
6679 u64 orig_block_len, u64 ram_bytes,
6682 struct extent_map_tree *em_tree;
6683 struct extent_map *em;
6684 struct btrfs_root *root = BTRFS_I(inode)->root;
6687 em_tree = &BTRFS_I(inode)->extent_tree;
6688 em = alloc_extent_map();
6690 return ERR_PTR(-ENOMEM);
6693 em->orig_start = orig_start;
6694 em->mod_start = start;
6697 em->block_len = block_len;
6698 em->block_start = block_start;
6699 em->bdev = root->fs_info->fs_devices->latest_bdev;
6700 em->orig_block_len = orig_block_len;
6701 em->ram_bytes = ram_bytes;
6702 em->generation = -1;
6703 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6704 if (type == BTRFS_ORDERED_PREALLOC)
6705 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6708 btrfs_drop_extent_cache(inode, em->start,
6709 em->start + em->len - 1, 0);
6710 write_lock(&em_tree->lock);
6711 ret = add_extent_mapping(em_tree, em, 1);
6712 write_unlock(&em_tree->lock);
6713 } while (ret == -EEXIST);
6716 free_extent_map(em);
6717 return ERR_PTR(ret);
6724 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6725 struct buffer_head *bh_result, int create)
6727 struct extent_map *em;
6728 struct btrfs_root *root = BTRFS_I(inode)->root;
6729 struct extent_state *cached_state = NULL;
6730 u64 start = iblock << inode->i_blkbits;
6731 u64 lockstart, lockend;
6732 u64 len = bh_result->b_size;
6733 int unlock_bits = EXTENT_LOCKED;
6737 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6739 len = min_t(u64, len, root->sectorsize);
6742 lockend = start + len - 1;
6745 * If this errors out it's because we couldn't invalidate pagecache for
6746 * this range and we need to fallback to buffered.
6748 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6751 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6758 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6759 * io. INLINE is special, and we could probably kludge it in here, but
6760 * it's still buffered so for safety lets just fall back to the generic
6763 * For COMPRESSED we _have_ to read the entire extent in so we can
6764 * decompress it, so there will be buffering required no matter what we
6765 * do, so go ahead and fallback to buffered.
6767 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6768 * to buffered IO. Don't blame me, this is the price we pay for using
6771 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6772 em->block_start == EXTENT_MAP_INLINE) {
6773 free_extent_map(em);
6778 /* Just a good old fashioned hole, return */
6779 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6780 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6781 free_extent_map(em);
6786 * We don't allocate a new extent in the following cases
6788 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6790 * 2) The extent is marked as PREALLOC. We're good to go here and can
6791 * just use the extent.
6795 len = min(len, em->len - (start - em->start));
6796 lockstart = start + len;
6800 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6801 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6802 em->block_start != EXTENT_MAP_HOLE)) {
6805 u64 block_start, orig_start, orig_block_len, ram_bytes;
6807 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6808 type = BTRFS_ORDERED_PREALLOC;
6810 type = BTRFS_ORDERED_NOCOW;
6811 len = min(len, em->len - (start - em->start));
6812 block_start = em->block_start + (start - em->start);
6814 if (can_nocow_extent(inode, start, &len, &orig_start,
6815 &orig_block_len, &ram_bytes) == 1) {
6816 if (type == BTRFS_ORDERED_PREALLOC) {
6817 free_extent_map(em);
6818 em = create_pinned_em(inode, start, len,
6827 ret = btrfs_add_ordered_extent_dio(inode, start,
6828 block_start, len, len, type);
6830 free_extent_map(em);
6838 * this will cow the extent, reset the len in case we changed
6841 len = bh_result->b_size;
6842 free_extent_map(em);
6843 em = btrfs_new_extent_direct(inode, start, len);
6848 len = min(len, em->len - (start - em->start));
6850 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6852 bh_result->b_size = len;
6853 bh_result->b_bdev = em->bdev;
6854 set_buffer_mapped(bh_result);
6856 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6857 set_buffer_new(bh_result);
6860 * Need to update the i_size under the extent lock so buffered
6861 * readers will get the updated i_size when we unlock.
6863 if (start + len > i_size_read(inode))
6864 i_size_write(inode, start + len);
6866 spin_lock(&BTRFS_I(inode)->lock);
6867 BTRFS_I(inode)->outstanding_extents++;
6868 spin_unlock(&BTRFS_I(inode)->lock);
6870 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6871 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6872 &cached_state, GFP_NOFS);
6877 * In the case of write we need to clear and unlock the entire range,
6878 * in the case of read we need to unlock only the end area that we
6879 * aren't using if there is any left over space.
6881 if (lockstart < lockend) {
6882 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6883 lockend, unlock_bits, 1, 0,
6884 &cached_state, GFP_NOFS);
6886 free_extent_state(cached_state);
6889 free_extent_map(em);
6894 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6895 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6899 static void btrfs_endio_direct_read(struct bio *bio, int err)
6901 struct btrfs_dio_private *dip = bio->bi_private;
6902 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6903 struct bio_vec *bvec = bio->bi_io_vec;
6904 struct inode *inode = dip->inode;
6905 struct btrfs_root *root = BTRFS_I(inode)->root;
6906 struct bio *dio_bio;
6907 u32 *csums = (u32 *)dip->csum;
6911 start = dip->logical_offset;
6913 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6914 struct page *page = bvec->bv_page;
6917 unsigned long flags;
6919 local_irq_save(flags);
6920 kaddr = kmap_atomic(page);
6921 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6922 csum, bvec->bv_len);
6923 btrfs_csum_final(csum, (char *)&csum);
6924 kunmap_atomic(kaddr);
6925 local_irq_restore(flags);
6927 flush_dcache_page(bvec->bv_page);
6928 if (csum != csums[index]) {
6929 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
6930 btrfs_ino(inode), start, csum,
6936 start += bvec->bv_len;
6939 } while (bvec <= bvec_end);
6941 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6942 dip->logical_offset + dip->bytes - 1);
6943 dio_bio = dip->dio_bio;
6947 /* If we had a csum failure make sure to clear the uptodate flag */
6949 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6950 dio_end_io(dio_bio, err);
6954 static void btrfs_endio_direct_write(struct bio *bio, int err)
6956 struct btrfs_dio_private *dip = bio->bi_private;
6957 struct inode *inode = dip->inode;
6958 struct btrfs_root *root = BTRFS_I(inode)->root;
6959 struct btrfs_ordered_extent *ordered = NULL;
6960 u64 ordered_offset = dip->logical_offset;
6961 u64 ordered_bytes = dip->bytes;
6962 struct bio *dio_bio;
6968 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6970 ordered_bytes, !err);
6974 ordered->work.func = finish_ordered_fn;
6975 ordered->work.flags = 0;
6976 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6980 * our bio might span multiple ordered extents. If we haven't
6981 * completed the accounting for the whole dio, go back and try again
6983 if (ordered_offset < dip->logical_offset + dip->bytes) {
6984 ordered_bytes = dip->logical_offset + dip->bytes -
6990 dio_bio = dip->dio_bio;
6994 /* If we had an error make sure to clear the uptodate flag */
6996 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6997 dio_end_io(dio_bio, err);
7001 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7002 struct bio *bio, int mirror_num,
7003 unsigned long bio_flags, u64 offset)
7006 struct btrfs_root *root = BTRFS_I(inode)->root;
7007 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7008 BUG_ON(ret); /* -ENOMEM */
7012 static void btrfs_end_dio_bio(struct bio *bio, int err)
7014 struct btrfs_dio_private *dip = bio->bi_private;
7017 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7018 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7019 btrfs_ino(dip->inode), bio->bi_rw,
7020 (unsigned long long)bio->bi_sector, bio->bi_size, err);
7024 * before atomic variable goto zero, we must make sure
7025 * dip->errors is perceived to be set.
