2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
113 u64 orig_block_len, u64 ram_bytes,
116 static int btrfs_dirty_inode(struct inode *inode);
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
131 err = btrfs_init_acl(trans, inode, dir);
133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 struct btrfs_path *path, int extent_inserted,
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
147 struct page **compressed_pages)
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
153 struct btrfs_file_extent_item *ei;
156 size_t cur_size = size;
157 unsigned long offset;
159 if (compressed_size && compressed_pages)
160 cur_size = compressed_size;
162 inode_add_bytes(inode, size);
164 if (!extent_inserted) {
165 struct btrfs_key key;
168 key.objectid = btrfs_ino(inode);
170 key.type = BTRFS_EXTENT_DATA_KEY;
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
191 if (compress_type != BTRFS_COMPRESS_NONE) {
194 while (compressed_size > 0) {
195 cpage = compressed_pages[i];
196 cur_size = min_t(unsigned long, compressed_size,
199 kaddr = kmap_atomic(cpage);
200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 kunmap_atomic(kaddr);
205 compressed_size -= cur_size;
207 btrfs_set_file_extent_compression(leaf, ei,
210 page = find_get_page(inode->i_mapping,
211 start >> PAGE_SHIFT);
212 btrfs_set_file_extent_compression(leaf, ei, 0);
213 kaddr = kmap_atomic(page);
214 offset = start & (PAGE_SIZE - 1);
215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 kunmap_atomic(kaddr);
219 btrfs_mark_buffer_dirty(leaf);
220 btrfs_release_path(path);
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
231 BTRFS_I(inode)->disk_i_size = inode->i_size;
232 ret = btrfs_update_inode(trans, root, inode);
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
249 struct page **compressed_pages)
251 struct btrfs_trans_handle *trans;
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
255 u64 aligned_end = ALIGN(end, root->sectorsize);
256 u64 data_len = inline_len;
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
263 data_len = compressed_size;
266 actual_end > root->sectorsize ||
267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
269 (actual_end & (root->sectorsize - 1)) == 0) ||
271 data_len > root->fs_info->max_inline) {
275 path = btrfs_alloc_path();
279 trans = btrfs_join_transaction(root);
281 btrfs_free_path(path);
282 return PTR_ERR(trans);
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
290 extent_item_size = btrfs_file_extent_calc_inline_size(
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
297 btrfs_abort_transaction(trans, root, ret);
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
303 ret = insert_inline_extent(trans, path, extent_inserted,
305 inline_len, compressed_size,
306 compress_type, compressed_pages);
307 if (ret && ret != -ENOSPC) {
308 btrfs_abort_transaction(trans, root, ret);
310 } else if (ret == -ENOSPC) {
315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
326 btrfs_free_path(path);
327 btrfs_end_transaction(trans, root);
331 struct async_extent {
336 unsigned long nr_pages;
338 struct list_head list;
343 struct btrfs_root *root;
344 struct page *locked_page;
347 struct list_head extents;
348 struct btrfs_work work;
351 static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
355 unsigned long nr_pages,
358 struct async_extent *async_extent;
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 BUG_ON(!async_extent); /* -ENOMEM */
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
367 async_extent->compress_type = compress_type;
368 list_add_tail(&async_extent->list, &cow->extents);
372 static inline int inode_need_compress(struct inode *inode)
374 struct btrfs_root *root = BTRFS_I(inode)->root;
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
403 * are written in the same order that the flusher thread sent them
406 static noinline void compress_file_range(struct inode *inode,
407 struct page *locked_page,
409 struct async_cow *async_cow,
412 struct btrfs_root *root = BTRFS_I(inode)->root;
414 u64 blocksize = root->sectorsize;
416 u64 isize = i_size_read(inode);
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
427 int compress_type = root->fs_info->compress_type;
430 /* if this is a small write inside eof, kick off a defrag */
431 if ((end - start + 1) < SZ_16K &&
432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 btrfs_add_inode_defrag(NULL, inode);
435 actual_end = min_t(u64, isize, end + 1);
438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
454 total_compressed = actual_end - start;
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it doesn't save disk space at all.
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
474 total_compressed = min(total_compressed, max_uncompressed);
475 num_bytes = ALIGN(end - start + 1, blocksize);
476 num_bytes = max(blocksize, num_bytes);
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
485 if (inode_need_compress(inode)) {
487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
489 /* just bail out to the uncompressed code */
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
505 extent_range_clear_dirty_for_io(inode, start, end);
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
516 unsigned long offset = total_compressed &
518 struct page *page = pages[nr_pages_ret - 1];
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
525 kaddr = kmap_atomic(page);
526 memset(kaddr + offset, 0,
528 kunmap_atomic(kaddr);
535 /* lets try to make an inline extent */
536 if (ret || total_in < (actual_end - start)) {
537 /* we didn't compress the entire range, try
538 * to make an uncompressed inline extent.
540 ret = cow_file_range_inline(root, inode, start, end,
543 /* try making a compressed inline extent */
544 ret = cow_file_range_inline(root, inode, start, end,
546 compress_type, pages);
549 unsigned long clear_flags = EXTENT_DELALLOC |
551 unsigned long page_error_op;
553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
561 extent_clear_unlock_delalloc(inode, start, end, NULL,
562 clear_flags, PAGE_UNLOCK |
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
577 total_compressed = ALIGN(total_compressed, blocksize);
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
583 total_in = ALIGN(total_in, PAGE_SIZE);
584 if (total_compressed >= total_in) {
587 num_bytes = total_in;
590 if (!will_compress && pages) {
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
595 for (i = 0; i < nr_pages_ret; i++) {
596 WARN_ON(pages[i]->mapping);
601 total_compressed = 0;
604 /* flag the file so we don't compress in the future */
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
617 add_async_extent(async_cow, start, num_bytes,
618 total_compressed, pages, nr_pages_ret,
621 if (start + num_bytes < end) {
628 cleanup_and_bail_uncompressed:
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
642 extent_range_redirty_for_io(inode, start, end);
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
658 static void free_async_extent_pages(struct async_extent *async_extent)
662 if (!async_extent->pages)
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
667 put_page(async_extent->pages[i]);
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
680 static noinline void submit_compressed_extents(struct inode *inode,
681 struct async_cow *async_cow)
683 struct async_extent *async_extent;
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
693 while (!list_empty(&async_cow->extents)) {
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
698 io_tree = &BTRFS_I(inode)->io_tree;
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
706 lock_extent(io_tree, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1);
710 /* allocate blocks */
711 ret = cow_file_range(inode, async_cow->locked_page,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
725 if (!page_started && !ret)
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1,
733 unlock_page(async_cow->locked_page);
739 lock_extent(io_tree, async_extent->start,
740 async_extent->start + async_extent->ram_size - 1);
742 ret = btrfs_reserve_extent(root,
743 async_extent->compressed_size,
744 async_extent->compressed_size,
745 0, alloc_hint, &ins, 1, 1);
747 free_async_extent_pages(async_extent);
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
760 extent_range_redirty_for_io(inode,
762 async_extent->start +
763 async_extent->ram_size - 1);
770 * here we're doing allocation and writeback of the
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
777 em = alloc_extent_map();
780 goto out_free_reserve;
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
784 em->orig_start = em->start;
785 em->mod_start = em->start;
786 em->mod_len = em->len;
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
790 em->orig_block_len = ins.offset;
791 em->ram_bytes = async_extent->ram_size;
792 em->bdev = root->fs_info->fs_devices->latest_bdev;
793 em->compress_type = async_extent->compress_type;
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
799 write_lock(&em_tree->lock);
800 ret = add_extent_mapping(em_tree, em, 1);
801 write_unlock(&em_tree->lock);
802 if (ret != -EEXIST) {
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
812 goto out_free_reserve;
814 ret = btrfs_add_ordered_extent_compress(inode,
817 async_extent->ram_size,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
825 goto out_free_reserve;
827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
830 * clear dirty, set writeback and unlock the pages.
832 extent_clear_unlock_delalloc(inode, async_extent->start,
833 async_extent->start +
834 async_extent->ram_size - 1,
835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
838 ret = btrfs_submit_compressed_write(inode,
840 async_extent->ram_size,
842 ins.offset, async_extent->pages,
843 async_extent->nr_pages);
845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 struct page *p = async_extent->pages[0];
847 const u64 start = async_extent->start;
848 const u64 end = start + async_extent->ram_size - 1;
850 p->mapping = inode->i_mapping;
851 tree->ops->writepage_end_io_hook(p, start, end,
854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
857 free_async_extent_pages(async_extent);
859 alloc_hint = ins.objectid + ins.offset;
865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
868 extent_clear_unlock_delalloc(inode, async_extent->start,
869 async_extent->start +
870 async_extent->ram_size - 1,
871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
876 free_async_extent_pages(async_extent);
881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 struct extent_map *em;
888 read_lock(&em_tree->lock);
889 em = search_extent_mapping(em_tree, start, num_bytes);
892 * if block start isn't an actual block number then find the
893 * first block in this inode and use that as a hint. If that
894 * block is also bogus then just don't worry about it.
896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
898 em = search_extent_mapping(em_tree, 0, 0);
899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 alloc_hint = em->block_start;
904 alloc_hint = em->block_start;
908 read_unlock(&em_tree->lock);
914 * when extent_io.c finds a delayed allocation range in the file,
915 * the call backs end up in this code. The basic idea is to
916 * allocate extents on disk for the range, and create ordered data structs
917 * in ram to track those extents.
919 * locked_page is the page that writepage had locked already. We use
920 * it to make sure we don't do extra locks or unlocks.
922 * *page_started is set to one if we unlock locked_page and do everything
923 * required to start IO on it. It may be clean and already done with
926 static noinline int cow_file_range(struct inode *inode,
927 struct page *locked_page,
928 u64 start, u64 end, int *page_started,
929 unsigned long *nr_written,
932 struct btrfs_root *root = BTRFS_I(inode)->root;
935 unsigned long ram_size;
938 u64 blocksize = root->sectorsize;
939 struct btrfs_key ins;
940 struct extent_map *em;
941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
944 if (btrfs_is_free_space_inode(inode)) {
950 num_bytes = ALIGN(end - start + 1, blocksize);
951 num_bytes = max(blocksize, num_bytes);
952 disk_num_bytes = num_bytes;
954 /* if this is a small write inside eof, kick off defrag */
955 if (num_bytes < SZ_64K &&
956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
957 btrfs_add_inode_defrag(NULL, inode);
960 /* lets try to make an inline extent */
961 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
964 extent_clear_unlock_delalloc(inode, start, end, NULL,
965 EXTENT_LOCKED | EXTENT_DELALLOC |
966 EXTENT_DEFRAG, PAGE_UNLOCK |
967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
970 *nr_written = *nr_written +
971 (end - start + PAGE_SIZE) / PAGE_SIZE;
974 } else if (ret < 0) {
979 BUG_ON(disk_num_bytes >
980 btrfs_super_total_bytes(root->fs_info->super_copy));
982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
985 while (disk_num_bytes > 0) {
988 cur_alloc_size = disk_num_bytes;
989 ret = btrfs_reserve_extent(root, cur_alloc_size,
990 root->sectorsize, 0, alloc_hint,
995 em = alloc_extent_map();
1001 em->orig_start = em->start;
1002 ram_size = ins.offset;
1003 em->len = ins.offset;
1004 em->mod_start = em->start;
1005 em->mod_len = em->len;
1007 em->block_start = ins.objectid;
1008 em->block_len = ins.offset;
1009 em->orig_block_len = ins.offset;
1010 em->ram_bytes = ram_size;
1011 em->bdev = root->fs_info->fs_devices->latest_bdev;
1012 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1013 em->generation = -1;
1016 write_lock(&em_tree->lock);
1017 ret = add_extent_mapping(em_tree, em, 1);
1018 write_unlock(&em_tree->lock);
1019 if (ret != -EEXIST) {
1020 free_extent_map(em);
1023 btrfs_drop_extent_cache(inode, start,
1024 start + ram_size - 1, 0);
1029 cur_alloc_size = ins.offset;
1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1031 ram_size, cur_alloc_size, 0);
1033 goto out_drop_extent_cache;
1035 if (root->root_key.objectid ==
1036 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 ret = btrfs_reloc_clone_csums(inode, start,
1040 goto out_drop_extent_cache;
1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1045 if (disk_num_bytes < cur_alloc_size)
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
1055 op = unlock ? PAGE_UNLOCK : 0;
1056 op |= PAGE_SET_PRIVATE2;
1058 extent_clear_unlock_delalloc(inode, start,
1059 start + ram_size - 1, locked_page,
1060 EXTENT_LOCKED | EXTENT_DELALLOC,
1062 disk_num_bytes -= cur_alloc_size;
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
1070 out_drop_extent_cache:
1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1076 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1085 * work queue call back to started compression on a file and pages
1087 static noinline void async_cow_start(struct btrfs_work *work)
1089 struct async_cow *async_cow;
1091 async_cow = container_of(work, struct async_cow, work);
1093 compress_file_range(async_cow->inode, async_cow->locked_page,
1094 async_cow->start, async_cow->end, async_cow,
1096 if (num_added == 0) {
1097 btrfs_add_delayed_iput(async_cow->inode);
1098 async_cow->inode = NULL;
1103 * work queue call back to submit previously compressed pages
1105 static noinline void async_cow_submit(struct btrfs_work *work)
1107 struct async_cow *async_cow;
1108 struct btrfs_root *root;
1109 unsigned long nr_pages;
1111 async_cow = container_of(work, struct async_cow, work);
1113 root = async_cow->root;
1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1118 * atomic_sub_return implies a barrier for waitqueue_active
1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1122 waitqueue_active(&root->fs_info->async_submit_wait))
1123 wake_up(&root->fs_info->async_submit_wait);
1125 if (async_cow->inode)
1126 submit_compressed_extents(async_cow->inode, async_cow);
1129 static noinline void async_cow_free(struct btrfs_work *work)
1131 struct async_cow *async_cow;
1132 async_cow = container_of(work, struct async_cow, work);
1133 if (async_cow->inode)
1134 btrfs_add_delayed_iput(async_cow->inode);
1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 u64 start, u64 end, int *page_started,
1140 unsigned long *nr_written)
1142 struct async_cow *async_cow;
1143 struct btrfs_root *root = BTRFS_I(inode)->root;
1144 unsigned long nr_pages;
1146 int limit = 10 * SZ_1M;
1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 1, 0, NULL, GFP_NOFS);
1150 while (start < end) {
1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1152 BUG_ON(!async_cow); /* -ENOMEM */
1153 async_cow->inode = igrab(inode);
1154 async_cow->root = root;
1155 async_cow->locked_page = locked_page;
1156 async_cow->start = start;
1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 !btrfs_test_opt(root, FORCE_COMPRESS))
1162 cur_end = min(end, start + SZ_512K - 1);
1164 async_cow->end = cur_end;
1165 INIT_LIST_HEAD(&async_cow->extents);
1167 btrfs_init_work(&async_cow->work,
1168 btrfs_delalloc_helper,
1169 async_cow_start, async_cow_submit,
1172 nr_pages = (cur_end - start + PAGE_SIZE) >>
1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1176 btrfs_queue_work(root->fs_info->delalloc_workers,
1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 wait_event(root->fs_info->async_submit_wait,
1181 (atomic_read(&root->fs_info->async_delalloc_pages) <
1185 while (atomic_read(&root->fs_info->async_submit_draining) &&
1186 atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 wait_event(root->fs_info->async_submit_wait,
1188 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1192 *nr_written += nr_pages;
1193 start = cur_end + 1;
1199 static noinline int csum_exist_in_range(struct btrfs_root *root,
1200 u64 bytenr, u64 num_bytes)
1203 struct btrfs_ordered_sum *sums;
1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1207 bytenr + num_bytes - 1, &list, 0);
1208 if (ret == 0 && list_empty(&list))
1211 while (!list_empty(&list)) {
1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 list_del(&sums->list);
1220 * when nowcow writeback call back. This checks for snapshots or COW copies
1221 * of the extents that exist in the file, and COWs the file as required.
1223 * If no cow copies or snapshots exist, we write directly to the existing
1226 static noinline int run_delalloc_nocow(struct inode *inode,
1227 struct page *locked_page,
1228 u64 start, u64 end, int *page_started, int force,
1229 unsigned long *nr_written)
1231 struct btrfs_root *root = BTRFS_I(inode)->root;
1232 struct btrfs_trans_handle *trans;
1233 struct extent_buffer *leaf;
1234 struct btrfs_path *path;
1235 struct btrfs_file_extent_item *fi;
1236 struct btrfs_key found_key;
1251 u64 ino = btrfs_ino(inode);
1253 path = btrfs_alloc_path();
1255 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 EXTENT_LOCKED | EXTENT_DELALLOC |
1257 EXTENT_DO_ACCOUNTING |
1258 EXTENT_DEFRAG, PAGE_UNLOCK |
1260 PAGE_SET_WRITEBACK |
1261 PAGE_END_WRITEBACK);
1265 nolock = btrfs_is_free_space_inode(inode);
1268 trans = btrfs_join_transaction_nolock(root);
1270 trans = btrfs_join_transaction(root);
1272 if (IS_ERR(trans)) {
1273 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 EXTENT_LOCKED | EXTENT_DELALLOC |
1275 EXTENT_DO_ACCOUNTING |
1276 EXTENT_DEFRAG, PAGE_UNLOCK |
1278 PAGE_SET_WRITEBACK |
1279 PAGE_END_WRITEBACK);
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1286 cow_start = (u64)-1;
1289 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1293 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 leaf = path->nodes[0];
1295 btrfs_item_key_to_cpu(leaf, &found_key,
1296 path->slots[0] - 1);
1297 if (found_key.objectid == ino &&
1298 found_key.type == BTRFS_EXTENT_DATA_KEY)
1303 leaf = path->nodes[0];
1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 ret = btrfs_next_leaf(root, path);
1310 leaf = path->nodes[0];
1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1318 if (found_key.objectid > ino)
1320 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1326 found_key.offset > end)
1329 if (found_key.offset > cur_offset) {
1330 extent_end = found_key.offset;
1335 fi = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_file_extent_item);
1337 extent_type = btrfs_file_extent_type(leaf, fi);
1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1340 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1343 extent_offset = btrfs_file_extent_offset(leaf, fi);
1344 extent_end = found_key.offset +
1345 btrfs_file_extent_num_bytes(leaf, fi);
1347 btrfs_file_extent_disk_num_bytes(leaf, fi);
1348 if (extent_end <= start) {
1352 if (disk_bytenr == 0)
1354 if (btrfs_file_extent_compression(leaf, fi) ||
1355 btrfs_file_extent_encryption(leaf, fi) ||
1356 btrfs_file_extent_other_encoding(leaf, fi))
1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1360 if (btrfs_extent_readonly(root, disk_bytenr))
1362 if (btrfs_cross_ref_exist(trans, root, ino,
1364 extent_offset, disk_bytenr))
1366 disk_bytenr += extent_offset;
1367 disk_bytenr += cur_offset - found_key.offset;
1368 num_bytes = min(end + 1, extent_end) - cur_offset;
1370 * if there are pending snapshots for this root,
1371 * we fall into common COW way.
1374 err = btrfs_start_write_no_snapshoting(root);
1379 * force cow if csum exists in the range.
1380 * this ensure that csum for a given extent are
1381 * either valid or do not exist.
