1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
47 #include "compression.h"
49 #include "free-space-cache.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
57 #include "inode-item.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
69 #include "relocation.h"
75 struct btrfs_iget_args {
77 struct btrfs_root *root;
80 struct btrfs_dio_data {
82 struct extent_changeset *data_reserved;
83 struct btrfs_ordered_extent *ordered;
84 bool data_space_reserved;
88 struct btrfs_dio_private {
93 /* This must be last */
94 struct btrfs_bio bbio;
97 static struct bio_set btrfs_dio_bioset;
99 struct btrfs_rename_ctx {
100 /* Output field. Stores the index number of the old directory entry. */
105 * Used by data_reloc_print_warning_inode() to pass needed info for filename
106 * resolution and output of error message.
108 struct data_reloc_warn {
109 struct btrfs_path path;
110 struct btrfs_fs_info *fs_info;
111 u64 extent_item_size;
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
123 static struct kmem_cache *btrfs_inode_cachep;
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 struct page *locked_page, u64 start,
130 u64 end, struct writeback_control *wbc,
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 u64 len, u64 orig_start, u64 block_start,
134 u64 block_len, u64 orig_block_len,
135 u64 ram_bytes, int compress_type,
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 u64 root, void *warn_ctx)
141 struct data_reloc_warn *warn = warn_ctx;
142 struct btrfs_fs_info *fs_info = warn->fs_info;
143 struct extent_buffer *eb;
144 struct btrfs_inode_item *inode_item;
145 struct inode_fs_paths *ipath = NULL;
146 struct btrfs_root *local_root;
147 struct btrfs_key key;
148 unsigned int nofs_flag;
152 local_root = btrfs_get_fs_root(fs_info, root, true);
153 if (IS_ERR(local_root)) {
154 ret = PTR_ERR(local_root);
158 /* This makes the path point to (inum INODE_ITEM ioff). */
160 key.type = BTRFS_INODE_ITEM_KEY;
163 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
165 btrfs_put_root(local_root);
166 btrfs_release_path(&warn->path);
170 eb = warn->path.nodes[0];
171 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 nlink = btrfs_inode_nlink(eb, inode_item);
173 btrfs_release_path(&warn->path);
175 nofs_flag = memalloc_nofs_save();
176 ipath = init_ipath(4096, local_root, &warn->path);
177 memalloc_nofs_restore(nofs_flag);
179 btrfs_put_root(local_root);
180 ret = PTR_ERR(ipath);
183 * -ENOMEM, not a critical error, just output an generic error
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 warn->logical, warn->mirror_num, root, inum, offset);
191 ret = paths_from_inode(inum, ipath);
196 * We deliberately ignore the bit ipath might have been too small to
197 * hold all of the paths here
199 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 warn->logical, warn->mirror_num, root, inum, offset,
203 fs_info->sectorsize, nlink,
204 (char *)(unsigned long)ipath->fspath->val[i]);
207 btrfs_put_root(local_root);
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 warn->logical, warn->mirror_num, root, inum, offset, ret);
221 * Do extra user-friendly error output (e.g. lookup all the affected files).
223 * Return true if we succeeded doing the backref lookup.
224 * Return false if such lookup failed, and has to fallback to the old error message.
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 const u8 *csum, const u8 *csum_expected,
230 struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 struct btrfs_path path = { 0 };
232 struct btrfs_key found_key = { 0 };
233 struct extent_buffer *eb;
234 struct btrfs_extent_item *ei;
235 const u32 csum_size = fs_info->csum_size;
241 mutex_lock(&fs_info->reloc_mutex);
242 logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 mutex_unlock(&fs_info->reloc_mutex);
245 if (logical == U64_MAX) {
246 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 CSUM_FMT_VALUE(csum_size, csum),
251 CSUM_FMT_VALUE(csum_size, csum_expected),
257 btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 inode->root->root_key.objectid,
260 btrfs_ino(inode), file_off, logical,
261 CSUM_FMT_VALUE(csum_size, csum),
262 CSUM_FMT_VALUE(csum_size, csum_expected),
265 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
267 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
272 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 item_size = btrfs_item_size(eb, path.slots[0]);
274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 unsigned long ptr = 0;
280 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 item_size, &ref_root,
284 btrfs_warn_rl(fs_info,
285 "failed to resolve tree backref for logical %llu: %d",
292 btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
295 (ref_level ? "node" : "leaf"),
296 ref_level, ref_root);
298 btrfs_release_path(&path);
300 struct btrfs_backref_walk_ctx ctx = { 0 };
301 struct data_reloc_warn reloc_warn = { 0 };
303 btrfs_release_path(&path);
305 ctx.bytenr = found_key.objectid;
306 ctx.extent_item_pos = logical - found_key.objectid;
307 ctx.fs_info = fs_info;
309 reloc_warn.logical = logical;
310 reloc_warn.extent_item_size = found_key.offset;
311 reloc_warn.mirror_num = mirror_num;
312 reloc_warn.fs_info = fs_info;
314 iterate_extent_inodes(&ctx, true,
315 data_reloc_print_warning_inode, &reloc_warn);
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
322 struct btrfs_root *root = inode->root;
323 const u32 csum_size = root->fs_info->csum_size;
325 /* For data reloc tree, it's better to do a backref lookup instead. */
326 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 return print_data_reloc_error(inode, logical_start, csum,
328 csum_expected, mirror_num);
330 /* Output without objectid, which is more meaningful */
331 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 root->root_key.objectid, btrfs_ino(inode),
336 CSUM_FMT_VALUE(csum_size, csum),
337 CSUM_FMT_VALUE(csum_size, csum_expected),
340 btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 root->root_key.objectid, btrfs_ino(inode),
344 CSUM_FMT_VALUE(csum_size, csum),
345 CSUM_FMT_VALUE(csum_size, csum_expected),
351 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
353 * ilock_flags can have the following bit set:
355 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
358 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
362 if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 if (ilock_flags & BTRFS_ILOCK_TRY) {
364 if (!inode_trylock_shared(&inode->vfs_inode))
369 inode_lock_shared(&inode->vfs_inode);
371 if (ilock_flags & BTRFS_ILOCK_TRY) {
372 if (!inode_trylock(&inode->vfs_inode))
377 inode_lock(&inode->vfs_inode);
379 if (ilock_flags & BTRFS_ILOCK_MMAP)
380 down_write(&inode->i_mmap_lock);
385 * btrfs_inode_unlock - unock inode i_rwsem
387 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388 * to decide whether the lock acquired is shared or exclusive.
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
392 if (ilock_flags & BTRFS_ILOCK_MMAP)
393 up_write(&inode->i_mmap_lock);
394 if (ilock_flags & BTRFS_ILOCK_SHARED)
395 inode_unlock_shared(&inode->vfs_inode);
397 inode_unlock(&inode->vfs_inode);
401 * Cleanup all submitted ordered extents in specified range to handle errors
402 * from the btrfs_run_delalloc_range() callback.
404 * NOTE: caller must ensure that when an error happens, it can not call
405 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407 * to be released, which we want to happen only when finishing the ordered
408 * extent (btrfs_finish_ordered_io()).
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 struct page *locked_page,
412 u64 offset, u64 bytes)
414 unsigned long index = offset >> PAGE_SHIFT;
415 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 u64 page_start = 0, page_end = 0;
420 page_start = page_offset(locked_page);
421 page_end = page_start + PAGE_SIZE - 1;
424 while (index <= end_index) {
426 * For locked page, we will call btrfs_mark_ordered_io_finished
427 * through btrfs_mark_ordered_io_finished() on it
428 * in run_delalloc_range() for the error handling, which will
429 * clear page Ordered and run the ordered extent accounting.
431 * Here we can't just clear the Ordered bit, or
432 * btrfs_mark_ordered_io_finished() would skip the accounting
433 * for the page range, and the ordered extent will never finish.
435 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
439 page = find_get_page(inode->vfs_inode.i_mapping, index);
445 * Here we just clear all Ordered bits for every page in the
446 * range, then btrfs_mark_ordered_io_finished() will handle
447 * the ordered extent accounting for the range.
449 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
455 /* The locked page covers the full range, nothing needs to be done */
456 if (bytes + offset <= page_start + PAGE_SIZE)
459 * In case this page belongs to the delalloc range being
460 * instantiated then skip it, since the first page of a range is
461 * going to be properly cleaned up by the caller of
464 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 offset = page_offset(locked_page) + PAGE_SIZE;
470 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 struct btrfs_new_inode_args *args)
480 if (args->default_acl) {
481 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
487 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
491 if (!args->default_acl && !args->acl)
492 cache_no_acl(args->inode);
493 return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 &args->dentry->d_name);
498 * this does all the hard work for inserting an inline extent into
499 * the btree. The caller should have done a btrfs_drop_extents so that
500 * no overlapping inline items exist in the btree
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 struct btrfs_path *path,
504 struct btrfs_inode *inode, bool extent_inserted,
505 size_t size, size_t compressed_size,
507 struct page **compressed_pages,
510 struct btrfs_root *root = inode->root;
511 struct extent_buffer *leaf;
512 struct page *page = NULL;
515 struct btrfs_file_extent_item *ei;
517 size_t cur_size = size;
520 ASSERT((compressed_size > 0 && compressed_pages) ||
521 (compressed_size == 0 && !compressed_pages));
523 if (compressed_size && compressed_pages)
524 cur_size = compressed_size;
526 if (!extent_inserted) {
527 struct btrfs_key key;
530 key.objectid = btrfs_ino(inode);
532 key.type = BTRFS_EXTENT_DATA_KEY;
534 datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 ret = btrfs_insert_empty_item(trans, root, path, &key,
540 leaf = path->nodes[0];
541 ei = btrfs_item_ptr(leaf, path->slots[0],
542 struct btrfs_file_extent_item);
543 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 btrfs_set_file_extent_encryption(leaf, ei, 0);
546 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 ptr = btrfs_file_extent_inline_start(ei);
550 if (compress_type != BTRFS_COMPRESS_NONE) {
553 while (compressed_size > 0) {
554 cpage = compressed_pages[i];
555 cur_size = min_t(unsigned long, compressed_size,
558 kaddr = kmap_local_page(cpage);
559 write_extent_buffer(leaf, kaddr, ptr, cur_size);
564 compressed_size -= cur_size;
566 btrfs_set_file_extent_compression(leaf, ei,
569 page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 btrfs_set_file_extent_compression(leaf, ei, 0);
571 kaddr = kmap_local_page(page);
572 write_extent_buffer(leaf, kaddr, ptr, size);
576 btrfs_mark_buffer_dirty(leaf);
577 btrfs_release_path(path);
580 * We align size to sectorsize for inline extents just for simplicity
583 ret = btrfs_inode_set_file_extent_range(inode, 0,
584 ALIGN(size, root->fs_info->sectorsize));
589 * We're an inline extent, so nobody can extend the file past i_size
590 * without locking a page we already have locked.
592 * We must do any i_size and inode updates before we unlock the pages.
593 * Otherwise we could end up racing with unlink.
595 i_size = i_size_read(&inode->vfs_inode);
596 if (update_i_size && size > i_size) {
597 i_size_write(&inode->vfs_inode, size);
600 inode->disk_i_size = i_size;
608 * conditionally insert an inline extent into the file. This
609 * does the checks required to make sure the data is small enough
610 * to fit as an inline extent.
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 size_t compressed_size,
615 struct page **compressed_pages,
618 struct btrfs_drop_extents_args drop_args = { 0 };
619 struct btrfs_root *root = inode->root;
620 struct btrfs_fs_info *fs_info = root->fs_info;
621 struct btrfs_trans_handle *trans;
622 u64 data_len = (compressed_size ?: size);
624 struct btrfs_path *path;
627 * We can create an inline extent if it ends at or beyond the current
628 * i_size, is no larger than a sector (decompressed), and the (possibly
629 * compressed) data fits in a leaf and the configured maximum inline
632 if (size < i_size_read(&inode->vfs_inode) ||
633 size > fs_info->sectorsize ||
634 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 data_len > fs_info->max_inline)
638 path = btrfs_alloc_path();
642 trans = btrfs_join_transaction(root);
644 btrfs_free_path(path);
645 return PTR_ERR(trans);
647 trans->block_rsv = &inode->block_rsv;
649 drop_args.path = path;
651 drop_args.end = fs_info->sectorsize;
652 drop_args.drop_cache = true;
653 drop_args.replace_extent = true;
654 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
657 btrfs_abort_transaction(trans, ret);
661 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 size, compressed_size, compress_type,
663 compressed_pages, update_i_size);
664 if (ret && ret != -ENOSPC) {
665 btrfs_abort_transaction(trans, ret);
667 } else if (ret == -ENOSPC) {
672 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 ret = btrfs_update_inode(trans, root, inode);
674 if (ret && ret != -ENOSPC) {
675 btrfs_abort_transaction(trans, ret);
677 } else if (ret == -ENOSPC) {
682 btrfs_set_inode_full_sync(inode);
685 * Don't forget to free the reserved space, as for inlined extent
686 * it won't count as data extent, free them directly here.
687 * And at reserve time, it's always aligned to page size, so
688 * just free one page here.
690 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
691 btrfs_free_path(path);
692 btrfs_end_transaction(trans);
696 struct async_extent {
701 unsigned long nr_pages;
703 struct list_head list;
707 struct btrfs_inode *inode;
708 struct page *locked_page;
711 blk_opf_t write_flags;
712 struct list_head extents;
713 struct cgroup_subsys_state *blkcg_css;
714 struct btrfs_work work;
715 struct async_cow *async_cow;
720 struct async_chunk chunks[];
723 static noinline int add_async_extent(struct async_chunk *cow,
724 u64 start, u64 ram_size,
727 unsigned long nr_pages,
730 struct async_extent *async_extent;
732 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 BUG_ON(!async_extent); /* -ENOMEM */
734 async_extent->start = start;
735 async_extent->ram_size = ram_size;
736 async_extent->compressed_size = compressed_size;
737 async_extent->pages = pages;
738 async_extent->nr_pages = nr_pages;
739 async_extent->compress_type = compress_type;
740 list_add_tail(&async_extent->list, &cow->extents);
745 * Check if the inode needs to be submitted to compression, based on mount
746 * options, defragmentation, properties or heuristics.
748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
751 struct btrfs_fs_info *fs_info = inode->root->fs_info;
753 if (!btrfs_inode_can_compress(inode)) {
754 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
755 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
760 * Special check for subpage.
762 * We lock the full page then run each delalloc range in the page, thus
763 * for the following case, we will hit some subpage specific corner case:
766 * | |///////| |///////|
769 * In above case, both range A and range B will try to unlock the full
770 * page [0, 64K), causing the one finished later will have page
771 * unlocked already, triggering various page lock requirement BUG_ON()s.
773 * So here we add an artificial limit that subpage compression can only
774 * if the range is fully page aligned.
776 * In theory we only need to ensure the first page is fully covered, but
777 * the tailing partial page will be locked until the full compression
778 * finishes, delaying the write of other range.
780 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
781 * first to prevent any submitted async extent to unlock the full page.
782 * By this, we can ensure for subpage case that only the last async_cow
783 * will unlock the full page.
785 if (fs_info->sectorsize < PAGE_SIZE) {
786 if (!PAGE_ALIGNED(start) ||
787 !PAGE_ALIGNED(end + 1))
792 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
795 if (inode->defrag_compress)
797 /* bad compression ratios */
798 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
800 if (btrfs_test_opt(fs_info, COMPRESS) ||
801 inode->flags & BTRFS_INODE_COMPRESS ||
802 inode->prop_compress)
803 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
807 static inline void inode_should_defrag(struct btrfs_inode *inode,
808 u64 start, u64 end, u64 num_bytes, u32 small_write)
810 /* If this is a small write inside eof, kick off a defrag */
811 if (num_bytes < small_write &&
812 (start > 0 || end + 1 < inode->disk_i_size))
813 btrfs_add_inode_defrag(NULL, inode, small_write);
817 * Work queue call back to started compression on a file and pages.
819 * This is done inside an ordered work queue, and the compression is spread
820 * across many cpus. The actual IO submission is step two, and the ordered work
821 * queue takes care of making sure that happens in the same order things were
822 * put onto the queue by writepages and friends.
824 * If this code finds it can't get good compression, it puts an entry onto the
825 * work queue to write the uncompressed bytes. This makes sure that both
826 * compressed inodes and uncompressed inodes are written in the same order that
827 * the flusher thread sent them down.
829 static void compress_file_range(struct btrfs_work *work)
831 struct async_chunk *async_chunk =
832 container_of(work, struct async_chunk, work);
833 struct btrfs_inode *inode = async_chunk->inode;
834 struct btrfs_fs_info *fs_info = inode->root->fs_info;
835 struct address_space *mapping = inode->vfs_inode.i_mapping;
836 u64 blocksize = fs_info->sectorsize;
837 u64 start = async_chunk->start;
838 u64 end = async_chunk->end;
843 unsigned long nr_pages;
844 unsigned long total_compressed = 0;
845 unsigned long total_in = 0;
848 int compress_type = fs_info->compress_type;
850 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
853 * We need to call clear_page_dirty_for_io on each page in the range.
854 * Otherwise applications with the file mmap'd can wander in and change
855 * the page contents while we are compressing them.
857 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
860 * We need to save i_size before now because it could change in between
861 * us evaluating the size and assigning it. This is because we lock and
862 * unlock the page in truncate and fallocate, and then modify the i_size
865 * The barriers are to emulate READ_ONCE, remove that once i_size_read
869 i_size = i_size_read(&inode->vfs_inode);
871 actual_end = min_t(u64, i_size, end + 1);
874 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
875 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
878 * we don't want to send crud past the end of i_size through
879 * compression, that's just a waste of CPU time. So, if the
880 * end of the file is before the start of our current
881 * requested range of bytes, we bail out to the uncompressed
882 * cleanup code that can deal with all of this.
884 * It isn't really the fastest way to fix things, but this is a
885 * very uncommon corner.
887 if (actual_end <= start)
888 goto cleanup_and_bail_uncompressed;
890 total_compressed = actual_end - start;
893 * Skip compression for a small file range(<=blocksize) that
894 * isn't an inline extent, since it doesn't save disk space at all.
896 if (total_compressed <= blocksize &&
897 (start > 0 || end + 1 < inode->disk_i_size))
898 goto cleanup_and_bail_uncompressed;
901 * For subpage case, we require full page alignment for the sector
903 * Thus we must also check against @actual_end, not just @end.
905 if (blocksize < PAGE_SIZE) {
906 if (!PAGE_ALIGNED(start) ||
907 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
908 goto cleanup_and_bail_uncompressed;
911 total_compressed = min_t(unsigned long, total_compressed,
912 BTRFS_MAX_UNCOMPRESSED);
917 * We do compression for mount -o compress and when the inode has not
918 * been flagged as NOCOMPRESS. This flag can change at any time if we
919 * discover bad compression ratios.
921 if (!inode_need_compress(inode, start, end))
922 goto cleanup_and_bail_uncompressed;
924 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
927 * Memory allocation failure is not a fatal error, we can fall
928 * back to uncompressed code.
930 goto cleanup_and_bail_uncompressed;
933 if (inode->defrag_compress)
934 compress_type = inode->defrag_compress;
935 else if (inode->prop_compress)
936 compress_type = inode->prop_compress;
938 /* Compression level is applied here. */
939 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
940 mapping, start, pages, &nr_pages, &total_in,
943 goto mark_incompressible;
946 * Zero the tail end of the last page, as we might be sending it down
949 poff = offset_in_page(total_compressed);
951 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
954 * Try to create an inline extent.
956 * If we didn't compress the entire range, try to create an uncompressed
957 * inline extent, else a compressed one.
959 * Check cow_file_range() for why we don't even try to create inline
960 * extent for the subpage case.
962 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
963 if (total_in < actual_end) {
964 ret = cow_file_range_inline(inode, actual_end, 0,
965 BTRFS_COMPRESS_NONE, NULL,
968 ret = cow_file_range_inline(inode, actual_end,
970 compress_type, pages,
974 unsigned long clear_flags = EXTENT_DELALLOC |
975 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
976 EXTENT_DO_ACCOUNTING;
979 mapping_set_error(mapping, -EIO);
982 * inline extent creation worked or returned error,
983 * we don't need to create any more async work items.
984 * Unlock and free up our temp pages.
986 * We use DO_ACCOUNTING here because we need the
987 * delalloc_release_metadata to be done _after_ we drop
988 * our outstanding extent for clearing delalloc for this
991 extent_clear_unlock_delalloc(inode, start, end,
995 PAGE_START_WRITEBACK |
1002 * We aren't doing an inline extent. Round the compressed size up to a
1003 * block size boundary so the allocator does sane things.
1005 total_compressed = ALIGN(total_compressed, blocksize);
1008 * One last check to make sure the compression is really a win, compare
1009 * the page count read with the blocks on disk, compression must free at
1012 total_in = round_up(total_in, fs_info->sectorsize);
1013 if (total_compressed + blocksize > total_in)
1014 goto mark_incompressible;
1017 * The async work queues will take care of doing actual allocation on
1018 * disk for these compressed pages, and will submit the bios.
1020 add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1021 nr_pages, compress_type);
1022 if (start + total_in < end) {
1029 mark_incompressible:
1030 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1031 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1032 cleanup_and_bail_uncompressed:
1033 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1034 BTRFS_COMPRESS_NONE);
1037 for (i = 0; i < nr_pages; i++) {
1038 WARN_ON(pages[i]->mapping);
1045 static void free_async_extent_pages(struct async_extent *async_extent)
1049 if (!async_extent->pages)
1052 for (i = 0; i < async_extent->nr_pages; i++) {
1053 WARN_ON(async_extent->pages[i]->mapping);
1054 put_page(async_extent->pages[i]);
1056 kfree(async_extent->pages);
1057 async_extent->nr_pages = 0;
1058 async_extent->pages = NULL;
1061 static void submit_uncompressed_range(struct btrfs_inode *inode,
1062 struct async_extent *async_extent,
1063 struct page *locked_page)
1065 u64 start = async_extent->start;
1066 u64 end = async_extent->start + async_extent->ram_size - 1;
1068 struct writeback_control wbc = {
1069 .sync_mode = WB_SYNC_ALL,
1070 .range_start = start,
1072 .no_cgroup_owner = 1,
1075 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1076 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1077 wbc_detach_inode(&wbc);
1079 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1081 const u64 page_start = page_offset(locked_page);
1083 set_page_writeback(locked_page);
1084 end_page_writeback(locked_page);
1085 btrfs_mark_ordered_io_finished(inode, locked_page,
1086 page_start, PAGE_SIZE,
1088 btrfs_page_clear_uptodate(inode->root->fs_info,
1089 locked_page, page_start,
1091 mapping_set_error(locked_page->mapping, ret);
1092 unlock_page(locked_page);
1097 static void submit_one_async_extent(struct async_chunk *async_chunk,
1098 struct async_extent *async_extent,
1101 struct btrfs_inode *inode = async_chunk->inode;
1102 struct extent_io_tree *io_tree = &inode->io_tree;
1103 struct btrfs_root *root = inode->root;
1104 struct btrfs_fs_info *fs_info = root->fs_info;
1105 struct btrfs_ordered_extent *ordered;
1106 struct btrfs_key ins;
1107 struct page *locked_page = NULL;
1108 struct extent_map *em;
1110 u64 start = async_extent->start;
1111 u64 end = async_extent->start + async_extent->ram_size - 1;
1113 if (async_chunk->blkcg_css)
1114 kthread_associate_blkcg(async_chunk->blkcg_css);
1117 * If async_chunk->locked_page is in the async_extent range, we need to
1120 if (async_chunk->locked_page) {
1121 u64 locked_page_start = page_offset(async_chunk->locked_page);
1122 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1124 if (!(start >= locked_page_end || end <= locked_page_start))
1125 locked_page = async_chunk->locked_page;
1127 lock_extent(io_tree, start, end, NULL);
1129 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1130 submit_uncompressed_range(inode, async_extent, locked_page);
1134 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1135 async_extent->compressed_size,
1136 async_extent->compressed_size,
1137 0, *alloc_hint, &ins, 1, 1);
1140 * Here we used to try again by going back to non-compressed
1141 * path for ENOSPC. But we can't reserve space even for
1142 * compressed size, how could it work for uncompressed size
1143 * which requires larger size? So here we directly go error
1149 /* Here we're doing allocation and writeback of the compressed pages */
1150 em = create_io_em(inode, start,
1151 async_extent->ram_size, /* len */
1152 start, /* orig_start */
1153 ins.objectid, /* block_start */
1154 ins.offset, /* block_len */
1155 ins.offset, /* orig_block_len */
1156 async_extent->ram_size, /* ram_bytes */
1157 async_extent->compress_type,
1158 BTRFS_ORDERED_COMPRESSED);
1161 goto out_free_reserve;
1163 free_extent_map(em);
1165 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
1166 async_extent->ram_size, /* num_bytes */
1167 async_extent->ram_size, /* ram_bytes */
1168 ins.objectid, /* disk_bytenr */
1169 ins.offset, /* disk_num_bytes */
1171 1 << BTRFS_ORDERED_COMPRESSED,
1172 async_extent->compress_type);
1173 if (IS_ERR(ordered)) {
1174 btrfs_drop_extent_map_range(inode, start, end, false);
1175 ret = PTR_ERR(ordered);
1176 goto out_free_reserve;
1178 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1180 /* Clear dirty, set writeback and unlock the pages. */
1181 extent_clear_unlock_delalloc(inode, start, end,
1182 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1183 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1184 btrfs_submit_compressed_write(ordered,
1185 async_extent->pages, /* compressed_pages */
1186 async_extent->nr_pages,
1187 async_chunk->write_flags, true);
1188 *alloc_hint = ins.objectid + ins.offset;
1190 if (async_chunk->blkcg_css)
1191 kthread_associate_blkcg(NULL);
1192 kfree(async_extent);
1196 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1197 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1199 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1200 extent_clear_unlock_delalloc(inode, start, end,
1201 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1202 EXTENT_DELALLOC_NEW |
1203 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1204 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1205 PAGE_END_WRITEBACK);
1206 free_async_extent_pages(async_extent);
1207 if (async_chunk->blkcg_css)
1208 kthread_associate_blkcg(NULL);
1209 btrfs_debug(fs_info,
1210 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1211 root->root_key.objectid, btrfs_ino(inode), start,
1212 async_extent->ram_size, ret);
1213 kfree(async_extent);
1216 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1219 struct extent_map_tree *em_tree = &inode->extent_tree;
1220 struct extent_map *em;
1223 read_lock(&em_tree->lock);
1224 em = search_extent_mapping(em_tree, start, num_bytes);
1227 * if block start isn't an actual block number then find the
1228 * first block in this inode and use that as a hint. If that
1229 * block is also bogus then just don't worry about it.
1231 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1232 free_extent_map(em);
1233 em = search_extent_mapping(em_tree, 0, 0);
1234 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1235 alloc_hint = em->block_start;
1237 free_extent_map(em);
1239 alloc_hint = em->block_start;
1240 free_extent_map(em);
1243 read_unlock(&em_tree->lock);
1249 * when extent_io.c finds a delayed allocation range in the file,
1250 * the call backs end up in this code. The basic idea is to
1251 * allocate extents on disk for the range, and create ordered data structs
1252 * in ram to track those extents.
1254 * locked_page is the page that writepage had locked already. We use
1255 * it to make sure we don't do extra locks or unlocks.
1257 * When this function fails, it unlocks all pages except @locked_page.
1259 * When this function successfully creates an inline extent, it returns 1 and
1260 * unlocks all pages including locked_page and starts I/O on them.
1261 * (In reality inline extents are limited to a single page, so locked_page is
1262 * the only page handled anyway).
1264 * When this function succeed and creates a normal extent, the page locking
1265 * status depends on the passed in flags:
1267 * - If @keep_locked is set, all pages are kept locked.
1268 * - Else all pages except for @locked_page are unlocked.
1270 * When a failure happens in the second or later iteration of the
1271 * while-loop, the ordered extents created in previous iterations are kept
1272 * intact. So, the caller must clean them up by calling
1273 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1276 static noinline int cow_file_range(struct btrfs_inode *inode,
1277 struct page *locked_page, u64 start, u64 end,
1279 bool keep_locked, bool no_inline)
1281 struct btrfs_root *root = inode->root;
1282 struct btrfs_fs_info *fs_info = root->fs_info;
1284 u64 orig_start = start;
1286 unsigned long ram_size;
1287 u64 cur_alloc_size = 0;
1289 u64 blocksize = fs_info->sectorsize;
1290 struct btrfs_key ins;
1291 struct extent_map *em;
1292 unsigned clear_bits;
1293 unsigned long page_ops;
1294 bool extent_reserved = false;
1297 if (btrfs_is_free_space_inode(inode)) {
1302 num_bytes = ALIGN(end - start + 1, blocksize);
1303 num_bytes = max(blocksize, num_bytes);
1304 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1306 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1309 * Due to the page size limit, for subpage we can only trigger the
1310 * writeback for the dirty sectors of page, that means data writeback
1311 * is doing more writeback than what we want.
1313 * This is especially unexpected for some call sites like fallocate,
1314 * where we only increase i_size after everything is done.
1315 * This means we can trigger inline extent even if we didn't want to.
1316 * So here we skip inline extent creation completely.
1318 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1319 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1322 /* lets try to make an inline extent */
1323 ret = cow_file_range_inline(inode, actual_end, 0,
1324 BTRFS_COMPRESS_NONE, NULL, false);
1327 * We use DO_ACCOUNTING here because we need the
1328 * delalloc_release_metadata to be run _after_ we drop
1329 * our outstanding extent for clearing delalloc for this
1332 extent_clear_unlock_delalloc(inode, start, end,
1334 EXTENT_LOCKED | EXTENT_DELALLOC |
1335 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1336 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1337 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1339 * locked_page is locked by the caller of
1340 * writepage_delalloc(), not locked by
1341 * __process_pages_contig().
1343 * We can't let __process_pages_contig() to unlock it,
1344 * as it doesn't have any subpage::writers recorded.
1346 * Here we manually unlock the page, since the caller
1347 * can't determine if it's an inline extent or a
1348 * compressed extent.
1350 unlock_page(locked_page);
1353 } else if (ret < 0) {
1358 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1361 * Relocation relies on the relocated extents to have exactly the same
1362 * size as the original extents. Normally writeback for relocation data
1363 * extents follows a NOCOW path because relocation preallocates the
1364 * extents. However, due to an operation such as scrub turning a block
1365 * group to RO mode, it may fallback to COW mode, so we must make sure
1366 * an extent allocated during COW has exactly the requested size and can
1367 * not be split into smaller extents, otherwise relocation breaks and
1368 * fails during the stage where it updates the bytenr of file extent
1371 if (btrfs_is_data_reloc_root(root))
1372 min_alloc_size = num_bytes;
1374 min_alloc_size = fs_info->sectorsize;
1376 while (num_bytes > 0) {
1377 struct btrfs_ordered_extent *ordered;
1379 cur_alloc_size = num_bytes;
1380 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1381 min_alloc_size, 0, alloc_hint,
1383 if (ret == -EAGAIN) {
1385 * btrfs_reserve_extent only returns -EAGAIN for zoned
1386 * file systems, which is an indication that there are
1387 * no active zones to allocate from at the moment.
1389 * If this is the first loop iteration, wait for at
1390 * least one zone to finish before retrying the
1391 * allocation. Otherwise ask the caller to write out
1392 * the already allocated blocks before coming back to
1393 * us, or return -ENOSPC if it can't handle retries.