7027 smp_mb__before_atomic_dec();
7030 /* if there are more bios still pending for this dio, just exit */
7031 if (!atomic_dec_and_test(&dip->pending_bios))
7035 bio_io_error(dip->orig_bio);
7037 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7038 bio_endio(dip->orig_bio, 0);
7044 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7045 u64 first_sector, gfp_t gfp_flags)
7047 int nr_vecs = bio_get_nr_vecs(bdev);
7048 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7051 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7052 int rw, u64 file_offset, int skip_sum,
7055 struct btrfs_dio_private *dip = bio->bi_private;
7056 int write = rw & REQ_WRITE;
7057 struct btrfs_root *root = BTRFS_I(inode)->root;
7061 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7066 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7074 if (write && async_submit) {
7075 ret = btrfs_wq_submit_bio(root->fs_info,
7076 inode, rw, bio, 0, 0,
7078 __btrfs_submit_bio_start_direct_io,
7079 __btrfs_submit_bio_done);
7083 * If we aren't doing async submit, calculate the csum of the
7086 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7089 } else if (!skip_sum) {
7090 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7097 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7103 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7106 struct inode *inode = dip->inode;
7107 struct btrfs_root *root = BTRFS_I(inode)->root;
7109 struct bio *orig_bio = dip->orig_bio;
7110 struct bio_vec *bvec = orig_bio->bi_io_vec;
7111 u64 start_sector = orig_bio->bi_sector;
7112 u64 file_offset = dip->logical_offset;
7117 int async_submit = 0;
7119 map_length = orig_bio->bi_size;
7120 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7121 &map_length, NULL, 0);
7127 if (map_length >= orig_bio->bi_size) {
7132 /* async crcs make it difficult to collect full stripe writes. */
7133 if (btrfs_get_alloc_profile(root, 1) &
7134 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7139 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7142 bio->bi_private = dip;
7143 bio->bi_end_io = btrfs_end_dio_bio;
7144 atomic_inc(&dip->pending_bios);
7146 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7147 if (unlikely(map_length < submit_len + bvec->bv_len ||
7148 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7149 bvec->bv_offset) < bvec->bv_len)) {
7151 * inc the count before we submit the bio so
7152 * we know the end IO handler won't happen before
7153 * we inc the count. Otherwise, the dip might get freed
7154 * before we're done setting it up
7156 atomic_inc(&dip->pending_bios);
7157 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7158 file_offset, skip_sum,
7162 atomic_dec(&dip->pending_bios);
7166 start_sector += submit_len >> 9;
7167 file_offset += submit_len;
7172 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7173 start_sector, GFP_NOFS);
7176 bio->bi_private = dip;
7177 bio->bi_end_io = btrfs_end_dio_bio;
7179 map_length = orig_bio->bi_size;
7180 ret = btrfs_map_block(root->fs_info, rw,
7182 &map_length, NULL, 0);
7188 submit_len += bvec->bv_len;
7195 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7204 * before atomic variable goto zero, we must
7205 * make sure dip->errors is perceived to be set.
7207 smp_mb__before_atomic_dec();
7208 if (atomic_dec_and_test(&dip->pending_bios))
7209 bio_io_error(dip->orig_bio);
7211 /* bio_end_io() will handle error, so we needn't return it */
7215 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7216 struct inode *inode, loff_t file_offset)
7218 struct btrfs_root *root = BTRFS_I(inode)->root;
7219 struct btrfs_dio_private *dip;
7223 int write = rw & REQ_WRITE;
7227 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7229 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7235 if (!skip_sum && !write) {
7236 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7237 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7238 sum_len *= csum_size;
7243 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7249 dip->private = dio_bio->bi_private;
7251 dip->logical_offset = file_offset;
7252 dip->bytes = dio_bio->bi_size;
7253 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7254 io_bio->bi_private = dip;
7256 dip->orig_bio = io_bio;
7257 dip->dio_bio = dio_bio;
7258 atomic_set(&dip->pending_bios, 0);
7261 io_bio->bi_end_io = btrfs_endio_direct_write;
7263 io_bio->bi_end_io = btrfs_endio_direct_read;
7265 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7274 * If this is a write, we need to clean up the reserved space and kill
7275 * the ordered extent.
7278 struct btrfs_ordered_extent *ordered;
7279 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7280 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7281 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7282 btrfs_free_reserved_extent(root, ordered->start,
7284 btrfs_put_ordered_extent(ordered);
7285 btrfs_put_ordered_extent(ordered);
7287 bio_endio(dio_bio, ret);
7290 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7291 const struct iovec *iov, loff_t offset,
7292 unsigned long nr_segs)
7298 unsigned blocksize_mask = root->sectorsize - 1;
7299 ssize_t retval = -EINVAL;
7300 loff_t end = offset;
7302 if (offset & blocksize_mask)
7305 /* Check the memory alignment. Blocks cannot straddle pages */
7306 for (seg = 0; seg < nr_segs; seg++) {
7307 addr = (unsigned long)iov[seg].iov_base;
7308 size = iov[seg].iov_len;
7310 if ((addr & blocksize_mask) || (size & blocksize_mask))
7313 /* If this is a write we don't need to check anymore */
7318 * Check to make sure we don't have duplicate iov_base's in this
7319 * iovec, if so return EINVAL, otherwise we'll get csum errors
7320 * when reading back.
7322 for (i = seg + 1; i < nr_segs; i++) {
7323 if (iov[seg].iov_base == iov[i].iov_base)
7332 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7333 const struct iovec *iov, loff_t offset,
7334 unsigned long nr_segs)
7336 struct file *file = iocb->ki_filp;
7337 struct inode *inode = file->f_mapping->host;
7341 bool relock = false;
7344 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7348 atomic_inc(&inode->i_dio_count);
7349 smp_mb__after_atomic_inc();
7352 * The generic stuff only does filemap_write_and_wait_range, which isn't
7353 * enough if we've written compressed pages to this area, so we need to
7354 * call btrfs_wait_ordered_range to make absolutely sure that any
7355 * outstanding dirty pages are on disk.