1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1385 if (!btrfs_inc_nocow_writers(root->fs_info,
1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1390 extent_end = found_key.offset +
1391 btrfs_file_extent_inline_len(leaf,
1392 path->slots[0], fi);
1393 extent_end = ALIGN(extent_end, root->sectorsize);
1398 if (extent_end <= start) {
1400 if (!nolock && nocow)
1401 btrfs_end_write_no_snapshoting(root);
1403 btrfs_dec_nocow_writers(root->fs_info,
1408 if (cow_start == (u64)-1)
1409 cow_start = cur_offset;
1410 cur_offset = extent_end;
1411 if (cur_offset > end)
1417 btrfs_release_path(path);
1418 if (cow_start != (u64)-1) {
1419 ret = cow_file_range(inode, locked_page,
1420 cow_start, found_key.offset - 1,
1421 page_started, nr_written, 1);
1423 if (!nolock && nocow)
1424 btrfs_end_write_no_snapshoting(root);
1426 btrfs_dec_nocow_writers(root->fs_info,
1430 cow_start = (u64)-1;
1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1434 struct extent_map *em;
1435 struct extent_map_tree *em_tree;
1436 em_tree = &BTRFS_I(inode)->extent_tree;
1437 em = alloc_extent_map();
1438 BUG_ON(!em); /* -ENOMEM */
1439 em->start = cur_offset;
1440 em->orig_start = found_key.offset - extent_offset;
1441 em->len = num_bytes;
1442 em->block_len = num_bytes;
1443 em->block_start = disk_bytenr;
1444 em->orig_block_len = disk_num_bytes;
1445 em->ram_bytes = ram_bytes;
1446 em->bdev = root->fs_info->fs_devices->latest_bdev;
1447 em->mod_start = em->start;
1448 em->mod_len = em->len;
1449 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1450 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1451 em->generation = -1;
1453 write_lock(&em_tree->lock);
1454 ret = add_extent_mapping(em_tree, em, 1);
1455 write_unlock(&em_tree->lock);
1456 if (ret != -EEXIST) {
1457 free_extent_map(em);
1460 btrfs_drop_extent_cache(inode, em->start,
1461 em->start + em->len - 1, 0);
1463 type = BTRFS_ORDERED_PREALLOC;
1465 type = BTRFS_ORDERED_NOCOW;
1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1469 num_bytes, num_bytes, type);
1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1472 BUG_ON(ret); /* -ENOMEM */
1474 if (root->root_key.objectid ==
1475 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1476 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1479 if (!nolock && nocow)
1480 btrfs_end_write_no_snapshoting(root);
1485 extent_clear_unlock_delalloc(inode, cur_offset,
1486 cur_offset + num_bytes - 1,
1487 locked_page, EXTENT_LOCKED |
1488 EXTENT_DELALLOC, PAGE_UNLOCK |
1490 if (!nolock && nocow)
1491 btrfs_end_write_no_snapshoting(root);
1492 cur_offset = extent_end;
1493 if (cur_offset > end)
1496 btrfs_release_path(path);
1498 if (cur_offset <= end && cow_start == (u64)-1) {
1499 cow_start = cur_offset;
1503 if (cow_start != (u64)-1) {
1504 ret = cow_file_range(inode, locked_page, cow_start, end,
1505 page_started, nr_written, 1);
1511 err = btrfs_end_transaction(trans, root);
1515 if (ret && cur_offset < end)
1516 extent_clear_unlock_delalloc(inode, cur_offset, end,
1517 locked_page, EXTENT_LOCKED |
1518 EXTENT_DELALLOC | EXTENT_DEFRAG |
1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1521 PAGE_SET_WRITEBACK |
1522 PAGE_END_WRITEBACK);
1523 btrfs_free_path(path);
1527 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1535 * @defrag_bytes is a hint value, no spinlock held here,
1536 * if is not zero, it means the file is defragging.
1537 * Force cow if given extent needs to be defragged.
1539 if (BTRFS_I(inode)->defrag_bytes &&
1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1541 EXTENT_DEFRAG, 0, NULL))
1548 * extent_io.c call back to do delayed allocation processing
1550 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1551 u64 start, u64 end, int *page_started,
1552 unsigned long *nr_written)
1555 int force_cow = need_force_cow(inode, start, end);
1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1558 ret = run_delalloc_nocow(inode, locked_page, start, end,
1559 page_started, 1, nr_written);
1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1561 ret = run_delalloc_nocow(inode, locked_page, start, end,
1562 page_started, 0, nr_written);
1563 } else if (!inode_need_compress(inode)) {
1564 ret = cow_file_range(inode, locked_page, start, end,
1565 page_started, nr_written, 1);
1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 &BTRFS_I(inode)->runtime_flags);
1569 ret = cow_file_range_async(inode, locked_page, start, end,
1570 page_started, nr_written);
1575 static void btrfs_split_extent_hook(struct inode *inode,
1576 struct extent_state *orig, u64 split)
1580 /* not delalloc, ignore it */
1581 if (!(orig->state & EXTENT_DELALLOC))
1584 size = orig->end - orig->start + 1;
1585 if (size > BTRFS_MAX_EXTENT_SIZE) {
1590 * See the explanation in btrfs_merge_extent_hook, the same
1591 * applies here, just in reverse.
1593 new_size = orig->end - split + 1;
1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1595 BTRFS_MAX_EXTENT_SIZE);
1596 new_size = split - orig->start;
1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1598 BTRFS_MAX_EXTENT_SIZE);
1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1604 spin_lock(&BTRFS_I(inode)->lock);
1605 BTRFS_I(inode)->outstanding_extents++;
1606 spin_unlock(&BTRFS_I(inode)->lock);
1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611 * extents so we can keep track of new extents that are just merged onto old
1612 * extents, such as when we are doing sequential writes, so we can properly
1613 * account for the metadata space we'll need.
1615 static void btrfs_merge_extent_hook(struct inode *inode,
1616 struct extent_state *new,
1617 struct extent_state *other)
1619 u64 new_size, old_size;
1622 /* not delalloc, ignore it */
1623 if (!(other->state & EXTENT_DELALLOC))
1626 if (new->start > other->start)
1627 new_size = new->end - other->start + 1;
1629 new_size = other->end - new->start + 1;
1631 /* we're not bigger than the max, unreserve the space and go */
1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 BTRFS_I(inode)->outstanding_extents--;
1635 spin_unlock(&BTRFS_I(inode)->lock);
1640 * We have to add up either side to figure out how many extents were
1641 * accounted for before we merged into one big extent. If the number of
1642 * extents we accounted for is <= the amount we need for the new range
1643 * then we can return, otherwise drop. Think of it like this
1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 * need 2 outstanding extents, on one side we have 1 and the other side
1649 * we have 1 so they are == and we can return. But in this case
1651 * [MAX_SIZE+4k][MAX_SIZE+4k]
1653 * Each range on their own accounts for 2 extents, but merged together
1654 * they are only 3 extents worth of accounting, so we need to drop in
1657 old_size = other->end - other->start + 1;
1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1659 BTRFS_MAX_EXTENT_SIZE);
1660 old_size = new->end - new->start + 1;
1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1662 BTRFS_MAX_EXTENT_SIZE);
1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1668 spin_lock(&BTRFS_I(inode)->lock);
1669 BTRFS_I(inode)->outstanding_extents--;
1670 spin_unlock(&BTRFS_I(inode)->lock);
1673 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1674 struct inode *inode)
1676 spin_lock(&root->delalloc_lock);
1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1679 &root->delalloc_inodes);
1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1681 &BTRFS_I(inode)->runtime_flags);
1682 root->nr_delalloc_inodes++;
1683 if (root->nr_delalloc_inodes == 1) {
1684 spin_lock(&root->fs_info->delalloc_root_lock);
1685 BUG_ON(!list_empty(&root->delalloc_root));
1686 list_add_tail(&root->delalloc_root,
1687 &root->fs_info->delalloc_roots);
1688 spin_unlock(&root->fs_info->delalloc_root_lock);
1691 spin_unlock(&root->delalloc_lock);
1694 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1695 struct inode *inode)
1697 spin_lock(&root->delalloc_lock);
1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes--;
1703 if (!root->nr_delalloc_inodes) {
1704 spin_lock(&root->fs_info->delalloc_root_lock);
1705 BUG_ON(list_empty(&root->delalloc_root));
1706 list_del_init(&root->delalloc_root);
1707 spin_unlock(&root->fs_info->delalloc_root_lock);
1710 spin_unlock(&root->delalloc_lock);
1714 * extent_io.c set_bit_hook, used to track delayed allocation
1715 * bytes in this file, and to maintain the list of inodes that
1716 * have pending delalloc work to be done.
1718 static void btrfs_set_bit_hook(struct inode *inode,
1719 struct extent_state *state, unsigned *bits)
1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1725 * set_bit and clear bit hooks normally require _irqsave/restore
1726 * but in this case, we are only testing for the DELALLOC
1727 * bit, which is only set or cleared with irqs on
1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1730 struct btrfs_root *root = BTRFS_I(inode)->root;
1731 u64 len = state->end + 1 - state->start;
1732 bool do_list = !btrfs_is_free_space_inode(inode);
1734 if (*bits & EXTENT_FIRST_DELALLOC) {
1735 *bits &= ~EXTENT_FIRST_DELALLOC;
1737 spin_lock(&BTRFS_I(inode)->lock);
1738 BTRFS_I(inode)->outstanding_extents++;
1739 spin_unlock(&BTRFS_I(inode)->lock);
1742 /* For sanity tests */
1743 if (btrfs_test_is_dummy_root(root))
1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1747 root->fs_info->delalloc_batch);
1748 spin_lock(&BTRFS_I(inode)->lock);
1749 BTRFS_I(inode)->delalloc_bytes += len;
1750 if (*bits & EXTENT_DEFRAG)
1751 BTRFS_I(inode)->defrag_bytes += len;
1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1753 &BTRFS_I(inode)->runtime_flags))
1754 btrfs_add_delalloc_inodes(root, inode);
1755 spin_unlock(&BTRFS_I(inode)->lock);
1760 * extent_io.c clear_bit_hook, see set_bit_hook for why
1762 static void btrfs_clear_bit_hook(struct inode *inode,
1763 struct extent_state *state,
1766 u64 len = state->end + 1 - state->start;
1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1768 BTRFS_MAX_EXTENT_SIZE);
1770 spin_lock(&BTRFS_I(inode)->lock);
1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1772 BTRFS_I(inode)->defrag_bytes -= len;
1773 spin_unlock(&BTRFS_I(inode)->lock);
1776 * set_bit and clear bit hooks normally require _irqsave/restore
1777 * but in this case, we are only testing for the DELALLOC
1778 * bit, which is only set or cleared with irqs on
1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1781 struct btrfs_root *root = BTRFS_I(inode)->root;
1782 bool do_list = !btrfs_is_free_space_inode(inode);
1784 if (*bits & EXTENT_FIRST_DELALLOC) {
1785 *bits &= ~EXTENT_FIRST_DELALLOC;
1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1787 spin_lock(&BTRFS_I(inode)->lock);
1788 BTRFS_I(inode)->outstanding_extents -= num_extents;
1789 spin_unlock(&BTRFS_I(inode)->lock);
1793 * We don't reserve metadata space for space cache inodes so we
1794 * don't need to call dellalloc_release_metadata if there is an
1797 if (*bits & EXTENT_DO_ACCOUNTING &&
1798 root != root->fs_info->tree_root)
1799 btrfs_delalloc_release_metadata(inode, len);
1801 /* For sanity tests. */
1802 if (btrfs_test_is_dummy_root(root))
1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1806 && do_list && !(state->state & EXTENT_NORESERVE))
1807 btrfs_free_reserved_data_space_noquota(inode,
1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1811 root->fs_info->delalloc_batch);
1812 spin_lock(&BTRFS_I(inode)->lock);
1813 BTRFS_I(inode)->delalloc_bytes -= len;
1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1816 &BTRFS_I(inode)->runtime_flags))
1817 btrfs_del_delalloc_inode(root, inode);
1818 spin_unlock(&BTRFS_I(inode)->lock);
1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824 * we don't create bios that span stripes or chunks
1826 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1827 size_t size, struct bio *bio,
1828 unsigned long bio_flags)
1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1836 if (bio_flags & EXTENT_BIO_COMPRESSED)
1839 length = bio->bi_iter.bi_size;
1840 map_length = length;
1841 ret = btrfs_map_block(root->fs_info, rw, logical,
1842 &map_length, NULL, 0);
1843 /* Will always return 0 with map_multi == NULL */
1845 if (map_length < length + size)
1851 * in order to insert checksums into the metadata in large chunks,
1852 * we wait until bio submission time. All the pages in the bio are
1853 * checksummed and sums are attached onto the ordered extent record.
1855 * At IO completion time the cums attached on the ordered extent record
1856 * are inserted into the btree
1858 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1859 struct bio *bio, int mirror_num,
1860 unsigned long bio_flags,
1863 struct btrfs_root *root = BTRFS_I(inode)->root;
1866 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1867 BUG_ON(ret); /* -ENOMEM */
1872 * in order to insert checksums into the metadata in large chunks,
1873 * we wait until bio submission time. All the pages in the bio are
1874 * checksummed and sums are attached onto the ordered extent record.
1876 * At IO completion time the cums attached on the ordered extent record
1877 * are inserted into the btree
1879 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1880 int mirror_num, unsigned long bio_flags,
1883 struct btrfs_root *root = BTRFS_I(inode)->root;
1886 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1888 bio->bi_error = ret;
1895 * extent_io.c submission hook. This does the right thing for csum calculation
1896 * on write, or reading the csums from the tree before a read
1898 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1899 int mirror_num, unsigned long bio_flags,
1902 struct btrfs_root *root = BTRFS_I(inode)->root;
1903 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1906 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1908 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1910 if (btrfs_is_free_space_inode(inode))
1911 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1913 if (!(rw & REQ_WRITE)) {
1914 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1918 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1919 ret = btrfs_submit_compressed_read(inode, bio,
1923 } else if (!skip_sum) {
1924 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1929 } else if (async && !skip_sum) {
1930 /* csum items have already been cloned */
1931 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1933 /* we're doing a write, do the async checksumming */
1934 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1935 inode, rw, bio, mirror_num,
1936 bio_flags, bio_offset,
1937 __btrfs_submit_bio_start,
1938 __btrfs_submit_bio_done);
1940 } else if (!skip_sum) {
1941 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1947 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1951 bio->bi_error = ret;
1958 * given a list of ordered sums record them in the inode. This happens
1959 * at IO completion time based on sums calculated at bio submission time.
1961 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1962 struct inode *inode, u64 file_offset,
1963 struct list_head *list)
1965 struct btrfs_ordered_sum *sum;
1967 list_for_each_entry(sum, list, list) {
1968 trans->adding_csums = 1;
1969 btrfs_csum_file_blocks(trans,
1970 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1971 trans->adding_csums = 0;
1976 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1977 struct extent_state **cached_state)
1979 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1980 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1984 /* see btrfs_writepage_start_hook for details on why this is required */
1985 struct btrfs_writepage_fixup {
1987 struct btrfs_work work;
1990 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1992 struct btrfs_writepage_fixup *fixup;
1993 struct btrfs_ordered_extent *ordered;
1994 struct extent_state *cached_state = NULL;
1996 struct inode *inode;
2001 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2005 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2006 ClearPageChecked(page);
2010 inode = page->mapping->host;
2011 page_start = page_offset(page);
2012 page_end = page_offset(page) + PAGE_SIZE - 1;
2014 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2017 /* already ordered? We're done */
2018 if (PagePrivate2(page))
2021 ordered = btrfs_lookup_ordered_range(inode, page_start,
2024 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2025 page_end, &cached_state, GFP_NOFS);
2027 btrfs_start_ordered_extent(inode, ordered, 1);
2028 btrfs_put_ordered_extent(ordered);
2032 ret = btrfs_delalloc_reserve_space(inode, page_start,
2035 mapping_set_error(page->mapping, ret);
2036 end_extent_writepage(page, ret, page_start, page_end);
2037 ClearPageChecked(page);
2041 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2042 ClearPageChecked(page);
2043 set_page_dirty(page);
2045 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2046 &cached_state, GFP_NOFS);
2054 * There are a few paths in the higher layers of the kernel that directly
2055 * set the page dirty bit without asking the filesystem if it is a
2056 * good idea. This causes problems because we want to make sure COW
2057 * properly happens and the data=ordered rules are followed.
2059 * In our case any range that doesn't have the ORDERED bit set
2060 * hasn't been properly setup for IO. We kick off an async process
2061 * to fix it up. The async helper will wait for ordered extents, set
2062 * the delalloc bit and make it safe to write the page.
2064 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2066 struct inode *inode = page->mapping->host;
2067 struct btrfs_writepage_fixup *fixup;
2068 struct btrfs_root *root = BTRFS_I(inode)->root;
2070 /* this page is properly in the ordered list */
2071 if (TestClearPagePrivate2(page))
2074 if (PageChecked(page))
2077 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2081 SetPageChecked(page);
2083 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2084 btrfs_writepage_fixup_worker, NULL, NULL);
2086 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2090 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2091 struct inode *inode, u64 file_pos,
2092 u64 disk_bytenr, u64 disk_num_bytes,
2093 u64 num_bytes, u64 ram_bytes,
2094 u8 compression, u8 encryption,
2095 u16 other_encoding, int extent_type)
2097 struct btrfs_root *root = BTRFS_I(inode)->root;
2098 struct btrfs_file_extent_item *fi;
2099 struct btrfs_path *path;
2100 struct extent_buffer *leaf;
2101 struct btrfs_key ins;
2102 int extent_inserted = 0;
2105 path = btrfs_alloc_path();
2110 * we may be replacing one extent in the tree with another.
2111 * The new extent is pinned in the extent map, and we don't want
2112 * to drop it from the cache until it is completely in the btree.
2114 * So, tell btrfs_drop_extents to leave this extent in the cache.
2115 * the caller is expected to unpin it and allow it to be merged
2118 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2119 file_pos + num_bytes, NULL, 0,
2120 1, sizeof(*fi), &extent_inserted);
2124 if (!extent_inserted) {
2125 ins.objectid = btrfs_ino(inode);
2126 ins.offset = file_pos;
2127 ins.type = BTRFS_EXTENT_DATA_KEY;
2129 path->leave_spinning = 1;
2130 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2135 leaf = path->nodes[0];
2136 fi = btrfs_item_ptr(leaf, path->slots[0],
2137 struct btrfs_file_extent_item);
2138 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2139 btrfs_set_file_extent_type(leaf, fi, extent_type);
2140 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2141 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2142 btrfs_set_file_extent_offset(leaf, fi, 0);
2143 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2144 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2145 btrfs_set_file_extent_compression(leaf, fi, compression);
2146 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2147 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2149 btrfs_mark_buffer_dirty(leaf);
2150 btrfs_release_path(path);
2152 inode_add_bytes(inode, num_bytes);
2154 ins.objectid = disk_bytenr;
2155 ins.offset = disk_num_bytes;
2156 ins.type = BTRFS_EXTENT_ITEM_KEY;
2157 ret = btrfs_alloc_reserved_file_extent(trans, root,
2158 root->root_key.objectid,
2159 btrfs_ino(inode), file_pos,
2162 * Release the reserved range from inode dirty range map, as it is
2163 * already moved into delayed_ref_head
2165 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2167 btrfs_free_path(path);
2172 /* snapshot-aware defrag */
2173 struct sa_defrag_extent_backref {
2174 struct rb_node node;
2175 struct old_sa_defrag_extent *old;
2184 struct old_sa_defrag_extent {
2185 struct list_head list;
2186 struct new_sa_defrag_extent *new;
2195 struct new_sa_defrag_extent {
2196 struct rb_root root;
2197 struct list_head head;
2198 struct btrfs_path *path;
2199 struct inode *inode;
2207 static int backref_comp(struct sa_defrag_extent_backref *b1,
2208 struct sa_defrag_extent_backref *b2)
2210 if (b1->root_id < b2->root_id)
2212 else if (b1->root_id > b2->root_id)
2215 if (b1->inum < b2->inum)
2217 else if (b1->inum > b2->inum)
2220 if (b1->file_pos < b2->file_pos)
2222 else if (b1->file_pos > b2->file_pos)
2226 * [------------------------------] ===> (a range of space)
2227 * |<--->| |<---->| =============> (fs/file tree A)
2228 * |<---------------------------->| ===> (fs/file tree B)
2230 * A range of space can refer to two file extents in one tree while
2231 * refer to only one file extent in another tree.
2233 * So we may process a disk offset more than one time(two extents in A)
2234 * and locate at the same extent(one extent in B), then insert two same
2235 * backrefs(both refer to the extent in B).
2240 static void backref_insert(struct rb_root *root,
2241 struct sa_defrag_extent_backref *backref)
2243 struct rb_node **p = &root->rb_node;
2244 struct rb_node *parent = NULL;
2245 struct sa_defrag_extent_backref *entry;
2250 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2252 ret = backref_comp(backref, entry);
2256 p = &(*p)->rb_right;
2259 rb_link_node(&backref->node, parent, p);
2260 rb_insert_color(&backref->node, root);
2264 * Note the backref might has changed, and in this case we just return 0.