1395 ASSERT(btrfs_is_zoned(fs_info));
1396 if (start == orig_start) {
1397 wait_on_bit_io(&inode->root->fs_info->flags,
1398 BTRFS_FS_NEED_ZONE_FINISH,
1399 TASK_UNINTERRUPTIBLE);
1403 *done_offset = start - 1;
1410 cur_alloc_size = ins.offset;
1411 extent_reserved = true;
1413 ram_size = ins.offset;
1414 em = create_io_em(inode, start, ins.offset, /* len */
1415 start, /* orig_start */
1416 ins.objectid, /* block_start */
1417 ins.offset, /* block_len */
1418 ins.offset, /* orig_block_len */
1419 ram_size, /* ram_bytes */
1420 BTRFS_COMPRESS_NONE, /* compress_type */
1421 BTRFS_ORDERED_REGULAR /* type */);
1426 free_extent_map(em);
1428 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1429 ram_size, ins.objectid, cur_alloc_size,
1430 0, 1 << BTRFS_ORDERED_REGULAR,
1431 BTRFS_COMPRESS_NONE);
1432 if (IS_ERR(ordered)) {
1433 ret = PTR_ERR(ordered);
1434 goto out_drop_extent_cache;
1437 if (btrfs_is_data_reloc_root(root)) {
1438 ret = btrfs_reloc_clone_csums(ordered);
1441 * Only drop cache here, and process as normal.
1443 * We must not allow extent_clear_unlock_delalloc()
1444 * at out_unlock label to free meta of this ordered
1445 * extent, as its meta should be freed by
1446 * btrfs_finish_ordered_io().
1448 * So we must continue until @start is increased to
1449 * skip current ordered extent.
1452 btrfs_drop_extent_map_range(inode, start,
1453 start + ram_size - 1,
1456 btrfs_put_ordered_extent(ordered);
1458 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1461 * We're not doing compressed IO, don't unlock the first page
1462 * (which the caller expects to stay locked), don't clear any
1463 * dirty bits and don't set any writeback bits
1465 * Do set the Ordered (Private2) bit so we know this page was
1466 * properly setup for writepage.
1468 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1469 page_ops |= PAGE_SET_ORDERED;
1471 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1473 EXTENT_LOCKED | EXTENT_DELALLOC,
1475 if (num_bytes < cur_alloc_size)
1478 num_bytes -= cur_alloc_size;
1479 alloc_hint = ins.objectid + ins.offset;
1480 start += cur_alloc_size;
1481 extent_reserved = false;
1484 * btrfs_reloc_clone_csums() error, since start is increased
1485 * extent_clear_unlock_delalloc() at out_unlock label won't
1486 * free metadata of current ordered extent, we're OK to exit.
1496 out_drop_extent_cache:
1497 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1499 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1500 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1503 * Now, we have three regions to clean up:
1505 * |-------(1)----|---(2)---|-------------(3)----------|
1506 * `- orig_start `- start `- start + cur_alloc_size `- end
1508 * We process each region below.
1511 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1512 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1513 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1516 * For the range (1). We have already instantiated the ordered extents
1517 * for this region. They are cleaned up by
1518 * btrfs_cleanup_ordered_extents() in e.g,
1519 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1520 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1521 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1524 * However, in case of @keep_locked, we still need to unlock the pages
1525 * (except @locked_page) to ensure all the pages are unlocked.
1527 if (keep_locked && orig_start < start) {
1529 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1530 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1531 locked_page, 0, page_ops);
1535 * For the range (2). If we reserved an extent for our delalloc range
1536 * (or a subrange) and failed to create the respective ordered extent,
1537 * then it means that when we reserved the extent we decremented the
1538 * extent's size from the data space_info's bytes_may_use counter and
1539 * incremented the space_info's bytes_reserved counter by the same
1540 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1541 * to decrement again the data space_info's bytes_may_use counter,
1542 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1544 if (extent_reserved) {
1545 extent_clear_unlock_delalloc(inode, start,
1546 start + cur_alloc_size - 1,
1550 start += cur_alloc_size;
1554 * For the range (3). We never touched the region. In addition to the
1555 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1556 * space_info's bytes_may_use counter, reserved in
1557 * btrfs_check_data_free_space().
1560 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1561 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1562 clear_bits, page_ops);
1568 * Phase two of compressed writeback. This is the ordered portion of the code,
1569 * which only gets called in the order the work was queued. We walk all the
1570 * async extents created by compress_file_range and send them down to the disk.
1572 static noinline void submit_compressed_extents(struct btrfs_work *work)
1574 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1576 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1577 struct async_extent *async_extent;
1578 unsigned long nr_pages;
1581 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1584 while (!list_empty(&async_chunk->extents)) {
1585 async_extent = list_entry(async_chunk->extents.next,
1586 struct async_extent, list);
1587 list_del(&async_extent->list);
1588 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1591 /* atomic_sub_return implies a barrier */
1592 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1594 cond_wake_up_nomb(&fs_info->async_submit_wait);
1597 static noinline void async_cow_free(struct btrfs_work *work)
1599 struct async_chunk *async_chunk;
1600 struct async_cow *async_cow;
1602 async_chunk = container_of(work, struct async_chunk, work);
1603 btrfs_add_delayed_iput(async_chunk->inode);
1604 if (async_chunk->blkcg_css)
1605 css_put(async_chunk->blkcg_css);
1607 async_cow = async_chunk->async_cow;
1608 if (atomic_dec_and_test(&async_cow->num_chunks))
1612 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1613 struct page *locked_page, u64 start,
1614 u64 end, struct writeback_control *wbc)
1616 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1617 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1618 struct async_cow *ctx;
1619 struct async_chunk *async_chunk;
1620 unsigned long nr_pages;
1621 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1624 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1626 nofs_flag = memalloc_nofs_save();
1627 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1628 memalloc_nofs_restore(nofs_flag);
1632 unlock_extent(&inode->io_tree, start, end, NULL);
1633 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1635 async_chunk = ctx->chunks;
1636 atomic_set(&ctx->num_chunks, num_chunks);
1638 for (i = 0; i < num_chunks; i++) {
1639 u64 cur_end = min(end, start + SZ_512K - 1);
1642 * igrab is called higher up in the call chain, take only the
1643 * lightweight reference for the callback lifetime
1645 ihold(&inode->vfs_inode);
1646 async_chunk[i].async_cow = ctx;
1647 async_chunk[i].inode = inode;
1648 async_chunk[i].start = start;
1649 async_chunk[i].end = cur_end;
1650 async_chunk[i].write_flags = write_flags;
1651 INIT_LIST_HEAD(&async_chunk[i].extents);
1654 * The locked_page comes all the way from writepage and its
1655 * the original page we were actually given. As we spread
1656 * this large delalloc region across multiple async_chunk
1657 * structs, only the first struct needs a pointer to locked_page
1659 * This way we don't need racey decisions about who is supposed
1664 * Depending on the compressibility, the pages might or
1665 * might not go through async. We want all of them to
1666 * be accounted against wbc once. Let's do it here
1667 * before the paths diverge. wbc accounting is used
1668 * only for foreign writeback detection and doesn't
1669 * need full accuracy. Just account the whole thing
1670 * against the first page.
1672 wbc_account_cgroup_owner(wbc, locked_page,
1674 async_chunk[i].locked_page = locked_page;
1677 async_chunk[i].locked_page = NULL;
1680 if (blkcg_css != blkcg_root_css) {
1682 async_chunk[i].blkcg_css = blkcg_css;
1683 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1685 async_chunk[i].blkcg_css = NULL;
1688 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1689 submit_compressed_extents, async_cow_free);
1691 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1692 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1694 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1696 start = cur_end + 1;
1702 * Run the delalloc range from start to end, and write back any dirty pages
1703 * covered by the range.
1705 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1706 struct page *locked_page, u64 start,
1707 u64 end, struct writeback_control *wbc,
1710 u64 done_offset = end;
1713 while (start <= end) {
1714 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1718 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1719 done_offset, wbc, pages_dirty);
1720 start = done_offset + 1;
1726 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1727 u64 bytenr, u64 num_bytes, bool nowait)
1729 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1730 struct btrfs_ordered_sum *sums;
1734 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1736 if (ret == 0 && list_empty(&list))
1739 while (!list_empty(&list)) {
1740 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1741 list_del(&sums->list);
1749 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1750 const u64 start, const u64 end)
1752 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1753 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1754 const u64 range_bytes = end + 1 - start;
1755 struct extent_io_tree *io_tree = &inode->io_tree;
1756 u64 range_start = start;
1761 * If EXTENT_NORESERVE is set it means that when the buffered write was
1762 * made we had not enough available data space and therefore we did not
1763 * reserve data space for it, since we though we could do NOCOW for the
1764 * respective file range (either there is prealloc extent or the inode
1765 * has the NOCOW bit set).
1767 * However when we need to fallback to COW mode (because for example the
1768 * block group for the corresponding extent was turned to RO mode by a
1769 * scrub or relocation) we need to do the following:
1771 * 1) We increment the bytes_may_use counter of the data space info.
1772 * If COW succeeds, it allocates a new data extent and after doing
1773 * that it decrements the space info's bytes_may_use counter and
1774 * increments its bytes_reserved counter by the same amount (we do
1775 * this at btrfs_add_reserved_bytes()). So we need to increment the
1776 * bytes_may_use counter to compensate (when space is reserved at
1777 * buffered write time, the bytes_may_use counter is incremented);
1779 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1780 * that if the COW path fails for any reason, it decrements (through
1781 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1782 * data space info, which we incremented in the step above.
1784 * If we need to fallback to cow and the inode corresponds to a free
1785 * space cache inode or an inode of the data relocation tree, we must
1786 * also increment bytes_may_use of the data space_info for the same
1787 * reason. Space caches and relocated data extents always get a prealloc
1788 * extent for them, however scrub or balance may have set the block
1789 * group that contains that extent to RO mode and therefore force COW
1790 * when starting writeback.
1792 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1793 EXTENT_NORESERVE, 0, NULL);
1794 if (count > 0 || is_space_ino || is_reloc_ino) {
1796 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1797 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1799 if (is_space_ino || is_reloc_ino)
1800 bytes = range_bytes;
1802 spin_lock(&sinfo->lock);
1803 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1804 spin_unlock(&sinfo->lock);
1807 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1812 * Don't try to create inline extents, as a mix of inline extent that
1813 * is written out and unlocked directly and a normal NOCOW extent
1816 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1821 struct can_nocow_file_extent_args {
1824 /* Start file offset of the range we want to NOCOW. */
1826 /* End file offset (inclusive) of the range we want to NOCOW. */
1828 bool writeback_path;
1831 * Free the path passed to can_nocow_file_extent() once it's not needed
1836 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1841 /* Number of bytes that can be written to in NOCOW mode. */
1846 * Check if we can NOCOW the file extent that the path points to.
1847 * This function may return with the path released, so the caller should check
1848 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1850 * Returns: < 0 on error
1851 * 0 if we can not NOCOW
1854 static int can_nocow_file_extent(struct btrfs_path *path,
1855 struct btrfs_key *key,
1856 struct btrfs_inode *inode,
1857 struct can_nocow_file_extent_args *args)
1859 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1860 struct extent_buffer *leaf = path->nodes[0];
1861 struct btrfs_root *root = inode->root;
1862 struct btrfs_file_extent_item *fi;
1867 bool nowait = path->nowait;
1869 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1870 extent_type = btrfs_file_extent_type(leaf, fi);
1872 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1875 /* Can't access these fields unless we know it's not an inline extent. */
1876 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1877 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1878 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1880 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1881 extent_type == BTRFS_FILE_EXTENT_REG)
1885 * If the extent was created before the generation where the last snapshot
1886 * for its subvolume was created, then this implies the extent is shared,
1887 * hence we must COW.
1889 if (!args->strict &&
1890 btrfs_file_extent_generation(leaf, fi) <=
1891 btrfs_root_last_snapshot(&root->root_item))
1894 /* An explicit hole, must COW. */
1895 if (args->disk_bytenr == 0)
1898 /* Compressed/encrypted/encoded extents must be COWed. */
1899 if (btrfs_file_extent_compression(leaf, fi) ||
1900 btrfs_file_extent_encryption(leaf, fi) ||
1901 btrfs_file_extent_other_encoding(leaf, fi))
1904 extent_end = btrfs_file_extent_end(path);
1907 * The following checks can be expensive, as they need to take other
1908 * locks and do btree or rbtree searches, so release the path to avoid
1909 * blocking other tasks for too long.
1911 btrfs_release_path(path);
1913 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1914 key->offset - args->extent_offset,
1915 args->disk_bytenr, args->strict, path);
1916 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1920 if (args->free_path) {
1922 * We don't need the path anymore, plus through the
1923 * csum_exist_in_range() call below we will end up allocating
1924 * another path. So free the path to avoid unnecessary extra
1927 btrfs_free_path(path);
1931 /* If there are pending snapshots for this root, we must COW. */
1932 if (args->writeback_path && !is_freespace_inode &&
1933 atomic_read(&root->snapshot_force_cow))
1936 args->disk_bytenr += args->extent_offset;
1937 args->disk_bytenr += args->start - key->offset;
1938 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1941 * Force COW if csums exist in the range. This ensures that csums for a
1942 * given extent are either valid or do not exist.
1944 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1946 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1952 if (args->free_path && path)
1953 btrfs_free_path(path);
1955 return ret < 0 ? ret : can_nocow;
1959 * when nowcow writeback call back. This checks for snapshots or COW copies
1960 * of the extents that exist in the file, and COWs the file as required.
1962 * If no cow copies or snapshots exist, we write directly to the existing
1965 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1966 struct page *locked_page,
1967 const u64 start, const u64 end)
1969 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1970 struct btrfs_root *root = inode->root;
1971 struct btrfs_path *path;
1972 u64 cow_start = (u64)-1;
1973 u64 cur_offset = start;
1975 bool check_prev = true;
1976 u64 ino = btrfs_ino(inode);
1977 struct can_nocow_file_extent_args nocow_args = { 0 };
1980 * Normally on a zoned device we're only doing COW writes, but in case
1981 * of relocation on a zoned filesystem serializes I/O so that we're only
1982 * writing sequentially and can end up here as well.
1984 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1986 path = btrfs_alloc_path();
1992 nocow_args.end = end;
1993 nocow_args.writeback_path = true;
1996 struct btrfs_block_group *nocow_bg = NULL;
1997 struct btrfs_ordered_extent *ordered;
1998 struct btrfs_key found_key;
1999 struct btrfs_file_extent_item *fi;
2000 struct extent_buffer *leaf;
2007 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2013 * If there is no extent for our range when doing the initial
2014 * search, then go back to the previous slot as it will be the
2015 * one containing the search offset
2017 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2018 leaf = path->nodes[0];
2019 btrfs_item_key_to_cpu(leaf, &found_key,
2020 path->slots[0] - 1);
2021 if (found_key.objectid == ino &&
2022 found_key.type == BTRFS_EXTENT_DATA_KEY)
2027 /* Go to next leaf if we have exhausted the current one */
2028 leaf = path->nodes[0];
2029 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2030 ret = btrfs_next_leaf(root, path);
2035 leaf = path->nodes[0];
2038 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2040 /* Didn't find anything for our INO */
2041 if (found_key.objectid > ino)
2044 * Keep searching until we find an EXTENT_ITEM or there are no
2045 * more extents for this inode
2047 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2048 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2053 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2054 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2055 found_key.offset > end)
2059 * If the found extent starts after requested offset, then
2060 * adjust extent_end to be right before this extent begins
2062 if (found_key.offset > cur_offset) {
2063 extent_end = found_key.offset;
2069 * Found extent which begins before our range and potentially
2072 fi = btrfs_item_ptr(leaf, path->slots[0],
2073 struct btrfs_file_extent_item);
2074 extent_type = btrfs_file_extent_type(leaf, fi);
2075 /* If this is triggered then we have a memory corruption. */
2076 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2077 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2081 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2082 extent_end = btrfs_file_extent_end(path);
2085 * If the extent we got ends before our current offset, skip to
2088 if (extent_end <= cur_offset) {
2093 nocow_args.start = cur_offset;
2094 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2101 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2105 * If we can't perform NOCOW writeback for the range,
2106 * then record the beginning of the range that needs to
2107 * be COWed. It will be written out before the next
2108 * NOCOW range if we find one, or when exiting this
2111 if (cow_start == (u64)-1)
2112 cow_start = cur_offset;
2113 cur_offset = extent_end;
2114 if (cur_offset > end)
2116 if (!path->nodes[0])
2123 * COW range from cow_start to found_key.offset - 1. As the key
2124 * will contain the beginning of the first extent that can be
2125 * NOCOW, following one which needs to be COW'ed
2127 if (cow_start != (u64)-1) {
2128 ret = fallback_to_cow(inode, locked_page,
2129 cow_start, found_key.offset - 1);
2130 cow_start = (u64)-1;
2132 btrfs_dec_nocow_writers(nocow_bg);
2137 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2138 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2140 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2141 struct extent_map *em;
2143 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2145 nocow_args.disk_bytenr, /* block_start */
2146 nocow_args.num_bytes, /* block_len */
2147 nocow_args.disk_num_bytes, /* orig_block_len */
2148 ram_bytes, BTRFS_COMPRESS_NONE,
2149 BTRFS_ORDERED_PREALLOC);
2151 btrfs_dec_nocow_writers(nocow_bg);
2155 free_extent_map(em);
2158 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2159 nocow_args.num_bytes, nocow_args.num_bytes,
2160 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2162 ? (1 << BTRFS_ORDERED_PREALLOC)
2163 : (1 << BTRFS_ORDERED_NOCOW),
2164 BTRFS_COMPRESS_NONE);
2165 btrfs_dec_nocow_writers(nocow_bg);
2166 if (IS_ERR(ordered)) {
2168 btrfs_drop_extent_map_range(inode, cur_offset,
2171 ret = PTR_ERR(ordered);
2175 if (btrfs_is_data_reloc_root(root))
2177 * Error handled later, as we must prevent
2178 * extent_clear_unlock_delalloc() in error handler
2179 * from freeing metadata of created ordered extent.
2181 ret = btrfs_reloc_clone_csums(ordered);
2182 btrfs_put_ordered_extent(ordered);
2184 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2185 locked_page, EXTENT_LOCKED |
2187 EXTENT_CLEAR_DATA_RESV,
2188 PAGE_UNLOCK | PAGE_SET_ORDERED);
2190 cur_offset = extent_end;
2193 * btrfs_reloc_clone_csums() error, now we're OK to call error
2194 * handler, as metadata for created ordered extent will only
2195 * be freed by btrfs_finish_ordered_io().
2199 if (cur_offset > end)
2202 btrfs_release_path(path);
2204 if (cur_offset <= end && cow_start == (u64)-1)
2205 cow_start = cur_offset;
2207 if (cow_start != (u64)-1) {
2209 ret = fallback_to_cow(inode, locked_page, cow_start, end);
2210 cow_start = (u64)-1;
2215 btrfs_free_path(path);
2220 * If an error happened while a COW region is outstanding, cur_offset
2221 * needs to be reset to cow_start to ensure the COW region is unlocked
2224 if (cow_start != (u64)-1)
2225 cur_offset = cow_start;
2226 if (cur_offset < end)
2227 extent_clear_unlock_delalloc(inode, cur_offset, end,
2228 locked_page, EXTENT_LOCKED |
2229 EXTENT_DELALLOC | EXTENT_DEFRAG |
2230 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2231 PAGE_START_WRITEBACK |
2232 PAGE_END_WRITEBACK);
2233 btrfs_free_path(path);
2237 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2239 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2240 if (inode->defrag_bytes &&
2241 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2250 * Function to process delayed allocation (create CoW) for ranges which are
2251 * being touched for the first time.
2253 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2254 u64 start, u64 end, struct writeback_control *wbc)
2256 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2260 * The range must cover part of the @locked_page, or a return of 1
2261 * can confuse the caller.
2263 ASSERT(!(end <= page_offset(locked_page) ||
2264 start >= page_offset(locked_page) + PAGE_SIZE));
2266 if (should_nocow(inode, start, end)) {
2267 ret = run_delalloc_nocow(inode, locked_page, start, end);
2271 if (btrfs_inode_can_compress(inode) &&
2272 inode_need_compress(inode, start, end) &&
2273 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2277 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2280 ret = cow_file_range(inode, locked_page, start, end, NULL,
2285 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2290 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2291 struct extent_state *orig, u64 split)
2293 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2296 /* not delalloc, ignore it */
2297 if (!(orig->state & EXTENT_DELALLOC))
2300 size = orig->end - orig->start + 1;
2301 if (size > fs_info->max_extent_size) {
2306 * See the explanation in btrfs_merge_delalloc_extent, the same
2307 * applies here, just in reverse.
2309 new_size = orig->end - split + 1;
2310 num_extents = count_max_extents(fs_info, new_size);
2311 new_size = split - orig->start;
2312 num_extents += count_max_extents(fs_info, new_size);
2313 if (count_max_extents(fs_info, size) >= num_extents)
2317 spin_lock(&inode->lock);
2318 btrfs_mod_outstanding_extents(inode, 1);
2319 spin_unlock(&inode->lock);
2323 * Handle merged delayed allocation extents so we can keep track of new extents
2324 * that are just merged onto old extents, such as when we are doing sequential
2325 * writes, so we can properly account for the metadata space we'll need.
2327 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2328 struct extent_state *other)
2330 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2331 u64 new_size, old_size;
2334 /* not delalloc, ignore it */
2335 if (!(other->state & EXTENT_DELALLOC))
2338 if (new->start > other->start)
2339 new_size = new->end - other->start + 1;
2341 new_size = other->end - new->start + 1;
2343 /* we're not bigger than the max, unreserve the space and go */
2344 if (new_size <= fs_info->max_extent_size) {
2345 spin_lock(&inode->lock);
2346 btrfs_mod_outstanding_extents(inode, -1);
2347 spin_unlock(&inode->lock);
2352 * We have to add up either side to figure out how many extents were
2353 * accounted for before we merged into one big extent. If the number of
2354 * extents we accounted for is <= the amount we need for the new range
2355 * then we can return, otherwise drop. Think of it like this
2359 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2360 * need 2 outstanding extents, on one side we have 1 and the other side
2361 * we have 1 so they are == and we can return. But in this case
2363 * [MAX_SIZE+4k][MAX_SIZE+4k]
2365 * Each range on their own accounts for 2 extents, but merged together
2366 * they are only 3 extents worth of accounting, so we need to drop in
2369 old_size = other->end - other->start + 1;
2370 num_extents = count_max_extents(fs_info, old_size);
2371 old_size = new->end - new->start + 1;
2372 num_extents += count_max_extents(fs_info, old_size);
2373 if (count_max_extents(fs_info, new_size) >= num_extents)
2376 spin_lock(&inode->lock);
2377 btrfs_mod_outstanding_extents(inode, -1);
2378 spin_unlock(&inode->lock);
2381 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2382 struct btrfs_inode *inode)
2384 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2386 spin_lock(&root->delalloc_lock);
2387 if (list_empty(&inode->delalloc_inodes)) {
2388 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2389 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2390 root->nr_delalloc_inodes++;
2391 if (root->nr_delalloc_inodes == 1) {
2392 spin_lock(&fs_info->delalloc_root_lock);
2393 BUG_ON(!list_empty(&root->delalloc_root));
2394 list_add_tail(&root->delalloc_root,
2395 &fs_info->delalloc_roots);
2396 spin_unlock(&fs_info->delalloc_root_lock);
2399 spin_unlock(&root->delalloc_lock);
2402 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2403 struct btrfs_inode *inode)
2405 struct btrfs_fs_info *fs_info = root->fs_info;
2407 if (!list_empty(&inode->delalloc_inodes)) {
2408 list_del_init(&inode->delalloc_inodes);
2409 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2410 &inode->runtime_flags);
2411 root->nr_delalloc_inodes--;
2412 if (!root->nr_delalloc_inodes) {
2413 ASSERT(list_empty(&root->delalloc_inodes));
2414 spin_lock(&fs_info->delalloc_root_lock);
2415 BUG_ON(list_empty(&root->delalloc_root));
2416 list_del_init(&root->delalloc_root);
2417 spin_unlock(&fs_info->delalloc_root_lock);
2422 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2423 struct btrfs_inode *inode)
2425 spin_lock(&root->delalloc_lock);
2426 __btrfs_del_delalloc_inode(root, inode);
2427 spin_unlock(&root->delalloc_lock);
2431 * Properly track delayed allocation bytes in the inode and to maintain the
2432 * list of inodes that have pending delalloc work to be done.
2434 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2437 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2439 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2442 * set_bit and clear bit hooks normally require _irqsave/restore
2443 * but in this case, we are only testing for the DELALLOC
2444 * bit, which is only set or cleared with irqs on
2446 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2447 struct btrfs_root *root = inode->root;
2448 u64 len = state->end + 1 - state->start;
2449 u32 num_extents = count_max_extents(fs_info, len);
2450 bool do_list = !btrfs_is_free_space_inode(inode);
2452 spin_lock(&inode->lock);
2453 btrfs_mod_outstanding_extents(inode, num_extents);
2454 spin_unlock(&inode->lock);
2456 /* For sanity tests */
2457 if (btrfs_is_testing(fs_info))
2460 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2461 fs_info->delalloc_batch);
2462 spin_lock(&inode->lock);
2463 inode->delalloc_bytes += len;
2464 if (bits & EXTENT_DEFRAG)
2465 inode->defrag_bytes += len;
2466 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2467 &inode->runtime_flags))
2468 btrfs_add_delalloc_inodes(root, inode);
2469 spin_unlock(&inode->lock);
2472 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2473 (bits & EXTENT_DELALLOC_NEW)) {
2474 spin_lock(&inode->lock);
2475 inode->new_delalloc_bytes += state->end + 1 - state->start;
2476 spin_unlock(&inode->lock);
2481 * Once a range is no longer delalloc this function ensures that proper
2482 * accounting happens.
2484 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2485 struct extent_state *state, u32 bits)
2487 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2488 u64 len = state->end + 1 - state->start;
2489 u32 num_extents = count_max_extents(fs_info, len);
2491 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2492 spin_lock(&inode->lock);
2493 inode->defrag_bytes -= len;
2494 spin_unlock(&inode->lock);
2498 * set_bit and clear bit hooks normally require _irqsave/restore
2499 * but in this case, we are only testing for the DELALLOC
2500 * bit, which is only set or cleared with irqs on
2502 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2503 struct btrfs_root *root = inode->root;
2504 bool do_list = !btrfs_is_free_space_inode(inode);
2506 spin_lock(&inode->lock);
2507 btrfs_mod_outstanding_extents(inode, -num_extents);
2508 spin_unlock(&inode->lock);
2511 * We don't reserve metadata space for space cache inodes so we
2512 * don't need to call delalloc_release_metadata if there is an
2515 if (bits & EXTENT_CLEAR_META_RESV &&
2516 root != fs_info->tree_root)
2517 btrfs_delalloc_release_metadata(inode, len, false);
2519 /* For sanity tests. */
2520 if (btrfs_is_testing(fs_info))
2523 if (!btrfs_is_data_reloc_root(root) &&
2524 do_list && !(state->state & EXTENT_NORESERVE) &&
2525 (bits & EXTENT_CLEAR_DATA_RESV))
2526 btrfs_free_reserved_data_space_noquota(fs_info, len);
2528 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2529 fs_info->delalloc_batch);
2530 spin_lock(&inode->lock);
2531 inode->delalloc_bytes -= len;
2532 if (do_list && inode->delalloc_bytes == 0 &&
2533 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2534 &inode->runtime_flags))
2535 btrfs_del_delalloc_inode(root, inode);
2536 spin_unlock(&inode->lock);
2539 if ((state->state & EXTENT_DELALLOC_NEW) &&
2540 (bits & EXTENT_DELALLOC_NEW)) {
2541 spin_lock(&inode->lock);
2542 ASSERT(inode->new_delalloc_bytes >= len);
2543 inode->new_delalloc_bytes -= len;
2544 if (bits & EXTENT_ADD_INODE_BYTES)
2545 inode_add_bytes(&inode->vfs_inode, len);
2546 spin_unlock(&inode->lock);
2550 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2551 struct btrfs_ordered_extent *ordered)
2553 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2554 u64 len = bbio->bio.bi_iter.bi_size;
2555 struct btrfs_ordered_extent *new;
2558 /* Must always be called for the beginning of an ordered extent. */
2559 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2562 /* No need to split if the ordered extent covers the entire bio. */
2563 if (ordered->disk_num_bytes == len) {
2564 refcount_inc(&ordered->refs);
2565 bbio->ordered = ordered;
2570 * Don't split the extent_map for NOCOW extents, as we're writing into
2571 * a pre-existing one.
2573 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2574 ret = split_extent_map(bbio->inode, bbio->file_offset,
2575 ordered->num_bytes, len,
2576 ordered->disk_bytenr);
2581 new = btrfs_split_ordered_extent(ordered, len);
2583 return PTR_ERR(new);
2584 bbio->ordered = new;
2589 * given a list of ordered sums record them in the inode. This happens
2590 * at IO completion time based on sums calculated at bio submission time.
2592 static int add_pending_csums(struct btrfs_trans_handle *trans,
2593 struct list_head *list)
2595 struct btrfs_ordered_sum *sum;
2596 struct btrfs_root *csum_root = NULL;
2599 list_for_each_entry(sum, list, list) {
2600 trans->adding_csums = true;
2602 csum_root = btrfs_csum_root(trans->fs_info,
2604 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2605 trans->adding_csums = false;
2612 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2615 struct extent_state **cached_state)
2617 u64 search_start = start;
2618 const u64 end = start + len - 1;
2620 while (search_start < end) {
2621 const u64 search_len = end - search_start + 1;
2622 struct extent_map *em;
2626 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2630 if (em->block_start != EXTENT_MAP_HOLE)
2634 if (em->start < search_start)
2635 em_len -= search_start - em->start;
2636 if (em_len > search_len)
2637 em_len = search_len;
2639 ret = set_extent_bit(&inode->io_tree, search_start,
2640 search_start + em_len - 1,
2641 EXTENT_DELALLOC_NEW, cached_state);
2643 search_start = extent_map_end(em);
2644 free_extent_map(em);
2651 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2652 unsigned int extra_bits,
2653 struct extent_state **cached_state)
2655 WARN_ON(PAGE_ALIGNED(end));
2657 if (start >= i_size_read(&inode->vfs_inode) &&
2658 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2660 * There can't be any extents following eof in this case so just
2661 * set the delalloc new bit for the range directly.
2663 extra_bits |= EXTENT_DELALLOC_NEW;
2667 ret = btrfs_find_new_delalloc_bytes(inode, start,
2674 return set_extent_bit(&inode->io_tree, start, end,
2675 EXTENT_DELALLOC | extra_bits, cached_state);
2678 /* see btrfs_writepage_start_hook for details on why this is required */
2679 struct btrfs_writepage_fixup {
2681 struct btrfs_inode *inode;
2682 struct btrfs_work work;
2685 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2687 struct btrfs_writepage_fixup *fixup =
2688 container_of(work, struct btrfs_writepage_fixup, work);
2689 struct btrfs_ordered_extent *ordered;
2690 struct extent_state *cached_state = NULL;
2691 struct extent_changeset *data_reserved = NULL;
2692 struct page *page = fixup->page;
2693 struct btrfs_inode *inode = fixup->inode;
2694 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2695 u64 page_start = page_offset(page);
2696 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2698 bool free_delalloc_space = true;
2701 * This is similar to page_mkwrite, we need to reserve the space before
2702 * we take the page lock.
2704 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2710 * Before we queued this fixup, we took a reference on the page.
2711 * page->mapping may go NULL, but it shouldn't be moved to a different
2714 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2716 * Unfortunately this is a little tricky, either
2718 * 1) We got here and our page had already been dealt with and
2719 * we reserved our space, thus ret == 0, so we need to just
2720 * drop our space reservation and bail. This can happen the
2721 * first time we come into the fixup worker, or could happen
2722 * while waiting for the ordered extent.