7357 count = iov_length(iov, nr_segs);
7358 ret = btrfs_wait_ordered_range(inode, offset, count);
7364 * If the write DIO is beyond the EOF, we need update
7365 * the isize, but it is protected by i_mutex. So we can
7366 * not unlock the i_mutex at this case.
7368 if (offset + count <= inode->i_size) {
7369 mutex_unlock(&inode->i_mutex);
7372 ret = btrfs_delalloc_reserve_space(inode, count);
7375 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7376 &BTRFS_I(inode)->runtime_flags))) {
7377 inode_dio_done(inode);
7378 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7382 ret = __blockdev_direct_IO(rw, iocb, inode,
7383 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7384 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7385 btrfs_submit_direct, flags);
7387 if (ret < 0 && ret != -EIOCBQUEUED)
7388 btrfs_delalloc_release_space(inode, count);
7389 else if (ret >= 0 && (size_t)ret < count)
7390 btrfs_delalloc_release_space(inode,
7391 count - (size_t)ret);
7393 btrfs_delalloc_release_metadata(inode, 0);
7397 inode_dio_done(inode);
7399 mutex_lock(&inode->i_mutex);
7404 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7406 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7407 __u64 start, __u64 len)
7411 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7415 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7418 int btrfs_readpage(struct file *file, struct page *page)
7420 struct extent_io_tree *tree;
7421 tree = &BTRFS_I(page->mapping->host)->io_tree;
7422 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7425 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7427 struct extent_io_tree *tree;
7430 if (current->flags & PF_MEMALLOC) {
7431 redirty_page_for_writepage(wbc, page);
7435 tree = &BTRFS_I(page->mapping->host)->io_tree;
7436 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7439 static int btrfs_writepages(struct address_space *mapping,
7440 struct writeback_control *wbc)
7442 struct extent_io_tree *tree;
7444 tree = &BTRFS_I(mapping->host)->io_tree;
7445 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7449 btrfs_readpages(struct file *file, struct address_space *mapping,
7450 struct list_head *pages, unsigned nr_pages)
7452 struct extent_io_tree *tree;
7453 tree = &BTRFS_I(mapping->host)->io_tree;
7454 return extent_readpages(tree, mapping, pages, nr_pages,
7457 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7459 struct extent_io_tree *tree;
7460 struct extent_map_tree *map;
7463 tree = &BTRFS_I(page->mapping->host)->io_tree;
7464 map = &BTRFS_I(page->mapping->host)->extent_tree;
7465 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7467 ClearPagePrivate(page);
7468 set_page_private(page, 0);
7469 page_cache_release(page);
7474 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7476 if (PageWriteback(page) || PageDirty(page))
7478 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7481 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7482 unsigned int length)
7484 struct inode *inode = page->mapping->host;
7485 struct extent_io_tree *tree;
7486 struct btrfs_ordered_extent *ordered;
7487 struct extent_state *cached_state = NULL;
7488 u64 page_start = page_offset(page);
7489 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7490 int inode_evicting = inode->i_state & I_FREEING;
7493 * we have the page locked, so new writeback can't start,
7494 * and the dirty bit won't be cleared while we are here.
7496 * Wait for IO on this page so that we can safely clear
7497 * the PagePrivate2 bit and do ordered accounting
7499 wait_on_page_writeback(page);
7501 tree = &BTRFS_I(inode)->io_tree;
7503 btrfs_releasepage(page, GFP_NOFS);
7507 if (!inode_evicting)
7508 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7509 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7512 * IO on this page will never be started, so we need
7513 * to account for any ordered extents now
7515 if (!inode_evicting)
7516 clear_extent_bit(tree, page_start, page_end,
7517 EXTENT_DIRTY | EXTENT_DELALLOC |
7518 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7519 EXTENT_DEFRAG, 1, 0, &cached_state,
7522 * whoever cleared the private bit is responsible
7523 * for the finish_ordered_io
7525 if (TestClearPagePrivate2(page)) {
7526 struct btrfs_ordered_inode_tree *tree;
7529 tree = &BTRFS_I(inode)->ordered_tree;
7531 spin_lock_irq(&tree->lock);
7532 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7533 new_len = page_start - ordered->file_offset;
7534 if (new_len < ordered->truncated_len)
7535 ordered->truncated_len = new_len;
7536 spin_unlock_irq(&tree->lock);
7538 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7540 PAGE_CACHE_SIZE, 1))
7541 btrfs_finish_ordered_io(ordered);
7543 btrfs_put_ordered_extent(ordered);
7544 if (!inode_evicting) {
7545 cached_state = NULL;
7546 lock_extent_bits(tree, page_start, page_end, 0,
7551 if (!inode_evicting) {
7552 clear_extent_bit(tree, page_start, page_end,
7553 EXTENT_LOCKED | EXTENT_DIRTY |
7554 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7555 EXTENT_DEFRAG, 1, 1,
7556 &cached_state, GFP_NOFS);
7558 __btrfs_releasepage(page, GFP_NOFS);
7561 ClearPageChecked(page);
7562 if (PagePrivate(page)) {
7563 ClearPagePrivate(page);
7564 set_page_private(page, 0);
7565 page_cache_release(page);
7570 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7571 * called from a page fault handler when a page is first dirtied. Hence we must
7572 * be careful to check for EOF conditions here. We set the page up correctly
7573 * for a written page which means we get ENOSPC checking when writing into
7574 * holes and correct delalloc and unwritten extent mapping on filesystems that
7575 * support these features.
7577 * We are not allowed to take the i_mutex here so we have to play games to
7578 * protect against truncate races as the page could now be beyond EOF. Because
7579 * vmtruncate() writes the inode size before removing pages, once we have the
7580 * page lock we can determine safely if the page is beyond EOF. If it is not
7581 * beyond EOF, then the page is guaranteed safe against truncation until we
7584 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7586 struct page *page = vmf->page;
7587 struct inode *inode = file_inode(vma->vm_file);
7588 struct btrfs_root *root = BTRFS_I(inode)->root;
7589 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7590 struct btrfs_ordered_extent *ordered;
7591 struct extent_state *cached_state = NULL;
7593 unsigned long zero_start;
7600 sb_start_pagefault(inode->i_sb);
7601 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7603 ret = file_update_time(vma->vm_file);
7609 else /* -ENOSPC, -EIO, etc */
7610 ret = VM_FAULT_SIGBUS;
7616 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7619 size = i_size_read(inode);
7620 page_start = page_offset(page);
7621 page_end = page_start + PAGE_CACHE_SIZE - 1;
7623 if ((page->mapping != inode->i_mapping) ||
7624 (page_start >= size)) {
7625 /* page got truncated out from underneath us */
7628 wait_on_page_writeback(page);
7630 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7631 set_page_extent_mapped(page);
7634 * we can't set the delalloc bits if there are pending ordered
7635 * extents. Drop our locks and wait for them to finish
7637 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7639 unlock_extent_cached(io_tree, page_start, page_end,
7640 &cached_state, GFP_NOFS);
7642 btrfs_start_ordered_extent(inode, ordered, 1);
7643 btrfs_put_ordered_extent(ordered);
7648 * XXX - page_mkwrite gets called every time the page is dirtied, even
7649 * if it was already dirty, so for space accounting reasons we need to
7650 * clear any delalloc bits for the range we are fixing to save. There
7651 * is probably a better way to do this, but for now keep consistent with
7652 * prepare_pages in the normal write path.