2266 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2269 struct btrfs_file_extent_item *extent;
2270 struct btrfs_fs_info *fs_info;
2271 struct old_sa_defrag_extent *old = ctx;
2272 struct new_sa_defrag_extent *new = old->new;
2273 struct btrfs_path *path = new->path;
2274 struct btrfs_key key;
2275 struct btrfs_root *root;
2276 struct sa_defrag_extent_backref *backref;
2277 struct extent_buffer *leaf;
2278 struct inode *inode = new->inode;
2284 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2285 inum == btrfs_ino(inode))
2288 key.objectid = root_id;
2289 key.type = BTRFS_ROOT_ITEM_KEY;
2290 key.offset = (u64)-1;
2292 fs_info = BTRFS_I(inode)->root->fs_info;
2293 root = btrfs_read_fs_root_no_name(fs_info, &key);
2295 if (PTR_ERR(root) == -ENOENT)
2298 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2299 inum, offset, root_id);
2300 return PTR_ERR(root);
2303 key.objectid = inum;
2304 key.type = BTRFS_EXTENT_DATA_KEY;
2305 if (offset > (u64)-1 << 32)
2308 key.offset = offset;
2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2311 if (WARN_ON(ret < 0))
2318 leaf = path->nodes[0];
2319 slot = path->slots[0];
2321 if (slot >= btrfs_header_nritems(leaf)) {
2322 ret = btrfs_next_leaf(root, path);
2325 } else if (ret > 0) {
2334 btrfs_item_key_to_cpu(leaf, &key, slot);
2336 if (key.objectid > inum)
2339 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2342 extent = btrfs_item_ptr(leaf, slot,
2343 struct btrfs_file_extent_item);
2345 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2349 * 'offset' refers to the exact key.offset,
2350 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2351 * (key.offset - extent_offset).
2353 if (key.offset != offset)
2356 extent_offset = btrfs_file_extent_offset(leaf, extent);
2357 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2359 if (extent_offset >= old->extent_offset + old->offset +
2360 old->len || extent_offset + num_bytes <=
2361 old->extent_offset + old->offset)
2366 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2372 backref->root_id = root_id;
2373 backref->inum = inum;
2374 backref->file_pos = offset;
2375 backref->num_bytes = num_bytes;
2376 backref->extent_offset = extent_offset;
2377 backref->generation = btrfs_file_extent_generation(leaf, extent);
2379 backref_insert(&new->root, backref);
2382 btrfs_release_path(path);
2387 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2388 struct new_sa_defrag_extent *new)
2390 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2391 struct old_sa_defrag_extent *old, *tmp;
2396 list_for_each_entry_safe(old, tmp, &new->head, list) {
2397 ret = iterate_inodes_from_logical(old->bytenr +
2398 old->extent_offset, fs_info,
2399 path, record_one_backref,
2401 if (ret < 0 && ret != -ENOENT)
2404 /* no backref to be processed for this extent */
2406 list_del(&old->list);
2411 if (list_empty(&new->head))
2417 static int relink_is_mergable(struct extent_buffer *leaf,
2418 struct btrfs_file_extent_item *fi,
2419 struct new_sa_defrag_extent *new)
2421 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2424 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2427 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2430 if (btrfs_file_extent_encryption(leaf, fi) ||
2431 btrfs_file_extent_other_encoding(leaf, fi))
2438 * Note the backref might has changed, and in this case we just return 0.
2440 static noinline int relink_extent_backref(struct btrfs_path *path,
2441 struct sa_defrag_extent_backref *prev,
2442 struct sa_defrag_extent_backref *backref)
2444 struct btrfs_file_extent_item *extent;
2445 struct btrfs_file_extent_item *item;
2446 struct btrfs_ordered_extent *ordered;
2447 struct btrfs_trans_handle *trans;
2448 struct btrfs_fs_info *fs_info;
2449 struct btrfs_root *root;
2450 struct btrfs_key key;
2451 struct extent_buffer *leaf;
2452 struct old_sa_defrag_extent *old = backref->old;
2453 struct new_sa_defrag_extent *new = old->new;
2454 struct inode *src_inode = new->inode;
2455 struct inode *inode;
2456 struct extent_state *cached = NULL;
2465 if (prev && prev->root_id == backref->root_id &&
2466 prev->inum == backref->inum &&
2467 prev->file_pos + prev->num_bytes == backref->file_pos)
2470 /* step 1: get root */
2471 key.objectid = backref->root_id;
2472 key.type = BTRFS_ROOT_ITEM_KEY;
2473 key.offset = (u64)-1;
2475 fs_info = BTRFS_I(src_inode)->root->fs_info;
2476 index = srcu_read_lock(&fs_info->subvol_srcu);
2478 root = btrfs_read_fs_root_no_name(fs_info, &key);
2480 srcu_read_unlock(&fs_info->subvol_srcu, index);
2481 if (PTR_ERR(root) == -ENOENT)
2483 return PTR_ERR(root);
2486 if (btrfs_root_readonly(root)) {
2487 srcu_read_unlock(&fs_info->subvol_srcu, index);
2491 /* step 2: get inode */
2492 key.objectid = backref->inum;
2493 key.type = BTRFS_INODE_ITEM_KEY;
2496 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2497 if (IS_ERR(inode)) {
2498 srcu_read_unlock(&fs_info->subvol_srcu, index);
2502 srcu_read_unlock(&fs_info->subvol_srcu, index);
2504 /* step 3: relink backref */
2505 lock_start = backref->file_pos;
2506 lock_end = backref->file_pos + backref->num_bytes - 1;
2507 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2510 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2512 btrfs_put_ordered_extent(ordered);
2516 trans = btrfs_join_transaction(root);
2517 if (IS_ERR(trans)) {
2518 ret = PTR_ERR(trans);
2522 key.objectid = backref->inum;
2523 key.type = BTRFS_EXTENT_DATA_KEY;
2524 key.offset = backref->file_pos;
2526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2529 } else if (ret > 0) {
2534 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2535 struct btrfs_file_extent_item);
2537 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2538 backref->generation)
2541 btrfs_release_path(path);
2543 start = backref->file_pos;
2544 if (backref->extent_offset < old->extent_offset + old->offset)
2545 start += old->extent_offset + old->offset -
2546 backref->extent_offset;
2548 len = min(backref->extent_offset + backref->num_bytes,
2549 old->extent_offset + old->offset + old->len);
2550 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2552 ret = btrfs_drop_extents(trans, root, inode, start,
2557 key.objectid = btrfs_ino(inode);
2558 key.type = BTRFS_EXTENT_DATA_KEY;
2561 path->leave_spinning = 1;
2563 struct btrfs_file_extent_item *fi;
2565 struct btrfs_key found_key;
2567 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2572 leaf = path->nodes[0];
2573 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2575 fi = btrfs_item_ptr(leaf, path->slots[0],
2576 struct btrfs_file_extent_item);
2577 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2579 if (extent_len + found_key.offset == start &&
2580 relink_is_mergable(leaf, fi, new)) {
2581 btrfs_set_file_extent_num_bytes(leaf, fi,
2583 btrfs_mark_buffer_dirty(leaf);
2584 inode_add_bytes(inode, len);
2590 btrfs_release_path(path);
2595 ret = btrfs_insert_empty_item(trans, root, path, &key,
2598 btrfs_abort_transaction(trans, root, ret);
2602 leaf = path->nodes[0];
2603 item = btrfs_item_ptr(leaf, path->slots[0],
2604 struct btrfs_file_extent_item);
2605 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2606 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2607 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2608 btrfs_set_file_extent_num_bytes(leaf, item, len);
2609 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2610 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2611 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2612 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2613 btrfs_set_file_extent_encryption(leaf, item, 0);
2614 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2616 btrfs_mark_buffer_dirty(leaf);
2617 inode_add_bytes(inode, len);
2618 btrfs_release_path(path);
2620 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2622 backref->root_id, backref->inum,
2623 new->file_pos); /* start - extent_offset */
2625 btrfs_abort_transaction(trans, root, ret);
2631 btrfs_release_path(path);
2632 path->leave_spinning = 0;
2633 btrfs_end_transaction(trans, root);
2635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2641 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2643 struct old_sa_defrag_extent *old, *tmp;
2648 list_for_each_entry_safe(old, tmp, &new->head, list) {
2654 static void relink_file_extents(struct new_sa_defrag_extent *new)
2656 struct btrfs_path *path;
2657 struct sa_defrag_extent_backref *backref;
2658 struct sa_defrag_extent_backref *prev = NULL;
2659 struct inode *inode;
2660 struct btrfs_root *root;
2661 struct rb_node *node;
2665 root = BTRFS_I(inode)->root;
2667 path = btrfs_alloc_path();
2671 if (!record_extent_backrefs(path, new)) {
2672 btrfs_free_path(path);
2675 btrfs_release_path(path);
2678 node = rb_first(&new->root);
2681 rb_erase(node, &new->root);
2683 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2685 ret = relink_extent_backref(path, prev, backref);
2698 btrfs_free_path(path);
2700 free_sa_defrag_extent(new);
2702 atomic_dec(&root->fs_info->defrag_running);
2703 wake_up(&root->fs_info->transaction_wait);
2706 static struct new_sa_defrag_extent *
2707 record_old_file_extents(struct inode *inode,
2708 struct btrfs_ordered_extent *ordered)
2710 struct btrfs_root *root = BTRFS_I(inode)->root;
2711 struct btrfs_path *path;
2712 struct btrfs_key key;
2713 struct old_sa_defrag_extent *old;
2714 struct new_sa_defrag_extent *new;
2717 new = kmalloc(sizeof(*new), GFP_NOFS);
2722 new->file_pos = ordered->file_offset;
2723 new->len = ordered->len;
2724 new->bytenr = ordered->start;
2725 new->disk_len = ordered->disk_len;
2726 new->compress_type = ordered->compress_type;
2727 new->root = RB_ROOT;
2728 INIT_LIST_HEAD(&new->head);
2730 path = btrfs_alloc_path();
2734 key.objectid = btrfs_ino(inode);
2735 key.type = BTRFS_EXTENT_DATA_KEY;
2736 key.offset = new->file_pos;
2738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2741 if (ret > 0 && path->slots[0] > 0)
2744 /* find out all the old extents for the file range */
2746 struct btrfs_file_extent_item *extent;
2747 struct extent_buffer *l;
2756 slot = path->slots[0];
2758 if (slot >= btrfs_header_nritems(l)) {
2759 ret = btrfs_next_leaf(root, path);
2767 btrfs_item_key_to_cpu(l, &key, slot);
2769 if (key.objectid != btrfs_ino(inode))
2771 if (key.type != BTRFS_EXTENT_DATA_KEY)
2773 if (key.offset >= new->file_pos + new->len)
2776 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2778 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2779 if (key.offset + num_bytes < new->file_pos)
2782 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2786 extent_offset = btrfs_file_extent_offset(l, extent);
2788 old = kmalloc(sizeof(*old), GFP_NOFS);
2792 offset = max(new->file_pos, key.offset);
2793 end = min(new->file_pos + new->len, key.offset + num_bytes);
2795 old->bytenr = disk_bytenr;
2796 old->extent_offset = extent_offset;
2797 old->offset = offset - key.offset;
2798 old->len = end - offset;
2801 list_add_tail(&old->list, &new->head);
2807 btrfs_free_path(path);
2808 atomic_inc(&root->fs_info->defrag_running);
2813 btrfs_free_path(path);
2815 free_sa_defrag_extent(new);
2819 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2822 struct btrfs_block_group_cache *cache;
2824 cache = btrfs_lookup_block_group(root->fs_info, start);
2827 spin_lock(&cache->lock);
2828 cache->delalloc_bytes -= len;
2829 spin_unlock(&cache->lock);
2831 btrfs_put_block_group(cache);
2834 /* as ordered data IO finishes, this gets called so we can finish
2835 * an ordered extent if the range of bytes in the file it covers are
2838 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2840 struct inode *inode = ordered_extent->inode;
2841 struct btrfs_root *root = BTRFS_I(inode)->root;
2842 struct btrfs_trans_handle *trans = NULL;
2843 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2844 struct extent_state *cached_state = NULL;
2845 struct new_sa_defrag_extent *new = NULL;
2846 int compress_type = 0;
2848 u64 logical_len = ordered_extent->len;
2850 bool truncated = false;
2852 nolock = btrfs_is_free_space_inode(inode);
2854 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2859 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2860 ordered_extent->file_offset +
2861 ordered_extent->len - 1);
2863 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2865 logical_len = ordered_extent->truncated_len;
2866 /* Truncated the entire extent, don't bother adding */
2871 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2872 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2875 * For mwrite(mmap + memset to write) case, we still reserve
2876 * space for NOCOW range.
2877 * As NOCOW won't cause a new delayed ref, just free the space
2879 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2880 ordered_extent->len);
2881 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2883 trans = btrfs_join_transaction_nolock(root);
2885 trans = btrfs_join_transaction(root);
2886 if (IS_ERR(trans)) {
2887 ret = PTR_ERR(trans);
2891 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2892 ret = btrfs_update_inode_fallback(trans, root, inode);
2893 if (ret) /* -ENOMEM or corruption */
2894 btrfs_abort_transaction(trans, root, ret);
2898 lock_extent_bits(io_tree, ordered_extent->file_offset,
2899 ordered_extent->file_offset + ordered_extent->len - 1,
2902 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2903 ordered_extent->file_offset + ordered_extent->len - 1,
2904 EXTENT_DEFRAG, 1, cached_state);
2906 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2907 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2908 /* the inode is shared */
2909 new = record_old_file_extents(inode, ordered_extent);
2911 clear_extent_bit(io_tree, ordered_extent->file_offset,
2912 ordered_extent->file_offset + ordered_extent->len - 1,
2913 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2917 trans = btrfs_join_transaction_nolock(root);
2919 trans = btrfs_join_transaction(root);
2920 if (IS_ERR(trans)) {
2921 ret = PTR_ERR(trans);
2926 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2928 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2929 compress_type = ordered_extent->compress_type;
2930 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2931 BUG_ON(compress_type);
2932 ret = btrfs_mark_extent_written(trans, inode,
2933 ordered_extent->file_offset,
2934 ordered_extent->file_offset +
2937 BUG_ON(root == root->fs_info->tree_root);
2938 ret = insert_reserved_file_extent(trans, inode,
2939 ordered_extent->file_offset,
2940 ordered_extent->start,
2941 ordered_extent->disk_len,
2942 logical_len, logical_len,
2943 compress_type, 0, 0,
2944 BTRFS_FILE_EXTENT_REG);
2946 btrfs_release_delalloc_bytes(root,
2947 ordered_extent->start,
2948 ordered_extent->disk_len);
2950 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2951 ordered_extent->file_offset, ordered_extent->len,
2954 btrfs_abort_transaction(trans, root, ret);
2958 add_pending_csums(trans, inode, ordered_extent->file_offset,
2959 &ordered_extent->list);
2961 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2962 ret = btrfs_update_inode_fallback(trans, root, inode);
2963 if (ret) { /* -ENOMEM or corruption */
2964 btrfs_abort_transaction(trans, root, ret);
2969 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2970 ordered_extent->file_offset +
2971 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2973 if (root != root->fs_info->tree_root)
2974 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2976 btrfs_end_transaction(trans, root);
2978 if (ret || truncated) {
2982 start = ordered_extent->file_offset + logical_len;
2984 start = ordered_extent->file_offset;
2985 end = ordered_extent->file_offset + ordered_extent->len - 1;
2986 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2988 /* Drop the cache for the part of the extent we didn't write. */
2989 btrfs_drop_extent_cache(inode, start, end, 0);
2992 * If the ordered extent had an IOERR or something else went
2993 * wrong we need to return the space for this ordered extent
2994 * back to the allocator. We only free the extent in the
2995 * truncated case if we didn't write out the extent at all.
2997 if ((ret || !logical_len) &&
2998 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2999 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3000 btrfs_free_reserved_extent(root, ordered_extent->start,
3001 ordered_extent->disk_len, 1);
3006 * This needs to be done to make sure anybody waiting knows we are done
3007 * updating everything for this ordered extent.
3009 btrfs_remove_ordered_extent(inode, ordered_extent);
3011 /* for snapshot-aware defrag */
3014 free_sa_defrag_extent(new);
3015 atomic_dec(&root->fs_info->defrag_running);
3017 relink_file_extents(new);
3022 btrfs_put_ordered_extent(ordered_extent);
3023 /* once for the tree */
3024 btrfs_put_ordered_extent(ordered_extent);
3029 static void finish_ordered_fn(struct btrfs_work *work)
3031 struct btrfs_ordered_extent *ordered_extent;
3032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3033 btrfs_finish_ordered_io(ordered_extent);
3036 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3037 struct extent_state *state, int uptodate)
3039 struct inode *inode = page->mapping->host;
3040 struct btrfs_root *root = BTRFS_I(inode)->root;
3041 struct btrfs_ordered_extent *ordered_extent = NULL;
3042 struct btrfs_workqueue *wq;
3043 btrfs_work_func_t func;
3045 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3047 ClearPagePrivate2(page);
3048 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3049 end - start + 1, uptodate))
3052 if (btrfs_is_free_space_inode(inode)) {
3053 wq = root->fs_info->endio_freespace_worker;
3054 func = btrfs_freespace_write_helper;
3056 wq = root->fs_info->endio_write_workers;
3057 func = btrfs_endio_write_helper;
3060 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3062 btrfs_queue_work(wq, &ordered_extent->work);
3067 static int __readpage_endio_check(struct inode *inode,
3068 struct btrfs_io_bio *io_bio,
3069 int icsum, struct page *page,
3070 int pgoff, u64 start, size_t len)
3076 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3078 kaddr = kmap_atomic(page);
3079 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3080 btrfs_csum_final(csum, (char *)&csum);
3081 if (csum != csum_expected)
3084 kunmap_atomic(kaddr);
3087 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3088 "csum failed ino %llu off %llu csum %u expected csum %u",
3089 btrfs_ino(inode), start, csum, csum_expected);
3090 memset(kaddr + pgoff, 1, len);
3091 flush_dcache_page(page);
3092 kunmap_atomic(kaddr);
3093 if (csum_expected == 0)
3099 * when reads are done, we need to check csums to verify the data is correct
3100 * if there's a match, we allow the bio to finish. If not, the code in
3101 * extent_io.c will try to find good copies for us.
3103 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3104 u64 phy_offset, struct page *page,
3105 u64 start, u64 end, int mirror)
3107 size_t offset = start - page_offset(page);
3108 struct inode *inode = page->mapping->host;
3109 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3110 struct btrfs_root *root = BTRFS_I(inode)->root;
3112 if (PageChecked(page)) {
3113 ClearPageChecked(page);
3117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3120 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3121 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3122 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3126 phy_offset >>= inode->i_sb->s_blocksize_bits;
3127 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3128 start, (size_t)(end - start + 1));
3131 void btrfs_add_delayed_iput(struct inode *inode)
3133 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3134 struct btrfs_inode *binode = BTRFS_I(inode);
3136 if (atomic_add_unless(&inode->i_count, -1, 1))
3139 spin_lock(&fs_info->delayed_iput_lock);
3140 if (binode->delayed_iput_count == 0) {
3141 ASSERT(list_empty(&binode->delayed_iput));
3142 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3144 binode->delayed_iput_count++;
3146 spin_unlock(&fs_info->delayed_iput_lock);
3149 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3151 struct btrfs_fs_info *fs_info = root->fs_info;
3153 spin_lock(&fs_info->delayed_iput_lock);
3154 while (!list_empty(&fs_info->delayed_iputs)) {
3155 struct btrfs_inode *inode;
3157 inode = list_first_entry(&fs_info->delayed_iputs,
3158 struct btrfs_inode, delayed_iput);
3159 if (inode->delayed_iput_count) {
3160 inode->delayed_iput_count--;
3161 list_move_tail(&inode->delayed_iput,
3162 &fs_info->delayed_iputs);
3164 list_del_init(&inode->delayed_iput);
3166 spin_unlock(&fs_info->delayed_iput_lock);
3167 iput(&inode->vfs_inode);
3168 spin_lock(&fs_info->delayed_iput_lock);
3170 spin_unlock(&fs_info->delayed_iput_lock);
3174 * This is called in transaction commit time. If there are no orphan
3175 * files in the subvolume, it removes orphan item and frees block_rsv
3178 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3179 struct btrfs_root *root)
3181 struct btrfs_block_rsv *block_rsv;
3184 if (atomic_read(&root->orphan_inodes) ||
3185 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3188 spin_lock(&root->orphan_lock);
3189 if (atomic_read(&root->orphan_inodes)) {
3190 spin_unlock(&root->orphan_lock);
3194 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3195 spin_unlock(&root->orphan_lock);
3199 block_rsv = root->orphan_block_rsv;
3200 root->orphan_block_rsv = NULL;
3201 spin_unlock(&root->orphan_lock);
3203 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3204 btrfs_root_refs(&root->root_item) > 0) {
3205 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3206 root->root_key.objectid);
3208 btrfs_abort_transaction(trans, root, ret);
3210 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3215 WARN_ON(block_rsv->size > 0);
3216 btrfs_free_block_rsv(root, block_rsv);
3221 * This creates an orphan entry for the given inode in case something goes
3222 * wrong in the middle of an unlink/truncate.
