1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
47 #include "compression.h"
49 #include "free-space-cache.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
57 #include "inode-item.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
69 #include "relocation.h"
75 struct btrfs_iget_args {
77 struct btrfs_root *root;
80 struct btrfs_dio_data {
82 struct extent_changeset *data_reserved;
83 struct btrfs_ordered_extent *ordered;
84 bool data_space_reserved;
88 struct btrfs_dio_private {
93 /* This must be last */
94 struct btrfs_bio bbio;
97 static struct bio_set btrfs_dio_bioset;
99 struct btrfs_rename_ctx {
100 /* Output field. Stores the index number of the old directory entry. */
105 * Used by data_reloc_print_warning_inode() to pass needed info for filename
106 * resolution and output of error message.
108 struct data_reloc_warn {
109 struct btrfs_path path;
110 struct btrfs_fs_info *fs_info;
111 u64 extent_item_size;
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
123 static struct kmem_cache *btrfs_inode_cachep;
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
128 static noinline int cow_file_range(struct btrfs_inode *inode,
129 struct page *locked_page,
130 u64 start, u64 end, int *page_started,
131 unsigned long *nr_written, u64 *done_offset,
132 bool keep_locked, bool no_inline);
133 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
134 u64 len, u64 orig_start, u64 block_start,
135 u64 block_len, u64 orig_block_len,
136 u64 ram_bytes, int compress_type,
139 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
140 u64 root, void *warn_ctx)
142 struct data_reloc_warn *warn = warn_ctx;
143 struct btrfs_fs_info *fs_info = warn->fs_info;
144 struct extent_buffer *eb;
145 struct btrfs_inode_item *inode_item;
146 struct inode_fs_paths *ipath = NULL;
147 struct btrfs_root *local_root;
148 struct btrfs_key key;
149 unsigned int nofs_flag;
153 local_root = btrfs_get_fs_root(fs_info, root, true);
154 if (IS_ERR(local_root)) {
155 ret = PTR_ERR(local_root);
159 /* This makes the path point to (inum INODE_ITEM ioff). */
161 key.type = BTRFS_INODE_ITEM_KEY;
164 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
166 btrfs_put_root(local_root);
167 btrfs_release_path(&warn->path);
171 eb = warn->path.nodes[0];
172 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
173 nlink = btrfs_inode_nlink(eb, inode_item);
174 btrfs_release_path(&warn->path);
176 nofs_flag = memalloc_nofs_save();
177 ipath = init_ipath(4096, local_root, &warn->path);
178 memalloc_nofs_restore(nofs_flag);
180 btrfs_put_root(local_root);
181 ret = PTR_ERR(ipath);
184 * -ENOMEM, not a critical error, just output an generic error
188 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
189 warn->logical, warn->mirror_num, root, inum, offset);
192 ret = paths_from_inode(inum, ipath);
197 * We deliberately ignore the bit ipath might have been too small to
198 * hold all of the paths here
200 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
202 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
203 warn->logical, warn->mirror_num, root, inum, offset,
204 fs_info->sectorsize, nlink,
205 (char *)(unsigned long)ipath->fspath->val[i]);
208 btrfs_put_root(local_root);
214 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
215 warn->logical, warn->mirror_num, root, inum, offset, ret);
222 * Do extra user-friendly error output (e.g. lookup all the affected files).
224 * Return true if we succeeded doing the backref lookup.
225 * Return false if such lookup failed, and has to fallback to the old error message.
227 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
228 const u8 *csum, const u8 *csum_expected,
231 struct btrfs_fs_info *fs_info = inode->root->fs_info;
232 struct btrfs_path path = { 0 };
233 struct btrfs_key found_key = { 0 };
234 struct extent_buffer *eb;
235 struct btrfs_extent_item *ei;
236 const u32 csum_size = fs_info->csum_size;
242 mutex_lock(&fs_info->reloc_mutex);
243 logical = btrfs_get_reloc_bg_bytenr(fs_info);
244 mutex_unlock(&fs_info->reloc_mutex);
246 if (logical == U64_MAX) {
247 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
248 btrfs_warn_rl(fs_info,
249 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
250 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
251 CSUM_FMT_VALUE(csum_size, csum),
252 CSUM_FMT_VALUE(csum_size, csum_expected),
258 btrfs_warn_rl(fs_info,
259 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
260 inode->root->root_key.objectid,
261 btrfs_ino(inode), file_off, logical,
262 CSUM_FMT_VALUE(csum_size, csum),
263 CSUM_FMT_VALUE(csum_size, csum_expected),
266 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
268 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
273 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
274 item_size = btrfs_item_size(eb, path.slots[0]);
275 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
276 unsigned long ptr = 0;
281 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
282 item_size, &ref_root,
285 btrfs_warn_rl(fs_info,
286 "failed to resolve tree backref for logical %llu: %d",
293 btrfs_warn_rl(fs_info,
294 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
296 (ref_level ? "node" : "leaf"),
297 ref_level, ref_root);
299 btrfs_release_path(&path);
301 struct btrfs_backref_walk_ctx ctx = { 0 };
302 struct data_reloc_warn reloc_warn = { 0 };
304 btrfs_release_path(&path);
306 ctx.bytenr = found_key.objectid;
307 ctx.extent_item_pos = logical - found_key.objectid;
308 ctx.fs_info = fs_info;
310 reloc_warn.logical = logical;
311 reloc_warn.extent_item_size = found_key.offset;
312 reloc_warn.mirror_num = mirror_num;
313 reloc_warn.fs_info = fs_info;
315 iterate_extent_inodes(&ctx, true,
316 data_reloc_print_warning_inode, &reloc_warn);
320 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
321 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
323 struct btrfs_root *root = inode->root;
324 const u32 csum_size = root->fs_info->csum_size;
326 /* For data reloc tree, it's better to do a backref lookup instead. */
327 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
328 return print_data_reloc_error(inode, logical_start, csum,
329 csum_expected, mirror_num);
331 /* Output without objectid, which is more meaningful */
332 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
333 btrfs_warn_rl(root->fs_info,
334 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
335 root->root_key.objectid, btrfs_ino(inode),
337 CSUM_FMT_VALUE(csum_size, csum),
338 CSUM_FMT_VALUE(csum_size, csum_expected),
341 btrfs_warn_rl(root->fs_info,
342 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
343 root->root_key.objectid, btrfs_ino(inode),
345 CSUM_FMT_VALUE(csum_size, csum),
346 CSUM_FMT_VALUE(csum_size, csum_expected),
352 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
354 * ilock_flags can have the following bit set:
356 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
357 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
359 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
361 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
363 if (ilock_flags & BTRFS_ILOCK_SHARED) {
364 if (ilock_flags & BTRFS_ILOCK_TRY) {
365 if (!inode_trylock_shared(&inode->vfs_inode))
370 inode_lock_shared(&inode->vfs_inode);
372 if (ilock_flags & BTRFS_ILOCK_TRY) {
373 if (!inode_trylock(&inode->vfs_inode))
378 inode_lock(&inode->vfs_inode);
380 if (ilock_flags & BTRFS_ILOCK_MMAP)
381 down_write(&inode->i_mmap_lock);
386 * btrfs_inode_unlock - unock inode i_rwsem
388 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
389 * to decide whether the lock acquired is shared or exclusive.
391 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
393 if (ilock_flags & BTRFS_ILOCK_MMAP)
394 up_write(&inode->i_mmap_lock);
395 if (ilock_flags & BTRFS_ILOCK_SHARED)
396 inode_unlock_shared(&inode->vfs_inode);
398 inode_unlock(&inode->vfs_inode);
402 * Cleanup all submitted ordered extents in specified range to handle errors
403 * from the btrfs_run_delalloc_range() callback.
405 * NOTE: caller must ensure that when an error happens, it can not call
406 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
407 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
408 * to be released, which we want to happen only when finishing the ordered
409 * extent (btrfs_finish_ordered_io()).
411 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
412 struct page *locked_page,
413 u64 offset, u64 bytes)
415 unsigned long index = offset >> PAGE_SHIFT;
416 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
417 u64 page_start = 0, page_end = 0;
421 page_start = page_offset(locked_page);
422 page_end = page_start + PAGE_SIZE - 1;
425 while (index <= end_index) {
427 * For locked page, we will call btrfs_mark_ordered_io_finished
428 * through btrfs_mark_ordered_io_finished() on it
429 * in run_delalloc_range() for the error handling, which will
430 * clear page Ordered and run the ordered extent accounting.
432 * Here we can't just clear the Ordered bit, or
433 * btrfs_mark_ordered_io_finished() would skip the accounting
434 * for the page range, and the ordered extent will never finish.
436 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
440 page = find_get_page(inode->vfs_inode.i_mapping, index);
446 * Here we just clear all Ordered bits for every page in the
447 * range, then btrfs_mark_ordered_io_finished() will handle
448 * the ordered extent accounting for the range.
450 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
456 /* The locked page covers the full range, nothing needs to be done */
457 if (bytes + offset <= page_start + PAGE_SIZE)
460 * In case this page belongs to the delalloc range being
461 * instantiated then skip it, since the first page of a range is
462 * going to be properly cleaned up by the caller of
465 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
466 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
467 offset = page_offset(locked_page) + PAGE_SIZE;
471 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
474 static int btrfs_dirty_inode(struct btrfs_inode *inode);
476 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
477 struct btrfs_new_inode_args *args)
481 if (args->default_acl) {
482 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
488 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
492 if (!args->default_acl && !args->acl)
493 cache_no_acl(args->inode);
494 return btrfs_xattr_security_init(trans, args->inode, args->dir,
495 &args->dentry->d_name);
499 * this does all the hard work for inserting an inline extent into
500 * the btree. The caller should have done a btrfs_drop_extents so that
501 * no overlapping inline items exist in the btree
503 static int insert_inline_extent(struct btrfs_trans_handle *trans,
504 struct btrfs_path *path,
505 struct btrfs_inode *inode, bool extent_inserted,
506 size_t size, size_t compressed_size,
508 struct page **compressed_pages,
511 struct btrfs_root *root = inode->root;
512 struct extent_buffer *leaf;
513 struct page *page = NULL;
516 struct btrfs_file_extent_item *ei;
518 size_t cur_size = size;
521 ASSERT((compressed_size > 0 && compressed_pages) ||
522 (compressed_size == 0 && !compressed_pages));
524 if (compressed_size && compressed_pages)
525 cur_size = compressed_size;
527 if (!extent_inserted) {
528 struct btrfs_key key;
531 key.objectid = btrfs_ino(inode);
533 key.type = BTRFS_EXTENT_DATA_KEY;
535 datasize = btrfs_file_extent_calc_inline_size(cur_size);
536 ret = btrfs_insert_empty_item(trans, root, path, &key,
541 leaf = path->nodes[0];
542 ei = btrfs_item_ptr(leaf, path->slots[0],
543 struct btrfs_file_extent_item);
544 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
545 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
546 btrfs_set_file_extent_encryption(leaf, ei, 0);
547 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
548 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
549 ptr = btrfs_file_extent_inline_start(ei);
551 if (compress_type != BTRFS_COMPRESS_NONE) {
554 while (compressed_size > 0) {
555 cpage = compressed_pages[i];
556 cur_size = min_t(unsigned long, compressed_size,
559 kaddr = kmap_local_page(cpage);
560 write_extent_buffer(leaf, kaddr, ptr, cur_size);
565 compressed_size -= cur_size;
567 btrfs_set_file_extent_compression(leaf, ei,
570 page = find_get_page(inode->vfs_inode.i_mapping, 0);
571 btrfs_set_file_extent_compression(leaf, ei, 0);
572 kaddr = kmap_local_page(page);
573 write_extent_buffer(leaf, kaddr, ptr, size);
577 btrfs_mark_buffer_dirty(leaf);
578 btrfs_release_path(path);
581 * We align size to sectorsize for inline extents just for simplicity
584 ret = btrfs_inode_set_file_extent_range(inode, 0,
585 ALIGN(size, root->fs_info->sectorsize));
590 * We're an inline extent, so nobody can extend the file past i_size
591 * without locking a page we already have locked.
593 * We must do any i_size and inode updates before we unlock the pages.
594 * Otherwise we could end up racing with unlink.
596 i_size = i_size_read(&inode->vfs_inode);
597 if (update_i_size && size > i_size) {
598 i_size_write(&inode->vfs_inode, size);
601 inode->disk_i_size = i_size;
609 * conditionally insert an inline extent into the file. This
610 * does the checks required to make sure the data is small enough
611 * to fit as an inline extent.
613 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
614 size_t compressed_size,
616 struct page **compressed_pages,
619 struct btrfs_drop_extents_args drop_args = { 0 };
620 struct btrfs_root *root = inode->root;
621 struct btrfs_fs_info *fs_info = root->fs_info;
622 struct btrfs_trans_handle *trans;
623 u64 data_len = (compressed_size ?: size);
625 struct btrfs_path *path;
628 * We can create an inline extent if it ends at or beyond the current
629 * i_size, is no larger than a sector (decompressed), and the (possibly
630 * compressed) data fits in a leaf and the configured maximum inline
633 if (size < i_size_read(&inode->vfs_inode) ||
634 size > fs_info->sectorsize ||
635 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
636 data_len > fs_info->max_inline)
639 path = btrfs_alloc_path();
643 trans = btrfs_join_transaction(root);
645 btrfs_free_path(path);
646 return PTR_ERR(trans);
648 trans->block_rsv = &inode->block_rsv;
650 drop_args.path = path;
652 drop_args.end = fs_info->sectorsize;
653 drop_args.drop_cache = true;
654 drop_args.replace_extent = true;
655 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
656 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
658 btrfs_abort_transaction(trans, ret);
662 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
663 size, compressed_size, compress_type,
664 compressed_pages, update_i_size);
665 if (ret && ret != -ENOSPC) {
666 btrfs_abort_transaction(trans, ret);
668 } else if (ret == -ENOSPC) {
673 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
674 ret = btrfs_update_inode(trans, root, inode);
675 if (ret && ret != -ENOSPC) {
676 btrfs_abort_transaction(trans, ret);
678 } else if (ret == -ENOSPC) {
683 btrfs_set_inode_full_sync(inode);
686 * Don't forget to free the reserved space, as for inlined extent
687 * it won't count as data extent, free them directly here.
688 * And at reserve time, it's always aligned to page size, so
689 * just free one page here.
691 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
692 btrfs_free_path(path);
693 btrfs_end_transaction(trans);
697 struct async_extent {
702 unsigned long nr_pages;
704 struct list_head list;
708 struct btrfs_inode *inode;
709 struct page *locked_page;
712 blk_opf_t write_flags;
713 struct list_head extents;
714 struct cgroup_subsys_state *blkcg_css;
715 struct btrfs_work work;
716 struct async_cow *async_cow;
721 struct async_chunk chunks[];
724 static noinline int add_async_extent(struct async_chunk *cow,
725 u64 start, u64 ram_size,
728 unsigned long nr_pages,
731 struct async_extent *async_extent;
733 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
734 BUG_ON(!async_extent); /* -ENOMEM */
735 async_extent->start = start;
736 async_extent->ram_size = ram_size;
737 async_extent->compressed_size = compressed_size;
738 async_extent->pages = pages;
739 async_extent->nr_pages = nr_pages;
740 async_extent->compress_type = compress_type;
741 list_add_tail(&async_extent->list, &cow->extents);
746 * Check if the inode needs to be submitted to compression, based on mount
747 * options, defragmentation, properties or heuristics.
749 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
752 struct btrfs_fs_info *fs_info = inode->root->fs_info;
754 if (!btrfs_inode_can_compress(inode)) {
755 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
756 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
761 * Special check for subpage.
763 * We lock the full page then run each delalloc range in the page, thus
764 * for the following case, we will hit some subpage specific corner case:
767 * | |///////| |///////|
770 * In above case, both range A and range B will try to unlock the full
771 * page [0, 64K), causing the one finished later will have page
772 * unlocked already, triggering various page lock requirement BUG_ON()s.
774 * So here we add an artificial limit that subpage compression can only
775 * if the range is fully page aligned.
777 * In theory we only need to ensure the first page is fully covered, but
778 * the tailing partial page will be locked until the full compression
779 * finishes, delaying the write of other range.
781 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
782 * first to prevent any submitted async extent to unlock the full page.
783 * By this, we can ensure for subpage case that only the last async_cow
784 * will unlock the full page.
786 if (fs_info->sectorsize < PAGE_SIZE) {
787 if (!PAGE_ALIGNED(start) ||
788 !PAGE_ALIGNED(end + 1))
793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
796 if (inode->defrag_compress)
798 /* bad compression ratios */
799 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
801 if (btrfs_test_opt(fs_info, COMPRESS) ||
802 inode->flags & BTRFS_INODE_COMPRESS ||
803 inode->prop_compress)
804 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
808 static inline void inode_should_defrag(struct btrfs_inode *inode,
809 u64 start, u64 end, u64 num_bytes, u32 small_write)
811 /* If this is a small write inside eof, kick off a defrag */
812 if (num_bytes < small_write &&
813 (start > 0 || end + 1 < inode->disk_i_size))
814 btrfs_add_inode_defrag(NULL, inode, small_write);
818 * we create compressed extents in two phases. The first
819 * phase compresses a range of pages that have already been
820 * locked (both pages and state bits are locked).
822 * This is done inside an ordered work queue, and the compression
823 * is spread across many cpus. The actual IO submission is step
824 * two, and the ordered work queue takes care of making sure that
825 * happens in the same order things were put onto the queue by
826 * writepages and friends.
828 * If this code finds it can't get good compression, it puts an
829 * entry onto the work queue to write the uncompressed bytes. This
830 * makes sure that both compressed inodes and uncompressed inodes
831 * are written in the same order that the flusher thread sent them
834 static noinline int compress_file_range(struct async_chunk *async_chunk)
836 struct btrfs_inode *inode = async_chunk->inode;
837 struct btrfs_fs_info *fs_info = inode->root->fs_info;
838 struct address_space *mapping = inode->vfs_inode.i_mapping;
839 u64 blocksize = fs_info->sectorsize;
840 u64 start = async_chunk->start;
841 u64 end = async_chunk->end;
845 struct page **pages = NULL;
846 unsigned long nr_pages;
847 unsigned long total_compressed = 0;
848 unsigned long total_in = 0;
851 int compress_type = fs_info->compress_type;
852 int compressed_extents = 0;
855 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
858 * We need to save i_size before now because it could change in between
859 * us evaluating the size and assigning it. This is because we lock and
860 * unlock the page in truncate and fallocate, and then modify the i_size
863 * The barriers are to emulate READ_ONCE, remove that once i_size_read
867 i_size = i_size_read(&inode->vfs_inode);
869 actual_end = min_t(u64, i_size, end + 1);
872 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
873 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
876 * we don't want to send crud past the end of i_size through
877 * compression, that's just a waste of CPU time. So, if the
878 * end of the file is before the start of our current
879 * requested range of bytes, we bail out to the uncompressed
880 * cleanup code that can deal with all of this.
882 * It isn't really the fastest way to fix things, but this is a
883 * very uncommon corner.
885 if (actual_end <= start)
886 goto cleanup_and_bail_uncompressed;
888 total_compressed = actual_end - start;
891 * Skip compression for a small file range(<=blocksize) that
892 * isn't an inline extent, since it doesn't save disk space at all.
894 if (total_compressed <= blocksize &&
895 (start > 0 || end + 1 < inode->disk_i_size))
896 goto cleanup_and_bail_uncompressed;
899 * For subpage case, we require full page alignment for the sector
901 * Thus we must also check against @actual_end, not just @end.
903 if (blocksize < PAGE_SIZE) {
904 if (!PAGE_ALIGNED(start) ||
905 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
906 goto cleanup_and_bail_uncompressed;
909 total_compressed = min_t(unsigned long, total_compressed,
910 BTRFS_MAX_UNCOMPRESSED);
915 * we do compression for mount -o compress and when the
916 * inode has not been flagged as nocompress. This flag can
917 * change at any time if we discover bad compression ratios.
919 if (inode_need_compress(inode, start, end)) {
921 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
923 /* just bail out to the uncompressed code */
928 if (inode->defrag_compress)
929 compress_type = inode->defrag_compress;
930 else if (inode->prop_compress)
931 compress_type = inode->prop_compress;
934 * we need to call clear_page_dirty_for_io on each
935 * page in the range. Otherwise applications with the file
936 * mmap'd can wander in and change the page contents while
937 * we are compressing them.
939 * If the compression fails for any reason, we set the pages
940 * dirty again later on.
942 * Note that the remaining part is redirtied, the start pointer
943 * has moved, the end is the original one.
946 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
950 /* Compression level is applied here and only here */
951 ret = btrfs_compress_pages(
952 compress_type | (fs_info->compress_level << 4),
960 unsigned long offset = offset_in_page(total_compressed);
961 struct page *page = pages[nr_pages - 1];
963 /* zero the tail end of the last page, we might be
964 * sending it down to disk
967 memzero_page(page, offset, PAGE_SIZE - offset);
973 * Check cow_file_range() for why we don't even try to create inline
974 * extent for subpage case.
976 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
977 /* lets try to make an inline extent */
978 if (ret || total_in < actual_end) {
979 /* we didn't compress the entire range, try
980 * to make an uncompressed inline extent.
982 ret = cow_file_range_inline(inode, actual_end,
983 0, BTRFS_COMPRESS_NONE,
986 /* try making a compressed inline extent */
987 ret = cow_file_range_inline(inode, actual_end,
989 compress_type, pages,
993 unsigned long clear_flags = EXTENT_DELALLOC |
994 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
995 EXTENT_DO_ACCOUNTING;
998 mapping_set_error(mapping, -EIO);
1001 * inline extent creation worked or returned error,
1002 * we don't need to create any more async work items.
1003 * Unlock and free up our temp pages.
1005 * We use DO_ACCOUNTING here because we need the
1006 * delalloc_release_metadata to be done _after_ we drop
1007 * our outstanding extent for clearing delalloc for this
1010 extent_clear_unlock_delalloc(inode, start, end,
1014 PAGE_START_WRITEBACK |
1015 PAGE_END_WRITEBACK);
1018 * Ensure we only free the compressed pages if we have
1019 * them allocated, as we can still reach here with
1020 * inode_need_compress() == false.
1023 for (i = 0; i < nr_pages; i++) {
1024 WARN_ON(pages[i]->mapping);
1033 if (will_compress) {
1035 * we aren't doing an inline extent round the compressed size
1036 * up to a block size boundary so the allocator does sane
1039 total_compressed = ALIGN(total_compressed, blocksize);
1042 * one last check to make sure the compression is really a
1043 * win, compare the page count read with the blocks on disk,
1044 * compression must free at least one sector size
1046 total_in = round_up(total_in, fs_info->sectorsize);
1047 if (total_compressed + blocksize <= total_in) {
1048 compressed_extents++;
1051 * The async work queues will take care of doing actual
1052 * allocation on disk for these compressed pages, and
1053 * will submit them to the elevator.
1055 add_async_extent(async_chunk, start, total_in,
1056 total_compressed, pages, nr_pages,
1059 if (start + total_in < end) {
1065 return compressed_extents;
1070 * the compression code ran but failed to make things smaller,
1071 * free any pages it allocated and our page pointer array
1073 for (i = 0; i < nr_pages; i++) {
1074 WARN_ON(pages[i]->mapping);
1079 total_compressed = 0;
1082 /* flag the file so we don't compress in the future */
1083 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1084 !(inode->prop_compress)) {
1085 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1088 cleanup_and_bail_uncompressed:
1090 * No compression, but we still need to write the pages in the file
1091 * we've been given so far. redirty the locked page if it corresponds
1092 * to our extent and set things up for the async work queue to run
1093 * cow_file_range to do the normal delalloc dance.
1095 if (async_chunk->locked_page &&
1096 (page_offset(async_chunk->locked_page) >= start &&
1097 page_offset(async_chunk->locked_page)) <= end) {
1098 __set_page_dirty_nobuffers(async_chunk->locked_page);
1099 /* unlocked later on in the async handlers */
1103 extent_range_redirty_for_io(&inode->vfs_inode, start, end);
1104 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1105 BTRFS_COMPRESS_NONE);
1106 compressed_extents++;
1108 return compressed_extents;
1111 static void free_async_extent_pages(struct async_extent *async_extent)
1115 if (!async_extent->pages)
1118 for (i = 0; i < async_extent->nr_pages; i++) {
1119 WARN_ON(async_extent->pages[i]->mapping);
1120 put_page(async_extent->pages[i]);
1122 kfree(async_extent->pages);
1123 async_extent->nr_pages = 0;
1124 async_extent->pages = NULL;
1127 static void submit_uncompressed_range(struct btrfs_inode *inode,
1128 struct async_extent *async_extent,
1129 struct page *locked_page)
1131 u64 start = async_extent->start;
1132 u64 end = async_extent->start + async_extent->ram_size - 1;
1133 unsigned long nr_written = 0;
1134 int page_started = 0;
1136 struct writeback_control wbc = {
1137 .sync_mode = WB_SYNC_ALL,
1138 .range_start = start,
1140 .no_cgroup_owner = 1,
1144 * Call cow_file_range() to run the delalloc range directly, since we
1145 * won't go to NOCOW or async path again.
1147 * Also we call cow_file_range() with @unlock_page == 0, so that we
1148 * can directly submit them without interruption.
1150 ret = cow_file_range(inode, locked_page, start, end, &page_started,
1151 &nr_written, NULL, true, false);
1152 /* Inline extent inserted, page gets unlocked and everything is done */
1157 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1159 const u64 page_start = page_offset(locked_page);
1161 set_page_writeback(locked_page);
1162 end_page_writeback(locked_page);
1163 btrfs_mark_ordered_io_finished(inode, locked_page,
1164 page_start, PAGE_SIZE,
1166 btrfs_page_clear_uptodate(inode->root->fs_info,
1167 locked_page, page_start,
1169 mapping_set_error(locked_page->mapping, ret);
1170 unlock_page(locked_page);
1175 /* All pages will be unlocked, including @locked_page */
1176 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1177 extent_write_locked_range(&inode->vfs_inode, start, end, &wbc);
1178 wbc_detach_inode(&wbc);
1181 static void submit_one_async_extent(struct async_chunk *async_chunk,
1182 struct async_extent *async_extent,
1185 struct btrfs_inode *inode = async_chunk->inode;
1186 struct extent_io_tree *io_tree = &inode->io_tree;
1187 struct btrfs_root *root = inode->root;
1188 struct btrfs_fs_info *fs_info = root->fs_info;
1189 struct btrfs_ordered_extent *ordered;
1190 struct btrfs_key ins;
1191 struct page *locked_page = NULL;
1192 struct extent_map *em;
1194 u64 start = async_extent->start;
1195 u64 end = async_extent->start + async_extent->ram_size - 1;
1197 if (async_chunk->blkcg_css)
1198 kthread_associate_blkcg(async_chunk->blkcg_css);
1201 * If async_chunk->locked_page is in the async_extent range, we need to
1204 if (async_chunk->locked_page) {
1205 u64 locked_page_start = page_offset(async_chunk->locked_page);
1206 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1208 if (!(start >= locked_page_end || end <= locked_page_start))
1209 locked_page = async_chunk->locked_page;
1211 lock_extent(io_tree, start, end, NULL);
1213 /* We have fall back to uncompressed write */
1214 if (!async_extent->pages) {
1215 submit_uncompressed_range(inode, async_extent, locked_page);
1219 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1220 async_extent->compressed_size,
1221 async_extent->compressed_size,
1222 0, *alloc_hint, &ins, 1, 1);
1225 * Here we used to try again by going back to non-compressed
1226 * path for ENOSPC. But we can't reserve space even for
1227 * compressed size, how could it work for uncompressed size
1228 * which requires larger size? So here we directly go error
1234 /* Here we're doing allocation and writeback of the compressed pages */
1235 em = create_io_em(inode, start,
1236 async_extent->ram_size, /* len */
1237 start, /* orig_start */
1238 ins.objectid, /* block_start */
1239 ins.offset, /* block_len */
1240 ins.offset, /* orig_block_len */
1241 async_extent->ram_size, /* ram_bytes */
1242 async_extent->compress_type,
1243 BTRFS_ORDERED_COMPRESSED);
1246 goto out_free_reserve;
1248 free_extent_map(em);
1250 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
1251 async_extent->ram_size, /* num_bytes */
1252 async_extent->ram_size, /* ram_bytes */
1253 ins.objectid, /* disk_bytenr */
1254 ins.offset, /* disk_num_bytes */
1256 1 << BTRFS_ORDERED_COMPRESSED,
1257 async_extent->compress_type);
1258 if (IS_ERR(ordered)) {
1259 btrfs_drop_extent_map_range(inode, start, end, false);
1260 ret = PTR_ERR(ordered);
1261 goto out_free_reserve;
1263 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1265 /* Clear dirty, set writeback and unlock the pages. */
1266 extent_clear_unlock_delalloc(inode, start, end,
1267 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1268 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1269 btrfs_submit_compressed_write(ordered,
1270 async_extent->pages, /* compressed_pages */
1271 async_extent->nr_pages,
1272 async_chunk->write_flags, true);
1273 *alloc_hint = ins.objectid + ins.offset;
1275 if (async_chunk->blkcg_css)
1276 kthread_associate_blkcg(NULL);
1277 kfree(async_extent);
1281 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1282 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1284 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1285 extent_clear_unlock_delalloc(inode, start, end,
1286 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1287 EXTENT_DELALLOC_NEW |
1288 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1289 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1290 PAGE_END_WRITEBACK);
1291 free_async_extent_pages(async_extent);
1292 if (async_chunk->blkcg_css)
1293 kthread_associate_blkcg(NULL);
1294 btrfs_debug(fs_info,
1295 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1296 root->root_key.objectid, btrfs_ino(inode), start,
1297 async_extent->ram_size, ret);
1298 kfree(async_extent);
1302 * Phase two of compressed writeback. This is the ordered portion of the code,
1303 * which only gets called in the order the work was queued. We walk all the
1304 * async extents created by compress_file_range and send them down to the disk.
1306 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1308 struct async_extent *async_extent;
1311 while (!list_empty(&async_chunk->extents)) {
1312 async_extent = list_entry(async_chunk->extents.next,
1313 struct async_extent, list);
1314 list_del(&async_extent->list);
1316 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1320 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1323 struct extent_map_tree *em_tree = &inode->extent_tree;
1324 struct extent_map *em;
1327 read_lock(&em_tree->lock);
1328 em = search_extent_mapping(em_tree, start, num_bytes);
1331 * if block start isn't an actual block number then find the
1332 * first block in this inode and use that as a hint. If that
1333 * block is also bogus then just don't worry about it.
1335 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1336 free_extent_map(em);
1337 em = search_extent_mapping(em_tree, 0, 0);
1338 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1339 alloc_hint = em->block_start;
1341 free_extent_map(em);
1343 alloc_hint = em->block_start;
1344 free_extent_map(em);
1347 read_unlock(&em_tree->lock);
1353 * when extent_io.c finds a delayed allocation range in the file,
1354 * the call backs end up in this code. The basic idea is to
1355 * allocate extents on disk for the range, and create ordered data structs
1356 * in ram to track those extents.
1358 * locked_page is the page that writepage had locked already. We use
1359 * it to make sure we don't do extra locks or unlocks.
1361 * When this function fails, it unlocks all pages except @locked_page.
1363 * When this function successfully creates an inline extent, it sets page_started
1364 * to 1 and unlocks all pages including locked_page and starts I/O on them.
1365 * (In reality inline extents are limited to a single page, so locked_page is
1366 * the only page handled anyway).
1368 * When this function succeed and creates a normal extent, the page locking
1369 * status depends on the passed in flags:
1371 * - If @keep_locked is set, all pages are kept locked.
1372 * - Else all pages except for @locked_page are unlocked.
1374 * When a failure happens in the second or later iteration of the
1375 * while-loop, the ordered extents created in previous iterations are kept
1376 * intact. So, the caller must clean them up by calling
1377 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1380 static noinline int cow_file_range(struct btrfs_inode *inode,
1381 struct page *locked_page,
1382 u64 start, u64 end, int *page_started,
1383 unsigned long *nr_written, u64 *done_offset,
1384 bool keep_locked, bool no_inline)
1386 struct btrfs_root *root = inode->root;
1387 struct btrfs_fs_info *fs_info = root->fs_info;
1389 u64 orig_start = start;
1391 unsigned long ram_size;
1392 u64 cur_alloc_size = 0;
1394 u64 blocksize = fs_info->sectorsize;
1395 struct btrfs_key ins;
1396 struct extent_map *em;
1397 unsigned clear_bits;
1398 unsigned long page_ops;
1399 bool extent_reserved = false;
1402 if (btrfs_is_free_space_inode(inode)) {
1407 num_bytes = ALIGN(end - start + 1, blocksize);
1408 num_bytes = max(blocksize, num_bytes);
1409 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1411 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1414 * Due to the page size limit, for subpage we can only trigger the
1415 * writeback for the dirty sectors of page, that means data writeback
1416 * is doing more writeback than what we want.