7654 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7655 EXTENT_DIRTY | EXTENT_DELALLOC |
7656 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7657 0, 0, &cached_state, GFP_NOFS);
7659 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7662 unlock_extent_cached(io_tree, page_start, page_end,
7663 &cached_state, GFP_NOFS);
7664 ret = VM_FAULT_SIGBUS;
7669 /* page is wholly or partially inside EOF */
7670 if (page_start + PAGE_CACHE_SIZE > size)
7671 zero_start = size & ~PAGE_CACHE_MASK;
7673 zero_start = PAGE_CACHE_SIZE;
7675 if (zero_start != PAGE_CACHE_SIZE) {
7677 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7678 flush_dcache_page(page);
7681 ClearPageChecked(page);
7682 set_page_dirty(page);
7683 SetPageUptodate(page);
7685 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7686 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7687 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7689 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7693 sb_end_pagefault(inode->i_sb);
7694 return VM_FAULT_LOCKED;
7698 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7700 sb_end_pagefault(inode->i_sb);
7704 static int btrfs_truncate(struct inode *inode)
7706 struct btrfs_root *root = BTRFS_I(inode)->root;
7707 struct btrfs_block_rsv *rsv;
7710 struct btrfs_trans_handle *trans;
7711 u64 mask = root->sectorsize - 1;
7712 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7714 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7720 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7721 * 3 things going on here
7723 * 1) We need to reserve space for our orphan item and the space to
7724 * delete our orphan item. Lord knows we don't want to have a dangling
7725 * orphan item because we didn't reserve space to remove it.
7727 * 2) We need to reserve space to update our inode.
7729 * 3) We need to have something to cache all the space that is going to
7730 * be free'd up by the truncate operation, but also have some slack
7731 * space reserved in case it uses space during the truncate (thank you
7732 * very much snapshotting).
7734 * And we need these to all be seperate. The fact is we can use alot of
7735 * space doing the truncate, and we have no earthly idea how much space
7736 * we will use, so we need the truncate reservation to be seperate so it
7737 * doesn't end up using space reserved for updating the inode or
7738 * removing the orphan item. We also need to be able to stop the
7739 * transaction and start a new one, which means we need to be able to
7740 * update the inode several times, and we have no idea of knowing how
7741 * many times that will be, so we can't just reserve 1 item for the
7742 * entirety of the opration, so that has to be done seperately as well.
7743 * Then there is the orphan item, which does indeed need to be held on
7744 * to for the whole operation, and we need nobody to touch this reserved
7745 * space except the orphan code.
7747 * So that leaves us with
7749 * 1) root->orphan_block_rsv - for the orphan deletion.
7750 * 2) rsv - for the truncate reservation, which we will steal from the
7751 * transaction reservation.
7752 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7753 * updating the inode.
7755 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7758 rsv->size = min_size;
7762 * 1 for the truncate slack space
7763 * 1 for updating the inode.
7765 trans = btrfs_start_transaction(root, 2);
7766 if (IS_ERR(trans)) {
7767 err = PTR_ERR(trans);
7771 /* Migrate the slack space for the truncate to our reserve */
7772 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7777 * setattr is responsible for setting the ordered_data_close flag,
7778 * but that is only tested during the last file release. That
7779 * could happen well after the next commit, leaving a great big
7780 * window where new writes may get lost if someone chooses to write
7781 * to this file after truncating to zero
7783 * The inode doesn't have any dirty data here, and so if we commit
7784 * this is a noop. If someone immediately starts writing to the inode
7785 * it is very likely we'll catch some of their writes in this
7786 * transaction, and the commit will find this file on the ordered
7787 * data list with good things to send down.
7789 * This is a best effort solution, there is still a window where
7790 * using truncate to replace the contents of the file will
7791 * end up with a zero length file after a crash.
7793 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7794 &BTRFS_I(inode)->runtime_flags))
7795 btrfs_add_ordered_operation(trans, root, inode);
7798 * So if we truncate and then write and fsync we normally would just
7799 * write the extents that changed, which is a problem if we need to
7800 * first truncate that entire inode. So set this flag so we write out
7801 * all of the extents in the inode to the sync log so we're completely
7804 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7805 trans->block_rsv = rsv;
7808 ret = btrfs_truncate_inode_items(trans, root, inode,
7810 BTRFS_EXTENT_DATA_KEY);
7811 if (ret != -ENOSPC) {
7816 trans->block_rsv = &root->fs_info->trans_block_rsv;
7817 ret = btrfs_update_inode(trans, root, inode);
7823 btrfs_end_transaction(trans, root);
7824 btrfs_btree_balance_dirty(root);
7826 trans = btrfs_start_transaction(root, 2);
7827 if (IS_ERR(trans)) {
7828 ret = err = PTR_ERR(trans);
7833 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7835 BUG_ON(ret); /* shouldn't happen */
7836 trans->block_rsv = rsv;
7839 if (ret == 0 && inode->i_nlink > 0) {
7840 trans->block_rsv = root->orphan_block_rsv;
7841 ret = btrfs_orphan_del(trans, inode);
7847 trans->block_rsv = &root->fs_info->trans_block_rsv;
7848 ret = btrfs_update_inode(trans, root, inode);
7852 ret = btrfs_end_transaction(trans, root);
7853 btrfs_btree_balance_dirty(root);
7857 btrfs_free_block_rsv(root, rsv);
7866 * create a new subvolume directory/inode (helper for the ioctl).