2723 * 2) Our page was already dealt with, but we happened to get an
2724 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2725 * this case we obviously don't have anything to release, but
2726 * because the page was already dealt with we don't want to
2727 * mark the page with an error, so make sure we're resetting
2728 * ret to 0. This is why we have this check _before_ the ret
2729 * check, because we do not want to have a surprise ENOSPC
2730 * when the page was already properly dealt with.
2733 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2734 btrfs_delalloc_release_space(inode, data_reserved,
2735 page_start, PAGE_SIZE,
2743 * We can't mess with the page state unless it is locked, so now that
2744 * it is locked bail if we failed to make our space reservation.
2749 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2751 /* already ordered? We're done */
2752 if (PageOrdered(page))
2755 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2757 unlock_extent(&inode->io_tree, page_start, page_end,
2760 btrfs_start_ordered_extent(ordered);
2761 btrfs_put_ordered_extent(ordered);
2765 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2771 * Everything went as planned, we're now the owner of a dirty page with
2772 * delayed allocation bits set and space reserved for our COW
2775 * The page was dirty when we started, nothing should have cleaned it.
2777 BUG_ON(!PageDirty(page));
2778 free_delalloc_space = false;
2780 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2781 if (free_delalloc_space)
2782 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2784 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2788 * We hit ENOSPC or other errors. Update the mapping and page
2789 * to reflect the errors and clean the page.
2791 mapping_set_error(page->mapping, ret);
2792 btrfs_mark_ordered_io_finished(inode, page, page_start,
2794 btrfs_page_clear_uptodate(fs_info, page, page_start, PAGE_SIZE);
2795 clear_page_dirty_for_io(page);
2797 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2801 extent_changeset_free(data_reserved);
2803 * As a precaution, do a delayed iput in case it would be the last iput
2804 * that could need flushing space. Recursing back to fixup worker would
2807 btrfs_add_delayed_iput(inode);
2811 * There are a few paths in the higher layers of the kernel that directly
2812 * set the page dirty bit without asking the filesystem if it is a
2813 * good idea. This causes problems because we want to make sure COW
2814 * properly happens and the data=ordered rules are followed.
2816 * In our case any range that doesn't have the ORDERED bit set
2817 * hasn't been properly setup for IO. We kick off an async process
2818 * to fix it up. The async helper will wait for ordered extents, set
2819 * the delalloc bit and make it safe to write the page.
2821 int btrfs_writepage_cow_fixup(struct page *page)
2823 struct inode *inode = page->mapping->host;
2824 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2825 struct btrfs_writepage_fixup *fixup;
2827 /* This page has ordered extent covering it already */
2828 if (PageOrdered(page))
2832 * PageChecked is set below when we create a fixup worker for this page,
2833 * don't try to create another one if we're already PageChecked()
2835 * The extent_io writepage code will redirty the page if we send back
2838 if (PageChecked(page))
2841 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2846 * We are already holding a reference to this inode from
2847 * write_cache_pages. We need to hold it because the space reservation
2848 * takes place outside of the page lock, and we can't trust
2849 * page->mapping outside of the page lock.
2852 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2854 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2856 fixup->inode = BTRFS_I(inode);
2857 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2862 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2863 struct btrfs_inode *inode, u64 file_pos,
2864 struct btrfs_file_extent_item *stack_fi,
2865 const bool update_inode_bytes,
2866 u64 qgroup_reserved)
2868 struct btrfs_root *root = inode->root;
2869 const u64 sectorsize = root->fs_info->sectorsize;
2870 struct btrfs_path *path;
2871 struct extent_buffer *leaf;
2872 struct btrfs_key ins;
2873 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2874 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2875 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2876 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2877 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2878 struct btrfs_drop_extents_args drop_args = { 0 };
2881 path = btrfs_alloc_path();
2886 * we may be replacing one extent in the tree with another.
2887 * The new extent is pinned in the extent map, and we don't want
2888 * to drop it from the cache until it is completely in the btree.
2890 * So, tell btrfs_drop_extents to leave this extent in the cache.
2891 * the caller is expected to unpin it and allow it to be merged
2894 drop_args.path = path;
2895 drop_args.start = file_pos;
2896 drop_args.end = file_pos + num_bytes;
2897 drop_args.replace_extent = true;
2898 drop_args.extent_item_size = sizeof(*stack_fi);
2899 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2903 if (!drop_args.extent_inserted) {
2904 ins.objectid = btrfs_ino(inode);
2905 ins.offset = file_pos;
2906 ins.type = BTRFS_EXTENT_DATA_KEY;
2908 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2913 leaf = path->nodes[0];
2914 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2915 write_extent_buffer(leaf, stack_fi,
2916 btrfs_item_ptr_offset(leaf, path->slots[0]),
2917 sizeof(struct btrfs_file_extent_item));
2919 btrfs_mark_buffer_dirty(leaf);
2920 btrfs_release_path(path);
2923 * If we dropped an inline extent here, we know the range where it is
2924 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2925 * number of bytes only for that range containing the inline extent.
2926 * The remaining of the range will be processed when clearning the
2927 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2929 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2930 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2932 inline_size = drop_args.bytes_found - inline_size;
2933 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2934 drop_args.bytes_found -= inline_size;
2935 num_bytes -= sectorsize;
2938 if (update_inode_bytes)
2939 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2941 ins.objectid = disk_bytenr;
2942 ins.offset = disk_num_bytes;
2943 ins.type = BTRFS_EXTENT_ITEM_KEY;
2945 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2949 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2951 qgroup_reserved, &ins);
2953 btrfs_free_path(path);
2958 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2961 struct btrfs_block_group *cache;
2963 cache = btrfs_lookup_block_group(fs_info, start);
2966 spin_lock(&cache->lock);
2967 cache->delalloc_bytes -= len;
2968 spin_unlock(&cache->lock);
2970 btrfs_put_block_group(cache);
2973 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2974 struct btrfs_ordered_extent *oe)
2976 struct btrfs_file_extent_item stack_fi;
2977 bool update_inode_bytes;
2978 u64 num_bytes = oe->num_bytes;
2979 u64 ram_bytes = oe->ram_bytes;
2981 memset(&stack_fi, 0, sizeof(stack_fi));
2982 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2983 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2984 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2985 oe->disk_num_bytes);
2986 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2987 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2988 num_bytes = oe->truncated_len;
2989 ram_bytes = num_bytes;
2991 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2992 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2993 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2994 /* Encryption and other encoding is reserved and all 0 */
2997 * For delalloc, when completing an ordered extent we update the inode's
2998 * bytes when clearing the range in the inode's io tree, so pass false
2999 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3000 * except if the ordered extent was truncated.
3002 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3003 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3004 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3006 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3007 oe->file_offset, &stack_fi,
3008 update_inode_bytes, oe->qgroup_rsv);
3012 * As ordered data IO finishes, this gets called so we can finish
3013 * an ordered extent if the range of bytes in the file it covers are
3016 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3018 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3019 struct btrfs_root *root = inode->root;
3020 struct btrfs_fs_info *fs_info = root->fs_info;
3021 struct btrfs_trans_handle *trans = NULL;
3022 struct extent_io_tree *io_tree = &inode->io_tree;
3023 struct extent_state *cached_state = NULL;
3025 int compress_type = 0;
3027 u64 logical_len = ordered_extent->num_bytes;
3028 bool freespace_inode;
3029 bool truncated = false;
3030 bool clear_reserved_extent = true;
3031 unsigned int clear_bits = EXTENT_DEFRAG;
3033 start = ordered_extent->file_offset;
3034 end = start + ordered_extent->num_bytes - 1;
3036 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3037 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3038 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3039 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3040 clear_bits |= EXTENT_DELALLOC_NEW;
3042 freespace_inode = btrfs_is_free_space_inode(inode);
3043 if (!freespace_inode)
3044 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3046 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3051 if (btrfs_is_zoned(fs_info))
3052 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3053 ordered_extent->disk_num_bytes);
3055 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3057 logical_len = ordered_extent->truncated_len;
3058 /* Truncated the entire extent, don't bother adding */
3063 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3064 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3066 btrfs_inode_safe_disk_i_size_write(inode, 0);
3067 if (freespace_inode)
3068 trans = btrfs_join_transaction_spacecache(root);
3070 trans = btrfs_join_transaction(root);
3071 if (IS_ERR(trans)) {
3072 ret = PTR_ERR(trans);
3076 trans->block_rsv = &inode->block_rsv;
3077 ret = btrfs_update_inode_fallback(trans, root, inode);
3078 if (ret) /* -ENOMEM or corruption */
3079 btrfs_abort_transaction(trans, ret);
3083 clear_bits |= EXTENT_LOCKED;
3084 lock_extent(io_tree, start, end, &cached_state);
3086 if (freespace_inode)
3087 trans = btrfs_join_transaction_spacecache(root);
3089 trans = btrfs_join_transaction(root);
3090 if (IS_ERR(trans)) {
3091 ret = PTR_ERR(trans);
3096 trans->block_rsv = &inode->block_rsv;
3098 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3099 compress_type = ordered_extent->compress_type;
3100 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3101 BUG_ON(compress_type);
3102 ret = btrfs_mark_extent_written(trans, inode,
3103 ordered_extent->file_offset,
3104 ordered_extent->file_offset +
3106 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3107 ordered_extent->disk_num_bytes);
3109 BUG_ON(root == fs_info->tree_root);
3110 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3112 clear_reserved_extent = false;
3113 btrfs_release_delalloc_bytes(fs_info,
3114 ordered_extent->disk_bytenr,
3115 ordered_extent->disk_num_bytes);
3118 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3119 ordered_extent->num_bytes, trans->transid);
3121 btrfs_abort_transaction(trans, ret);
3125 ret = add_pending_csums(trans, &ordered_extent->list);
3127 btrfs_abort_transaction(trans, ret);
3132 * If this is a new delalloc range, clear its new delalloc flag to
3133 * update the inode's number of bytes. This needs to be done first
3134 * before updating the inode item.
3136 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3137 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3138 clear_extent_bit(&inode->io_tree, start, end,
3139 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3142 btrfs_inode_safe_disk_i_size_write(inode, 0);
3143 ret = btrfs_update_inode_fallback(trans, root, inode);
3144 if (ret) { /* -ENOMEM or corruption */
3145 btrfs_abort_transaction(trans, ret);
3150 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3154 btrfs_end_transaction(trans);
3156 if (ret || truncated) {
3157 u64 unwritten_start = start;
3160 * If we failed to finish this ordered extent for any reason we
3161 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3162 * extent, and mark the inode with the error if it wasn't
3163 * already set. Any error during writeback would have already
3164 * set the mapping error, so we need to set it if we're the ones
3165 * marking this ordered extent as failed.
3167 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3168 &ordered_extent->flags))
3169 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3172 unwritten_start += logical_len;
3173 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3175 /* Drop extent maps for the part of the extent we didn't write. */
3176 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3179 * If the ordered extent had an IOERR or something else went
3180 * wrong we need to return the space for this ordered extent
3181 * back to the allocator. We only free the extent in the
3182 * truncated case if we didn't write out the extent at all.
3184 * If we made it past insert_reserved_file_extent before we
3185 * errored out then we don't need to do this as the accounting
3186 * has already been done.
3188 if ((ret || !logical_len) &&
3189 clear_reserved_extent &&
3190 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3191 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3193 * Discard the range before returning it back to the
3196 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3197 btrfs_discard_extent(fs_info,
3198 ordered_extent->disk_bytenr,
3199 ordered_extent->disk_num_bytes,
3201 btrfs_free_reserved_extent(fs_info,
3202 ordered_extent->disk_bytenr,
3203 ordered_extent->disk_num_bytes, 1);
3205 * Actually free the qgroup rsv which was released when
3206 * the ordered extent was created.
3208 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3209 ordered_extent->qgroup_rsv,
3210 BTRFS_QGROUP_RSV_DATA);
3215 * This needs to be done to make sure anybody waiting knows we are done
3216 * updating everything for this ordered extent.
3218 btrfs_remove_ordered_extent(inode, ordered_extent);
3221 btrfs_put_ordered_extent(ordered_extent);
3222 /* once for the tree */
3223 btrfs_put_ordered_extent(ordered_extent);
3228 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3230 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3231 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3232 btrfs_finish_ordered_zoned(ordered);
3233 return btrfs_finish_one_ordered(ordered);
3237 * Verify the checksum for a single sector without any extra action that depend
3238 * on the type of I/O.
3240 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3241 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3243 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3246 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3248 shash->tfm = fs_info->csum_shash;
3250 kaddr = kmap_local_page(page) + pgoff;
3251 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3252 kunmap_local(kaddr);
3254 if (memcmp(csum, csum_expected, fs_info->csum_size))
3260 * Verify the checksum of a single data sector.
3262 * @bbio: btrfs_io_bio which contains the csum
3263 * @dev: device the sector is on
3264 * @bio_offset: offset to the beginning of the bio (in bytes)
3265 * @bv: bio_vec to check
3267 * Check if the checksum on a data block is valid. When a checksum mismatch is
3268 * detected, report the error and fill the corrupted range with zero.
3270 * Return %true if the sector is ok or had no checksum to start with, else %false.
3272 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3273 u32 bio_offset, struct bio_vec *bv)
3275 struct btrfs_inode *inode = bbio->inode;
3276 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3277 u64 file_offset = bbio->file_offset + bio_offset;
3278 u64 end = file_offset + bv->bv_len - 1;
3280 u8 csum[BTRFS_CSUM_SIZE];
3282 ASSERT(bv->bv_len == fs_info->sectorsize);
3287 if (btrfs_is_data_reloc_root(inode->root) &&
3288 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3290 /* Skip the range without csum for data reloc inode */
3291 clear_extent_bits(&inode->io_tree, file_offset, end,
3296 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3298 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3304 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3307 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3313 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3315 * @inode: The inode we want to perform iput on
3317 * This function uses the generic vfs_inode::i_count to track whether we should
3318 * just decrement it (in case it's > 1) or if this is the last iput then link
3319 * the inode to the delayed iput machinery. Delayed iputs are processed at
3320 * transaction commit time/superblock commit/cleaner kthread.
3322 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3324 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3325 unsigned long flags;
3327 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3330 atomic_inc(&fs_info->nr_delayed_iputs);
3332 * Need to be irq safe here because we can be called from either an irq
3333 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3336 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3337 ASSERT(list_empty(&inode->delayed_iput));
3338 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3339 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3340 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3341 wake_up_process(fs_info->cleaner_kthread);
3344 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3345 struct btrfs_inode *inode)
3347 list_del_init(&inode->delayed_iput);
3348 spin_unlock_irq(&fs_info->delayed_iput_lock);
3349 iput(&inode->vfs_inode);
3350 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3351 wake_up(&fs_info->delayed_iputs_wait);
3352 spin_lock_irq(&fs_info->delayed_iput_lock);
3355 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3356 struct btrfs_inode *inode)
3358 if (!list_empty(&inode->delayed_iput)) {
3359 spin_lock_irq(&fs_info->delayed_iput_lock);
3360 if (!list_empty(&inode->delayed_iput))
3361 run_delayed_iput_locked(fs_info, inode);
3362 spin_unlock_irq(&fs_info->delayed_iput_lock);
3366 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3369 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3370 * calls btrfs_add_delayed_iput() and that needs to lock
3371 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3372 * prevent a deadlock.
3374 spin_lock_irq(&fs_info->delayed_iput_lock);
3375 while (!list_empty(&fs_info->delayed_iputs)) {
3376 struct btrfs_inode *inode;
3378 inode = list_first_entry(&fs_info->delayed_iputs,
3379 struct btrfs_inode, delayed_iput);
3380 run_delayed_iput_locked(fs_info, inode);
3381 if (need_resched()) {
3382 spin_unlock_irq(&fs_info->delayed_iput_lock);
3384 spin_lock_irq(&fs_info->delayed_iput_lock);
3387 spin_unlock_irq(&fs_info->delayed_iput_lock);
3391 * Wait for flushing all delayed iputs
3393 * @fs_info: the filesystem
3395 * This will wait on any delayed iputs that are currently running with KILLABLE
3396 * set. Once they are all done running we will return, unless we are killed in
3397 * which case we return EINTR. This helps in user operations like fallocate etc
3398 * that might get blocked on the iputs.
3400 * Return EINTR if we were killed, 0 if nothing's pending
3402 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3404 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3405 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3412 * This creates an orphan entry for the given inode in case something goes wrong
3413 * in the middle of an unlink.
3415 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3416 struct btrfs_inode *inode)
3420 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3421 if (ret && ret != -EEXIST) {
3422 btrfs_abort_transaction(trans, ret);
3430 * We have done the delete so we can go ahead and remove the orphan item for
3431 * this particular inode.
3433 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3434 struct btrfs_inode *inode)
3436 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3440 * this cleans up any orphans that may be left on the list from the last use
3443 int btrfs_orphan_cleanup(struct btrfs_root *root)
3445 struct btrfs_fs_info *fs_info = root->fs_info;
3446 struct btrfs_path *path;
3447 struct extent_buffer *leaf;
3448 struct btrfs_key key, found_key;
3449 struct btrfs_trans_handle *trans;
3450 struct inode *inode;
3451 u64 last_objectid = 0;
3452 int ret = 0, nr_unlink = 0;
3454 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3457 path = btrfs_alloc_path();
3462 path->reada = READA_BACK;
3464 key.objectid = BTRFS_ORPHAN_OBJECTID;
3465 key.type = BTRFS_ORPHAN_ITEM_KEY;
3466 key.offset = (u64)-1;
3469 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3474 * if ret == 0 means we found what we were searching for, which
3475 * is weird, but possible, so only screw with path if we didn't
3476 * find the key and see if we have stuff that matches
3480 if (path->slots[0] == 0)
3485 /* pull out the item */
3486 leaf = path->nodes[0];
3487 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3489 /* make sure the item matches what we want */
3490 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3492 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3495 /* release the path since we're done with it */
3496 btrfs_release_path(path);
3499 * this is where we are basically btrfs_lookup, without the
3500 * crossing root thing. we store the inode number in the
3501 * offset of the orphan item.
3504 if (found_key.offset == last_objectid) {
3506 * We found the same inode as before. This means we were
3507 * not able to remove its items via eviction triggered
3508 * by an iput(). A transaction abort may have happened,
3509 * due to -ENOSPC for example, so try to grab the error
3510 * that lead to a transaction abort, if any.
3513 "Error removing orphan entry, stopping orphan cleanup");
3514 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3518 last_objectid = found_key.offset;
3520 found_key.objectid = found_key.offset;
3521 found_key.type = BTRFS_INODE_ITEM_KEY;
3522 found_key.offset = 0;
3523 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3524 if (IS_ERR(inode)) {
3525 ret = PTR_ERR(inode);
3531 if (!inode && root == fs_info->tree_root) {
3532 struct btrfs_root *dead_root;
3533 int is_dead_root = 0;
3536 * This is an orphan in the tree root. Currently these
3537 * could come from 2 sources:
3538 * a) a root (snapshot/subvolume) deletion in progress
3539 * b) a free space cache inode
3540 * We need to distinguish those two, as the orphan item
3541 * for a root must not get deleted before the deletion
3542 * of the snapshot/subvolume's tree completes.
3544 * btrfs_find_orphan_roots() ran before us, which has
3545 * found all deleted roots and loaded them into
3546 * fs_info->fs_roots_radix. So here we can find if an
3547 * orphan item corresponds to a deleted root by looking
3548 * up the root from that radix tree.
3551 spin_lock(&fs_info->fs_roots_radix_lock);
3552 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3553 (unsigned long)found_key.objectid);
3554 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3556 spin_unlock(&fs_info->fs_roots_radix_lock);
3559 /* prevent this orphan from being found again */
3560 key.offset = found_key.objectid - 1;
3567 * If we have an inode with links, there are a couple of
3570 * 1. We were halfway through creating fsverity metadata for the
3571 * file. In that case, the orphan item represents incomplete
3572 * fsverity metadata which must be cleaned up with
3573 * btrfs_drop_verity_items and deleting the orphan item.
3575 * 2. Old kernels (before v3.12) used to create an
3576 * orphan item for truncate indicating that there were possibly
3577 * extent items past i_size that needed to be deleted. In v3.12,
3578 * truncate was changed to update i_size in sync with the extent
3579 * items, but the (useless) orphan item was still created. Since
3580 * v4.18, we don't create the orphan item for truncate at all.
3582 * So, this item could mean that we need to do a truncate, but
3583 * only if this filesystem was last used on a pre-v3.12 kernel
3584 * and was not cleanly unmounted. The odds of that are quite
3585 * slim, and it's a pain to do the truncate now, so just delete
3588 * It's also possible that this orphan item was supposed to be
3589 * deleted but wasn't. The inode number may have been reused,
3590 * but either way, we can delete the orphan item.
3592 if (!inode || inode->i_nlink) {
3594 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3600 trans = btrfs_start_transaction(root, 1);
3601 if (IS_ERR(trans)) {
3602 ret = PTR_ERR(trans);
3605 btrfs_debug(fs_info, "auto deleting %Lu",
3606 found_key.objectid);
3607 ret = btrfs_del_orphan_item(trans, root,
3608 found_key.objectid);
3609 btrfs_end_transaction(trans);
3617 /* this will do delete_inode and everything for us */
3620 /* release the path since we're done with it */
3621 btrfs_release_path(path);
3623 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3624 trans = btrfs_join_transaction(root);
3626 btrfs_end_transaction(trans);
3630 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3634 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3635 btrfs_free_path(path);
3640 * very simple check to peek ahead in the leaf looking for xattrs. If we
3641 * don't find any xattrs, we know there can't be any acls.
3643 * slot is the slot the inode is in, objectid is the objectid of the inode
3645 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3646 int slot, u64 objectid,
3647 int *first_xattr_slot)
3649 u32 nritems = btrfs_header_nritems(leaf);
3650 struct btrfs_key found_key;
3651 static u64 xattr_access = 0;
3652 static u64 xattr_default = 0;
3655 if (!xattr_access) {
3656 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3657 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3658 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3659 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3663 *first_xattr_slot = -1;
3664 while (slot < nritems) {
3665 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3667 /* we found a different objectid, there must not be acls */
3668 if (found_key.objectid != objectid)
3671 /* we found an xattr, assume we've got an acl */
3672 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3673 if (*first_xattr_slot == -1)
3674 *first_xattr_slot = slot;
3675 if (found_key.offset == xattr_access ||
3676 found_key.offset == xattr_default)
3681 * we found a key greater than an xattr key, there can't
3682 * be any acls later on
3684 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3691 * it goes inode, inode backrefs, xattrs, extents,
3692 * so if there are a ton of hard links to an inode there can
3693 * be a lot of backrefs. Don't waste time searching too hard,
3694 * this is just an optimization
3699 /* we hit the end of the leaf before we found an xattr or
3700 * something larger than an xattr. We have to assume the inode
3703 if (*first_xattr_slot == -1)
3704 *first_xattr_slot = slot;
3709 * read an inode from the btree into the in-memory inode
3711 static int btrfs_read_locked_inode(struct inode *inode,
3712 struct btrfs_path *in_path)
3714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3715 struct btrfs_path *path = in_path;
3716 struct extent_buffer *leaf;
3717 struct btrfs_inode_item *inode_item;
3718 struct btrfs_root *root = BTRFS_I(inode)->root;
3719 struct btrfs_key location;
3724 bool filled = false;
3725 int first_xattr_slot;
3727 ret = btrfs_fill_inode(inode, &rdev);
3732 path = btrfs_alloc_path();
3737 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3739 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3741 if (path != in_path)
3742 btrfs_free_path(path);
3746 leaf = path->nodes[0];
3751 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3752 struct btrfs_inode_item);
3753 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3754 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3755 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3756 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3757 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3758 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3759 round_up(i_size_read(inode), fs_info->sectorsize));
3761 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3762 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3764 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3765 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3767 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3768 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3770 BTRFS_I(inode)->i_otime.tv_sec =
3771 btrfs_timespec_sec(leaf, &inode_item->otime);
3772 BTRFS_I(inode)->i_otime.tv_nsec =
3773 btrfs_timespec_nsec(leaf, &inode_item->otime);
3775 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3776 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3777 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3779 inode_set_iversion_queried(inode,
3780 btrfs_inode_sequence(leaf, inode_item));
3781 inode->i_generation = BTRFS_I(inode)->generation;
3783 rdev = btrfs_inode_rdev(leaf, inode_item);
3785 BTRFS_I(inode)->index_cnt = (u64)-1;
3786 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3787 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3791 * If we were modified in the current generation and evicted from memory
3792 * and then re-read we need to do a full sync since we don't have any
3793 * idea about which extents were modified before we were evicted from
3796 * This is required for both inode re-read from disk and delayed inode
3797 * in delayed_nodes_tree.
3799 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3800 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3801 &BTRFS_I(inode)->runtime_flags);
3804 * We don't persist the id of the transaction where an unlink operation
3805 * against the inode was last made. So here we assume the inode might
3806 * have been evicted, and therefore the exact value of last_unlink_trans
3807 * lost, and set it to last_trans to avoid metadata inconsistencies
3808 * between the inode and its parent if the inode is fsync'ed and the log
3809 * replayed. For example, in the scenario:
3812 * ln mydir/foo mydir/bar
3815 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3816 * xfs_io -c fsync mydir/foo
3818 * mount fs, triggers fsync log replay
3820 * We must make sure that when we fsync our inode foo we also log its
3821 * parent inode, otherwise after log replay the parent still has the
3822 * dentry with the "bar" name but our inode foo has a link count of 1
3823 * and doesn't have an inode ref with the name "bar" anymore.
3825 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3826 * but it guarantees correctness at the expense of occasional full
3827 * transaction commits on fsync if our inode is a directory, or if our
3828 * inode is not a directory, logging its parent unnecessarily.
3830 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3833 * Same logic as for last_unlink_trans. We don't persist the generation
3834 * of the last transaction where this inode was used for a reflink
3835 * operation, so after eviction and reloading the inode we must be
3836 * pessimistic and assume the last transaction that modified the inode.
3838 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3841 if (inode->i_nlink != 1 ||
3842 path->slots[0] >= btrfs_header_nritems(leaf))
3845 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3846 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3849 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3850 if (location.type == BTRFS_INODE_REF_KEY) {
3851 struct btrfs_inode_ref *ref;
3853 ref = (struct btrfs_inode_ref *)ptr;
3854 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3855 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3856 struct btrfs_inode_extref *extref;
3858 extref = (struct btrfs_inode_extref *)ptr;
3859 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3864 * try to precache a NULL acl entry for files that don't have
3865 * any xattrs or acls
3867 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3868 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3869 if (first_xattr_slot != -1) {
3870 path->slots[0] = first_xattr_slot;
3871 ret = btrfs_load_inode_props(inode, path);
3874 "error loading props for ino %llu (root %llu): %d",
3875 btrfs_ino(BTRFS_I(inode)),
3876 root->root_key.objectid, ret);
3878 if (path != in_path)
3879 btrfs_free_path(path);
3882 cache_no_acl(inode);
3884 switch (inode->i_mode & S_IFMT) {
3886 inode->i_mapping->a_ops = &btrfs_aops;
3887 inode->i_fop = &btrfs_file_operations;
3888 inode->i_op = &btrfs_file_inode_operations;
3891 inode->i_fop = &btrfs_dir_file_operations;
3892 inode->i_op = &btrfs_dir_inode_operations;
3895 inode->i_op = &btrfs_symlink_inode_operations;
3896 inode_nohighmem(inode);
3897 inode->i_mapping->a_ops = &btrfs_aops;
3900 inode->i_op = &btrfs_special_inode_operations;
3901 init_special_inode(inode, inode->i_mode, rdev);
3905 btrfs_sync_inode_flags_to_i_flags(inode);
3910 * given a leaf and an inode, copy the inode fields into the leaf
3912 static void fill_inode_item(struct btrfs_trans_handle *trans,
3913 struct extent_buffer *leaf,
3914 struct btrfs_inode_item *item,
3915 struct inode *inode)
3917 struct btrfs_map_token token;
3920 btrfs_init_map_token(&token, leaf);
3922 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3923 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3924 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3925 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3926 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3928 btrfs_set_token_timespec_sec(&token, &item->atime,
3929 inode->i_atime.tv_sec);
3930 btrfs_set_token_timespec_nsec(&token, &item->atime,
3931 inode->i_atime.tv_nsec);
3933 btrfs_set_token_timespec_sec(&token, &item->mtime,
3934 inode->i_mtime.tv_sec);
3935 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3936 inode->i_mtime.tv_nsec);
3938 btrfs_set_token_timespec_sec(&token, &item->ctime,
3939 inode_get_ctime(inode).tv_sec);
3940 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3941 inode_get_ctime(inode).tv_nsec);
3943 btrfs_set_token_timespec_sec(&token, &item->otime,
3944 BTRFS_I(inode)->i_otime.tv_sec);
3945 btrfs_set_token_timespec_nsec(&token, &item->otime,
3946 BTRFS_I(inode)->i_otime.tv_nsec);
3948 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3949 btrfs_set_token_inode_generation(&token, item,
3950 BTRFS_I(inode)->generation);
3951 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3952 btrfs_set_token_inode_transid(&token, item, trans->transid);
3953 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3954 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3955 BTRFS_I(inode)->ro_flags);
3956 btrfs_set_token_inode_flags(&token, item, flags);
3957 btrfs_set_token_inode_block_group(&token, item, 0);
3961 * copy everything in the in-memory inode into the btree.
3963 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3964 struct btrfs_root *root,
3965 struct btrfs_inode *inode)
3967 struct btrfs_inode_item *inode_item;
3968 struct btrfs_path *path;
3969 struct extent_buffer *leaf;
3972 path = btrfs_alloc_path();
3976 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3983 leaf = path->nodes[0];
3984 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3985 struct btrfs_inode_item);
3987 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3988 btrfs_mark_buffer_dirty(leaf);
3989 btrfs_set_inode_last_trans(trans, inode);
3992 btrfs_free_path(path);
3997 * copy everything in the in-memory inode into the btree.
3999 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4000 struct btrfs_root *root,
4001 struct btrfs_inode *inode)
4003 struct btrfs_fs_info *fs_info = root->fs_info;
4007 * If the inode is a free space inode, we can deadlock during commit
4008 * if we put it into the delayed code.
4010 * The data relocation inode should also be directly updated
4013 if (!btrfs_is_free_space_inode(inode)
4014 && !btrfs_is_data_reloc_root(root)
4015 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4016 btrfs_update_root_times(trans, root);
4018 ret = btrfs_delayed_update_inode(trans, root, inode);
4020 btrfs_set_inode_last_trans(trans, inode);
4024 return btrfs_update_inode_item(trans, root, inode);
4027 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4028 struct btrfs_root *root, struct btrfs_inode *inode)
4032 ret = btrfs_update_inode(trans, root, inode);
4034 return btrfs_update_inode_item(trans, root, inode);
4039 * unlink helper that gets used here in inode.c and in the tree logging
4040 * recovery code. It remove a link in a directory with a given name, and
4041 * also drops the back refs in the inode to the directory
4043 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4044 struct btrfs_inode *dir,
4045 struct btrfs_inode *inode,
4046 const struct fscrypt_str *name,
4047 struct btrfs_rename_ctx *rename_ctx)
4049 struct btrfs_root *root = dir->root;
4050 struct btrfs_fs_info *fs_info = root->fs_info;
4051 struct btrfs_path *path;
4053 struct btrfs_dir_item *di;
4055 u64 ino = btrfs_ino(inode);
4056 u64 dir_ino = btrfs_ino(dir);
4058 path = btrfs_alloc_path();
4064 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4065 if (IS_ERR_OR_NULL(di)) {
4066 ret = di ? PTR_ERR(di) : -ENOENT;
4069 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4072 btrfs_release_path(path);
4075 * If we don't have dir index, we have to get it by looking up
4076 * the inode ref, since we get the inode ref, remove it directly,
4077 * it is unnecessary to do delayed deletion.