1418 * This is especially unexpected for some call sites like fallocate,
1419 * where we only increase i_size after everything is done.
1420 * This means we can trigger inline extent even if we didn't want to.
1421 * So here we skip inline extent creation completely.
1423 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1424 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1427 /* lets try to make an inline extent */
1428 ret = cow_file_range_inline(inode, actual_end, 0,
1429 BTRFS_COMPRESS_NONE, NULL, false);
1432 * We use DO_ACCOUNTING here because we need the
1433 * delalloc_release_metadata to be run _after_ we drop
1434 * our outstanding extent for clearing delalloc for this
1437 extent_clear_unlock_delalloc(inode, start, end,
1439 EXTENT_LOCKED | EXTENT_DELALLOC |
1440 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1441 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1442 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1443 *nr_written = *nr_written +
1444 (end - start + PAGE_SIZE) / PAGE_SIZE;
1447 * locked_page is locked by the caller of
1448 * writepage_delalloc(), not locked by
1449 * __process_pages_contig().
1451 * We can't let __process_pages_contig() to unlock it,
1452 * as it doesn't have any subpage::writers recorded.
1454 * Here we manually unlock the page, since the caller
1455 * can't use page_started to determine if it's an
1456 * inline extent or a compressed extent.
1458 unlock_page(locked_page);
1460 } else if (ret < 0) {
1465 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1468 * Relocation relies on the relocated extents to have exactly the same
1469 * size as the original extents. Normally writeback for relocation data
1470 * extents follows a NOCOW path because relocation preallocates the
1471 * extents. However, due to an operation such as scrub turning a block
1472 * group to RO mode, it may fallback to COW mode, so we must make sure
1473 * an extent allocated during COW has exactly the requested size and can
1474 * not be split into smaller extents, otherwise relocation breaks and
1475 * fails during the stage where it updates the bytenr of file extent
1478 if (btrfs_is_data_reloc_root(root))
1479 min_alloc_size = num_bytes;
1481 min_alloc_size = fs_info->sectorsize;
1483 while (num_bytes > 0) {
1484 struct btrfs_ordered_extent *ordered;
1486 cur_alloc_size = num_bytes;
1487 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1488 min_alloc_size, 0, alloc_hint,
1492 cur_alloc_size = ins.offset;
1493 extent_reserved = true;
1495 ram_size = ins.offset;
1496 em = create_io_em(inode, start, ins.offset, /* len */
1497 start, /* orig_start */
1498 ins.objectid, /* block_start */
1499 ins.offset, /* block_len */
1500 ins.offset, /* orig_block_len */
1501 ram_size, /* ram_bytes */
1502 BTRFS_COMPRESS_NONE, /* compress_type */
1503 BTRFS_ORDERED_REGULAR /* type */);
1508 free_extent_map(em);
1510 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1511 ram_size, ins.objectid, cur_alloc_size,
1512 0, 1 << BTRFS_ORDERED_REGULAR,
1513 BTRFS_COMPRESS_NONE);
1514 if (IS_ERR(ordered)) {
1515 ret = PTR_ERR(ordered);
1516 goto out_drop_extent_cache;
1519 if (btrfs_is_data_reloc_root(root)) {
1520 ret = btrfs_reloc_clone_csums(ordered);
1523 * Only drop cache here, and process as normal.
1525 * We must not allow extent_clear_unlock_delalloc()
1526 * at out_unlock label to free meta of this ordered
1527 * extent, as its meta should be freed by
1528 * btrfs_finish_ordered_io().
1530 * So we must continue until @start is increased to
1531 * skip current ordered extent.
1534 btrfs_drop_extent_map_range(inode, start,
1535 start + ram_size - 1,
1538 btrfs_put_ordered_extent(ordered);
1540 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1543 * We're not doing compressed IO, don't unlock the first page
1544 * (which the caller expects to stay locked), don't clear any
1545 * dirty bits and don't set any writeback bits
1547 * Do set the Ordered (Private2) bit so we know this page was
1548 * properly setup for writepage.
1550 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1551 page_ops |= PAGE_SET_ORDERED;
1553 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1555 EXTENT_LOCKED | EXTENT_DELALLOC,
1557 if (num_bytes < cur_alloc_size)
1560 num_bytes -= cur_alloc_size;
1561 alloc_hint = ins.objectid + ins.offset;
1562 start += cur_alloc_size;
1563 extent_reserved = false;
1566 * btrfs_reloc_clone_csums() error, since start is increased
1567 * extent_clear_unlock_delalloc() at out_unlock label won't
1568 * free metadata of current ordered extent, we're OK to exit.
1576 out_drop_extent_cache:
1577 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1579 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1580 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1583 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1584 * caller to write out the successfully allocated region and retry.
1586 if (done_offset && ret == -EAGAIN) {
1587 if (orig_start < start)
1588 *done_offset = start - 1;
1590 *done_offset = start;
1592 } else if (ret == -EAGAIN) {
1593 /* Convert to -ENOSPC since the caller cannot retry. */
1598 * Now, we have three regions to clean up:
1600 * |-------(1)----|---(2)---|-------------(3)----------|
1601 * `- orig_start `- start `- start + cur_alloc_size `- end
1603 * We process each region below.
1606 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1607 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1608 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1611 * For the range (1). We have already instantiated the ordered extents
1612 * for this region. They are cleaned up by
1613 * btrfs_cleanup_ordered_extents() in e.g,
1614 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1615 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1616 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1619 * However, in case of @keep_locked, we still need to unlock the pages
1620 * (except @locked_page) to ensure all the pages are unlocked.
1622 if (keep_locked && orig_start < start) {
1624 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1625 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1626 locked_page, 0, page_ops);
1630 * For the range (2). If we reserved an extent for our delalloc range
1631 * (or a subrange) and failed to create the respective ordered extent,
1632 * then it means that when we reserved the extent we decremented the
1633 * extent's size from the data space_info's bytes_may_use counter and
1634 * incremented the space_info's bytes_reserved counter by the same
1635 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1636 * to decrement again the data space_info's bytes_may_use counter,
1637 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1639 if (extent_reserved) {
1640 extent_clear_unlock_delalloc(inode, start,
1641 start + cur_alloc_size - 1,
1645 start += cur_alloc_size;
1649 * For the range (3). We never touched the region. In addition to the
1650 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1651 * space_info's bytes_may_use counter, reserved in
1652 * btrfs_check_data_free_space().
1655 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1656 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1657 clear_bits, page_ops);
1663 * work queue call back to started compression on a file and pages
1665 static noinline void async_cow_start(struct btrfs_work *work)
1667 struct async_chunk *async_chunk;
1668 int compressed_extents;
1670 async_chunk = container_of(work, struct async_chunk, work);
1672 compressed_extents = compress_file_range(async_chunk);
1673 if (compressed_extents == 0) {
1674 btrfs_add_delayed_iput(async_chunk->inode);
1675 async_chunk->inode = NULL;
1680 * work queue call back to submit previously compressed pages
1682 static noinline void async_cow_submit(struct btrfs_work *work)
1684 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1686 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1687 unsigned long nr_pages;
1689 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1693 * ->inode could be NULL if async_chunk_start has failed to compress,
1694 * in which case we don't have anything to submit, yet we need to
1695 * always adjust ->async_delalloc_pages as its paired with the init
1696 * happening in run_delalloc_compressed
1698 if (async_chunk->inode)
1699 submit_compressed_extents(async_chunk);
1701 /* atomic_sub_return implies a barrier */
1702 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1704 cond_wake_up_nomb(&fs_info->async_submit_wait);
1707 static noinline void async_cow_free(struct btrfs_work *work)
1709 struct async_chunk *async_chunk;
1710 struct async_cow *async_cow;
1712 async_chunk = container_of(work, struct async_chunk, work);
1713 if (async_chunk->inode)
1714 btrfs_add_delayed_iput(async_chunk->inode);
1715 if (async_chunk->blkcg_css)
1716 css_put(async_chunk->blkcg_css);
1718 async_cow = async_chunk->async_cow;
1719 if (atomic_dec_and_test(&async_cow->num_chunks))
1723 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1724 struct writeback_control *wbc,
1725 struct page *locked_page,
1726 u64 start, u64 end, int *page_started,
1727 unsigned long *nr_written)
1729 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1730 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1731 struct async_cow *ctx;
1732 struct async_chunk *async_chunk;
1733 unsigned long nr_pages;
1734 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1737 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1739 nofs_flag = memalloc_nofs_save();
1740 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1741 memalloc_nofs_restore(nofs_flag);
1745 unlock_extent(&inode->io_tree, start, end, NULL);
1746 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1748 async_chunk = ctx->chunks;
1749 atomic_set(&ctx->num_chunks, num_chunks);
1751 for (i = 0; i < num_chunks; i++) {
1752 u64 cur_end = min(end, start + SZ_512K - 1);
1755 * igrab is called higher up in the call chain, take only the
1756 * lightweight reference for the callback lifetime
1758 ihold(&inode->vfs_inode);
1759 async_chunk[i].async_cow = ctx;
1760 async_chunk[i].inode = inode;
1761 async_chunk[i].start = start;
1762 async_chunk[i].end = cur_end;
1763 async_chunk[i].write_flags = write_flags;
1764 INIT_LIST_HEAD(&async_chunk[i].extents);
1767 * The locked_page comes all the way from writepage and its
1768 * the original page we were actually given. As we spread
1769 * this large delalloc region across multiple async_chunk
1770 * structs, only the first struct needs a pointer to locked_page
1772 * This way we don't need racey decisions about who is supposed
1777 * Depending on the compressibility, the pages might or
1778 * might not go through async. We want all of them to
1779 * be accounted against wbc once. Let's do it here
1780 * before the paths diverge. wbc accounting is used
1781 * only for foreign writeback detection and doesn't
1782 * need full accuracy. Just account the whole thing
1783 * against the first page.
1785 wbc_account_cgroup_owner(wbc, locked_page,
1787 async_chunk[i].locked_page = locked_page;
1790 async_chunk[i].locked_page = NULL;
1793 if (blkcg_css != blkcg_root_css) {
1795 async_chunk[i].blkcg_css = blkcg_css;
1796 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1798 async_chunk[i].blkcg_css = NULL;
1801 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1802 async_cow_submit, async_cow_free);
1804 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1805 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1807 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1809 *nr_written += nr_pages;
1810 start = cur_end + 1;
1816 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1817 struct page *locked_page, u64 start,
1818 u64 end, int *page_started,
1819 unsigned long *nr_written,
1820 struct writeback_control *wbc)
1822 u64 done_offset = end;
1824 bool locked_page_done = false;
1826 while (start <= end) {
1827 ret = cow_file_range(inode, locked_page, start, end, page_started,
1828 nr_written, &done_offset, true, false);
1829 if (ret && ret != -EAGAIN)
1832 if (*page_started) {
1840 if (done_offset == start) {
1841 wait_on_bit_io(&inode->root->fs_info->flags,
1842 BTRFS_FS_NEED_ZONE_FINISH,
1843 TASK_UNINTERRUPTIBLE);
1847 if (!locked_page_done) {
1848 __set_page_dirty_nobuffers(locked_page);
1849 account_page_redirty(locked_page);
1851 locked_page_done = true;
1852 extent_write_locked_range(&inode->vfs_inode, start, done_offset,
1854 start = done_offset + 1;
1862 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1863 u64 bytenr, u64 num_bytes, bool nowait)
1865 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1866 struct btrfs_ordered_sum *sums;
1870 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1872 if (ret == 0 && list_empty(&list))
1875 while (!list_empty(&list)) {
1876 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1877 list_del(&sums->list);
1885 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1886 const u64 start, const u64 end)
1888 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1889 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1890 const u64 range_bytes = end + 1 - start;
1891 struct extent_io_tree *io_tree = &inode->io_tree;
1892 int page_started = 0;
1893 unsigned long nr_written;
1894 u64 range_start = start;
1899 * If EXTENT_NORESERVE is set it means that when the buffered write was
1900 * made we had not enough available data space and therefore we did not
1901 * reserve data space for it, since we though we could do NOCOW for the
1902 * respective file range (either there is prealloc extent or the inode
1903 * has the NOCOW bit set).
1905 * However when we need to fallback to COW mode (because for example the
1906 * block group for the corresponding extent was turned to RO mode by a
1907 * scrub or relocation) we need to do the following:
1909 * 1) We increment the bytes_may_use counter of the data space info.
1910 * If COW succeeds, it allocates a new data extent and after doing
1911 * that it decrements the space info's bytes_may_use counter and
1912 * increments its bytes_reserved counter by the same amount (we do
1913 * this at btrfs_add_reserved_bytes()). So we need to increment the
1914 * bytes_may_use counter to compensate (when space is reserved at
1915 * buffered write time, the bytes_may_use counter is incremented);
1917 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1918 * that if the COW path fails for any reason, it decrements (through
1919 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1920 * data space info, which we incremented in the step above.
1922 * If we need to fallback to cow and the inode corresponds to a free
1923 * space cache inode or an inode of the data relocation tree, we must
1924 * also increment bytes_may_use of the data space_info for the same
1925 * reason. Space caches and relocated data extents always get a prealloc
1926 * extent for them, however scrub or balance may have set the block
1927 * group that contains that extent to RO mode and therefore force COW
1928 * when starting writeback.
1930 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1931 EXTENT_NORESERVE, 0, NULL);
1932 if (count > 0 || is_space_ino || is_reloc_ino) {
1934 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1935 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1937 if (is_space_ino || is_reloc_ino)
1938 bytes = range_bytes;
1940 spin_lock(&sinfo->lock);
1941 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1942 spin_unlock(&sinfo->lock);
1945 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1950 * Don't try to create inline extents, as a mix of inline extent that
1951 * is written out and unlocked directly and a normal NOCOW extent
1954 ret = cow_file_range(inode, locked_page, start, end, &page_started,
1955 &nr_written, NULL, false, true);
1956 ASSERT(!page_started);
1960 struct can_nocow_file_extent_args {
1963 /* Start file offset of the range we want to NOCOW. */
1965 /* End file offset (inclusive) of the range we want to NOCOW. */
1967 bool writeback_path;
1970 * Free the path passed to can_nocow_file_extent() once it's not needed
1975 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1980 /* Number of bytes that can be written to in NOCOW mode. */
1985 * Check if we can NOCOW the file extent that the path points to.
1986 * This function may return with the path released, so the caller should check
1987 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1989 * Returns: < 0 on error
1990 * 0 if we can not NOCOW
1993 static int can_nocow_file_extent(struct btrfs_path *path,
1994 struct btrfs_key *key,
1995 struct btrfs_inode *inode,
1996 struct can_nocow_file_extent_args *args)
1998 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1999 struct extent_buffer *leaf = path->nodes[0];
2000 struct btrfs_root *root = inode->root;
2001 struct btrfs_file_extent_item *fi;
2006 bool nowait = path->nowait;
2008 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2009 extent_type = btrfs_file_extent_type(leaf, fi);
2011 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
2014 /* Can't access these fields unless we know it's not an inline extent. */
2015 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2016 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
2017 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
2019 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
2020 extent_type == BTRFS_FILE_EXTENT_REG)
2024 * If the extent was created before the generation where the last snapshot
2025 * for its subvolume was created, then this implies the extent is shared,
2026 * hence we must COW.
2028 if (!args->strict &&
2029 btrfs_file_extent_generation(leaf, fi) <=
2030 btrfs_root_last_snapshot(&root->root_item))
2033 /* An explicit hole, must COW. */
2034 if (args->disk_bytenr == 0)
2037 /* Compressed/encrypted/encoded extents must be COWed. */
2038 if (btrfs_file_extent_compression(leaf, fi) ||
2039 btrfs_file_extent_encryption(leaf, fi) ||
2040 btrfs_file_extent_other_encoding(leaf, fi))
2043 extent_end = btrfs_file_extent_end(path);
2046 * The following checks can be expensive, as they need to take other
2047 * locks and do btree or rbtree searches, so release the path to avoid
2048 * blocking other tasks for too long.
2050 btrfs_release_path(path);
2052 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
2053 key->offset - args->extent_offset,
2054 args->disk_bytenr, args->strict, path);
2055 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
2059 if (args->free_path) {
2061 * We don't need the path anymore, plus through the
2062 * csum_exist_in_range() call below we will end up allocating
2063 * another path. So free the path to avoid unnecessary extra
2066 btrfs_free_path(path);
2070 /* If there are pending snapshots for this root, we must COW. */
2071 if (args->writeback_path && !is_freespace_inode &&
2072 atomic_read(&root->snapshot_force_cow))
2075 args->disk_bytenr += args->extent_offset;
2076 args->disk_bytenr += args->start - key->offset;
2077 args->num_bytes = min(args->end + 1, extent_end) - args->start;
2080 * Force COW if csums exist in the range. This ensures that csums for a
2081 * given extent are either valid or do not exist.
2083 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
2085 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
2091 if (args->free_path && path)
2092 btrfs_free_path(path);
2094 return ret < 0 ? ret : can_nocow;
2098 * when nowcow writeback call back. This checks for snapshots or COW copies
2099 * of the extents that exist in the file, and COWs the file as required.
2101 * If no cow copies or snapshots exist, we write directly to the existing
2104 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2105 struct page *locked_page,
2106 const u64 start, const u64 end)
2108 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2109 struct btrfs_root *root = inode->root;
2110 struct btrfs_path *path;
2111 u64 cow_start = (u64)-1;
2112 u64 cur_offset = start;
2114 bool check_prev = true;
2115 u64 ino = btrfs_ino(inode);
2116 struct btrfs_block_group *bg;
2118 struct can_nocow_file_extent_args nocow_args = { 0 };
2120 path = btrfs_alloc_path();
2122 extent_clear_unlock_delalloc(inode, start, end, locked_page,
2123 EXTENT_LOCKED | EXTENT_DELALLOC |
2124 EXTENT_DO_ACCOUNTING |
2125 EXTENT_DEFRAG, PAGE_UNLOCK |
2126 PAGE_START_WRITEBACK |
2127 PAGE_END_WRITEBACK);
2131 nocow_args.end = end;
2132 nocow_args.writeback_path = true;
2135 struct btrfs_ordered_extent *ordered;
2136 struct btrfs_key found_key;
2137 struct btrfs_file_extent_item *fi;
2138 struct extent_buffer *leaf;
2147 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2153 * If there is no extent for our range when doing the initial
2154 * search, then go back to the previous slot as it will be the
2155 * one containing the search offset
2157 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2158 leaf = path->nodes[0];
2159 btrfs_item_key_to_cpu(leaf, &found_key,
2160 path->slots[0] - 1);
2161 if (found_key.objectid == ino &&
2162 found_key.type == BTRFS_EXTENT_DATA_KEY)
2167 /* Go to next leaf if we have exhausted the current one */
2168 leaf = path->nodes[0];
2169 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2170 ret = btrfs_next_leaf(root, path);
2172 if (cow_start != (u64)-1)
2173 cur_offset = cow_start;
2178 leaf = path->nodes[0];
2181 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2183 /* Didn't find anything for our INO */
2184 if (found_key.objectid > ino)
2187 * Keep searching until we find an EXTENT_ITEM or there are no
2188 * more extents for this inode
2190 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2191 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2196 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2197 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2198 found_key.offset > end)
2202 * If the found extent starts after requested offset, then
2203 * adjust extent_end to be right before this extent begins
2205 if (found_key.offset > cur_offset) {
2206 extent_end = found_key.offset;
2212 * Found extent which begins before our range and potentially
2215 fi = btrfs_item_ptr(leaf, path->slots[0],
2216 struct btrfs_file_extent_item);
2217 extent_type = btrfs_file_extent_type(leaf, fi);
2218 /* If this is triggered then we have a memory corruption. */
2219 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2220 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2224 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2225 extent_end = btrfs_file_extent_end(path);
2228 * If the extent we got ends before our current offset, skip to
2231 if (extent_end <= cur_offset) {
2236 nocow_args.start = cur_offset;
2237 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2239 if (cow_start != (u64)-1)
2240 cur_offset = cow_start;
2242 } else if (ret == 0) {
2247 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2252 * If nocow is false then record the beginning of the range
2253 * that needs to be COWed
2256 if (cow_start == (u64)-1)
2257 cow_start = cur_offset;
2258 cur_offset = extent_end;
2259 if (cur_offset > end)
2261 if (!path->nodes[0])
2268 * COW range from cow_start to found_key.offset - 1. As the key
2269 * will contain the beginning of the first extent that can be
2270 * NOCOW, following one which needs to be COW'ed
2272 if (cow_start != (u64)-1) {
2273 ret = fallback_to_cow(inode, locked_page,
2274 cow_start, found_key.offset - 1);
2277 cow_start = (u64)-1;
2280 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2281 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2283 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2284 struct extent_map *em;
2286 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2288 nocow_args.disk_bytenr, /* block_start */
2289 nocow_args.num_bytes, /* block_len */
2290 nocow_args.disk_num_bytes, /* orig_block_len */
2291 ram_bytes, BTRFS_COMPRESS_NONE,
2292 BTRFS_ORDERED_PREALLOC);
2297 free_extent_map(em);
2300 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2301 nocow_args.num_bytes, nocow_args.num_bytes,
2302 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2304 ? (1 << BTRFS_ORDERED_PREALLOC)
2305 : (1 << BTRFS_ORDERED_NOCOW),
2306 BTRFS_COMPRESS_NONE);
2307 if (IS_ERR(ordered)) {
2309 btrfs_drop_extent_map_range(inode, cur_offset,
2312 ret = PTR_ERR(ordered);
2317 btrfs_dec_nocow_writers(bg);
2321 if (btrfs_is_data_reloc_root(root))
2323 * Error handled later, as we must prevent
2324 * extent_clear_unlock_delalloc() in error handler
2325 * from freeing metadata of created ordered extent.
2327 ret = btrfs_reloc_clone_csums(ordered);
2328 btrfs_put_ordered_extent(ordered);
2330 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2331 locked_page, EXTENT_LOCKED |
2333 EXTENT_CLEAR_DATA_RESV,
2334 PAGE_UNLOCK | PAGE_SET_ORDERED);
2336 cur_offset = extent_end;
2339 * btrfs_reloc_clone_csums() error, now we're OK to call error
2340 * handler, as metadata for created ordered extent will only
2341 * be freed by btrfs_finish_ordered_io().
2345 if (cur_offset > end)
2348 btrfs_release_path(path);
2350 if (cur_offset <= end && cow_start == (u64)-1)
2351 cow_start = cur_offset;
2353 if (cow_start != (u64)-1) {
2355 ret = fallback_to_cow(inode, locked_page, cow_start, end);
2362 btrfs_dec_nocow_writers(bg);
2364 if (ret && cur_offset < end)
2365 extent_clear_unlock_delalloc(inode, cur_offset, end,
2366 locked_page, EXTENT_LOCKED |
2367 EXTENT_DELALLOC | EXTENT_DEFRAG |
2368 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2369 PAGE_START_WRITEBACK |
2370 PAGE_END_WRITEBACK);
2371 btrfs_free_path(path);
2375 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2377 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2378 if (inode->defrag_bytes &&
2379 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2388 * Function to process delayed allocation (create CoW) for ranges which are
2389 * being touched for the first time.
2391 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2392 u64 start, u64 end, int *page_started, unsigned long *nr_written,
2393 struct writeback_control *wbc)
2396 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2399 * The range must cover part of the @locked_page, or the returned
2400 * @page_started can confuse the caller.
2402 ASSERT(!(end <= page_offset(locked_page) ||
2403 start >= page_offset(locked_page) + PAGE_SIZE));
2405 if (should_nocow(inode, start, end)) {
2407 * Normally on a zoned device we're only doing COW writes, but
2408 * in case of relocation on a zoned filesystem we have taken
2409 * precaution, that we're only writing sequentially. It's safe
2410 * to use run_delalloc_nocow() here, like for regular
2411 * preallocated inodes.
2413 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2414 ret = run_delalloc_nocow(inode, locked_page, start, end);
2418 if (btrfs_inode_can_compress(inode) &&
2419 inode_need_compress(inode, start, end) &&
2420 run_delalloc_compressed(inode, wbc, locked_page, start,
2421 end, page_started, nr_written))
2425 ret = run_delalloc_zoned(inode, locked_page, start, end,
2426 page_started, nr_written, wbc);
2428 ret = cow_file_range(inode, locked_page, start, end,
2429 page_started, nr_written, NULL, false, false);
2434 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2439 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2440 struct extent_state *orig, u64 split)
2442 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2445 /* not delalloc, ignore it */
2446 if (!(orig->state & EXTENT_DELALLOC))
2449 size = orig->end - orig->start + 1;
2450 if (size > fs_info->max_extent_size) {
2455 * See the explanation in btrfs_merge_delalloc_extent, the same
2456 * applies here, just in reverse.
2458 new_size = orig->end - split + 1;
2459 num_extents = count_max_extents(fs_info, new_size);
2460 new_size = split - orig->start;
2461 num_extents += count_max_extents(fs_info, new_size);
2462 if (count_max_extents(fs_info, size) >= num_extents)
2466 spin_lock(&inode->lock);
2467 btrfs_mod_outstanding_extents(inode, 1);
2468 spin_unlock(&inode->lock);
2472 * Handle merged delayed allocation extents so we can keep track of new extents
2473 * that are just merged onto old extents, such as when we are doing sequential
2474 * writes, so we can properly account for the metadata space we'll need.
2476 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2477 struct extent_state *other)
2479 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2480 u64 new_size, old_size;
2483 /* not delalloc, ignore it */
2484 if (!(other->state & EXTENT_DELALLOC))
2487 if (new->start > other->start)
2488 new_size = new->end - other->start + 1;
2490 new_size = other->end - new->start + 1;
2492 /* we're not bigger than the max, unreserve the space and go */
2493 if (new_size <= fs_info->max_extent_size) {
2494 spin_lock(&inode->lock);
2495 btrfs_mod_outstanding_extents(inode, -1);
2496 spin_unlock(&inode->lock);
2501 * We have to add up either side to figure out how many extents were
2502 * accounted for before we merged into one big extent. If the number of
2503 * extents we accounted for is <= the amount we need for the new range
2504 * then we can return, otherwise drop. Think of it like this
2508 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2509 * need 2 outstanding extents, on one side we have 1 and the other side
2510 * we have 1 so they are == and we can return. But in this case
2512 * [MAX_SIZE+4k][MAX_SIZE+4k]
2514 * Each range on their own accounts for 2 extents, but merged together
2515 * they are only 3 extents worth of accounting, so we need to drop in
2518 old_size = other->end - other->start + 1;
2519 num_extents = count_max_extents(fs_info, old_size);
2520 old_size = new->end - new->start + 1;
2521 num_extents += count_max_extents(fs_info, old_size);
2522 if (count_max_extents(fs_info, new_size) >= num_extents)
2525 spin_lock(&inode->lock);
2526 btrfs_mod_outstanding_extents(inode, -1);
2527 spin_unlock(&inode->lock);
2530 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2531 struct btrfs_inode *inode)
2533 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2535 spin_lock(&root->delalloc_lock);
2536 if (list_empty(&inode->delalloc_inodes)) {
2537 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2538 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2539 root->nr_delalloc_inodes++;
2540 if (root->nr_delalloc_inodes == 1) {
2541 spin_lock(&fs_info->delalloc_root_lock);
2542 BUG_ON(!list_empty(&root->delalloc_root));
2543 list_add_tail(&root->delalloc_root,
2544 &fs_info->delalloc_roots);
2545 spin_unlock(&fs_info->delalloc_root_lock);
2548 spin_unlock(&root->delalloc_lock);
2551 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2552 struct btrfs_inode *inode)
2554 struct btrfs_fs_info *fs_info = root->fs_info;
2556 if (!list_empty(&inode->delalloc_inodes)) {
2557 list_del_init(&inode->delalloc_inodes);
2558 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2559 &inode->runtime_flags);
2560 root->nr_delalloc_inodes--;
2561 if (!root->nr_delalloc_inodes) {
2562 ASSERT(list_empty(&root->delalloc_inodes));
2563 spin_lock(&fs_info->delalloc_root_lock);
2564 BUG_ON(list_empty(&root->delalloc_root));
2565 list_del_init(&root->delalloc_root);
2566 spin_unlock(&fs_info->delalloc_root_lock);
2571 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2572 struct btrfs_inode *inode)
2574 spin_lock(&root->delalloc_lock);
2575 __btrfs_del_delalloc_inode(root, inode);
2576 spin_unlock(&root->delalloc_lock);
2580 * Properly track delayed allocation bytes in the inode and to maintain the
2581 * list of inodes that have pending delalloc work to be done.
2583 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2586 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2588 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2591 * set_bit and clear bit hooks normally require _irqsave/restore
2592 * but in this case, we are only testing for the DELALLOC
2593 * bit, which is only set or cleared with irqs on
2595 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2596 struct btrfs_root *root = inode->root;
2597 u64 len = state->end + 1 - state->start;
2598 u32 num_extents = count_max_extents(fs_info, len);
2599 bool do_list = !btrfs_is_free_space_inode(inode);
2601 spin_lock(&inode->lock);
2602 btrfs_mod_outstanding_extents(inode, num_extents);
2603 spin_unlock(&inode->lock);
2605 /* For sanity tests */
2606 if (btrfs_is_testing(fs_info))
2609 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2610 fs_info->delalloc_batch);
2611 spin_lock(&inode->lock);
2612 inode->delalloc_bytes += len;
2613 if (bits & EXTENT_DEFRAG)
2614 inode->defrag_bytes += len;
2615 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2616 &inode->runtime_flags))
2617 btrfs_add_delalloc_inodes(root, inode);
2618 spin_unlock(&inode->lock);
2621 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2622 (bits & EXTENT_DELALLOC_NEW)) {
2623 spin_lock(&inode->lock);
2624 inode->new_delalloc_bytes += state->end + 1 - state->start;
2625 spin_unlock(&inode->lock);
2630 * Once a range is no longer delalloc this function ensures that proper
2631 * accounting happens.
2633 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2634 struct extent_state *state, u32 bits)
2636 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2637 u64 len = state->end + 1 - state->start;
2638 u32 num_extents = count_max_extents(fs_info, len);
2640 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2641 spin_lock(&inode->lock);
2642 inode->defrag_bytes -= len;
2643 spin_unlock(&inode->lock);
2647 * set_bit and clear bit hooks normally require _irqsave/restore
2648 * but in this case, we are only testing for the DELALLOC
2649 * bit, which is only set or cleared with irqs on
2651 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2652 struct btrfs_root *root = inode->root;
2653 bool do_list = !btrfs_is_free_space_inode(inode);
2655 spin_lock(&inode->lock);
2656 btrfs_mod_outstanding_extents(inode, -num_extents);
2657 spin_unlock(&inode->lock);
2660 * We don't reserve metadata space for space cache inodes so we
2661 * don't need to call delalloc_release_metadata if there is an
2664 if (bits & EXTENT_CLEAR_META_RESV &&
2665 root != fs_info->tree_root)
2666 btrfs_delalloc_release_metadata(inode, len, false);
2668 /* For sanity tests. */
2669 if (btrfs_is_testing(fs_info))
2672 if (!btrfs_is_data_reloc_root(root) &&
2673 do_list && !(state->state & EXTENT_NORESERVE) &&
2674 (bits & EXTENT_CLEAR_DATA_RESV))
2675 btrfs_free_reserved_data_space_noquota(fs_info, len);
2677 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2678 fs_info->delalloc_batch);
2679 spin_lock(&inode->lock);
2680 inode->delalloc_bytes -= len;
2681 if (do_list && inode->delalloc_bytes == 0 &&
2682 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2683 &inode->runtime_flags))
2684 btrfs_del_delalloc_inode(root, inode);
2685 spin_unlock(&inode->lock);
2688 if ((state->state & EXTENT_DELALLOC_NEW) &&
2689 (bits & EXTENT_DELALLOC_NEW)) {
2690 spin_lock(&inode->lock);
2691 ASSERT(inode->new_delalloc_bytes >= len);
2692 inode->new_delalloc_bytes -= len;
2693 if (bits & EXTENT_ADD_INODE_BYTES)
2694 inode_add_bytes(&inode->vfs_inode, len);
2695 spin_unlock(&inode->lock);
2699 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2700 struct btrfs_ordered_extent *ordered)
2702 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2703 u64 len = bbio->bio.bi_iter.bi_size;
2704 struct btrfs_ordered_extent *new;
2707 /* Must always be called for the beginning of an ordered extent. */
2708 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2711 /* No need to split if the ordered extent covers the entire bio. */
2712 if (ordered->disk_num_bytes == len) {
2713 refcount_inc(&ordered->refs);
2714 bbio->ordered = ordered;
2719 * Don't split the extent_map for NOCOW extents, as we're writing into
2720 * a pre-existing one.