7868 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7869 struct btrfs_root *new_root, u64 new_dirid)
7871 struct inode *inode;
7875 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7876 new_dirid, new_dirid,
7877 S_IFDIR | (~current_umask() & S_IRWXUGO),
7880 return PTR_ERR(inode);
7881 inode->i_op = &btrfs_dir_inode_operations;
7882 inode->i_fop = &btrfs_dir_file_operations;
7884 set_nlink(inode, 1);
7885 btrfs_i_size_write(inode, 0);
7887 err = btrfs_update_inode(trans, new_root, inode);
7893 struct inode *btrfs_alloc_inode(struct super_block *sb)
7895 struct btrfs_inode *ei;
7896 struct inode *inode;
7898 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7905 ei->last_sub_trans = 0;
7906 ei->logged_trans = 0;
7907 ei->delalloc_bytes = 0;
7908 ei->disk_i_size = 0;
7911 ei->index_cnt = (u64)-1;
7913 ei->last_unlink_trans = 0;
7914 ei->last_log_commit = 0;
7916 spin_lock_init(&ei->lock);
7917 ei->outstanding_extents = 0;
7918 ei->reserved_extents = 0;
7920 ei->runtime_flags = 0;
7921 ei->force_compress = BTRFS_COMPRESS_NONE;
7923 ei->delayed_node = NULL;
7925 inode = &ei->vfs_inode;
7926 extent_map_tree_init(&ei->extent_tree);
7927 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7928 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7929 ei->io_tree.track_uptodate = 1;
7930 ei->io_failure_tree.track_uptodate = 1;
7931 atomic_set(&ei->sync_writers, 0);
7932 mutex_init(&ei->log_mutex);
7933 mutex_init(&ei->delalloc_mutex);
7934 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7935 INIT_LIST_HEAD(&ei->delalloc_inodes);
7936 INIT_LIST_HEAD(&ei->ordered_operations);
7937 RB_CLEAR_NODE(&ei->rb_node);
7942 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7943 void btrfs_test_destroy_inode(struct inode *inode)
7945 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7946 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7950 static void btrfs_i_callback(struct rcu_head *head)
7952 struct inode *inode = container_of(head, struct inode, i_rcu);
7953 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7956 void btrfs_destroy_inode(struct inode *inode)
7958 struct btrfs_ordered_extent *ordered;
7959 struct btrfs_root *root = BTRFS_I(inode)->root;
7961 WARN_ON(!hlist_empty(&inode->i_dentry));
7962 WARN_ON(inode->i_data.nrpages);
7963 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7964 WARN_ON(BTRFS_I(inode)->reserved_extents);
7965 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7966 WARN_ON(BTRFS_I(inode)->csum_bytes);
7969 * This can happen where we create an inode, but somebody else also
7970 * created the same inode and we need to destroy the one we already
7977 * Make sure we're properly removed from the ordered operation
7981 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7982 spin_lock(&root->fs_info->ordered_root_lock);
7983 list_del_init(&BTRFS_I(inode)->ordered_operations);
7984 spin_unlock(&root->fs_info->ordered_root_lock);
7987 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7988 &BTRFS_I(inode)->runtime_flags)) {
7989 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7991 atomic_dec(&root->orphan_inodes);
7995 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7999 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8000 ordered->file_offset, ordered->len);
8001 btrfs_remove_ordered_extent(inode, ordered);
8002 btrfs_put_ordered_extent(ordered);
8003 btrfs_put_ordered_extent(ordered);
8006 inode_tree_del(inode);
8007 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8009 call_rcu(&inode->i_rcu, btrfs_i_callback);
8012 int btrfs_drop_inode(struct inode *inode)
8014 struct btrfs_root *root = BTRFS_I(inode)->root;
8019 /* the snap/subvol tree is on deleting */
8020 if (btrfs_root_refs(&root->root_item) == 0)
8023 return generic_drop_inode(inode);
8026 static void init_once(void *foo)
8028 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8030 inode_init_once(&ei->vfs_inode);
8033 void btrfs_destroy_cachep(void)
8036 * Make sure all delayed rcu free inodes are flushed before we
8040 if (btrfs_inode_cachep)
8041 kmem_cache_destroy(btrfs_inode_cachep);
8042 if (btrfs_trans_handle_cachep)
8043 kmem_cache_destroy(btrfs_trans_handle_cachep);
8044 if (btrfs_transaction_cachep)
8045 kmem_cache_destroy(btrfs_transaction_cachep);
8046 if (btrfs_path_cachep)
8047 kmem_cache_destroy(btrfs_path_cachep);
8048 if (btrfs_free_space_cachep)
8049 kmem_cache_destroy(btrfs_free_space_cachep);
8050 if (btrfs_delalloc_work_cachep)
8051 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8054 int btrfs_init_cachep(void)
8056 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8057 sizeof(struct btrfs_inode), 0,
8058 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8059 if (!btrfs_inode_cachep)
8062 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8063 sizeof(struct btrfs_trans_handle), 0,
8064 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8065 if (!btrfs_trans_handle_cachep)
8068 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8069 sizeof(struct btrfs_transaction), 0,
8070 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8071 if (!btrfs_transaction_cachep)
8074 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8075 sizeof(struct btrfs_path), 0,
8076 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8077 if (!btrfs_path_cachep)
8080 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8081 sizeof(struct btrfs_free_space), 0,
8082 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8083 if (!btrfs_free_space_cachep)
8086 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8087 sizeof(struct btrfs_delalloc_work), 0,
8088 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8090 if (!btrfs_delalloc_work_cachep)
8095 btrfs_destroy_cachep();
8099 static int btrfs_getattr(struct vfsmount *mnt,
8100 struct dentry *dentry, struct kstat *stat)
8103 struct inode *inode = dentry->d_inode;
8104 u32 blocksize = inode->i_sb->s_blocksize;
8106 generic_fillattr(inode, stat);
8107 stat->dev = BTRFS_I(inode)->root->anon_dev;
8108 stat->blksize = PAGE_CACHE_SIZE;
8110 spin_lock(&BTRFS_I(inode)->lock);
8111 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8112 spin_unlock(&BTRFS_I(inode)->lock);
8113 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8114 ALIGN(delalloc_bytes, blocksize)) >> 9;
8118 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8119 struct inode *new_dir, struct dentry *new_dentry)
8121 struct btrfs_trans_handle *trans;
8122 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8123 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8124 struct inode *new_inode = new_dentry->d_inode;
8125 struct inode *old_inode = old_dentry->d_inode;
8126 struct timespec ctime = CURRENT_TIME;
8130 u64 old_ino = btrfs_ino(old_inode);
8132 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8135 /* we only allow rename subvolume link between subvolumes */
8136 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8139 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8140 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8143 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8144 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8148 /* check for collisions, even if the name isn't there */
8149 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8150 new_dentry->d_name.name,
8151 new_dentry->d_name.len);
8154 if (ret == -EEXIST) {
8156 * eexist without a new_inode */
8157 if (WARN_ON(!new_inode)) {
8161 /* maybe -EOVERFLOW */
8168 * we're using rename to replace one file with another.
8169 * and the replacement file is large. Start IO on it now so
8170 * we don't add too much work to the end of the transaction
8172 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8173 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8174 filemap_flush(old_inode->i_mapping);
8176 /* close the racy window with snapshot create/destroy ioctl */
8177 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8178 down_read(&root->fs_info->subvol_sem);
8180 * We want to reserve the absolute worst case amount of items. So if
8181 * both inodes are subvols and we need to unlink them then that would
8182 * require 4 item modifications, but if they are both normal inodes it
8183 * would require 5 item modifications, so we'll assume their normal
8184 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8185 * should cover the worst case number of items we'll modify.