3224 * NOTE: caller of this function should reserve 5 units of metadata for
3227 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3229 struct btrfs_root *root = BTRFS_I(inode)->root;
3230 struct btrfs_block_rsv *block_rsv = NULL;
3235 if (!root->orphan_block_rsv) {
3236 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3241 spin_lock(&root->orphan_lock);
3242 if (!root->orphan_block_rsv) {
3243 root->orphan_block_rsv = block_rsv;
3244 } else if (block_rsv) {
3245 btrfs_free_block_rsv(root, block_rsv);
3249 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3250 &BTRFS_I(inode)->runtime_flags)) {
3253 * For proper ENOSPC handling, we should do orphan
3254 * cleanup when mounting. But this introduces backward
3255 * compatibility issue.
3257 if (!xchg(&root->orphan_item_inserted, 1))
3263 atomic_inc(&root->orphan_inodes);
3266 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3267 &BTRFS_I(inode)->runtime_flags))
3269 spin_unlock(&root->orphan_lock);
3271 /* grab metadata reservation from transaction handle */
3273 ret = btrfs_orphan_reserve_metadata(trans, inode);
3276 atomic_dec(&root->orphan_inodes);
3277 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3278 &BTRFS_I(inode)->runtime_flags);
3280 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3281 &BTRFS_I(inode)->runtime_flags);
3286 /* insert an orphan item to track this unlinked/truncated file */
3288 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3290 atomic_dec(&root->orphan_inodes);
3292 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3293 &BTRFS_I(inode)->runtime_flags);
3294 btrfs_orphan_release_metadata(inode);
3296 if (ret != -EEXIST) {
3297 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3298 &BTRFS_I(inode)->runtime_flags);
3299 btrfs_abort_transaction(trans, root, ret);
3306 /* insert an orphan item to track subvolume contains orphan files */
3308 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3309 root->root_key.objectid);
3310 if (ret && ret != -EEXIST) {
3311 btrfs_abort_transaction(trans, root, ret);
3319 * We have done the truncate/delete so we can go ahead and remove the orphan
3320 * item for this particular inode.
3322 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3323 struct inode *inode)
3325 struct btrfs_root *root = BTRFS_I(inode)->root;
3326 int delete_item = 0;
3327 int release_rsv = 0;
3330 spin_lock(&root->orphan_lock);
3331 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3332 &BTRFS_I(inode)->runtime_flags))
3335 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3336 &BTRFS_I(inode)->runtime_flags))
3338 spin_unlock(&root->orphan_lock);
3341 atomic_dec(&root->orphan_inodes);
3343 ret = btrfs_del_orphan_item(trans, root,
3348 btrfs_orphan_release_metadata(inode);
3354 * this cleans up any orphans that may be left on the list from the last use
3357 int btrfs_orphan_cleanup(struct btrfs_root *root)
3359 struct btrfs_path *path;
3360 struct extent_buffer *leaf;
3361 struct btrfs_key key, found_key;
3362 struct btrfs_trans_handle *trans;
3363 struct inode *inode;
3364 u64 last_objectid = 0;
3365 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3367 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3370 path = btrfs_alloc_path();
3375 path->reada = READA_BACK;
3377 key.objectid = BTRFS_ORPHAN_OBJECTID;
3378 key.type = BTRFS_ORPHAN_ITEM_KEY;
3379 key.offset = (u64)-1;
3382 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3387 * if ret == 0 means we found what we were searching for, which
3388 * is weird, but possible, so only screw with path if we didn't
3389 * find the key and see if we have stuff that matches
3393 if (path->slots[0] == 0)
3398 /* pull out the item */
3399 leaf = path->nodes[0];
3400 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3402 /* make sure the item matches what we want */
3403 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3405 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3408 /* release the path since we're done with it */
3409 btrfs_release_path(path);
3412 * this is where we are basically btrfs_lookup, without the
3413 * crossing root thing. we store the inode number in the
3414 * offset of the orphan item.
3417 if (found_key.offset == last_objectid) {
3418 btrfs_err(root->fs_info,
3419 "Error removing orphan entry, stopping orphan cleanup");
3424 last_objectid = found_key.offset;
3426 found_key.objectid = found_key.offset;
3427 found_key.type = BTRFS_INODE_ITEM_KEY;
3428 found_key.offset = 0;
3429 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3430 ret = PTR_ERR_OR_ZERO(inode);
3431 if (ret && ret != -ESTALE)
3434 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3435 struct btrfs_root *dead_root;
3436 struct btrfs_fs_info *fs_info = root->fs_info;
3437 int is_dead_root = 0;
3440 * this is an orphan in the tree root. Currently these
3441 * could come from 2 sources:
3442 * a) a snapshot deletion in progress
3443 * b) a free space cache inode
3444 * We need to distinguish those two, as the snapshot
3445 * orphan must not get deleted.
3446 * find_dead_roots already ran before us, so if this
3447 * is a snapshot deletion, we should find the root
3448 * in the dead_roots list
3450 spin_lock(&fs_info->trans_lock);
3451 list_for_each_entry(dead_root, &fs_info->dead_roots,
3453 if (dead_root->root_key.objectid ==
3454 found_key.objectid) {
3459 spin_unlock(&fs_info->trans_lock);
3461 /* prevent this orphan from being found again */
3462 key.offset = found_key.objectid - 1;
3467 * Inode is already gone but the orphan item is still there,
3468 * kill the orphan item.
3470 if (ret == -ESTALE) {
3471 trans = btrfs_start_transaction(root, 1);
3472 if (IS_ERR(trans)) {
3473 ret = PTR_ERR(trans);
3476 btrfs_debug(root->fs_info, "auto deleting %Lu",
3477 found_key.objectid);
3478 ret = btrfs_del_orphan_item(trans, root,
3479 found_key.objectid);
3480 btrfs_end_transaction(trans, root);
3487 * add this inode to the orphan list so btrfs_orphan_del does
3488 * the proper thing when we hit it
3490 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3491 &BTRFS_I(inode)->runtime_flags);
3492 atomic_inc(&root->orphan_inodes);
3494 /* if we have links, this was a truncate, lets do that */
3495 if (inode->i_nlink) {
3496 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3502 /* 1 for the orphan item deletion. */
3503 trans = btrfs_start_transaction(root, 1);
3504 if (IS_ERR(trans)) {
3506 ret = PTR_ERR(trans);
3509 ret = btrfs_orphan_add(trans, inode);
3510 btrfs_end_transaction(trans, root);
3516 ret = btrfs_truncate(inode);
3518 btrfs_orphan_del(NULL, inode);
3523 /* this will do delete_inode and everything for us */
3528 /* release the path since we're done with it */
3529 btrfs_release_path(path);
3531 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3533 if (root->orphan_block_rsv)
3534 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3537 if (root->orphan_block_rsv ||
3538 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3539 trans = btrfs_join_transaction(root);
3541 btrfs_end_transaction(trans, root);
3545 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3547 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3551 btrfs_err(root->fs_info,
3552 "could not do orphan cleanup %d", ret);
3553 btrfs_free_path(path);
3558 * very simple check to peek ahead in the leaf looking for xattrs. If we
3559 * don't find any xattrs, we know there can't be any acls.
3561 * slot is the slot the inode is in, objectid is the objectid of the inode
3563 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3564 int slot, u64 objectid,
3565 int *first_xattr_slot)
3567 u32 nritems = btrfs_header_nritems(leaf);
3568 struct btrfs_key found_key;
3569 static u64 xattr_access = 0;
3570 static u64 xattr_default = 0;
3573 if (!xattr_access) {
3574 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3575 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3576 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3577 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3581 *first_xattr_slot = -1;
3582 while (slot < nritems) {
3583 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3585 /* we found a different objectid, there must not be acls */
3586 if (found_key.objectid != objectid)
3589 /* we found an xattr, assume we've got an acl */
3590 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3591 if (*first_xattr_slot == -1)
3592 *first_xattr_slot = slot;
3593 if (found_key.offset == xattr_access ||
3594 found_key.offset == xattr_default)
3599 * we found a key greater than an xattr key, there can't
3600 * be any acls later on
3602 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3609 * it goes inode, inode backrefs, xattrs, extents,
3610 * so if there are a ton of hard links to an inode there can
3611 * be a lot of backrefs. Don't waste time searching too hard,
3612 * this is just an optimization
3617 /* we hit the end of the leaf before we found an xattr or
3618 * something larger than an xattr. We have to assume the inode
3621 if (*first_xattr_slot == -1)
3622 *first_xattr_slot = slot;
3627 * read an inode from the btree into the in-memory inode
3629 static void btrfs_read_locked_inode(struct inode *inode)
3631 struct btrfs_path *path;
3632 struct extent_buffer *leaf;
3633 struct btrfs_inode_item *inode_item;
3634 struct btrfs_root *root = BTRFS_I(inode)->root;
3635 struct btrfs_key location;
3640 bool filled = false;
3641 int first_xattr_slot;
3643 ret = btrfs_fill_inode(inode, &rdev);
3647 path = btrfs_alloc_path();
3651 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3653 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3657 leaf = path->nodes[0];
3662 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3663 struct btrfs_inode_item);
3664 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3665 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3666 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3667 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3668 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3670 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3671 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3673 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3674 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3676 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3677 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3679 BTRFS_I(inode)->i_otime.tv_sec =
3680 btrfs_timespec_sec(leaf, &inode_item->otime);
3681 BTRFS_I(inode)->i_otime.tv_nsec =
3682 btrfs_timespec_nsec(leaf, &inode_item->otime);
3684 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3685 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3686 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3688 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3689 inode->i_generation = BTRFS_I(inode)->generation;
3691 rdev = btrfs_inode_rdev(leaf, inode_item);
3693 BTRFS_I(inode)->index_cnt = (u64)-1;
3694 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3698 * If we were modified in the current generation and evicted from memory
3699 * and then re-read we need to do a full sync since we don't have any
3700 * idea about which extents were modified before we were evicted from
3703 * This is required for both inode re-read from disk and delayed inode
3704 * in delayed_nodes_tree.
3706 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3707 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3708 &BTRFS_I(inode)->runtime_flags);
3711 * We don't persist the id of the transaction where an unlink operation
3712 * against the inode was last made. So here we assume the inode might
3713 * have been evicted, and therefore the exact value of last_unlink_trans
3714 * lost, and set it to last_trans to avoid metadata inconsistencies
3715 * between the inode and its parent if the inode is fsync'ed and the log
3716 * replayed. For example, in the scenario:
3719 * ln mydir/foo mydir/bar
3722 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3723 * xfs_io -c fsync mydir/foo
3725 * mount fs, triggers fsync log replay
3727 * We must make sure that when we fsync our inode foo we also log its
3728 * parent inode, otherwise after log replay the parent still has the
3729 * dentry with the "bar" name but our inode foo has a link count of 1
3730 * and doesn't have an inode ref with the name "bar" anymore.
3732 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3733 * but it guarantees correctness at the expense of occasional full
3734 * transaction commits on fsync if our inode is a directory, or if our
3735 * inode is not a directory, logging its parent unnecessarily.
3737 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3740 if (inode->i_nlink != 1 ||
3741 path->slots[0] >= btrfs_header_nritems(leaf))
3744 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3745 if (location.objectid != btrfs_ino(inode))
3748 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3749 if (location.type == BTRFS_INODE_REF_KEY) {
3750 struct btrfs_inode_ref *ref;
3752 ref = (struct btrfs_inode_ref *)ptr;
3753 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3754 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3755 struct btrfs_inode_extref *extref;
3757 extref = (struct btrfs_inode_extref *)ptr;
3758 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3763 * try to precache a NULL acl entry for files that don't have
3764 * any xattrs or acls
3766 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3767 btrfs_ino(inode), &first_xattr_slot);
3768 if (first_xattr_slot != -1) {
3769 path->slots[0] = first_xattr_slot;
3770 ret = btrfs_load_inode_props(inode, path);
3772 btrfs_err(root->fs_info,
3773 "error loading props for ino %llu (root %llu): %d",
3775 root->root_key.objectid, ret);
3777 btrfs_free_path(path);
3780 cache_no_acl(inode);
3782 switch (inode->i_mode & S_IFMT) {
3784 inode->i_mapping->a_ops = &btrfs_aops;
3785 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3786 inode->i_fop = &btrfs_file_operations;
3787 inode->i_op = &btrfs_file_inode_operations;
3790 inode->i_fop = &btrfs_dir_file_operations;
3791 if (root == root->fs_info->tree_root)
3792 inode->i_op = &btrfs_dir_ro_inode_operations;
3794 inode->i_op = &btrfs_dir_inode_operations;
3797 inode->i_op = &btrfs_symlink_inode_operations;
3798 inode_nohighmem(inode);
3799 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3802 inode->i_op = &btrfs_special_inode_operations;
3803 init_special_inode(inode, inode->i_mode, rdev);
3807 btrfs_update_iflags(inode);
3811 btrfs_free_path(path);
3812 make_bad_inode(inode);
3816 * given a leaf and an inode, copy the inode fields into the leaf
3818 static void fill_inode_item(struct btrfs_trans_handle *trans,
3819 struct extent_buffer *leaf,
3820 struct btrfs_inode_item *item,
3821 struct inode *inode)
3823 struct btrfs_map_token token;
3825 btrfs_init_map_token(&token);
3827 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3828 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3829 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3831 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3832 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3834 btrfs_set_token_timespec_sec(leaf, &item->atime,
3835 inode->i_atime.tv_sec, &token);
3836 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3837 inode->i_atime.tv_nsec, &token);
3839 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3840 inode->i_mtime.tv_sec, &token);
3841 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3842 inode->i_mtime.tv_nsec, &token);
3844 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3845 inode->i_ctime.tv_sec, &token);
3846 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3847 inode->i_ctime.tv_nsec, &token);
3849 btrfs_set_token_timespec_sec(leaf, &item->otime,
3850 BTRFS_I(inode)->i_otime.tv_sec, &token);
3851 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3852 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3854 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3856 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3858 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3859 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3860 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3861 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3862 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3866 * copy everything in the in-memory inode into the btree.
3868 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3869 struct btrfs_root *root, struct inode *inode)
3871 struct btrfs_inode_item *inode_item;
3872 struct btrfs_path *path;
3873 struct extent_buffer *leaf;
3876 path = btrfs_alloc_path();
3880 path->leave_spinning = 1;
3881 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3889 leaf = path->nodes[0];
3890 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3891 struct btrfs_inode_item);
3893 fill_inode_item(trans, leaf, inode_item, inode);
3894 btrfs_mark_buffer_dirty(leaf);
3895 btrfs_set_inode_last_trans(trans, inode);
3898 btrfs_free_path(path);
3903 * copy everything in the in-memory inode into the btree.
3905 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3906 struct btrfs_root *root, struct inode *inode)
3911 * If the inode is a free space inode, we can deadlock during commit
3912 * if we put it into the delayed code.
3914 * The data relocation inode should also be directly updated
3917 if (!btrfs_is_free_space_inode(inode)
3918 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3919 && !root->fs_info->log_root_recovering) {
3920 btrfs_update_root_times(trans, root);
3922 ret = btrfs_delayed_update_inode(trans, root, inode);
3924 btrfs_set_inode_last_trans(trans, inode);
3928 return btrfs_update_inode_item(trans, root, inode);
3931 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3932 struct btrfs_root *root,
3933 struct inode *inode)
3937 ret = btrfs_update_inode(trans, root, inode);
3939 return btrfs_update_inode_item(trans, root, inode);
3944 * unlink helper that gets used here in inode.c and in the tree logging
3945 * recovery code. It remove a link in a directory with a given name, and
3946 * also drops the back refs in the inode to the directory
3948 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3949 struct btrfs_root *root,
3950 struct inode *dir, struct inode *inode,
3951 const char *name, int name_len)
3953 struct btrfs_path *path;
3955 struct extent_buffer *leaf;
3956 struct btrfs_dir_item *di;
3957 struct btrfs_key key;
3959 u64 ino = btrfs_ino(inode);
3960 u64 dir_ino = btrfs_ino(dir);
3962 path = btrfs_alloc_path();
3968 path->leave_spinning = 1;
3969 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3970 name, name_len, -1);
3979 leaf = path->nodes[0];
3980 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3981 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3984 btrfs_release_path(path);
3987 * If we don't have dir index, we have to get it by looking up
3988 * the inode ref, since we get the inode ref, remove it directly,
3989 * it is unnecessary to do delayed deletion.
3991 * But if we have dir index, needn't search inode ref to get it.
3992 * Since the inode ref is close to the inode item, it is better
3993 * that we delay to delete it, and just do this deletion when
3994 * we update the inode item.
3996 if (BTRFS_I(inode)->dir_index) {
3997 ret = btrfs_delayed_delete_inode_ref(inode);
3999 index = BTRFS_I(inode)->dir_index;
4004 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4007 btrfs_info(root->fs_info,
4008 "failed to delete reference to %.*s, inode %llu parent %llu",
4009 name_len, name, ino, dir_ino);
4010 btrfs_abort_transaction(trans, root, ret);
4014 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4016 btrfs_abort_transaction(trans, root, ret);
4020 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4022 if (ret != 0 && ret != -ENOENT) {
4023 btrfs_abort_transaction(trans, root, ret);
4027 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4032 btrfs_abort_transaction(trans, root, ret);
4034 btrfs_free_path(path);
4038 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4039 inode_inc_iversion(inode);
4040 inode_inc_iversion(dir);
4041 inode->i_ctime = dir->i_mtime =
4042 dir->i_ctime = current_fs_time(inode->i_sb);
4043 ret = btrfs_update_inode(trans, root, dir);
4048 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4049 struct btrfs_root *root,
4050 struct inode *dir, struct inode *inode,
4051 const char *name, int name_len)
4054 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4057 ret = btrfs_update_inode(trans, root, inode);
4063 * helper to start transaction for unlink and rmdir.
4065 * unlink and rmdir are special in btrfs, they do not always free space, so
4066 * if we cannot make our reservations the normal way try and see if there is
4067 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4068 * allow the unlink to occur.
4070 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4072 struct btrfs_root *root = BTRFS_I(dir)->root;
4075 * 1 for the possible orphan item
4076 * 1 for the dir item
4077 * 1 for the dir index
4078 * 1 for the inode ref
4081 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4084 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4086 struct btrfs_root *root = BTRFS_I(dir)->root;
4087 struct btrfs_trans_handle *trans;
4088 struct inode *inode = d_inode(dentry);
4091 trans = __unlink_start_trans(dir);
4093 return PTR_ERR(trans);
4095 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4097 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4098 dentry->d_name.name, dentry->d_name.len);
4102 if (inode->i_nlink == 0) {
4103 ret = btrfs_orphan_add(trans, inode);
4109 btrfs_end_transaction(trans, root);
4110 btrfs_btree_balance_dirty(root);
4114 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4115 struct btrfs_root *root,
4116 struct inode *dir, u64 objectid,
4117 const char *name, int name_len)
4119 struct btrfs_path *path;
4120 struct extent_buffer *leaf;
4121 struct btrfs_dir_item *di;
4122 struct btrfs_key key;
4125 u64 dir_ino = btrfs_ino(dir);
4127 path = btrfs_alloc_path();
4131 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4132 name, name_len, -1);
4133 if (IS_ERR_OR_NULL(di)) {
4141 leaf = path->nodes[0];
4142 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4143 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4144 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4146 btrfs_abort_transaction(trans, root, ret);
4149 btrfs_release_path(path);
4151 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4152 objectid, root->root_key.objectid,
4153 dir_ino, &index, name, name_len);
4155 if (ret != -ENOENT) {
4156 btrfs_abort_transaction(trans, root, ret);
4159 di = btrfs_search_dir_index_item(root, path, dir_ino,
4161 if (IS_ERR_OR_NULL(di)) {
4166 btrfs_abort_transaction(trans, root, ret);
4170 leaf = path->nodes[0];
4171 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4172 btrfs_release_path(path);
4175 btrfs_release_path(path);
4177 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4179 btrfs_abort_transaction(trans, root, ret);
4183 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4184 inode_inc_iversion(dir);
4185 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4186 ret = btrfs_update_inode_fallback(trans, root, dir);
4188 btrfs_abort_transaction(trans, root, ret);
4190 btrfs_free_path(path);
4194 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4196 struct inode *inode = d_inode(dentry);
4198 struct btrfs_root *root = BTRFS_I(dir)->root;
4199 struct btrfs_trans_handle *trans;
4201 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4203 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4206 trans = __unlink_start_trans(dir);
4208 return PTR_ERR(trans);
4210 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4211 err = btrfs_unlink_subvol(trans, root, dir,
4212 BTRFS_I(inode)->location.objectid,
4213 dentry->d_name.name,
4214 dentry->d_name.len);
4218 err = btrfs_orphan_add(trans, inode);
4222 /* now the directory is empty */
4223 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4224 dentry->d_name.name, dentry->d_name.len);
4226 btrfs_i_size_write(inode, 0);
4228 btrfs_end_transaction(trans, root);
4229 btrfs_btree_balance_dirty(root);
4234 static int truncate_space_check(struct btrfs_trans_handle *trans,
4235 struct btrfs_root *root,
4241 * This is only used to apply pressure to the enospc system, we don't
4242 * intend to use this reservation at all.