4079 * But if we have dir index, needn't search inode ref to get it.
4080 * Since the inode ref is close to the inode item, it is better
4081 * that we delay to delete it, and just do this deletion when
4082 * we update the inode item.
4084 if (inode->dir_index) {
4085 ret = btrfs_delayed_delete_inode_ref(inode);
4087 index = inode->dir_index;
4092 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4095 "failed to delete reference to %.*s, inode %llu parent %llu",
4096 name->len, name->name, ino, dir_ino);
4097 btrfs_abort_transaction(trans, ret);
4102 rename_ctx->index = index;
4104 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4106 btrfs_abort_transaction(trans, ret);
4111 * If we are in a rename context, we don't need to update anything in the
4112 * log. That will be done later during the rename by btrfs_log_new_name().
4113 * Besides that, doing it here would only cause extra unnecessary btree
4114 * operations on the log tree, increasing latency for applications.
4117 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4118 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4122 * If we have a pending delayed iput we could end up with the final iput
4123 * being run in btrfs-cleaner context. If we have enough of these built
4124 * up we can end up burning a lot of time in btrfs-cleaner without any
4125 * way to throttle the unlinks. Since we're currently holding a ref on
4126 * the inode we can run the delayed iput here without any issues as the
4127 * final iput won't be done until after we drop the ref we're currently
4130 btrfs_run_delayed_iput(fs_info, inode);
4132 btrfs_free_path(path);
4136 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4137 inode_inc_iversion(&inode->vfs_inode);
4138 inode_inc_iversion(&dir->vfs_inode);
4139 inode_set_ctime_current(&inode->vfs_inode);
4140 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4141 ret = btrfs_update_inode(trans, root, dir);
4146 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4147 struct btrfs_inode *dir, struct btrfs_inode *inode,
4148 const struct fscrypt_str *name)
4152 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4154 drop_nlink(&inode->vfs_inode);
4155 ret = btrfs_update_inode(trans, inode->root, inode);
4161 * helper to start transaction for unlink and rmdir.
4163 * unlink and rmdir are special in btrfs, they do not always free space, so
4164 * if we cannot make our reservations the normal way try and see if there is
4165 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4166 * allow the unlink to occur.
4168 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4170 struct btrfs_root *root = dir->root;
4172 return btrfs_start_transaction_fallback_global_rsv(root,
4173 BTRFS_UNLINK_METADATA_UNITS);
4176 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4178 struct btrfs_trans_handle *trans;
4179 struct inode *inode = d_inode(dentry);
4181 struct fscrypt_name fname;
4183 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4187 /* This needs to handle no-key deletions later on */
4189 trans = __unlink_start_trans(BTRFS_I(dir));
4190 if (IS_ERR(trans)) {
4191 ret = PTR_ERR(trans);
4195 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4198 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4203 if (inode->i_nlink == 0) {
4204 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4210 btrfs_end_transaction(trans);
4211 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4213 fscrypt_free_filename(&fname);
4217 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4218 struct btrfs_inode *dir, struct dentry *dentry)
4220 struct btrfs_root *root = dir->root;
4221 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4222 struct btrfs_path *path;
4223 struct extent_buffer *leaf;
4224 struct btrfs_dir_item *di;
4225 struct btrfs_key key;
4229 u64 dir_ino = btrfs_ino(dir);
4230 struct fscrypt_name fname;
4232 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4236 /* This needs to handle no-key deletions later on */
4238 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4239 objectid = inode->root->root_key.objectid;
4240 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4241 objectid = inode->location.objectid;
4244 fscrypt_free_filename(&fname);
4248 path = btrfs_alloc_path();
4254 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4255 &fname.disk_name, -1);
4256 if (IS_ERR_OR_NULL(di)) {
4257 ret = di ? PTR_ERR(di) : -ENOENT;
4261 leaf = path->nodes[0];
4262 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4263 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4264 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4266 btrfs_abort_transaction(trans, ret);
4269 btrfs_release_path(path);
4272 * This is a placeholder inode for a subvolume we didn't have a
4273 * reference to at the time of the snapshot creation. In the meantime
4274 * we could have renamed the real subvol link into our snapshot, so
4275 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4276 * Instead simply lookup the dir_index_item for this entry so we can
4277 * remove it. Otherwise we know we have a ref to the root and we can
4278 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4280 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4281 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4282 if (IS_ERR_OR_NULL(di)) {
4287 btrfs_abort_transaction(trans, ret);
4291 leaf = path->nodes[0];
4292 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4294 btrfs_release_path(path);
4296 ret = btrfs_del_root_ref(trans, objectid,
4297 root->root_key.objectid, dir_ino,
4298 &index, &fname.disk_name);
4300 btrfs_abort_transaction(trans, ret);
4305 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4307 btrfs_abort_transaction(trans, ret);
4311 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4312 inode_inc_iversion(&dir->vfs_inode);
4313 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4314 ret = btrfs_update_inode_fallback(trans, root, dir);
4316 btrfs_abort_transaction(trans, ret);
4318 btrfs_free_path(path);
4319 fscrypt_free_filename(&fname);
4324 * Helper to check if the subvolume references other subvolumes or if it's
4327 static noinline int may_destroy_subvol(struct btrfs_root *root)
4329 struct btrfs_fs_info *fs_info = root->fs_info;
4330 struct btrfs_path *path;
4331 struct btrfs_dir_item *di;
4332 struct btrfs_key key;
4333 struct fscrypt_str name = FSTR_INIT("default", 7);
4337 path = btrfs_alloc_path();
4341 /* Make sure this root isn't set as the default subvol */
4342 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4343 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4345 if (di && !IS_ERR(di)) {
4346 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4347 if (key.objectid == root->root_key.objectid) {
4350 "deleting default subvolume %llu is not allowed",
4354 btrfs_release_path(path);
4357 key.objectid = root->root_key.objectid;
4358 key.type = BTRFS_ROOT_REF_KEY;
4359 key.offset = (u64)-1;
4361 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4367 if (path->slots[0] > 0) {
4369 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4370 if (key.objectid == root->root_key.objectid &&
4371 key.type == BTRFS_ROOT_REF_KEY)
4375 btrfs_free_path(path);
4379 /* Delete all dentries for inodes belonging to the root */
4380 static void btrfs_prune_dentries(struct btrfs_root *root)
4382 struct btrfs_fs_info *fs_info = root->fs_info;
4383 struct rb_node *node;
4384 struct rb_node *prev;
4385 struct btrfs_inode *entry;
4386 struct inode *inode;
4389 if (!BTRFS_FS_ERROR(fs_info))
4390 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4392 spin_lock(&root->inode_lock);
4394 node = root->inode_tree.rb_node;
4398 entry = rb_entry(node, struct btrfs_inode, rb_node);
4400 if (objectid < btrfs_ino(entry))
4401 node = node->rb_left;
4402 else if (objectid > btrfs_ino(entry))
4403 node = node->rb_right;
4409 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4410 if (objectid <= btrfs_ino(entry)) {
4414 prev = rb_next(prev);
4418 entry = rb_entry(node, struct btrfs_inode, rb_node);
4419 objectid = btrfs_ino(entry) + 1;
4420 inode = igrab(&entry->vfs_inode);
4422 spin_unlock(&root->inode_lock);
4423 if (atomic_read(&inode->i_count) > 1)
4424 d_prune_aliases(inode);
4426 * btrfs_drop_inode will have it removed from the inode
4427 * cache when its usage count hits zero.
4431 spin_lock(&root->inode_lock);
4435 if (cond_resched_lock(&root->inode_lock))
4438 node = rb_next(node);
4440 spin_unlock(&root->inode_lock);
4443 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4445 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4446 struct btrfs_root *root = dir->root;
4447 struct inode *inode = d_inode(dentry);
4448 struct btrfs_root *dest = BTRFS_I(inode)->root;
4449 struct btrfs_trans_handle *trans;
4450 struct btrfs_block_rsv block_rsv;
4455 * Don't allow to delete a subvolume with send in progress. This is
4456 * inside the inode lock so the error handling that has to drop the bit
4457 * again is not run concurrently.
4459 spin_lock(&dest->root_item_lock);
4460 if (dest->send_in_progress) {
4461 spin_unlock(&dest->root_item_lock);
4463 "attempt to delete subvolume %llu during send",
4464 dest->root_key.objectid);
4467 if (atomic_read(&dest->nr_swapfiles)) {
4468 spin_unlock(&dest->root_item_lock);
4470 "attempt to delete subvolume %llu with active swapfile",
4471 root->root_key.objectid);
4474 root_flags = btrfs_root_flags(&dest->root_item);
4475 btrfs_set_root_flags(&dest->root_item,
4476 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4477 spin_unlock(&dest->root_item_lock);
4479 down_write(&fs_info->subvol_sem);
4481 ret = may_destroy_subvol(dest);
4485 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4487 * One for dir inode,
4488 * two for dir entries,
4489 * two for root ref/backref.
4491 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4495 trans = btrfs_start_transaction(root, 0);
4496 if (IS_ERR(trans)) {
4497 ret = PTR_ERR(trans);
4500 trans->block_rsv = &block_rsv;
4501 trans->bytes_reserved = block_rsv.size;
4503 btrfs_record_snapshot_destroy(trans, dir);
4505 ret = btrfs_unlink_subvol(trans, dir, dentry);
4507 btrfs_abort_transaction(trans, ret);
4511 ret = btrfs_record_root_in_trans(trans, dest);
4513 btrfs_abort_transaction(trans, ret);
4517 memset(&dest->root_item.drop_progress, 0,
4518 sizeof(dest->root_item.drop_progress));
4519 btrfs_set_root_drop_level(&dest->root_item, 0);
4520 btrfs_set_root_refs(&dest->root_item, 0);
4522 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4523 ret = btrfs_insert_orphan_item(trans,
4525 dest->root_key.objectid);
4527 btrfs_abort_transaction(trans, ret);
4532 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4533 BTRFS_UUID_KEY_SUBVOL,
4534 dest->root_key.objectid);
4535 if (ret && ret != -ENOENT) {
4536 btrfs_abort_transaction(trans, ret);
4539 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4540 ret = btrfs_uuid_tree_remove(trans,
4541 dest->root_item.received_uuid,
4542 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4543 dest->root_key.objectid);
4544 if (ret && ret != -ENOENT) {
4545 btrfs_abort_transaction(trans, ret);
4550 free_anon_bdev(dest->anon_dev);
4553 trans->block_rsv = NULL;
4554 trans->bytes_reserved = 0;
4555 ret = btrfs_end_transaction(trans);
4556 inode->i_flags |= S_DEAD;
4558 btrfs_subvolume_release_metadata(root, &block_rsv);
4560 up_write(&fs_info->subvol_sem);
4562 spin_lock(&dest->root_item_lock);
4563 root_flags = btrfs_root_flags(&dest->root_item);
4564 btrfs_set_root_flags(&dest->root_item,
4565 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4566 spin_unlock(&dest->root_item_lock);
4568 d_invalidate(dentry);
4569 btrfs_prune_dentries(dest);
4570 ASSERT(dest->send_in_progress == 0);
4576 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4578 struct inode *inode = d_inode(dentry);
4579 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4581 struct btrfs_trans_handle *trans;
4582 u64 last_unlink_trans;
4583 struct fscrypt_name fname;
4585 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4587 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4588 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4590 "extent tree v2 doesn't support snapshot deletion yet");
4593 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4596 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4600 /* This needs to handle no-key deletions later on */
4602 trans = __unlink_start_trans(BTRFS_I(dir));
4603 if (IS_ERR(trans)) {
4604 err = PTR_ERR(trans);
4608 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4609 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4613 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4617 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4619 /* now the directory is empty */
4620 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4623 btrfs_i_size_write(BTRFS_I(inode), 0);
4625 * Propagate the last_unlink_trans value of the deleted dir to
4626 * its parent directory. This is to prevent an unrecoverable
4627 * log tree in the case we do something like this:
4629 * 2) create snapshot under dir foo
4630 * 3) delete the snapshot
4633 * 6) fsync foo or some file inside foo
4635 if (last_unlink_trans >= trans->transid)
4636 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4639 btrfs_end_transaction(trans);
4641 btrfs_btree_balance_dirty(fs_info);
4642 fscrypt_free_filename(&fname);
4648 * btrfs_truncate_block - read, zero a chunk and write a block
4649 * @inode - inode that we're zeroing
4650 * @from - the offset to start zeroing
4651 * @len - the length to zero, 0 to zero the entire range respective to the
4653 * @front - zero up to the offset instead of from the offset on
4655 * This will find the block for the "from" offset and cow the block and zero the
4656 * part we want to zero. This is used with truncate and hole punching.
4658 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4661 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4662 struct address_space *mapping = inode->vfs_inode.i_mapping;
4663 struct extent_io_tree *io_tree = &inode->io_tree;
4664 struct btrfs_ordered_extent *ordered;
4665 struct extent_state *cached_state = NULL;
4666 struct extent_changeset *data_reserved = NULL;
4667 bool only_release_metadata = false;
4668 u32 blocksize = fs_info->sectorsize;
4669 pgoff_t index = from >> PAGE_SHIFT;
4670 unsigned offset = from & (blocksize - 1);
4672 gfp_t mask = btrfs_alloc_write_mask(mapping);
4673 size_t write_bytes = blocksize;
4678 if (IS_ALIGNED(offset, blocksize) &&
4679 (!len || IS_ALIGNED(len, blocksize)))
4682 block_start = round_down(from, blocksize);
4683 block_end = block_start + blocksize - 1;
4685 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4688 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4689 /* For nocow case, no need to reserve data space */
4690 only_release_metadata = true;
4695 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4697 if (!only_release_metadata)
4698 btrfs_free_reserved_data_space(inode, data_reserved,
4699 block_start, blocksize);
4703 page = find_or_create_page(mapping, index, mask);
4705 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4707 btrfs_delalloc_release_extents(inode, blocksize);
4712 if (!PageUptodate(page)) {
4713 ret = btrfs_read_folio(NULL, page_folio(page));
4715 if (page->mapping != mapping) {
4720 if (!PageUptodate(page)) {
4727 * We unlock the page after the io is completed and then re-lock it
4728 * above. release_folio() could have come in between that and cleared
4729 * PagePrivate(), but left the page in the mapping. Set the page mapped
4730 * here to make sure it's properly set for the subpage stuff.
4732 ret = set_page_extent_mapped(page);
4736 wait_on_page_writeback(page);
4738 lock_extent(io_tree, block_start, block_end, &cached_state);
4740 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4742 unlock_extent(io_tree, block_start, block_end, &cached_state);
4745 btrfs_start_ordered_extent(ordered);
4746 btrfs_put_ordered_extent(ordered);
4750 clear_extent_bit(&inode->io_tree, block_start, block_end,
4751 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4754 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4757 unlock_extent(io_tree, block_start, block_end, &cached_state);
4761 if (offset != blocksize) {
4763 len = blocksize - offset;
4765 memzero_page(page, (block_start - page_offset(page)),
4768 memzero_page(page, (block_start - page_offset(page)) + offset,
4771 btrfs_page_clear_checked(fs_info, page, block_start,
4772 block_end + 1 - block_start);
4773 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4774 unlock_extent(io_tree, block_start, block_end, &cached_state);
4776 if (only_release_metadata)
4777 set_extent_bit(&inode->io_tree, block_start, block_end,
4778 EXTENT_NORESERVE, NULL);
4782 if (only_release_metadata)
4783 btrfs_delalloc_release_metadata(inode, blocksize, true);
4785 btrfs_delalloc_release_space(inode, data_reserved,
4786 block_start, blocksize, true);
4788 btrfs_delalloc_release_extents(inode, blocksize);
4792 if (only_release_metadata)
4793 btrfs_check_nocow_unlock(inode);
4794 extent_changeset_free(data_reserved);
4798 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4799 u64 offset, u64 len)
4801 struct btrfs_fs_info *fs_info = root->fs_info;
4802 struct btrfs_trans_handle *trans;
4803 struct btrfs_drop_extents_args drop_args = { 0 };
4807 * If NO_HOLES is enabled, we don't need to do anything.
4808 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4809 * or btrfs_update_inode() will be called, which guarantee that the next
4810 * fsync will know this inode was changed and needs to be logged.
4812 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4816 * 1 - for the one we're dropping
4817 * 1 - for the one we're adding
4818 * 1 - for updating the inode.
4820 trans = btrfs_start_transaction(root, 3);
4822 return PTR_ERR(trans);
4824 drop_args.start = offset;
4825 drop_args.end = offset + len;
4826 drop_args.drop_cache = true;
4828 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4830 btrfs_abort_transaction(trans, ret);
4831 btrfs_end_transaction(trans);
4835 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4837 btrfs_abort_transaction(trans, ret);
4839 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4840 btrfs_update_inode(trans, root, inode);
4842 btrfs_end_transaction(trans);
4847 * This function puts in dummy file extents for the area we're creating a hole
4848 * for. So if we are truncating this file to a larger size we need to insert
4849 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4850 * the range between oldsize and size
4852 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4854 struct btrfs_root *root = inode->root;
4855 struct btrfs_fs_info *fs_info = root->fs_info;
4856 struct extent_io_tree *io_tree = &inode->io_tree;
4857 struct extent_map *em = NULL;
4858 struct extent_state *cached_state = NULL;
4859 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4860 u64 block_end = ALIGN(size, fs_info->sectorsize);
4867 * If our size started in the middle of a block we need to zero out the
4868 * rest of the block before we expand the i_size, otherwise we could
4869 * expose stale data.
4871 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4875 if (size <= hole_start)
4878 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4880 cur_offset = hole_start;
4882 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4883 block_end - cur_offset);
4889 last_byte = min(extent_map_end(em), block_end);
4890 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4891 hole_size = last_byte - cur_offset;
4893 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4894 struct extent_map *hole_em;
4896 err = maybe_insert_hole(root, inode, cur_offset,
4901 err = btrfs_inode_set_file_extent_range(inode,
4902 cur_offset, hole_size);
4906 hole_em = alloc_extent_map();
4908 btrfs_drop_extent_map_range(inode, cur_offset,
4909 cur_offset + hole_size - 1,
4911 btrfs_set_inode_full_sync(inode);
4914 hole_em->start = cur_offset;
4915 hole_em->len = hole_size;
4916 hole_em->orig_start = cur_offset;
4918 hole_em->block_start = EXTENT_MAP_HOLE;
4919 hole_em->block_len = 0;
4920 hole_em->orig_block_len = 0;
4921 hole_em->ram_bytes = hole_size;
4922 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4923 hole_em->generation = fs_info->generation;
4925 err = btrfs_replace_extent_map_range(inode, hole_em, true);
4926 free_extent_map(hole_em);
4928 err = btrfs_inode_set_file_extent_range(inode,
4929 cur_offset, hole_size);
4934 free_extent_map(em);
4936 cur_offset = last_byte;
4937 if (cur_offset >= block_end)
4940 free_extent_map(em);
4941 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4945 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4947 struct btrfs_root *root = BTRFS_I(inode)->root;
4948 struct btrfs_trans_handle *trans;
4949 loff_t oldsize = i_size_read(inode);
4950 loff_t newsize = attr->ia_size;
4951 int mask = attr->ia_valid;
4955 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4956 * special case where we need to update the times despite not having
4957 * these flags set. For all other operations the VFS set these flags
4958 * explicitly if it wants a timestamp update.
4960 if (newsize != oldsize) {
4961 inode_inc_iversion(inode);
4962 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4963 inode->i_mtime = inode_set_ctime_current(inode);
4967 if (newsize > oldsize) {
4969 * Don't do an expanding truncate while snapshotting is ongoing.
4970 * This is to ensure the snapshot captures a fully consistent
4971 * state of this file - if the snapshot captures this expanding
4972 * truncation, it must capture all writes that happened before
4975 btrfs_drew_write_lock(&root->snapshot_lock);
4976 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4978 btrfs_drew_write_unlock(&root->snapshot_lock);
4982 trans = btrfs_start_transaction(root, 1);
4983 if (IS_ERR(trans)) {
4984 btrfs_drew_write_unlock(&root->snapshot_lock);
4985 return PTR_ERR(trans);
4988 i_size_write(inode, newsize);
4989 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
4990 pagecache_isize_extended(inode, oldsize, newsize);
4991 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
4992 btrfs_drew_write_unlock(&root->snapshot_lock);
4993 btrfs_end_transaction(trans);
4995 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4997 if (btrfs_is_zoned(fs_info)) {
4998 ret = btrfs_wait_ordered_range(inode,
4999 ALIGN(newsize, fs_info->sectorsize),
5006 * We're truncating a file that used to have good data down to
5007 * zero. Make sure any new writes to the file get on disk
5011 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5012 &BTRFS_I(inode)->runtime_flags);
5014 truncate_setsize(inode, newsize);
5016 inode_dio_wait(inode);
5018 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5019 if (ret && inode->i_nlink) {
5023 * Truncate failed, so fix up the in-memory size. We
5024 * adjusted disk_i_size down as we removed extents, so
5025 * wait for disk_i_size to be stable and then update the
5026 * in-memory size to match.
5028 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5031 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5038 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5041 struct inode *inode = d_inode(dentry);
5042 struct btrfs_root *root = BTRFS_I(inode)->root;
5045 if (btrfs_root_readonly(root))
5048 err = setattr_prepare(idmap, dentry, attr);
5052 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5053 err = btrfs_setsize(inode, attr);
5058 if (attr->ia_valid) {
5059 setattr_copy(idmap, inode, attr);
5060 inode_inc_iversion(inode);
5061 err = btrfs_dirty_inode(BTRFS_I(inode));
5063 if (!err && attr->ia_valid & ATTR_MODE)
5064 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5071 * While truncating the inode pages during eviction, we get the VFS
5072 * calling btrfs_invalidate_folio() against each folio of the inode. This
5073 * is slow because the calls to btrfs_invalidate_folio() result in a
5074 * huge amount of calls to lock_extent() and clear_extent_bit(),
5075 * which keep merging and splitting extent_state structures over and over,
5076 * wasting lots of time.
5078 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5079 * skip all those expensive operations on a per folio basis and do only
5080 * the ordered io finishing, while we release here the extent_map and
5081 * extent_state structures, without the excessive merging and splitting.
5083 static void evict_inode_truncate_pages(struct inode *inode)
5085 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5086 struct rb_node *node;
5088 ASSERT(inode->i_state & I_FREEING);
5089 truncate_inode_pages_final(&inode->i_data);
5091 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5094 * Keep looping until we have no more ranges in the io tree.
5095 * We can have ongoing bios started by readahead that have
5096 * their endio callback (extent_io.c:end_bio_extent_readpage)
5097 * still in progress (unlocked the pages in the bio but did not yet
5098 * unlocked the ranges in the io tree). Therefore this means some
5099 * ranges can still be locked and eviction started because before
5100 * submitting those bios, which are executed by a separate task (work
5101 * queue kthread), inode references (inode->i_count) were not taken
5102 * (which would be dropped in the end io callback of each bio).
5103 * Therefore here we effectively end up waiting for those bios and
5104 * anyone else holding locked ranges without having bumped the inode's
5105 * reference count - if we don't do it, when they access the inode's
5106 * io_tree to unlock a range it may be too late, leading to an
5107 * use-after-free issue.
5109 spin_lock(&io_tree->lock);
5110 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5111 struct extent_state *state;
5112 struct extent_state *cached_state = NULL;
5115 unsigned state_flags;
5117 node = rb_first(&io_tree->state);
5118 state = rb_entry(node, struct extent_state, rb_node);
5119 start = state->start;
5121 state_flags = state->state;
5122 spin_unlock(&io_tree->lock);
5124 lock_extent(io_tree, start, end, &cached_state);
5127 * If still has DELALLOC flag, the extent didn't reach disk,
5128 * and its reserved space won't be freed by delayed_ref.
5129 * So we need to free its reserved space here.
5130 * (Refer to comment in btrfs_invalidate_folio, case 2)
5132 * Note, end is the bytenr of last byte, so we need + 1 here.
5134 if (state_flags & EXTENT_DELALLOC)
5135 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5138 clear_extent_bit(io_tree, start, end,
5139 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5143 spin_lock(&io_tree->lock);
5145 spin_unlock(&io_tree->lock);
5148 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5149 struct btrfs_block_rsv *rsv)
5151 struct btrfs_fs_info *fs_info = root->fs_info;
5152 struct btrfs_trans_handle *trans;
5153 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5157 * Eviction should be taking place at some place safe because of our
5158 * delayed iputs. However the normal flushing code will run delayed
5159 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5161 * We reserve the delayed_refs_extra here again because we can't use
5162 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5163 * above. We reserve our extra bit here because we generate a ton of
5164 * delayed refs activity by truncating.
5166 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5167 * if we fail to make this reservation we can re-try without the
5168 * delayed_refs_extra so we can make some forward progress.
5170 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5171 BTRFS_RESERVE_FLUSH_EVICT);
5173 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5174 BTRFS_RESERVE_FLUSH_EVICT);
5177 "could not allocate space for delete; will truncate on mount");
5178 return ERR_PTR(-ENOSPC);
5180 delayed_refs_extra = 0;
5183 trans = btrfs_join_transaction(root);
5187 if (delayed_refs_extra) {
5188 trans->block_rsv = &fs_info->trans_block_rsv;
5189 trans->bytes_reserved = delayed_refs_extra;
5190 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5191 delayed_refs_extra, true);
5196 void btrfs_evict_inode(struct inode *inode)
5198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5199 struct btrfs_trans_handle *trans;
5200 struct btrfs_root *root = BTRFS_I(inode)->root;
5201 struct btrfs_block_rsv *rsv = NULL;
5204 trace_btrfs_inode_evict(inode);
5207 fsverity_cleanup_inode(inode);
5212 evict_inode_truncate_pages(inode);
5214 if (inode->i_nlink &&
5215 ((btrfs_root_refs(&root->root_item) != 0 &&
5216 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5217 btrfs_is_free_space_inode(BTRFS_I(inode))))
5220 if (is_bad_inode(inode))
5223 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5226 if (inode->i_nlink > 0) {
5227 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5228 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5233 * This makes sure the inode item in tree is uptodate and the space for
5234 * the inode update is released.
5236 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5241 * This drops any pending insert or delete operations we have for this
5242 * inode. We could have a delayed dir index deletion queued up, but
5243 * we're removing the inode completely so that'll be taken care of in
5246 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5248 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5251 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5252 rsv->failfast = true;
5254 btrfs_i_size_write(BTRFS_I(inode), 0);
5257 struct btrfs_truncate_control control = {
5258 .inode = BTRFS_I(inode),
5259 .ino = btrfs_ino(BTRFS_I(inode)),
5264 trans = evict_refill_and_join(root, rsv);
5268 trans->block_rsv = rsv;
5270 ret = btrfs_truncate_inode_items(trans, root, &control);
5271 trans->block_rsv = &fs_info->trans_block_rsv;
5272 btrfs_end_transaction(trans);
5274 * We have not added new delayed items for our inode after we
5275 * have flushed its delayed items, so no need to throttle on
5276 * delayed items. However we have modified extent buffers.
5278 btrfs_btree_balance_dirty_nodelay(fs_info);
5279 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5286 * Errors here aren't a big deal, it just means we leave orphan items in
5287 * the tree. They will be cleaned up on the next mount. If the inode
5288 * number gets reused, cleanup deletes the orphan item without doing
5289 * anything, and unlink reuses the existing orphan item.
5291 * If it turns out that we are dropping too many of these, we might want
5292 * to add a mechanism for retrying these after a commit.
5294 trans = evict_refill_and_join(root, rsv);
5295 if (!IS_ERR(trans)) {
5296 trans->block_rsv = rsv;
5297 btrfs_orphan_del(trans, BTRFS_I(inode));
5298 trans->block_rsv = &fs_info->trans_block_rsv;
5299 btrfs_end_transaction(trans);
5303 btrfs_free_block_rsv(fs_info, rsv);
5305 * If we didn't successfully delete, the orphan item will still be in
5306 * the tree and we'll retry on the next mount. Again, we might also want
5307 * to retry these periodically in the future.
5309 btrfs_remove_delayed_node(BTRFS_I(inode));
5310 fsverity_cleanup_inode(inode);
5315 * Return the key found in the dir entry in the location pointer, fill @type
5316 * with BTRFS_FT_*, and return 0.
5318 * If no dir entries were found, returns -ENOENT.
5319 * If found a corrupted location in dir entry, returns -EUCLEAN.
5321 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5322 struct btrfs_key *location, u8 *type)
5324 struct btrfs_dir_item *di;
5325 struct btrfs_path *path;
5326 struct btrfs_root *root = dir->root;
5328 struct fscrypt_name fname;
5330 path = btrfs_alloc_path();
5334 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5338 * fscrypt_setup_filename() should never return a positive value, but
5339 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5343 /* This needs to handle no-key deletions later on */
5345 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5346 &fname.disk_name, 0);
5347 if (IS_ERR_OR_NULL(di)) {
5348 ret = di ? PTR_ERR(di) : -ENOENT;
5352 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5353 if (location->type != BTRFS_INODE_ITEM_KEY &&
5354 location->type != BTRFS_ROOT_ITEM_KEY) {
5356 btrfs_warn(root->fs_info,
5357 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5358 __func__, fname.disk_name.name, btrfs_ino(dir),
5359 location->objectid, location->type, location->offset);
5362 *type = btrfs_dir_ftype(path->nodes[0], di);
5364 fscrypt_free_filename(&fname);
5365 btrfs_free_path(path);
5370 * when we hit a tree root in a directory, the btrfs part of the inode
5371 * needs to be changed to reflect the root directory of the tree root. This
5372 * is kind of like crossing a mount point.
5374 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5375 struct btrfs_inode *dir,
5376 struct dentry *dentry,
5377 struct btrfs_key *location,
5378 struct btrfs_root **sub_root)
5380 struct btrfs_path *path;
5381 struct btrfs_root *new_root;
5382 struct btrfs_root_ref *ref;
5383 struct extent_buffer *leaf;
5384 struct btrfs_key key;
5387 struct fscrypt_name fname;
5389 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5393 path = btrfs_alloc_path();
5400 key.objectid = dir->root->root_key.objectid;
5401 key.type = BTRFS_ROOT_REF_KEY;
5402 key.offset = location->objectid;
5404 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5411 leaf = path->nodes[0];
5412 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5413 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5414 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5417 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5418 (unsigned long)(ref + 1), fname.disk_name.len);
5422 btrfs_release_path(path);
5424 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5425 if (IS_ERR(new_root)) {
5426 err = PTR_ERR(new_root);
5430 *sub_root = new_root;
5431 location->objectid = btrfs_root_dirid(&new_root->root_item);
5432 location->type = BTRFS_INODE_ITEM_KEY;
5433 location->offset = 0;
5436 btrfs_free_path(path);
5437 fscrypt_free_filename(&fname);
5441 static void inode_tree_add(struct btrfs_inode *inode)
5443 struct btrfs_root *root = inode->root;
5444 struct btrfs_inode *entry;
5446 struct rb_node *parent;
5447 struct rb_node *new = &inode->rb_node;
5448 u64 ino = btrfs_ino(inode);
5450 if (inode_unhashed(&inode->vfs_inode))
5453 spin_lock(&root->inode_lock);
5454 p = &root->inode_tree.rb_node;
5457 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5459 if (ino < btrfs_ino(entry))
5460 p = &parent->rb_left;
5461 else if (ino > btrfs_ino(entry))
5462 p = &parent->rb_right;
5464 WARN_ON(!(entry->vfs_inode.i_state &
5465 (I_WILL_FREE | I_FREEING)));
5466 rb_replace_node(parent, new, &root->inode_tree);
5467 RB_CLEAR_NODE(parent);
5468 spin_unlock(&root->inode_lock);
5472 rb_link_node(new, parent, p);
5473 rb_insert_color(new, &root->inode_tree);
5474 spin_unlock(&root->inode_lock);
5477 static void inode_tree_del(struct btrfs_inode *inode)
5479 struct btrfs_root *root = inode->root;
5482 spin_lock(&root->inode_lock);
5483 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5484 rb_erase(&inode->rb_node, &root->inode_tree);
5485 RB_CLEAR_NODE(&inode->rb_node);
5486 empty = RB_EMPTY_ROOT(&root->inode_tree);
5488 spin_unlock(&root->inode_lock);
5490 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5491 spin_lock(&root->inode_lock);
5492 empty = RB_EMPTY_ROOT(&root->inode_tree);
5493 spin_unlock(&root->inode_lock);
5495 btrfs_add_dead_root(root);
5500 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5502 struct btrfs_iget_args *args = p;
5504 inode->i_ino = args->ino;
5505 BTRFS_I(inode)->location.objectid = args->ino;
5506 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5507 BTRFS_I(inode)->location.offset = 0;
5508 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5509 BUG_ON(args->root && !BTRFS_I(inode)->root);
5511 if (args->root && args->root == args->root->fs_info->tree_root &&
5512 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5513 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5514 &BTRFS_I(inode)->runtime_flags);
5518 static int btrfs_find_actor(struct inode *inode, void *opaque)
5520 struct btrfs_iget_args *args = opaque;
5522 return args->ino == BTRFS_I(inode)->location.objectid &&
5523 args->root == BTRFS_I(inode)->root;
5526 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5527 struct btrfs_root *root)
5529 struct inode *inode;
5530 struct btrfs_iget_args args;
5531 unsigned long hashval = btrfs_inode_hash(ino, root);
5536 inode = iget5_locked(s, hashval, btrfs_find_actor,
5537 btrfs_init_locked_inode,
5543 * Get an inode object given its inode number and corresponding root.