8187 trans = btrfs_start_transaction(root, 11);
8188 if (IS_ERR(trans)) {
8189 ret = PTR_ERR(trans);
8194 btrfs_record_root_in_trans(trans, dest);
8196 ret = btrfs_set_inode_index(new_dir, &index);
8200 BTRFS_I(old_inode)->dir_index = 0ULL;
8201 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8202 /* force full log commit if subvolume involved. */
8203 root->fs_info->last_trans_log_full_commit = trans->transid;
8205 ret = btrfs_insert_inode_ref(trans, dest,
8206 new_dentry->d_name.name,
8207 new_dentry->d_name.len,
8209 btrfs_ino(new_dir), index);
8213 * this is an ugly little race, but the rename is required
8214 * to make sure that if we crash, the inode is either at the
8215 * old name or the new one. pinning the log transaction lets
8216 * us make sure we don't allow a log commit to come in after
8217 * we unlink the name but before we add the new name back in.
8219 btrfs_pin_log_trans(root);
8222 * make sure the inode gets flushed if it is replacing
8225 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8226 btrfs_add_ordered_operation(trans, root, old_inode);
8228 inode_inc_iversion(old_dir);
8229 inode_inc_iversion(new_dir);
8230 inode_inc_iversion(old_inode);
8231 old_dir->i_ctime = old_dir->i_mtime = ctime;
8232 new_dir->i_ctime = new_dir->i_mtime = ctime;
8233 old_inode->i_ctime = ctime;
8235 if (old_dentry->d_parent != new_dentry->d_parent)
8236 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8238 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8239 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8240 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8241 old_dentry->d_name.name,
8242 old_dentry->d_name.len);
8244 ret = __btrfs_unlink_inode(trans, root, old_dir,
8245 old_dentry->d_inode,
8246 old_dentry->d_name.name,
8247 old_dentry->d_name.len);
8249 ret = btrfs_update_inode(trans, root, old_inode);
8252 btrfs_abort_transaction(trans, root, ret);
8257 inode_inc_iversion(new_inode);
8258 new_inode->i_ctime = CURRENT_TIME;
8259 if (unlikely(btrfs_ino(new_inode) ==
8260 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8261 root_objectid = BTRFS_I(new_inode)->location.objectid;
8262 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8264 new_dentry->d_name.name,
8265 new_dentry->d_name.len);
8266 BUG_ON(new_inode->i_nlink == 0);
8268 ret = btrfs_unlink_inode(trans, dest, new_dir,
8269 new_dentry->d_inode,
8270 new_dentry->d_name.name,
8271 new_dentry->d_name.len);
8273 if (!ret && new_inode->i_nlink == 0)
8274 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8276 btrfs_abort_transaction(trans, root, ret);
8281 ret = btrfs_add_link(trans, new_dir, old_inode,
8282 new_dentry->d_name.name,
8283 new_dentry->d_name.len, 0, index);
8285 btrfs_abort_transaction(trans, root, ret);
8289 if (old_inode->i_nlink == 1)
8290 BTRFS_I(old_inode)->dir_index = index;
8292 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8293 struct dentry *parent = new_dentry->d_parent;
8294 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8295 btrfs_end_log_trans(root);
8298 btrfs_end_transaction(trans, root);
8300 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8301 up_read(&root->fs_info->subvol_sem);
8306 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8308 struct btrfs_delalloc_work *delalloc_work;
8309 struct inode *inode;
8311 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8313 inode = delalloc_work->inode;
8314 if (delalloc_work->wait) {
8315 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8317 filemap_flush(inode->i_mapping);
8318 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8319 &BTRFS_I(inode)->runtime_flags))
8320 filemap_flush(inode->i_mapping);
8323 if (delalloc_work->delay_iput)
8324 btrfs_add_delayed_iput(inode);
8327 complete(&delalloc_work->completion);
8330 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8331 int wait, int delay_iput)
8333 struct btrfs_delalloc_work *work;
8335 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8339 init_completion(&work->completion);
8340 INIT_LIST_HEAD(&work->list);
8341 work->inode = inode;
8343 work->delay_iput = delay_iput;
8344 work->work.func = btrfs_run_delalloc_work;
8349 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8351 wait_for_completion(&work->completion);
8352 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8356 * some fairly slow code that needs optimization. This walks the list
8357 * of all the inodes with pending delalloc and forces them to disk.
8359 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8361 struct btrfs_inode *binode;
8362 struct inode *inode;
8363 struct btrfs_delalloc_work *work, *next;
8364 struct list_head works;
8365 struct list_head splice;
8368 INIT_LIST_HEAD(&works);
8369 INIT_LIST_HEAD(&splice);
8371 spin_lock(&root->delalloc_lock);
8372 list_splice_init(&root->delalloc_inodes, &splice);
8373 while (!list_empty(&splice)) {
8374 binode = list_entry(splice.next, struct btrfs_inode,
8377 list_move_tail(&binode->delalloc_inodes,
8378 &root->delalloc_inodes);
8379 inode = igrab(&binode->vfs_inode);
8381 cond_resched_lock(&root->delalloc_lock);
8384 spin_unlock(&root->delalloc_lock);
8386 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8387 if (unlikely(!work)) {
8389 btrfs_add_delayed_iput(inode);
8395 list_add_tail(&work->list, &works);
8396 btrfs_queue_worker(&root->fs_info->flush_workers,
8400 spin_lock(&root->delalloc_lock);
8402 spin_unlock(&root->delalloc_lock);
8404 list_for_each_entry_safe(work, next, &works, list) {
8405 list_del_init(&work->list);
8406 btrfs_wait_and_free_delalloc_work(work);
8410 list_for_each_entry_safe(work, next, &works, list) {
8411 list_del_init(&work->list);
8412 btrfs_wait_and_free_delalloc_work(work);
8415 if (!list_empty_careful(&splice)) {
8416 spin_lock(&root->delalloc_lock);
8417 list_splice_tail(&splice, &root->delalloc_inodes);
8418 spin_unlock(&root->delalloc_lock);
8423 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8427 if (root->fs_info->sb->s_flags & MS_RDONLY)
8430 ret = __start_delalloc_inodes(root, delay_iput);
8432 * the filemap_flush will queue IO into the worker threads, but
8433 * we have to make sure the IO is actually started and that
8434 * ordered extents get created before we return