4244 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4245 bytes_deleted *= root->nodesize;
4246 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4247 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4249 trace_btrfs_space_reservation(root->fs_info, "transaction",
4252 trans->bytes_reserved += bytes_deleted;
4258 static int truncate_inline_extent(struct inode *inode,
4259 struct btrfs_path *path,
4260 struct btrfs_key *found_key,
4264 struct extent_buffer *leaf = path->nodes[0];
4265 int slot = path->slots[0];
4266 struct btrfs_file_extent_item *fi;
4267 u32 size = (u32)(new_size - found_key->offset);
4268 struct btrfs_root *root = BTRFS_I(inode)->root;
4270 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4272 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4273 loff_t offset = new_size;
4274 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4277 * Zero out the remaining of the last page of our inline extent,
4278 * instead of directly truncating our inline extent here - that
4279 * would be much more complex (decompressing all the data, then
4280 * compressing the truncated data, which might be bigger than
4281 * the size of the inline extent, resize the extent, etc).
4282 * We release the path because to get the page we might need to
4283 * read the extent item from disk (data not in the page cache).
4285 btrfs_release_path(path);
4286 return btrfs_truncate_block(inode, offset, page_end - offset,
4290 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4291 size = btrfs_file_extent_calc_inline_size(size);
4292 btrfs_truncate_item(root, path, size, 1);
4294 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4295 inode_sub_bytes(inode, item_end + 1 - new_size);
4301 * this can truncate away extent items, csum items and directory items.
4302 * It starts at a high offset and removes keys until it can't find
4303 * any higher than new_size
4305 * csum items that cross the new i_size are truncated to the new size
4308 * min_type is the minimum key type to truncate down to. If set to 0, this
4309 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4311 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4312 struct btrfs_root *root,
4313 struct inode *inode,
4314 u64 new_size, u32 min_type)
4316 struct btrfs_path *path;
4317 struct extent_buffer *leaf;
4318 struct btrfs_file_extent_item *fi;
4319 struct btrfs_key key;
4320 struct btrfs_key found_key;
4321 u64 extent_start = 0;
4322 u64 extent_num_bytes = 0;
4323 u64 extent_offset = 0;
4325 u64 last_size = new_size;
4326 u32 found_type = (u8)-1;
4329 int pending_del_nr = 0;
4330 int pending_del_slot = 0;
4331 int extent_type = -1;
4334 u64 ino = btrfs_ino(inode);
4335 u64 bytes_deleted = 0;
4337 bool should_throttle = 0;
4338 bool should_end = 0;
4340 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4343 * for non-free space inodes and ref cows, we want to back off from
4346 if (!btrfs_is_free_space_inode(inode) &&
4347 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4350 path = btrfs_alloc_path();
4353 path->reada = READA_BACK;
4356 * We want to drop from the next block forward in case this new size is
4357 * not block aligned since we will be keeping the last block of the
4358 * extent just the way it is.
4360 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4361 root == root->fs_info->tree_root)
4362 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4363 root->sectorsize), (u64)-1, 0);
4366 * This function is also used to drop the items in the log tree before
4367 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4368 * it is used to drop the loged items. So we shouldn't kill the delayed
4371 if (min_type == 0 && root == BTRFS_I(inode)->root)
4372 btrfs_kill_delayed_inode_items(inode);
4375 key.offset = (u64)-1;
4380 * with a 16K leaf size and 128MB extents, you can actually queue
4381 * up a huge file in a single leaf. Most of the time that
4382 * bytes_deleted is > 0, it will be huge by the time we get here
4384 if (be_nice && bytes_deleted > SZ_32M) {
4385 if (btrfs_should_end_transaction(trans, root)) {
4392 path->leave_spinning = 1;
4393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4400 /* there are no items in the tree for us to truncate, we're
4403 if (path->slots[0] == 0)
4410 leaf = path->nodes[0];
4411 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4412 found_type = found_key.type;
4414 if (found_key.objectid != ino)
4417 if (found_type < min_type)
4420 item_end = found_key.offset;
4421 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4422 fi = btrfs_item_ptr(leaf, path->slots[0],
4423 struct btrfs_file_extent_item);
4424 extent_type = btrfs_file_extent_type(leaf, fi);
4425 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4427 btrfs_file_extent_num_bytes(leaf, fi);
4428 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4429 item_end += btrfs_file_extent_inline_len(leaf,
4430 path->slots[0], fi);
4434 if (found_type > min_type) {
4437 if (item_end < new_size)
4439 if (found_key.offset >= new_size)
4445 /* FIXME, shrink the extent if the ref count is only 1 */
4446 if (found_type != BTRFS_EXTENT_DATA_KEY)
4450 last_size = found_key.offset;
4452 last_size = new_size;
4454 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4456 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4458 u64 orig_num_bytes =
4459 btrfs_file_extent_num_bytes(leaf, fi);
4460 extent_num_bytes = ALIGN(new_size -
4463 btrfs_set_file_extent_num_bytes(leaf, fi,
4465 num_dec = (orig_num_bytes -
4467 if (test_bit(BTRFS_ROOT_REF_COWS,
4470 inode_sub_bytes(inode, num_dec);
4471 btrfs_mark_buffer_dirty(leaf);
4474 btrfs_file_extent_disk_num_bytes(leaf,
4476 extent_offset = found_key.offset -
4477 btrfs_file_extent_offset(leaf, fi);
4479 /* FIXME blocksize != 4096 */
4480 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4481 if (extent_start != 0) {
4483 if (test_bit(BTRFS_ROOT_REF_COWS,
4485 inode_sub_bytes(inode, num_dec);
4488 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4490 * we can't truncate inline items that have had
4494 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4495 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4498 * Need to release path in order to truncate a
4499 * compressed extent. So delete any accumulated
4500 * extent items so far.
4502 if (btrfs_file_extent_compression(leaf, fi) !=
4503 BTRFS_COMPRESS_NONE && pending_del_nr) {
4504 err = btrfs_del_items(trans, root, path,
4508 btrfs_abort_transaction(trans,
4516 err = truncate_inline_extent(inode, path,
4521 btrfs_abort_transaction(trans,
4525 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4527 inode_sub_bytes(inode, item_end + 1 - new_size);
4532 if (!pending_del_nr) {
4533 /* no pending yet, add ourselves */
4534 pending_del_slot = path->slots[0];
4536 } else if (pending_del_nr &&
4537 path->slots[0] + 1 == pending_del_slot) {
4538 /* hop on the pending chunk */
4540 pending_del_slot = path->slots[0];
4547 should_throttle = 0;
4550 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4551 root == root->fs_info->tree_root)) {
4552 btrfs_set_path_blocking(path);
4553 bytes_deleted += extent_num_bytes;
4554 ret = btrfs_free_extent(trans, root, extent_start,
4555 extent_num_bytes, 0,
4556 btrfs_header_owner(leaf),
4557 ino, extent_offset);
4559 if (btrfs_should_throttle_delayed_refs(trans, root))
4560 btrfs_async_run_delayed_refs(root,
4561 trans->delayed_ref_updates * 2, 0);
4563 if (truncate_space_check(trans, root,
4564 extent_num_bytes)) {
4567 if (btrfs_should_throttle_delayed_refs(trans,
4569 should_throttle = 1;
4574 if (found_type == BTRFS_INODE_ITEM_KEY)
4577 if (path->slots[0] == 0 ||
4578 path->slots[0] != pending_del_slot ||
4579 should_throttle || should_end) {
4580 if (pending_del_nr) {
4581 ret = btrfs_del_items(trans, root, path,
4585 btrfs_abort_transaction(trans,
4591 btrfs_release_path(path);
4592 if (should_throttle) {
4593 unsigned long updates = trans->delayed_ref_updates;
4595 trans->delayed_ref_updates = 0;
4596 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4602 * if we failed to refill our space rsv, bail out
4603 * and let the transaction restart
4615 if (pending_del_nr) {
4616 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4619 btrfs_abort_transaction(trans, root, ret);
4622 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4623 btrfs_ordered_update_i_size(inode, last_size, NULL);
4625 btrfs_free_path(path);
4627 if (be_nice && bytes_deleted > SZ_32M) {
4628 unsigned long updates = trans->delayed_ref_updates;
4630 trans->delayed_ref_updates = 0;
4631 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4640 * btrfs_truncate_block - read, zero a chunk and write a block
4641 * @inode - inode that we're zeroing
4642 * @from - the offset to start zeroing
4643 * @len - the length to zero, 0 to zero the entire range respective to the
4645 * @front - zero up to the offset instead of from the offset on
4647 * This will find the block for the "from" offset and cow the block and zero the
4648 * part we want to zero. This is used with truncate and hole punching.
4650 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4653 struct address_space *mapping = inode->i_mapping;
4654 struct btrfs_root *root = BTRFS_I(inode)->root;
4655 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4656 struct btrfs_ordered_extent *ordered;
4657 struct extent_state *cached_state = NULL;
4659 u32 blocksize = root->sectorsize;
4660 pgoff_t index = from >> PAGE_SHIFT;
4661 unsigned offset = from & (blocksize - 1);
4663 gfp_t mask = btrfs_alloc_write_mask(mapping);
4668 if ((offset & (blocksize - 1)) == 0 &&
4669 (!len || ((len & (blocksize - 1)) == 0)))
4672 ret = btrfs_delalloc_reserve_space(inode,
4673 round_down(from, blocksize), blocksize);
4678 page = find_or_create_page(mapping, index, mask);
4680 btrfs_delalloc_release_space(inode,
4681 round_down(from, blocksize),
4687 block_start = round_down(from, blocksize);
4688 block_end = block_start + blocksize - 1;
4690 if (!PageUptodate(page)) {
4691 ret = btrfs_readpage(NULL, page);
4693 if (page->mapping != mapping) {
4698 if (!PageUptodate(page)) {
4703 wait_on_page_writeback(page);
4705 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4706 set_page_extent_mapped(page);
4708 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4710 unlock_extent_cached(io_tree, block_start, block_end,
4711 &cached_state, GFP_NOFS);
4714 btrfs_start_ordered_extent(inode, ordered, 1);
4715 btrfs_put_ordered_extent(ordered);
4719 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4720 EXTENT_DIRTY | EXTENT_DELALLOC |
4721 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4722 0, 0, &cached_state, GFP_NOFS);
4724 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4727 unlock_extent_cached(io_tree, block_start, block_end,
4728 &cached_state, GFP_NOFS);
4732 if (offset != blocksize) {
4734 len = blocksize - offset;
4737 memset(kaddr + (block_start - page_offset(page)),
4740 memset(kaddr + (block_start - page_offset(page)) + offset,
4742 flush_dcache_page(page);
4745 ClearPageChecked(page);
4746 set_page_dirty(page);
4747 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4752 btrfs_delalloc_release_space(inode, block_start,
4760 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4761 u64 offset, u64 len)
4763 struct btrfs_trans_handle *trans;
4767 * Still need to make sure the inode looks like it's been updated so
4768 * that any holes get logged if we fsync.
4770 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4771 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4772 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4773 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4778 * 1 - for the one we're dropping
4779 * 1 - for the one we're adding
4780 * 1 - for updating the inode.
4782 trans = btrfs_start_transaction(root, 3);
4784 return PTR_ERR(trans);
4786 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4788 btrfs_abort_transaction(trans, root, ret);
4789 btrfs_end_transaction(trans, root);
4793 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4794 0, 0, len, 0, len, 0, 0, 0);
4796 btrfs_abort_transaction(trans, root, ret);
4798 btrfs_update_inode(trans, root, inode);
4799 btrfs_end_transaction(trans, root);
4804 * This function puts in dummy file extents for the area we're creating a hole
4805 * for. So if we are truncating this file to a larger size we need to insert
4806 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4807 * the range between oldsize and size
4809 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4811 struct btrfs_root *root = BTRFS_I(inode)->root;
4812 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4813 struct extent_map *em = NULL;
4814 struct extent_state *cached_state = NULL;
4815 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4816 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4817 u64 block_end = ALIGN(size, root->sectorsize);
4824 * If our size started in the middle of a block we need to zero out the
4825 * rest of the block before we expand the i_size, otherwise we could
4826 * expose stale data.
4828 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4832 if (size <= hole_start)
4836 struct btrfs_ordered_extent *ordered;
4838 lock_extent_bits(io_tree, hole_start, block_end - 1,
4840 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4841 block_end - hole_start);
4844 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4845 &cached_state, GFP_NOFS);
4846 btrfs_start_ordered_extent(inode, ordered, 1);
4847 btrfs_put_ordered_extent(ordered);
4850 cur_offset = hole_start;
4852 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4853 block_end - cur_offset, 0);
4859 last_byte = min(extent_map_end(em), block_end);
4860 last_byte = ALIGN(last_byte , root->sectorsize);
4861 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4862 struct extent_map *hole_em;
4863 hole_size = last_byte - cur_offset;
4865 err = maybe_insert_hole(root, inode, cur_offset,
4869 btrfs_drop_extent_cache(inode, cur_offset,
4870 cur_offset + hole_size - 1, 0);
4871 hole_em = alloc_extent_map();
4873 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4874 &BTRFS_I(inode)->runtime_flags);
4877 hole_em->start = cur_offset;
4878 hole_em->len = hole_size;
4879 hole_em->orig_start = cur_offset;
4881 hole_em->block_start = EXTENT_MAP_HOLE;
4882 hole_em->block_len = 0;
4883 hole_em->orig_block_len = 0;
4884 hole_em->ram_bytes = hole_size;
4885 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4886 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4887 hole_em->generation = root->fs_info->generation;
4890 write_lock(&em_tree->lock);
4891 err = add_extent_mapping(em_tree, hole_em, 1);
4892 write_unlock(&em_tree->lock);
4895 btrfs_drop_extent_cache(inode, cur_offset,
4899 free_extent_map(hole_em);
4902 free_extent_map(em);
4904 cur_offset = last_byte;
4905 if (cur_offset >= block_end)
4908 free_extent_map(em);
4909 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4914 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4916 struct btrfs_root *root = BTRFS_I(inode)->root;
4917 struct btrfs_trans_handle *trans;
4918 loff_t oldsize = i_size_read(inode);
4919 loff_t newsize = attr->ia_size;
4920 int mask = attr->ia_valid;
4924 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4925 * special case where we need to update the times despite not having
4926 * these flags set. For all other operations the VFS set these flags
4927 * explicitly if it wants a timestamp update.
4929 if (newsize != oldsize) {
4930 inode_inc_iversion(inode);
4931 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4932 inode->i_ctime = inode->i_mtime =
4933 current_fs_time(inode->i_sb);
4936 if (newsize > oldsize) {
4938 * Don't do an expanding truncate while snapshoting is ongoing.
4939 * This is to ensure the snapshot captures a fully consistent
4940 * state of this file - if the snapshot captures this expanding
4941 * truncation, it must capture all writes that happened before
4944 btrfs_wait_for_snapshot_creation(root);
4945 ret = btrfs_cont_expand(inode, oldsize, newsize);
4947 btrfs_end_write_no_snapshoting(root);
4951 trans = btrfs_start_transaction(root, 1);
4952 if (IS_ERR(trans)) {
4953 btrfs_end_write_no_snapshoting(root);
4954 return PTR_ERR(trans);
4957 i_size_write(inode, newsize);
4958 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4959 pagecache_isize_extended(inode, oldsize, newsize);
4960 ret = btrfs_update_inode(trans, root, inode);
4961 btrfs_end_write_no_snapshoting(root);
4962 btrfs_end_transaction(trans, root);
4966 * We're truncating a file that used to have good data down to
4967 * zero. Make sure it gets into the ordered flush list so that
4968 * any new writes get down to disk quickly.
4971 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4972 &BTRFS_I(inode)->runtime_flags);
4975 * 1 for the orphan item we're going to add
4976 * 1 for the orphan item deletion.
4978 trans = btrfs_start_transaction(root, 2);
4980 return PTR_ERR(trans);
4983 * We need to do this in case we fail at _any_ point during the
4984 * actual truncate. Once we do the truncate_setsize we could
4985 * invalidate pages which forces any outstanding ordered io to
4986 * be instantly completed which will give us extents that need
4987 * to be truncated. If we fail to get an orphan inode down we
4988 * could have left over extents that were never meant to live,
4989 * so we need to guarantee from this point on that everything
4990 * will be consistent.
4992 ret = btrfs_orphan_add(trans, inode);
4993 btrfs_end_transaction(trans, root);
4997 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4998 truncate_setsize(inode, newsize);
5000 /* Disable nonlocked read DIO to avoid the end less truncate */
5001 btrfs_inode_block_unlocked_dio(inode);
5002 inode_dio_wait(inode);
5003 btrfs_inode_resume_unlocked_dio(inode);
5005 ret = btrfs_truncate(inode);
5006 if (ret && inode->i_nlink) {
5010 * failed to truncate, disk_i_size is only adjusted down
5011 * as we remove extents, so it should represent the true
5012 * size of the inode, so reset the in memory size and
5013 * delete our orphan entry.
5015 trans = btrfs_join_transaction(root);
5016 if (IS_ERR(trans)) {
5017 btrfs_orphan_del(NULL, inode);
5020 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5021 err = btrfs_orphan_del(trans, inode);
5023 btrfs_abort_transaction(trans, root, err);
5024 btrfs_end_transaction(trans, root);
5031 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5033 struct inode *inode = d_inode(dentry);
5034 struct btrfs_root *root = BTRFS_I(inode)->root;
5037 if (btrfs_root_readonly(root))
5040 err = inode_change_ok(inode, attr);
5044 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5045 err = btrfs_setsize(inode, attr);
5050 if (attr->ia_valid) {
5051 setattr_copy(inode, attr);
5052 inode_inc_iversion(inode);
5053 err = btrfs_dirty_inode(inode);
5055 if (!err && attr->ia_valid & ATTR_MODE)
5056 err = posix_acl_chmod(inode, inode->i_mode);
5063 * While truncating the inode pages during eviction, we get the VFS calling
5064 * btrfs_invalidatepage() against each page of the inode. This is slow because
5065 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5066 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5067 * extent_state structures over and over, wasting lots of time.
5069 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5070 * those expensive operations on a per page basis and do only the ordered io
5071 * finishing, while we release here the extent_map and extent_state structures,
5072 * without the excessive merging and splitting.
5074 static void evict_inode_truncate_pages(struct inode *inode)
5076 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5077 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5078 struct rb_node *node;
5080 ASSERT(inode->i_state & I_FREEING);
5081 truncate_inode_pages_final(&inode->i_data);
5083 write_lock(&map_tree->lock);
5084 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5085 struct extent_map *em;
5087 node = rb_first(&map_tree->map);
5088 em = rb_entry(node, struct extent_map, rb_node);
5089 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5090 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5091 remove_extent_mapping(map_tree, em);
5092 free_extent_map(em);
5093 if (need_resched()) {
5094 write_unlock(&map_tree->lock);
5096 write_lock(&map_tree->lock);
5099 write_unlock(&map_tree->lock);
5102 * Keep looping until we have no more ranges in the io tree.
5103 * We can have ongoing bios started by readpages (called from readahead)
5104 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5105 * still in progress (unlocked the pages in the bio but did not yet
5106 * unlocked the ranges in the io tree). Therefore this means some
5107 * ranges can still be locked and eviction started because before
5108 * submitting those bios, which are executed by a separate task (work
5109 * queue kthread), inode references (inode->i_count) were not taken
5110 * (which would be dropped in the end io callback of each bio).
5111 * Therefore here we effectively end up waiting for those bios and
5112 * anyone else holding locked ranges without having bumped the inode's
5113 * reference count - if we don't do it, when they access the inode's
5114 * io_tree to unlock a range it may be too late, leading to an
5115 * use-after-free issue.
5117 spin_lock(&io_tree->lock);
5118 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5119 struct extent_state *state;
5120 struct extent_state *cached_state = NULL;
5124 node = rb_first(&io_tree->state);
5125 state = rb_entry(node, struct extent_state, rb_node);
5126 start = state->start;
5128 spin_unlock(&io_tree->lock);
5130 lock_extent_bits(io_tree, start, end, &cached_state);
5133 * If still has DELALLOC flag, the extent didn't reach disk,
5134 * and its reserved space won't be freed by delayed_ref.