5544 * Path can be preallocated to prevent recursing back to iget through
5545 * allocator. NULL is also valid but may require an additional allocation
5548 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5549 struct btrfs_root *root, struct btrfs_path *path)
5551 struct inode *inode;
5553 inode = btrfs_iget_locked(s, ino, root);
5555 return ERR_PTR(-ENOMEM);
5557 if (inode->i_state & I_NEW) {
5560 ret = btrfs_read_locked_inode(inode, path);
5562 inode_tree_add(BTRFS_I(inode));
5563 unlock_new_inode(inode);
5567 * ret > 0 can come from btrfs_search_slot called by
5568 * btrfs_read_locked_inode, this means the inode item
5573 inode = ERR_PTR(ret);
5580 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5582 return btrfs_iget_path(s, ino, root, NULL);
5585 static struct inode *new_simple_dir(struct inode *dir,
5586 struct btrfs_key *key,
5587 struct btrfs_root *root)
5589 struct inode *inode = new_inode(dir->i_sb);
5592 return ERR_PTR(-ENOMEM);
5594 BTRFS_I(inode)->root = btrfs_grab_root(root);
5595 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5596 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5598 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5600 * We only need lookup, the rest is read-only and there's no inode
5601 * associated with the dentry
5603 inode->i_op = &simple_dir_inode_operations;
5604 inode->i_opflags &= ~IOP_XATTR;
5605 inode->i_fop = &simple_dir_operations;
5606 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5607 inode->i_mtime = inode_set_ctime_current(inode);
5608 inode->i_atime = dir->i_atime;
5609 BTRFS_I(inode)->i_otime = inode->i_mtime;
5610 inode->i_uid = dir->i_uid;
5611 inode->i_gid = dir->i_gid;
5616 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5617 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5618 static_assert(BTRFS_FT_DIR == FT_DIR);
5619 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5620 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5621 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5622 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5623 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5625 static inline u8 btrfs_inode_type(struct inode *inode)
5627 return fs_umode_to_ftype(inode->i_mode);
5630 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5632 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5633 struct inode *inode;
5634 struct btrfs_root *root = BTRFS_I(dir)->root;
5635 struct btrfs_root *sub_root = root;
5636 struct btrfs_key location;
5640 if (dentry->d_name.len > BTRFS_NAME_LEN)
5641 return ERR_PTR(-ENAMETOOLONG);
5643 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5645 return ERR_PTR(ret);
5647 if (location.type == BTRFS_INODE_ITEM_KEY) {
5648 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5652 /* Do extra check against inode mode with di_type */
5653 if (btrfs_inode_type(inode) != di_type) {
5655 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5656 inode->i_mode, btrfs_inode_type(inode),
5659 return ERR_PTR(-EUCLEAN);
5664 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5665 &location, &sub_root);
5668 inode = ERR_PTR(ret);
5670 inode = new_simple_dir(dir, &location, root);
5672 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5673 btrfs_put_root(sub_root);
5678 down_read(&fs_info->cleanup_work_sem);
5679 if (!sb_rdonly(inode->i_sb))
5680 ret = btrfs_orphan_cleanup(sub_root);
5681 up_read(&fs_info->cleanup_work_sem);
5684 inode = ERR_PTR(ret);
5691 static int btrfs_dentry_delete(const struct dentry *dentry)
5693 struct btrfs_root *root;
5694 struct inode *inode = d_inode(dentry);
5696 if (!inode && !IS_ROOT(dentry))
5697 inode = d_inode(dentry->d_parent);
5700 root = BTRFS_I(inode)->root;
5701 if (btrfs_root_refs(&root->root_item) == 0)
5704 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5710 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5713 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5715 if (inode == ERR_PTR(-ENOENT))
5717 return d_splice_alias(inode, dentry);
5721 * Find the highest existing sequence number in a directory and then set the
5722 * in-memory index_cnt variable to the first free sequence number.
5724 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5726 struct btrfs_root *root = inode->root;
5727 struct btrfs_key key, found_key;
5728 struct btrfs_path *path;
5729 struct extent_buffer *leaf;
5732 key.objectid = btrfs_ino(inode);
5733 key.type = BTRFS_DIR_INDEX_KEY;
5734 key.offset = (u64)-1;
5736 path = btrfs_alloc_path();
5740 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5743 /* FIXME: we should be able to handle this */
5748 if (path->slots[0] == 0) {
5749 inode->index_cnt = BTRFS_DIR_START_INDEX;
5755 leaf = path->nodes[0];
5756 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5758 if (found_key.objectid != btrfs_ino(inode) ||
5759 found_key.type != BTRFS_DIR_INDEX_KEY) {
5760 inode->index_cnt = BTRFS_DIR_START_INDEX;
5764 inode->index_cnt = found_key.offset + 1;
5766 btrfs_free_path(path);
5770 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5772 if (dir->index_cnt == (u64)-1) {
5775 ret = btrfs_inode_delayed_dir_index_count(dir);
5777 ret = btrfs_set_inode_index_count(dir);
5783 *index = dir->index_cnt;
5789 * All this infrastructure exists because dir_emit can fault, and we are holding
5790 * the tree lock when doing readdir. For now just allocate a buffer and copy
5791 * our information into that, and then dir_emit from the buffer. This is
5792 * similar to what NFS does, only we don't keep the buffer around in pagecache
5793 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5794 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5797 static int btrfs_opendir(struct inode *inode, struct file *file)
5799 struct btrfs_file_private *private;
5803 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5807 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5810 private->last_index = last_index;
5811 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5812 if (!private->filldir_buf) {
5816 file->private_data = private;
5827 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5830 struct dir_entry *entry = addr;
5831 char *name = (char *)(entry + 1);
5833 ctx->pos = get_unaligned(&entry->offset);
5834 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5835 get_unaligned(&entry->ino),
5836 get_unaligned(&entry->type)))
5838 addr += sizeof(struct dir_entry) +
5839 get_unaligned(&entry->name_len);
5845 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5847 struct inode *inode = file_inode(file);
5848 struct btrfs_root *root = BTRFS_I(inode)->root;
5849 struct btrfs_file_private *private = file->private_data;
5850 struct btrfs_dir_item *di;
5851 struct btrfs_key key;
5852 struct btrfs_key found_key;
5853 struct btrfs_path *path;
5855 LIST_HEAD(ins_list);
5856 LIST_HEAD(del_list);
5863 struct btrfs_key location;
5865 if (!dir_emit_dots(file, ctx))
5868 path = btrfs_alloc_path();
5872 addr = private->filldir_buf;
5873 path->reada = READA_FORWARD;
5875 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5876 &ins_list, &del_list);
5879 key.type = BTRFS_DIR_INDEX_KEY;
5880 key.offset = ctx->pos;
5881 key.objectid = btrfs_ino(BTRFS_I(inode));
5883 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5884 struct dir_entry *entry;
5885 struct extent_buffer *leaf = path->nodes[0];
5888 if (found_key.objectid != key.objectid)
5890 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5892 if (found_key.offset < ctx->pos)
5894 if (found_key.offset > private->last_index)
5896 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5898 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5899 name_len = btrfs_dir_name_len(leaf, di);
5900 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5902 btrfs_release_path(path);
5903 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5906 addr = private->filldir_buf;
5912 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5914 name_ptr = (char *)(entry + 1);
5915 read_extent_buffer(leaf, name_ptr,
5916 (unsigned long)(di + 1), name_len);
5917 put_unaligned(name_len, &entry->name_len);
5918 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5919 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5920 put_unaligned(location.objectid, &entry->ino);
5921 put_unaligned(found_key.offset, &entry->offset);
5923 addr += sizeof(struct dir_entry) + name_len;
5924 total_len += sizeof(struct dir_entry) + name_len;
5926 /* Catch error encountered during iteration */
5930 btrfs_release_path(path);
5932 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5936 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5941 * Stop new entries from being returned after we return the last
5944 * New directory entries are assigned a strictly increasing
5945 * offset. This means that new entries created during readdir
5946 * are *guaranteed* to be seen in the future by that readdir.
5947 * This has broken buggy programs which operate on names as
5948 * they're returned by readdir. Until we re-use freed offsets
5949 * we have this hack to stop new entries from being returned
5950 * under the assumption that they'll never reach this huge
5953 * This is being careful not to overflow 32bit loff_t unless the
5954 * last entry requires it because doing so has broken 32bit apps
5957 if (ctx->pos >= INT_MAX)
5958 ctx->pos = LLONG_MAX;
5965 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5966 btrfs_free_path(path);
5971 * This is somewhat expensive, updating the tree every time the
5972 * inode changes. But, it is most likely to find the inode in cache.
5973 * FIXME, needs more benchmarking...there are no reasons other than performance
5974 * to keep or drop this code.
5976 static int btrfs_dirty_inode(struct btrfs_inode *inode)
5978 struct btrfs_root *root = inode->root;
5979 struct btrfs_fs_info *fs_info = root->fs_info;
5980 struct btrfs_trans_handle *trans;
5983 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
5986 trans = btrfs_join_transaction(root);
5988 return PTR_ERR(trans);
5990 ret = btrfs_update_inode(trans, root, inode);
5991 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5992 /* whoops, lets try again with the full transaction */
5993 btrfs_end_transaction(trans);
5994 trans = btrfs_start_transaction(root, 1);
5996 return PTR_ERR(trans);
5998 ret = btrfs_update_inode(trans, root, inode);
6000 btrfs_end_transaction(trans);
6001 if (inode->delayed_node)
6002 btrfs_balance_delayed_items(fs_info);
6008 * This is a copy of file_update_time. We need this so we can return error on
6009 * ENOSPC for updating the inode in the case of file write and mmap writes.
6011 static int btrfs_update_time(struct inode *inode, int flags)
6013 struct btrfs_root *root = BTRFS_I(inode)->root;
6014 bool dirty = flags & ~S_VERSION;
6016 if (btrfs_root_readonly(root))
6019 dirty = inode_update_timestamps(inode, flags);
6020 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6024 * helper to find a free sequence number in a given directory. This current
6025 * code is very simple, later versions will do smarter things in the btree
6027 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6031 if (dir->index_cnt == (u64)-1) {
6032 ret = btrfs_inode_delayed_dir_index_count(dir);
6034 ret = btrfs_set_inode_index_count(dir);
6040 *index = dir->index_cnt;
6046 static int btrfs_insert_inode_locked(struct inode *inode)
6048 struct btrfs_iget_args args;
6050 args.ino = BTRFS_I(inode)->location.objectid;
6051 args.root = BTRFS_I(inode)->root;
6053 return insert_inode_locked4(inode,
6054 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6055 btrfs_find_actor, &args);
6058 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6059 unsigned int *trans_num_items)
6061 struct inode *dir = args->dir;
6062 struct inode *inode = args->inode;
6065 if (!args->orphan) {
6066 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6072 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6074 fscrypt_free_filename(&args->fname);
6078 /* 1 to add inode item */
6079 *trans_num_items = 1;
6080 /* 1 to add compression property */
6081 if (BTRFS_I(dir)->prop_compress)
6082 (*trans_num_items)++;
6083 /* 1 to add default ACL xattr */
6084 if (args->default_acl)
6085 (*trans_num_items)++;
6086 /* 1 to add access ACL xattr */
6088 (*trans_num_items)++;
6089 #ifdef CONFIG_SECURITY
6090 /* 1 to add LSM xattr */
6091 if (dir->i_security)
6092 (*trans_num_items)++;
6095 /* 1 to add orphan item */
6096 (*trans_num_items)++;
6100 * 1 to add dir index
6101 * 1 to update parent inode item
6103 * No need for 1 unit for the inode ref item because it is
6104 * inserted in a batch together with the inode item at
6105 * btrfs_create_new_inode().
6107 *trans_num_items += 3;
6112 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6114 posix_acl_release(args->acl);
6115 posix_acl_release(args->default_acl);
6116 fscrypt_free_filename(&args->fname);
6120 * Inherit flags from the parent inode.
6122 * Currently only the compression flags and the cow flags are inherited.
6124 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6130 if (flags & BTRFS_INODE_NOCOMPRESS) {
6131 inode->flags &= ~BTRFS_INODE_COMPRESS;
6132 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6133 } else if (flags & BTRFS_INODE_COMPRESS) {
6134 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6135 inode->flags |= BTRFS_INODE_COMPRESS;
6138 if (flags & BTRFS_INODE_NODATACOW) {
6139 inode->flags |= BTRFS_INODE_NODATACOW;
6140 if (S_ISREG(inode->vfs_inode.i_mode))
6141 inode->flags |= BTRFS_INODE_NODATASUM;
6144 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6147 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6148 struct btrfs_new_inode_args *args)
6150 struct inode *dir = args->dir;
6151 struct inode *inode = args->inode;
6152 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6153 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6154 struct btrfs_root *root;
6155 struct btrfs_inode_item *inode_item;
6156 struct btrfs_key *location;
6157 struct btrfs_path *path;
6159 struct btrfs_inode_ref *ref;
6160 struct btrfs_key key[2];
6162 struct btrfs_item_batch batch;
6166 path = btrfs_alloc_path();
6171 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6172 root = BTRFS_I(inode)->root;
6174 ret = btrfs_get_free_objectid(root, &objectid);
6177 inode->i_ino = objectid;
6181 * O_TMPFILE, set link count to 0, so that after this point, we
6182 * fill in an inode item with the correct link count.
6184 set_nlink(inode, 0);
6186 trace_btrfs_inode_request(dir);
6188 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6192 /* index_cnt is ignored for everything but a dir. */
6193 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6194 BTRFS_I(inode)->generation = trans->transid;
6195 inode->i_generation = BTRFS_I(inode)->generation;
6198 * Subvolumes don't inherit flags from their parent directory.
6199 * Originally this was probably by accident, but we probably can't
6200 * change it now without compatibility issues.
6203 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6205 if (S_ISREG(inode->i_mode)) {
6206 if (btrfs_test_opt(fs_info, NODATASUM))
6207 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6208 if (btrfs_test_opt(fs_info, NODATACOW))
6209 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6210 BTRFS_INODE_NODATASUM;
6213 location = &BTRFS_I(inode)->location;
6214 location->objectid = objectid;
6215 location->offset = 0;
6216 location->type = BTRFS_INODE_ITEM_KEY;
6218 ret = btrfs_insert_inode_locked(inode);
6221 BTRFS_I(dir)->index_cnt--;
6226 * We could have gotten an inode number from somebody who was fsynced
6227 * and then removed in this same transaction, so let's just set full
6228 * sync since it will be a full sync anyway and this will blow away the
6229 * old info in the log.
6231 btrfs_set_inode_full_sync(BTRFS_I(inode));
6233 key[0].objectid = objectid;
6234 key[0].type = BTRFS_INODE_ITEM_KEY;
6237 sizes[0] = sizeof(struct btrfs_inode_item);
6239 if (!args->orphan) {
6241 * Start new inodes with an inode_ref. This is slightly more
6242 * efficient for small numbers of hard links since they will
6243 * be packed into one item. Extended refs will kick in if we
6244 * add more hard links than can fit in the ref item.
6246 key[1].objectid = objectid;
6247 key[1].type = BTRFS_INODE_REF_KEY;
6249 key[1].offset = objectid;
6250 sizes[1] = 2 + sizeof(*ref);
6252 key[1].offset = btrfs_ino(BTRFS_I(dir));
6253 sizes[1] = name->len + sizeof(*ref);
6257 batch.keys = &key[0];
6258 batch.data_sizes = &sizes[0];
6259 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6260 batch.nr = args->orphan ? 1 : 2;
6261 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6263 btrfs_abort_transaction(trans, ret);
6267 inode->i_mtime = inode_set_ctime_current(inode);
6268 inode->i_atime = inode->i_mtime;
6269 BTRFS_I(inode)->i_otime = inode->i_mtime;
6272 * We're going to fill the inode item now, so at this point the inode
6273 * must be fully initialized.
6276 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6277 struct btrfs_inode_item);
6278 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6279 sizeof(*inode_item));
6280 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6282 if (!args->orphan) {
6283 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6284 struct btrfs_inode_ref);
6285 ptr = (unsigned long)(ref + 1);
6287 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6288 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6289 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6291 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6293 btrfs_set_inode_ref_index(path->nodes[0], ref,
6294 BTRFS_I(inode)->dir_index);
6295 write_extent_buffer(path->nodes[0], name->name, ptr,
6300 btrfs_mark_buffer_dirty(path->nodes[0]);
6302 * We don't need the path anymore, plus inheriting properties, adding
6303 * ACLs, security xattrs, orphan item or adding the link, will result in
6304 * allocating yet another path. So just free our path.
6306 btrfs_free_path(path);
6310 struct inode *parent;
6313 * Subvolumes inherit properties from their parent subvolume,
6314 * not the directory they were created in.
6316 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6317 BTRFS_I(dir)->root);
6318 if (IS_ERR(parent)) {
6319 ret = PTR_ERR(parent);
6321 ret = btrfs_inode_inherit_props(trans, inode, parent);
6325 ret = btrfs_inode_inherit_props(trans, inode, dir);
6329 "error inheriting props for ino %llu (root %llu): %d",
6330 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6335 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6338 if (!args->subvol) {
6339 ret = btrfs_init_inode_security(trans, args);
6341 btrfs_abort_transaction(trans, ret);
6346 inode_tree_add(BTRFS_I(inode));
6348 trace_btrfs_inode_new(inode);
6349 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6351 btrfs_update_root_times(trans, root);
6354 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6356 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6357 0, BTRFS_I(inode)->dir_index);
6360 btrfs_abort_transaction(trans, ret);
6368 * discard_new_inode() calls iput(), but the caller owns the reference
6372 discard_new_inode(inode);
6374 btrfs_free_path(path);
6379 * utility function to add 'inode' into 'parent_inode' with
6380 * a give name and a given sequence number.
6381 * if 'add_backref' is true, also insert a backref from the
6382 * inode to the parent directory.
6384 int btrfs_add_link(struct btrfs_trans_handle *trans,
6385 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6386 const struct fscrypt_str *name, int add_backref, u64 index)
6389 struct btrfs_key key;
6390 struct btrfs_root *root = parent_inode->root;
6391 u64 ino = btrfs_ino(inode);
6392 u64 parent_ino = btrfs_ino(parent_inode);
6394 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6395 memcpy(&key, &inode->root->root_key, sizeof(key));
6398 key.type = BTRFS_INODE_ITEM_KEY;
6402 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6403 ret = btrfs_add_root_ref(trans, key.objectid,
6404 root->root_key.objectid, parent_ino,
6406 } else if (add_backref) {
6407 ret = btrfs_insert_inode_ref(trans, root, name,
6408 ino, parent_ino, index);
6411 /* Nothing to clean up yet */
6415 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6416 btrfs_inode_type(&inode->vfs_inode), index);
6417 if (ret == -EEXIST || ret == -EOVERFLOW)
6420 btrfs_abort_transaction(trans, ret);
6424 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6426 inode_inc_iversion(&parent_inode->vfs_inode);
6428 * If we are replaying a log tree, we do not want to update the mtime
6429 * and ctime of the parent directory with the current time, since the
6430 * log replay procedure is responsible for setting them to their correct
6431 * values (the ones it had when the fsync was done).
6433 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6434 parent_inode->vfs_inode.i_mtime =
6435 inode_set_ctime_current(&parent_inode->vfs_inode);
6437 ret = btrfs_update_inode(trans, root, parent_inode);
6439 btrfs_abort_transaction(trans, ret);
6443 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6446 err = btrfs_del_root_ref(trans, key.objectid,
6447 root->root_key.objectid, parent_ino,
6448 &local_index, name);
6450 btrfs_abort_transaction(trans, err);
6451 } else if (add_backref) {
6455 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6458 btrfs_abort_transaction(trans, err);
6461 /* Return the original error code */
6465 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6466 struct inode *inode)
6468 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6469 struct btrfs_root *root = BTRFS_I(dir)->root;
6470 struct btrfs_new_inode_args new_inode_args = {
6475 unsigned int trans_num_items;
6476 struct btrfs_trans_handle *trans;
6479 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6483 trans = btrfs_start_transaction(root, trans_num_items);
6484 if (IS_ERR(trans)) {
6485 err = PTR_ERR(trans);
6486 goto out_new_inode_args;
6489 err = btrfs_create_new_inode(trans, &new_inode_args);
6491 d_instantiate_new(dentry, inode);
6493 btrfs_end_transaction(trans);
6494 btrfs_btree_balance_dirty(fs_info);
6496 btrfs_new_inode_args_destroy(&new_inode_args);
6503 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6504 struct dentry *dentry, umode_t mode, dev_t rdev)
6506 struct inode *inode;
6508 inode = new_inode(dir->i_sb);
6511 inode_init_owner(idmap, inode, dir, mode);
6512 inode->i_op = &btrfs_special_inode_operations;
6513 init_special_inode(inode, inode->i_mode, rdev);
6514 return btrfs_create_common(dir, dentry, inode);
6517 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6518 struct dentry *dentry, umode_t mode, bool excl)
6520 struct inode *inode;
6522 inode = new_inode(dir->i_sb);
6525 inode_init_owner(idmap, inode, dir, mode);
6526 inode->i_fop = &btrfs_file_operations;
6527 inode->i_op = &btrfs_file_inode_operations;
6528 inode->i_mapping->a_ops = &btrfs_aops;
6529 return btrfs_create_common(dir, dentry, inode);
6532 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6533 struct dentry *dentry)
6535 struct btrfs_trans_handle *trans = NULL;
6536 struct btrfs_root *root = BTRFS_I(dir)->root;
6537 struct inode *inode = d_inode(old_dentry);
6538 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6539 struct fscrypt_name fname;
6544 /* do not allow sys_link's with other subvols of the same device */
6545 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6548 if (inode->i_nlink >= BTRFS_LINK_MAX)
6551 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6555 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6560 * 2 items for inode and inode ref
6561 * 2 items for dir items
6562 * 1 item for parent inode
6563 * 1 item for orphan item deletion if O_TMPFILE
6565 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6566 if (IS_ERR(trans)) {
6567 err = PTR_ERR(trans);
6572 /* There are several dir indexes for this inode, clear the cache. */
6573 BTRFS_I(inode)->dir_index = 0ULL;
6575 inode_inc_iversion(inode);
6576 inode_set_ctime_current(inode);
6578 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6580 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6581 &fname.disk_name, 1, index);
6586 struct dentry *parent = dentry->d_parent;
6588 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6591 if (inode->i_nlink == 1) {
6593 * If new hard link count is 1, it's a file created
6594 * with open(2) O_TMPFILE flag.
6596 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6600 d_instantiate(dentry, inode);
6601 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6605 fscrypt_free_filename(&fname);
6607 btrfs_end_transaction(trans);
6609 inode_dec_link_count(inode);
6612 btrfs_btree_balance_dirty(fs_info);
6616 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6617 struct dentry *dentry, umode_t mode)
6619 struct inode *inode;
6621 inode = new_inode(dir->i_sb);
6624 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6625 inode->i_op = &btrfs_dir_inode_operations;
6626 inode->i_fop = &btrfs_dir_file_operations;
6627 return btrfs_create_common(dir, dentry, inode);
6630 static noinline int uncompress_inline(struct btrfs_path *path,
6632 struct btrfs_file_extent_item *item)
6635 struct extent_buffer *leaf = path->nodes[0];
6638 unsigned long inline_size;
6642 compress_type = btrfs_file_extent_compression(leaf, item);
6643 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6644 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6645 tmp = kmalloc(inline_size, GFP_NOFS);
6648 ptr = btrfs_file_extent_inline_start(item);
6650 read_extent_buffer(leaf, tmp, ptr, inline_size);
6652 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6653 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6656 * decompression code contains a memset to fill in any space between the end
6657 * of the uncompressed data and the end of max_size in case the decompressed
6658 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6659 * the end of an inline extent and the beginning of the next block, so we
6660 * cover that region here.
6663 if (max_size < PAGE_SIZE)
6664 memzero_page(page, max_size, PAGE_SIZE - max_size);
6669 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6672 struct btrfs_file_extent_item *fi;
6676 if (!page || PageUptodate(page))
6679 ASSERT(page_offset(page) == 0);
6681 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6682 struct btrfs_file_extent_item);
6683 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6684 return uncompress_inline(path, page, fi);
6686 copy_size = min_t(u64, PAGE_SIZE,
6687 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6688 kaddr = kmap_local_page(page);
6689 read_extent_buffer(path->nodes[0], kaddr,
6690 btrfs_file_extent_inline_start(fi), copy_size);
6691 kunmap_local(kaddr);
6692 if (copy_size < PAGE_SIZE)
6693 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6698 * Lookup the first extent overlapping a range in a file.
6700 * @inode: file to search in
6701 * @page: page to read extent data into if the extent is inline
6702 * @pg_offset: offset into @page to copy to
6703 * @start: file offset
6704 * @len: length of range starting at @start
6706 * Return the first &struct extent_map which overlaps the given range, reading
6707 * it from the B-tree and caching it if necessary. Note that there may be more
6708 * extents which overlap the given range after the returned extent_map.
6710 * If @page is not NULL and the extent is inline, this also reads the extent
6711 * data directly into the page and marks the extent up to date in the io_tree.
6713 * Return: ERR_PTR on error, non-NULL extent_map on success.
6715 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6716 struct page *page, size_t pg_offset,
6719 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6721 u64 extent_start = 0;
6723 u64 objectid = btrfs_ino(inode);
6724 int extent_type = -1;
6725 struct btrfs_path *path = NULL;
6726 struct btrfs_root *root = inode->root;
6727 struct btrfs_file_extent_item *item;
6728 struct extent_buffer *leaf;
6729 struct btrfs_key found_key;
6730 struct extent_map *em = NULL;
6731 struct extent_map_tree *em_tree = &inode->extent_tree;
6733 read_lock(&em_tree->lock);
6734 em = lookup_extent_mapping(em_tree, start, len);
6735 read_unlock(&em_tree->lock);
6738 if (em->start > start || em->start + em->len <= start)
6739 free_extent_map(em);
6740 else if (em->block_start == EXTENT_MAP_INLINE && page)
6741 free_extent_map(em);
6745 em = alloc_extent_map();
6750 em->start = EXTENT_MAP_HOLE;
6751 em->orig_start = EXTENT_MAP_HOLE;
6753 em->block_len = (u64)-1;
6755 path = btrfs_alloc_path();
6761 /* Chances are we'll be called again, so go ahead and do readahead */
6762 path->reada = READA_FORWARD;
6765 * The same explanation in load_free_space_cache applies here as well,
6766 * we only read when we're loading the free space cache, and at that
6767 * point the commit_root has everything we need.
6769 if (btrfs_is_free_space_inode(inode)) {
6770 path->search_commit_root = 1;
6771 path->skip_locking = 1;
6774 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6777 } else if (ret > 0) {
6778 if (path->slots[0] == 0)
6784 leaf = path->nodes[0];
6785 item = btrfs_item_ptr(leaf, path->slots[0],
6786 struct btrfs_file_extent_item);
6787 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6788 if (found_key.objectid != objectid ||
6789 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6791 * If we backup past the first extent we want to move forward
6792 * and see if there is an extent in front of us, otherwise we'll
6793 * say there is a hole for our whole search range which can
6800 extent_type = btrfs_file_extent_type(leaf, item);
6801 extent_start = found_key.offset;
6802 extent_end = btrfs_file_extent_end(path);
6803 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6804 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6805 /* Only regular file could have regular/prealloc extent */
6806 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6809 "regular/prealloc extent found for non-regular inode %llu",
6813 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6815 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6816 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6821 if (start >= extent_end) {
6823 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6824 ret = btrfs_next_leaf(root, path);
6830 leaf = path->nodes[0];
6832 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6833 if (found_key.objectid != objectid ||
6834 found_key.type != BTRFS_EXTENT_DATA_KEY)
6836 if (start + len <= found_key.offset)
6838 if (start > found_key.offset)
6841 /* New extent overlaps with existing one */
6843 em->orig_start = start;
6844 em->len = found_key.offset - start;
6845 em->block_start = EXTENT_MAP_HOLE;
6849 btrfs_extent_item_to_extent_map(inode, path, item, em);
6851 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6852 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6854 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6856 * Inline extent can only exist at file offset 0. This is
6857 * ensured by tree-checker and inline extent creation path.
6858 * Thus all members representing file offsets should be zero.
6860 ASSERT(pg_offset == 0);
6861 ASSERT(extent_start == 0);
6862 ASSERT(em->start == 0);
6865 * btrfs_extent_item_to_extent_map() should have properly
6866 * initialized em members already.
6868 * Other members are not utilized for inline extents.
6870 ASSERT(em->block_start == EXTENT_MAP_INLINE);
6871 ASSERT(em->len == fs_info->sectorsize);
6873 ret = read_inline_extent(inode, path, page);
6880 em->orig_start = start;
6882 em->block_start = EXTENT_MAP_HOLE;
6885 btrfs_release_path(path);
6886 if (em->start > start || extent_map_end(em) <= start) {
6888 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6889 em->start, em->len, start, len);
6894 write_lock(&em_tree->lock);
6895 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6896 write_unlock(&em_tree->lock);
6898 btrfs_free_path(path);
6900 trace_btrfs_get_extent(root, inode, em);
6903 free_extent_map(em);
6904 return ERR_PTR(ret);
6909 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6910 struct btrfs_dio_data *dio_data,
6913 const u64 orig_start,
6914 const u64 block_start,
6915 const u64 block_len,
6916 const u64 orig_block_len,
6917 const u64 ram_bytes,
6920 struct extent_map *em = NULL;
6921 struct btrfs_ordered_extent *ordered;
6923 if (type != BTRFS_ORDERED_NOCOW) {
6924 em = create_io_em(inode, start, len, orig_start, block_start,
6925 block_len, orig_block_len, ram_bytes,
6926 BTRFS_COMPRESS_NONE, /* compress_type */
6931 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6932 block_start, block_len, 0,
6934 (1 << BTRFS_ORDERED_DIRECT),
6935 BTRFS_COMPRESS_NONE);
6936 if (IS_ERR(ordered)) {
6938 free_extent_map(em);
6939 btrfs_drop_extent_map_range(inode, start,
6940 start + len - 1, false);
6942 em = ERR_CAST(ordered);
6944 ASSERT(!dio_data->ordered);
6945 dio_data->ordered = ordered;
6952 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6953 struct btrfs_dio_data *dio_data,
6956 struct btrfs_root *root = inode->root;
6957 struct btrfs_fs_info *fs_info = root->fs_info;
6958 struct extent_map *em;
6959 struct btrfs_key ins;
6963 alloc_hint = get_extent_allocation_hint(inode, start, len);
6964 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6965 0, alloc_hint, &ins, 1, 1);
6967 return ERR_PTR(ret);
6969 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
6970 ins.objectid, ins.offset, ins.offset,
6971 ins.offset, BTRFS_ORDERED_REGULAR);
6972 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6974 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6980 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
6982 struct btrfs_block_group *block_group;
6983 bool readonly = false;
6985 block_group = btrfs_lookup_block_group(fs_info, bytenr);
6986 if (!block_group || block_group->ro)
6989 btrfs_put_block_group(block_group);
6994 * Check if we can do nocow write into the range [@offset, @offset + @len)
6996 * @offset: File offset
6997 * @len: The length to write, will be updated to the nocow writeable
6999 * @orig_start: (optional) Return the original file offset of the file extent
7000 * @orig_len: (optional) Return the original on-disk length of the file extent
7001 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7002 * @strict: if true, omit optimizations that might force us into unnecessary
7003 * cow. e.g., don't trust generation number.