8436 atomic_inc(&root->fs_info->async_submit_draining);
8437 while (atomic_read(&root->fs_info->nr_async_submits) ||
8438 atomic_read(&root->fs_info->async_delalloc_pages)) {
8439 wait_event(root->fs_info->async_submit_wait,
8440 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8441 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8443 atomic_dec(&root->fs_info->async_submit_draining);
8447 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput)
8449 struct btrfs_root *root;
8450 struct list_head splice;
8453 if (fs_info->sb->s_flags & MS_RDONLY)
8456 INIT_LIST_HEAD(&splice);
8458 spin_lock(&fs_info->delalloc_root_lock);
8459 list_splice_init(&fs_info->delalloc_roots, &splice);
8460 while (!list_empty(&splice)) {
8461 root = list_first_entry(&splice, struct btrfs_root,
8463 root = btrfs_grab_fs_root(root);
8465 list_move_tail(&root->delalloc_root,
8466 &fs_info->delalloc_roots);
8467 spin_unlock(&fs_info->delalloc_root_lock);
8469 ret = __start_delalloc_inodes(root, delay_iput);
8470 btrfs_put_fs_root(root);
8474 spin_lock(&fs_info->delalloc_root_lock);
8476 spin_unlock(&fs_info->delalloc_root_lock);
8478 atomic_inc(&fs_info->async_submit_draining);
8479 while (atomic_read(&fs_info->nr_async_submits) ||
8480 atomic_read(&fs_info->async_delalloc_pages)) {
8481 wait_event(fs_info->async_submit_wait,
8482 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8483 atomic_read(&fs_info->async_delalloc_pages) == 0));
8485 atomic_dec(&fs_info->async_submit_draining);
8488 if (!list_empty_careful(&splice)) {
8489 spin_lock(&fs_info->delalloc_root_lock);
8490 list_splice_tail(&splice, &fs_info->delalloc_roots);
8491 spin_unlock(&fs_info->delalloc_root_lock);
8496 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8497 const char *symname)
8499 struct btrfs_trans_handle *trans;
8500 struct btrfs_root *root = BTRFS_I(dir)->root;
8501 struct btrfs_path *path;
8502 struct btrfs_key key;
8503 struct inode *inode = NULL;
8511 struct btrfs_file_extent_item *ei;
8512 struct extent_buffer *leaf;
8514 name_len = strlen(symname);
8515 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8516 return -ENAMETOOLONG;
8519 * 2 items for inode item and ref
8520 * 2 items for dir items
8521 * 1 item for xattr if selinux is on
8523 trans = btrfs_start_transaction(root, 5);
8525 return PTR_ERR(trans);
8527 err = btrfs_find_free_ino(root, &objectid);
8531 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8532 dentry->d_name.len, btrfs_ino(dir), objectid,
8533 S_IFLNK|S_IRWXUGO, &index);
8534 if (IS_ERR(inode)) {
8535 err = PTR_ERR(inode);
8539 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8546 * If the active LSM wants to access the inode during
8547 * d_instantiate it needs these. Smack checks to see
8548 * if the filesystem supports xattrs by looking at the
8551 inode->i_fop = &btrfs_file_operations;
8552 inode->i_op = &btrfs_file_inode_operations;
8554 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8558 inode->i_mapping->a_ops = &btrfs_aops;
8559 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8560 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8565 path = btrfs_alloc_path();
8571 key.objectid = btrfs_ino(inode);
8573 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8574 datasize = btrfs_file_extent_calc_inline_size(name_len);
8575 err = btrfs_insert_empty_item(trans, root, path, &key,
8579 btrfs_free_path(path);
8582 leaf = path->nodes[0];
8583 ei = btrfs_item_ptr(leaf, path->slots[0],
8584 struct btrfs_file_extent_item);
8585 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8586 btrfs_set_file_extent_type(leaf, ei,
8587 BTRFS_FILE_EXTENT_INLINE);
8588 btrfs_set_file_extent_encryption(leaf, ei, 0);
8589 btrfs_set_file_extent_compression(leaf, ei, 0);
8590 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8591 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8593 ptr = btrfs_file_extent_inline_start(ei);
8594 write_extent_buffer(leaf, symname, ptr, name_len);
8595 btrfs_mark_buffer_dirty(leaf);
8596 btrfs_free_path(path);
8598 inode->i_op = &btrfs_symlink_inode_operations;
8599 inode->i_mapping->a_ops = &btrfs_symlink_aops;
8600 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8601 inode_set_bytes(inode, name_len);
8602 btrfs_i_size_write(inode, name_len);
8603 err = btrfs_update_inode(trans, root, inode);
8609 d_instantiate(dentry, inode);
8610 btrfs_end_transaction(trans, root);
8612 inode_dec_link_count(inode);
8615 btrfs_btree_balance_dirty(root);
8619 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8620 u64 start, u64 num_bytes, u64 min_size,
8621 loff_t actual_len, u64 *alloc_hint,
8622 struct btrfs_trans_handle *trans)
8624 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8625 struct extent_map *em;
8626 struct btrfs_root *root = BTRFS_I(inode)->root;
8627 struct btrfs_key ins;
8628 u64 cur_offset = start;
8632 bool own_trans = true;
8636 while (num_bytes > 0) {
8638 trans = btrfs_start_transaction(root, 3);
8639 if (IS_ERR(trans)) {
8640 ret = PTR_ERR(trans);
8645 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8646 cur_bytes = max(cur_bytes, min_size);
8647 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8648 *alloc_hint, &ins, 1);
8651 btrfs_end_transaction(trans, root);
8655 ret = insert_reserved_file_extent(trans, inode,
8656 cur_offset, ins.objectid,
8657 ins.offset, ins.offset,
8658 ins.offset, 0, 0, 0,
8659 BTRFS_FILE_EXTENT_PREALLOC);
8661 btrfs_free_reserved_extent(root, ins.objectid,
8663 btrfs_abort_transaction(trans, root, ret);
8665 btrfs_end_transaction(trans, root);
8668 btrfs_drop_extent_cache(inode, cur_offset,
8669 cur_offset + ins.offset -1, 0);
8671 em = alloc_extent_map();
8673 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8674 &BTRFS_I(inode)->runtime_flags);
8678 em->start = cur_offset;
8679 em->orig_start = cur_offset;
8680 em->len = ins.offset;
8681 em->block_start = ins.objectid;
8682 em->block_len = ins.offset;
8683 em->orig_block_len = ins.offset;
8684 em->ram_bytes = ins.offset;
8685 em->bdev = root->fs_info->fs_devices->latest_bdev;
8686 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8687 em->generation = trans->transid;
8690 write_lock(&em_tree->lock);