5135 * So we need to free its reserved space here.
5136 * (Refer to comment in btrfs_invalidatepage, case 2)
5138 * Note, end is the bytenr of last byte, so we need + 1 here.
5140 if (state->state & EXTENT_DELALLOC)
5141 btrfs_qgroup_free_data(inode, start, end - start + 1);
5143 clear_extent_bit(io_tree, start, end,
5144 EXTENT_LOCKED | EXTENT_DIRTY |
5145 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5146 EXTENT_DEFRAG, 1, 1,
5147 &cached_state, GFP_NOFS);
5150 spin_lock(&io_tree->lock);
5152 spin_unlock(&io_tree->lock);
5155 void btrfs_evict_inode(struct inode *inode)
5157 struct btrfs_trans_handle *trans;
5158 struct btrfs_root *root = BTRFS_I(inode)->root;
5159 struct btrfs_block_rsv *rsv, *global_rsv;
5160 int steal_from_global = 0;
5161 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5164 trace_btrfs_inode_evict(inode);
5166 evict_inode_truncate_pages(inode);
5168 if (inode->i_nlink &&
5169 ((btrfs_root_refs(&root->root_item) != 0 &&
5170 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5171 btrfs_is_free_space_inode(inode)))
5174 if (is_bad_inode(inode)) {
5175 btrfs_orphan_del(NULL, inode);
5178 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5179 if (!special_file(inode->i_mode))
5180 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5182 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5184 if (root->fs_info->log_root_recovering) {
5185 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5186 &BTRFS_I(inode)->runtime_flags));
5190 if (inode->i_nlink > 0) {
5191 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5192 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5196 ret = btrfs_commit_inode_delayed_inode(inode);
5198 btrfs_orphan_del(NULL, inode);
5202 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5204 btrfs_orphan_del(NULL, inode);
5207 rsv->size = min_size;
5209 global_rsv = &root->fs_info->global_block_rsv;
5211 btrfs_i_size_write(inode, 0);
5214 * This is a bit simpler than btrfs_truncate since we've already
5215 * reserved our space for our orphan item in the unlink, so we just
5216 * need to reserve some slack space in case we add bytes and update
5217 * inode item when doing the truncate.
5220 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5221 BTRFS_RESERVE_FLUSH_LIMIT);
5224 * Try and steal from the global reserve since we will
5225 * likely not use this space anyway, we want to try as
5226 * hard as possible to get this to work.
5229 steal_from_global++;
5231 steal_from_global = 0;
5235 * steal_from_global == 0: we reserved stuff, hooray!
5236 * steal_from_global == 1: we didn't reserve stuff, boo!
5237 * steal_from_global == 2: we've committed, still not a lot of
5238 * room but maybe we'll have room in the global reserve this
5240 * steal_from_global == 3: abandon all hope!
5242 if (steal_from_global > 2) {
5243 btrfs_warn(root->fs_info,
5244 "Could not get space for a delete, will truncate on mount %d",
5246 btrfs_orphan_del(NULL, inode);
5247 btrfs_free_block_rsv(root, rsv);
5251 trans = btrfs_join_transaction(root);
5252 if (IS_ERR(trans)) {
5253 btrfs_orphan_del(NULL, inode);
5254 btrfs_free_block_rsv(root, rsv);
5259 * We can't just steal from the global reserve, we need to make
5260 * sure there is room to do it, if not we need to commit and try
5263 if (steal_from_global) {
5264 if (!btrfs_check_space_for_delayed_refs(trans, root))
5265 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5272 * Couldn't steal from the global reserve, we have too much
5273 * pending stuff built up, commit the transaction and try it
5277 ret = btrfs_commit_transaction(trans, root);
5279 btrfs_orphan_del(NULL, inode);
5280 btrfs_free_block_rsv(root, rsv);
5285 steal_from_global = 0;
5288 trans->block_rsv = rsv;
5290 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5291 if (ret != -ENOSPC && ret != -EAGAIN)
5294 trans->block_rsv = &root->fs_info->trans_block_rsv;
5295 btrfs_end_transaction(trans, root);
5297 btrfs_btree_balance_dirty(root);
5300 btrfs_free_block_rsv(root, rsv);
5303 * Errors here aren't a big deal, it just means we leave orphan items
5304 * in the tree. They will be cleaned up on the next mount.
5307 trans->block_rsv = root->orphan_block_rsv;
5308 btrfs_orphan_del(trans, inode);
5310 btrfs_orphan_del(NULL, inode);
5313 trans->block_rsv = &root->fs_info->trans_block_rsv;
5314 if (!(root == root->fs_info->tree_root ||
5315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5316 btrfs_return_ino(root, btrfs_ino(inode));
5318 btrfs_end_transaction(trans, root);
5319 btrfs_btree_balance_dirty(root);
5321 btrfs_remove_delayed_node(inode);
5326 * this returns the key found in the dir entry in the location pointer.
5327 * If no dir entries were found, location->objectid is 0.
5329 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5330 struct btrfs_key *location)
5332 const char *name = dentry->d_name.name;
5333 int namelen = dentry->d_name.len;
5334 struct btrfs_dir_item *di;
5335 struct btrfs_path *path;
5336 struct btrfs_root *root = BTRFS_I(dir)->root;
5339 path = btrfs_alloc_path();
5343 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5348 if (IS_ERR_OR_NULL(di))
5351 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5353 btrfs_free_path(path);
5356 location->objectid = 0;
5361 * when we hit a tree root in a directory, the btrfs part of the inode
5362 * needs to be changed to reflect the root directory of the tree root. This
5363 * is kind of like crossing a mount point.
5365 static int fixup_tree_root_location(struct btrfs_root *root,
5367 struct dentry *dentry,
5368 struct btrfs_key *location,
5369 struct btrfs_root **sub_root)
5371 struct btrfs_path *path;
5372 struct btrfs_root *new_root;
5373 struct btrfs_root_ref *ref;
5374 struct extent_buffer *leaf;
5375 struct btrfs_key key;
5379 path = btrfs_alloc_path();
5386 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5387 key.type = BTRFS_ROOT_REF_KEY;
5388 key.offset = location->objectid;
5390 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5398 leaf = path->nodes[0];
5399 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5400 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5401 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5404 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5405 (unsigned long)(ref + 1),
5406 dentry->d_name.len);
5410 btrfs_release_path(path);
5412 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5413 if (IS_ERR(new_root)) {
5414 err = PTR_ERR(new_root);
5418 *sub_root = new_root;
5419 location->objectid = btrfs_root_dirid(&new_root->root_item);
5420 location->type = BTRFS_INODE_ITEM_KEY;
5421 location->offset = 0;
5424 btrfs_free_path(path);
5428 static void inode_tree_add(struct inode *inode)
5430 struct btrfs_root *root = BTRFS_I(inode)->root;
5431 struct btrfs_inode *entry;
5433 struct rb_node *parent;
5434 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5435 u64 ino = btrfs_ino(inode);
5437 if (inode_unhashed(inode))
5440 spin_lock(&root->inode_lock);
5441 p = &root->inode_tree.rb_node;
5444 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5446 if (ino < btrfs_ino(&entry->vfs_inode))
5447 p = &parent->rb_left;
5448 else if (ino > btrfs_ino(&entry->vfs_inode))
5449 p = &parent->rb_right;
5451 WARN_ON(!(entry->vfs_inode.i_state &
5452 (I_WILL_FREE | I_FREEING)));
5453 rb_replace_node(parent, new, &root->inode_tree);
5454 RB_CLEAR_NODE(parent);
5455 spin_unlock(&root->inode_lock);
5459 rb_link_node(new, parent, p);
5460 rb_insert_color(new, &root->inode_tree);
5461 spin_unlock(&root->inode_lock);
5464 static void inode_tree_del(struct inode *inode)
5466 struct btrfs_root *root = BTRFS_I(inode)->root;
5469 spin_lock(&root->inode_lock);
5470 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5471 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5472 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5473 empty = RB_EMPTY_ROOT(&root->inode_tree);
5475 spin_unlock(&root->inode_lock);
5477 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5478 synchronize_srcu(&root->fs_info->subvol_srcu);
5479 spin_lock(&root->inode_lock);
5480 empty = RB_EMPTY_ROOT(&root->inode_tree);
5481 spin_unlock(&root->inode_lock);
5483 btrfs_add_dead_root(root);
5487 void btrfs_invalidate_inodes(struct btrfs_root *root)
5489 struct rb_node *node;
5490 struct rb_node *prev;
5491 struct btrfs_inode *entry;
5492 struct inode *inode;
5495 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5496 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5498 spin_lock(&root->inode_lock);
5500 node = root->inode_tree.rb_node;
5504 entry = rb_entry(node, struct btrfs_inode, rb_node);
5506 if (objectid < btrfs_ino(&entry->vfs_inode))
5507 node = node->rb_left;
5508 else if (objectid > btrfs_ino(&entry->vfs_inode))
5509 node = node->rb_right;
5515 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5516 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5520 prev = rb_next(prev);
5524 entry = rb_entry(node, struct btrfs_inode, rb_node);
5525 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5526 inode = igrab(&entry->vfs_inode);
5528 spin_unlock(&root->inode_lock);
5529 if (atomic_read(&inode->i_count) > 1)
5530 d_prune_aliases(inode);
5532 * btrfs_drop_inode will have it removed from
5533 * the inode cache when its usage count
5538 spin_lock(&root->inode_lock);
5542 if (cond_resched_lock(&root->inode_lock))
5545 node = rb_next(node);
5547 spin_unlock(&root->inode_lock);
5550 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5552 struct btrfs_iget_args *args = p;
5553 inode->i_ino = args->location->objectid;
5554 memcpy(&BTRFS_I(inode)->location, args->location,
5555 sizeof(*args->location));
5556 BTRFS_I(inode)->root = args->root;
5560 static int btrfs_find_actor(struct inode *inode, void *opaque)
5562 struct btrfs_iget_args *args = opaque;
5563 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5564 args->root == BTRFS_I(inode)->root;
5567 static struct inode *btrfs_iget_locked(struct super_block *s,
5568 struct btrfs_key *location,
5569 struct btrfs_root *root)
5571 struct inode *inode;
5572 struct btrfs_iget_args args;
5573 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5575 args.location = location;
5578 inode = iget5_locked(s, hashval, btrfs_find_actor,
5579 btrfs_init_locked_inode,
5584 /* Get an inode object given its location and corresponding root.
5585 * Returns in *is_new if the inode was read from disk
5587 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5588 struct btrfs_root *root, int *new)
5590 struct inode *inode;
5592 inode = btrfs_iget_locked(s, location, root);
5594 return ERR_PTR(-ENOMEM);
5596 if (inode->i_state & I_NEW) {
5597 btrfs_read_locked_inode(inode);
5598 if (!is_bad_inode(inode)) {
5599 inode_tree_add(inode);
5600 unlock_new_inode(inode);
5604 unlock_new_inode(inode);
5606 inode = ERR_PTR(-ESTALE);
5613 static struct inode *new_simple_dir(struct super_block *s,
5614 struct btrfs_key *key,
5615 struct btrfs_root *root)
5617 struct inode *inode = new_inode(s);
5620 return ERR_PTR(-ENOMEM);
5622 BTRFS_I(inode)->root = root;
5623 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5624 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5626 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5627 inode->i_op = &btrfs_dir_ro_inode_operations;
5628 inode->i_fop = &simple_dir_operations;
5629 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5630 inode->i_mtime = current_fs_time(inode->i_sb);
5631 inode->i_atime = inode->i_mtime;
5632 inode->i_ctime = inode->i_mtime;
5633 BTRFS_I(inode)->i_otime = inode->i_mtime;
5638 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5640 struct inode *inode;
5641 struct btrfs_root *root = BTRFS_I(dir)->root;
5642 struct btrfs_root *sub_root = root;
5643 struct btrfs_key location;
5647 if (dentry->d_name.len > BTRFS_NAME_LEN)
5648 return ERR_PTR(-ENAMETOOLONG);
5650 ret = btrfs_inode_by_name(dir, dentry, &location);
5652 return ERR_PTR(ret);
5654 if (location.objectid == 0)
5655 return ERR_PTR(-ENOENT);
5657 if (location.type == BTRFS_INODE_ITEM_KEY) {
5658 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5662 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5664 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5665 ret = fixup_tree_root_location(root, dir, dentry,
5666 &location, &sub_root);
5669 inode = ERR_PTR(ret);
5671 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5673 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5675 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5677 if (!IS_ERR(inode) && root != sub_root) {
5678 down_read(&root->fs_info->cleanup_work_sem);
5679 if (!(inode->i_sb->s_flags & MS_RDONLY))
5680 ret = btrfs_orphan_cleanup(sub_root);
5681 up_read(&root->fs_info->cleanup_work_sem);
5684 inode = ERR_PTR(ret);
5691 static int btrfs_dentry_delete(const struct dentry *dentry)
5693 struct btrfs_root *root;
5694 struct inode *inode = d_inode(dentry);
5696 if (!inode && !IS_ROOT(dentry))
5697 inode = d_inode(dentry->d_parent);
5700 root = BTRFS_I(inode)->root;
5701 if (btrfs_root_refs(&root->root_item) == 0)
5704 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5710 static void btrfs_dentry_release(struct dentry *dentry)
5712 kfree(dentry->d_fsdata);
5715 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5718 struct inode *inode;
5720 inode = btrfs_lookup_dentry(dir, dentry);
5721 if (IS_ERR(inode)) {
5722 if (PTR_ERR(inode) == -ENOENT)
5725 return ERR_CAST(inode);
5728 return d_splice_alias(inode, dentry);
5731 unsigned char btrfs_filetype_table[] = {
5732 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5735 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5737 struct inode *inode = file_inode(file);
5738 struct btrfs_root *root = BTRFS_I(inode)->root;
5739 struct btrfs_item *item;
5740 struct btrfs_dir_item *di;
5741 struct btrfs_key key;
5742 struct btrfs_key found_key;
5743 struct btrfs_path *path;
5744 struct list_head ins_list;
5745 struct list_head del_list;
5747 struct extent_buffer *leaf;
5749 unsigned char d_type;
5754 int key_type = BTRFS_DIR_INDEX_KEY;
5758 int is_curr = 0; /* ctx->pos points to the current index? */
5761 /* FIXME, use a real flag for deciding about the key type */
5762 if (root->fs_info->tree_root == root)
5763 key_type = BTRFS_DIR_ITEM_KEY;
5765 if (!dir_emit_dots(file, ctx))
5768 path = btrfs_alloc_path();
5772 path->reada = READA_FORWARD;
5774 if (key_type == BTRFS_DIR_INDEX_KEY) {
5775 INIT_LIST_HEAD(&ins_list);
5776 INIT_LIST_HEAD(&del_list);
5777 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5780 key.type = key_type;
5781 key.offset = ctx->pos;
5782 key.objectid = btrfs_ino(inode);
5784 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5790 leaf = path->nodes[0];
5791 slot = path->slots[0];
5792 if (slot >= btrfs_header_nritems(leaf)) {
5793 ret = btrfs_next_leaf(root, path);
5801 item = btrfs_item_nr(slot);
5802 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5804 if (found_key.objectid != key.objectid)
5806 if (found_key.type != key_type)
5808 if (found_key.offset < ctx->pos)
5810 if (key_type == BTRFS_DIR_INDEX_KEY &&
5811 btrfs_should_delete_dir_index(&del_list,
5815 ctx->pos = found_key.offset;
5818 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5820 di_total = btrfs_item_size(leaf, item);
5822 while (di_cur < di_total) {
5823 struct btrfs_key location;
5825 if (verify_dir_item(root, leaf, di))
5828 name_len = btrfs_dir_name_len(leaf, di);
5829 if (name_len <= sizeof(tmp_name)) {
5830 name_ptr = tmp_name;
5832 name_ptr = kmalloc(name_len, GFP_KERNEL);
5838 read_extent_buffer(leaf, name_ptr,
5839 (unsigned long)(di + 1), name_len);
5841 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5842 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5845 /* is this a reference to our own snapshot? If so
5848 * In contrast to old kernels, we insert the snapshot's
5849 * dir item and dir index after it has been created, so
5850 * we won't find a reference to our own snapshot. We
5851 * still keep the following code for backward
5854 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5855 location.objectid == root->root_key.objectid) {
5859 over = !dir_emit(ctx, name_ptr, name_len,
5860 location.objectid, d_type);
5863 if (name_ptr != tmp_name)
5869 di_len = btrfs_dir_name_len(leaf, di) +
5870 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5872 di = (struct btrfs_dir_item *)((char *)di + di_len);
5878 if (key_type == BTRFS_DIR_INDEX_KEY) {
5881 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5887 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5888 * it was was set to the termination value in previous call. We assume
5889 * that "." and ".." were emitted if we reach this point and set the
5890 * termination value as well for an empty directory.
5892 if (ctx->pos > 2 && !emitted)
5895 /* Reached end of directory/root. Bump pos past the last item. */
5899 * Stop new entries from being returned after we return the last
5902 * New directory entries are assigned a strictly increasing
5903 * offset. This means that new entries created during readdir
5904 * are *guaranteed* to be seen in the future by that readdir.
5905 * This has broken buggy programs which operate on names as
5906 * they're returned by readdir. Until we re-use freed offsets
5907 * we have this hack to stop new entries from being returned
5908 * under the assumption that they'll never reach this huge
5911 * This is being careful not to overflow 32bit loff_t unless the
5912 * last entry requires it because doing so has broken 32bit apps
5915 if (key_type == BTRFS_DIR_INDEX_KEY) {
5916 if (ctx->pos >= INT_MAX)
5917 ctx->pos = LLONG_MAX;
5924 if (key_type == BTRFS_DIR_INDEX_KEY)
5925 btrfs_put_delayed_items(&ins_list, &del_list);
5926 btrfs_free_path(path);
5930 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5932 struct btrfs_root *root = BTRFS_I(inode)->root;
5933 struct btrfs_trans_handle *trans;
5935 bool nolock = false;
5937 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5940 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5943 if (wbc->sync_mode == WB_SYNC_ALL) {
5945 trans = btrfs_join_transaction_nolock(root);
5947 trans = btrfs_join_transaction(root);
5949 return PTR_ERR(trans);
5950 ret = btrfs_commit_transaction(trans, root);
5956 * This is somewhat expensive, updating the tree every time the
5957 * inode changes. But, it is most likely to find the inode in cache.
5958 * FIXME, needs more benchmarking...there are no reasons other than performance
5959 * to keep or drop this code.
5961 static int btrfs_dirty_inode(struct inode *inode)
5963 struct btrfs_root *root = BTRFS_I(inode)->root;
5964 struct btrfs_trans_handle *trans;
5967 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5970 trans = btrfs_join_transaction(root);
5972 return PTR_ERR(trans);
5974 ret = btrfs_update_inode(trans, root, inode);
5975 if (ret && ret == -ENOSPC) {
5976 /* whoops, lets try again with the full transaction */
5977 btrfs_end_transaction(trans, root);
5978 trans = btrfs_start_transaction(root, 1);
5980 return PTR_ERR(trans);
5982 ret = btrfs_update_inode(trans, root, inode);
5984 btrfs_end_transaction(trans, root);
5985 if (BTRFS_I(inode)->delayed_node)
5986 btrfs_balance_delayed_items(root);
5992 * This is a copy of file_update_time. We need this so we can return error on
5993 * ENOSPC for updating the inode in the case of file write and mmap writes.