7006 * >0 and update @len if we can do nocow write
7007 * 0 if we can't do nocow write
7008 * <0 if error happened
7010 * NOTE: This only checks the file extents, caller is responsible to wait for
7011 * any ordered extents.
7013 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7014 u64 *orig_start, u64 *orig_block_len,
7015 u64 *ram_bytes, bool nowait, bool strict)
7017 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7018 struct can_nocow_file_extent_args nocow_args = { 0 };
7019 struct btrfs_path *path;
7021 struct extent_buffer *leaf;
7022 struct btrfs_root *root = BTRFS_I(inode)->root;
7023 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7024 struct btrfs_file_extent_item *fi;
7025 struct btrfs_key key;
7028 path = btrfs_alloc_path();
7031 path->nowait = nowait;
7033 ret = btrfs_lookup_file_extent(NULL, root, path,
7034 btrfs_ino(BTRFS_I(inode)), offset, 0);
7039 if (path->slots[0] == 0) {
7040 /* can't find the item, must cow */
7047 leaf = path->nodes[0];
7048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7049 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7050 key.type != BTRFS_EXTENT_DATA_KEY) {
7051 /* not our file or wrong item type, must cow */
7055 if (key.offset > offset) {
7056 /* Wrong offset, must cow */
7060 if (btrfs_file_extent_end(path) <= offset)
7063 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7064 found_type = btrfs_file_extent_type(leaf, fi);
7066 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7068 nocow_args.start = offset;
7069 nocow_args.end = offset + *len - 1;
7070 nocow_args.strict = strict;
7071 nocow_args.free_path = true;
7073 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7074 /* can_nocow_file_extent() has freed the path. */
7078 /* Treat errors as not being able to NOCOW. */
7084 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7087 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7088 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7091 range_end = round_up(offset + nocow_args.num_bytes,
7092 root->fs_info->sectorsize) - 1;
7093 ret = test_range_bit(io_tree, offset, range_end,
7094 EXTENT_DELALLOC, 0, NULL);
7102 *orig_start = key.offset - nocow_args.extent_offset;
7104 *orig_block_len = nocow_args.disk_num_bytes;
7106 *len = nocow_args.num_bytes;
7109 btrfs_free_path(path);
7113 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7114 struct extent_state **cached_state,
7115 unsigned int iomap_flags)
7117 const bool writing = (iomap_flags & IOMAP_WRITE);
7118 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7119 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7120 struct btrfs_ordered_extent *ordered;
7125 if (!try_lock_extent(io_tree, lockstart, lockend,
7129 lock_extent(io_tree, lockstart, lockend, cached_state);
7132 * We're concerned with the entire range that we're going to be
7133 * doing DIO to, so we need to make sure there's no ordered
7134 * extents in this range.
7136 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7137 lockend - lockstart + 1);
7140 * We need to make sure there are no buffered pages in this
7141 * range either, we could have raced between the invalidate in
7142 * generic_file_direct_write and locking the extent. The
7143 * invalidate needs to happen so that reads after a write do not
7147 (!writing || !filemap_range_has_page(inode->i_mapping,
7148 lockstart, lockend)))
7151 unlock_extent(io_tree, lockstart, lockend, cached_state);
7155 btrfs_put_ordered_extent(ordered);
7160 * If we are doing a DIO read and the ordered extent we
7161 * found is for a buffered write, we can not wait for it
7162 * to complete and retry, because if we do so we can
7163 * deadlock with concurrent buffered writes on page
7164 * locks. This happens only if our DIO read covers more
7165 * than one extent map, if at this point has already
7166 * created an ordered extent for a previous extent map
7167 * and locked its range in the inode's io tree, and a
7168 * concurrent write against that previous extent map's
7169 * range and this range started (we unlock the ranges
7170 * in the io tree only when the bios complete and
7171 * buffered writes always lock pages before attempting
7172 * to lock range in the io tree).
7175 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7176 btrfs_start_ordered_extent(ordered);
7178 ret = nowait ? -EAGAIN : -ENOTBLK;
7179 btrfs_put_ordered_extent(ordered);
7182 * We could trigger writeback for this range (and wait
7183 * for it to complete) and then invalidate the pages for
7184 * this range (through invalidate_inode_pages2_range()),
7185 * but that can lead us to a deadlock with a concurrent
7186 * call to readahead (a buffered read or a defrag call
7187 * triggered a readahead) on a page lock due to an
7188 * ordered dio extent we created before but did not have
7189 * yet a corresponding bio submitted (whence it can not
7190 * complete), which makes readahead wait for that
7191 * ordered extent to complete while holding a lock on
7194 ret = nowait ? -EAGAIN : -ENOTBLK;
7206 /* The callers of this must take lock_extent() */
7207 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7208 u64 len, u64 orig_start, u64 block_start,
7209 u64 block_len, u64 orig_block_len,
7210 u64 ram_bytes, int compress_type,
7213 struct extent_map *em;
7216 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7217 type == BTRFS_ORDERED_COMPRESSED ||
7218 type == BTRFS_ORDERED_NOCOW ||
7219 type == BTRFS_ORDERED_REGULAR);
7221 em = alloc_extent_map();
7223 return ERR_PTR(-ENOMEM);
7226 em->orig_start = orig_start;
7228 em->block_len = block_len;
7229 em->block_start = block_start;
7230 em->orig_block_len = orig_block_len;
7231 em->ram_bytes = ram_bytes;
7232 em->generation = -1;
7233 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7234 if (type == BTRFS_ORDERED_PREALLOC) {
7235 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7236 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7237 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7238 em->compress_type = compress_type;
7241 ret = btrfs_replace_extent_map_range(inode, em, true);
7243 free_extent_map(em);
7244 return ERR_PTR(ret);
7247 /* em got 2 refs now, callers needs to do free_extent_map once. */
7252 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7253 struct inode *inode,
7254 struct btrfs_dio_data *dio_data,
7255 u64 start, u64 *lenp,
7256 unsigned int iomap_flags)
7258 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7259 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7260 struct extent_map *em = *map;
7262 u64 block_start, orig_start, orig_block_len, ram_bytes;
7263 struct btrfs_block_group *bg;
7264 bool can_nocow = false;
7265 bool space_reserved = false;
7271 * We don't allocate a new extent in the following cases
7273 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7275 * 2) The extent is marked as PREALLOC. We're good to go here and can
7276 * just use the extent.
7279 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7280 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7281 em->block_start != EXTENT_MAP_HOLE)) {
7282 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7283 type = BTRFS_ORDERED_PREALLOC;
7285 type = BTRFS_ORDERED_NOCOW;
7286 len = min(len, em->len - (start - em->start));
7287 block_start = em->block_start + (start - em->start);
7289 if (can_nocow_extent(inode, start, &len, &orig_start,
7290 &orig_block_len, &ram_bytes, false, false) == 1) {
7291 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7299 struct extent_map *em2;
7301 /* We can NOCOW, so only need to reserve metadata space. */
7302 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7305 /* Our caller expects us to free the input extent map. */
7306 free_extent_map(em);
7308 btrfs_dec_nocow_writers(bg);
7309 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7313 space_reserved = true;
7315 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7316 orig_start, block_start,
7317 len, orig_block_len,
7319 btrfs_dec_nocow_writers(bg);
7320 if (type == BTRFS_ORDERED_PREALLOC) {
7321 free_extent_map(em);
7331 dio_data->nocow_done = true;
7333 /* Our caller expects us to free the input extent map. */
7334 free_extent_map(em);
7343 * If we could not allocate data space before locking the file
7344 * range and we can't do a NOCOW write, then we have to fail.
7346 if (!dio_data->data_space_reserved) {
7352 * We have to COW and we have already reserved data space before,
7353 * so now we reserve only metadata.
7355 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7359 space_reserved = true;
7361 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7367 len = min(len, em->len - (start - em->start));
7369 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7370 prev_len - len, true);
7374 * We have created our ordered extent, so we can now release our reservation
7375 * for an outstanding extent.
7377 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7380 * Need to update the i_size under the extent lock so buffered
7381 * readers will get the updated i_size when we unlock.
7383 if (start + len > i_size_read(inode))
7384 i_size_write(inode, start + len);
7386 if (ret && space_reserved) {
7387 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7388 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7394 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7395 loff_t length, unsigned int flags, struct iomap *iomap,
7396 struct iomap *srcmap)
7398 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7400 struct extent_map *em;
7401 struct extent_state *cached_state = NULL;
7402 struct btrfs_dio_data *dio_data = iter->private;
7403 u64 lockstart, lockend;
7404 const bool write = !!(flags & IOMAP_WRITE);
7407 const u64 data_alloc_len = length;
7408 bool unlock_extents = false;
7411 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7412 * we're NOWAIT we may submit a bio for a partial range and return
7413 * EIOCBQUEUED, which would result in an errant short read.
7415 * The best way to handle this would be to allow for partial completions
7416 * of iocb's, so we could submit the partial bio, return and fault in
7417 * the rest of the pages, and then submit the io for the rest of the
7418 * range. However we don't have that currently, so simply return
7419 * -EAGAIN at this point so that the normal path is used.
7421 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7425 * Cap the size of reads to that usually seen in buffered I/O as we need
7426 * to allocate a contiguous array for the checksums.
7429 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7432 lockend = start + len - 1;
7435 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7436 * enough if we've written compressed pages to this area, so we need to
7437 * flush the dirty pages again to make absolutely sure that any
7438 * outstanding dirty pages are on disk - the first flush only starts
7439 * compression on the data, while keeping the pages locked, so by the
7440 * time the second flush returns we know bios for the compressed pages
7441 * were submitted and finished, and the pages no longer under writeback.
7443 * If we have a NOWAIT request and we have any pages in the range that
7444 * are locked, likely due to compression still in progress, we don't want
7445 * to block on page locks. We also don't want to block on pages marked as
7446 * dirty or under writeback (same as for the non-compression case).
7447 * iomap_dio_rw() did the same check, but after that and before we got
7448 * here, mmap'ed writes may have happened or buffered reads started
7449 * (readpage() and readahead(), which lock pages), as we haven't locked
7450 * the file range yet.
7452 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7453 &BTRFS_I(inode)->runtime_flags)) {
7454 if (flags & IOMAP_NOWAIT) {
7455 if (filemap_range_needs_writeback(inode->i_mapping,
7456 lockstart, lockend))
7459 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7460 start + length - 1);
7466 memset(dio_data, 0, sizeof(*dio_data));
7469 * We always try to allocate data space and must do it before locking
7470 * the file range, to avoid deadlocks with concurrent writes to the same
7471 * range if the range has several extents and the writes don't expand the
7472 * current i_size (the inode lock is taken in shared mode). If we fail to
7473 * allocate data space here we continue and later, after locking the
7474 * file range, we fail with ENOSPC only if we figure out we can not do a
7477 if (write && !(flags & IOMAP_NOWAIT)) {
7478 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7479 &dio_data->data_reserved,
7480 start, data_alloc_len, false);
7482 dio_data->data_space_reserved = true;
7483 else if (ret && !(BTRFS_I(inode)->flags &
7484 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7489 * If this errors out it's because we couldn't invalidate pagecache for
7490 * this range and we need to fallback to buffered IO, or we are doing a
7491 * NOWAIT read/write and we need to block.
7493 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7497 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7504 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7505 * io. INLINE is special, and we could probably kludge it in here, but
7506 * it's still buffered so for safety lets just fall back to the generic
7509 * For COMPRESSED we _have_ to read the entire extent in so we can
7510 * decompress it, so there will be buffering required no matter what we
7511 * do, so go ahead and fallback to buffered.
7513 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7514 * to buffered IO. Don't blame me, this is the price we pay for using
7517 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7518 em->block_start == EXTENT_MAP_INLINE) {
7519 free_extent_map(em);
7521 * If we are in a NOWAIT context, return -EAGAIN in order to
7522 * fallback to buffered IO. This is not only because we can
7523 * block with buffered IO (no support for NOWAIT semantics at
7524 * the moment) but also to avoid returning short reads to user
7525 * space - this happens if we were able to read some data from
7526 * previous non-compressed extents and then when we fallback to
7527 * buffered IO, at btrfs_file_read_iter() by calling
7528 * filemap_read(), we fail to fault in pages for the read buffer,
7529 * in which case filemap_read() returns a short read (the number
7530 * of bytes previously read is > 0, so it does not return -EFAULT).
7532 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7536 len = min(len, em->len - (start - em->start));
7539 * If we have a NOWAIT request and the range contains multiple extents
7540 * (or a mix of extents and holes), then we return -EAGAIN to make the
7541 * caller fallback to a context where it can do a blocking (without
7542 * NOWAIT) request. This way we avoid doing partial IO and returning
7543 * success to the caller, which is not optimal for writes and for reads
7544 * it can result in unexpected behaviour for an application.
7546 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7547 * iomap_dio_rw(), we can end up returning less data then what the caller
7548 * asked for, resulting in an unexpected, and incorrect, short read.
7549 * That is, the caller asked to read N bytes and we return less than that,
7550 * which is wrong unless we are crossing EOF. This happens if we get a
7551 * page fault error when trying to fault in pages for the buffer that is
7552 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7553 * have previously submitted bios for other extents in the range, in
7554 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7555 * those bios have completed by the time we get the page fault error,
7556 * which we return back to our caller - we should only return EIOCBQUEUED
7557 * after we have submitted bios for all the extents in the range.
7559 if ((flags & IOMAP_NOWAIT) && len < length) {
7560 free_extent_map(em);
7566 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7567 start, &len, flags);
7570 unlock_extents = true;
7571 /* Recalc len in case the new em is smaller than requested */
7572 len = min(len, em->len - (start - em->start));
7573 if (dio_data->data_space_reserved) {
7575 u64 release_len = 0;
7577 if (dio_data->nocow_done) {
7578 release_offset = start;
7579 release_len = data_alloc_len;
7580 } else if (len < data_alloc_len) {
7581 release_offset = start + len;
7582 release_len = data_alloc_len - len;
7585 if (release_len > 0)
7586 btrfs_free_reserved_data_space(BTRFS_I(inode),
7587 dio_data->data_reserved,
7593 * We need to unlock only the end area that we aren't using.
7594 * The rest is going to be unlocked by the endio routine.
7596 lockstart = start + len;
7597 if (lockstart < lockend)
7598 unlock_extents = true;
7602 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7605 free_extent_state(cached_state);
7608 * Translate extent map information to iomap.
7609 * We trim the extents (and move the addr) even though iomap code does
7610 * that, since we have locked only the parts we are performing I/O in.
7612 if ((em->block_start == EXTENT_MAP_HOLE) ||
7613 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7614 iomap->addr = IOMAP_NULL_ADDR;
7615 iomap->type = IOMAP_HOLE;
7617 iomap->addr = em->block_start + (start - em->start);
7618 iomap->type = IOMAP_MAPPED;
7620 iomap->offset = start;
7621 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7622 iomap->length = len;
7623 free_extent_map(em);
7628 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7631 if (dio_data->data_space_reserved) {
7632 btrfs_free_reserved_data_space(BTRFS_I(inode),
7633 dio_data->data_reserved,
7634 start, data_alloc_len);
7635 extent_changeset_free(dio_data->data_reserved);
7641 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7642 ssize_t written, unsigned int flags, struct iomap *iomap)
7644 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7645 struct btrfs_dio_data *dio_data = iter->private;
7646 size_t submitted = dio_data->submitted;
7647 const bool write = !!(flags & IOMAP_WRITE);
7650 if (!write && (iomap->type == IOMAP_HOLE)) {
7651 /* If reading from a hole, unlock and return */
7652 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7657 if (submitted < length) {
7659 length -= submitted;
7661 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7662 pos, length, false);
7664 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7665 pos + length - 1, NULL);
7669 btrfs_put_ordered_extent(dio_data->ordered);
7670 dio_data->ordered = NULL;
7674 extent_changeset_free(dio_data->data_reserved);
7678 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7680 struct btrfs_dio_private *dip =
7681 container_of(bbio, struct btrfs_dio_private, bbio);
7682 struct btrfs_inode *inode = bbio->inode;
7683 struct bio *bio = &bbio->bio;
7685 if (bio->bi_status) {
7686 btrfs_warn(inode->root->fs_info,
7687 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7688 btrfs_ino(inode), bio->bi_opf,
7689 dip->file_offset, dip->bytes, bio->bi_status);
7692 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7693 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7694 dip->file_offset, dip->bytes,
7697 unlock_extent(&inode->io_tree, dip->file_offset,
7698 dip->file_offset + dip->bytes - 1, NULL);
7701 bbio->bio.bi_private = bbio->private;
7702 iomap_dio_bio_end_io(bio);
7705 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7708 struct btrfs_bio *bbio = btrfs_bio(bio);
7709 struct btrfs_dio_private *dip =
7710 container_of(bbio, struct btrfs_dio_private, bbio);
7711 struct btrfs_dio_data *dio_data = iter->private;
7713 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7714 btrfs_dio_end_io, bio->bi_private);
7715 bbio->inode = BTRFS_I(iter->inode);
7716 bbio->file_offset = file_offset;
7718 dip->file_offset = file_offset;
7719 dip->bytes = bio->bi_iter.bi_size;
7721 dio_data->submitted += bio->bi_iter.bi_size;
7724 * Check if we are doing a partial write. If we are, we need to split
7725 * the ordered extent to match the submitted bio. Hang on to the
7726 * remaining unfinishable ordered_extent in dio_data so that it can be
7727 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7728 * remaining pages is blocked on the outstanding ordered extent.
7730 if (iter->flags & IOMAP_WRITE) {
7733 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7735 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7736 file_offset, dip->bytes,
7738 bio->bi_status = errno_to_blk_status(ret);
7739 iomap_dio_bio_end_io(bio);
7744 btrfs_submit_bio(bbio, 0);
7747 static const struct iomap_ops btrfs_dio_iomap_ops = {
7748 .iomap_begin = btrfs_dio_iomap_begin,
7749 .iomap_end = btrfs_dio_iomap_end,
7752 static const struct iomap_dio_ops btrfs_dio_ops = {
7753 .submit_io = btrfs_dio_submit_io,
7754 .bio_set = &btrfs_dio_bioset,
7757 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7759 struct btrfs_dio_data data = { 0 };
7761 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7762 IOMAP_DIO_PARTIAL, &data, done_before);
7765 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7768 struct btrfs_dio_data data = { 0 };
7770 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7771 IOMAP_DIO_PARTIAL, &data, done_before);
7774 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7779 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7784 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7785 * file range (0 to LLONG_MAX), but that is not enough if we have
7786 * compression enabled. The first filemap_fdatawrite_range() only kicks
7787 * in the compression of data (in an async thread) and will return
7788 * before the compression is done and writeback is started. A second
7789 * filemap_fdatawrite_range() is needed to wait for the compression to
7790 * complete and writeback to start. We also need to wait for ordered
7791 * extents to complete, because our fiemap implementation uses mainly
7792 * file extent items to list the extents, searching for extent maps
7793 * only for file ranges with holes or prealloc extents to figure out
7794 * if we have delalloc in those ranges.
7796 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7797 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7802 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7805 static int btrfs_writepages(struct address_space *mapping,
7806 struct writeback_control *wbc)
7808 return extent_writepages(mapping, wbc);
7811 static void btrfs_readahead(struct readahead_control *rac)
7813 extent_readahead(rac);
7817 * For release_folio() and invalidate_folio() we have a race window where
7818 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7819 * If we continue to release/invalidate the page, we could cause use-after-free
7820 * for subpage spinlock. So this function is to spin and wait for subpage
7823 static void wait_subpage_spinlock(struct page *page)
7825 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7826 struct btrfs_subpage *subpage;
7828 if (!btrfs_is_subpage(fs_info, page))
7831 ASSERT(PagePrivate(page) && page->private);
7832 subpage = (struct btrfs_subpage *)page->private;
7835 * This may look insane as we just acquire the spinlock and release it,
7836 * without doing anything. But we just want to make sure no one is
7837 * still holding the subpage spinlock.
7838 * And since the page is not dirty nor writeback, and we have page
7839 * locked, the only possible way to hold a spinlock is from the endio
7840 * function to clear page writeback.
7842 * Here we just acquire the spinlock so that all existing callers
7843 * should exit and we're safe to release/invalidate the page.
7845 spin_lock_irq(&subpage->lock);
7846 spin_unlock_irq(&subpage->lock);
7849 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7851 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7854 wait_subpage_spinlock(&folio->page);
7855 clear_page_extent_mapped(&folio->page);
7860 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7862 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7864 return __btrfs_release_folio(folio, gfp_flags);
7867 #ifdef CONFIG_MIGRATION
7868 static int btrfs_migrate_folio(struct address_space *mapping,
7869 struct folio *dst, struct folio *src,
7870 enum migrate_mode mode)
7872 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7874 if (ret != MIGRATEPAGE_SUCCESS)
7877 if (folio_test_ordered(src)) {
7878 folio_clear_ordered(src);
7879 folio_set_ordered(dst);
7882 return MIGRATEPAGE_SUCCESS;
7885 #define btrfs_migrate_folio NULL
7888 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7891 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7892 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7893 struct extent_io_tree *tree = &inode->io_tree;
7894 struct extent_state *cached_state = NULL;
7895 u64 page_start = folio_pos(folio);
7896 u64 page_end = page_start + folio_size(folio) - 1;
7898 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7901 * We have folio locked so no new ordered extent can be created on this
7902 * page, nor bio can be submitted for this folio.
7904 * But already submitted bio can still be finished on this folio.
7905 * Furthermore, endio function won't skip folio which has Ordered
7906 * (Private2) already cleared, so it's possible for endio and
7907 * invalidate_folio to do the same ordered extent accounting twice
7910 * So here we wait for any submitted bios to finish, so that we won't
7911 * do double ordered extent accounting on the same folio.
7913 folio_wait_writeback(folio);
7914 wait_subpage_spinlock(&folio->page);
7917 * For subpage case, we have call sites like
7918 * btrfs_punch_hole_lock_range() which passes range not aligned to
7920 * If the range doesn't cover the full folio, we don't need to and
7921 * shouldn't clear page extent mapped, as folio->private can still
7922 * record subpage dirty bits for other part of the range.
7924 * For cases that invalidate the full folio even the range doesn't
7925 * cover the full folio, like invalidating the last folio, we're
7926 * still safe to wait for ordered extent to finish.
7928 if (!(offset == 0 && length == folio_size(folio))) {
7929 btrfs_release_folio(folio, GFP_NOFS);
7933 if (!inode_evicting)
7934 lock_extent(tree, page_start, page_end, &cached_state);
7937 while (cur < page_end) {
7938 struct btrfs_ordered_extent *ordered;
7941 u32 extra_flags = 0;
7943 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7944 page_end + 1 - cur);
7946 range_end = page_end;
7948 * No ordered extent covering this range, we are safe
7949 * to delete all extent states in the range.
7951 extra_flags = EXTENT_CLEAR_ALL_BITS;
7954 if (ordered->file_offset > cur) {
7956 * There is a range between [cur, oe->file_offset) not
7957 * covered by any ordered extent.
7958 * We are safe to delete all extent states, and handle
7959 * the ordered extent in the next iteration.
7961 range_end = ordered->file_offset - 1;
7962 extra_flags = EXTENT_CLEAR_ALL_BITS;
7966 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7968 ASSERT(range_end + 1 - cur < U32_MAX);
7969 range_len = range_end + 1 - cur;
7970 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
7972 * If Ordered (Private2) is cleared, it means endio has
7973 * already been executed for the range.
7974 * We can't delete the extent states as
7975 * btrfs_finish_ordered_io() may still use some of them.
7979 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
7982 * IO on this page will never be started, so we need to account
7983 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7984 * here, must leave that up for the ordered extent completion.
7986 * This will also unlock the range for incoming
7987 * btrfs_finish_ordered_io().
7989 if (!inode_evicting)
7990 clear_extent_bit(tree, cur, range_end,
7992 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7993 EXTENT_DEFRAG, &cached_state);
7995 spin_lock_irq(&inode->ordered_tree.lock);
7996 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7997 ordered->truncated_len = min(ordered->truncated_len,
7998 cur - ordered->file_offset);
7999 spin_unlock_irq(&inode->ordered_tree.lock);
8002 * If the ordered extent has finished, we're safe to delete all
8003 * the extent states of the range, otherwise
8004 * btrfs_finish_ordered_io() will get executed by endio for
8005 * other pages, so we can't delete extent states.
8007 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8008 cur, range_end + 1 - cur)) {
8009 btrfs_finish_ordered_io(ordered);
8011 * The ordered extent has finished, now we're again
8012 * safe to delete all extent states of the range.
8014 extra_flags = EXTENT_CLEAR_ALL_BITS;
8018 btrfs_put_ordered_extent(ordered);
8020 * Qgroup reserved space handler
8021 * Sector(s) here will be either:
8023 * 1) Already written to disk or bio already finished
8024 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8025 * Qgroup will be handled by its qgroup_record then.
8026 * btrfs_qgroup_free_data() call will do nothing here.
8028 * 2) Not written to disk yet
8029 * Then btrfs_qgroup_free_data() call will clear the
8030 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8031 * reserved data space.
8032 * Since the IO will never happen for this page.
8034 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8035 if (!inode_evicting) {
8036 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8037 EXTENT_DELALLOC | EXTENT_UPTODATE |
8038 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8039 extra_flags, &cached_state);
8041 cur = range_end + 1;
8044 * We have iterated through all ordered extents of the page, the page
8045 * should not have Ordered (Private2) anymore, or the above iteration
8046 * did something wrong.
8048 ASSERT(!folio_test_ordered(folio));
8049 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8050 if (!inode_evicting)
8051 __btrfs_release_folio(folio, GFP_NOFS);
8052 clear_page_extent_mapped(&folio->page);
8056 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8057 * called from a page fault handler when a page is first dirtied. Hence we must
8058 * be careful to check for EOF conditions here. We set the page up correctly
8059 * for a written page which means we get ENOSPC checking when writing into
8060 * holes and correct delalloc and unwritten extent mapping on filesystems that
8061 * support these features.
8063 * We are not allowed to take the i_mutex here so we have to play games to
8064 * protect against truncate races as the page could now be beyond EOF. Because
8065 * truncate_setsize() writes the inode size before removing pages, once we have
8066 * the page lock we can determine safely if the page is beyond EOF. If it is not
8067 * beyond EOF, then the page is guaranteed safe against truncation until we
8070 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8072 struct page *page = vmf->page;
8073 struct inode *inode = file_inode(vmf->vma->vm_file);
8074 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8076 struct btrfs_ordered_extent *ordered;
8077 struct extent_state *cached_state = NULL;
8078 struct extent_changeset *data_reserved = NULL;
8079 unsigned long zero_start;
8089 reserved_space = PAGE_SIZE;
8091 sb_start_pagefault(inode->i_sb);
8092 page_start = page_offset(page);
8093 page_end = page_start + PAGE_SIZE - 1;
8097 * Reserving delalloc space after obtaining the page lock can lead to
8098 * deadlock. For example, if a dirty page is locked by this function
8099 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8100 * dirty page write out, then the btrfs_writepages() function could
8101 * end up waiting indefinitely to get a lock on the page currently
8102 * being processed by btrfs_page_mkwrite() function.
8104 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8105 page_start, reserved_space);
8107 ret2 = file_update_time(vmf->vma->vm_file);
8111 ret = vmf_error(ret2);
8117 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8119 down_read(&BTRFS_I(inode)->i_mmap_lock);
8121 size = i_size_read(inode);
8123 if ((page->mapping != inode->i_mapping) ||
8124 (page_start >= size)) {
8125 /* page got truncated out from underneath us */
8128 wait_on_page_writeback(page);
8130 lock_extent(io_tree, page_start, page_end, &cached_state);
8131 ret2 = set_page_extent_mapped(page);
8133 ret = vmf_error(ret2);
8134 unlock_extent(io_tree, page_start, page_end, &cached_state);
8139 * we can't set the delalloc bits if there are pending ordered
8140 * extents. Drop our locks and wait for them to finish
8142 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8145 unlock_extent(io_tree, page_start, page_end, &cached_state);
8147 up_read(&BTRFS_I(inode)->i_mmap_lock);
8148 btrfs_start_ordered_extent(ordered);
8149 btrfs_put_ordered_extent(ordered);
8153 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8154 reserved_space = round_up(size - page_start,
8155 fs_info->sectorsize);
8156 if (reserved_space < PAGE_SIZE) {
8157 end = page_start + reserved_space - 1;
8158 btrfs_delalloc_release_space(BTRFS_I(inode),
8159 data_reserved, page_start,
8160 PAGE_SIZE - reserved_space, true);
8165 * page_mkwrite gets called when the page is firstly dirtied after it's
8166 * faulted in, but write(2) could also dirty a page and set delalloc
8167 * bits, thus in this case for space account reason, we still need to
8168 * clear any delalloc bits within this page range since we have to
8169 * reserve data&meta space before lock_page() (see above comments).
8171 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8172 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8173 EXTENT_DEFRAG, &cached_state);
8175 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8178 unlock_extent(io_tree, page_start, page_end, &cached_state);
8179 ret = VM_FAULT_SIGBUS;
8183 /* page is wholly or partially inside EOF */
8184 if (page_start + PAGE_SIZE > size)
8185 zero_start = offset_in_page(size);
8187 zero_start = PAGE_SIZE;
8189 if (zero_start != PAGE_SIZE)
8190 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8192 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8193 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8194 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8196 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8198 unlock_extent(io_tree, page_start, page_end, &cached_state);
8199 up_read(&BTRFS_I(inode)->i_mmap_lock);
8201 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8202 sb_end_pagefault(inode->i_sb);
8203 extent_changeset_free(data_reserved);
8204 return VM_FAULT_LOCKED;
8208 up_read(&BTRFS_I(inode)->i_mmap_lock);
8210 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8211 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8212 reserved_space, (ret != 0));
8214 sb_end_pagefault(inode->i_sb);
8215 extent_changeset_free(data_reserved);
8219 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8221 struct btrfs_truncate_control control = {
8223 .ino = btrfs_ino(inode),
8224 .min_type = BTRFS_EXTENT_DATA_KEY,
8225 .clear_extent_range = true,
8227 struct btrfs_root *root = inode->root;
8228 struct btrfs_fs_info *fs_info = root->fs_info;
8229 struct btrfs_block_rsv *rsv;
8231 struct btrfs_trans_handle *trans;
8232 u64 mask = fs_info->sectorsize - 1;
8233 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8235 if (!skip_writeback) {
8236 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8237 inode->vfs_inode.i_size & (~mask),
8244 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8245 * things going on here:
8247 * 1) We need to reserve space to update our inode.