8691 ret = add_extent_mapping(em_tree, em, 1);
8692 write_unlock(&em_tree->lock);
8695 btrfs_drop_extent_cache(inode, cur_offset,
8696 cur_offset + ins.offset - 1,
8699 free_extent_map(em);
8701 num_bytes -= ins.offset;
8702 cur_offset += ins.offset;
8703 *alloc_hint = ins.objectid + ins.offset;
8705 inode_inc_iversion(inode);
8706 inode->i_ctime = CURRENT_TIME;
8707 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8708 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8709 (actual_len > inode->i_size) &&
8710 (cur_offset > inode->i_size)) {
8711 if (cur_offset > actual_len)
8712 i_size = actual_len;
8714 i_size = cur_offset;
8715 i_size_write(inode, i_size);
8716 btrfs_ordered_update_i_size(inode, i_size, NULL);
8719 ret = btrfs_update_inode(trans, root, inode);
8722 btrfs_abort_transaction(trans, root, ret);
8724 btrfs_end_transaction(trans, root);
8729 btrfs_end_transaction(trans, root);
8734 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8735 u64 start, u64 num_bytes, u64 min_size,
8736 loff_t actual_len, u64 *alloc_hint)
8738 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8739 min_size, actual_len, alloc_hint,
8743 int btrfs_prealloc_file_range_trans(struct inode *inode,
8744 struct btrfs_trans_handle *trans, int mode,
8745 u64 start, u64 num_bytes, u64 min_size,
8746 loff_t actual_len, u64 *alloc_hint)
8748 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8749 min_size, actual_len, alloc_hint, trans);
8752 static int btrfs_set_page_dirty(struct page *page)
8754 return __set_page_dirty_nobuffers(page);
8757 static int btrfs_permission(struct inode *inode, int mask)
8759 struct btrfs_root *root = BTRFS_I(inode)->root;
8760 umode_t mode = inode->i_mode;
8762 if (mask & MAY_WRITE &&
8763 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8764 if (btrfs_root_readonly(root))
8766 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8769 return generic_permission(inode, mask);
8772 static const struct inode_operations btrfs_dir_inode_operations = {
8773 .getattr = btrfs_getattr,
8774 .lookup = btrfs_lookup,
8775 .create = btrfs_create,
8776 .unlink = btrfs_unlink,
8778 .mkdir = btrfs_mkdir,
8779 .rmdir = btrfs_rmdir,
8780 .rename = btrfs_rename,
8781 .symlink = btrfs_symlink,
8782 .setattr = btrfs_setattr,
8783 .mknod = btrfs_mknod,
8784 .setxattr = btrfs_setxattr,
8785 .getxattr = btrfs_getxattr,
8786 .listxattr = btrfs_listxattr,
8787 .removexattr = btrfs_removexattr,
8788 .permission = btrfs_permission,
8789 .get_acl = btrfs_get_acl,
8790 .update_time = btrfs_update_time,
8792 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8793 .lookup = btrfs_lookup,
8794 .permission = btrfs_permission,
8795 .get_acl = btrfs_get_acl,
8796 .update_time = btrfs_update_time,
8799 static const struct file_operations btrfs_dir_file_operations = {
8800 .llseek = generic_file_llseek,
8801 .read = generic_read_dir,
8802 .iterate = btrfs_real_readdir,
8803 .unlocked_ioctl = btrfs_ioctl,
8804 #ifdef CONFIG_COMPAT
8805 .compat_ioctl = btrfs_ioctl,
8807 .release = btrfs_release_file,
8808 .fsync = btrfs_sync_file,
8811 static struct extent_io_ops btrfs_extent_io_ops = {
8812 .fill_delalloc = run_delalloc_range,
8813 .submit_bio_hook = btrfs_submit_bio_hook,
8814 .merge_bio_hook = btrfs_merge_bio_hook,
8815 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8816 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8817 .writepage_start_hook = btrfs_writepage_start_hook,
8818 .set_bit_hook = btrfs_set_bit_hook,
8819 .clear_bit_hook = btrfs_clear_bit_hook,
8820 .merge_extent_hook = btrfs_merge_extent_hook,
8821 .split_extent_hook = btrfs_split_extent_hook,
8825 * btrfs doesn't support the bmap operation because swapfiles
8826 * use bmap to make a mapping of extents in the file. They assume
8827 * these extents won't change over the life of the file and they
8828 * use the bmap result to do IO directly to the drive.
8830 * the btrfs bmap call would return logical addresses that aren't
8831 * suitable for IO and they also will change frequently as COW
8832 * operations happen. So, swapfile + btrfs == corruption.
8834 * For now we're avoiding this by dropping bmap.
8836 static const struct address_space_operations btrfs_aops = {
8837 .readpage = btrfs_readpage,
8838 .writepage = btrfs_writepage,
8839 .writepages = btrfs_writepages,
8840 .readpages = btrfs_readpages,
8841 .direct_IO = btrfs_direct_IO,
8842 .invalidatepage = btrfs_invalidatepage,
8843 .releasepage = btrfs_releasepage,
8844 .set_page_dirty = btrfs_set_page_dirty,
8845 .error_remove_page = generic_error_remove_page,
8848 static const struct address_space_operations btrfs_symlink_aops = {
8849 .readpage = btrfs_readpage,
8850 .writepage = btrfs_writepage,
8851 .invalidatepage = btrfs_invalidatepage,
8852 .releasepage = btrfs_releasepage,
8855 static const struct inode_operations btrfs_file_inode_operations = {
8856 .getattr = btrfs_getattr,
8857 .setattr = btrfs_setattr,
8858 .setxattr = btrfs_setxattr,
8859 .getxattr = btrfs_getxattr,
8860 .listxattr = btrfs_listxattr,
8861 .removexattr = btrfs_removexattr,
8862 .permission = btrfs_permission,
8863 .fiemap = btrfs_fiemap,
8864 .get_acl = btrfs_get_acl,
8865 .update_time = btrfs_update_time,
8867 static const struct inode_operations btrfs_special_inode_operations = {
8868 .getattr = btrfs_getattr,
8869 .setattr = btrfs_setattr,
8870 .permission = btrfs_permission,
8871 .setxattr = btrfs_setxattr,
8872 .getxattr = btrfs_getxattr,
8873 .listxattr = btrfs_listxattr,
8874 .removexattr = btrfs_removexattr,
8875 .get_acl = btrfs_get_acl,
8876 .update_time = btrfs_update_time,
8878 static const struct inode_operations btrfs_symlink_inode_operations = {
8879 .readlink = generic_readlink,
8880 .follow_link = page_follow_link_light,
8881 .put_link = page_put_link,
8882 .getattr = btrfs_getattr,
8883 .setattr = btrfs_setattr,
8884 .permission = btrfs_permission,
8885 .setxattr = btrfs_setxattr,
8886 .getxattr = btrfs_getxattr,
8887 .listxattr = btrfs_listxattr,
8888 .removexattr = btrfs_removexattr,
8889 .get_acl = btrfs_get_acl,
8890 .update_time = btrfs_update_time,
8893 const struct dentry_operations btrfs_dentry_operations = {
8894 .d_delete = btrfs_dentry_delete,
8895 .d_release = btrfs_dentry_release,