2722 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2723 ret = split_extent_map(bbio->inode, bbio->file_offset,
2724 ordered->num_bytes, len,
2725 ordered->disk_bytenr);
2730 new = btrfs_split_ordered_extent(ordered, len);
2732 return PTR_ERR(new);
2733 bbio->ordered = new;
2738 * given a list of ordered sums record them in the inode. This happens
2739 * at IO completion time based on sums calculated at bio submission time.
2741 static int add_pending_csums(struct btrfs_trans_handle *trans,
2742 struct list_head *list)
2744 struct btrfs_ordered_sum *sum;
2745 struct btrfs_root *csum_root = NULL;
2748 list_for_each_entry(sum, list, list) {
2749 trans->adding_csums = true;
2751 csum_root = btrfs_csum_root(trans->fs_info,
2753 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2754 trans->adding_csums = false;
2761 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2764 struct extent_state **cached_state)
2766 u64 search_start = start;
2767 const u64 end = start + len - 1;
2769 while (search_start < end) {
2770 const u64 search_len = end - search_start + 1;
2771 struct extent_map *em;
2775 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2779 if (em->block_start != EXTENT_MAP_HOLE)
2783 if (em->start < search_start)
2784 em_len -= search_start - em->start;
2785 if (em_len > search_len)
2786 em_len = search_len;
2788 ret = set_extent_bit(&inode->io_tree, search_start,
2789 search_start + em_len - 1,
2790 EXTENT_DELALLOC_NEW, cached_state);
2792 search_start = extent_map_end(em);
2793 free_extent_map(em);
2800 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2801 unsigned int extra_bits,
2802 struct extent_state **cached_state)
2804 WARN_ON(PAGE_ALIGNED(end));
2806 if (start >= i_size_read(&inode->vfs_inode) &&
2807 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2809 * There can't be any extents following eof in this case so just
2810 * set the delalloc new bit for the range directly.
2812 extra_bits |= EXTENT_DELALLOC_NEW;
2816 ret = btrfs_find_new_delalloc_bytes(inode, start,
2823 return set_extent_bit(&inode->io_tree, start, end,
2824 EXTENT_DELALLOC | extra_bits, cached_state);
2827 /* see btrfs_writepage_start_hook for details on why this is required */
2828 struct btrfs_writepage_fixup {
2830 struct btrfs_inode *inode;
2831 struct btrfs_work work;
2834 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2836 struct btrfs_writepage_fixup *fixup =
2837 container_of(work, struct btrfs_writepage_fixup, work);
2838 struct btrfs_ordered_extent *ordered;
2839 struct extent_state *cached_state = NULL;
2840 struct extent_changeset *data_reserved = NULL;
2841 struct page *page = fixup->page;
2842 struct btrfs_inode *inode = fixup->inode;
2843 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2844 u64 page_start = page_offset(page);
2845 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2847 bool free_delalloc_space = true;
2850 * This is similar to page_mkwrite, we need to reserve the space before
2851 * we take the page lock.
2853 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2859 * Before we queued this fixup, we took a reference on the page.
2860 * page->mapping may go NULL, but it shouldn't be moved to a different
2863 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2865 * Unfortunately this is a little tricky, either
2867 * 1) We got here and our page had already been dealt with and
2868 * we reserved our space, thus ret == 0, so we need to just
2869 * drop our space reservation and bail. This can happen the
2870 * first time we come into the fixup worker, or could happen
2871 * while waiting for the ordered extent.
2872 * 2) Our page was already dealt with, but we happened to get an
2873 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2874 * this case we obviously don't have anything to release, but
2875 * because the page was already dealt with we don't want to
2876 * mark the page with an error, so make sure we're resetting
2877 * ret to 0. This is why we have this check _before_ the ret
2878 * check, because we do not want to have a surprise ENOSPC
2879 * when the page was already properly dealt with.
2882 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2883 btrfs_delalloc_release_space(inode, data_reserved,
2884 page_start, PAGE_SIZE,
2892 * We can't mess with the page state unless it is locked, so now that
2893 * it is locked bail if we failed to make our space reservation.
2898 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2900 /* already ordered? We're done */
2901 if (PageOrdered(page))
2904 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2906 unlock_extent(&inode->io_tree, page_start, page_end,
2909 btrfs_start_ordered_extent(ordered);
2910 btrfs_put_ordered_extent(ordered);
2914 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2920 * Everything went as planned, we're now the owner of a dirty page with
2921 * delayed allocation bits set and space reserved for our COW
2924 * The page was dirty when we started, nothing should have cleaned it.
2926 BUG_ON(!PageDirty(page));
2927 free_delalloc_space = false;
2929 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2930 if (free_delalloc_space)
2931 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2933 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2937 * We hit ENOSPC or other errors. Update the mapping and page
2938 * to reflect the errors and clean the page.
2940 mapping_set_error(page->mapping, ret);
2941 btrfs_mark_ordered_io_finished(inode, page, page_start,
2943 btrfs_page_clear_uptodate(fs_info, page, page_start, PAGE_SIZE);
2944 clear_page_dirty_for_io(page);
2946 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2950 extent_changeset_free(data_reserved);
2952 * As a precaution, do a delayed iput in case it would be the last iput
2953 * that could need flushing space. Recursing back to fixup worker would
2956 btrfs_add_delayed_iput(inode);
2960 * There are a few paths in the higher layers of the kernel that directly
2961 * set the page dirty bit without asking the filesystem if it is a
2962 * good idea. This causes problems because we want to make sure COW
2963 * properly happens and the data=ordered rules are followed.
2965 * In our case any range that doesn't have the ORDERED bit set
2966 * hasn't been properly setup for IO. We kick off an async process
2967 * to fix it up. The async helper will wait for ordered extents, set
2968 * the delalloc bit and make it safe to write the page.
2970 int btrfs_writepage_cow_fixup(struct page *page)
2972 struct inode *inode = page->mapping->host;
2973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2974 struct btrfs_writepage_fixup *fixup;
2976 /* This page has ordered extent covering it already */
2977 if (PageOrdered(page))
2981 * PageChecked is set below when we create a fixup worker for this page,
2982 * don't try to create another one if we're already PageChecked()
2984 * The extent_io writepage code will redirty the page if we send back
2987 if (PageChecked(page))
2990 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2995 * We are already holding a reference to this inode from
2996 * write_cache_pages. We need to hold it because the space reservation
2997 * takes place outside of the page lock, and we can't trust
2998 * page->mapping outside of the page lock.
3001 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3003 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
3005 fixup->inode = BTRFS_I(inode);
3006 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
3011 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
3012 struct btrfs_inode *inode, u64 file_pos,
3013 struct btrfs_file_extent_item *stack_fi,
3014 const bool update_inode_bytes,
3015 u64 qgroup_reserved)
3017 struct btrfs_root *root = inode->root;
3018 const u64 sectorsize = root->fs_info->sectorsize;
3019 struct btrfs_path *path;
3020 struct extent_buffer *leaf;
3021 struct btrfs_key ins;
3022 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3023 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3024 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3025 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3026 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3027 struct btrfs_drop_extents_args drop_args = { 0 };
3030 path = btrfs_alloc_path();
3035 * we may be replacing one extent in the tree with another.
3036 * The new extent is pinned in the extent map, and we don't want
3037 * to drop it from the cache until it is completely in the btree.
3039 * So, tell btrfs_drop_extents to leave this extent in the cache.
3040 * the caller is expected to unpin it and allow it to be merged
3043 drop_args.path = path;
3044 drop_args.start = file_pos;
3045 drop_args.end = file_pos + num_bytes;
3046 drop_args.replace_extent = true;
3047 drop_args.extent_item_size = sizeof(*stack_fi);
3048 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3052 if (!drop_args.extent_inserted) {
3053 ins.objectid = btrfs_ino(inode);
3054 ins.offset = file_pos;
3055 ins.type = BTRFS_EXTENT_DATA_KEY;
3057 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3062 leaf = path->nodes[0];
3063 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3064 write_extent_buffer(leaf, stack_fi,
3065 btrfs_item_ptr_offset(leaf, path->slots[0]),
3066 sizeof(struct btrfs_file_extent_item));
3068 btrfs_mark_buffer_dirty(leaf);
3069 btrfs_release_path(path);
3072 * If we dropped an inline extent here, we know the range where it is
3073 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3074 * number of bytes only for that range containing the inline extent.
3075 * The remaining of the range will be processed when clearning the
3076 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3078 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3079 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3081 inline_size = drop_args.bytes_found - inline_size;
3082 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3083 drop_args.bytes_found -= inline_size;
3084 num_bytes -= sectorsize;
3087 if (update_inode_bytes)
3088 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3090 ins.objectid = disk_bytenr;
3091 ins.offset = disk_num_bytes;
3092 ins.type = BTRFS_EXTENT_ITEM_KEY;
3094 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3098 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3100 qgroup_reserved, &ins);
3102 btrfs_free_path(path);
3107 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3110 struct btrfs_block_group *cache;
3112 cache = btrfs_lookup_block_group(fs_info, start);
3115 spin_lock(&cache->lock);
3116 cache->delalloc_bytes -= len;
3117 spin_unlock(&cache->lock);
3119 btrfs_put_block_group(cache);
3122 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3123 struct btrfs_ordered_extent *oe)
3125 struct btrfs_file_extent_item stack_fi;
3126 bool update_inode_bytes;
3127 u64 num_bytes = oe->num_bytes;
3128 u64 ram_bytes = oe->ram_bytes;
3130 memset(&stack_fi, 0, sizeof(stack_fi));
3131 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3132 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3133 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3134 oe->disk_num_bytes);
3135 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3136 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3137 num_bytes = oe->truncated_len;
3138 ram_bytes = num_bytes;
3140 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3141 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3142 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3143 /* Encryption and other encoding is reserved and all 0 */
3146 * For delalloc, when completing an ordered extent we update the inode's
3147 * bytes when clearing the range in the inode's io tree, so pass false
3148 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3149 * except if the ordered extent was truncated.
3151 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3152 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3153 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3155 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3156 oe->file_offset, &stack_fi,
3157 update_inode_bytes, oe->qgroup_rsv);
3161 * As ordered data IO finishes, this gets called so we can finish
3162 * an ordered extent if the range of bytes in the file it covers are
3165 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3167 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3168 struct btrfs_root *root = inode->root;
3169 struct btrfs_fs_info *fs_info = root->fs_info;
3170 struct btrfs_trans_handle *trans = NULL;
3171 struct extent_io_tree *io_tree = &inode->io_tree;
3172 struct extent_state *cached_state = NULL;
3174 int compress_type = 0;
3176 u64 logical_len = ordered_extent->num_bytes;
3177 bool freespace_inode;
3178 bool truncated = false;
3179 bool clear_reserved_extent = true;
3180 unsigned int clear_bits = EXTENT_DEFRAG;
3182 start = ordered_extent->file_offset;
3183 end = start + ordered_extent->num_bytes - 1;
3185 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3186 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3187 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3188 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3189 clear_bits |= EXTENT_DELALLOC_NEW;
3191 freespace_inode = btrfs_is_free_space_inode(inode);
3192 if (!freespace_inode)
3193 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3195 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3200 if (btrfs_is_zoned(fs_info))
3201 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3202 ordered_extent->disk_num_bytes);
3204 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3206 logical_len = ordered_extent->truncated_len;
3207 /* Truncated the entire extent, don't bother adding */
3212 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3213 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3215 btrfs_inode_safe_disk_i_size_write(inode, 0);
3216 if (freespace_inode)
3217 trans = btrfs_join_transaction_spacecache(root);
3219 trans = btrfs_join_transaction(root);
3220 if (IS_ERR(trans)) {
3221 ret = PTR_ERR(trans);
3225 trans->block_rsv = &inode->block_rsv;
3226 ret = btrfs_update_inode_fallback(trans, root, inode);
3227 if (ret) /* -ENOMEM or corruption */
3228 btrfs_abort_transaction(trans, ret);
3232 clear_bits |= EXTENT_LOCKED;
3233 lock_extent(io_tree, start, end, &cached_state);
3235 if (freespace_inode)
3236 trans = btrfs_join_transaction_spacecache(root);
3238 trans = btrfs_join_transaction(root);
3239 if (IS_ERR(trans)) {
3240 ret = PTR_ERR(trans);
3245 trans->block_rsv = &inode->block_rsv;
3247 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3248 compress_type = ordered_extent->compress_type;
3249 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3250 BUG_ON(compress_type);
3251 ret = btrfs_mark_extent_written(trans, inode,
3252 ordered_extent->file_offset,
3253 ordered_extent->file_offset +
3255 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3256 ordered_extent->disk_num_bytes);
3258 BUG_ON(root == fs_info->tree_root);
3259 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3261 clear_reserved_extent = false;
3262 btrfs_release_delalloc_bytes(fs_info,
3263 ordered_extent->disk_bytenr,
3264 ordered_extent->disk_num_bytes);
3267 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3268 ordered_extent->num_bytes, trans->transid);
3270 btrfs_abort_transaction(trans, ret);
3274 ret = add_pending_csums(trans, &ordered_extent->list);
3276 btrfs_abort_transaction(trans, ret);
3281 * If this is a new delalloc range, clear its new delalloc flag to
3282 * update the inode's number of bytes. This needs to be done first
3283 * before updating the inode item.
3285 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3286 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3287 clear_extent_bit(&inode->io_tree, start, end,
3288 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3291 btrfs_inode_safe_disk_i_size_write(inode, 0);
3292 ret = btrfs_update_inode_fallback(trans, root, inode);
3293 if (ret) { /* -ENOMEM or corruption */
3294 btrfs_abort_transaction(trans, ret);
3299 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3303 btrfs_end_transaction(trans);
3305 if (ret || truncated) {
3306 u64 unwritten_start = start;
3309 * If we failed to finish this ordered extent for any reason we
3310 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3311 * extent, and mark the inode with the error if it wasn't
3312 * already set. Any error during writeback would have already
3313 * set the mapping error, so we need to set it if we're the ones
3314 * marking this ordered extent as failed.
3316 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3317 &ordered_extent->flags))
3318 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3321 unwritten_start += logical_len;
3322 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3324 /* Drop extent maps for the part of the extent we didn't write. */
3325 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3328 * If the ordered extent had an IOERR or something else went
3329 * wrong we need to return the space for this ordered extent
3330 * back to the allocator. We only free the extent in the
3331 * truncated case if we didn't write out the extent at all.
3333 * If we made it past insert_reserved_file_extent before we
3334 * errored out then we don't need to do this as the accounting
3335 * has already been done.
3337 if ((ret || !logical_len) &&
3338 clear_reserved_extent &&
3339 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3340 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3342 * Discard the range before returning it back to the
3345 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3346 btrfs_discard_extent(fs_info,
3347 ordered_extent->disk_bytenr,
3348 ordered_extent->disk_num_bytes,
3350 btrfs_free_reserved_extent(fs_info,
3351 ordered_extent->disk_bytenr,
3352 ordered_extent->disk_num_bytes, 1);
3354 * Actually free the qgroup rsv which was released when
3355 * the ordered extent was created.
3357 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3358 ordered_extent->qgroup_rsv,
3359 BTRFS_QGROUP_RSV_DATA);
3364 * This needs to be done to make sure anybody waiting knows we are done
3365 * updating everything for this ordered extent.
3367 btrfs_remove_ordered_extent(inode, ordered_extent);
3370 btrfs_put_ordered_extent(ordered_extent);
3371 /* once for the tree */
3372 btrfs_put_ordered_extent(ordered_extent);
3377 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3379 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3380 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3381 btrfs_finish_ordered_zoned(ordered);
3382 return btrfs_finish_one_ordered(ordered);
3386 * Verify the checksum for a single sector without any extra action that depend
3387 * on the type of I/O.
3389 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3390 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3392 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3395 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3397 shash->tfm = fs_info->csum_shash;
3399 kaddr = kmap_local_page(page) + pgoff;
3400 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3401 kunmap_local(kaddr);
3403 if (memcmp(csum, csum_expected, fs_info->csum_size))
3409 * Verify the checksum of a single data sector.
3411 * @bbio: btrfs_io_bio which contains the csum
3412 * @dev: device the sector is on
3413 * @bio_offset: offset to the beginning of the bio (in bytes)
3414 * @bv: bio_vec to check
3416 * Check if the checksum on a data block is valid. When a checksum mismatch is
3417 * detected, report the error and fill the corrupted range with zero.
3419 * Return %true if the sector is ok or had no checksum to start with, else %false.
3421 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3422 u32 bio_offset, struct bio_vec *bv)
3424 struct btrfs_inode *inode = bbio->inode;
3425 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3426 u64 file_offset = bbio->file_offset + bio_offset;
3427 u64 end = file_offset + bv->bv_len - 1;
3429 u8 csum[BTRFS_CSUM_SIZE];
3431 ASSERT(bv->bv_len == fs_info->sectorsize);
3436 if (btrfs_is_data_reloc_root(inode->root) &&
3437 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3439 /* Skip the range without csum for data reloc inode */
3440 clear_extent_bits(&inode->io_tree, file_offset, end,
3445 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3447 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3453 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3456 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3462 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3464 * @inode: The inode we want to perform iput on
3466 * This function uses the generic vfs_inode::i_count to track whether we should
3467 * just decrement it (in case it's > 1) or if this is the last iput then link
3468 * the inode to the delayed iput machinery. Delayed iputs are processed at
3469 * transaction commit time/superblock commit/cleaner kthread.
3471 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3473 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3474 unsigned long flags;
3476 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3479 atomic_inc(&fs_info->nr_delayed_iputs);
3481 * Need to be irq safe here because we can be called from either an irq
3482 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3485 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3486 ASSERT(list_empty(&inode->delayed_iput));
3487 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3488 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3489 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3490 wake_up_process(fs_info->cleaner_kthread);
3493 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3494 struct btrfs_inode *inode)
3496 list_del_init(&inode->delayed_iput);
3497 spin_unlock_irq(&fs_info->delayed_iput_lock);
3498 iput(&inode->vfs_inode);
3499 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3500 wake_up(&fs_info->delayed_iputs_wait);
3501 spin_lock_irq(&fs_info->delayed_iput_lock);
3504 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3505 struct btrfs_inode *inode)
3507 if (!list_empty(&inode->delayed_iput)) {
3508 spin_lock_irq(&fs_info->delayed_iput_lock);
3509 if (!list_empty(&inode->delayed_iput))
3510 run_delayed_iput_locked(fs_info, inode);
3511 spin_unlock_irq(&fs_info->delayed_iput_lock);
3515 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3518 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3519 * calls btrfs_add_delayed_iput() and that needs to lock
3520 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3521 * prevent a deadlock.
3523 spin_lock_irq(&fs_info->delayed_iput_lock);
3524 while (!list_empty(&fs_info->delayed_iputs)) {
3525 struct btrfs_inode *inode;
3527 inode = list_first_entry(&fs_info->delayed_iputs,
3528 struct btrfs_inode, delayed_iput);
3529 run_delayed_iput_locked(fs_info, inode);
3530 if (need_resched()) {
3531 spin_unlock_irq(&fs_info->delayed_iput_lock);
3533 spin_lock_irq(&fs_info->delayed_iput_lock);
3536 spin_unlock_irq(&fs_info->delayed_iput_lock);
3540 * Wait for flushing all delayed iputs
3542 * @fs_info: the filesystem
3544 * This will wait on any delayed iputs that are currently running with KILLABLE
3545 * set. Once they are all done running we will return, unless we are killed in
3546 * which case we return EINTR. This helps in user operations like fallocate etc
3547 * that might get blocked on the iputs.
3549 * Return EINTR if we were killed, 0 if nothing's pending
3551 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3553 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3554 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3561 * This creates an orphan entry for the given inode in case something goes wrong
3562 * in the middle of an unlink.
3564 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3565 struct btrfs_inode *inode)
3569 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3570 if (ret && ret != -EEXIST) {
3571 btrfs_abort_transaction(trans, ret);
3579 * We have done the delete so we can go ahead and remove the orphan item for
3580 * this particular inode.
3582 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3583 struct btrfs_inode *inode)
3585 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3589 * this cleans up any orphans that may be left on the list from the last use
3592 int btrfs_orphan_cleanup(struct btrfs_root *root)
3594 struct btrfs_fs_info *fs_info = root->fs_info;
3595 struct btrfs_path *path;
3596 struct extent_buffer *leaf;
3597 struct btrfs_key key, found_key;
3598 struct btrfs_trans_handle *trans;
3599 struct inode *inode;
3600 u64 last_objectid = 0;
3601 int ret = 0, nr_unlink = 0;
3603 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3606 path = btrfs_alloc_path();
3611 path->reada = READA_BACK;
3613 key.objectid = BTRFS_ORPHAN_OBJECTID;
3614 key.type = BTRFS_ORPHAN_ITEM_KEY;
3615 key.offset = (u64)-1;
3618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3623 * if ret == 0 means we found what we were searching for, which
3624 * is weird, but possible, so only screw with path if we didn't
3625 * find the key and see if we have stuff that matches
3629 if (path->slots[0] == 0)
3634 /* pull out the item */
3635 leaf = path->nodes[0];
3636 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3638 /* make sure the item matches what we want */
3639 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3641 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3644 /* release the path since we're done with it */
3645 btrfs_release_path(path);
3648 * this is where we are basically btrfs_lookup, without the
3649 * crossing root thing. we store the inode number in the
3650 * offset of the orphan item.
3653 if (found_key.offset == last_objectid) {
3655 "Error removing orphan entry, stopping orphan cleanup");
3660 last_objectid = found_key.offset;
3662 found_key.objectid = found_key.offset;
3663 found_key.type = BTRFS_INODE_ITEM_KEY;
3664 found_key.offset = 0;
3665 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3666 if (IS_ERR(inode)) {
3667 ret = PTR_ERR(inode);
3673 if (!inode && root == fs_info->tree_root) {
3674 struct btrfs_root *dead_root;
3675 int is_dead_root = 0;
3678 * This is an orphan in the tree root. Currently these
3679 * could come from 2 sources:
3680 * a) a root (snapshot/subvolume) deletion in progress
3681 * b) a free space cache inode
3682 * We need to distinguish those two, as the orphan item
3683 * for a root must not get deleted before the deletion
3684 * of the snapshot/subvolume's tree completes.
3686 * btrfs_find_orphan_roots() ran before us, which has
3687 * found all deleted roots and loaded them into
3688 * fs_info->fs_roots_radix. So here we can find if an
3689 * orphan item corresponds to a deleted root by looking
3690 * up the root from that radix tree.
3693 spin_lock(&fs_info->fs_roots_radix_lock);
3694 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3695 (unsigned long)found_key.objectid);
3696 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3698 spin_unlock(&fs_info->fs_roots_radix_lock);
3701 /* prevent this orphan from being found again */
3702 key.offset = found_key.objectid - 1;
3709 * If we have an inode with links, there are a couple of
3712 * 1. We were halfway through creating fsverity metadata for the
3713 * file. In that case, the orphan item represents incomplete
3714 * fsverity metadata which must be cleaned up with
3715 * btrfs_drop_verity_items and deleting the orphan item.
3717 * 2. Old kernels (before v3.12) used to create an
3718 * orphan item for truncate indicating that there were possibly
3719 * extent items past i_size that needed to be deleted. In v3.12,
3720 * truncate was changed to update i_size in sync with the extent
3721 * items, but the (useless) orphan item was still created. Since
3722 * v4.18, we don't create the orphan item for truncate at all.
3724 * So, this item could mean that we need to do a truncate, but
3725 * only if this filesystem was last used on a pre-v3.12 kernel
3726 * and was not cleanly unmounted. The odds of that are quite
3727 * slim, and it's a pain to do the truncate now, so just delete
3730 * It's also possible that this orphan item was supposed to be
3731 * deleted but wasn't. The inode number may have been reused,
3732 * but either way, we can delete the orphan item.
3734 if (!inode || inode->i_nlink) {
3736 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3742 trans = btrfs_start_transaction(root, 1);
3743 if (IS_ERR(trans)) {
3744 ret = PTR_ERR(trans);
3747 btrfs_debug(fs_info, "auto deleting %Lu",
3748 found_key.objectid);
3749 ret = btrfs_del_orphan_item(trans, root,
3750 found_key.objectid);
3751 btrfs_end_transaction(trans);
3759 /* this will do delete_inode and everything for us */
3762 /* release the path since we're done with it */
3763 btrfs_release_path(path);
3765 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3766 trans = btrfs_join_transaction(root);
3768 btrfs_end_transaction(trans);
3772 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3776 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3777 btrfs_free_path(path);
3782 * very simple check to peek ahead in the leaf looking for xattrs. If we
3783 * don't find any xattrs, we know there can't be any acls.
3785 * slot is the slot the inode is in, objectid is the objectid of the inode
3787 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3788 int slot, u64 objectid,
3789 int *first_xattr_slot)
3791 u32 nritems = btrfs_header_nritems(leaf);
3792 struct btrfs_key found_key;
3793 static u64 xattr_access = 0;
3794 static u64 xattr_default = 0;
3797 if (!xattr_access) {
3798 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3799 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3800 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3801 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3805 *first_xattr_slot = -1;
3806 while (slot < nritems) {
3807 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3809 /* we found a different objectid, there must not be acls */
3810 if (found_key.objectid != objectid)
3813 /* we found an xattr, assume we've got an acl */
3814 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3815 if (*first_xattr_slot == -1)
3816 *first_xattr_slot = slot;
3817 if (found_key.offset == xattr_access ||
3818 found_key.offset == xattr_default)
3823 * we found a key greater than an xattr key, there can't
3824 * be any acls later on
3826 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3833 * it goes inode, inode backrefs, xattrs, extents,
3834 * so if there are a ton of hard links to an inode there can
3835 * be a lot of backrefs. Don't waste time searching too hard,
3836 * this is just an optimization
3841 /* we hit the end of the leaf before we found an xattr or
3842 * something larger than an xattr. We have to assume the inode
3845 if (*first_xattr_slot == -1)
3846 *first_xattr_slot = slot;
3851 * read an inode from the btree into the in-memory inode
3853 static int btrfs_read_locked_inode(struct inode *inode,
3854 struct btrfs_path *in_path)
3856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3857 struct btrfs_path *path = in_path;
3858 struct extent_buffer *leaf;
3859 struct btrfs_inode_item *inode_item;
3860 struct btrfs_root *root = BTRFS_I(inode)->root;
3861 struct btrfs_key location;
3866 bool filled = false;
3867 int first_xattr_slot;
3869 ret = btrfs_fill_inode(inode, &rdev);
3874 path = btrfs_alloc_path();
3879 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3881 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3883 if (path != in_path)
3884 btrfs_free_path(path);
3888 leaf = path->nodes[0];
3893 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3894 struct btrfs_inode_item);
3895 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3896 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3897 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3898 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3899 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3900 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3901 round_up(i_size_read(inode), fs_info->sectorsize));
3903 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3904 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3906 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3907 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3909 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3910 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3912 BTRFS_I(inode)->i_otime.tv_sec =
3913 btrfs_timespec_sec(leaf, &inode_item->otime);
3914 BTRFS_I(inode)->i_otime.tv_nsec =
3915 btrfs_timespec_nsec(leaf, &inode_item->otime);
3917 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3918 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3919 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3921 inode_set_iversion_queried(inode,
3922 btrfs_inode_sequence(leaf, inode_item));
3923 inode->i_generation = BTRFS_I(inode)->generation;
3925 rdev = btrfs_inode_rdev(leaf, inode_item);
3927 BTRFS_I(inode)->index_cnt = (u64)-1;
3928 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3929 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3933 * If we were modified in the current generation and evicted from memory
3934 * and then re-read we need to do a full sync since we don't have any
3935 * idea about which extents were modified before we were evicted from
3938 * This is required for both inode re-read from disk and delayed inode
3939 * in delayed_nodes_tree.
3941 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3942 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3943 &BTRFS_I(inode)->runtime_flags);
3946 * We don't persist the id of the transaction where an unlink operation
3947 * against the inode was last made. So here we assume the inode might
3948 * have been evicted, and therefore the exact value of last_unlink_trans
3949 * lost, and set it to last_trans to avoid metadata inconsistencies
3950 * between the inode and its parent if the inode is fsync'ed and the log
3951 * replayed. For example, in the scenario:
3954 * ln mydir/foo mydir/bar
3957 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3958 * xfs_io -c fsync mydir/foo
3960 * mount fs, triggers fsync log replay
3962 * We must make sure that when we fsync our inode foo we also log its
3963 * parent inode, otherwise after log replay the parent still has the
3964 * dentry with the "bar" name but our inode foo has a link count of 1
3965 * and doesn't have an inode ref with the name "bar" anymore.
3967 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3968 * but it guarantees correctness at the expense of occasional full
3969 * transaction commits on fsync if our inode is a directory, or if our
3970 * inode is not a directory, logging its parent unnecessarily.
3972 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3975 * Same logic as for last_unlink_trans. We don't persist the generation
3976 * of the last transaction where this inode was used for a reflink
3977 * operation, so after eviction and reloading the inode we must be
3978 * pessimistic and assume the last transaction that modified the inode.
3980 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3983 if (inode->i_nlink != 1 ||
3984 path->slots[0] >= btrfs_header_nritems(leaf))
3987 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3988 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3991 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3992 if (location.type == BTRFS_INODE_REF_KEY) {
3993 struct btrfs_inode_ref *ref;
3995 ref = (struct btrfs_inode_ref *)ptr;
3996 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3997 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3998 struct btrfs_inode_extref *extref;
4000 extref = (struct btrfs_inode_extref *)ptr;
4001 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4006 * try to precache a NULL acl entry for files that don't have
4007 * any xattrs or acls
4009 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4010 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4011 if (first_xattr_slot != -1) {
4012 path->slots[0] = first_xattr_slot;
4013 ret = btrfs_load_inode_props(inode, path);
4016 "error loading props for ino %llu (root %llu): %d",
4017 btrfs_ino(BTRFS_I(inode)),
4018 root->root_key.objectid, ret);
4020 if (path != in_path)
4021 btrfs_free_path(path);
4024 cache_no_acl(inode);
4026 switch (inode->i_mode & S_IFMT) {
4028 inode->i_mapping->a_ops = &btrfs_aops;
4029 inode->i_fop = &btrfs_file_operations;
4030 inode->i_op = &btrfs_file_inode_operations;
4033 inode->i_fop = &btrfs_dir_file_operations;
4034 inode->i_op = &btrfs_dir_inode_operations;
4037 inode->i_op = &btrfs_symlink_inode_operations;
4038 inode_nohighmem(inode);
4039 inode->i_mapping->a_ops = &btrfs_aops;
4042 inode->i_op = &btrfs_special_inode_operations;
4043 init_special_inode(inode, inode->i_mode, rdev);
4047 btrfs_sync_inode_flags_to_i_flags(inode);
4052 * given a leaf and an inode, copy the inode fields into the leaf
4054 static void fill_inode_item(struct btrfs_trans_handle *trans,
4055 struct extent_buffer *leaf,
4056 struct btrfs_inode_item *item,
4057 struct inode *inode)
4059 struct btrfs_map_token token;
4062 btrfs_init_map_token(&token, leaf);
4064 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4065 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4066 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4067 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4068 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4070 btrfs_set_token_timespec_sec(&token, &item->atime,
4071 inode->i_atime.tv_sec);
4072 btrfs_set_token_timespec_nsec(&token, &item->atime,
4073 inode->i_atime.tv_nsec);
4075 btrfs_set_token_timespec_sec(&token, &item->mtime,
4076 inode->i_mtime.tv_sec);
4077 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4078 inode->i_mtime.tv_nsec);
4080 btrfs_set_token_timespec_sec(&token, &item->ctime,
4081 inode->i_ctime.tv_sec);
4082 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4083 inode->i_ctime.tv_nsec);
4085 btrfs_set_token_timespec_sec(&token, &item->otime,
4086 BTRFS_I(inode)->i_otime.tv_sec);
4087 btrfs_set_token_timespec_nsec(&token, &item->otime,
4088 BTRFS_I(inode)->i_otime.tv_nsec);
4090 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4091 btrfs_set_token_inode_generation(&token, item,
4092 BTRFS_I(inode)->generation);
4093 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4094 btrfs_set_token_inode_transid(&token, item, trans->transid);
4095 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4096 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4097 BTRFS_I(inode)->ro_flags);
4098 btrfs_set_token_inode_flags(&token, item, flags);
4099 btrfs_set_token_inode_block_group(&token, item, 0);
4103 * copy everything in the in-memory inode into the btree.