8249 * 2) We need to have something to cache all the space that is going to
8250 * be free'd up by the truncate operation, but also have some slack
8251 * space reserved in case it uses space during the truncate (thank you
8252 * very much snapshotting).
8254 * And we need these to be separate. The fact is we can use a lot of
8255 * space doing the truncate, and we have no earthly idea how much space
8256 * we will use, so we need the truncate reservation to be separate so it
8257 * doesn't end up using space reserved for updating the inode. We also
8258 * need to be able to stop the transaction and start a new one, which
8259 * means we need to be able to update the inode several times, and we
8260 * have no idea of knowing how many times that will be, so we can't just
8261 * reserve 1 item for the entirety of the operation, so that has to be
8262 * done separately as well.
8264 * So that leaves us with
8266 * 1) rsv - for the truncate reservation, which we will steal from the
8267 * transaction reservation.
8268 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8269 * updating the inode.
8271 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8274 rsv->size = min_size;
8275 rsv->failfast = true;
8278 * 1 for the truncate slack space
8279 * 1 for updating the inode.
8281 trans = btrfs_start_transaction(root, 2);
8282 if (IS_ERR(trans)) {
8283 ret = PTR_ERR(trans);
8287 /* Migrate the slack space for the truncate to our reserve */
8288 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8291 * We have reserved 2 metadata units when we started the transaction and
8292 * min_size matches 1 unit, so this should never fail, but if it does,
8293 * it's not critical we just fail truncation.
8296 btrfs_end_transaction(trans);
8300 trans->block_rsv = rsv;
8303 struct extent_state *cached_state = NULL;
8304 const u64 new_size = inode->vfs_inode.i_size;
8305 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8307 control.new_size = new_size;
8308 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8310 * We want to drop from the next block forward in case this new
8311 * size is not block aligned since we will be keeping the last
8312 * block of the extent just the way it is.
8314 btrfs_drop_extent_map_range(inode,
8315 ALIGN(new_size, fs_info->sectorsize),
8318 ret = btrfs_truncate_inode_items(trans, root, &control);
8320 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8321 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8323 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8325 trans->block_rsv = &fs_info->trans_block_rsv;
8326 if (ret != -ENOSPC && ret != -EAGAIN)
8329 ret = btrfs_update_inode(trans, root, inode);
8333 btrfs_end_transaction(trans);
8334 btrfs_btree_balance_dirty(fs_info);
8336 trans = btrfs_start_transaction(root, 2);
8337 if (IS_ERR(trans)) {
8338 ret = PTR_ERR(trans);
8343 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8344 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8345 rsv, min_size, false);
8347 * We have reserved 2 metadata units when we started the
8348 * transaction and min_size matches 1 unit, so this should never
8349 * fail, but if it does, it's not critical we just fail truncation.
8354 trans->block_rsv = rsv;
8358 * We can't call btrfs_truncate_block inside a trans handle as we could
8359 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8360 * know we've truncated everything except the last little bit, and can
8361 * do btrfs_truncate_block and then update the disk_i_size.
8363 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8364 btrfs_end_transaction(trans);
8365 btrfs_btree_balance_dirty(fs_info);
8367 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8370 trans = btrfs_start_transaction(root, 1);
8371 if (IS_ERR(trans)) {
8372 ret = PTR_ERR(trans);
8375 btrfs_inode_safe_disk_i_size_write(inode, 0);
8381 trans->block_rsv = &fs_info->trans_block_rsv;
8382 ret2 = btrfs_update_inode(trans, root, inode);
8386 ret2 = btrfs_end_transaction(trans);
8389 btrfs_btree_balance_dirty(fs_info);
8392 btrfs_free_block_rsv(fs_info, rsv);
8394 * So if we truncate and then write and fsync we normally would just
8395 * write the extents that changed, which is a problem if we need to
8396 * first truncate that entire inode. So set this flag so we write out
8397 * all of the extents in the inode to the sync log so we're completely
8400 * If no extents were dropped or trimmed we don't need to force the next
8401 * fsync to truncate all the inode's items from the log and re-log them
8402 * all. This means the truncate operation did not change the file size,
8403 * or changed it to a smaller size but there was only an implicit hole
8404 * between the old i_size and the new i_size, and there were no prealloc
8405 * extents beyond i_size to drop.
8407 if (control.extents_found > 0)
8408 btrfs_set_inode_full_sync(inode);
8413 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8416 struct inode *inode;
8418 inode = new_inode(dir->i_sb);
8421 * Subvolumes don't inherit the sgid bit or the parent's gid if
8422 * the parent's sgid bit is set. This is probably a bug.
8424 inode_init_owner(idmap, inode, NULL,
8425 S_IFDIR | (~current_umask() & S_IRWXUGO));
8426 inode->i_op = &btrfs_dir_inode_operations;
8427 inode->i_fop = &btrfs_dir_file_operations;
8432 struct inode *btrfs_alloc_inode(struct super_block *sb)
8434 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8435 struct btrfs_inode *ei;
8436 struct inode *inode;
8438 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8445 ei->last_sub_trans = 0;
8446 ei->logged_trans = 0;
8447 ei->delalloc_bytes = 0;
8448 ei->new_delalloc_bytes = 0;
8449 ei->defrag_bytes = 0;
8450 ei->disk_i_size = 0;
8454 ei->index_cnt = (u64)-1;
8456 ei->last_unlink_trans = 0;
8457 ei->last_reflink_trans = 0;
8458 ei->last_log_commit = 0;
8460 spin_lock_init(&ei->lock);
8461 ei->outstanding_extents = 0;
8462 if (sb->s_magic != BTRFS_TEST_MAGIC)
8463 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8464 BTRFS_BLOCK_RSV_DELALLOC);
8465 ei->runtime_flags = 0;
8466 ei->prop_compress = BTRFS_COMPRESS_NONE;
8467 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8469 ei->delayed_node = NULL;
8471 ei->i_otime.tv_sec = 0;
8472 ei->i_otime.tv_nsec = 0;
8474 inode = &ei->vfs_inode;
8475 extent_map_tree_init(&ei->extent_tree);
8476 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8477 ei->io_tree.inode = ei;
8478 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8479 IO_TREE_INODE_FILE_EXTENT);
8480 mutex_init(&ei->log_mutex);
8481 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8482 INIT_LIST_HEAD(&ei->delalloc_inodes);
8483 INIT_LIST_HEAD(&ei->delayed_iput);
8484 RB_CLEAR_NODE(&ei->rb_node);
8485 init_rwsem(&ei->i_mmap_lock);
8490 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8491 void btrfs_test_destroy_inode(struct inode *inode)
8493 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8494 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8498 void btrfs_free_inode(struct inode *inode)
8500 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8503 void btrfs_destroy_inode(struct inode *vfs_inode)
8505 struct btrfs_ordered_extent *ordered;
8506 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8507 struct btrfs_root *root = inode->root;
8508 bool freespace_inode;
8510 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8511 WARN_ON(vfs_inode->i_data.nrpages);
8512 WARN_ON(inode->block_rsv.reserved);
8513 WARN_ON(inode->block_rsv.size);
8514 WARN_ON(inode->outstanding_extents);
8515 if (!S_ISDIR(vfs_inode->i_mode)) {
8516 WARN_ON(inode->delalloc_bytes);
8517 WARN_ON(inode->new_delalloc_bytes);
8519 WARN_ON(inode->csum_bytes);
8520 WARN_ON(inode->defrag_bytes);
8523 * This can happen where we create an inode, but somebody else also
8524 * created the same inode and we need to destroy the one we already
8531 * If this is a free space inode do not take the ordered extents lockdep
8534 freespace_inode = btrfs_is_free_space_inode(inode);
8537 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8541 btrfs_err(root->fs_info,
8542 "found ordered extent %llu %llu on inode cleanup",
8543 ordered->file_offset, ordered->num_bytes);
8545 if (!freespace_inode)
8546 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8548 btrfs_remove_ordered_extent(inode, ordered);
8549 btrfs_put_ordered_extent(ordered);
8550 btrfs_put_ordered_extent(ordered);
8553 btrfs_qgroup_check_reserved_leak(inode);
8554 inode_tree_del(inode);
8555 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8556 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8557 btrfs_put_root(inode->root);
8560 int btrfs_drop_inode(struct inode *inode)
8562 struct btrfs_root *root = BTRFS_I(inode)->root;
8567 /* the snap/subvol tree is on deleting */
8568 if (btrfs_root_refs(&root->root_item) == 0)
8571 return generic_drop_inode(inode);
8574 static void init_once(void *foo)
8576 struct btrfs_inode *ei = foo;
8578 inode_init_once(&ei->vfs_inode);
8581 void __cold btrfs_destroy_cachep(void)
8584 * Make sure all delayed rcu free inodes are flushed before we
8588 bioset_exit(&btrfs_dio_bioset);
8589 kmem_cache_destroy(btrfs_inode_cachep);
8592 int __init btrfs_init_cachep(void)
8594 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8595 sizeof(struct btrfs_inode), 0,
8596 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8598 if (!btrfs_inode_cachep)
8601 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8602 offsetof(struct btrfs_dio_private, bbio.bio),
8608 btrfs_destroy_cachep();
8612 static int btrfs_getattr(struct mnt_idmap *idmap,
8613 const struct path *path, struct kstat *stat,
8614 u32 request_mask, unsigned int flags)
8618 struct inode *inode = d_inode(path->dentry);
8619 u32 blocksize = inode->i_sb->s_blocksize;
8620 u32 bi_flags = BTRFS_I(inode)->flags;
8621 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8623 stat->result_mask |= STATX_BTIME;
8624 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8625 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8626 if (bi_flags & BTRFS_INODE_APPEND)
8627 stat->attributes |= STATX_ATTR_APPEND;
8628 if (bi_flags & BTRFS_INODE_COMPRESS)
8629 stat->attributes |= STATX_ATTR_COMPRESSED;
8630 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8631 stat->attributes |= STATX_ATTR_IMMUTABLE;
8632 if (bi_flags & BTRFS_INODE_NODUMP)
8633 stat->attributes |= STATX_ATTR_NODUMP;
8634 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8635 stat->attributes |= STATX_ATTR_VERITY;
8637 stat->attributes_mask |= (STATX_ATTR_APPEND |
8638 STATX_ATTR_COMPRESSED |
8639 STATX_ATTR_IMMUTABLE |
8642 generic_fillattr(idmap, request_mask, inode, stat);
8643 stat->dev = BTRFS_I(inode)->root->anon_dev;
8645 spin_lock(&BTRFS_I(inode)->lock);
8646 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8647 inode_bytes = inode_get_bytes(inode);
8648 spin_unlock(&BTRFS_I(inode)->lock);
8649 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8650 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8654 static int btrfs_rename_exchange(struct inode *old_dir,
8655 struct dentry *old_dentry,
8656 struct inode *new_dir,
8657 struct dentry *new_dentry)
8659 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8660 struct btrfs_trans_handle *trans;
8661 unsigned int trans_num_items;
8662 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8663 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8664 struct inode *new_inode = new_dentry->d_inode;
8665 struct inode *old_inode = old_dentry->d_inode;
8666 struct btrfs_rename_ctx old_rename_ctx;
8667 struct btrfs_rename_ctx new_rename_ctx;
8668 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8669 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8674 bool need_abort = false;
8675 struct fscrypt_name old_fname, new_fname;
8676 struct fscrypt_str *old_name, *new_name;
8679 * For non-subvolumes allow exchange only within one subvolume, in the
8680 * same inode namespace. Two subvolumes (represented as directory) can
8681 * be exchanged as they're a logical link and have a fixed inode number.
8684 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8685 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8688 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8692 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8694 fscrypt_free_filename(&old_fname);
8698 old_name = &old_fname.disk_name;
8699 new_name = &new_fname.disk_name;
8701 /* close the race window with snapshot create/destroy ioctl */
8702 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8703 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8704 down_read(&fs_info->subvol_sem);
8708 * 1 to remove old dir item
8709 * 1 to remove old dir index
8710 * 1 to add new dir item
8711 * 1 to add new dir index
8712 * 1 to update parent inode
8714 * If the parents are the same, we only need to account for one
8716 trans_num_items = (old_dir == new_dir ? 9 : 10);
8717 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8719 * 1 to remove old root ref
8720 * 1 to remove old root backref
8721 * 1 to add new root ref
8722 * 1 to add new root backref
8724 trans_num_items += 4;
8727 * 1 to update inode item
8728 * 1 to remove old inode ref
8729 * 1 to add new inode ref
8731 trans_num_items += 3;
8733 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8734 trans_num_items += 4;
8736 trans_num_items += 3;
8737 trans = btrfs_start_transaction(root, trans_num_items);
8738 if (IS_ERR(trans)) {
8739 ret = PTR_ERR(trans);
8744 ret = btrfs_record_root_in_trans(trans, dest);
8750 * We need to find a free sequence number both in the source and
8751 * in the destination directory for the exchange.
8753 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8756 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8760 BTRFS_I(old_inode)->dir_index = 0ULL;
8761 BTRFS_I(new_inode)->dir_index = 0ULL;
8763 /* Reference for the source. */
8764 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8765 /* force full log commit if subvolume involved. */
8766 btrfs_set_log_full_commit(trans);
8768 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8769 btrfs_ino(BTRFS_I(new_dir)),
8776 /* And now for the dest. */
8777 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8778 /* force full log commit if subvolume involved. */
8779 btrfs_set_log_full_commit(trans);
8781 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8782 btrfs_ino(BTRFS_I(old_dir)),
8786 btrfs_abort_transaction(trans, ret);
8791 /* Update inode version and ctime/mtime. */
8792 inode_inc_iversion(old_dir);
8793 inode_inc_iversion(new_dir);
8794 inode_inc_iversion(old_inode);
8795 inode_inc_iversion(new_inode);
8796 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8798 if (old_dentry->d_parent != new_dentry->d_parent) {
8799 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8800 BTRFS_I(old_inode), true);
8801 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8802 BTRFS_I(new_inode), true);
8805 /* src is a subvolume */
8806 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8807 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8808 } else { /* src is an inode */
8809 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8810 BTRFS_I(old_dentry->d_inode),
8811 old_name, &old_rename_ctx);
8813 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8816 btrfs_abort_transaction(trans, ret);
8820 /* dest is a subvolume */
8821 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8822 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8823 } else { /* dest is an inode */
8824 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8825 BTRFS_I(new_dentry->d_inode),
8826 new_name, &new_rename_ctx);
8828 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8831 btrfs_abort_transaction(trans, ret);
8835 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8836 new_name, 0, old_idx);
8838 btrfs_abort_transaction(trans, ret);
8842 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8843 old_name, 0, new_idx);
8845 btrfs_abort_transaction(trans, ret);
8849 if (old_inode->i_nlink == 1)
8850 BTRFS_I(old_inode)->dir_index = old_idx;
8851 if (new_inode->i_nlink == 1)
8852 BTRFS_I(new_inode)->dir_index = new_idx;
8855 * Now pin the logs of the roots. We do it to ensure that no other task
8856 * can sync the logs while we are in progress with the rename, because
8857 * that could result in an inconsistency in case any of the inodes that
8858 * are part of this rename operation were logged before.
8860 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8861 btrfs_pin_log_trans(root);
8862 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8863 btrfs_pin_log_trans(dest);
8865 /* Do the log updates for all inodes. */
8866 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8867 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8868 old_rename_ctx.index, new_dentry->d_parent);
8869 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8870 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8871 new_rename_ctx.index, old_dentry->d_parent);
8873 /* Now unpin the logs. */
8874 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8875 btrfs_end_log_trans(root);
8876 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8877 btrfs_end_log_trans(dest);
8879 ret2 = btrfs_end_transaction(trans);
8880 ret = ret ? ret : ret2;
8882 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8883 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8884 up_read(&fs_info->subvol_sem);
8886 fscrypt_free_filename(&new_fname);
8887 fscrypt_free_filename(&old_fname);
8891 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8894 struct inode *inode;
8896 inode = new_inode(dir->i_sb);
8898 inode_init_owner(idmap, inode, dir,
8899 S_IFCHR | WHITEOUT_MODE);
8900 inode->i_op = &btrfs_special_inode_operations;
8901 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8906 static int btrfs_rename(struct mnt_idmap *idmap,
8907 struct inode *old_dir, struct dentry *old_dentry,
8908 struct inode *new_dir, struct dentry *new_dentry,
8911 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8912 struct btrfs_new_inode_args whiteout_args = {
8914 .dentry = old_dentry,
8916 struct btrfs_trans_handle *trans;
8917 unsigned int trans_num_items;
8918 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8919 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8920 struct inode *new_inode = d_inode(new_dentry);
8921 struct inode *old_inode = d_inode(old_dentry);
8922 struct btrfs_rename_ctx rename_ctx;
8926 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8927 struct fscrypt_name old_fname, new_fname;
8929 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8932 /* we only allow rename subvolume link between subvolumes */
8933 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8936 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8937 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8940 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8941 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8944 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8948 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8950 fscrypt_free_filename(&old_fname);
8954 /* check for collisions, even if the name isn't there */
8955 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8957 if (ret == -EEXIST) {
8959 * eexist without a new_inode */
8960 if (WARN_ON(!new_inode)) {
8961 goto out_fscrypt_names;
8964 /* maybe -EOVERFLOW */
8965 goto out_fscrypt_names;
8971 * we're using rename to replace one file with another. Start IO on it
8972 * now so we don't add too much work to the end of the transaction
8974 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8975 filemap_flush(old_inode->i_mapping);
8977 if (flags & RENAME_WHITEOUT) {
8978 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8979 if (!whiteout_args.inode) {
8981 goto out_fscrypt_names;
8983 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8985 goto out_whiteout_inode;
8987 /* 1 to update the old parent inode. */
8988 trans_num_items = 1;
8991 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8992 /* Close the race window with snapshot create/destroy ioctl */
8993 down_read(&fs_info->subvol_sem);
8995 * 1 to remove old root ref
8996 * 1 to remove old root backref
8997 * 1 to add new root ref
8998 * 1 to add new root backref
9000 trans_num_items += 4;
9004 * 1 to remove old inode ref
9005 * 1 to add new inode ref
9007 trans_num_items += 3;
9010 * 1 to remove old dir item
9011 * 1 to remove old dir index
9012 * 1 to add new dir item
9013 * 1 to add new dir index
9015 trans_num_items += 4;
9016 /* 1 to update new parent inode if it's not the same as the old parent */
9017 if (new_dir != old_dir)
9022 * 1 to remove inode ref
9023 * 1 to remove dir item
9024 * 1 to remove dir index
9025 * 1 to possibly add orphan item
9027 trans_num_items += 5;
9029 trans = btrfs_start_transaction(root, trans_num_items);
9030 if (IS_ERR(trans)) {
9031 ret = PTR_ERR(trans);
9036 ret = btrfs_record_root_in_trans(trans, dest);
9041 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9045 BTRFS_I(old_inode)->dir_index = 0ULL;
9046 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9047 /* force full log commit if subvolume involved. */
9048 btrfs_set_log_full_commit(trans);
9050 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9051 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9057 inode_inc_iversion(old_dir);
9058 inode_inc_iversion(new_dir);
9059 inode_inc_iversion(old_inode);
9060 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9062 if (old_dentry->d_parent != new_dentry->d_parent)
9063 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9064 BTRFS_I(old_inode), true);
9066 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9067 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9069 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9070 BTRFS_I(d_inode(old_dentry)),
9071 &old_fname.disk_name, &rename_ctx);
9073 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9076 btrfs_abort_transaction(trans, ret);
9081 inode_inc_iversion(new_inode);
9082 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9083 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9084 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9085 BUG_ON(new_inode->i_nlink == 0);
9087 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9088 BTRFS_I(d_inode(new_dentry)),
9089 &new_fname.disk_name);
9091 if (!ret && new_inode->i_nlink == 0)
9092 ret = btrfs_orphan_add(trans,
9093 BTRFS_I(d_inode(new_dentry)));
9095 btrfs_abort_transaction(trans, ret);
9100 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9101 &new_fname.disk_name, 0, index);
9103 btrfs_abort_transaction(trans, ret);
9107 if (old_inode->i_nlink == 1)
9108 BTRFS_I(old_inode)->dir_index = index;
9110 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9111 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9112 rename_ctx.index, new_dentry->d_parent);
9114 if (flags & RENAME_WHITEOUT) {
9115 ret = btrfs_create_new_inode(trans, &whiteout_args);
9117 btrfs_abort_transaction(trans, ret);
9120 unlock_new_inode(whiteout_args.inode);
9121 iput(whiteout_args.inode);
9122 whiteout_args.inode = NULL;
9126 ret2 = btrfs_end_transaction(trans);
9127 ret = ret ? ret : ret2;
9129 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9130 up_read(&fs_info->subvol_sem);
9131 if (flags & RENAME_WHITEOUT)
9132 btrfs_new_inode_args_destroy(&whiteout_args);
9134 if (flags & RENAME_WHITEOUT)
9135 iput(whiteout_args.inode);
9137 fscrypt_free_filename(&old_fname);
9138 fscrypt_free_filename(&new_fname);
9142 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9143 struct dentry *old_dentry, struct inode *new_dir,
9144 struct dentry *new_dentry, unsigned int flags)
9148 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9151 if (flags & RENAME_EXCHANGE)
9152 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9155 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9158 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9163 struct btrfs_delalloc_work {
9164 struct inode *inode;
9165 struct completion completion;
9166 struct list_head list;
9167 struct btrfs_work work;
9170 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9172 struct btrfs_delalloc_work *delalloc_work;
9173 struct inode *inode;
9175 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9177 inode = delalloc_work->inode;
9178 filemap_flush(inode->i_mapping);
9179 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9180 &BTRFS_I(inode)->runtime_flags))
9181 filemap_flush(inode->i_mapping);
9184 complete(&delalloc_work->completion);
9187 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9189 struct btrfs_delalloc_work *work;
9191 work = kmalloc(sizeof(*work), GFP_NOFS);
9195 init_completion(&work->completion);
9196 INIT_LIST_HEAD(&work->list);
9197 work->inode = inode;
9198 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9204 * some fairly slow code that needs optimization. This walks the list
9205 * of all the inodes with pending delalloc and forces them to disk.
9207 static int start_delalloc_inodes(struct btrfs_root *root,
9208 struct writeback_control *wbc, bool snapshot,
9209 bool in_reclaim_context)
9211 struct btrfs_inode *binode;
9212 struct inode *inode;
9213 struct btrfs_delalloc_work *work, *next;
9217 bool full_flush = wbc->nr_to_write == LONG_MAX;
9219 mutex_lock(&root->delalloc_mutex);
9220 spin_lock(&root->delalloc_lock);
9221 list_splice_init(&root->delalloc_inodes, &splice);
9222 while (!list_empty(&splice)) {
9223 binode = list_entry(splice.next, struct btrfs_inode,
9226 list_move_tail(&binode->delalloc_inodes,
9227 &root->delalloc_inodes);
9229 if (in_reclaim_context &&
9230 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9233 inode = igrab(&binode->vfs_inode);
9235 cond_resched_lock(&root->delalloc_lock);
9238 spin_unlock(&root->delalloc_lock);
9241 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9242 &binode->runtime_flags);
9244 work = btrfs_alloc_delalloc_work(inode);
9250 list_add_tail(&work->list, &works);
9251 btrfs_queue_work(root->fs_info->flush_workers,
9254 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9255 btrfs_add_delayed_iput(BTRFS_I(inode));
9256 if (ret || wbc->nr_to_write <= 0)
9260 spin_lock(&root->delalloc_lock);
9262 spin_unlock(&root->delalloc_lock);
9265 list_for_each_entry_safe(work, next, &works, list) {
9266 list_del_init(&work->list);
9267 wait_for_completion(&work->completion);
9271 if (!list_empty(&splice)) {
9272 spin_lock(&root->delalloc_lock);
9273 list_splice_tail(&splice, &root->delalloc_inodes);
9274 spin_unlock(&root->delalloc_lock);
9276 mutex_unlock(&root->delalloc_mutex);
9280 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9282 struct writeback_control wbc = {
9283 .nr_to_write = LONG_MAX,
9284 .sync_mode = WB_SYNC_NONE,
9286 .range_end = LLONG_MAX,
9288 struct btrfs_fs_info *fs_info = root->fs_info;
9290 if (BTRFS_FS_ERROR(fs_info))
9293 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9296 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9297 bool in_reclaim_context)
9299 struct writeback_control wbc = {
9301 .sync_mode = WB_SYNC_NONE,
9303 .range_end = LLONG_MAX,
9305 struct btrfs_root *root;
9309 if (BTRFS_FS_ERROR(fs_info))
9312 mutex_lock(&fs_info->delalloc_root_mutex);
9313 spin_lock(&fs_info->delalloc_root_lock);
9314 list_splice_init(&fs_info->delalloc_roots, &splice);
9315 while (!list_empty(&splice)) {
9317 * Reset nr_to_write here so we know that we're doing a full
9321 wbc.nr_to_write = LONG_MAX;
9323 root = list_first_entry(&splice, struct btrfs_root,
9325 root = btrfs_grab_root(root);
9327 list_move_tail(&root->delalloc_root,
9328 &fs_info->delalloc_roots);
9329 spin_unlock(&fs_info->delalloc_root_lock);
9331 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9332 btrfs_put_root(root);
9333 if (ret < 0 || wbc.nr_to_write <= 0)
9335 spin_lock(&fs_info->delalloc_root_lock);
9337 spin_unlock(&fs_info->delalloc_root_lock);
9341 if (!list_empty(&splice)) {
9342 spin_lock(&fs_info->delalloc_root_lock);
9343 list_splice_tail(&splice, &fs_info->delalloc_roots);
9344 spin_unlock(&fs_info->delalloc_root_lock);
9346 mutex_unlock(&fs_info->delalloc_root_mutex);
9350 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9351 struct dentry *dentry, const char *symname)
9353 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9354 struct btrfs_trans_handle *trans;
9355 struct btrfs_root *root = BTRFS_I(dir)->root;
9356 struct btrfs_path *path;
9357 struct btrfs_key key;
9358 struct inode *inode;
9359 struct btrfs_new_inode_args new_inode_args = {
9363 unsigned int trans_num_items;
9368 struct btrfs_file_extent_item *ei;
9369 struct extent_buffer *leaf;
9371 name_len = strlen(symname);
9372 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9373 return -ENAMETOOLONG;
9375 inode = new_inode(dir->i_sb);
9378 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9379 inode->i_op = &btrfs_symlink_inode_operations;
9380 inode_nohighmem(inode);
9381 inode->i_mapping->a_ops = &btrfs_aops;
9382 btrfs_i_size_write(BTRFS_I(inode), name_len);
9383 inode_set_bytes(inode, name_len);
9385 new_inode_args.inode = inode;
9386 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9389 /* 1 additional item for the inline extent */
9392 trans = btrfs_start_transaction(root, trans_num_items);
9393 if (IS_ERR(trans)) {
9394 err = PTR_ERR(trans);
9395 goto out_new_inode_args;
9398 err = btrfs_create_new_inode(trans, &new_inode_args);
9402 path = btrfs_alloc_path();
9405 btrfs_abort_transaction(trans, err);
9406 discard_new_inode(inode);
9410 key.objectid = btrfs_ino(BTRFS_I(inode));
9412 key.type = BTRFS_EXTENT_DATA_KEY;
9413 datasize = btrfs_file_extent_calc_inline_size(name_len);
9414 err = btrfs_insert_empty_item(trans, root, path, &key,
9417 btrfs_abort_transaction(trans, err);
9418 btrfs_free_path(path);
9419 discard_new_inode(inode);
9423 leaf = path->nodes[0];
9424 ei = btrfs_item_ptr(leaf, path->slots[0],
9425 struct btrfs_file_extent_item);
9426 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9427 btrfs_set_file_extent_type(leaf, ei,
9428 BTRFS_FILE_EXTENT_INLINE);
9429 btrfs_set_file_extent_encryption(leaf, ei, 0);
9430 btrfs_set_file_extent_compression(leaf, ei, 0);
9431 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9432 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9434 ptr = btrfs_file_extent_inline_start(ei);
9435 write_extent_buffer(leaf, symname, ptr, name_len);
9436 btrfs_mark_buffer_dirty(leaf);
9437 btrfs_free_path(path);
9439 d_instantiate_new(dentry, inode);
9442 btrfs_end_transaction(trans);
9443 btrfs_btree_balance_dirty(fs_info);
9445 btrfs_new_inode_args_destroy(&new_inode_args);
9452 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9453 struct btrfs_trans_handle *trans_in,
9454 struct btrfs_inode *inode,
9455 struct btrfs_key *ins,
9458 struct btrfs_file_extent_item stack_fi;
9459 struct btrfs_replace_extent_info extent_info;
9460 struct btrfs_trans_handle *trans = trans_in;
9461 struct btrfs_path *path;
9462 u64 start = ins->objectid;
9463 u64 len = ins->offset;
9464 int qgroup_released;
9467 memset(&stack_fi, 0, sizeof(stack_fi));
9469 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9470 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9471 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9472 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9473 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9474 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9475 /* Encryption and other encoding is reserved and all 0 */
9477 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9478 if (qgroup_released < 0)
9479 return ERR_PTR(qgroup_released);
9482 ret = insert_reserved_file_extent(trans, inode,
9483 file_offset, &stack_fi,
9484 true, qgroup_released);
9490 extent_info.disk_offset = start;
9491 extent_info.disk_len = len;
9492 extent_info.data_offset = 0;
9493 extent_info.data_len = len;
9494 extent_info.file_offset = file_offset;
9495 extent_info.extent_buf = (char *)&stack_fi;
9496 extent_info.is_new_extent = true;
9497 extent_info.update_times = true;
9498 extent_info.qgroup_reserved = qgroup_released;
9499 extent_info.insertions = 0;
9501 path = btrfs_alloc_path();
9507 ret = btrfs_replace_file_extents(inode, path, file_offset,
9508 file_offset + len - 1, &extent_info,
9510 btrfs_free_path(path);
9517 * We have released qgroup data range at the beginning of the function,
9518 * and normally qgroup_released bytes will be freed when committing
9520 * But if we error out early, we have to free what we have released
9521 * or we leak qgroup data reservation.
9523 btrfs_qgroup_free_refroot(inode->root->fs_info,
9524 inode->root->root_key.objectid, qgroup_released,
9525 BTRFS_QGROUP_RSV_DATA);
9526 return ERR_PTR(ret);
9529 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9530 u64 start, u64 num_bytes, u64 min_size,
9531 loff_t actual_len, u64 *alloc_hint,
9532 struct btrfs_trans_handle *trans)
9534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9535 struct extent_map *em;
9536 struct btrfs_root *root = BTRFS_I(inode)->root;
9537 struct btrfs_key ins;
9538 u64 cur_offset = start;
9539 u64 clear_offset = start;
9542 u64 last_alloc = (u64)-1;
9544 bool own_trans = true;
9545 u64 end = start + num_bytes - 1;
9549 while (num_bytes > 0) {
9550 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9551 cur_bytes = max(cur_bytes, min_size);
9553 * If we are severely fragmented we could end up with really
9554 * small allocations, so if the allocator is returning small
9555 * chunks lets make its job easier by only searching for those
9558 cur_bytes = min(cur_bytes, last_alloc);
9559 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9560 min_size, 0, *alloc_hint, &ins, 1, 0);
9565 * We've reserved this space, and thus converted it from
9566 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9567 * from here on out we will only need to clear our reservation
9568 * for the remaining unreserved area, so advance our
9569 * clear_offset by our extent size.