5995 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5998 struct btrfs_root *root = BTRFS_I(inode)->root;
6000 if (btrfs_root_readonly(root))
6003 if (flags & S_VERSION)
6004 inode_inc_iversion(inode);
6005 if (flags & S_CTIME)
6006 inode->i_ctime = *now;
6007 if (flags & S_MTIME)
6008 inode->i_mtime = *now;
6009 if (flags & S_ATIME)
6010 inode->i_atime = *now;
6011 return btrfs_dirty_inode(inode);
6015 * find the highest existing sequence number in a directory
6016 * and then set the in-memory index_cnt variable to reflect
6017 * free sequence numbers
6019 static int btrfs_set_inode_index_count(struct inode *inode)
6021 struct btrfs_root *root = BTRFS_I(inode)->root;
6022 struct btrfs_key key, found_key;
6023 struct btrfs_path *path;
6024 struct extent_buffer *leaf;
6027 key.objectid = btrfs_ino(inode);
6028 key.type = BTRFS_DIR_INDEX_KEY;
6029 key.offset = (u64)-1;
6031 path = btrfs_alloc_path();
6035 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6038 /* FIXME: we should be able to handle this */
6044 * MAGIC NUMBER EXPLANATION:
6045 * since we search a directory based on f_pos we have to start at 2
6046 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6047 * else has to start at 2
6049 if (path->slots[0] == 0) {
6050 BTRFS_I(inode)->index_cnt = 2;
6056 leaf = path->nodes[0];
6057 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6059 if (found_key.objectid != btrfs_ino(inode) ||
6060 found_key.type != BTRFS_DIR_INDEX_KEY) {
6061 BTRFS_I(inode)->index_cnt = 2;
6065 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6067 btrfs_free_path(path);
6072 * helper to find a free sequence number in a given directory. This current
6073 * code is very simple, later versions will do smarter things in the btree
6075 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6079 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6080 ret = btrfs_inode_delayed_dir_index_count(dir);
6082 ret = btrfs_set_inode_index_count(dir);
6088 *index = BTRFS_I(dir)->index_cnt;
6089 BTRFS_I(dir)->index_cnt++;
6094 static int btrfs_insert_inode_locked(struct inode *inode)
6096 struct btrfs_iget_args args;
6097 args.location = &BTRFS_I(inode)->location;
6098 args.root = BTRFS_I(inode)->root;
6100 return insert_inode_locked4(inode,
6101 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6102 btrfs_find_actor, &args);
6105 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6106 struct btrfs_root *root,
6108 const char *name, int name_len,
6109 u64 ref_objectid, u64 objectid,
6110 umode_t mode, u64 *index)
6112 struct inode *inode;
6113 struct btrfs_inode_item *inode_item;
6114 struct btrfs_key *location;
6115 struct btrfs_path *path;
6116 struct btrfs_inode_ref *ref;
6117 struct btrfs_key key[2];
6119 int nitems = name ? 2 : 1;
6123 path = btrfs_alloc_path();
6125 return ERR_PTR(-ENOMEM);
6127 inode = new_inode(root->fs_info->sb);
6129 btrfs_free_path(path);
6130 return ERR_PTR(-ENOMEM);
6134 * O_TMPFILE, set link count to 0, so that after this point,
6135 * we fill in an inode item with the correct link count.
6138 set_nlink(inode, 0);
6141 * we have to initialize this early, so we can reclaim the inode
6142 * number if we fail afterwards in this function.
6144 inode->i_ino = objectid;
6147 trace_btrfs_inode_request(dir);
6149 ret = btrfs_set_inode_index(dir, index);
6151 btrfs_free_path(path);
6153 return ERR_PTR(ret);
6159 * index_cnt is ignored for everything but a dir,
6160 * btrfs_get_inode_index_count has an explanation for the magic
6163 BTRFS_I(inode)->index_cnt = 2;
6164 BTRFS_I(inode)->dir_index = *index;
6165 BTRFS_I(inode)->root = root;
6166 BTRFS_I(inode)->generation = trans->transid;
6167 inode->i_generation = BTRFS_I(inode)->generation;
6170 * We could have gotten an inode number from somebody who was fsynced
6171 * and then removed in this same transaction, so let's just set full
6172 * sync since it will be a full sync anyway and this will blow away the
6173 * old info in the log.
6175 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6177 key[0].objectid = objectid;
6178 key[0].type = BTRFS_INODE_ITEM_KEY;
6181 sizes[0] = sizeof(struct btrfs_inode_item);
6185 * Start new inodes with an inode_ref. This is slightly more
6186 * efficient for small numbers of hard links since they will
6187 * be packed into one item. Extended refs will kick in if we
6188 * add more hard links than can fit in the ref item.
6190 key[1].objectid = objectid;
6191 key[1].type = BTRFS_INODE_REF_KEY;
6192 key[1].offset = ref_objectid;
6194 sizes[1] = name_len + sizeof(*ref);
6197 location = &BTRFS_I(inode)->location;
6198 location->objectid = objectid;
6199 location->offset = 0;
6200 location->type = BTRFS_INODE_ITEM_KEY;
6202 ret = btrfs_insert_inode_locked(inode);
6206 path->leave_spinning = 1;
6207 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6211 inode_init_owner(inode, dir, mode);
6212 inode_set_bytes(inode, 0);
6214 inode->i_mtime = current_fs_time(inode->i_sb);
6215 inode->i_atime = inode->i_mtime;
6216 inode->i_ctime = inode->i_mtime;
6217 BTRFS_I(inode)->i_otime = inode->i_mtime;
6219 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6220 struct btrfs_inode_item);
6221 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6222 sizeof(*inode_item));
6223 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6226 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6227 struct btrfs_inode_ref);
6228 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6229 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6230 ptr = (unsigned long)(ref + 1);
6231 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6234 btrfs_mark_buffer_dirty(path->nodes[0]);
6235 btrfs_free_path(path);
6237 btrfs_inherit_iflags(inode, dir);
6239 if (S_ISREG(mode)) {
6240 if (btrfs_test_opt(root, NODATASUM))
6241 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6242 if (btrfs_test_opt(root, NODATACOW))
6243 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6244 BTRFS_INODE_NODATASUM;
6247 inode_tree_add(inode);
6249 trace_btrfs_inode_new(inode);
6250 btrfs_set_inode_last_trans(trans, inode);
6252 btrfs_update_root_times(trans, root);
6254 ret = btrfs_inode_inherit_props(trans, inode, dir);
6256 btrfs_err(root->fs_info,
6257 "error inheriting props for ino %llu (root %llu): %d",
6258 btrfs_ino(inode), root->root_key.objectid, ret);
6263 unlock_new_inode(inode);
6266 BTRFS_I(dir)->index_cnt--;
6267 btrfs_free_path(path);
6269 return ERR_PTR(ret);
6272 static inline u8 btrfs_inode_type(struct inode *inode)
6274 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6278 * utility function to add 'inode' into 'parent_inode' with
6279 * a give name and a given sequence number.
6280 * if 'add_backref' is true, also insert a backref from the
6281 * inode to the parent directory.
6283 int btrfs_add_link(struct btrfs_trans_handle *trans,
6284 struct inode *parent_inode, struct inode *inode,
6285 const char *name, int name_len, int add_backref, u64 index)
6288 struct btrfs_key key;
6289 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6290 u64 ino = btrfs_ino(inode);
6291 u64 parent_ino = btrfs_ino(parent_inode);
6293 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6294 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6297 key.type = BTRFS_INODE_ITEM_KEY;
6301 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6302 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6303 key.objectid, root->root_key.objectid,
6304 parent_ino, index, name, name_len);
6305 } else if (add_backref) {
6306 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6310 /* Nothing to clean up yet */
6314 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6316 btrfs_inode_type(inode), index);
6317 if (ret == -EEXIST || ret == -EOVERFLOW)
6320 btrfs_abort_transaction(trans, root, ret);
6324 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6326 inode_inc_iversion(parent_inode);
6327 parent_inode->i_mtime = parent_inode->i_ctime =
6328 current_fs_time(parent_inode->i_sb);
6329 ret = btrfs_update_inode(trans, root, parent_inode);
6331 btrfs_abort_transaction(trans, root, ret);
6335 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6338 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6339 key.objectid, root->root_key.objectid,
6340 parent_ino, &local_index, name, name_len);
6342 } else if (add_backref) {
6346 err = btrfs_del_inode_ref(trans, root, name, name_len,
6347 ino, parent_ino, &local_index);
6352 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6353 struct inode *dir, struct dentry *dentry,
6354 struct inode *inode, int backref, u64 index)
6356 int err = btrfs_add_link(trans, dir, inode,
6357 dentry->d_name.name, dentry->d_name.len,
6364 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6365 umode_t mode, dev_t rdev)
6367 struct btrfs_trans_handle *trans;
6368 struct btrfs_root *root = BTRFS_I(dir)->root;
6369 struct inode *inode = NULL;
6376 * 2 for inode item and ref
6378 * 1 for xattr if selinux is on
6380 trans = btrfs_start_transaction(root, 5);
6382 return PTR_ERR(trans);
6384 err = btrfs_find_free_ino(root, &objectid);
6388 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6389 dentry->d_name.len, btrfs_ino(dir), objectid,
6391 if (IS_ERR(inode)) {
6392 err = PTR_ERR(inode);
6397 * If the active LSM wants to access the inode during
6398 * d_instantiate it needs these. Smack checks to see
6399 * if the filesystem supports xattrs by looking at the
6402 inode->i_op = &btrfs_special_inode_operations;
6403 init_special_inode(inode, inode->i_mode, rdev);
6405 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6407 goto out_unlock_inode;
6409 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6411 goto out_unlock_inode;
6413 btrfs_update_inode(trans, root, inode);
6414 unlock_new_inode(inode);
6415 d_instantiate(dentry, inode);
6419 btrfs_end_transaction(trans, root);
6420 btrfs_balance_delayed_items(root);
6421 btrfs_btree_balance_dirty(root);
6423 inode_dec_link_count(inode);
6430 unlock_new_inode(inode);
6435 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6436 umode_t mode, bool excl)
6438 struct btrfs_trans_handle *trans;
6439 struct btrfs_root *root = BTRFS_I(dir)->root;
6440 struct inode *inode = NULL;
6441 int drop_inode_on_err = 0;
6447 * 2 for inode item and ref
6449 * 1 for xattr if selinux is on
6451 trans = btrfs_start_transaction(root, 5);
6453 return PTR_ERR(trans);
6455 err = btrfs_find_free_ino(root, &objectid);
6459 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6460 dentry->d_name.len, btrfs_ino(dir), objectid,
6462 if (IS_ERR(inode)) {
6463 err = PTR_ERR(inode);
6466 drop_inode_on_err = 1;
6468 * If the active LSM wants to access the inode during
6469 * d_instantiate it needs these. Smack checks to see
6470 * if the filesystem supports xattrs by looking at the
6473 inode->i_fop = &btrfs_file_operations;
6474 inode->i_op = &btrfs_file_inode_operations;
6475 inode->i_mapping->a_ops = &btrfs_aops;
6477 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6479 goto out_unlock_inode;
6481 err = btrfs_update_inode(trans, root, inode);
6483 goto out_unlock_inode;
6485 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6487 goto out_unlock_inode;
6489 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6490 unlock_new_inode(inode);
6491 d_instantiate(dentry, inode);
6494 btrfs_end_transaction(trans, root);
6495 if (err && drop_inode_on_err) {
6496 inode_dec_link_count(inode);
6499 btrfs_balance_delayed_items(root);
6500 btrfs_btree_balance_dirty(root);
6504 unlock_new_inode(inode);
6509 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6510 struct dentry *dentry)
6512 struct btrfs_trans_handle *trans = NULL;
6513 struct btrfs_root *root = BTRFS_I(dir)->root;
6514 struct inode *inode = d_inode(old_dentry);
6519 /* do not allow sys_link's with other subvols of the same device */
6520 if (root->objectid != BTRFS_I(inode)->root->objectid)
6523 if (inode->i_nlink >= BTRFS_LINK_MAX)
6526 err = btrfs_set_inode_index(dir, &index);
6531 * 2 items for inode and inode ref
6532 * 2 items for dir items
6533 * 1 item for parent inode
6535 trans = btrfs_start_transaction(root, 5);
6536 if (IS_ERR(trans)) {
6537 err = PTR_ERR(trans);
6542 /* There are several dir indexes for this inode, clear the cache. */
6543 BTRFS_I(inode)->dir_index = 0ULL;
6545 inode_inc_iversion(inode);
6546 inode->i_ctime = current_fs_time(inode->i_sb);
6548 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6550 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6555 struct dentry *parent = dentry->d_parent;
6556 err = btrfs_update_inode(trans, root, inode);
6559 if (inode->i_nlink == 1) {
6561 * If new hard link count is 1, it's a file created
6562 * with open(2) O_TMPFILE flag.
6564 err = btrfs_orphan_del(trans, inode);
6568 d_instantiate(dentry, inode);
6569 btrfs_log_new_name(trans, inode, NULL, parent);
6572 btrfs_balance_delayed_items(root);
6575 btrfs_end_transaction(trans, root);
6577 inode_dec_link_count(inode);
6580 btrfs_btree_balance_dirty(root);
6584 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6586 struct inode *inode = NULL;
6587 struct btrfs_trans_handle *trans;
6588 struct btrfs_root *root = BTRFS_I(dir)->root;
6590 int drop_on_err = 0;
6595 * 2 items for inode and ref
6596 * 2 items for dir items
6597 * 1 for xattr if selinux is on
6599 trans = btrfs_start_transaction(root, 5);
6601 return PTR_ERR(trans);
6603 err = btrfs_find_free_ino(root, &objectid);
6607 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6608 dentry->d_name.len, btrfs_ino(dir), objectid,
6609 S_IFDIR | mode, &index);
6610 if (IS_ERR(inode)) {
6611 err = PTR_ERR(inode);
6616 /* these must be set before we unlock the inode */
6617 inode->i_op = &btrfs_dir_inode_operations;
6618 inode->i_fop = &btrfs_dir_file_operations;
6620 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6622 goto out_fail_inode;
6624 btrfs_i_size_write(inode, 0);
6625 err = btrfs_update_inode(trans, root, inode);
6627 goto out_fail_inode;
6629 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6630 dentry->d_name.len, 0, index);
6632 goto out_fail_inode;
6634 d_instantiate(dentry, inode);
6636 * mkdir is special. We're unlocking after we call d_instantiate
6637 * to avoid a race with nfsd calling d_instantiate.
6639 unlock_new_inode(inode);
6643 btrfs_end_transaction(trans, root);
6645 inode_dec_link_count(inode);
6648 btrfs_balance_delayed_items(root);
6649 btrfs_btree_balance_dirty(root);
6653 unlock_new_inode(inode);
6657 /* Find next extent map of a given extent map, caller needs to ensure locks */
6658 static struct extent_map *next_extent_map(struct extent_map *em)
6660 struct rb_node *next;
6662 next = rb_next(&em->rb_node);
6665 return container_of(next, struct extent_map, rb_node);
6668 static struct extent_map *prev_extent_map(struct extent_map *em)
6670 struct rb_node *prev;
6672 prev = rb_prev(&em->rb_node);
6675 return container_of(prev, struct extent_map, rb_node);
6678 /* helper for btfs_get_extent. Given an existing extent in the tree,
6679 * the existing extent is the nearest extent to map_start,
6680 * and an extent that you want to insert, deal with overlap and insert
6681 * the best fitted new extent into the tree.
6683 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6684 struct extent_map *existing,
6685 struct extent_map *em,
6688 struct extent_map *prev;
6689 struct extent_map *next;
6694 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6696 if (existing->start > map_start) {
6698 prev = prev_extent_map(next);
6701 next = next_extent_map(prev);
6704 start = prev ? extent_map_end(prev) : em->start;
6705 start = max_t(u64, start, em->start);
6706 end = next ? next->start : extent_map_end(em);
6707 end = min_t(u64, end, extent_map_end(em));
6708 start_diff = start - em->start;
6710 em->len = end - start;
6711 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6712 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6713 em->block_start += start_diff;
6714 em->block_len -= start_diff;
6716 return add_extent_mapping(em_tree, em, 0);
6719 static noinline int uncompress_inline(struct btrfs_path *path,
6721 size_t pg_offset, u64 extent_offset,
6722 struct btrfs_file_extent_item *item)
6725 struct extent_buffer *leaf = path->nodes[0];
6728 unsigned long inline_size;
6732 WARN_ON(pg_offset != 0);
6733 compress_type = btrfs_file_extent_compression(leaf, item);
6734 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6735 inline_size = btrfs_file_extent_inline_item_len(leaf,
6736 btrfs_item_nr(path->slots[0]));
6737 tmp = kmalloc(inline_size, GFP_NOFS);
6740 ptr = btrfs_file_extent_inline_start(item);
6742 read_extent_buffer(leaf, tmp, ptr, inline_size);
6744 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6745 ret = btrfs_decompress(compress_type, tmp, page,
6746 extent_offset, inline_size, max_size);
6752 * a bit scary, this does extent mapping from logical file offset to the disk.
6753 * the ugly parts come from merging extents from the disk with the in-ram
6754 * representation. This gets more complex because of the data=ordered code,
6755 * where the in-ram extents might be locked pending data=ordered completion.
6757 * This also copies inline extents directly into the page.
6760 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6761 size_t pg_offset, u64 start, u64 len,
6766 u64 extent_start = 0;
6768 u64 objectid = btrfs_ino(inode);
6770 struct btrfs_path *path = NULL;
6771 struct btrfs_root *root = BTRFS_I(inode)->root;
6772 struct btrfs_file_extent_item *item;
6773 struct extent_buffer *leaf;
6774 struct btrfs_key found_key;
6775 struct extent_map *em = NULL;
6776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6777 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6778 struct btrfs_trans_handle *trans = NULL;
6779 const bool new_inline = !page || create;
6782 read_lock(&em_tree->lock);
6783 em = lookup_extent_mapping(em_tree, start, len);
6785 em->bdev = root->fs_info->fs_devices->latest_bdev;
6786 read_unlock(&em_tree->lock);
6789 if (em->start > start || em->start + em->len <= start)
6790 free_extent_map(em);
6791 else if (em->block_start == EXTENT_MAP_INLINE && page)
6792 free_extent_map(em);
6796 em = alloc_extent_map();
6801 em->bdev = root->fs_info->fs_devices->latest_bdev;
6802 em->start = EXTENT_MAP_HOLE;
6803 em->orig_start = EXTENT_MAP_HOLE;
6805 em->block_len = (u64)-1;
6808 path = btrfs_alloc_path();
6814 * Chances are we'll be called again, so go ahead and do
6817 path->reada = READA_FORWARD;
6820 ret = btrfs_lookup_file_extent(trans, root, path,
6821 objectid, start, trans != NULL);
6828 if (path->slots[0] == 0)
6833 leaf = path->nodes[0];
6834 item = btrfs_item_ptr(leaf, path->slots[0],
6835 struct btrfs_file_extent_item);
6836 /* are we inside the extent that was found? */
6837 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6838 found_type = found_key.type;
6839 if (found_key.objectid != objectid ||
6840 found_type != BTRFS_EXTENT_DATA_KEY) {
6842 * If we backup past the first extent we want to move forward
6843 * and see if there is an extent in front of us, otherwise we'll
6844 * say there is a hole for our whole search range which can
6851 found_type = btrfs_file_extent_type(leaf, item);
6852 extent_start = found_key.offset;
6853 if (found_type == BTRFS_FILE_EXTENT_REG ||
6854 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6855 extent_end = extent_start +
6856 btrfs_file_extent_num_bytes(leaf, item);
6857 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6859 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6860 extent_end = ALIGN(extent_start + size, root->sectorsize);
6863 if (start >= extent_end) {
6865 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6866 ret = btrfs_next_leaf(root, path);
6873 leaf = path->nodes[0];
6875 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6876 if (found_key.objectid != objectid ||
6877 found_key.type != BTRFS_EXTENT_DATA_KEY)
6879 if (start + len <= found_key.offset)
6881 if (start > found_key.offset)
6884 em->orig_start = start;
6885 em->len = found_key.offset - start;
6889 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6891 if (found_type == BTRFS_FILE_EXTENT_REG ||
6892 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6894 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6898 size_t extent_offset;
6904 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6905 extent_offset = page_offset(page) + pg_offset - extent_start;
6906 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6907 size - extent_offset);
6908 em->start = extent_start + extent_offset;
6909 em->len = ALIGN(copy_size, root->sectorsize);
6910 em->orig_block_len = em->len;
6911 em->orig_start = em->start;
6912 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6913 if (create == 0 && !PageUptodate(page)) {
6914 if (btrfs_file_extent_compression(leaf, item) !=
6915 BTRFS_COMPRESS_NONE) {
6916 ret = uncompress_inline(path, page, pg_offset,
6917 extent_offset, item);
6924 read_extent_buffer(leaf, map + pg_offset, ptr,
6926 if (pg_offset + copy_size < PAGE_SIZE) {
6927 memset(map + pg_offset + copy_size, 0,
6928 PAGE_SIZE - pg_offset -
6933 flush_dcache_page(page);
6934 } else if (create && PageUptodate(page)) {
6938 free_extent_map(em);
6941 btrfs_release_path(path);
6942 trans = btrfs_join_transaction(root);
6945 return ERR_CAST(trans);
6949 write_extent_buffer(leaf, map + pg_offset, ptr,
6952 btrfs_mark_buffer_dirty(leaf);
6954 set_extent_uptodate(io_tree, em->start,
6955 extent_map_end(em) - 1, NULL, GFP_NOFS);
6960 em->orig_start = start;
6963 em->block_start = EXTENT_MAP_HOLE;
6964 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6966 btrfs_release_path(path);
6967 if (em->start > start || extent_map_end(em) <= start) {
6968 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6969 em->start, em->len, start, len);
6975 write_lock(&em_tree->lock);
6976 ret = add_extent_mapping(em_tree, em, 0);
6977 /* it is possible that someone inserted the extent into the tree
6978 * while we had the lock dropped. It is also possible that
6979 * an overlapping map exists in the tree
6981 if (ret == -EEXIST) {
6982 struct extent_map *existing;
6986 existing = search_extent_mapping(em_tree, start, len);
6988 * existing will always be non-NULL, since there must be
6989 * extent causing the -EEXIST.