4105 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4106 struct btrfs_root *root,
4107 struct btrfs_inode *inode)
4109 struct btrfs_inode_item *inode_item;
4110 struct btrfs_path *path;
4111 struct extent_buffer *leaf;
4114 path = btrfs_alloc_path();
4118 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4125 leaf = path->nodes[0];
4126 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4127 struct btrfs_inode_item);
4129 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4130 btrfs_mark_buffer_dirty(leaf);
4131 btrfs_set_inode_last_trans(trans, inode);
4134 btrfs_free_path(path);
4139 * copy everything in the in-memory inode into the btree.
4141 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *root,
4143 struct btrfs_inode *inode)
4145 struct btrfs_fs_info *fs_info = root->fs_info;
4149 * If the inode is a free space inode, we can deadlock during commit
4150 * if we put it into the delayed code.
4152 * The data relocation inode should also be directly updated
4155 if (!btrfs_is_free_space_inode(inode)
4156 && !btrfs_is_data_reloc_root(root)
4157 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4158 btrfs_update_root_times(trans, root);
4160 ret = btrfs_delayed_update_inode(trans, root, inode);
4162 btrfs_set_inode_last_trans(trans, inode);
4166 return btrfs_update_inode_item(trans, root, inode);
4169 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4170 struct btrfs_root *root, struct btrfs_inode *inode)
4174 ret = btrfs_update_inode(trans, root, inode);
4176 return btrfs_update_inode_item(trans, root, inode);
4181 * unlink helper that gets used here in inode.c and in the tree logging
4182 * recovery code. It remove a link in a directory with a given name, and
4183 * also drops the back refs in the inode to the directory
4185 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4186 struct btrfs_inode *dir,
4187 struct btrfs_inode *inode,
4188 const struct fscrypt_str *name,
4189 struct btrfs_rename_ctx *rename_ctx)
4191 struct btrfs_root *root = dir->root;
4192 struct btrfs_fs_info *fs_info = root->fs_info;
4193 struct btrfs_path *path;
4195 struct btrfs_dir_item *di;
4197 u64 ino = btrfs_ino(inode);
4198 u64 dir_ino = btrfs_ino(dir);
4200 path = btrfs_alloc_path();
4206 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4207 if (IS_ERR_OR_NULL(di)) {
4208 ret = di ? PTR_ERR(di) : -ENOENT;
4211 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4214 btrfs_release_path(path);
4217 * If we don't have dir index, we have to get it by looking up
4218 * the inode ref, since we get the inode ref, remove it directly,
4219 * it is unnecessary to do delayed deletion.
4221 * But if we have dir index, needn't search inode ref to get it.
4222 * Since the inode ref is close to the inode item, it is better
4223 * that we delay to delete it, and just do this deletion when
4224 * we update the inode item.
4226 if (inode->dir_index) {
4227 ret = btrfs_delayed_delete_inode_ref(inode);
4229 index = inode->dir_index;
4234 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4237 "failed to delete reference to %.*s, inode %llu parent %llu",
4238 name->len, name->name, ino, dir_ino);
4239 btrfs_abort_transaction(trans, ret);
4244 rename_ctx->index = index;
4246 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4248 btrfs_abort_transaction(trans, ret);
4253 * If we are in a rename context, we don't need to update anything in the
4254 * log. That will be done later during the rename by btrfs_log_new_name().
4255 * Besides that, doing it here would only cause extra unnecessary btree
4256 * operations on the log tree, increasing latency for applications.
4259 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4260 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4264 * If we have a pending delayed iput we could end up with the final iput
4265 * being run in btrfs-cleaner context. If we have enough of these built
4266 * up we can end up burning a lot of time in btrfs-cleaner without any
4267 * way to throttle the unlinks. Since we're currently holding a ref on
4268 * the inode we can run the delayed iput here without any issues as the
4269 * final iput won't be done until after we drop the ref we're currently
4272 btrfs_run_delayed_iput(fs_info, inode);
4274 btrfs_free_path(path);
4278 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4279 inode_inc_iversion(&inode->vfs_inode);
4280 inode_inc_iversion(&dir->vfs_inode);
4281 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4282 dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime;
4283 dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime;
4284 ret = btrfs_update_inode(trans, root, dir);
4289 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4290 struct btrfs_inode *dir, struct btrfs_inode *inode,
4291 const struct fscrypt_str *name)
4295 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4297 drop_nlink(&inode->vfs_inode);
4298 ret = btrfs_update_inode(trans, inode->root, inode);
4304 * helper to start transaction for unlink and rmdir.
4306 * unlink and rmdir are special in btrfs, they do not always free space, so
4307 * if we cannot make our reservations the normal way try and see if there is
4308 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4309 * allow the unlink to occur.
4311 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4313 struct btrfs_root *root = dir->root;
4315 return btrfs_start_transaction_fallback_global_rsv(root,
4316 BTRFS_UNLINK_METADATA_UNITS);
4319 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4321 struct btrfs_trans_handle *trans;
4322 struct inode *inode = d_inode(dentry);
4324 struct fscrypt_name fname;
4326 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4330 /* This needs to handle no-key deletions later on */
4332 trans = __unlink_start_trans(BTRFS_I(dir));
4333 if (IS_ERR(trans)) {
4334 ret = PTR_ERR(trans);
4338 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4341 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4346 if (inode->i_nlink == 0) {
4347 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4353 btrfs_end_transaction(trans);
4354 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4356 fscrypt_free_filename(&fname);
4360 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4361 struct btrfs_inode *dir, struct dentry *dentry)
4363 struct btrfs_root *root = dir->root;
4364 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4365 struct btrfs_path *path;
4366 struct extent_buffer *leaf;
4367 struct btrfs_dir_item *di;
4368 struct btrfs_key key;
4372 u64 dir_ino = btrfs_ino(dir);
4373 struct fscrypt_name fname;
4375 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4379 /* This needs to handle no-key deletions later on */
4381 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4382 objectid = inode->root->root_key.objectid;
4383 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4384 objectid = inode->location.objectid;
4387 fscrypt_free_filename(&fname);
4391 path = btrfs_alloc_path();
4397 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4398 &fname.disk_name, -1);
4399 if (IS_ERR_OR_NULL(di)) {
4400 ret = di ? PTR_ERR(di) : -ENOENT;
4404 leaf = path->nodes[0];
4405 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4406 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4407 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4409 btrfs_abort_transaction(trans, ret);
4412 btrfs_release_path(path);
4415 * This is a placeholder inode for a subvolume we didn't have a
4416 * reference to at the time of the snapshot creation. In the meantime
4417 * we could have renamed the real subvol link into our snapshot, so
4418 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4419 * Instead simply lookup the dir_index_item for this entry so we can
4420 * remove it. Otherwise we know we have a ref to the root and we can
4421 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4423 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4424 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4425 if (IS_ERR_OR_NULL(di)) {
4430 btrfs_abort_transaction(trans, ret);
4434 leaf = path->nodes[0];
4435 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4437 btrfs_release_path(path);
4439 ret = btrfs_del_root_ref(trans, objectid,
4440 root->root_key.objectid, dir_ino,
4441 &index, &fname.disk_name);
4443 btrfs_abort_transaction(trans, ret);
4448 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4450 btrfs_abort_transaction(trans, ret);
4454 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4455 inode_inc_iversion(&dir->vfs_inode);
4456 dir->vfs_inode.i_mtime = current_time(&dir->vfs_inode);
4457 dir->vfs_inode.i_ctime = dir->vfs_inode.i_mtime;
4458 ret = btrfs_update_inode_fallback(trans, root, dir);
4460 btrfs_abort_transaction(trans, ret);
4462 btrfs_free_path(path);
4463 fscrypt_free_filename(&fname);
4468 * Helper to check if the subvolume references other subvolumes or if it's
4471 static noinline int may_destroy_subvol(struct btrfs_root *root)
4473 struct btrfs_fs_info *fs_info = root->fs_info;
4474 struct btrfs_path *path;
4475 struct btrfs_dir_item *di;
4476 struct btrfs_key key;
4477 struct fscrypt_str name = FSTR_INIT("default", 7);
4481 path = btrfs_alloc_path();
4485 /* Make sure this root isn't set as the default subvol */
4486 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4487 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4489 if (di && !IS_ERR(di)) {
4490 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4491 if (key.objectid == root->root_key.objectid) {
4494 "deleting default subvolume %llu is not allowed",
4498 btrfs_release_path(path);
4501 key.objectid = root->root_key.objectid;
4502 key.type = BTRFS_ROOT_REF_KEY;
4503 key.offset = (u64)-1;
4505 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4511 if (path->slots[0] > 0) {
4513 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4514 if (key.objectid == root->root_key.objectid &&
4515 key.type == BTRFS_ROOT_REF_KEY)
4519 btrfs_free_path(path);
4523 /* Delete all dentries for inodes belonging to the root */
4524 static void btrfs_prune_dentries(struct btrfs_root *root)
4526 struct btrfs_fs_info *fs_info = root->fs_info;
4527 struct rb_node *node;
4528 struct rb_node *prev;
4529 struct btrfs_inode *entry;
4530 struct inode *inode;
4533 if (!BTRFS_FS_ERROR(fs_info))
4534 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4536 spin_lock(&root->inode_lock);
4538 node = root->inode_tree.rb_node;
4542 entry = rb_entry(node, struct btrfs_inode, rb_node);
4544 if (objectid < btrfs_ino(entry))
4545 node = node->rb_left;
4546 else if (objectid > btrfs_ino(entry))
4547 node = node->rb_right;
4553 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4554 if (objectid <= btrfs_ino(entry)) {
4558 prev = rb_next(prev);
4562 entry = rb_entry(node, struct btrfs_inode, rb_node);
4563 objectid = btrfs_ino(entry) + 1;
4564 inode = igrab(&entry->vfs_inode);
4566 spin_unlock(&root->inode_lock);
4567 if (atomic_read(&inode->i_count) > 1)
4568 d_prune_aliases(inode);
4570 * btrfs_drop_inode will have it removed from the inode
4571 * cache when its usage count hits zero.
4575 spin_lock(&root->inode_lock);
4579 if (cond_resched_lock(&root->inode_lock))
4582 node = rb_next(node);
4584 spin_unlock(&root->inode_lock);
4587 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4589 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4590 struct btrfs_root *root = dir->root;
4591 struct inode *inode = d_inode(dentry);
4592 struct btrfs_root *dest = BTRFS_I(inode)->root;
4593 struct btrfs_trans_handle *trans;
4594 struct btrfs_block_rsv block_rsv;
4599 * Don't allow to delete a subvolume with send in progress. This is
4600 * inside the inode lock so the error handling that has to drop the bit
4601 * again is not run concurrently.
4603 spin_lock(&dest->root_item_lock);
4604 if (dest->send_in_progress) {
4605 spin_unlock(&dest->root_item_lock);
4607 "attempt to delete subvolume %llu during send",
4608 dest->root_key.objectid);
4611 if (atomic_read(&dest->nr_swapfiles)) {
4612 spin_unlock(&dest->root_item_lock);
4614 "attempt to delete subvolume %llu with active swapfile",
4615 root->root_key.objectid);
4618 root_flags = btrfs_root_flags(&dest->root_item);
4619 btrfs_set_root_flags(&dest->root_item,
4620 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4621 spin_unlock(&dest->root_item_lock);
4623 down_write(&fs_info->subvol_sem);
4625 ret = may_destroy_subvol(dest);
4629 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4631 * One for dir inode,
4632 * two for dir entries,
4633 * two for root ref/backref.
4635 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4639 trans = btrfs_start_transaction(root, 0);
4640 if (IS_ERR(trans)) {
4641 ret = PTR_ERR(trans);
4644 trans->block_rsv = &block_rsv;
4645 trans->bytes_reserved = block_rsv.size;
4647 btrfs_record_snapshot_destroy(trans, dir);
4649 ret = btrfs_unlink_subvol(trans, dir, dentry);
4651 btrfs_abort_transaction(trans, ret);
4655 ret = btrfs_record_root_in_trans(trans, dest);
4657 btrfs_abort_transaction(trans, ret);
4661 memset(&dest->root_item.drop_progress, 0,
4662 sizeof(dest->root_item.drop_progress));
4663 btrfs_set_root_drop_level(&dest->root_item, 0);
4664 btrfs_set_root_refs(&dest->root_item, 0);
4666 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4667 ret = btrfs_insert_orphan_item(trans,
4669 dest->root_key.objectid);
4671 btrfs_abort_transaction(trans, ret);
4676 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4677 BTRFS_UUID_KEY_SUBVOL,
4678 dest->root_key.objectid);
4679 if (ret && ret != -ENOENT) {
4680 btrfs_abort_transaction(trans, ret);
4683 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4684 ret = btrfs_uuid_tree_remove(trans,
4685 dest->root_item.received_uuid,
4686 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4687 dest->root_key.objectid);
4688 if (ret && ret != -ENOENT) {
4689 btrfs_abort_transaction(trans, ret);
4694 free_anon_bdev(dest->anon_dev);
4697 trans->block_rsv = NULL;
4698 trans->bytes_reserved = 0;
4699 ret = btrfs_end_transaction(trans);
4700 inode->i_flags |= S_DEAD;
4702 btrfs_subvolume_release_metadata(root, &block_rsv);
4704 up_write(&fs_info->subvol_sem);
4706 spin_lock(&dest->root_item_lock);
4707 root_flags = btrfs_root_flags(&dest->root_item);
4708 btrfs_set_root_flags(&dest->root_item,
4709 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4710 spin_unlock(&dest->root_item_lock);
4712 d_invalidate(dentry);
4713 btrfs_prune_dentries(dest);
4714 ASSERT(dest->send_in_progress == 0);
4720 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4722 struct inode *inode = d_inode(dentry);
4723 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4725 struct btrfs_trans_handle *trans;
4726 u64 last_unlink_trans;
4727 struct fscrypt_name fname;
4729 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4731 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4732 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4734 "extent tree v2 doesn't support snapshot deletion yet");
4737 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4740 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4744 /* This needs to handle no-key deletions later on */
4746 trans = __unlink_start_trans(BTRFS_I(dir));
4747 if (IS_ERR(trans)) {
4748 err = PTR_ERR(trans);
4752 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4753 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4757 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4761 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4763 /* now the directory is empty */
4764 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4767 btrfs_i_size_write(BTRFS_I(inode), 0);
4769 * Propagate the last_unlink_trans value of the deleted dir to
4770 * its parent directory. This is to prevent an unrecoverable
4771 * log tree in the case we do something like this:
4773 * 2) create snapshot under dir foo
4774 * 3) delete the snapshot
4777 * 6) fsync foo or some file inside foo
4779 if (last_unlink_trans >= trans->transid)
4780 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4783 btrfs_end_transaction(trans);
4785 btrfs_btree_balance_dirty(fs_info);
4786 fscrypt_free_filename(&fname);
4792 * btrfs_truncate_block - read, zero a chunk and write a block
4793 * @inode - inode that we're zeroing
4794 * @from - the offset to start zeroing
4795 * @len - the length to zero, 0 to zero the entire range respective to the
4797 * @front - zero up to the offset instead of from the offset on
4799 * This will find the block for the "from" offset and cow the block and zero the
4800 * part we want to zero. This is used with truncate and hole punching.
4802 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4805 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4806 struct address_space *mapping = inode->vfs_inode.i_mapping;
4807 struct extent_io_tree *io_tree = &inode->io_tree;
4808 struct btrfs_ordered_extent *ordered;
4809 struct extent_state *cached_state = NULL;
4810 struct extent_changeset *data_reserved = NULL;
4811 bool only_release_metadata = false;
4812 u32 blocksize = fs_info->sectorsize;
4813 pgoff_t index = from >> PAGE_SHIFT;
4814 unsigned offset = from & (blocksize - 1);
4816 gfp_t mask = btrfs_alloc_write_mask(mapping);
4817 size_t write_bytes = blocksize;
4822 if (IS_ALIGNED(offset, blocksize) &&
4823 (!len || IS_ALIGNED(len, blocksize)))
4826 block_start = round_down(from, blocksize);
4827 block_end = block_start + blocksize - 1;
4829 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4832 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4833 /* For nocow case, no need to reserve data space */
4834 only_release_metadata = true;
4839 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4841 if (!only_release_metadata)
4842 btrfs_free_reserved_data_space(inode, data_reserved,
4843 block_start, blocksize);
4847 page = find_or_create_page(mapping, index, mask);
4849 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4851 btrfs_delalloc_release_extents(inode, blocksize);
4856 if (!PageUptodate(page)) {
4857 ret = btrfs_read_folio(NULL, page_folio(page));
4859 if (page->mapping != mapping) {
4864 if (!PageUptodate(page)) {
4871 * We unlock the page after the io is completed and then re-lock it
4872 * above. release_folio() could have come in between that and cleared
4873 * PagePrivate(), but left the page in the mapping. Set the page mapped
4874 * here to make sure it's properly set for the subpage stuff.
4876 ret = set_page_extent_mapped(page);
4880 wait_on_page_writeback(page);
4882 lock_extent(io_tree, block_start, block_end, &cached_state);
4884 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4886 unlock_extent(io_tree, block_start, block_end, &cached_state);
4889 btrfs_start_ordered_extent(ordered);
4890 btrfs_put_ordered_extent(ordered);
4894 clear_extent_bit(&inode->io_tree, block_start, block_end,
4895 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4898 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4901 unlock_extent(io_tree, block_start, block_end, &cached_state);
4905 if (offset != blocksize) {
4907 len = blocksize - offset;
4909 memzero_page(page, (block_start - page_offset(page)),
4912 memzero_page(page, (block_start - page_offset(page)) + offset,
4915 btrfs_page_clear_checked(fs_info, page, block_start,
4916 block_end + 1 - block_start);
4917 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4918 unlock_extent(io_tree, block_start, block_end, &cached_state);
4920 if (only_release_metadata)
4921 set_extent_bit(&inode->io_tree, block_start, block_end,
4922 EXTENT_NORESERVE, NULL);
4926 if (only_release_metadata)
4927 btrfs_delalloc_release_metadata(inode, blocksize, true);
4929 btrfs_delalloc_release_space(inode, data_reserved,
4930 block_start, blocksize, true);
4932 btrfs_delalloc_release_extents(inode, blocksize);
4936 if (only_release_metadata)
4937 btrfs_check_nocow_unlock(inode);
4938 extent_changeset_free(data_reserved);
4942 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4943 u64 offset, u64 len)
4945 struct btrfs_fs_info *fs_info = root->fs_info;
4946 struct btrfs_trans_handle *trans;
4947 struct btrfs_drop_extents_args drop_args = { 0 };
4951 * If NO_HOLES is enabled, we don't need to do anything.
4952 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4953 * or btrfs_update_inode() will be called, which guarantee that the next
4954 * fsync will know this inode was changed and needs to be logged.
4956 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4960 * 1 - for the one we're dropping
4961 * 1 - for the one we're adding
4962 * 1 - for updating the inode.
4964 trans = btrfs_start_transaction(root, 3);
4966 return PTR_ERR(trans);
4968 drop_args.start = offset;
4969 drop_args.end = offset + len;
4970 drop_args.drop_cache = true;
4972 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4974 btrfs_abort_transaction(trans, ret);
4975 btrfs_end_transaction(trans);
4979 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4981 btrfs_abort_transaction(trans, ret);
4983 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4984 btrfs_update_inode(trans, root, inode);
4986 btrfs_end_transaction(trans);
4991 * This function puts in dummy file extents for the area we're creating a hole
4992 * for. So if we are truncating this file to a larger size we need to insert
4993 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4994 * the range between oldsize and size
4996 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4998 struct btrfs_root *root = inode->root;
4999 struct btrfs_fs_info *fs_info = root->fs_info;
5000 struct extent_io_tree *io_tree = &inode->io_tree;
5001 struct extent_map *em = NULL;
5002 struct extent_state *cached_state = NULL;
5003 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5004 u64 block_end = ALIGN(size, fs_info->sectorsize);
5011 * If our size started in the middle of a block we need to zero out the
5012 * rest of the block before we expand the i_size, otherwise we could
5013 * expose stale data.
5015 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5019 if (size <= hole_start)
5022 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5024 cur_offset = hole_start;
5026 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5027 block_end - cur_offset);
5033 last_byte = min(extent_map_end(em), block_end);
5034 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5035 hole_size = last_byte - cur_offset;
5037 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5038 struct extent_map *hole_em;
5040 err = maybe_insert_hole(root, inode, cur_offset,
5045 err = btrfs_inode_set_file_extent_range(inode,
5046 cur_offset, hole_size);
5050 hole_em = alloc_extent_map();
5052 btrfs_drop_extent_map_range(inode, cur_offset,
5053 cur_offset + hole_size - 1,
5055 btrfs_set_inode_full_sync(inode);
5058 hole_em->start = cur_offset;
5059 hole_em->len = hole_size;
5060 hole_em->orig_start = cur_offset;
5062 hole_em->block_start = EXTENT_MAP_HOLE;
5063 hole_em->block_len = 0;
5064 hole_em->orig_block_len = 0;
5065 hole_em->ram_bytes = hole_size;
5066 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5067 hole_em->generation = fs_info->generation;
5069 err = btrfs_replace_extent_map_range(inode, hole_em, true);
5070 free_extent_map(hole_em);
5072 err = btrfs_inode_set_file_extent_range(inode,
5073 cur_offset, hole_size);
5078 free_extent_map(em);
5080 cur_offset = last_byte;
5081 if (cur_offset >= block_end)
5084 free_extent_map(em);
5085 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5089 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5091 struct btrfs_root *root = BTRFS_I(inode)->root;
5092 struct btrfs_trans_handle *trans;
5093 loff_t oldsize = i_size_read(inode);
5094 loff_t newsize = attr->ia_size;
5095 int mask = attr->ia_valid;
5099 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5100 * special case where we need to update the times despite not having
5101 * these flags set. For all other operations the VFS set these flags
5102 * explicitly if it wants a timestamp update.
5104 if (newsize != oldsize) {
5105 inode_inc_iversion(inode);
5106 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5107 inode->i_mtime = current_time(inode);
5108 inode->i_ctime = inode->i_mtime;
5112 if (newsize > oldsize) {
5114 * Don't do an expanding truncate while snapshotting is ongoing.
5115 * This is to ensure the snapshot captures a fully consistent
5116 * state of this file - if the snapshot captures this expanding
5117 * truncation, it must capture all writes that happened before
5120 btrfs_drew_write_lock(&root->snapshot_lock);
5121 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5123 btrfs_drew_write_unlock(&root->snapshot_lock);
5127 trans = btrfs_start_transaction(root, 1);
5128 if (IS_ERR(trans)) {
5129 btrfs_drew_write_unlock(&root->snapshot_lock);
5130 return PTR_ERR(trans);
5133 i_size_write(inode, newsize);
5134 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5135 pagecache_isize_extended(inode, oldsize, newsize);
5136 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5137 btrfs_drew_write_unlock(&root->snapshot_lock);
5138 btrfs_end_transaction(trans);
5140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5142 if (btrfs_is_zoned(fs_info)) {
5143 ret = btrfs_wait_ordered_range(inode,
5144 ALIGN(newsize, fs_info->sectorsize),
5151 * We're truncating a file that used to have good data down to
5152 * zero. Make sure any new writes to the file get on disk
5156 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5157 &BTRFS_I(inode)->runtime_flags);
5159 truncate_setsize(inode, newsize);
5161 inode_dio_wait(inode);
5163 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5164 if (ret && inode->i_nlink) {
5168 * Truncate failed, so fix up the in-memory size. We
5169 * adjusted disk_i_size down as we removed extents, so
5170 * wait for disk_i_size to be stable and then update the
5171 * in-memory size to match.
5173 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5176 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5183 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5186 struct inode *inode = d_inode(dentry);
5187 struct btrfs_root *root = BTRFS_I(inode)->root;
5190 if (btrfs_root_readonly(root))
5193 err = setattr_prepare(idmap, dentry, attr);
5197 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5198 err = btrfs_setsize(inode, attr);
5203 if (attr->ia_valid) {
5204 setattr_copy(idmap, inode, attr);
5205 inode_inc_iversion(inode);
5206 err = btrfs_dirty_inode(BTRFS_I(inode));
5208 if (!err && attr->ia_valid & ATTR_MODE)
5209 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5216 * While truncating the inode pages during eviction, we get the VFS
5217 * calling btrfs_invalidate_folio() against each folio of the inode. This
5218 * is slow because the calls to btrfs_invalidate_folio() result in a
5219 * huge amount of calls to lock_extent() and clear_extent_bit(),
5220 * which keep merging and splitting extent_state structures over and over,
5221 * wasting lots of time.
5223 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5224 * skip all those expensive operations on a per folio basis and do only
5225 * the ordered io finishing, while we release here the extent_map and
5226 * extent_state structures, without the excessive merging and splitting.
5228 static void evict_inode_truncate_pages(struct inode *inode)
5230 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5231 struct rb_node *node;
5233 ASSERT(inode->i_state & I_FREEING);
5234 truncate_inode_pages_final(&inode->i_data);
5236 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5239 * Keep looping until we have no more ranges in the io tree.
5240 * We can have ongoing bios started by readahead that have
5241 * their endio callback (extent_io.c:end_bio_extent_readpage)
5242 * still in progress (unlocked the pages in the bio but did not yet
5243 * unlocked the ranges in the io tree). Therefore this means some
5244 * ranges can still be locked and eviction started because before
5245 * submitting those bios, which are executed by a separate task (work
5246 * queue kthread), inode references (inode->i_count) were not taken
5247 * (which would be dropped in the end io callback of each bio).
5248 * Therefore here we effectively end up waiting for those bios and
5249 * anyone else holding locked ranges without having bumped the inode's
5250 * reference count - if we don't do it, when they access the inode's
5251 * io_tree to unlock a range it may be too late, leading to an
5252 * use-after-free issue.
5254 spin_lock(&io_tree->lock);
5255 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5256 struct extent_state *state;
5257 struct extent_state *cached_state = NULL;
5260 unsigned state_flags;
5262 node = rb_first(&io_tree->state);
5263 state = rb_entry(node, struct extent_state, rb_node);
5264 start = state->start;
5266 state_flags = state->state;
5267 spin_unlock(&io_tree->lock);
5269 lock_extent(io_tree, start, end, &cached_state);
5272 * If still has DELALLOC flag, the extent didn't reach disk,
5273 * and its reserved space won't be freed by delayed_ref.
5274 * So we need to free its reserved space here.
5275 * (Refer to comment in btrfs_invalidate_folio, case 2)
5277 * Note, end is the bytenr of last byte, so we need + 1 here.
5279 if (state_flags & EXTENT_DELALLOC)
5280 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5283 clear_extent_bit(io_tree, start, end,
5284 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5288 spin_lock(&io_tree->lock);
5290 spin_unlock(&io_tree->lock);
5293 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5294 struct btrfs_block_rsv *rsv)
5296 struct btrfs_fs_info *fs_info = root->fs_info;
5297 struct btrfs_trans_handle *trans;
5298 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5302 * Eviction should be taking place at some place safe because of our
5303 * delayed iputs. However the normal flushing code will run delayed
5304 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5306 * We reserve the delayed_refs_extra here again because we can't use
5307 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5308 * above. We reserve our extra bit here because we generate a ton of
5309 * delayed refs activity by truncating.
5311 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5312 * if we fail to make this reservation we can re-try without the
5313 * delayed_refs_extra so we can make some forward progress.
5315 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5316 BTRFS_RESERVE_FLUSH_EVICT);
5318 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5319 BTRFS_RESERVE_FLUSH_EVICT);
5322 "could not allocate space for delete; will truncate on mount");
5323 return ERR_PTR(-ENOSPC);
5325 delayed_refs_extra = 0;
5328 trans = btrfs_join_transaction(root);
5332 if (delayed_refs_extra) {
5333 trans->block_rsv = &fs_info->trans_block_rsv;
5334 trans->bytes_reserved = delayed_refs_extra;
5335 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5336 delayed_refs_extra, true);
5341 void btrfs_evict_inode(struct inode *inode)
5343 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5344 struct btrfs_trans_handle *trans;
5345 struct btrfs_root *root = BTRFS_I(inode)->root;
5346 struct btrfs_block_rsv *rsv = NULL;
5349 trace_btrfs_inode_evict(inode);
5352 fsverity_cleanup_inode(inode);
5357 evict_inode_truncate_pages(inode);
5359 if (inode->i_nlink &&
5360 ((btrfs_root_refs(&root->root_item) != 0 &&
5361 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5362 btrfs_is_free_space_inode(BTRFS_I(inode))))
5365 if (is_bad_inode(inode))
5368 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5371 if (inode->i_nlink > 0) {
5372 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5373 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5378 * This makes sure the inode item in tree is uptodate and the space for
5379 * the inode update is released.
5381 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5386 * This drops any pending insert or delete operations we have for this
5387 * inode. We could have a delayed dir index deletion queued up, but
5388 * we're removing the inode completely so that'll be taken care of in
5391 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5393 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5396 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5397 rsv->failfast = true;
5399 btrfs_i_size_write(BTRFS_I(inode), 0);
5402 struct btrfs_truncate_control control = {
5403 .inode = BTRFS_I(inode),
5404 .ino = btrfs_ino(BTRFS_I(inode)),
5409 trans = evict_refill_and_join(root, rsv);
5413 trans->block_rsv = rsv;
5415 ret = btrfs_truncate_inode_items(trans, root, &control);
5416 trans->block_rsv = &fs_info->trans_block_rsv;
5417 btrfs_end_transaction(trans);
5419 * We have not added new delayed items for our inode after we
5420 * have flushed its delayed items, so no need to throttle on
5421 * delayed items. However we have modified extent buffers.
5423 btrfs_btree_balance_dirty_nodelay(fs_info);
5424 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5431 * Errors here aren't a big deal, it just means we leave orphan items in
5432 * the tree. They will be cleaned up on the next mount. If the inode
5433 * number gets reused, cleanup deletes the orphan item without doing
5434 * anything, and unlink reuses the existing orphan item.
5436 * If it turns out that we are dropping too many of these, we might want
5437 * to add a mechanism for retrying these after a commit.
5439 trans = evict_refill_and_join(root, rsv);
5440 if (!IS_ERR(trans)) {
5441 trans->block_rsv = rsv;
5442 btrfs_orphan_del(trans, BTRFS_I(inode));
5443 trans->block_rsv = &fs_info->trans_block_rsv;
5444 btrfs_end_transaction(trans);
5448 btrfs_free_block_rsv(fs_info, rsv);
5450 * If we didn't successfully delete, the orphan item will still be in
5451 * the tree and we'll retry on the next mount. Again, we might also want
5452 * to retry these periodically in the future.
5454 btrfs_remove_delayed_node(BTRFS_I(inode));
5455 fsverity_cleanup_inode(inode);
5460 * Return the key found in the dir entry in the location pointer, fill @type
5461 * with BTRFS_FT_*, and return 0.
5463 * If no dir entries were found, returns -ENOENT.
5464 * If found a corrupted location in dir entry, returns -EUCLEAN.
5466 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5467 struct btrfs_key *location, u8 *type)
5469 struct btrfs_dir_item *di;
5470 struct btrfs_path *path;
5471 struct btrfs_root *root = dir->root;
5473 struct fscrypt_name fname;
5475 path = btrfs_alloc_path();
5479 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5483 * fscrypt_setup_filename() should never return a positive value, but
5484 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5488 /* This needs to handle no-key deletions later on */
5490 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5491 &fname.disk_name, 0);
5492 if (IS_ERR_OR_NULL(di)) {
5493 ret = di ? PTR_ERR(di) : -ENOENT;
5497 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5498 if (location->type != BTRFS_INODE_ITEM_KEY &&
5499 location->type != BTRFS_ROOT_ITEM_KEY) {
5501 btrfs_warn(root->fs_info,
5502 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5503 __func__, fname.disk_name.name, btrfs_ino(dir),
5504 location->objectid, location->type, location->offset);
5507 *type = btrfs_dir_ftype(path->nodes[0], di);
5509 fscrypt_free_filename(&fname);
5510 btrfs_free_path(path);
5515 * when we hit a tree root in a directory, the btrfs part of the inode
5516 * needs to be changed to reflect the root directory of the tree root. This
5517 * is kind of like crossing a mount point.