9571 clear_offset += ins.offset;
9573 last_alloc = ins.offset;
9574 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9577 * Now that we inserted the prealloc extent we can finally
9578 * decrement the number of reservations in the block group.
9579 * If we did it before, we could race with relocation and have
9580 * relocation miss the reserved extent, making it fail later.
9582 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9583 if (IS_ERR(trans)) {
9584 ret = PTR_ERR(trans);
9585 btrfs_free_reserved_extent(fs_info, ins.objectid,
9590 em = alloc_extent_map();
9592 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9593 cur_offset + ins.offset - 1, false);
9594 btrfs_set_inode_full_sync(BTRFS_I(inode));
9598 em->start = cur_offset;
9599 em->orig_start = cur_offset;
9600 em->len = ins.offset;
9601 em->block_start = ins.objectid;
9602 em->block_len = ins.offset;
9603 em->orig_block_len = ins.offset;
9604 em->ram_bytes = ins.offset;
9605 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9606 em->generation = trans->transid;
9608 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9609 free_extent_map(em);
9611 num_bytes -= ins.offset;
9612 cur_offset += ins.offset;
9613 *alloc_hint = ins.objectid + ins.offset;
9615 inode_inc_iversion(inode);
9616 inode_set_ctime_current(inode);
9617 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9618 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9619 (actual_len > inode->i_size) &&
9620 (cur_offset > inode->i_size)) {
9621 if (cur_offset > actual_len)
9622 i_size = actual_len;
9624 i_size = cur_offset;
9625 i_size_write(inode, i_size);
9626 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9629 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9632 btrfs_abort_transaction(trans, ret);
9634 btrfs_end_transaction(trans);
9639 btrfs_end_transaction(trans);
9643 if (clear_offset < end)
9644 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9645 end - clear_offset + 1);
9649 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9650 u64 start, u64 num_bytes, u64 min_size,
9651 loff_t actual_len, u64 *alloc_hint)
9653 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9654 min_size, actual_len, alloc_hint,
9658 int btrfs_prealloc_file_range_trans(struct inode *inode,
9659 struct btrfs_trans_handle *trans, int mode,
9660 u64 start, u64 num_bytes, u64 min_size,
9661 loff_t actual_len, u64 *alloc_hint)
9663 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9664 min_size, actual_len, alloc_hint, trans);
9667 static int btrfs_permission(struct mnt_idmap *idmap,
9668 struct inode *inode, int mask)
9670 struct btrfs_root *root = BTRFS_I(inode)->root;
9671 umode_t mode = inode->i_mode;
9673 if (mask & MAY_WRITE &&
9674 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9675 if (btrfs_root_readonly(root))
9677 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9680 return generic_permission(idmap, inode, mask);
9683 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9684 struct file *file, umode_t mode)
9686 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9687 struct btrfs_trans_handle *trans;
9688 struct btrfs_root *root = BTRFS_I(dir)->root;
9689 struct inode *inode;
9690 struct btrfs_new_inode_args new_inode_args = {
9692 .dentry = file->f_path.dentry,
9695 unsigned int trans_num_items;
9698 inode = new_inode(dir->i_sb);
9701 inode_init_owner(idmap, inode, dir, mode);
9702 inode->i_fop = &btrfs_file_operations;
9703 inode->i_op = &btrfs_file_inode_operations;
9704 inode->i_mapping->a_ops = &btrfs_aops;
9706 new_inode_args.inode = inode;
9707 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9711 trans = btrfs_start_transaction(root, trans_num_items);
9712 if (IS_ERR(trans)) {
9713 ret = PTR_ERR(trans);
9714 goto out_new_inode_args;
9717 ret = btrfs_create_new_inode(trans, &new_inode_args);
9720 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9721 * set it to 1 because d_tmpfile() will issue a warning if the count is
9724 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9726 set_nlink(inode, 1);
9729 d_tmpfile(file, inode);
9730 unlock_new_inode(inode);
9731 mark_inode_dirty(inode);
9734 btrfs_end_transaction(trans);
9735 btrfs_btree_balance_dirty(fs_info);
9737 btrfs_new_inode_args_destroy(&new_inode_args);
9741 return finish_open_simple(file, ret);
9744 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9746 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9747 unsigned long index = start >> PAGE_SHIFT;
9748 unsigned long end_index = end >> PAGE_SHIFT;
9752 ASSERT(end + 1 - start <= U32_MAX);
9753 len = end + 1 - start;
9754 while (index <= end_index) {
9755 page = find_get_page(inode->vfs_inode.i_mapping, index);
9756 ASSERT(page); /* Pages should be in the extent_io_tree */
9758 btrfs_page_set_writeback(fs_info, page, start, len);
9764 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9767 switch (compress_type) {
9768 case BTRFS_COMPRESS_NONE:
9769 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9770 case BTRFS_COMPRESS_ZLIB:
9771 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9772 case BTRFS_COMPRESS_LZO:
9774 * The LZO format depends on the sector size. 64K is the maximum
9775 * sector size that we support.
9777 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9779 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9780 (fs_info->sectorsize_bits - 12);
9781 case BTRFS_COMPRESS_ZSTD:
9782 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9788 static ssize_t btrfs_encoded_read_inline(
9790 struct iov_iter *iter, u64 start,
9792 struct extent_state **cached_state,
9793 u64 extent_start, size_t count,
9794 struct btrfs_ioctl_encoded_io_args *encoded,
9797 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9798 struct btrfs_root *root = inode->root;
9799 struct btrfs_fs_info *fs_info = root->fs_info;
9800 struct extent_io_tree *io_tree = &inode->io_tree;
9801 struct btrfs_path *path;
9802 struct extent_buffer *leaf;
9803 struct btrfs_file_extent_item *item;
9809 path = btrfs_alloc_path();
9814 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9818 /* The extent item disappeared? */
9823 leaf = path->nodes[0];
9824 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9826 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9827 ptr = btrfs_file_extent_inline_start(item);
9829 encoded->len = min_t(u64, extent_start + ram_bytes,
9830 inode->vfs_inode.i_size) - iocb->ki_pos;
9831 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9832 btrfs_file_extent_compression(leaf, item));
9835 encoded->compression = ret;
9836 if (encoded->compression) {
9839 inline_size = btrfs_file_extent_inline_item_len(leaf,
9841 if (inline_size > count) {
9845 count = inline_size;
9846 encoded->unencoded_len = ram_bytes;
9847 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9849 count = min_t(u64, count, encoded->len);
9850 encoded->len = count;
9851 encoded->unencoded_len = count;
9852 ptr += iocb->ki_pos - extent_start;
9855 tmp = kmalloc(count, GFP_NOFS);
9860 read_extent_buffer(leaf, tmp, ptr, count);
9861 btrfs_release_path(path);
9862 unlock_extent(io_tree, start, lockend, cached_state);
9863 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9866 ret = copy_to_iter(tmp, count, iter);
9871 btrfs_free_path(path);
9875 struct btrfs_encoded_read_private {
9876 wait_queue_head_t wait;
9878 blk_status_t status;
9881 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9883 struct btrfs_encoded_read_private *priv = bbio->private;
9885 if (bbio->bio.bi_status) {
9887 * The memory barrier implied by the atomic_dec_return() here
9888 * pairs with the memory barrier implied by the
9889 * atomic_dec_return() or io_wait_event() in
9890 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9891 * write is observed before the load of status in
9892 * btrfs_encoded_read_regular_fill_pages().
9894 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9896 if (!atomic_dec_return(&priv->pending))
9897 wake_up(&priv->wait);
9898 bio_put(&bbio->bio);
9901 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9902 u64 file_offset, u64 disk_bytenr,
9903 u64 disk_io_size, struct page **pages)
9905 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9906 struct btrfs_encoded_read_private priv = {
9907 .pending = ATOMIC_INIT(1),
9909 unsigned long i = 0;
9910 struct btrfs_bio *bbio;
9912 init_waitqueue_head(&priv.wait);
9914 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9915 btrfs_encoded_read_endio, &priv);
9916 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9917 bbio->inode = inode;
9920 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9922 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9923 atomic_inc(&priv.pending);
9924 btrfs_submit_bio(bbio, 0);
9926 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9927 btrfs_encoded_read_endio, &priv);
9928 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9929 bbio->inode = inode;
9934 disk_bytenr += bytes;
9935 disk_io_size -= bytes;
9936 } while (disk_io_size);
9938 atomic_inc(&priv.pending);
9939 btrfs_submit_bio(bbio, 0);
9941 if (atomic_dec_return(&priv.pending))
9942 io_wait_event(priv.wait, !atomic_read(&priv.pending));
9943 /* See btrfs_encoded_read_endio() for ordering. */
9944 return blk_status_to_errno(READ_ONCE(priv.status));
9947 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9948 struct iov_iter *iter,
9949 u64 start, u64 lockend,
9950 struct extent_state **cached_state,
9951 u64 disk_bytenr, u64 disk_io_size,
9952 size_t count, bool compressed,
9955 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9956 struct extent_io_tree *io_tree = &inode->io_tree;
9957 struct page **pages;
9958 unsigned long nr_pages, i;
9963 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9964 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9967 ret = btrfs_alloc_page_array(nr_pages, pages);
9973 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9974 disk_io_size, pages);
9978 unlock_extent(io_tree, start, lockend, cached_state);
9979 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9986 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9987 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9990 while (cur < count) {
9991 size_t bytes = min_t(size_t, count - cur,
9992 PAGE_SIZE - page_offset);
9994 if (copy_page_to_iter(pages[i], page_offset, bytes,
10005 for (i = 0; i < nr_pages; i++) {
10007 __free_page(pages[i]);
10013 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10014 struct btrfs_ioctl_encoded_io_args *encoded)
10016 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10017 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10018 struct extent_io_tree *io_tree = &inode->io_tree;
10020 size_t count = iov_iter_count(iter);
10021 u64 start, lockend, disk_bytenr, disk_io_size;
10022 struct extent_state *cached_state = NULL;
10023 struct extent_map *em;
10024 bool unlocked = false;
10026 file_accessed(iocb->ki_filp);
10028 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10030 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10031 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10034 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10036 * We don't know how long the extent containing iocb->ki_pos is, but if
10037 * it's compressed we know that it won't be longer than this.
10039 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10042 struct btrfs_ordered_extent *ordered;
10044 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10045 lockend - start + 1);
10047 goto out_unlock_inode;
10048 lock_extent(io_tree, start, lockend, &cached_state);
10049 ordered = btrfs_lookup_ordered_range(inode, start,
10050 lockend - start + 1);
10053 btrfs_put_ordered_extent(ordered);
10054 unlock_extent(io_tree, start, lockend, &cached_state);
10058 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10061 goto out_unlock_extent;
10064 if (em->block_start == EXTENT_MAP_INLINE) {
10065 u64 extent_start = em->start;
10068 * For inline extents we get everything we need out of the
10071 free_extent_map(em);
10073 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10074 &cached_state, extent_start,
10075 count, encoded, &unlocked);
10080 * We only want to return up to EOF even if the extent extends beyond
10083 encoded->len = min_t(u64, extent_map_end(em),
10084 inode->vfs_inode.i_size) - iocb->ki_pos;
10085 if (em->block_start == EXTENT_MAP_HOLE ||
10086 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10087 disk_bytenr = EXTENT_MAP_HOLE;
10088 count = min_t(u64, count, encoded->len);
10089 encoded->len = count;
10090 encoded->unencoded_len = count;
10091 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10092 disk_bytenr = em->block_start;
10094 * Bail if the buffer isn't large enough to return the whole
10095 * compressed extent.
10097 if (em->block_len > count) {
10101 disk_io_size = em->block_len;
10102 count = em->block_len;
10103 encoded->unencoded_len = em->ram_bytes;
10104 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10105 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10106 em->compress_type);
10109 encoded->compression = ret;
10111 disk_bytenr = em->block_start + (start - em->start);
10112 if (encoded->len > count)
10113 encoded->len = count;
10115 * Don't read beyond what we locked. This also limits the page
10116 * allocations that we'll do.
10118 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10119 count = start + disk_io_size - iocb->ki_pos;
10120 encoded->len = count;
10121 encoded->unencoded_len = count;
10122 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10124 free_extent_map(em);
10127 if (disk_bytenr == EXTENT_MAP_HOLE) {
10128 unlock_extent(io_tree, start, lockend, &cached_state);
10129 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10131 ret = iov_iter_zero(count, iter);
10135 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10136 &cached_state, disk_bytenr,
10137 disk_io_size, count,
10138 encoded->compression,
10144 iocb->ki_pos += encoded->len;
10146 free_extent_map(em);
10149 unlock_extent(io_tree, start, lockend, &cached_state);
10152 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10156 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10157 const struct btrfs_ioctl_encoded_io_args *encoded)
10159 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10160 struct btrfs_root *root = inode->root;
10161 struct btrfs_fs_info *fs_info = root->fs_info;
10162 struct extent_io_tree *io_tree = &inode->io_tree;
10163 struct extent_changeset *data_reserved = NULL;
10164 struct extent_state *cached_state = NULL;
10165 struct btrfs_ordered_extent *ordered;
10169 u64 num_bytes, ram_bytes, disk_num_bytes;
10170 unsigned long nr_pages, i;
10171 struct page **pages;
10172 struct btrfs_key ins;
10173 bool extent_reserved = false;
10174 struct extent_map *em;
10177 switch (encoded->compression) {
10178 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10179 compression = BTRFS_COMPRESS_ZLIB;
10181 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10182 compression = BTRFS_COMPRESS_ZSTD;
10184 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10185 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10186 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10187 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10188 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10189 /* The sector size must match for LZO. */
10190 if (encoded->compression -
10191 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10192 fs_info->sectorsize_bits)
10194 compression = BTRFS_COMPRESS_LZO;
10199 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10202 orig_count = iov_iter_count(from);
10204 /* The extent size must be sane. */
10205 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10206 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10210 * The compressed data must be smaller than the decompressed data.
10212 * It's of course possible for data to compress to larger or the same
10213 * size, but the buffered I/O path falls back to no compression for such
10214 * data, and we don't want to break any assumptions by creating these
10217 * Note that this is less strict than the current check we have that the
10218 * compressed data must be at least one sector smaller than the
10219 * decompressed data. We only want to enforce the weaker requirement
10220 * from old kernels that it is at least one byte smaller.
10222 if (orig_count >= encoded->unencoded_len)
10225 /* The extent must start on a sector boundary. */
10226 start = iocb->ki_pos;
10227 if (!IS_ALIGNED(start, fs_info->sectorsize))
10231 * The extent must end on a sector boundary. However, we allow a write
10232 * which ends at or extends i_size to have an unaligned length; we round
10233 * up the extent size and set i_size to the unaligned end.
10235 if (start + encoded->len < inode->vfs_inode.i_size &&
10236 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10239 /* Finally, the offset in the unencoded data must be sector-aligned. */
10240 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10243 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10244 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10245 end = start + num_bytes - 1;
10248 * If the extent cannot be inline, the compressed data on disk must be
10249 * sector-aligned. For convenience, we extend it with zeroes if it
10252 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10253 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10254 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10257 for (i = 0; i < nr_pages; i++) {
10258 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10261 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10266 kaddr = kmap_local_page(pages[i]);
10267 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10268 kunmap_local(kaddr);
10272 if (bytes < PAGE_SIZE)
10273 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10274 kunmap_local(kaddr);
10278 struct btrfs_ordered_extent *ordered;
10280 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10283 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10284 start >> PAGE_SHIFT,
10285 end >> PAGE_SHIFT);
10288 lock_extent(io_tree, start, end, &cached_state);
10289 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10291 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10294 btrfs_put_ordered_extent(ordered);
10295 unlock_extent(io_tree, start, end, &cached_state);
10300 * We don't use the higher-level delalloc space functions because our
10301 * num_bytes and disk_num_bytes are different.
10303 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10306 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10308 goto out_free_data_space;
10309 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10312 goto out_qgroup_free_data;
10314 /* Try an inline extent first. */
10315 if (start == 0 && encoded->unencoded_len == encoded->len &&
10316 encoded->unencoded_offset == 0) {
10317 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10318 compression, pages, true);
10322 goto out_delalloc_release;
10326 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10327 disk_num_bytes, 0, 0, &ins, 1, 1);
10329 goto out_delalloc_release;
10330 extent_reserved = true;
10332 em = create_io_em(inode, start, num_bytes,
10333 start - encoded->unencoded_offset, ins.objectid,
10334 ins.offset, ins.offset, ram_bytes, compression,
10335 BTRFS_ORDERED_COMPRESSED);
10338 goto out_free_reserved;
10340 free_extent_map(em);
10342 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10343 ins.objectid, ins.offset,
10344 encoded->unencoded_offset,
10345 (1 << BTRFS_ORDERED_ENCODED) |
10346 (1 << BTRFS_ORDERED_COMPRESSED),
10348 if (IS_ERR(ordered)) {
10349 btrfs_drop_extent_map_range(inode, start, end, false);
10350 ret = PTR_ERR(ordered);
10351 goto out_free_reserved;
10353 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10355 if (start + encoded->len > inode->vfs_inode.i_size)
10356 i_size_write(&inode->vfs_inode, start + encoded->len);
10358 unlock_extent(io_tree, start, end, &cached_state);
10360 btrfs_delalloc_release_extents(inode, num_bytes);
10362 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10367 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10368 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10369 out_delalloc_release:
10370 btrfs_delalloc_release_extents(inode, num_bytes);
10371 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10372 out_qgroup_free_data:
10374 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10375 out_free_data_space:
10377 * If btrfs_reserve_extent() succeeded, then we already decremented
10380 if (!extent_reserved)
10381 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10383 unlock_extent(io_tree, start, end, &cached_state);
10385 for (i = 0; i < nr_pages; i++) {
10387 __free_page(pages[i]);
10392 iocb->ki_pos += encoded->len;
10398 * Add an entry indicating a block group or device which is pinned by a
10399 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10400 * negative errno on failure.
10402 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10403 bool is_block_group)
10405 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10406 struct btrfs_swapfile_pin *sp, *entry;
10407 struct rb_node **p;
10408 struct rb_node *parent = NULL;
10410 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10415 sp->is_block_group = is_block_group;
10416 sp->bg_extent_count = 1;
10418 spin_lock(&fs_info->swapfile_pins_lock);
10419 p = &fs_info->swapfile_pins.rb_node;
10422 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10423 if (sp->ptr < entry->ptr ||
10424 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10425 p = &(*p)->rb_left;
10426 } else if (sp->ptr > entry->ptr ||
10427 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10428 p = &(*p)->rb_right;
10430 if (is_block_group)
10431 entry->bg_extent_count++;
10432 spin_unlock(&fs_info->swapfile_pins_lock);
10437 rb_link_node(&sp->node, parent, p);
10438 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10439 spin_unlock(&fs_info->swapfile_pins_lock);
10443 /* Free all of the entries pinned by this swapfile. */
10444 static void btrfs_free_swapfile_pins(struct inode *inode)
10446 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10447 struct btrfs_swapfile_pin *sp;
10448 struct rb_node *node, *next;
10450 spin_lock(&fs_info->swapfile_pins_lock);
10451 node = rb_first(&fs_info->swapfile_pins);
10453 next = rb_next(node);
10454 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10455 if (sp->inode == inode) {
10456 rb_erase(&sp->node, &fs_info->swapfile_pins);
10457 if (sp->is_block_group) {
10458 btrfs_dec_block_group_swap_extents(sp->ptr,
10459 sp->bg_extent_count);
10460 btrfs_put_block_group(sp->ptr);
10466 spin_unlock(&fs_info->swapfile_pins_lock);
10469 struct btrfs_swap_info {
10475 unsigned long nr_pages;
10479 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10480 struct btrfs_swap_info *bsi)
10482 unsigned long nr_pages;
10483 unsigned long max_pages;
10484 u64 first_ppage, first_ppage_reported, next_ppage;
10488 * Our swapfile may have had its size extended after the swap header was
10489 * written. In that case activating the swapfile should not go beyond
10490 * the max size set in the swap header.
10492 if (bsi->nr_pages >= sis->max)
10495 max_pages = sis->max - bsi->nr_pages;
10496 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10497 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10499 if (first_ppage >= next_ppage)
10501 nr_pages = next_ppage - first_ppage;
10502 nr_pages = min(nr_pages, max_pages);
10504 first_ppage_reported = first_ppage;
10505 if (bsi->start == 0)
10506 first_ppage_reported++;
10507 if (bsi->lowest_ppage > first_ppage_reported)
10508 bsi->lowest_ppage = first_ppage_reported;
10509 if (bsi->highest_ppage < (next_ppage - 1))
10510 bsi->highest_ppage = next_ppage - 1;
10512 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10515 bsi->nr_extents += ret;
10516 bsi->nr_pages += nr_pages;
10520 static void btrfs_swap_deactivate(struct file *file)
10522 struct inode *inode = file_inode(file);
10524 btrfs_free_swapfile_pins(inode);
10525 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10528 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10531 struct inode *inode = file_inode(file);
10532 struct btrfs_root *root = BTRFS_I(inode)->root;
10533 struct btrfs_fs_info *fs_info = root->fs_info;
10534 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10535 struct extent_state *cached_state = NULL;
10536 struct extent_map *em = NULL;
10537 struct btrfs_device *device = NULL;
10538 struct btrfs_swap_info bsi = {
10539 .lowest_ppage = (sector_t)-1ULL,
10546 * If the swap file was just created, make sure delalloc is done. If the
10547 * file changes again after this, the user is doing something stupid and
10548 * we don't really care.
10550 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10555 * The inode is locked, so these flags won't change after we check them.
10557 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10558 btrfs_warn(fs_info, "swapfile must not be compressed");
10561 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10562 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10565 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10566 btrfs_warn(fs_info, "swapfile must not be checksummed");
10571 * Balance or device remove/replace/resize can move stuff around from
10572 * under us. The exclop protection makes sure they aren't running/won't
10573 * run concurrently while we are mapping the swap extents, and
10574 * fs_info->swapfile_pins prevents them from running while the swap
10575 * file is active and moving the extents. Note that this also prevents
10576 * a concurrent device add which isn't actually necessary, but it's not
10577 * really worth the trouble to allow it.
10579 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10580 btrfs_warn(fs_info,
10581 "cannot activate swapfile while exclusive operation is running");
10586 * Prevent snapshot creation while we are activating the swap file.
10587 * We do not want to race with snapshot creation. If snapshot creation
10588 * already started before we bumped nr_swapfiles from 0 to 1 and
10589 * completes before the first write into the swap file after it is
10590 * activated, than that write would fallback to COW.
10592 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10593 btrfs_exclop_finish(fs_info);
10594 btrfs_warn(fs_info,
10595 "cannot activate swapfile because snapshot creation is in progress");
10599 * Snapshots can create extents which require COW even if NODATACOW is
10600 * set. We use this counter to prevent snapshots. We must increment it
10601 * before walking the extents because we don't want a concurrent
10602 * snapshot to run after we've already checked the extents.
10604 * It is possible that subvolume is marked for deletion but still not
10605 * removed yet. To prevent this race, we check the root status before
10606 * activating the swapfile.
10608 spin_lock(&root->root_item_lock);
10609 if (btrfs_root_dead(root)) {
10610 spin_unlock(&root->root_item_lock);
10612 btrfs_exclop_finish(fs_info);
10613 btrfs_warn(fs_info,
10614 "cannot activate swapfile because subvolume %llu is being deleted",
10615 root->root_key.objectid);
10618 atomic_inc(&root->nr_swapfiles);
10619 spin_unlock(&root->root_item_lock);
10621 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10623 lock_extent(io_tree, 0, isize - 1, &cached_state);
10625 while (start < isize) {
10626 u64 logical_block_start, physical_block_start;
10627 struct btrfs_block_group *bg;
10628 u64 len = isize - start;
10630 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10636 if (em->block_start == EXTENT_MAP_HOLE) {
10637 btrfs_warn(fs_info, "swapfile must not have holes");
10641 if (em->block_start == EXTENT_MAP_INLINE) {
10643 * It's unlikely we'll ever actually find ourselves
10644 * here, as a file small enough to fit inline won't be
10645 * big enough to store more than the swap header, but in
10646 * case something changes in the future, let's catch it
10647 * here rather than later.
10649 btrfs_warn(fs_info, "swapfile must not be inline");
10653 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10654 btrfs_warn(fs_info, "swapfile must not be compressed");
10659 logical_block_start = em->block_start + (start - em->start);
10660 len = min(len, em->len - (start - em->start));
10661 free_extent_map(em);
10664 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10670 btrfs_warn(fs_info,
10671 "swapfile must not be copy-on-write");
10676 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10682 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10683 btrfs_warn(fs_info,
10684 "swapfile must have single data profile");
10689 if (device == NULL) {
10690 device = em->map_lookup->stripes[0].dev;
10691 ret = btrfs_add_swapfile_pin(inode, device, false);
10696 } else if (device != em->map_lookup->stripes[0].dev) {
10697 btrfs_warn(fs_info, "swapfile must be on one device");
10702 physical_block_start = (em->map_lookup->stripes[0].physical +
10703 (logical_block_start - em->start));
10704 len = min(len, em->len - (logical_block_start - em->start));
10705 free_extent_map(em);
10708 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10710 btrfs_warn(fs_info,
10711 "could not find block group containing swapfile");
10716 if (!btrfs_inc_block_group_swap_extents(bg)) {
10717 btrfs_warn(fs_info,
10718 "block group for swapfile at %llu is read-only%s",
10720 atomic_read(&fs_info->scrubs_running) ?
10721 " (scrub running)" : "");
10722 btrfs_put_block_group(bg);
10727 ret = btrfs_add_swapfile_pin(inode, bg, true);
10729 btrfs_put_block_group(bg);
10736 if (bsi.block_len &&
10737 bsi.block_start + bsi.block_len == physical_block_start) {
10738 bsi.block_len += len;
10740 if (bsi.block_len) {
10741 ret = btrfs_add_swap_extent(sis, &bsi);
10746 bsi.block_start = physical_block_start;
10747 bsi.block_len = len;
10754 ret = btrfs_add_swap_extent(sis, &bsi);
10757 if (!IS_ERR_OR_NULL(em))
10758 free_extent_map(em);
10760 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10763 btrfs_swap_deactivate(file);
10765 btrfs_drew_write_unlock(&root->snapshot_lock);
10767 btrfs_exclop_finish(fs_info);
10773 sis->bdev = device->bdev;
10774 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10775 sis->max = bsi.nr_pages;
10776 sis->pages = bsi.nr_pages - 1;
10777 sis->highest_bit = bsi.nr_pages - 1;
10778 return bsi.nr_extents;
10781 static void btrfs_swap_deactivate(struct file *file)
10785 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10788 return -EOPNOTSUPP;
10793 * Update the number of bytes used in the VFS' inode. When we replace extents in
10794 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10795 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10796 * always get a correct value.
10798 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10799 const u64 add_bytes,
10800 const u64 del_bytes)
10802 if (add_bytes == del_bytes)
10805 spin_lock(&inode->lock);
10807 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10809 inode_add_bytes(&inode->vfs_inode, add_bytes);
10810 spin_unlock(&inode->lock);
10814 * Verify that there are no ordered extents for a given file range.
10816 * @inode: The target inode.
10817 * @start: Start offset of the file range, should be sector size aligned.
10818 * @end: End offset (inclusive) of the file range, its value +1 should be
10819 * sector size aligned.
10821 * This should typically be used for cases where we locked an inode's VFS lock in
10822 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10823 * we have flushed all delalloc in the range, we have waited for all ordered
10824 * extents in the range to complete and finally we have locked the file range in
10825 * the inode's io_tree.
10827 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10829 struct btrfs_root *root = inode->root;
10830 struct btrfs_ordered_extent *ordered;
10832 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10835 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10837 btrfs_err(root->fs_info,
10838 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10839 start, end, btrfs_ino(inode), root->root_key.objectid,
10840 ordered->file_offset,
10841 ordered->file_offset + ordered->num_bytes - 1);
10842 btrfs_put_ordered_extent(ordered);
10845 ASSERT(ordered == NULL);
10848 static const struct inode_operations btrfs_dir_inode_operations = {
10849 .getattr = btrfs_getattr,
10850 .lookup = btrfs_lookup,
10851 .create = btrfs_create,
10852 .unlink = btrfs_unlink,
10853 .link = btrfs_link,
10854 .mkdir = btrfs_mkdir,
10855 .rmdir = btrfs_rmdir,
10856 .rename = btrfs_rename2,
10857 .symlink = btrfs_symlink,
10858 .setattr = btrfs_setattr,
10859 .mknod = btrfs_mknod,
10860 .listxattr = btrfs_listxattr,
10861 .permission = btrfs_permission,
10862 .get_inode_acl = btrfs_get_acl,
10863 .set_acl = btrfs_set_acl,
10864 .update_time = btrfs_update_time,
10865 .tmpfile = btrfs_tmpfile,
10866 .fileattr_get = btrfs_fileattr_get,
10867 .fileattr_set = btrfs_fileattr_set,
10870 static const struct file_operations btrfs_dir_file_operations = {
10871 .llseek = generic_file_llseek,
10872 .read = generic_read_dir,
10873 .iterate_shared = btrfs_real_readdir,
10874 .open = btrfs_opendir,
10875 .unlocked_ioctl = btrfs_ioctl,
10876 #ifdef CONFIG_COMPAT
10877 .compat_ioctl = btrfs_compat_ioctl,
10879 .release = btrfs_release_file,
10880 .fsync = btrfs_sync_file,
10884 * btrfs doesn't support the bmap operation because swapfiles
10885 * use bmap to make a mapping of extents in the file. They assume
10886 * these extents won't change over the life of the file and they
10887 * use the bmap result to do IO directly to the drive.
10889 * the btrfs bmap call would return logical addresses that aren't
10890 * suitable for IO and they also will change frequently as COW
10891 * operations happen. So, swapfile + btrfs == corruption.
10893 * For now we're avoiding this by dropping bmap.
10895 static const struct address_space_operations btrfs_aops = {
10896 .read_folio = btrfs_read_folio,
10897 .writepages = btrfs_writepages,
10898 .readahead = btrfs_readahead,
10899 .invalidate_folio = btrfs_invalidate_folio,
10900 .release_folio = btrfs_release_folio,
10901 .migrate_folio = btrfs_migrate_folio,
10902 .dirty_folio = filemap_dirty_folio,
10903 .error_remove_page = generic_error_remove_page,
10904 .swap_activate = btrfs_swap_activate,
10905 .swap_deactivate = btrfs_swap_deactivate,
10908 static const struct inode_operations btrfs_file_inode_operations = {
10909 .getattr = btrfs_getattr,
10910 .setattr = btrfs_setattr,
10911 .listxattr = btrfs_listxattr,
10912 .permission = btrfs_permission,
10913 .fiemap = btrfs_fiemap,
10914 .get_inode_acl = btrfs_get_acl,
10915 .set_acl = btrfs_set_acl,
10916 .update_time = btrfs_update_time,
10917 .fileattr_get = btrfs_fileattr_get,
10918 .fileattr_set = btrfs_fileattr_set,
10920 static const struct inode_operations btrfs_special_inode_operations = {
10921 .getattr = btrfs_getattr,
10922 .setattr = btrfs_setattr,
10923 .permission = btrfs_permission,
10924 .listxattr = btrfs_listxattr,
10925 .get_inode_acl = btrfs_get_acl,
10926 .set_acl = btrfs_set_acl,
10927 .update_time = btrfs_update_time,
10929 static const struct inode_operations btrfs_symlink_inode_operations = {
10930 .get_link = page_get_link,
10931 .getattr = btrfs_getattr,
10932 .setattr = btrfs_setattr,
10933 .permission = btrfs_permission,
10934 .listxattr = btrfs_listxattr,
10935 .update_time = btrfs_update_time,
10938 const struct dentry_operations btrfs_dentry_operations = {
10939 .d_delete = btrfs_dentry_delete,