5519 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5520 struct btrfs_inode *dir,
5521 struct dentry *dentry,
5522 struct btrfs_key *location,
5523 struct btrfs_root **sub_root)
5525 struct btrfs_path *path;
5526 struct btrfs_root *new_root;
5527 struct btrfs_root_ref *ref;
5528 struct extent_buffer *leaf;
5529 struct btrfs_key key;
5532 struct fscrypt_name fname;
5534 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5538 path = btrfs_alloc_path();
5545 key.objectid = dir->root->root_key.objectid;
5546 key.type = BTRFS_ROOT_REF_KEY;
5547 key.offset = location->objectid;
5549 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5556 leaf = path->nodes[0];
5557 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5558 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5559 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5562 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5563 (unsigned long)(ref + 1), fname.disk_name.len);
5567 btrfs_release_path(path);
5569 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5570 if (IS_ERR(new_root)) {
5571 err = PTR_ERR(new_root);
5575 *sub_root = new_root;
5576 location->objectid = btrfs_root_dirid(&new_root->root_item);
5577 location->type = BTRFS_INODE_ITEM_KEY;
5578 location->offset = 0;
5581 btrfs_free_path(path);
5582 fscrypt_free_filename(&fname);
5586 static void inode_tree_add(struct btrfs_inode *inode)
5588 struct btrfs_root *root = inode->root;
5589 struct btrfs_inode *entry;
5591 struct rb_node *parent;
5592 struct rb_node *new = &inode->rb_node;
5593 u64 ino = btrfs_ino(inode);
5595 if (inode_unhashed(&inode->vfs_inode))
5598 spin_lock(&root->inode_lock);
5599 p = &root->inode_tree.rb_node;
5602 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5604 if (ino < btrfs_ino(entry))
5605 p = &parent->rb_left;
5606 else if (ino > btrfs_ino(entry))
5607 p = &parent->rb_right;
5609 WARN_ON(!(entry->vfs_inode.i_state &
5610 (I_WILL_FREE | I_FREEING)));
5611 rb_replace_node(parent, new, &root->inode_tree);
5612 RB_CLEAR_NODE(parent);
5613 spin_unlock(&root->inode_lock);
5617 rb_link_node(new, parent, p);
5618 rb_insert_color(new, &root->inode_tree);
5619 spin_unlock(&root->inode_lock);
5622 static void inode_tree_del(struct btrfs_inode *inode)
5624 struct btrfs_root *root = inode->root;
5627 spin_lock(&root->inode_lock);
5628 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5629 rb_erase(&inode->rb_node, &root->inode_tree);
5630 RB_CLEAR_NODE(&inode->rb_node);
5631 empty = RB_EMPTY_ROOT(&root->inode_tree);
5633 spin_unlock(&root->inode_lock);
5635 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5636 spin_lock(&root->inode_lock);
5637 empty = RB_EMPTY_ROOT(&root->inode_tree);
5638 spin_unlock(&root->inode_lock);
5640 btrfs_add_dead_root(root);
5645 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5647 struct btrfs_iget_args *args = p;
5649 inode->i_ino = args->ino;
5650 BTRFS_I(inode)->location.objectid = args->ino;
5651 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5652 BTRFS_I(inode)->location.offset = 0;
5653 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5654 BUG_ON(args->root && !BTRFS_I(inode)->root);
5656 if (args->root && args->root == args->root->fs_info->tree_root &&
5657 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5658 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5659 &BTRFS_I(inode)->runtime_flags);
5663 static int btrfs_find_actor(struct inode *inode, void *opaque)
5665 struct btrfs_iget_args *args = opaque;
5667 return args->ino == BTRFS_I(inode)->location.objectid &&
5668 args->root == BTRFS_I(inode)->root;
5671 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5672 struct btrfs_root *root)
5674 struct inode *inode;
5675 struct btrfs_iget_args args;
5676 unsigned long hashval = btrfs_inode_hash(ino, root);
5681 inode = iget5_locked(s, hashval, btrfs_find_actor,
5682 btrfs_init_locked_inode,
5688 * Get an inode object given its inode number and corresponding root.
5689 * Path can be preallocated to prevent recursing back to iget through
5690 * allocator. NULL is also valid but may require an additional allocation
5693 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5694 struct btrfs_root *root, struct btrfs_path *path)
5696 struct inode *inode;
5698 inode = btrfs_iget_locked(s, ino, root);
5700 return ERR_PTR(-ENOMEM);
5702 if (inode->i_state & I_NEW) {
5705 ret = btrfs_read_locked_inode(inode, path);
5707 inode_tree_add(BTRFS_I(inode));
5708 unlock_new_inode(inode);
5712 * ret > 0 can come from btrfs_search_slot called by
5713 * btrfs_read_locked_inode, this means the inode item
5718 inode = ERR_PTR(ret);
5725 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5727 return btrfs_iget_path(s, ino, root, NULL);
5730 static struct inode *new_simple_dir(struct super_block *s,
5731 struct btrfs_key *key,
5732 struct btrfs_root *root)
5734 struct inode *inode = new_inode(s);
5737 return ERR_PTR(-ENOMEM);
5739 BTRFS_I(inode)->root = btrfs_grab_root(root);
5740 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5741 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5743 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5745 * We only need lookup, the rest is read-only and there's no inode
5746 * associated with the dentry
5748 inode->i_op = &simple_dir_inode_operations;
5749 inode->i_opflags &= ~IOP_XATTR;
5750 inode->i_fop = &simple_dir_operations;
5751 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5752 inode->i_mtime = current_time(inode);
5753 inode->i_atime = inode->i_mtime;
5754 inode->i_ctime = inode->i_mtime;
5755 BTRFS_I(inode)->i_otime = inode->i_mtime;
5760 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5761 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5762 static_assert(BTRFS_FT_DIR == FT_DIR);
5763 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5764 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5765 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5766 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5767 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5769 static inline u8 btrfs_inode_type(struct inode *inode)
5771 return fs_umode_to_ftype(inode->i_mode);
5774 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5776 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5777 struct inode *inode;
5778 struct btrfs_root *root = BTRFS_I(dir)->root;
5779 struct btrfs_root *sub_root = root;
5780 struct btrfs_key location;
5784 if (dentry->d_name.len > BTRFS_NAME_LEN)
5785 return ERR_PTR(-ENAMETOOLONG);
5787 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5789 return ERR_PTR(ret);
5791 if (location.type == BTRFS_INODE_ITEM_KEY) {
5792 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5796 /* Do extra check against inode mode with di_type */
5797 if (btrfs_inode_type(inode) != di_type) {
5799 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5800 inode->i_mode, btrfs_inode_type(inode),
5803 return ERR_PTR(-EUCLEAN);
5808 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5809 &location, &sub_root);
5812 inode = ERR_PTR(ret);
5814 inode = new_simple_dir(dir->i_sb, &location, root);
5816 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5817 btrfs_put_root(sub_root);
5822 down_read(&fs_info->cleanup_work_sem);
5823 if (!sb_rdonly(inode->i_sb))
5824 ret = btrfs_orphan_cleanup(sub_root);
5825 up_read(&fs_info->cleanup_work_sem);
5828 inode = ERR_PTR(ret);
5835 static int btrfs_dentry_delete(const struct dentry *dentry)
5837 struct btrfs_root *root;
5838 struct inode *inode = d_inode(dentry);
5840 if (!inode && !IS_ROOT(dentry))
5841 inode = d_inode(dentry->d_parent);
5844 root = BTRFS_I(inode)->root;
5845 if (btrfs_root_refs(&root->root_item) == 0)
5848 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5854 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5857 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5859 if (inode == ERR_PTR(-ENOENT))
5861 return d_splice_alias(inode, dentry);
5865 * Find the highest existing sequence number in a directory and then set the
5866 * in-memory index_cnt variable to the first free sequence number.
5868 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5870 struct btrfs_root *root = inode->root;
5871 struct btrfs_key key, found_key;
5872 struct btrfs_path *path;
5873 struct extent_buffer *leaf;
5876 key.objectid = btrfs_ino(inode);
5877 key.type = BTRFS_DIR_INDEX_KEY;
5878 key.offset = (u64)-1;
5880 path = btrfs_alloc_path();
5884 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5887 /* FIXME: we should be able to handle this */
5892 if (path->slots[0] == 0) {
5893 inode->index_cnt = BTRFS_DIR_START_INDEX;
5899 leaf = path->nodes[0];
5900 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5902 if (found_key.objectid != btrfs_ino(inode) ||
5903 found_key.type != BTRFS_DIR_INDEX_KEY) {
5904 inode->index_cnt = BTRFS_DIR_START_INDEX;
5908 inode->index_cnt = found_key.offset + 1;
5910 btrfs_free_path(path);
5914 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5916 if (dir->index_cnt == (u64)-1) {
5919 ret = btrfs_inode_delayed_dir_index_count(dir);
5921 ret = btrfs_set_inode_index_count(dir);
5927 *index = dir->index_cnt;
5933 * All this infrastructure exists because dir_emit can fault, and we are holding
5934 * the tree lock when doing readdir. For now just allocate a buffer and copy
5935 * our information into that, and then dir_emit from the buffer. This is
5936 * similar to what NFS does, only we don't keep the buffer around in pagecache
5937 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5938 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5941 static int btrfs_opendir(struct inode *inode, struct file *file)
5943 struct btrfs_file_private *private;
5947 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5951 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5954 private->last_index = last_index;
5955 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5956 if (!private->filldir_buf) {
5960 file->private_data = private;
5971 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5974 struct dir_entry *entry = addr;
5975 char *name = (char *)(entry + 1);
5977 ctx->pos = get_unaligned(&entry->offset);
5978 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5979 get_unaligned(&entry->ino),
5980 get_unaligned(&entry->type)))
5982 addr += sizeof(struct dir_entry) +
5983 get_unaligned(&entry->name_len);
5989 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5991 struct inode *inode = file_inode(file);
5992 struct btrfs_root *root = BTRFS_I(inode)->root;
5993 struct btrfs_file_private *private = file->private_data;
5994 struct btrfs_dir_item *di;
5995 struct btrfs_key key;
5996 struct btrfs_key found_key;
5997 struct btrfs_path *path;
5999 struct list_head ins_list;
6000 struct list_head del_list;
6007 struct btrfs_key location;
6009 if (!dir_emit_dots(file, ctx))
6012 path = btrfs_alloc_path();
6016 addr = private->filldir_buf;
6017 path->reada = READA_FORWARD;
6019 INIT_LIST_HEAD(&ins_list);
6020 INIT_LIST_HEAD(&del_list);
6021 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
6022 &ins_list, &del_list);
6025 key.type = BTRFS_DIR_INDEX_KEY;
6026 key.offset = ctx->pos;
6027 key.objectid = btrfs_ino(BTRFS_I(inode));
6029 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6030 struct dir_entry *entry;
6031 struct extent_buffer *leaf = path->nodes[0];
6034 if (found_key.objectid != key.objectid)
6036 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6038 if (found_key.offset < ctx->pos)
6040 if (found_key.offset > private->last_index)
6042 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6044 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6045 name_len = btrfs_dir_name_len(leaf, di);
6046 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6048 btrfs_release_path(path);
6049 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6052 addr = private->filldir_buf;
6058 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6060 name_ptr = (char *)(entry + 1);
6061 read_extent_buffer(leaf, name_ptr,
6062 (unsigned long)(di + 1), name_len);
6063 put_unaligned(name_len, &entry->name_len);
6064 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6065 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6066 put_unaligned(location.objectid, &entry->ino);
6067 put_unaligned(found_key.offset, &entry->offset);
6069 addr += sizeof(struct dir_entry) + name_len;
6070 total_len += sizeof(struct dir_entry) + name_len;
6072 /* Catch error encountered during iteration */
6076 btrfs_release_path(path);
6078 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6082 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6087 * Stop new entries from being returned after we return the last
6090 * New directory entries are assigned a strictly increasing
6091 * offset. This means that new entries created during readdir
6092 * are *guaranteed* to be seen in the future by that readdir.
6093 * This has broken buggy programs which operate on names as
6094 * they're returned by readdir. Until we re-use freed offsets
6095 * we have this hack to stop new entries from being returned
6096 * under the assumption that they'll never reach this huge
6099 * This is being careful not to overflow 32bit loff_t unless the
6100 * last entry requires it because doing so has broken 32bit apps
6103 if (ctx->pos >= INT_MAX)
6104 ctx->pos = LLONG_MAX;
6111 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6112 btrfs_free_path(path);
6117 * This is somewhat expensive, updating the tree every time the
6118 * inode changes. But, it is most likely to find the inode in cache.
6119 * FIXME, needs more benchmarking...there are no reasons other than performance
6120 * to keep or drop this code.
6122 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6124 struct btrfs_root *root = inode->root;
6125 struct btrfs_fs_info *fs_info = root->fs_info;
6126 struct btrfs_trans_handle *trans;
6129 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6132 trans = btrfs_join_transaction(root);
6134 return PTR_ERR(trans);
6136 ret = btrfs_update_inode(trans, root, inode);
6137 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6138 /* whoops, lets try again with the full transaction */
6139 btrfs_end_transaction(trans);
6140 trans = btrfs_start_transaction(root, 1);
6142 return PTR_ERR(trans);
6144 ret = btrfs_update_inode(trans, root, inode);
6146 btrfs_end_transaction(trans);
6147 if (inode->delayed_node)
6148 btrfs_balance_delayed_items(fs_info);
6154 * This is a copy of file_update_time. We need this so we can return error on
6155 * ENOSPC for updating the inode in the case of file write and mmap writes.
6157 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6160 struct btrfs_root *root = BTRFS_I(inode)->root;
6161 bool dirty = flags & ~S_VERSION;
6163 if (btrfs_root_readonly(root))
6166 if (flags & S_VERSION)
6167 dirty |= inode_maybe_inc_iversion(inode, dirty);
6168 if (flags & S_CTIME)
6169 inode->i_ctime = *now;
6170 if (flags & S_MTIME)
6171 inode->i_mtime = *now;
6172 if (flags & S_ATIME)
6173 inode->i_atime = *now;
6174 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6178 * helper to find a free sequence number in a given directory. This current
6179 * code is very simple, later versions will do smarter things in the btree
6181 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6185 if (dir->index_cnt == (u64)-1) {
6186 ret = btrfs_inode_delayed_dir_index_count(dir);
6188 ret = btrfs_set_inode_index_count(dir);
6194 *index = dir->index_cnt;
6200 static int btrfs_insert_inode_locked(struct inode *inode)
6202 struct btrfs_iget_args args;
6204 args.ino = BTRFS_I(inode)->location.objectid;
6205 args.root = BTRFS_I(inode)->root;
6207 return insert_inode_locked4(inode,
6208 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6209 btrfs_find_actor, &args);
6212 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6213 unsigned int *trans_num_items)
6215 struct inode *dir = args->dir;
6216 struct inode *inode = args->inode;
6219 if (!args->orphan) {
6220 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6226 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6228 fscrypt_free_filename(&args->fname);
6232 /* 1 to add inode item */
6233 *trans_num_items = 1;
6234 /* 1 to add compression property */
6235 if (BTRFS_I(dir)->prop_compress)
6236 (*trans_num_items)++;
6237 /* 1 to add default ACL xattr */
6238 if (args->default_acl)
6239 (*trans_num_items)++;
6240 /* 1 to add access ACL xattr */
6242 (*trans_num_items)++;
6243 #ifdef CONFIG_SECURITY
6244 /* 1 to add LSM xattr */
6245 if (dir->i_security)
6246 (*trans_num_items)++;
6249 /* 1 to add orphan item */
6250 (*trans_num_items)++;
6254 * 1 to add dir index
6255 * 1 to update parent inode item
6257 * No need for 1 unit for the inode ref item because it is
6258 * inserted in a batch together with the inode item at
6259 * btrfs_create_new_inode().
6261 *trans_num_items += 3;
6266 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6268 posix_acl_release(args->acl);
6269 posix_acl_release(args->default_acl);
6270 fscrypt_free_filename(&args->fname);
6274 * Inherit flags from the parent inode.
6276 * Currently only the compression flags and the cow flags are inherited.
6278 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6284 if (flags & BTRFS_INODE_NOCOMPRESS) {
6285 inode->flags &= ~BTRFS_INODE_COMPRESS;
6286 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6287 } else if (flags & BTRFS_INODE_COMPRESS) {
6288 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6289 inode->flags |= BTRFS_INODE_COMPRESS;
6292 if (flags & BTRFS_INODE_NODATACOW) {
6293 inode->flags |= BTRFS_INODE_NODATACOW;
6294 if (S_ISREG(inode->vfs_inode.i_mode))
6295 inode->flags |= BTRFS_INODE_NODATASUM;
6298 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6301 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6302 struct btrfs_new_inode_args *args)
6304 struct inode *dir = args->dir;
6305 struct inode *inode = args->inode;
6306 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6307 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6308 struct btrfs_root *root;
6309 struct btrfs_inode_item *inode_item;
6310 struct btrfs_key *location;
6311 struct btrfs_path *path;
6313 struct btrfs_inode_ref *ref;
6314 struct btrfs_key key[2];
6316 struct btrfs_item_batch batch;
6320 path = btrfs_alloc_path();
6325 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6326 root = BTRFS_I(inode)->root;
6328 ret = btrfs_get_free_objectid(root, &objectid);
6331 inode->i_ino = objectid;
6335 * O_TMPFILE, set link count to 0, so that after this point, we
6336 * fill in an inode item with the correct link count.
6338 set_nlink(inode, 0);
6340 trace_btrfs_inode_request(dir);
6342 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6346 /* index_cnt is ignored for everything but a dir. */
6347 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6348 BTRFS_I(inode)->generation = trans->transid;
6349 inode->i_generation = BTRFS_I(inode)->generation;
6352 * Subvolumes don't inherit flags from their parent directory.
6353 * Originally this was probably by accident, but we probably can't
6354 * change it now without compatibility issues.
6357 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6359 if (S_ISREG(inode->i_mode)) {
6360 if (btrfs_test_opt(fs_info, NODATASUM))
6361 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6362 if (btrfs_test_opt(fs_info, NODATACOW))
6363 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6364 BTRFS_INODE_NODATASUM;
6367 location = &BTRFS_I(inode)->location;
6368 location->objectid = objectid;
6369 location->offset = 0;
6370 location->type = BTRFS_INODE_ITEM_KEY;
6372 ret = btrfs_insert_inode_locked(inode);
6375 BTRFS_I(dir)->index_cnt--;
6380 * We could have gotten an inode number from somebody who was fsynced
6381 * and then removed in this same transaction, so let's just set full
6382 * sync since it will be a full sync anyway and this will blow away the
6383 * old info in the log.
6385 btrfs_set_inode_full_sync(BTRFS_I(inode));
6387 key[0].objectid = objectid;
6388 key[0].type = BTRFS_INODE_ITEM_KEY;
6391 sizes[0] = sizeof(struct btrfs_inode_item);
6393 if (!args->orphan) {
6395 * Start new inodes with an inode_ref. This is slightly more
6396 * efficient for small numbers of hard links since they will
6397 * be packed into one item. Extended refs will kick in if we
6398 * add more hard links than can fit in the ref item.
6400 key[1].objectid = objectid;
6401 key[1].type = BTRFS_INODE_REF_KEY;
6403 key[1].offset = objectid;
6404 sizes[1] = 2 + sizeof(*ref);
6406 key[1].offset = btrfs_ino(BTRFS_I(dir));
6407 sizes[1] = name->len + sizeof(*ref);
6411 batch.keys = &key[0];
6412 batch.data_sizes = &sizes[0];
6413 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6414 batch.nr = args->orphan ? 1 : 2;
6415 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6417 btrfs_abort_transaction(trans, ret);
6421 inode->i_mtime = current_time(inode);
6422 inode->i_atime = inode->i_mtime;
6423 inode->i_ctime = inode->i_mtime;
6424 BTRFS_I(inode)->i_otime = inode->i_mtime;
6427 * We're going to fill the inode item now, so at this point the inode
6428 * must be fully initialized.
6431 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6432 struct btrfs_inode_item);
6433 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6434 sizeof(*inode_item));
6435 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6437 if (!args->orphan) {
6438 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6439 struct btrfs_inode_ref);
6440 ptr = (unsigned long)(ref + 1);
6442 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6443 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6444 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6446 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6448 btrfs_set_inode_ref_index(path->nodes[0], ref,
6449 BTRFS_I(inode)->dir_index);
6450 write_extent_buffer(path->nodes[0], name->name, ptr,
6455 btrfs_mark_buffer_dirty(path->nodes[0]);
6457 * We don't need the path anymore, plus inheriting properties, adding
6458 * ACLs, security xattrs, orphan item or adding the link, will result in
6459 * allocating yet another path. So just free our path.
6461 btrfs_free_path(path);
6465 struct inode *parent;
6468 * Subvolumes inherit properties from their parent subvolume,
6469 * not the directory they were created in.
6471 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6472 BTRFS_I(dir)->root);
6473 if (IS_ERR(parent)) {
6474 ret = PTR_ERR(parent);
6476 ret = btrfs_inode_inherit_props(trans, inode, parent);
6480 ret = btrfs_inode_inherit_props(trans, inode, dir);
6484 "error inheriting props for ino %llu (root %llu): %d",
6485 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6490 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6493 if (!args->subvol) {
6494 ret = btrfs_init_inode_security(trans, args);
6496 btrfs_abort_transaction(trans, ret);
6501 inode_tree_add(BTRFS_I(inode));
6503 trace_btrfs_inode_new(inode);
6504 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6506 btrfs_update_root_times(trans, root);
6509 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6511 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6512 0, BTRFS_I(inode)->dir_index);
6515 btrfs_abort_transaction(trans, ret);
6523 * discard_new_inode() calls iput(), but the caller owns the reference
6527 discard_new_inode(inode);
6529 btrfs_free_path(path);
6534 * utility function to add 'inode' into 'parent_inode' with
6535 * a give name and a given sequence number.
6536 * if 'add_backref' is true, also insert a backref from the
6537 * inode to the parent directory.
6539 int btrfs_add_link(struct btrfs_trans_handle *trans,
6540 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6541 const struct fscrypt_str *name, int add_backref, u64 index)
6544 struct btrfs_key key;
6545 struct btrfs_root *root = parent_inode->root;
6546 u64 ino = btrfs_ino(inode);
6547 u64 parent_ino = btrfs_ino(parent_inode);
6549 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6550 memcpy(&key, &inode->root->root_key, sizeof(key));
6553 key.type = BTRFS_INODE_ITEM_KEY;
6557 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6558 ret = btrfs_add_root_ref(trans, key.objectid,
6559 root->root_key.objectid, parent_ino,
6561 } else if (add_backref) {
6562 ret = btrfs_insert_inode_ref(trans, root, name,
6563 ino, parent_ino, index);
6566 /* Nothing to clean up yet */
6570 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6571 btrfs_inode_type(&inode->vfs_inode), index);
6572 if (ret == -EEXIST || ret == -EOVERFLOW)
6575 btrfs_abort_transaction(trans, ret);
6579 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6581 inode_inc_iversion(&parent_inode->vfs_inode);
6583 * If we are replaying a log tree, we do not want to update the mtime
6584 * and ctime of the parent directory with the current time, since the
6585 * log replay procedure is responsible for setting them to their correct
6586 * values (the ones it had when the fsync was done).
6588 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6589 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6591 parent_inode->vfs_inode.i_mtime = now;
6592 parent_inode->vfs_inode.i_ctime = now;
6594 ret = btrfs_update_inode(trans, root, parent_inode);
6596 btrfs_abort_transaction(trans, ret);
6600 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6603 err = btrfs_del_root_ref(trans, key.objectid,
6604 root->root_key.objectid, parent_ino,
6605 &local_index, name);
6607 btrfs_abort_transaction(trans, err);
6608 } else if (add_backref) {
6612 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6615 btrfs_abort_transaction(trans, err);
6618 /* Return the original error code */
6622 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6623 struct inode *inode)
6625 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6626 struct btrfs_root *root = BTRFS_I(dir)->root;
6627 struct btrfs_new_inode_args new_inode_args = {
6632 unsigned int trans_num_items;
6633 struct btrfs_trans_handle *trans;
6636 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6640 trans = btrfs_start_transaction(root, trans_num_items);
6641 if (IS_ERR(trans)) {
6642 err = PTR_ERR(trans);
6643 goto out_new_inode_args;
6646 err = btrfs_create_new_inode(trans, &new_inode_args);
6648 d_instantiate_new(dentry, inode);
6650 btrfs_end_transaction(trans);
6651 btrfs_btree_balance_dirty(fs_info);
6653 btrfs_new_inode_args_destroy(&new_inode_args);
6660 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6661 struct dentry *dentry, umode_t mode, dev_t rdev)
6663 struct inode *inode;
6665 inode = new_inode(dir->i_sb);
6668 inode_init_owner(idmap, inode, dir, mode);
6669 inode->i_op = &btrfs_special_inode_operations;
6670 init_special_inode(inode, inode->i_mode, rdev);
6671 return btrfs_create_common(dir, dentry, inode);
6674 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6675 struct dentry *dentry, umode_t mode, bool excl)
6677 struct inode *inode;
6679 inode = new_inode(dir->i_sb);
6682 inode_init_owner(idmap, inode, dir, mode);
6683 inode->i_fop = &btrfs_file_operations;
6684 inode->i_op = &btrfs_file_inode_operations;
6685 inode->i_mapping->a_ops = &btrfs_aops;
6686 return btrfs_create_common(dir, dentry, inode);
6689 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6690 struct dentry *dentry)
6692 struct btrfs_trans_handle *trans = NULL;
6693 struct btrfs_root *root = BTRFS_I(dir)->root;
6694 struct inode *inode = d_inode(old_dentry);
6695 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6696 struct fscrypt_name fname;
6701 /* do not allow sys_link's with other subvols of the same device */
6702 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6705 if (inode->i_nlink >= BTRFS_LINK_MAX)
6708 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6712 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6717 * 2 items for inode and inode ref
6718 * 2 items for dir items
6719 * 1 item for parent inode
6720 * 1 item for orphan item deletion if O_TMPFILE
6722 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6723 if (IS_ERR(trans)) {
6724 err = PTR_ERR(trans);
6729 /* There are several dir indexes for this inode, clear the cache. */
6730 BTRFS_I(inode)->dir_index = 0ULL;
6732 inode_inc_iversion(inode);
6733 inode->i_ctime = current_time(inode);
6735 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6737 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6738 &fname.disk_name, 1, index);
6743 struct dentry *parent = dentry->d_parent;
6745 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6748 if (inode->i_nlink == 1) {
6750 * If new hard link count is 1, it's a file created
6751 * with open(2) O_TMPFILE flag.
6753 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6757 d_instantiate(dentry, inode);
6758 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6762 fscrypt_free_filename(&fname);
6764 btrfs_end_transaction(trans);
6766 inode_dec_link_count(inode);
6769 btrfs_btree_balance_dirty(fs_info);
6773 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6774 struct dentry *dentry, umode_t mode)
6776 struct inode *inode;
6778 inode = new_inode(dir->i_sb);
6781 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6782 inode->i_op = &btrfs_dir_inode_operations;
6783 inode->i_fop = &btrfs_dir_file_operations;
6784 return btrfs_create_common(dir, dentry, inode);
6787 static noinline int uncompress_inline(struct btrfs_path *path,
6789 struct btrfs_file_extent_item *item)
6792 struct extent_buffer *leaf = path->nodes[0];
6795 unsigned long inline_size;
6799 compress_type = btrfs_file_extent_compression(leaf, item);
6800 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6801 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6802 tmp = kmalloc(inline_size, GFP_NOFS);
6805 ptr = btrfs_file_extent_inline_start(item);
6807 read_extent_buffer(leaf, tmp, ptr, inline_size);
6809 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6810 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6813 * decompression code contains a memset to fill in any space between the end
6814 * of the uncompressed data and the end of max_size in case the decompressed
6815 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6816 * the end of an inline extent and the beginning of the next block, so we
6817 * cover that region here.
6820 if (max_size < PAGE_SIZE)
6821 memzero_page(page, max_size, PAGE_SIZE - max_size);
6826 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6829 struct btrfs_file_extent_item *fi;
6833 if (!page || PageUptodate(page))
6836 ASSERT(page_offset(page) == 0);
6838 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6839 struct btrfs_file_extent_item);
6840 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6841 return uncompress_inline(path, page, fi);
6843 copy_size = min_t(u64, PAGE_SIZE,
6844 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6845 kaddr = kmap_local_page(page);
6846 read_extent_buffer(path->nodes[0], kaddr,
6847 btrfs_file_extent_inline_start(fi), copy_size);
6848 kunmap_local(kaddr);
6849 if (copy_size < PAGE_SIZE)
6850 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6855 * Lookup the first extent overlapping a range in a file.
6857 * @inode: file to search in
6858 * @page: page to read extent data into if the extent is inline
6859 * @pg_offset: offset into @page to copy to
6860 * @start: file offset
6861 * @len: length of range starting at @start
6863 * Return the first &struct extent_map which overlaps the given range, reading
6864 * it from the B-tree and caching it if necessary. Note that there may be more
6865 * extents which overlap the given range after the returned extent_map.
6867 * If @page is not NULL and the extent is inline, this also reads the extent
6868 * data directly into the page and marks the extent up to date in the io_tree.
6870 * Return: ERR_PTR on error, non-NULL extent_map on success.
6872 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6873 struct page *page, size_t pg_offset,
6876 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6878 u64 extent_start = 0;
6880 u64 objectid = btrfs_ino(inode);
6881 int extent_type = -1;
6882 struct btrfs_path *path = NULL;
6883 struct btrfs_root *root = inode->root;
6884 struct btrfs_file_extent_item *item;
6885 struct extent_buffer *leaf;
6886 struct btrfs_key found_key;
6887 struct extent_map *em = NULL;
6888 struct extent_map_tree *em_tree = &inode->extent_tree;
6890 read_lock(&em_tree->lock);
6891 em = lookup_extent_mapping(em_tree, start, len);
6892 read_unlock(&em_tree->lock);
6895 if (em->start > start || em->start + em->len <= start)
6896 free_extent_map(em);
6897 else if (em->block_start == EXTENT_MAP_INLINE && page)
6898 free_extent_map(em);
6902 em = alloc_extent_map();
6907 em->start = EXTENT_MAP_HOLE;
6908 em->orig_start = EXTENT_MAP_HOLE;
6910 em->block_len = (u64)-1;
6912 path = btrfs_alloc_path();
6918 /* Chances are we'll be called again, so go ahead and do readahead */
6919 path->reada = READA_FORWARD;
6922 * The same explanation in load_free_space_cache applies here as well,
6923 * we only read when we're loading the free space cache, and at that
6924 * point the commit_root has everything we need.
6926 if (btrfs_is_free_space_inode(inode)) {
6927 path->search_commit_root = 1;
6928 path->skip_locking = 1;
6931 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6934 } else if (ret > 0) {
6935 if (path->slots[0] == 0)
6941 leaf = path->nodes[0];
6942 item = btrfs_item_ptr(leaf, path->slots[0],
6943 struct btrfs_file_extent_item);
6944 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6945 if (found_key.objectid != objectid ||
6946 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6948 * If we backup past the first extent we want to move forward
6949 * and see if there is an extent in front of us, otherwise we'll
6950 * say there is a hole for our whole search range which can
6957 extent_type = btrfs_file_extent_type(leaf, item);
6958 extent_start = found_key.offset;
6959 extent_end = btrfs_file_extent_end(path);
6960 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6961 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6962 /* Only regular file could have regular/prealloc extent */
6963 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6966 "regular/prealloc extent found for non-regular inode %llu",
6970 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6972 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6973 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6978 if (start >= extent_end) {
6980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6981 ret = btrfs_next_leaf(root, path);
6987 leaf = path->nodes[0];
6989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6990 if (found_key.objectid != objectid ||
6991 found_key.type != BTRFS_EXTENT_DATA_KEY)
6993 if (start + len <= found_key.offset)
6995 if (start > found_key.offset)
6998 /* New extent overlaps with existing one */
7000 em->orig_start = start;
7001 em->len = found_key.offset - start;
7002 em->block_start = EXTENT_MAP_HOLE;
7006 btrfs_extent_item_to_extent_map(inode, path, item, em);
7008 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7009 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7011 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7013 * Inline extent can only exist at file offset 0. This is
7014 * ensured by tree-checker and inline extent creation path.
7015 * Thus all members representing file offsets should be zero.
7017 ASSERT(pg_offset == 0);
7018 ASSERT(extent_start == 0);
7019 ASSERT(em->start == 0);
7022 * btrfs_extent_item_to_extent_map() should have properly
7023 * initialized em members already.
7025 * Other members are not utilized for inline extents.
7027 ASSERT(em->block_start == EXTENT_MAP_INLINE);
7028 ASSERT(em->len == fs_info->sectorsize);
7030 ret = read_inline_extent(inode, path, page);
7037 em->orig_start = start;
7039 em->block_start = EXTENT_MAP_HOLE;
7042 btrfs_release_path(path);
7043 if (em->start > start || extent_map_end(em) <= start) {
7045 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7046 em->start, em->len, start, len);
7051 write_lock(&em_tree->lock);
7052 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7053 write_unlock(&em_tree->lock);
7055 btrfs_free_path(path);
7057 trace_btrfs_get_extent(root, inode, em);
7060 free_extent_map(em);
7061 return ERR_PTR(ret);
7066 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7067 struct btrfs_dio_data *dio_data,
7070 const u64 orig_start,
7071 const u64 block_start,
7072 const u64 block_len,
7073 const u64 orig_block_len,
7074 const u64 ram_bytes,
7077 struct extent_map *em = NULL;
7078 struct btrfs_ordered_extent *ordered;
7080 if (type != BTRFS_ORDERED_NOCOW) {
7081 em = create_io_em(inode, start, len, orig_start, block_start,
7082 block_len, orig_block_len, ram_bytes,
7083 BTRFS_COMPRESS_NONE, /* compress_type */
7088 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
7089 block_start, block_len, 0,
7091 (1 << BTRFS_ORDERED_DIRECT),
7092 BTRFS_COMPRESS_NONE);
7093 if (IS_ERR(ordered)) {
7095 free_extent_map(em);
7096 btrfs_drop_extent_map_range(inode, start,
7097 start + len - 1, false);
7099 em = ERR_CAST(ordered);
7101 ASSERT(!dio_data->ordered);
7102 dio_data->ordered = ordered;
7109 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7110 struct btrfs_dio_data *dio_data,
7113 struct btrfs_root *root = inode->root;
7114 struct btrfs_fs_info *fs_info = root->fs_info;
7115 struct extent_map *em;
7116 struct btrfs_key ins;
7120 alloc_hint = get_extent_allocation_hint(inode, start, len);
7121 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7122 0, alloc_hint, &ins, 1, 1);
7124 return ERR_PTR(ret);
7126 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7127 ins.objectid, ins.offset, ins.offset,
7128 ins.offset, BTRFS_ORDERED_REGULAR);
7129 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7131 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7137 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7139 struct btrfs_block_group *block_group;
7140 bool readonly = false;
7142 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7143 if (!block_group || block_group->ro)
7146 btrfs_put_block_group(block_group);
7151 * Check if we can do nocow write into the range [@offset, @offset + @len)
7153 * @offset: File offset
7154 * @len: The length to write, will be updated to the nocow writeable
7156 * @orig_start: (optional) Return the original file offset of the file extent
7157 * @orig_len: (optional) Return the original on-disk length of the file extent
7158 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7159 * @strict: if true, omit optimizations that might force us into unnecessary
7160 * cow. e.g., don't trust generation number.
7163 * >0 and update @len if we can do nocow write
7164 * 0 if we can't do nocow write
7165 * <0 if error happened
7167 * NOTE: This only checks the file extents, caller is responsible to wait for
7168 * any ordered extents.
7170 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7171 u64 *orig_start, u64 *orig_block_len,
7172 u64 *ram_bytes, bool nowait, bool strict)
7174 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7175 struct can_nocow_file_extent_args nocow_args = { 0 };
7176 struct btrfs_path *path;
7178 struct extent_buffer *leaf;
7179 struct btrfs_root *root = BTRFS_I(inode)->root;
7180 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7181 struct btrfs_file_extent_item *fi;
7182 struct btrfs_key key;
7185 path = btrfs_alloc_path();
7188 path->nowait = nowait;
7190 ret = btrfs_lookup_file_extent(NULL, root, path,
7191 btrfs_ino(BTRFS_I(inode)), offset, 0);
7196 if (path->slots[0] == 0) {
7197 /* can't find the item, must cow */
7204 leaf = path->nodes[0];
7205 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7206 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7207 key.type != BTRFS_EXTENT_DATA_KEY) {
7208 /* not our file or wrong item type, must cow */
7212 if (key.offset > offset) {
7213 /* Wrong offset, must cow */
7217 if (btrfs_file_extent_end(path) <= offset)
7220 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7221 found_type = btrfs_file_extent_type(leaf, fi);
7223 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7225 nocow_args.start = offset;
7226 nocow_args.end = offset + *len - 1;
7227 nocow_args.strict = strict;
7228 nocow_args.free_path = true;
7230 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7231 /* can_nocow_file_extent() has freed the path. */
7235 /* Treat errors as not being able to NOCOW. */
7241 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7244 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7245 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7248 range_end = round_up(offset + nocow_args.num_bytes,
7249 root->fs_info->sectorsize) - 1;
7250 ret = test_range_bit(io_tree, offset, range_end,
7251 EXTENT_DELALLOC, 0, NULL);
7259 *orig_start = key.offset - nocow_args.extent_offset;
7261 *orig_block_len = nocow_args.disk_num_bytes;
7263 *len = nocow_args.num_bytes;
7266 btrfs_free_path(path);
7270 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7271 struct extent_state **cached_state,
7272 unsigned int iomap_flags)
7274 const bool writing = (iomap_flags & IOMAP_WRITE);
7275 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7276 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7277 struct btrfs_ordered_extent *ordered;
7282 if (!try_lock_extent(io_tree, lockstart, lockend,
7286 lock_extent(io_tree, lockstart, lockend, cached_state);
7289 * We're concerned with the entire range that we're going to be
7290 * doing DIO to, so we need to make sure there's no ordered
7291 * extents in this range.
7293 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7294 lockend - lockstart + 1);
7297 * We need to make sure there are no buffered pages in this
7298 * range either, we could have raced between the invalidate in
7299 * generic_file_direct_write and locking the extent. The
7300 * invalidate needs to happen so that reads after a write do not
7304 (!writing || !filemap_range_has_page(inode->i_mapping,
7305 lockstart, lockend)))
7308 unlock_extent(io_tree, lockstart, lockend, cached_state);
7312 btrfs_put_ordered_extent(ordered);
7317 * If we are doing a DIO read and the ordered extent we
7318 * found is for a buffered write, we can not wait for it
7319 * to complete and retry, because if we do so we can
7320 * deadlock with concurrent buffered writes on page
7321 * locks. This happens only if our DIO read covers more
7322 * than one extent map, if at this point has already
7323 * created an ordered extent for a previous extent map
7324 * and locked its range in the inode's io tree, and a
7325 * concurrent write against that previous extent map's
7326 * range and this range started (we unlock the ranges
7327 * in the io tree only when the bios complete and
7328 * buffered writes always lock pages before attempting
7329 * to lock range in the io tree).
7332 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7333 btrfs_start_ordered_extent(ordered);
7335 ret = nowait ? -EAGAIN : -ENOTBLK;
7336 btrfs_put_ordered_extent(ordered);
7339 * We could trigger writeback for this range (and wait
7340 * for it to complete) and then invalidate the pages for
7341 * this range (through invalidate_inode_pages2_range()),
7342 * but that can lead us to a deadlock with a concurrent
7343 * call to readahead (a buffered read or a defrag call
7344 * triggered a readahead) on a page lock due to an
7345 * ordered dio extent we created before but did not have
7346 * yet a corresponding bio submitted (whence it can not
7347 * complete), which makes readahead wait for that
7348 * ordered extent to complete while holding a lock on
7351 ret = nowait ? -EAGAIN : -ENOTBLK;
7363 /* The callers of this must take lock_extent() */
7364 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7365 u64 len, u64 orig_start, u64 block_start,
7366 u64 block_len, u64 orig_block_len,
7367 u64 ram_bytes, int compress_type,
7370 struct extent_map *em;
7373 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7374 type == BTRFS_ORDERED_COMPRESSED ||
7375 type == BTRFS_ORDERED_NOCOW ||
7376 type == BTRFS_ORDERED_REGULAR);
7378 em = alloc_extent_map();
7380 return ERR_PTR(-ENOMEM);
7383 em->orig_start = orig_start;
7385 em->block_len = block_len;
7386 em->block_start = block_start;
7387 em->orig_block_len = orig_block_len;
7388 em->ram_bytes = ram_bytes;
7389 em->generation = -1;
7390 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7391 if (type == BTRFS_ORDERED_PREALLOC) {
7392 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7393 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7394 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7395 em->compress_type = compress_type;
7398 ret = btrfs_replace_extent_map_range(inode, em, true);
7400 free_extent_map(em);
7401 return ERR_PTR(ret);
7404 /* em got 2 refs now, callers needs to do free_extent_map once. */
7409 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7410 struct inode *inode,
7411 struct btrfs_dio_data *dio_data,
7412 u64 start, u64 *lenp,
7413 unsigned int iomap_flags)
7415 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7416 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7417 struct extent_map *em = *map;
7419 u64 block_start, orig_start, orig_block_len, ram_bytes;
7420 struct btrfs_block_group *bg;
7421 bool can_nocow = false;
7422 bool space_reserved = false;
7428 * We don't allocate a new extent in the following cases
7430 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7432 * 2) The extent is marked as PREALLOC. We're good to go here and can
7433 * just use the extent.
7436 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7437 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7438 em->block_start != EXTENT_MAP_HOLE)) {
7439 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7440 type = BTRFS_ORDERED_PREALLOC;
7442 type = BTRFS_ORDERED_NOCOW;
7443 len = min(len, em->len - (start - em->start));
7444 block_start = em->block_start + (start - em->start);
7446 if (can_nocow_extent(inode, start, &len, &orig_start,
7447 &orig_block_len, &ram_bytes, false, false) == 1) {
7448 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7456 struct extent_map *em2;
7458 /* We can NOCOW, so only need to reserve metadata space. */
7459 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7462 /* Our caller expects us to free the input extent map. */
7463 free_extent_map(em);
7465 btrfs_dec_nocow_writers(bg);
7466 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7470 space_reserved = true;
7472 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7473 orig_start, block_start,
7474 len, orig_block_len,
7476 btrfs_dec_nocow_writers(bg);
7477 if (type == BTRFS_ORDERED_PREALLOC) {
7478 free_extent_map(em);
7488 dio_data->nocow_done = true;
7490 /* Our caller expects us to free the input extent map. */
7491 free_extent_map(em);
7500 * If we could not allocate data space before locking the file
7501 * range and we can't do a NOCOW write, then we have to fail.
7503 if (!dio_data->data_space_reserved) {
7509 * We have to COW and we have already reserved data space before,
7510 * so now we reserve only metadata.
7512 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7516 space_reserved = true;
7518 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7524 len = min(len, em->len - (start - em->start));
7526 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7527 prev_len - len, true);
7531 * We have created our ordered extent, so we can now release our reservation
7532 * for an outstanding extent.
7534 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7537 * Need to update the i_size under the extent lock so buffered
7538 * readers will get the updated i_size when we unlock.
7540 if (start + len > i_size_read(inode))
7541 i_size_write(inode, start + len);
7543 if (ret && space_reserved) {
7544 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7545 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7551 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7552 loff_t length, unsigned int flags, struct iomap *iomap,
7553 struct iomap *srcmap)
7555 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7556 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7557 struct extent_map *em;
7558 struct extent_state *cached_state = NULL;
7559 struct btrfs_dio_data *dio_data = iter->private;
7560 u64 lockstart, lockend;
7561 const bool write = !!(flags & IOMAP_WRITE);
7564 const u64 data_alloc_len = length;
7565 bool unlock_extents = false;
7568 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7569 * we're NOWAIT we may submit a bio for a partial range and return
7570 * EIOCBQUEUED, which would result in an errant short read.
7572 * The best way to handle this would be to allow for partial completions
7573 * of iocb's, so we could submit the partial bio, return and fault in
7574 * the rest of the pages, and then submit the io for the rest of the
7575 * range. However we don't have that currently, so simply return
7576 * -EAGAIN at this point so that the normal path is used.
7578 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7582 * Cap the size of reads to that usually seen in buffered I/O as we need
7583 * to allocate a contiguous array for the checksums.
7586 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7589 lockend = start + len - 1;
7592 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7593 * enough if we've written compressed pages to this area, so we need to
7594 * flush the dirty pages again to make absolutely sure that any
7595 * outstanding dirty pages are on disk - the first flush only starts
7596 * compression on the data, while keeping the pages locked, so by the
7597 * time the second flush returns we know bios for the compressed pages
7598 * were submitted and finished, and the pages no longer under writeback.
7600 * If we have a NOWAIT request and we have any pages in the range that
7601 * are locked, likely due to compression still in progress, we don't want
7602 * to block on page locks. We also don't want to block on pages marked as
7603 * dirty or under writeback (same as for the non-compression case).
7604 * iomap_dio_rw() did the same check, but after that and before we got
7605 * here, mmap'ed writes may have happened or buffered reads started
7606 * (readpage() and readahead(), which lock pages), as we haven't locked
7607 * the file range yet.
7609 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7610 &BTRFS_I(inode)->runtime_flags)) {
7611 if (flags & IOMAP_NOWAIT) {
7612 if (filemap_range_needs_writeback(inode->i_mapping,
7613 lockstart, lockend))
7616 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7617 start + length - 1);
7623 memset(dio_data, 0, sizeof(*dio_data));
7626 * We always try to allocate data space and must do it before locking
7627 * the file range, to avoid deadlocks with concurrent writes to the same
7628 * range if the range has several extents and the writes don't expand the
7629 * current i_size (the inode lock is taken in shared mode). If we fail to
7630 * allocate data space here we continue and later, after locking the
7631 * file range, we fail with ENOSPC only if we figure out we can not do a
7634 if (write && !(flags & IOMAP_NOWAIT)) {
7635 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7636 &dio_data->data_reserved,
7637 start, data_alloc_len, false);
7639 dio_data->data_space_reserved = true;
7640 else if (ret && !(BTRFS_I(inode)->flags &
7641 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7646 * If this errors out it's because we couldn't invalidate pagecache for
7647 * this range and we need to fallback to buffered IO, or we are doing a
7648 * NOWAIT read/write and we need to block.
7650 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7654 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7661 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7662 * io. INLINE is special, and we could probably kludge it in here, but
7663 * it's still buffered so for safety lets just fall back to the generic
7666 * For COMPRESSED we _have_ to read the entire extent in so we can
7667 * decompress it, so there will be buffering required no matter what we
7668 * do, so go ahead and fallback to buffered.
7670 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7671 * to buffered IO. Don't blame me, this is the price we pay for using
7674 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7675 em->block_start == EXTENT_MAP_INLINE) {
7676 free_extent_map(em);
7678 * If we are in a NOWAIT context, return -EAGAIN in order to
7679 * fallback to buffered IO. This is not only because we can
7680 * block with buffered IO (no support for NOWAIT semantics at
7681 * the moment) but also to avoid returning short reads to user
7682 * space - this happens if we were able to read some data from
7683 * previous non-compressed extents and then when we fallback to
7684 * buffered IO, at btrfs_file_read_iter() by calling
7685 * filemap_read(), we fail to fault in pages for the read buffer,
7686 * in which case filemap_read() returns a short read (the number
7687 * of bytes previously read is > 0, so it does not return -EFAULT).
7689 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7693 len = min(len, em->len - (start - em->start));
7696 * If we have a NOWAIT request and the range contains multiple extents
7697 * (or a mix of extents and holes), then we return -EAGAIN to make the
7698 * caller fallback to a context where it can do a blocking (without
7699 * NOWAIT) request. This way we avoid doing partial IO and returning
7700 * success to the caller, which is not optimal for writes and for reads
7701 * it can result in unexpected behaviour for an application.
7703 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7704 * iomap_dio_rw(), we can end up returning less data then what the caller
7705 * asked for, resulting in an unexpected, and incorrect, short read.
7706 * That is, the caller asked to read N bytes and we return less than that,
7707 * which is wrong unless we are crossing EOF. This happens if we get a
7708 * page fault error when trying to fault in pages for the buffer that is
7709 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7710 * have previously submitted bios for other extents in the range, in
7711 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7712 * those bios have completed by the time we get the page fault error,
7713 * which we return back to our caller - we should only return EIOCBQUEUED
7714 * after we have submitted bios for all the extents in the range.
7716 if ((flags & IOMAP_NOWAIT) && len < length) {
7717 free_extent_map(em);
7723 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7724 start, &len, flags);
7727 unlock_extents = true;
7728 /* Recalc len in case the new em is smaller than requested */
7729 len = min(len, em->len - (start - em->start));
7730 if (dio_data->data_space_reserved) {
7732 u64 release_len = 0;
7734 if (dio_data->nocow_done) {
7735 release_offset = start;
7736 release_len = data_alloc_len;
7737 } else if (len < data_alloc_len) {
7738 release_offset = start + len;
7739 release_len = data_alloc_len - len;
7742 if (release_len > 0)
7743 btrfs_free_reserved_data_space(BTRFS_I(inode),
7744 dio_data->data_reserved,
7750 * We need to unlock only the end area that we aren't using.
7751 * The rest is going to be unlocked by the endio routine.
7753 lockstart = start + len;
7754 if (lockstart < lockend)
7755 unlock_extents = true;
7759 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7762 free_extent_state(cached_state);
7765 * Translate extent map information to iomap.
7766 * We trim the extents (and move the addr) even though iomap code does
7767 * that, since we have locked only the parts we are performing I/O in.
7769 if ((em->block_start == EXTENT_MAP_HOLE) ||
7770 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7771 iomap->addr = IOMAP_NULL_ADDR;
7772 iomap->type = IOMAP_HOLE;
7774 iomap->addr = em->block_start + (start - em->start);
7775 iomap->type = IOMAP_MAPPED;
7777 iomap->offset = start;
7778 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7779 iomap->length = len;
7780 free_extent_map(em);
7785 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7788 if (dio_data->data_space_reserved) {
7789 btrfs_free_reserved_data_space(BTRFS_I(inode),
7790 dio_data->data_reserved,
7791 start, data_alloc_len);
7792 extent_changeset_free(dio_data->data_reserved);
7798 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7799 ssize_t written, unsigned int flags, struct iomap *iomap)
7801 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7802 struct btrfs_dio_data *dio_data = iter->private;
7803 size_t submitted = dio_data->submitted;
7804 const bool write = !!(flags & IOMAP_WRITE);
7807 if (!write && (iomap->type == IOMAP_HOLE)) {
7808 /* If reading from a hole, unlock and return */
7809 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7814 if (submitted < length) {
7816 length -= submitted;
7818 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7819 pos, length, false);
7821 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7822 pos + length - 1, NULL);
7826 btrfs_put_ordered_extent(dio_data->ordered);
7827 dio_data->ordered = NULL;
7831 extent_changeset_free(dio_data->data_reserved);
7835 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7837 struct btrfs_dio_private *dip =
7838 container_of(bbio, struct btrfs_dio_private, bbio);
7839 struct btrfs_inode *inode = bbio->inode;
7840 struct bio *bio = &bbio->bio;
7842 if (bio->bi_status) {
7843 btrfs_warn(inode->root->fs_info,
7844 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7845 btrfs_ino(inode), bio->bi_opf,
7846 dip->file_offset, dip->bytes, bio->bi_status);
7849 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7850 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7851 dip->file_offset, dip->bytes,
7854 unlock_extent(&inode->io_tree, dip->file_offset,
7855 dip->file_offset + dip->bytes - 1, NULL);
7858 bbio->bio.bi_private = bbio->private;
7859 iomap_dio_bio_end_io(bio);
7862 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7865 struct btrfs_bio *bbio = btrfs_bio(bio);
7866 struct btrfs_dio_private *dip =
7867 container_of(bbio, struct btrfs_dio_private, bbio);
7868 struct btrfs_dio_data *dio_data = iter->private;
7870 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7871 btrfs_dio_end_io, bio->bi_private);
7872 bbio->inode = BTRFS_I(iter->inode);
7873 bbio->file_offset = file_offset;
7875 dip->file_offset = file_offset;
7876 dip->bytes = bio->bi_iter.bi_size;
7878 dio_data->submitted += bio->bi_iter.bi_size;
7881 * Check if we are doing a partial write. If we are, we need to split
7882 * the ordered extent to match the submitted bio. Hang on to the
7883 * remaining unfinishable ordered_extent in dio_data so that it can be
7884 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7885 * remaining pages is blocked on the outstanding ordered extent.
7887 if (iter->flags & IOMAP_WRITE) {
7890 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7892 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7893 file_offset, dip->bytes,
7895 bio->bi_status = errno_to_blk_status(ret);
7896 iomap_dio_bio_end_io(bio);
7901 btrfs_submit_bio(bbio, 0);
7904 static const struct iomap_ops btrfs_dio_iomap_ops = {
7905 .iomap_begin = btrfs_dio_iomap_begin,
7906 .iomap_end = btrfs_dio_iomap_end,
7909 static const struct iomap_dio_ops btrfs_dio_ops = {
7910 .submit_io = btrfs_dio_submit_io,
7911 .bio_set = &btrfs_dio_bioset,
7914 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7916 struct btrfs_dio_data data = { 0 };
7918 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7919 IOMAP_DIO_PARTIAL, &data, done_before);
7922 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7925 struct btrfs_dio_data data = { 0 };
7927 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7928 IOMAP_DIO_PARTIAL, &data, done_before);
7931 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7936 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7941 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7942 * file range (0 to LLONG_MAX), but that is not enough if we have
7943 * compression enabled. The first filemap_fdatawrite_range() only kicks
7944 * in the compression of data (in an async thread) and will return
7945 * before the compression is done and writeback is started. A second
7946 * filemap_fdatawrite_range() is needed to wait for the compression to
7947 * complete and writeback to start. We also need to wait for ordered
7948 * extents to complete, because our fiemap implementation uses mainly
7949 * file extent items to list the extents, searching for extent maps
7950 * only for file ranges with holes or prealloc extents to figure out
7951 * if we have delalloc in those ranges.
7953 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7954 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7959 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7962 static int btrfs_writepages(struct address_space *mapping,
7963 struct writeback_control *wbc)
7965 return extent_writepages(mapping, wbc);
7968 static void btrfs_readahead(struct readahead_control *rac)
7970 extent_readahead(rac);
7974 * For release_folio() and invalidate_folio() we have a race window where
7975 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7976 * If we continue to release/invalidate the page, we could cause use-after-free
7977 * for subpage spinlock. So this function is to spin and wait for subpage
7980 static void wait_subpage_spinlock(struct page *page)
7982 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7983 struct btrfs_subpage *subpage;
7985 if (!btrfs_is_subpage(fs_info, page))
7988 ASSERT(PagePrivate(page) && page->private);
7989 subpage = (struct btrfs_subpage *)page->private;
7992 * This may look insane as we just acquire the spinlock and release it,
7993 * without doing anything. But we just want to make sure no one is
7994 * still holding the subpage spinlock.
7995 * And since the page is not dirty nor writeback, and we have page
7996 * locked, the only possible way to hold a spinlock is from the endio
7997 * function to clear page writeback.
7999 * Here we just acquire the spinlock so that all existing callers
8000 * should exit and we're safe to release/invalidate the page.
8002 spin_lock_irq(&subpage->lock);
8003 spin_unlock_irq(&subpage->lock);
8006 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8008 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8011 wait_subpage_spinlock(&folio->page);
8012 clear_page_extent_mapped(&folio->page);
8017 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8019 if (folio_test_writeback(folio) || folio_test_dirty(folio))
8021 return __btrfs_release_folio(folio, gfp_flags);
8024 #ifdef CONFIG_MIGRATION
8025 static int btrfs_migrate_folio(struct address_space *mapping,
8026 struct folio *dst, struct folio *src,
8027 enum migrate_mode mode)
8029 int ret = filemap_migrate_folio(mapping, dst, src, mode);
8031 if (ret != MIGRATEPAGE_SUCCESS)
8034 if (folio_test_ordered(src)) {
8035 folio_clear_ordered(src);
8036 folio_set_ordered(dst);
8039 return MIGRATEPAGE_SUCCESS;
8042 #define btrfs_migrate_folio NULL
8045 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8048 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8049 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8050 struct extent_io_tree *tree = &inode->io_tree;
8051 struct extent_state *cached_state = NULL;
8052 u64 page_start = folio_pos(folio);
8053 u64 page_end = page_start + folio_size(folio) - 1;
8055 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8058 * We have folio locked so no new ordered extent can be created on this
8059 * page, nor bio can be submitted for this folio.
8061 * But already submitted bio can still be finished on this folio.
8062 * Furthermore, endio function won't skip folio which has Ordered
8063 * (Private2) already cleared, so it's possible for endio and
8064 * invalidate_folio to do the same ordered extent accounting twice
8067 * So here we wait for any submitted bios to finish, so that we won't
8068 * do double ordered extent accounting on the same folio.
8070 folio_wait_writeback(folio);
8071 wait_subpage_spinlock(&folio->page);
8074 * For subpage case, we have call sites like
8075 * btrfs_punch_hole_lock_range() which passes range not aligned to
8077 * If the range doesn't cover the full folio, we don't need to and
8078 * shouldn't clear page extent mapped, as folio->private can still
8079 * record subpage dirty bits for other part of the range.
8081 * For cases that invalidate the full folio even the range doesn't
8082 * cover the full folio, like invalidating the last folio, we're
8083 * still safe to wait for ordered extent to finish.
8085 if (!(offset == 0 && length == folio_size(folio))) {
8086 btrfs_release_folio(folio, GFP_NOFS);
8090 if (!inode_evicting)
8091 lock_extent(tree, page_start, page_end, &cached_state);
8094 while (cur < page_end) {
8095 struct btrfs_ordered_extent *ordered;
8098 u32 extra_flags = 0;
8100 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8101 page_end + 1 - cur);
8103 range_end = page_end;
8105 * No ordered extent covering this range, we are safe
8106 * to delete all extent states in the range.
8108 extra_flags = EXTENT_CLEAR_ALL_BITS;
8111 if (ordered->file_offset > cur) {
8113 * There is a range between [cur, oe->file_offset) not
8114 * covered by any ordered extent.
8115 * We are safe to delete all extent states, and handle
8116 * the ordered extent in the next iteration.
8118 range_end = ordered->file_offset - 1;
8119 extra_flags = EXTENT_CLEAR_ALL_BITS;
8123 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8125 ASSERT(range_end + 1 - cur < U32_MAX);
8126 range_len = range_end + 1 - cur;
8127 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8129 * If Ordered (Private2) is cleared, it means endio has
8130 * already been executed for the range.
8131 * We can't delete the extent states as
8132 * btrfs_finish_ordered_io() may still use some of them.
8136 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8139 * IO on this page will never be started, so we need to account
8140 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8141 * here, must leave that up for the ordered extent completion.
8143 * This will also unlock the range for incoming
8144 * btrfs_finish_ordered_io().
8146 if (!inode_evicting)
8147 clear_extent_bit(tree, cur, range_end,
8149 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8150 EXTENT_DEFRAG, &cached_state);
8152 spin_lock_irq(&inode->ordered_tree.lock);
8153 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8154 ordered->truncated_len = min(ordered->truncated_len,
8155 cur - ordered->file_offset);
8156 spin_unlock_irq(&inode->ordered_tree.lock);
8159 * If the ordered extent has finished, we're safe to delete all
8160 * the extent states of the range, otherwise
8161 * btrfs_finish_ordered_io() will get executed by endio for
8162 * other pages, so we can't delete extent states.
8164 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8165 cur, range_end + 1 - cur)) {
8166 btrfs_finish_ordered_io(ordered);
8168 * The ordered extent has finished, now we're again
8169 * safe to delete all extent states of the range.
8171 extra_flags = EXTENT_CLEAR_ALL_BITS;
8175 btrfs_put_ordered_extent(ordered);
8177 * Qgroup reserved space handler
8178 * Sector(s) here will be either:
8180 * 1) Already written to disk or bio already finished
8181 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8182 * Qgroup will be handled by its qgroup_record then.
8183 * btrfs_qgroup_free_data() call will do nothing here.
8185 * 2) Not written to disk yet
8186 * Then btrfs_qgroup_free_data() call will clear the
8187 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8188 * reserved data space.
8189 * Since the IO will never happen for this page.
8191 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8192 if (!inode_evicting) {
8193 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8194 EXTENT_DELALLOC | EXTENT_UPTODATE |
8195 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8196 extra_flags, &cached_state);
8198 cur = range_end + 1;
8201 * We have iterated through all ordered extents of the page, the page
8202 * should not have Ordered (Private2) anymore, or the above iteration
8203 * did something wrong.
8205 ASSERT(!folio_test_ordered(folio));
8206 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8207 if (!inode_evicting)
8208 __btrfs_release_folio(folio, GFP_NOFS);
8209 clear_page_extent_mapped(&folio->page);
8213 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8214 * called from a page fault handler when a page is first dirtied. Hence we must
8215 * be careful to check for EOF conditions here. We set the page up correctly
8216 * for a written page which means we get ENOSPC checking when writing into
8217 * holes and correct delalloc and unwritten extent mapping on filesystems that
8218 * support these features.
8220 * We are not allowed to take the i_mutex here so we have to play games to
8221 * protect against truncate races as the page could now be beyond EOF. Because
8222 * truncate_setsize() writes the inode size before removing pages, once we have
8223 * the page lock we can determine safely if the page is beyond EOF. If it is not
8224 * beyond EOF, then the page is guaranteed safe against truncation until we
8227 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8229 struct page *page = vmf->page;
8230 struct inode *inode = file_inode(vmf->vma->vm_file);
8231 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8232 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8233 struct btrfs_ordered_extent *ordered;
8234 struct extent_state *cached_state = NULL;
8235 struct extent_changeset *data_reserved = NULL;
8236 unsigned long zero_start;
8246 reserved_space = PAGE_SIZE;
8248 sb_start_pagefault(inode->i_sb);
8249 page_start = page_offset(page);
8250 page_end = page_start + PAGE_SIZE - 1;
8254 * Reserving delalloc space after obtaining the page lock can lead to
8255 * deadlock. For example, if a dirty page is locked by this function
8256 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8257 * dirty page write out, then the btrfs_writepages() function could
8258 * end up waiting indefinitely to get a lock on the page currently
8259 * being processed by btrfs_page_mkwrite() function.
8261 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8262 page_start, reserved_space);
8264 ret2 = file_update_time(vmf->vma->vm_file);
8268 ret = vmf_error(ret2);
8274 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8276 down_read(&BTRFS_I(inode)->i_mmap_lock);
8278 size = i_size_read(inode);
8280 if ((page->mapping != inode->i_mapping) ||
8281 (page_start >= size)) {
8282 /* page got truncated out from underneath us */
8285 wait_on_page_writeback(page);
8287 lock_extent(io_tree, page_start, page_end, &cached_state);
8288 ret2 = set_page_extent_mapped(page);
8290 ret = vmf_error(ret2);
8291 unlock_extent(io_tree, page_start, page_end, &cached_state);
8296 * we can't set the delalloc bits if there are pending ordered
8297 * extents. Drop our locks and wait for them to finish
8299 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8302 unlock_extent(io_tree, page_start, page_end, &cached_state);
8304 up_read(&BTRFS_I(inode)->i_mmap_lock);
8305 btrfs_start_ordered_extent(ordered);
8306 btrfs_put_ordered_extent(ordered);
8310 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8311 reserved_space = round_up(size - page_start,
8312 fs_info->sectorsize);
8313 if (reserved_space < PAGE_SIZE) {
8314 end = page_start + reserved_space - 1;
8315 btrfs_delalloc_release_space(BTRFS_I(inode),
8316 data_reserved, page_start,
8317 PAGE_SIZE - reserved_space, true);
8322 * page_mkwrite gets called when the page is firstly dirtied after it's
8323 * faulted in, but write(2) could also dirty a page and set delalloc
8324 * bits, thus in this case for space account reason, we still need to
8325 * clear any delalloc bits within this page range since we have to
8326 * reserve data&meta space before lock_page() (see above comments).
8328 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8329 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8330 EXTENT_DEFRAG, &cached_state);
8332 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8335 unlock_extent(io_tree, page_start, page_end, &cached_state);
8336 ret = VM_FAULT_SIGBUS;
8340 /* page is wholly or partially inside EOF */
8341 if (page_start + PAGE_SIZE > size)
8342 zero_start = offset_in_page(size);
8344 zero_start = PAGE_SIZE;
8346 if (zero_start != PAGE_SIZE)
8347 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8349 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8350 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8351 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8353 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8355 unlock_extent(io_tree, page_start, page_end, &cached_state);
8356 up_read(&BTRFS_I(inode)->i_mmap_lock);
8358 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8359 sb_end_pagefault(inode->i_sb);
8360 extent_changeset_free(data_reserved);
8361 return VM_FAULT_LOCKED;
8365 up_read(&BTRFS_I(inode)->i_mmap_lock);
8367 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8368 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8369 reserved_space, (ret != 0));
8371 sb_end_pagefault(inode->i_sb);
8372 extent_changeset_free(data_reserved);
8376 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8378 struct btrfs_truncate_control control = {
8380 .ino = btrfs_ino(inode),
8381 .min_type = BTRFS_EXTENT_DATA_KEY,
8382 .clear_extent_range = true,
8384 struct btrfs_root *root = inode->root;
8385 struct btrfs_fs_info *fs_info = root->fs_info;
8386 struct btrfs_block_rsv *rsv;
8388 struct btrfs_trans_handle *trans;
8389 u64 mask = fs_info->sectorsize - 1;
8390 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8392 if (!skip_writeback) {
8393 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8394 inode->vfs_inode.i_size & (~mask),
8401 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8402 * things going on here:
8404 * 1) We need to reserve space to update our inode.
8406 * 2) We need to have something to cache all the space that is going to
8407 * be free'd up by the truncate operation, but also have some slack
8408 * space reserved in case it uses space during the truncate (thank you
8409 * very much snapshotting).
8411 * And we need these to be separate. The fact is we can use a lot of
8412 * space doing the truncate, and we have no earthly idea how much space
8413 * we will use, so we need the truncate reservation to be separate so it
8414 * doesn't end up using space reserved for updating the inode. We also
8415 * need to be able to stop the transaction and start a new one, which
8416 * means we need to be able to update the inode several times, and we
8417 * have no idea of knowing how many times that will be, so we can't just
8418 * reserve 1 item for the entirety of the operation, so that has to be
8419 * done separately as well.
8421 * So that leaves us with
8423 * 1) rsv - for the truncate reservation, which we will steal from the
8424 * transaction reservation.
8425 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8426 * updating the inode.
8428 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8431 rsv->size = min_size;
8432 rsv->failfast = true;
8435 * 1 for the truncate slack space
8436 * 1 for updating the inode.
8438 trans = btrfs_start_transaction(root, 2);
8439 if (IS_ERR(trans)) {
8440 ret = PTR_ERR(trans);
8444 /* Migrate the slack space for the truncate to our reserve */
8445 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8448 * We have reserved 2 metadata units when we started the transaction and
8449 * min_size matches 1 unit, so this should never fail, but if it does,
8450 * it's not critical we just fail truncation.
8453 btrfs_end_transaction(trans);
8457 trans->block_rsv = rsv;
8460 struct extent_state *cached_state = NULL;
8461 const u64 new_size = inode->vfs_inode.i_size;
8462 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8464 control.new_size = new_size;
8465 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8467 * We want to drop from the next block forward in case this new
8468 * size is not block aligned since we will be keeping the last
8469 * block of the extent just the way it is.
8471 btrfs_drop_extent_map_range(inode,
8472 ALIGN(new_size, fs_info->sectorsize),
8475 ret = btrfs_truncate_inode_items(trans, root, &control);
8477 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8478 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8480 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8482 trans->block_rsv = &fs_info->trans_block_rsv;
8483 if (ret != -ENOSPC && ret != -EAGAIN)
8486 ret = btrfs_update_inode(trans, root, inode);
8490 btrfs_end_transaction(trans);
8491 btrfs_btree_balance_dirty(fs_info);
8493 trans = btrfs_start_transaction(root, 2);
8494 if (IS_ERR(trans)) {
8495 ret = PTR_ERR(trans);
8500 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8501 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8502 rsv, min_size, false);
8504 * We have reserved 2 metadata units when we started the
8505 * transaction and min_size matches 1 unit, so this should never
8506 * fail, but if it does, it's not critical we just fail truncation.
8511 trans->block_rsv = rsv;
8515 * We can't call btrfs_truncate_block inside a trans handle as we could
8516 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8517 * know we've truncated everything except the last little bit, and can
8518 * do btrfs_truncate_block and then update the disk_i_size.
8520 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8521 btrfs_end_transaction(trans);
8522 btrfs_btree_balance_dirty(fs_info);
8524 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8527 trans = btrfs_start_transaction(root, 1);
8528 if (IS_ERR(trans)) {
8529 ret = PTR_ERR(trans);
8532 btrfs_inode_safe_disk_i_size_write(inode, 0);
8538 trans->block_rsv = &fs_info->trans_block_rsv;
8539 ret2 = btrfs_update_inode(trans, root, inode);
8543 ret2 = btrfs_end_transaction(trans);
8546 btrfs_btree_balance_dirty(fs_info);
8549 btrfs_free_block_rsv(fs_info, rsv);
8551 * So if we truncate and then write and fsync we normally would just
8552 * write the extents that changed, which is a problem if we need to
8553 * first truncate that entire inode. So set this flag so we write out
8554 * all of the extents in the inode to the sync log so we're completely
8557 * If no extents were dropped or trimmed we don't need to force the next
8558 * fsync to truncate all the inode's items from the log and re-log them
8559 * all. This means the truncate operation did not change the file size,
8560 * or changed it to a smaller size but there was only an implicit hole
8561 * between the old i_size and the new i_size, and there were no prealloc
8562 * extents beyond i_size to drop.
8564 if (control.extents_found > 0)
8565 btrfs_set_inode_full_sync(inode);
8570 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8573 struct inode *inode;
8575 inode = new_inode(dir->i_sb);
8578 * Subvolumes don't inherit the sgid bit or the parent's gid if
8579 * the parent's sgid bit is set. This is probably a bug.
8581 inode_init_owner(idmap, inode, NULL,
8582 S_IFDIR | (~current_umask() & S_IRWXUGO));
8583 inode->i_op = &btrfs_dir_inode_operations;
8584 inode->i_fop = &btrfs_dir_file_operations;
8589 struct inode *btrfs_alloc_inode(struct super_block *sb)
8591 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8592 struct btrfs_inode *ei;
8593 struct inode *inode;
8595 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8602 ei->last_sub_trans = 0;
8603 ei->logged_trans = 0;
8604 ei->delalloc_bytes = 0;
8605 ei->new_delalloc_bytes = 0;
8606 ei->defrag_bytes = 0;
8607 ei->disk_i_size = 0;
8611 ei->index_cnt = (u64)-1;
8613 ei->last_unlink_trans = 0;
8614 ei->last_reflink_trans = 0;
8615 ei->last_log_commit = 0;
8617 spin_lock_init(&ei->lock);
8618 ei->outstanding_extents = 0;
8619 if (sb->s_magic != BTRFS_TEST_MAGIC)
8620 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8621 BTRFS_BLOCK_RSV_DELALLOC);
8622 ei->runtime_flags = 0;
8623 ei->prop_compress = BTRFS_COMPRESS_NONE;
8624 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8626 ei->delayed_node = NULL;
8628 ei->i_otime.tv_sec = 0;
8629 ei->i_otime.tv_nsec = 0;
8631 inode = &ei->vfs_inode;
8632 extent_map_tree_init(&ei->extent_tree);
8633 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8634 ei->io_tree.inode = ei;
8635 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8636 IO_TREE_INODE_FILE_EXTENT);
8637 mutex_init(&ei->log_mutex);
8638 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8639 INIT_LIST_HEAD(&ei->delalloc_inodes);
8640 INIT_LIST_HEAD(&ei->delayed_iput);
8641 RB_CLEAR_NODE(&ei->rb_node);
8642 init_rwsem(&ei->i_mmap_lock);
8647 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8648 void btrfs_test_destroy_inode(struct inode *inode)
8650 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8651 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8655 void btrfs_free_inode(struct inode *inode)
8657 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8660 void btrfs_destroy_inode(struct inode *vfs_inode)
8662 struct btrfs_ordered_extent *ordered;
8663 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8664 struct btrfs_root *root = inode->root;
8665 bool freespace_inode;
8667 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8668 WARN_ON(vfs_inode->i_data.nrpages);
8669 WARN_ON(inode->block_rsv.reserved);
8670 WARN_ON(inode->block_rsv.size);
8671 WARN_ON(inode->outstanding_extents);
8672 if (!S_ISDIR(vfs_inode->i_mode)) {
8673 WARN_ON(inode->delalloc_bytes);
8674 WARN_ON(inode->new_delalloc_bytes);
8676 WARN_ON(inode->csum_bytes);
8677 WARN_ON(inode->defrag_bytes);
8680 * This can happen where we create an inode, but somebody else also
8681 * created the same inode and we need to destroy the one we already
8688 * If this is a free space inode do not take the ordered extents lockdep
8691 freespace_inode = btrfs_is_free_space_inode(inode);
8694 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8698 btrfs_err(root->fs_info,
8699 "found ordered extent %llu %llu on inode cleanup",
8700 ordered->file_offset, ordered->num_bytes);
8702 if (!freespace_inode)
8703 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8705 btrfs_remove_ordered_extent(inode, ordered);
8706 btrfs_put_ordered_extent(ordered);
8707 btrfs_put_ordered_extent(ordered);
8710 btrfs_qgroup_check_reserved_leak(inode);
8711 inode_tree_del(inode);
8712 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8713 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8714 btrfs_put_root(inode->root);
8717 int btrfs_drop_inode(struct inode *inode)
8719 struct btrfs_root *root = BTRFS_I(inode)->root;
8724 /* the snap/subvol tree is on deleting */
8725 if (btrfs_root_refs(&root->root_item) == 0)
8728 return generic_drop_inode(inode);
8731 static void init_once(void *foo)
8733 struct btrfs_inode *ei = foo;
8735 inode_init_once(&ei->vfs_inode);
8738 void __cold btrfs_destroy_cachep(void)
8741 * Make sure all delayed rcu free inodes are flushed before we
8745 bioset_exit(&btrfs_dio_bioset);
8746 kmem_cache_destroy(btrfs_inode_cachep);
8749 int __init btrfs_init_cachep(void)
8751 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8752 sizeof(struct btrfs_inode), 0,
8753 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8755 if (!btrfs_inode_cachep)
8758 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8759 offsetof(struct btrfs_dio_private, bbio.bio),
8765 btrfs_destroy_cachep();
8769 static int btrfs_getattr(struct mnt_idmap *idmap,
8770 const struct path *path, struct kstat *stat,
8771 u32 request_mask, unsigned int flags)
8775 struct inode *inode = d_inode(path->dentry);
8776 u32 blocksize = inode->i_sb->s_blocksize;
8777 u32 bi_flags = BTRFS_I(inode)->flags;
8778 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8780 stat->result_mask |= STATX_BTIME;
8781 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8782 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8783 if (bi_flags & BTRFS_INODE_APPEND)
8784 stat->attributes |= STATX_ATTR_APPEND;
8785 if (bi_flags & BTRFS_INODE_COMPRESS)
8786 stat->attributes |= STATX_ATTR_COMPRESSED;
8787 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8788 stat->attributes |= STATX_ATTR_IMMUTABLE;
8789 if (bi_flags & BTRFS_INODE_NODUMP)
8790 stat->attributes |= STATX_ATTR_NODUMP;
8791 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8792 stat->attributes |= STATX_ATTR_VERITY;
8794 stat->attributes_mask |= (STATX_ATTR_APPEND |
8795 STATX_ATTR_COMPRESSED |
8796 STATX_ATTR_IMMUTABLE |
8799 generic_fillattr(idmap, inode, stat);
8800 stat->dev = BTRFS_I(inode)->root->anon_dev;
8802 spin_lock(&BTRFS_I(inode)->lock);
8803 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8804 inode_bytes = inode_get_bytes(inode);
8805 spin_unlock(&BTRFS_I(inode)->lock);
8806 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8807 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8811 static int btrfs_rename_exchange(struct inode *old_dir,
8812 struct dentry *old_dentry,
8813 struct inode *new_dir,
8814 struct dentry *new_dentry)
8816 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8817 struct btrfs_trans_handle *trans;
8818 unsigned int trans_num_items;
8819 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8820 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8821 struct inode *new_inode = new_dentry->d_inode;
8822 struct inode *old_inode = old_dentry->d_inode;
8823 struct timespec64 ctime = current_time(old_inode);
8824 struct btrfs_rename_ctx old_rename_ctx;
8825 struct btrfs_rename_ctx new_rename_ctx;
8826 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8827 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8832 bool need_abort = false;
8833 struct fscrypt_name old_fname, new_fname;
8834 struct fscrypt_str *old_name, *new_name;
8837 * For non-subvolumes allow exchange only within one subvolume, in the
8838 * same inode namespace. Two subvolumes (represented as directory) can
8839 * be exchanged as they're a logical link and have a fixed inode number.
8842 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8843 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8846 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8850 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8852 fscrypt_free_filename(&old_fname);
8856 old_name = &old_fname.disk_name;
8857 new_name = &new_fname.disk_name;
8859 /* close the race window with snapshot create/destroy ioctl */
8860 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8861 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8862 down_read(&fs_info->subvol_sem);
8866 * 1 to remove old dir item
8867 * 1 to remove old dir index
8868 * 1 to add new dir item
8869 * 1 to add new dir index
8870 * 1 to update parent inode
8872 * If the parents are the same, we only need to account for one
8874 trans_num_items = (old_dir == new_dir ? 9 : 10);
8875 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8877 * 1 to remove old root ref
8878 * 1 to remove old root backref
8879 * 1 to add new root ref
8880 * 1 to add new root backref
8882 trans_num_items += 4;
8885 * 1 to update inode item
8886 * 1 to remove old inode ref
8887 * 1 to add new inode ref
8889 trans_num_items += 3;
8891 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8892 trans_num_items += 4;
8894 trans_num_items += 3;
8895 trans = btrfs_start_transaction(root, trans_num_items);
8896 if (IS_ERR(trans)) {
8897 ret = PTR_ERR(trans);
8902 ret = btrfs_record_root_in_trans(trans, dest);
8908 * We need to find a free sequence number both in the source and
8909 * in the destination directory for the exchange.
8911 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8914 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8918 BTRFS_I(old_inode)->dir_index = 0ULL;
8919 BTRFS_I(new_inode)->dir_index = 0ULL;
8921 /* Reference for the source. */
8922 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8923 /* force full log commit if subvolume involved. */
8924 btrfs_set_log_full_commit(trans);
8926 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8927 btrfs_ino(BTRFS_I(new_dir)),
8934 /* And now for the dest. */
8935 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8936 /* force full log commit if subvolume involved. */
8937 btrfs_set_log_full_commit(trans);
8939 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8940 btrfs_ino(BTRFS_I(old_dir)),
8944 btrfs_abort_transaction(trans, ret);
8949 /* Update inode version and ctime/mtime. */
8950 inode_inc_iversion(old_dir);
8951 inode_inc_iversion(new_dir);
8952 inode_inc_iversion(old_inode);
8953 inode_inc_iversion(new_inode);
8954 old_dir->i_mtime = ctime;
8955 old_dir->i_ctime = ctime;
8956 new_dir->i_mtime = ctime;
8957 new_dir->i_ctime = ctime;
8958 old_inode->i_ctime = ctime;
8959 new_inode->i_ctime = ctime;
8961 if (old_dentry->d_parent != new_dentry->d_parent) {
8962 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8963 BTRFS_I(old_inode), true);
8964 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8965 BTRFS_I(new_inode), true);
8968 /* src is a subvolume */
8969 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8970 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8971 } else { /* src is an inode */
8972 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8973 BTRFS_I(old_dentry->d_inode),
8974 old_name, &old_rename_ctx);
8976 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8979 btrfs_abort_transaction(trans, ret);
8983 /* dest is a subvolume */
8984 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8985 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8986 } else { /* dest is an inode */
8987 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8988 BTRFS_I(new_dentry->d_inode),
8989 new_name, &new_rename_ctx);
8991 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8994 btrfs_abort_transaction(trans, ret);
8998 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8999 new_name, 0, old_idx);
9001 btrfs_abort_transaction(trans, ret);
9005 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9006 old_name, 0, new_idx);
9008 btrfs_abort_transaction(trans, ret);
9012 if (old_inode->i_nlink == 1)
9013 BTRFS_I(old_inode)->dir_index = old_idx;
9014 if (new_inode->i_nlink == 1)
9015 BTRFS_I(new_inode)->dir_index = new_idx;
9018 * Now pin the logs of the roots. We do it to ensure that no other task
9019 * can sync the logs while we are in progress with the rename, because
9020 * that could result in an inconsistency in case any of the inodes that
9021 * are part of this rename operation were logged before.
9023 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9024 btrfs_pin_log_trans(root);
9025 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9026 btrfs_pin_log_trans(dest);
9028 /* Do the log updates for all inodes. */
9029 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9030 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9031 old_rename_ctx.index, new_dentry->d_parent);
9032 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9033 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9034 new_rename_ctx.index, old_dentry->d_parent);
9036 /* Now unpin the logs. */
9037 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9038 btrfs_end_log_trans(root);
9039 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9040 btrfs_end_log_trans(dest);
9042 ret2 = btrfs_end_transaction(trans);
9043 ret = ret ? ret : ret2;
9045 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9046 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9047 up_read(&fs_info->subvol_sem);
9049 fscrypt_free_filename(&new_fname);
9050 fscrypt_free_filename(&old_fname);
9054 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
9057 struct inode *inode;
9059 inode = new_inode(dir->i_sb);
9061 inode_init_owner(idmap, inode, dir,
9062 S_IFCHR | WHITEOUT_MODE);
9063 inode->i_op = &btrfs_special_inode_operations;
9064 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9069 static int btrfs_rename(struct mnt_idmap *idmap,
9070 struct inode *old_dir, struct dentry *old_dentry,
9071 struct inode *new_dir, struct dentry *new_dentry,
9074 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9075 struct btrfs_new_inode_args whiteout_args = {
9077 .dentry = old_dentry,
9079 struct btrfs_trans_handle *trans;
9080 unsigned int trans_num_items;
9081 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9082 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9083 struct inode *new_inode = d_inode(new_dentry);
9084 struct inode *old_inode = d_inode(old_dentry);
9085 struct btrfs_rename_ctx rename_ctx;
9089 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9090 struct fscrypt_name old_fname, new_fname;
9092 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9095 /* we only allow rename subvolume link between subvolumes */
9096 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9099 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9100 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9103 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9104 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9107 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9111 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9113 fscrypt_free_filename(&old_fname);
9117 /* check for collisions, even if the name isn't there */
9118 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9120 if (ret == -EEXIST) {
9122 * eexist without a new_inode */
9123 if (WARN_ON(!new_inode)) {
9124 goto out_fscrypt_names;
9127 /* maybe -EOVERFLOW */
9128 goto out_fscrypt_names;
9134 * we're using rename to replace one file with another. Start IO on it
9135 * now so we don't add too much work to the end of the transaction
9137 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9138 filemap_flush(old_inode->i_mapping);
9140 if (flags & RENAME_WHITEOUT) {
9141 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9142 if (!whiteout_args.inode) {
9144 goto out_fscrypt_names;
9146 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9148 goto out_whiteout_inode;
9150 /* 1 to update the old parent inode. */
9151 trans_num_items = 1;
9154 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9155 /* Close the race window with snapshot create/destroy ioctl */
9156 down_read(&fs_info->subvol_sem);
9158 * 1 to remove old root ref
9159 * 1 to remove old root backref
9160 * 1 to add new root ref
9161 * 1 to add new root backref
9163 trans_num_items += 4;
9167 * 1 to remove old inode ref
9168 * 1 to add new inode ref
9170 trans_num_items += 3;
9173 * 1 to remove old dir item
9174 * 1 to remove old dir index
9175 * 1 to add new dir item
9176 * 1 to add new dir index
9178 trans_num_items += 4;
9179 /* 1 to update new parent inode if it's not the same as the old parent */
9180 if (new_dir != old_dir)
9185 * 1 to remove inode ref
9186 * 1 to remove dir item
9187 * 1 to remove dir index
9188 * 1 to possibly add orphan item
9190 trans_num_items += 5;
9192 trans = btrfs_start_transaction(root, trans_num_items);
9193 if (IS_ERR(trans)) {
9194 ret = PTR_ERR(trans);
9199 ret = btrfs_record_root_in_trans(trans, dest);
9204 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9208 BTRFS_I(old_inode)->dir_index = 0ULL;
9209 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9210 /* force full log commit if subvolume involved. */
9211 btrfs_set_log_full_commit(trans);
9213 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9214 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9220 inode_inc_iversion(old_dir);
9221 inode_inc_iversion(new_dir);
9222 inode_inc_iversion(old_inode);
9223 old_dir->i_mtime = current_time(old_dir);
9224 old_dir->i_ctime = old_dir->i_mtime;
9225 new_dir->i_mtime = old_dir->i_mtime;
9226 new_dir->i_ctime = old_dir->i_mtime;
9227 old_inode->i_ctime = old_dir->i_mtime;
9229 if (old_dentry->d_parent != new_dentry->d_parent)
9230 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9231 BTRFS_I(old_inode), true);
9233 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9234 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9236 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9237 BTRFS_I(d_inode(old_dentry)),
9238 &old_fname.disk_name, &rename_ctx);
9240 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9243 btrfs_abort_transaction(trans, ret);
9248 inode_inc_iversion(new_inode);
9249 new_inode->i_ctime = current_time(new_inode);
9250 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9251 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9252 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9253 BUG_ON(new_inode->i_nlink == 0);
9255 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9256 BTRFS_I(d_inode(new_dentry)),
9257 &new_fname.disk_name);
9259 if (!ret && new_inode->i_nlink == 0)
9260 ret = btrfs_orphan_add(trans,
9261 BTRFS_I(d_inode(new_dentry)));
9263 btrfs_abort_transaction(trans, ret);
9268 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9269 &new_fname.disk_name, 0, index);
9271 btrfs_abort_transaction(trans, ret);
9275 if (old_inode->i_nlink == 1)
9276 BTRFS_I(old_inode)->dir_index = index;
9278 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9279 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9280 rename_ctx.index, new_dentry->d_parent);
9282 if (flags & RENAME_WHITEOUT) {
9283 ret = btrfs_create_new_inode(trans, &whiteout_args);
9285 btrfs_abort_transaction(trans, ret);
9288 unlock_new_inode(whiteout_args.inode);
9289 iput(whiteout_args.inode);
9290 whiteout_args.inode = NULL;
9294 ret2 = btrfs_end_transaction(trans);
9295 ret = ret ? ret : ret2;
9297 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9298 up_read(&fs_info->subvol_sem);
9299 if (flags & RENAME_WHITEOUT)
9300 btrfs_new_inode_args_destroy(&whiteout_args);
9302 if (flags & RENAME_WHITEOUT)
9303 iput(whiteout_args.inode);
9305 fscrypt_free_filename(&old_fname);
9306 fscrypt_free_filename(&new_fname);
9310 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9311 struct dentry *old_dentry, struct inode *new_dir,
9312 struct dentry *new_dentry, unsigned int flags)
9316 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9319 if (flags & RENAME_EXCHANGE)
9320 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9323 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9326 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9331 struct btrfs_delalloc_work {
9332 struct inode *inode;
9333 struct completion completion;
9334 struct list_head list;
9335 struct btrfs_work work;
9338 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9340 struct btrfs_delalloc_work *delalloc_work;
9341 struct inode *inode;
9343 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9345 inode = delalloc_work->inode;
9346 filemap_flush(inode->i_mapping);
9347 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9348 &BTRFS_I(inode)->runtime_flags))
9349 filemap_flush(inode->i_mapping);
9352 complete(&delalloc_work->completion);
9355 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9357 struct btrfs_delalloc_work *work;
9359 work = kmalloc(sizeof(*work), GFP_NOFS);
9363 init_completion(&work->completion);
9364 INIT_LIST_HEAD(&work->list);
9365 work->inode = inode;
9366 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9372 * some fairly slow code that needs optimization. This walks the list
9373 * of all the inodes with pending delalloc and forces them to disk.
9375 static int start_delalloc_inodes(struct btrfs_root *root,
9376 struct writeback_control *wbc, bool snapshot,
9377 bool in_reclaim_context)
9379 struct btrfs_inode *binode;
9380 struct inode *inode;
9381 struct btrfs_delalloc_work *work, *next;
9382 struct list_head works;
9383 struct list_head splice;
9385 bool full_flush = wbc->nr_to_write == LONG_MAX;
9387 INIT_LIST_HEAD(&works);
9388 INIT_LIST_HEAD(&splice);
9390 mutex_lock(&root->delalloc_mutex);
9391 spin_lock(&root->delalloc_lock);
9392 list_splice_init(&root->delalloc_inodes, &splice);
9393 while (!list_empty(&splice)) {
9394 binode = list_entry(splice.next, struct btrfs_inode,
9397 list_move_tail(&binode->delalloc_inodes,
9398 &root->delalloc_inodes);
9400 if (in_reclaim_context &&
9401 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9404 inode = igrab(&binode->vfs_inode);
9406 cond_resched_lock(&root->delalloc_lock);
9409 spin_unlock(&root->delalloc_lock);
9412 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9413 &binode->runtime_flags);
9415 work = btrfs_alloc_delalloc_work(inode);
9421 list_add_tail(&work->list, &works);
9422 btrfs_queue_work(root->fs_info->flush_workers,
9425 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9426 btrfs_add_delayed_iput(BTRFS_I(inode));
9427 if (ret || wbc->nr_to_write <= 0)
9431 spin_lock(&root->delalloc_lock);
9433 spin_unlock(&root->delalloc_lock);
9436 list_for_each_entry_safe(work, next, &works, list) {
9437 list_del_init(&work->list);
9438 wait_for_completion(&work->completion);
9442 if (!list_empty(&splice)) {
9443 spin_lock(&root->delalloc_lock);
9444 list_splice_tail(&splice, &root->delalloc_inodes);
9445 spin_unlock(&root->delalloc_lock);
9447 mutex_unlock(&root->delalloc_mutex);
9451 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9453 struct writeback_control wbc = {
9454 .nr_to_write = LONG_MAX,
9455 .sync_mode = WB_SYNC_NONE,
9457 .range_end = LLONG_MAX,
9459 struct btrfs_fs_info *fs_info = root->fs_info;
9461 if (BTRFS_FS_ERROR(fs_info))
9464 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9467 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9468 bool in_reclaim_context)
9470 struct writeback_control wbc = {
9472 .sync_mode = WB_SYNC_NONE,
9474 .range_end = LLONG_MAX,
9476 struct btrfs_root *root;
9477 struct list_head splice;
9480 if (BTRFS_FS_ERROR(fs_info))
9483 INIT_LIST_HEAD(&splice);
9485 mutex_lock(&fs_info->delalloc_root_mutex);
9486 spin_lock(&fs_info->delalloc_root_lock);
9487 list_splice_init(&fs_info->delalloc_roots, &splice);
9488 while (!list_empty(&splice)) {
9490 * Reset nr_to_write here so we know that we're doing a full
9494 wbc.nr_to_write = LONG_MAX;
9496 root = list_first_entry(&splice, struct btrfs_root,
9498 root = btrfs_grab_root(root);
9500 list_move_tail(&root->delalloc_root,
9501 &fs_info->delalloc_roots);
9502 spin_unlock(&fs_info->delalloc_root_lock);
9504 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9505 btrfs_put_root(root);
9506 if (ret < 0 || wbc.nr_to_write <= 0)
9508 spin_lock(&fs_info->delalloc_root_lock);
9510 spin_unlock(&fs_info->delalloc_root_lock);
9514 if (!list_empty(&splice)) {
9515 spin_lock(&fs_info->delalloc_root_lock);
9516 list_splice_tail(&splice, &fs_info->delalloc_roots);
9517 spin_unlock(&fs_info->delalloc_root_lock);
9519 mutex_unlock(&fs_info->delalloc_root_mutex);
9523 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9524 struct dentry *dentry, const char *symname)
9526 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9527 struct btrfs_trans_handle *trans;
9528 struct btrfs_root *root = BTRFS_I(dir)->root;
9529 struct btrfs_path *path;
9530 struct btrfs_key key;
9531 struct inode *inode;
9532 struct btrfs_new_inode_args new_inode_args = {
9536 unsigned int trans_num_items;
9541 struct btrfs_file_extent_item *ei;
9542 struct extent_buffer *leaf;
9544 name_len = strlen(symname);
9545 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9546 return -ENAMETOOLONG;
9548 inode = new_inode(dir->i_sb);
9551 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9552 inode->i_op = &btrfs_symlink_inode_operations;
9553 inode_nohighmem(inode);
9554 inode->i_mapping->a_ops = &btrfs_aops;
9555 btrfs_i_size_write(BTRFS_I(inode), name_len);
9556 inode_set_bytes(inode, name_len);
9558 new_inode_args.inode = inode;
9559 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9562 /* 1 additional item for the inline extent */
9565 trans = btrfs_start_transaction(root, trans_num_items);
9566 if (IS_ERR(trans)) {
9567 err = PTR_ERR(trans);
9568 goto out_new_inode_args;
9571 err = btrfs_create_new_inode(trans, &new_inode_args);
9575 path = btrfs_alloc_path();
9578 btrfs_abort_transaction(trans, err);
9579 discard_new_inode(inode);
9583 key.objectid = btrfs_ino(BTRFS_I(inode));
9585 key.type = BTRFS_EXTENT_DATA_KEY;
9586 datasize = btrfs_file_extent_calc_inline_size(name_len);
9587 err = btrfs_insert_empty_item(trans, root, path, &key,
9590 btrfs_abort_transaction(trans, err);
9591 btrfs_free_path(path);
9592 discard_new_inode(inode);
9596 leaf = path->nodes[0];
9597 ei = btrfs_item_ptr(leaf, path->slots[0],
9598 struct btrfs_file_extent_item);
9599 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9600 btrfs_set_file_extent_type(leaf, ei,
9601 BTRFS_FILE_EXTENT_INLINE);
9602 btrfs_set_file_extent_encryption(leaf, ei, 0);
9603 btrfs_set_file_extent_compression(leaf, ei, 0);
9604 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9605 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9607 ptr = btrfs_file_extent_inline_start(ei);
9608 write_extent_buffer(leaf, symname, ptr, name_len);
9609 btrfs_mark_buffer_dirty(leaf);
9610 btrfs_free_path(path);
9612 d_instantiate_new(dentry, inode);
9615 btrfs_end_transaction(trans);
9616 btrfs_btree_balance_dirty(fs_info);
9618 btrfs_new_inode_args_destroy(&new_inode_args);
9625 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9626 struct btrfs_trans_handle *trans_in,
9627 struct btrfs_inode *inode,
9628 struct btrfs_key *ins,
9631 struct btrfs_file_extent_item stack_fi;
9632 struct btrfs_replace_extent_info extent_info;
9633 struct btrfs_trans_handle *trans = trans_in;
9634 struct btrfs_path *path;
9635 u64 start = ins->objectid;
9636 u64 len = ins->offset;
9637 int qgroup_released;
9640 memset(&stack_fi, 0, sizeof(stack_fi));
9642 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9643 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9644 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9645 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9646 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9647 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9648 /* Encryption and other encoding is reserved and all 0 */
9650 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9651 if (qgroup_released < 0)
9652 return ERR_PTR(qgroup_released);
9655 ret = insert_reserved_file_extent(trans, inode,
9656 file_offset, &stack_fi,
9657 true, qgroup_released);
9663 extent_info.disk_offset = start;
9664 extent_info.disk_len = len;
9665 extent_info.data_offset = 0;
9666 extent_info.data_len = len;
9667 extent_info.file_offset = file_offset;
9668 extent_info.extent_buf = (char *)&stack_fi;
9669 extent_info.is_new_extent = true;
9670 extent_info.update_times = true;
9671 extent_info.qgroup_reserved = qgroup_released;
9672 extent_info.insertions = 0;
9674 path = btrfs_alloc_path();
9680 ret = btrfs_replace_file_extents(inode, path, file_offset,
9681 file_offset + len - 1, &extent_info,
9683 btrfs_free_path(path);
9690 * We have released qgroup data range at the beginning of the function,
9691 * and normally qgroup_released bytes will be freed when committing
9693 * But if we error out early, we have to free what we have released
9694 * or we leak qgroup data reservation.
9696 btrfs_qgroup_free_refroot(inode->root->fs_info,
9697 inode->root->root_key.objectid, qgroup_released,
9698 BTRFS_QGROUP_RSV_DATA);
9699 return ERR_PTR(ret);
9702 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9703 u64 start, u64 num_bytes, u64 min_size,
9704 loff_t actual_len, u64 *alloc_hint,
9705 struct btrfs_trans_handle *trans)
9707 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9708 struct extent_map *em;
9709 struct btrfs_root *root = BTRFS_I(inode)->root;
9710 struct btrfs_key ins;
9711 u64 cur_offset = start;
9712 u64 clear_offset = start;
9715 u64 last_alloc = (u64)-1;
9717 bool own_trans = true;
9718 u64 end = start + num_bytes - 1;
9722 while (num_bytes > 0) {
9723 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9724 cur_bytes = max(cur_bytes, min_size);
9726 * If we are severely fragmented we could end up with really
9727 * small allocations, so if the allocator is returning small
9728 * chunks lets make its job easier by only searching for those
9731 cur_bytes = min(cur_bytes, last_alloc);
9732 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9733 min_size, 0, *alloc_hint, &ins, 1, 0);
9738 * We've reserved this space, and thus converted it from
9739 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9740 * from here on out we will only need to clear our reservation
9741 * for the remaining unreserved area, so advance our
9742 * clear_offset by our extent size.
9744 clear_offset += ins.offset;
9746 last_alloc = ins.offset;
9747 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9750 * Now that we inserted the prealloc extent we can finally
9751 * decrement the number of reservations in the block group.
9752 * If we did it before, we could race with relocation and have
9753 * relocation miss the reserved extent, making it fail later.
9755 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9756 if (IS_ERR(trans)) {
9757 ret = PTR_ERR(trans);
9758 btrfs_free_reserved_extent(fs_info, ins.objectid,
9763 em = alloc_extent_map();
9765 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9766 cur_offset + ins.offset - 1, false);
9767 btrfs_set_inode_full_sync(BTRFS_I(inode));
9771 em->start = cur_offset;
9772 em->orig_start = cur_offset;
9773 em->len = ins.offset;
9774 em->block_start = ins.objectid;
9775 em->block_len = ins.offset;
9776 em->orig_block_len = ins.offset;
9777 em->ram_bytes = ins.offset;
9778 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9779 em->generation = trans->transid;
9781 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9782 free_extent_map(em);
9784 num_bytes -= ins.offset;
9785 cur_offset += ins.offset;
9786 *alloc_hint = ins.objectid + ins.offset;
9788 inode_inc_iversion(inode);
9789 inode->i_ctime = current_time(inode);
9790 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9791 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9792 (actual_len > inode->i_size) &&
9793 (cur_offset > inode->i_size)) {
9794 if (cur_offset > actual_len)
9795 i_size = actual_len;
9797 i_size = cur_offset;
9798 i_size_write(inode, i_size);
9799 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9802 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9805 btrfs_abort_transaction(trans, ret);
9807 btrfs_end_transaction(trans);
9812 btrfs_end_transaction(trans);
9816 if (clear_offset < end)
9817 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9818 end - clear_offset + 1);
9822 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9823 u64 start, u64 num_bytes, u64 min_size,
9824 loff_t actual_len, u64 *alloc_hint)
9826 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9827 min_size, actual_len, alloc_hint,
9831 int btrfs_prealloc_file_range_trans(struct inode *inode,
9832 struct btrfs_trans_handle *trans, int mode,
9833 u64 start, u64 num_bytes, u64 min_size,
9834 loff_t actual_len, u64 *alloc_hint)
9836 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9837 min_size, actual_len, alloc_hint, trans);
9840 static int btrfs_permission(struct mnt_idmap *idmap,
9841 struct inode *inode, int mask)
9843 struct btrfs_root *root = BTRFS_I(inode)->root;
9844 umode_t mode = inode->i_mode;
9846 if (mask & MAY_WRITE &&
9847 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9848 if (btrfs_root_readonly(root))
9850 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9853 return generic_permission(idmap, inode, mask);
9856 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9857 struct file *file, umode_t mode)
9859 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9860 struct btrfs_trans_handle *trans;
9861 struct btrfs_root *root = BTRFS_I(dir)->root;
9862 struct inode *inode;
9863 struct btrfs_new_inode_args new_inode_args = {
9865 .dentry = file->f_path.dentry,
9868 unsigned int trans_num_items;
9871 inode = new_inode(dir->i_sb);
9874 inode_init_owner(idmap, inode, dir, mode);
9875 inode->i_fop = &btrfs_file_operations;
9876 inode->i_op = &btrfs_file_inode_operations;
9877 inode->i_mapping->a_ops = &btrfs_aops;
9879 new_inode_args.inode = inode;
9880 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9884 trans = btrfs_start_transaction(root, trans_num_items);
9885 if (IS_ERR(trans)) {
9886 ret = PTR_ERR(trans);
9887 goto out_new_inode_args;
9890 ret = btrfs_create_new_inode(trans, &new_inode_args);
9893 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9894 * set it to 1 because d_tmpfile() will issue a warning if the count is
9897 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9899 set_nlink(inode, 1);
9902 d_tmpfile(file, inode);
9903 unlock_new_inode(inode);
9904 mark_inode_dirty(inode);
9907 btrfs_end_transaction(trans);
9908 btrfs_btree_balance_dirty(fs_info);
9910 btrfs_new_inode_args_destroy(&new_inode_args);
9914 return finish_open_simple(file, ret);
9917 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9919 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9920 unsigned long index = start >> PAGE_SHIFT;
9921 unsigned long end_index = end >> PAGE_SHIFT;
9925 ASSERT(end + 1 - start <= U32_MAX);
9926 len = end + 1 - start;
9927 while (index <= end_index) {
9928 page = find_get_page(inode->vfs_inode.i_mapping, index);
9929 ASSERT(page); /* Pages should be in the extent_io_tree */
9931 btrfs_page_set_writeback(fs_info, page, start, len);
9937 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9940 switch (compress_type) {
9941 case BTRFS_COMPRESS_NONE:
9942 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9943 case BTRFS_COMPRESS_ZLIB:
9944 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9945 case BTRFS_COMPRESS_LZO:
9947 * The LZO format depends on the sector size. 64K is the maximum
9948 * sector size that we support.
9950 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9952 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9953 (fs_info->sectorsize_bits - 12);
9954 case BTRFS_COMPRESS_ZSTD:
9955 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9961 static ssize_t btrfs_encoded_read_inline(
9963 struct iov_iter *iter, u64 start,
9965 struct extent_state **cached_state,
9966 u64 extent_start, size_t count,
9967 struct btrfs_ioctl_encoded_io_args *encoded,
9970 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9971 struct btrfs_root *root = inode->root;
9972 struct btrfs_fs_info *fs_info = root->fs_info;
9973 struct extent_io_tree *io_tree = &inode->io_tree;
9974 struct btrfs_path *path;
9975 struct extent_buffer *leaf;
9976 struct btrfs_file_extent_item *item;
9982 path = btrfs_alloc_path();
9987 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9991 /* The extent item disappeared? */
9996 leaf = path->nodes[0];
9997 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9999 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10000 ptr = btrfs_file_extent_inline_start(item);
10002 encoded->len = min_t(u64, extent_start + ram_bytes,
10003 inode->vfs_inode.i_size) - iocb->ki_pos;
10004 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10005 btrfs_file_extent_compression(leaf, item));
10008 encoded->compression = ret;
10009 if (encoded->compression) {
10010 size_t inline_size;
10012 inline_size = btrfs_file_extent_inline_item_len(leaf,
10014 if (inline_size > count) {
10018 count = inline_size;
10019 encoded->unencoded_len = ram_bytes;
10020 encoded->unencoded_offset = iocb->ki_pos - extent_start;
10022 count = min_t(u64, count, encoded->len);
10023 encoded->len = count;
10024 encoded->unencoded_len = count;
10025 ptr += iocb->ki_pos - extent_start;
10028 tmp = kmalloc(count, GFP_NOFS);
10033 read_extent_buffer(leaf, tmp, ptr, count);
10034 btrfs_release_path(path);
10035 unlock_extent(io_tree, start, lockend, cached_state);
10036 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10039 ret = copy_to_iter(tmp, count, iter);
10044 btrfs_free_path(path);
10048 struct btrfs_encoded_read_private {
10049 wait_queue_head_t wait;
10051 blk_status_t status;
10054 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10056 struct btrfs_encoded_read_private *priv = bbio->private;
10058 if (bbio->bio.bi_status) {
10060 * The memory barrier implied by the atomic_dec_return() here
10061 * pairs with the memory barrier implied by the
10062 * atomic_dec_return() or io_wait_event() in
10063 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10064 * write is observed before the load of status in
10065 * btrfs_encoded_read_regular_fill_pages().
10067 WRITE_ONCE(priv->status, bbio->bio.bi_status);
10069 if (!atomic_dec_return(&priv->pending))
10070 wake_up(&priv->wait);
10071 bio_put(&bbio->bio);
10074 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10075 u64 file_offset, u64 disk_bytenr,
10076 u64 disk_io_size, struct page **pages)
10078 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10079 struct btrfs_encoded_read_private priv = {
10080 .pending = ATOMIC_INIT(1),
10082 unsigned long i = 0;
10083 struct btrfs_bio *bbio;
10085 init_waitqueue_head(&priv.wait);
10087 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10088 btrfs_encoded_read_endio, &priv);
10089 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10090 bbio->inode = inode;
10093 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10095 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10096 atomic_inc(&priv.pending);
10097 btrfs_submit_bio(bbio, 0);
10099 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10100 btrfs_encoded_read_endio, &priv);
10101 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10102 bbio->inode = inode;
10107 disk_bytenr += bytes;
10108 disk_io_size -= bytes;
10109 } while (disk_io_size);
10111 atomic_inc(&priv.pending);
10112 btrfs_submit_bio(bbio, 0);
10114 if (atomic_dec_return(&priv.pending))
10115 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10116 /* See btrfs_encoded_read_endio() for ordering. */
10117 return blk_status_to_errno(READ_ONCE(priv.status));
10120 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10121 struct iov_iter *iter,
10122 u64 start, u64 lockend,
10123 struct extent_state **cached_state,
10124 u64 disk_bytenr, u64 disk_io_size,
10125 size_t count, bool compressed,
10128 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10129 struct extent_io_tree *io_tree = &inode->io_tree;
10130 struct page **pages;
10131 unsigned long nr_pages, i;
10133 size_t page_offset;
10136 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10137 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10140 ret = btrfs_alloc_page_array(nr_pages, pages);
10146 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10147 disk_io_size, pages);
10151 unlock_extent(io_tree, start, lockend, cached_state);
10152 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10159 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10160 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10163 while (cur < count) {
10164 size_t bytes = min_t(size_t, count - cur,
10165 PAGE_SIZE - page_offset);
10167 if (copy_page_to_iter(pages[i], page_offset, bytes,
10178 for (i = 0; i < nr_pages; i++) {
10180 __free_page(pages[i]);
10186 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10187 struct btrfs_ioctl_encoded_io_args *encoded)
10189 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10190 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10191 struct extent_io_tree *io_tree = &inode->io_tree;
10193 size_t count = iov_iter_count(iter);
10194 u64 start, lockend, disk_bytenr, disk_io_size;
10195 struct extent_state *cached_state = NULL;
10196 struct extent_map *em;
10197 bool unlocked = false;
10199 file_accessed(iocb->ki_filp);
10201 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10203 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10204 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10207 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10209 * We don't know how long the extent containing iocb->ki_pos is, but if
10210 * it's compressed we know that it won't be longer than this.
10212 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10215 struct btrfs_ordered_extent *ordered;
10217 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10218 lockend - start + 1);
10220 goto out_unlock_inode;
10221 lock_extent(io_tree, start, lockend, &cached_state);
10222 ordered = btrfs_lookup_ordered_range(inode, start,
10223 lockend - start + 1);
10226 btrfs_put_ordered_extent(ordered);
10227 unlock_extent(io_tree, start, lockend, &cached_state);
10231 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10234 goto out_unlock_extent;
10237 if (em->block_start == EXTENT_MAP_INLINE) {
10238 u64 extent_start = em->start;
10241 * For inline extents we get everything we need out of the
10244 free_extent_map(em);
10246 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10247 &cached_state, extent_start,
10248 count, encoded, &unlocked);
10253 * We only want to return up to EOF even if the extent extends beyond
10256 encoded->len = min_t(u64, extent_map_end(em),
10257 inode->vfs_inode.i_size) - iocb->ki_pos;
10258 if (em->block_start == EXTENT_MAP_HOLE ||
10259 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10260 disk_bytenr = EXTENT_MAP_HOLE;
10261 count = min_t(u64, count, encoded->len);
10262 encoded->len = count;
10263 encoded->unencoded_len = count;
10264 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10265 disk_bytenr = em->block_start;
10267 * Bail if the buffer isn't large enough to return the whole
10268 * compressed extent.
10270 if (em->block_len > count) {
10274 disk_io_size = em->block_len;
10275 count = em->block_len;
10276 encoded->unencoded_len = em->ram_bytes;
10277 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10278 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10279 em->compress_type);
10282 encoded->compression = ret;
10284 disk_bytenr = em->block_start + (start - em->start);
10285 if (encoded->len > count)
10286 encoded->len = count;
10288 * Don't read beyond what we locked. This also limits the page
10289 * allocations that we'll do.
10291 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10292 count = start + disk_io_size - iocb->ki_pos;
10293 encoded->len = count;
10294 encoded->unencoded_len = count;
10295 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10297 free_extent_map(em);
10300 if (disk_bytenr == EXTENT_MAP_HOLE) {
10301 unlock_extent(io_tree, start, lockend, &cached_state);
10302 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10304 ret = iov_iter_zero(count, iter);
10308 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10309 &cached_state, disk_bytenr,
10310 disk_io_size, count,
10311 encoded->compression,
10317 iocb->ki_pos += encoded->len;
10319 free_extent_map(em);
10322 unlock_extent(io_tree, start, lockend, &cached_state);
10325 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10329 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10330 const struct btrfs_ioctl_encoded_io_args *encoded)
10332 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10333 struct btrfs_root *root = inode->root;
10334 struct btrfs_fs_info *fs_info = root->fs_info;
10335 struct extent_io_tree *io_tree = &inode->io_tree;
10336 struct extent_changeset *data_reserved = NULL;
10337 struct extent_state *cached_state = NULL;
10338 struct btrfs_ordered_extent *ordered;
10342 u64 num_bytes, ram_bytes, disk_num_bytes;
10343 unsigned long nr_pages, i;
10344 struct page **pages;
10345 struct btrfs_key ins;
10346 bool extent_reserved = false;
10347 struct extent_map *em;
10350 switch (encoded->compression) {
10351 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10352 compression = BTRFS_COMPRESS_ZLIB;
10354 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10355 compression = BTRFS_COMPRESS_ZSTD;
10357 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10358 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10359 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10360 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10361 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10362 /* The sector size must match for LZO. */
10363 if (encoded->compression -
10364 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10365 fs_info->sectorsize_bits)
10367 compression = BTRFS_COMPRESS_LZO;
10372 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10375 orig_count = iov_iter_count(from);
10377 /* The extent size must be sane. */
10378 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10379 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10383 * The compressed data must be smaller than the decompressed data.
10385 * It's of course possible for data to compress to larger or the same
10386 * size, but the buffered I/O path falls back to no compression for such
10387 * data, and we don't want to break any assumptions by creating these
10390 * Note that this is less strict than the current check we have that the
10391 * compressed data must be at least one sector smaller than the
10392 * decompressed data. We only want to enforce the weaker requirement
10393 * from old kernels that it is at least one byte smaller.
10395 if (orig_count >= encoded->unencoded_len)
10398 /* The extent must start on a sector boundary. */
10399 start = iocb->ki_pos;
10400 if (!IS_ALIGNED(start, fs_info->sectorsize))
10404 * The extent must end on a sector boundary. However, we allow a write
10405 * which ends at or extends i_size to have an unaligned length; we round
10406 * up the extent size and set i_size to the unaligned end.
10408 if (start + encoded->len < inode->vfs_inode.i_size &&
10409 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10412 /* Finally, the offset in the unencoded data must be sector-aligned. */
10413 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10416 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10417 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10418 end = start + num_bytes - 1;
10421 * If the extent cannot be inline, the compressed data on disk must be
10422 * sector-aligned. For convenience, we extend it with zeroes if it
10425 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10426 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10427 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10430 for (i = 0; i < nr_pages; i++) {
10431 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10434 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10439 kaddr = kmap_local_page(pages[i]);
10440 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10441 kunmap_local(kaddr);
10445 if (bytes < PAGE_SIZE)
10446 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10447 kunmap_local(kaddr);
10451 struct btrfs_ordered_extent *ordered;
10453 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10456 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10457 start >> PAGE_SHIFT,
10458 end >> PAGE_SHIFT);
10461 lock_extent(io_tree, start, end, &cached_state);
10462 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10464 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10467 btrfs_put_ordered_extent(ordered);
10468 unlock_extent(io_tree, start, end, &cached_state);
10473 * We don't use the higher-level delalloc space functions because our
10474 * num_bytes and disk_num_bytes are different.
10476 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10479 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10481 goto out_free_data_space;
10482 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10485 goto out_qgroup_free_data;
10487 /* Try an inline extent first. */
10488 if (start == 0 && encoded->unencoded_len == encoded->len &&
10489 encoded->unencoded_offset == 0) {
10490 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10491 compression, pages, true);
10495 goto out_delalloc_release;
10499 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10500 disk_num_bytes, 0, 0, &ins, 1, 1);
10502 goto out_delalloc_release;
10503 extent_reserved = true;
10505 em = create_io_em(inode, start, num_bytes,
10506 start - encoded->unencoded_offset, ins.objectid,
10507 ins.offset, ins.offset, ram_bytes, compression,
10508 BTRFS_ORDERED_COMPRESSED);
10511 goto out_free_reserved;
10513 free_extent_map(em);
10515 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10516 ins.objectid, ins.offset,
10517 encoded->unencoded_offset,
10518 (1 << BTRFS_ORDERED_ENCODED) |
10519 (1 << BTRFS_ORDERED_COMPRESSED),
10521 if (IS_ERR(ordered)) {
10522 btrfs_drop_extent_map_range(inode, start, end, false);
10523 ret = PTR_ERR(ordered);
10524 goto out_free_reserved;
10526 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10528 if (start + encoded->len > inode->vfs_inode.i_size)
10529 i_size_write(&inode->vfs_inode, start + encoded->len);
10531 unlock_extent(io_tree, start, end, &cached_state);
10533 btrfs_delalloc_release_extents(inode, num_bytes);
10535 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10540 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10541 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10542 out_delalloc_release:
10543 btrfs_delalloc_release_extents(inode, num_bytes);
10544 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10545 out_qgroup_free_data:
10547 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10548 out_free_data_space:
10550 * If btrfs_reserve_extent() succeeded, then we already decremented
10553 if (!extent_reserved)
10554 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10556 unlock_extent(io_tree, start, end, &cached_state);
10558 for (i = 0; i < nr_pages; i++) {
10560 __free_page(pages[i]);
10565 iocb->ki_pos += encoded->len;
10571 * Add an entry indicating a block group or device which is pinned by a
10572 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10573 * negative errno on failure.
10575 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10576 bool is_block_group)
10578 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10579 struct btrfs_swapfile_pin *sp, *entry;
10580 struct rb_node **p;
10581 struct rb_node *parent = NULL;
10583 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10588 sp->is_block_group = is_block_group;
10589 sp->bg_extent_count = 1;
10591 spin_lock(&fs_info->swapfile_pins_lock);
10592 p = &fs_info->swapfile_pins.rb_node;
10595 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10596 if (sp->ptr < entry->ptr ||
10597 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10598 p = &(*p)->rb_left;
10599 } else if (sp->ptr > entry->ptr ||
10600 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10601 p = &(*p)->rb_right;
10603 if (is_block_group)
10604 entry->bg_extent_count++;
10605 spin_unlock(&fs_info->swapfile_pins_lock);
10610 rb_link_node(&sp->node, parent, p);
10611 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10612 spin_unlock(&fs_info->swapfile_pins_lock);
10616 /* Free all of the entries pinned by this swapfile. */
10617 static void btrfs_free_swapfile_pins(struct inode *inode)
10619 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10620 struct btrfs_swapfile_pin *sp;
10621 struct rb_node *node, *next;
10623 spin_lock(&fs_info->swapfile_pins_lock);
10624 node = rb_first(&fs_info->swapfile_pins);
10626 next = rb_next(node);
10627 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10628 if (sp->inode == inode) {
10629 rb_erase(&sp->node, &fs_info->swapfile_pins);
10630 if (sp->is_block_group) {
10631 btrfs_dec_block_group_swap_extents(sp->ptr,
10632 sp->bg_extent_count);
10633 btrfs_put_block_group(sp->ptr);
10639 spin_unlock(&fs_info->swapfile_pins_lock);
10642 struct btrfs_swap_info {
10648 unsigned long nr_pages;
10652 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10653 struct btrfs_swap_info *bsi)
10655 unsigned long nr_pages;
10656 unsigned long max_pages;
10657 u64 first_ppage, first_ppage_reported, next_ppage;
10661 * Our swapfile may have had its size extended after the swap header was
10662 * written. In that case activating the swapfile should not go beyond
10663 * the max size set in the swap header.
10665 if (bsi->nr_pages >= sis->max)
10668 max_pages = sis->max - bsi->nr_pages;
10669 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10670 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10672 if (first_ppage >= next_ppage)
10674 nr_pages = next_ppage - first_ppage;
10675 nr_pages = min(nr_pages, max_pages);
10677 first_ppage_reported = first_ppage;
10678 if (bsi->start == 0)
10679 first_ppage_reported++;
10680 if (bsi->lowest_ppage > first_ppage_reported)
10681 bsi->lowest_ppage = first_ppage_reported;
10682 if (bsi->highest_ppage < (next_ppage - 1))
10683 bsi->highest_ppage = next_ppage - 1;
10685 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10688 bsi->nr_extents += ret;
10689 bsi->nr_pages += nr_pages;
10693 static void btrfs_swap_deactivate(struct file *file)
10695 struct inode *inode = file_inode(file);
10697 btrfs_free_swapfile_pins(inode);
10698 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10701 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10704 struct inode *inode = file_inode(file);
10705 struct btrfs_root *root = BTRFS_I(inode)->root;
10706 struct btrfs_fs_info *fs_info = root->fs_info;
10707 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10708 struct extent_state *cached_state = NULL;
10709 struct extent_map *em = NULL;
10710 struct btrfs_device *device = NULL;
10711 struct btrfs_swap_info bsi = {
10712 .lowest_ppage = (sector_t)-1ULL,
10719 * If the swap file was just created, make sure delalloc is done. If the
10720 * file changes again after this, the user is doing something stupid and
10721 * we don't really care.
10723 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10728 * The inode is locked, so these flags won't change after we check them.
10730 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10731 btrfs_warn(fs_info, "swapfile must not be compressed");
10734 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10735 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10738 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10739 btrfs_warn(fs_info, "swapfile must not be checksummed");
10744 * Balance or device remove/replace/resize can move stuff around from
10745 * under us. The exclop protection makes sure they aren't running/won't
10746 * run concurrently while we are mapping the swap extents, and
10747 * fs_info->swapfile_pins prevents them from running while the swap
10748 * file is active and moving the extents. Note that this also prevents
10749 * a concurrent device add which isn't actually necessary, but it's not
10750 * really worth the trouble to allow it.
10752 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10753 btrfs_warn(fs_info,
10754 "cannot activate swapfile while exclusive operation is running");
10759 * Prevent snapshot creation while we are activating the swap file.
10760 * We do not want to race with snapshot creation. If snapshot creation
10761 * already started before we bumped nr_swapfiles from 0 to 1 and
10762 * completes before the first write into the swap file after it is
10763 * activated, than that write would fallback to COW.
10765 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10766 btrfs_exclop_finish(fs_info);
10767 btrfs_warn(fs_info,
10768 "cannot activate swapfile because snapshot creation is in progress");
10772 * Snapshots can create extents which require COW even if NODATACOW is
10773 * set. We use this counter to prevent snapshots. We must increment it
10774 * before walking the extents because we don't want a concurrent
10775 * snapshot to run after we've already checked the extents.
10777 * It is possible that subvolume is marked for deletion but still not
10778 * removed yet. To prevent this race, we check the root status before
10779 * activating the swapfile.
10781 spin_lock(&root->root_item_lock);
10782 if (btrfs_root_dead(root)) {
10783 spin_unlock(&root->root_item_lock);
10785 btrfs_exclop_finish(fs_info);
10786 btrfs_warn(fs_info,
10787 "cannot activate swapfile because subvolume %llu is being deleted",
10788 root->root_key.objectid);
10791 atomic_inc(&root->nr_swapfiles);
10792 spin_unlock(&root->root_item_lock);
10794 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10796 lock_extent(io_tree, 0, isize - 1, &cached_state);
10798 while (start < isize) {
10799 u64 logical_block_start, physical_block_start;
10800 struct btrfs_block_group *bg;
10801 u64 len = isize - start;
10803 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10809 if (em->block_start == EXTENT_MAP_HOLE) {
10810 btrfs_warn(fs_info, "swapfile must not have holes");
10814 if (em->block_start == EXTENT_MAP_INLINE) {
10816 * It's unlikely we'll ever actually find ourselves
10817 * here, as a file small enough to fit inline won't be
10818 * big enough to store more than the swap header, but in
10819 * case something changes in the future, let's catch it
10820 * here rather than later.
10822 btrfs_warn(fs_info, "swapfile must not be inline");
10826 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10827 btrfs_warn(fs_info, "swapfile must not be compressed");
10832 logical_block_start = em->block_start + (start - em->start);
10833 len = min(len, em->len - (start - em->start));
10834 free_extent_map(em);
10837 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10843 btrfs_warn(fs_info,
10844 "swapfile must not be copy-on-write");
10849 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10855 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10856 btrfs_warn(fs_info,
10857 "swapfile must have single data profile");
10862 if (device == NULL) {
10863 device = em->map_lookup->stripes[0].dev;
10864 ret = btrfs_add_swapfile_pin(inode, device, false);
10869 } else if (device != em->map_lookup->stripes[0].dev) {
10870 btrfs_warn(fs_info, "swapfile must be on one device");
10875 physical_block_start = (em->map_lookup->stripes[0].physical +
10876 (logical_block_start - em->start));
10877 len = min(len, em->len - (logical_block_start - em->start));
10878 free_extent_map(em);
10881 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10883 btrfs_warn(fs_info,
10884 "could not find block group containing swapfile");
10889 if (!btrfs_inc_block_group_swap_extents(bg)) {
10890 btrfs_warn(fs_info,
10891 "block group for swapfile at %llu is read-only%s",
10893 atomic_read(&fs_info->scrubs_running) ?
10894 " (scrub running)" : "");
10895 btrfs_put_block_group(bg);
10900 ret = btrfs_add_swapfile_pin(inode, bg, true);
10902 btrfs_put_block_group(bg);
10909 if (bsi.block_len &&
10910 bsi.block_start + bsi.block_len == physical_block_start) {
10911 bsi.block_len += len;
10913 if (bsi.block_len) {
10914 ret = btrfs_add_swap_extent(sis, &bsi);
10919 bsi.block_start = physical_block_start;
10920 bsi.block_len = len;
10927 ret = btrfs_add_swap_extent(sis, &bsi);
10930 if (!IS_ERR_OR_NULL(em))
10931 free_extent_map(em);
10933 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10936 btrfs_swap_deactivate(file);
10938 btrfs_drew_write_unlock(&root->snapshot_lock);
10940 btrfs_exclop_finish(fs_info);
10946 sis->bdev = device->bdev;
10947 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10948 sis->max = bsi.nr_pages;
10949 sis->pages = bsi.nr_pages - 1;
10950 sis->highest_bit = bsi.nr_pages - 1;
10951 return bsi.nr_extents;
10954 static void btrfs_swap_deactivate(struct file *file)
10958 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10961 return -EOPNOTSUPP;
10966 * Update the number of bytes used in the VFS' inode. When we replace extents in
10967 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10968 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10969 * always get a correct value.
10971 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10972 const u64 add_bytes,
10973 const u64 del_bytes)
10975 if (add_bytes == del_bytes)
10978 spin_lock(&inode->lock);
10980 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10982 inode_add_bytes(&inode->vfs_inode, add_bytes);
10983 spin_unlock(&inode->lock);
10987 * Verify that there are no ordered extents for a given file range.
10989 * @inode: The target inode.
10990 * @start: Start offset of the file range, should be sector size aligned.
10991 * @end: End offset (inclusive) of the file range, its value +1 should be
10992 * sector size aligned.
10994 * This should typically be used for cases where we locked an inode's VFS lock in
10995 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10996 * we have flushed all delalloc in the range, we have waited for all ordered
10997 * extents in the range to complete and finally we have locked the file range in
10998 * the inode's io_tree.
11000 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11002 struct btrfs_root *root = inode->root;
11003 struct btrfs_ordered_extent *ordered;
11005 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11008 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11010 btrfs_err(root->fs_info,
11011 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11012 start, end, btrfs_ino(inode), root->root_key.objectid,
11013 ordered->file_offset,
11014 ordered->file_offset + ordered->num_bytes - 1);
11015 btrfs_put_ordered_extent(ordered);
11018 ASSERT(ordered == NULL);
11021 static const struct inode_operations btrfs_dir_inode_operations = {
11022 .getattr = btrfs_getattr,
11023 .lookup = btrfs_lookup,
11024 .create = btrfs_create,
11025 .unlink = btrfs_unlink,
11026 .link = btrfs_link,
11027 .mkdir = btrfs_mkdir,
11028 .rmdir = btrfs_rmdir,
11029 .rename = btrfs_rename2,
11030 .symlink = btrfs_symlink,
11031 .setattr = btrfs_setattr,
11032 .mknod = btrfs_mknod,
11033 .listxattr = btrfs_listxattr,
11034 .permission = btrfs_permission,
11035 .get_inode_acl = btrfs_get_acl,
11036 .set_acl = btrfs_set_acl,
11037 .update_time = btrfs_update_time,
11038 .tmpfile = btrfs_tmpfile,
11039 .fileattr_get = btrfs_fileattr_get,
11040 .fileattr_set = btrfs_fileattr_set,
11043 static const struct file_operations btrfs_dir_file_operations = {
11044 .llseek = generic_file_llseek,
11045 .read = generic_read_dir,
11046 .iterate_shared = btrfs_real_readdir,
11047 .open = btrfs_opendir,
11048 .unlocked_ioctl = btrfs_ioctl,
11049 #ifdef CONFIG_COMPAT
11050 .compat_ioctl = btrfs_compat_ioctl,
11052 .release = btrfs_release_file,
11053 .fsync = btrfs_sync_file,
11057 * btrfs doesn't support the bmap operation because swapfiles
11058 * use bmap to make a mapping of extents in the file. They assume
11059 * these extents won't change over the life of the file and they
11060 * use the bmap result to do IO directly to the drive.
11062 * the btrfs bmap call would return logical addresses that aren't
11063 * suitable for IO and they also will change frequently as COW
11064 * operations happen. So, swapfile + btrfs == corruption.
11066 * For now we're avoiding this by dropping bmap.
11068 static const struct address_space_operations btrfs_aops = {
11069 .read_folio = btrfs_read_folio,
11070 .writepages = btrfs_writepages,
11071 .readahead = btrfs_readahead,
11072 .invalidate_folio = btrfs_invalidate_folio,
11073 .release_folio = btrfs_release_folio,
11074 .migrate_folio = btrfs_migrate_folio,
11075 .dirty_folio = filemap_dirty_folio,
11076 .error_remove_page = generic_error_remove_page,
11077 .swap_activate = btrfs_swap_activate,
11078 .swap_deactivate = btrfs_swap_deactivate,
11081 static const struct inode_operations btrfs_file_inode_operations = {
11082 .getattr = btrfs_getattr,
11083 .setattr = btrfs_setattr,
11084 .listxattr = btrfs_listxattr,
11085 .permission = btrfs_permission,
11086 .fiemap = btrfs_fiemap,
11087 .get_inode_acl = btrfs_get_acl,
11088 .set_acl = btrfs_set_acl,
11089 .update_time = btrfs_update_time,
11090 .fileattr_get = btrfs_fileattr_get,
11091 .fileattr_set = btrfs_fileattr_set,
11093 static const struct inode_operations btrfs_special_inode_operations = {
11094 .getattr = btrfs_getattr,
11095 .setattr = btrfs_setattr,
11096 .permission = btrfs_permission,
11097 .listxattr = btrfs_listxattr,
11098 .get_inode_acl = btrfs_get_acl,
11099 .set_acl = btrfs_set_acl,
11100 .update_time = btrfs_update_time,
11102 static const struct inode_operations btrfs_symlink_inode_operations = {
11103 .get_link = page_get_link,
11104 .getattr = btrfs_getattr,
11105 .setattr = btrfs_setattr,
11106 .permission = btrfs_permission,
11107 .listxattr = btrfs_listxattr,
11108 .update_time = btrfs_update_time,
11111 const struct dentry_operations btrfs_dentry_operations = {
11112 .d_delete = btrfs_dentry_delete,