6991 if (existing->start == em->start &&
6992 extent_map_end(existing) == extent_map_end(em) &&
6993 em->block_start == existing->block_start) {
6995 * these two extents are the same, it happens
6996 * with inlines especially
6998 free_extent_map(em);
7002 } else if (start >= extent_map_end(existing) ||
7003 start <= existing->start) {
7005 * The existing extent map is the one nearest to
7006 * the [start, start + len) range which overlaps
7008 err = merge_extent_mapping(em_tree, existing,
7010 free_extent_map(existing);
7012 free_extent_map(em);
7016 free_extent_map(em);
7021 write_unlock(&em_tree->lock);
7024 trace_btrfs_get_extent(root, em);
7026 btrfs_free_path(path);
7028 ret = btrfs_end_transaction(trans, root);
7033 free_extent_map(em);
7034 return ERR_PTR(err);
7036 BUG_ON(!em); /* Error is always set */
7040 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7041 size_t pg_offset, u64 start, u64 len,
7044 struct extent_map *em;
7045 struct extent_map *hole_em = NULL;
7046 u64 range_start = start;
7052 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7059 * - a pre-alloc extent,
7060 * there might actually be delalloc bytes behind it.
7062 if (em->block_start != EXTENT_MAP_HOLE &&
7063 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7069 /* check to see if we've wrapped (len == -1 or similar) */
7078 /* ok, we didn't find anything, lets look for delalloc */
7079 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7080 end, len, EXTENT_DELALLOC, 1);
7081 found_end = range_start + found;
7082 if (found_end < range_start)
7083 found_end = (u64)-1;
7086 * we didn't find anything useful, return
7087 * the original results from get_extent()
7089 if (range_start > end || found_end <= start) {
7095 /* adjust the range_start to make sure it doesn't
7096 * go backwards from the start they passed in
7098 range_start = max(start, range_start);
7099 found = found_end - range_start;
7102 u64 hole_start = start;
7105 em = alloc_extent_map();
7111 * when btrfs_get_extent can't find anything it
7112 * returns one huge hole
7114 * make sure what it found really fits our range, and
7115 * adjust to make sure it is based on the start from
7119 u64 calc_end = extent_map_end(hole_em);
7121 if (calc_end <= start || (hole_em->start > end)) {
7122 free_extent_map(hole_em);
7125 hole_start = max(hole_em->start, start);
7126 hole_len = calc_end - hole_start;
7130 if (hole_em && range_start > hole_start) {
7131 /* our hole starts before our delalloc, so we
7132 * have to return just the parts of the hole
7133 * that go until the delalloc starts
7135 em->len = min(hole_len,
7136 range_start - hole_start);
7137 em->start = hole_start;
7138 em->orig_start = hole_start;
7140 * don't adjust block start at all,
7141 * it is fixed at EXTENT_MAP_HOLE
7143 em->block_start = hole_em->block_start;
7144 em->block_len = hole_len;
7145 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7146 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7148 em->start = range_start;
7150 em->orig_start = range_start;
7151 em->block_start = EXTENT_MAP_DELALLOC;
7152 em->block_len = found;
7154 } else if (hole_em) {
7159 free_extent_map(hole_em);
7161 free_extent_map(em);
7162 return ERR_PTR(err);
7167 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7170 const u64 orig_start,
7171 const u64 block_start,
7172 const u64 block_len,
7173 const u64 orig_block_len,
7174 const u64 ram_bytes,
7177 struct extent_map *em = NULL;
7180 down_read(&BTRFS_I(inode)->dio_sem);
7181 if (type != BTRFS_ORDERED_NOCOW) {
7182 em = create_pinned_em(inode, start, len, orig_start,
7183 block_start, block_len, orig_block_len,
7188 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7189 len, block_len, type);
7192 free_extent_map(em);
7193 btrfs_drop_extent_cache(inode, start,
7194 start + len - 1, 0);
7199 up_read(&BTRFS_I(inode)->dio_sem);
7204 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7207 struct btrfs_root *root = BTRFS_I(inode)->root;
7208 struct extent_map *em;
7209 struct btrfs_key ins;
7213 alloc_hint = get_extent_allocation_hint(inode, start, len);
7214 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7215 alloc_hint, &ins, 1, 1);
7217 return ERR_PTR(ret);
7219 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7220 ins.objectid, ins.offset, ins.offset,
7222 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7224 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7230 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7231 * block must be cow'd
7233 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7234 u64 *orig_start, u64 *orig_block_len,
7237 struct btrfs_trans_handle *trans;
7238 struct btrfs_path *path;
7240 struct extent_buffer *leaf;
7241 struct btrfs_root *root = BTRFS_I(inode)->root;
7242 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7243 struct btrfs_file_extent_item *fi;
7244 struct btrfs_key key;
7251 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7253 path = btrfs_alloc_path();
7257 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7262 slot = path->slots[0];
7265 /* can't find the item, must cow */
7272 leaf = path->nodes[0];
7273 btrfs_item_key_to_cpu(leaf, &key, slot);
7274 if (key.objectid != btrfs_ino(inode) ||
7275 key.type != BTRFS_EXTENT_DATA_KEY) {
7276 /* not our file or wrong item type, must cow */
7280 if (key.offset > offset) {
7281 /* Wrong offset, must cow */
7285 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7286 found_type = btrfs_file_extent_type(leaf, fi);
7287 if (found_type != BTRFS_FILE_EXTENT_REG &&
7288 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7289 /* not a regular extent, must cow */
7293 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7296 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7297 if (extent_end <= offset)
7300 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7301 if (disk_bytenr == 0)
7304 if (btrfs_file_extent_compression(leaf, fi) ||
7305 btrfs_file_extent_encryption(leaf, fi) ||
7306 btrfs_file_extent_other_encoding(leaf, fi))
7309 backref_offset = btrfs_file_extent_offset(leaf, fi);
7312 *orig_start = key.offset - backref_offset;
7313 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7314 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7317 if (btrfs_extent_readonly(root, disk_bytenr))
7320 num_bytes = min(offset + *len, extent_end) - offset;
7321 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7324 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7325 ret = test_range_bit(io_tree, offset, range_end,
7326 EXTENT_DELALLOC, 0, NULL);
7333 btrfs_release_path(path);
7336 * look for other files referencing this extent, if we
7337 * find any we must cow
7339 trans = btrfs_join_transaction(root);
7340 if (IS_ERR(trans)) {
7345 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7346 key.offset - backref_offset, disk_bytenr);
7347 btrfs_end_transaction(trans, root);
7354 * adjust disk_bytenr and num_bytes to cover just the bytes
7355 * in this extent we are about to write. If there
7356 * are any csums in that range we have to cow in order
7357 * to keep the csums correct
7359 disk_bytenr += backref_offset;
7360 disk_bytenr += offset - key.offset;
7361 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7364 * all of the above have passed, it is safe to overwrite this extent
7370 btrfs_free_path(path);
7374 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7376 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7378 void **pagep = NULL;
7379 struct page *page = NULL;
7383 start_idx = start >> PAGE_SHIFT;
7386 * end is the last byte in the last page. end == start is legal
7388 end_idx = end >> PAGE_SHIFT;
7392 /* Most of the code in this while loop is lifted from
7393 * find_get_page. It's been modified to begin searching from a
7394 * page and return just the first page found in that range. If the
7395 * found idx is less than or equal to the end idx then we know that
7396 * a page exists. If no pages are found or if those pages are
7397 * outside of the range then we're fine (yay!) */
7398 while (page == NULL &&
7399 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7400 page = radix_tree_deref_slot(pagep);
7401 if (unlikely(!page))
7404 if (radix_tree_exception(page)) {
7405 if (radix_tree_deref_retry(page)) {
7410 * Otherwise, shmem/tmpfs must be storing a swap entry
7411 * here as an exceptional entry: so return it without
7412 * attempting to raise page count.
7415 break; /* TODO: Is this relevant for this use case? */
7418 if (!page_cache_get_speculative(page)) {
7424 * Has the page moved?
7425 * This is part of the lockless pagecache protocol. See
7426 * include/linux/pagemap.h for details.
7428 if (unlikely(page != *pagep)) {
7435 if (page->index <= end_idx)
7444 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7445 struct extent_state **cached_state, int writing)
7447 struct btrfs_ordered_extent *ordered;
7451 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7454 * We're concerned with the entire range that we're going to be
7455 * doing DIO to, so we need to make sure there's no ordered
7456 * extents in this range.
7458 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7459 lockend - lockstart + 1);
7462 * We need to make sure there are no buffered pages in this
7463 * range either, we could have raced between the invalidate in
7464 * generic_file_direct_write and locking the extent. The
7465 * invalidate needs to happen so that reads after a write do not
7470 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7473 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7474 cached_state, GFP_NOFS);
7478 * If we are doing a DIO read and the ordered extent we
7479 * found is for a buffered write, we can not wait for it
7480 * to complete and retry, because if we do so we can
7481 * deadlock with concurrent buffered writes on page
7482 * locks. This happens only if our DIO read covers more
7483 * than one extent map, if at this point has already
7484 * created an ordered extent for a previous extent map
7485 * and locked its range in the inode's io tree, and a
7486 * concurrent write against that previous extent map's
7487 * range and this range started (we unlock the ranges
7488 * in the io tree only when the bios complete and
7489 * buffered writes always lock pages before attempting
7490 * to lock range in the io tree).
7493 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7494 btrfs_start_ordered_extent(inode, ordered, 1);
7497 btrfs_put_ordered_extent(ordered);
7500 * We could trigger writeback for this range (and wait
7501 * for it to complete) and then invalidate the pages for
7502 * this range (through invalidate_inode_pages2_range()),
7503 * but that can lead us to a deadlock with a concurrent
7504 * call to readpages() (a buffered read or a defrag call
7505 * triggered a readahead) on a page lock due to an
7506 * ordered dio extent we created before but did not have
7507 * yet a corresponding bio submitted (whence it can not
7508 * complete), which makes readpages() wait for that
7509 * ordered extent to complete while holding a lock on
7524 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7525 u64 len, u64 orig_start,
7526 u64 block_start, u64 block_len,
7527 u64 orig_block_len, u64 ram_bytes,
7530 struct extent_map_tree *em_tree;
7531 struct extent_map *em;
7532 struct btrfs_root *root = BTRFS_I(inode)->root;
7535 em_tree = &BTRFS_I(inode)->extent_tree;
7536 em = alloc_extent_map();
7538 return ERR_PTR(-ENOMEM);
7541 em->orig_start = orig_start;
7542 em->mod_start = start;
7545 em->block_len = block_len;
7546 em->block_start = block_start;
7547 em->bdev = root->fs_info->fs_devices->latest_bdev;
7548 em->orig_block_len = orig_block_len;
7549 em->ram_bytes = ram_bytes;
7550 em->generation = -1;
7551 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7552 if (type == BTRFS_ORDERED_PREALLOC)
7553 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7556 btrfs_drop_extent_cache(inode, em->start,
7557 em->start + em->len - 1, 0);
7558 write_lock(&em_tree->lock);
7559 ret = add_extent_mapping(em_tree, em, 1);
7560 write_unlock(&em_tree->lock);
7561 } while (ret == -EEXIST);
7564 free_extent_map(em);
7565 return ERR_PTR(ret);
7571 static void adjust_dio_outstanding_extents(struct inode *inode,
7572 struct btrfs_dio_data *dio_data,
7575 unsigned num_extents;
7577 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7578 BTRFS_MAX_EXTENT_SIZE);
7580 * If we have an outstanding_extents count still set then we're
7581 * within our reservation, otherwise we need to adjust our inode
7582 * counter appropriately.
7584 if (dio_data->outstanding_extents) {
7585 dio_data->outstanding_extents -= num_extents;
7587 spin_lock(&BTRFS_I(inode)->lock);
7588 BTRFS_I(inode)->outstanding_extents += num_extents;
7589 spin_unlock(&BTRFS_I(inode)->lock);
7593 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7594 struct buffer_head *bh_result, int create)
7596 struct extent_map *em;
7597 struct btrfs_root *root = BTRFS_I(inode)->root;
7598 struct extent_state *cached_state = NULL;
7599 struct btrfs_dio_data *dio_data = NULL;
7600 u64 start = iblock << inode->i_blkbits;
7601 u64 lockstart, lockend;
7602 u64 len = bh_result->b_size;
7603 int unlock_bits = EXTENT_LOCKED;
7607 unlock_bits |= EXTENT_DIRTY;
7609 len = min_t(u64, len, root->sectorsize);
7612 lockend = start + len - 1;
7614 if (current->journal_info) {
7616 * Need to pull our outstanding extents and set journal_info to NULL so
7617 * that anything that needs to check if there's a transaction doesn't get
7620 dio_data = current->journal_info;
7621 current->journal_info = NULL;
7625 * If this errors out it's because we couldn't invalidate pagecache for
7626 * this range and we need to fallback to buffered.
7628 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7634 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7641 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7642 * io. INLINE is special, and we could probably kludge it in here, but
7643 * it's still buffered so for safety lets just fall back to the generic
7646 * For COMPRESSED we _have_ to read the entire extent in so we can
7647 * decompress it, so there will be buffering required no matter what we
7648 * do, so go ahead and fallback to buffered.
7650 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7651 * to buffered IO. Don't blame me, this is the price we pay for using
7654 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7655 em->block_start == EXTENT_MAP_INLINE) {
7656 free_extent_map(em);
7661 /* Just a good old fashioned hole, return */
7662 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7663 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7664 free_extent_map(em);
7669 * We don't allocate a new extent in the following cases
7671 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7673 * 2) The extent is marked as PREALLOC. We're good to go here and can
7674 * just use the extent.
7678 len = min(len, em->len - (start - em->start));
7679 lockstart = start + len;
7683 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7684 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7685 em->block_start != EXTENT_MAP_HOLE)) {
7687 u64 block_start, orig_start, orig_block_len, ram_bytes;
7689 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7690 type = BTRFS_ORDERED_PREALLOC;
7692 type = BTRFS_ORDERED_NOCOW;
7693 len = min(len, em->len - (start - em->start));
7694 block_start = em->block_start + (start - em->start);
7696 if (can_nocow_extent(inode, start, &len, &orig_start,
7697 &orig_block_len, &ram_bytes) == 1 &&
7698 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7699 struct extent_map *em2;
7701 em2 = btrfs_create_dio_extent(inode, start, len,
7702 orig_start, block_start,
7703 len, orig_block_len,
7705 btrfs_dec_nocow_writers(root->fs_info, block_start);
7706 if (type == BTRFS_ORDERED_PREALLOC) {
7707 free_extent_map(em);
7710 if (em2 && IS_ERR(em2)) {
7719 * this will cow the extent, reset the len in case we changed
7722 len = bh_result->b_size;
7723 free_extent_map(em);
7724 em = btrfs_new_extent_direct(inode, start, len);
7729 len = min(len, em->len - (start - em->start));
7731 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7733 bh_result->b_size = len;
7734 bh_result->b_bdev = em->bdev;
7735 set_buffer_mapped(bh_result);
7737 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7738 set_buffer_new(bh_result);
7741 * Need to update the i_size under the extent lock so buffered
7742 * readers will get the updated i_size when we unlock.
7744 if (start + len > i_size_read(inode))
7745 i_size_write(inode, start + len);
7747 adjust_dio_outstanding_extents(inode, dio_data, len);
7748 btrfs_free_reserved_data_space(inode, start, len);
7749 WARN_ON(dio_data->reserve < len);
7750 dio_data->reserve -= len;
7751 dio_data->unsubmitted_oe_range_end = start + len;
7752 current->journal_info = dio_data;
7756 * In the case of write we need to clear and unlock the entire range,
7757 * in the case of read we need to unlock only the end area that we
7758 * aren't using if there is any left over space.
7760 if (lockstart < lockend) {
7761 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7762 lockend, unlock_bits, 1, 0,
7763 &cached_state, GFP_NOFS);
7765 free_extent_state(cached_state);
7768 free_extent_map(em);
7773 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7774 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7777 current->journal_info = dio_data;
7779 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7780 * write less data then expected, so that we don't underflow our inode's
7781 * outstanding extents counter.
7783 if (create && dio_data)
7784 adjust_dio_outstanding_extents(inode, dio_data, len);
7789 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7790 int rw, int mirror_num)
7792 struct btrfs_root *root = BTRFS_I(inode)->root;
7795 BUG_ON(rw & REQ_WRITE);
7799 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7800 BTRFS_WQ_ENDIO_DIO_REPAIR);
7804 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7810 static int btrfs_check_dio_repairable(struct inode *inode,
7811 struct bio *failed_bio,
7812 struct io_failure_record *failrec,
7817 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7818 failrec->logical, failrec->len);
7819 if (num_copies == 1) {
7821 * we only have a single copy of the data, so don't bother with
7822 * all the retry and error correction code that follows. no
7823 * matter what the error is, it is very likely to persist.
7825 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7826 num_copies, failrec->this_mirror, failed_mirror);
7830 failrec->failed_mirror = failed_mirror;
7831 failrec->this_mirror++;
7832 if (failrec->this_mirror == failed_mirror)
7833 failrec->this_mirror++;
7835 if (failrec->this_mirror > num_copies) {
7836 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7837 num_copies, failrec->this_mirror, failed_mirror);
7844 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7845 struct page *page, unsigned int pgoff,
7846 u64 start, u64 end, int failed_mirror,
7847 bio_end_io_t *repair_endio, void *repair_arg)
7849 struct io_failure_record *failrec;
7855 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7857 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7861 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7864 free_io_failure(inode, failrec);
7868 if ((failed_bio->bi_vcnt > 1)
7869 || (failed_bio->bi_io_vec->bv_len
7870 > BTRFS_I(inode)->root->sectorsize))
7871 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7873 read_mode = READ_SYNC;
7875 isector = start - btrfs_io_bio(failed_bio)->logical;
7876 isector >>= inode->i_sb->s_blocksize_bits;
7877 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7878 pgoff, isector, repair_endio, repair_arg);
7880 free_io_failure(inode, failrec);
7884 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7885 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7886 read_mode, failrec->this_mirror, failrec->in_validation);
7888 ret = submit_dio_repair_bio(inode, bio, read_mode,
7889 failrec->this_mirror);
7891 free_io_failure(inode, failrec);
7898 struct btrfs_retry_complete {
7899 struct completion done;
7900 struct inode *inode;
7905 static void btrfs_retry_endio_nocsum(struct bio *bio)
7907 struct btrfs_retry_complete *done = bio->bi_private;
7908 struct inode *inode;
7909 struct bio_vec *bvec;
7915 ASSERT(bio->bi_vcnt == 1);
7916 inode = bio->bi_io_vec->bv_page->mapping->host;
7917 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7920 bio_for_each_segment_all(bvec, bio, i)
7921 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7923 complete(&done->done);
7927 static int __btrfs_correct_data_nocsum(struct inode *inode,
7928 struct btrfs_io_bio *io_bio)
7930 struct btrfs_fs_info *fs_info;
7931 struct bio_vec *bvec;
7932 struct btrfs_retry_complete done;
7940 fs_info = BTRFS_I(inode)->root->fs_info;
7941 sectorsize = BTRFS_I(inode)->root->sectorsize;
7943 start = io_bio->logical;
7946 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7947 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7948 pgoff = bvec->bv_offset;
7950 next_block_or_try_again:
7953 init_completion(&done.done);
7955 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7956 pgoff, start, start + sectorsize - 1,
7958 btrfs_retry_endio_nocsum, &done);
7962 wait_for_completion(&done.done);
7964 if (!done.uptodate) {
7965 /* We might have another mirror, so try again */
7966 goto next_block_or_try_again;
7969 start += sectorsize;
7972 pgoff += sectorsize;
7973 goto next_block_or_try_again;
7980 static void btrfs_retry_endio(struct bio *bio)
7982 struct btrfs_retry_complete *done = bio->bi_private;
7983 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7984 struct inode *inode;
7985 struct bio_vec *bvec;
7996 start = done->start;
7998 ASSERT(bio->bi_vcnt == 1);
7999 inode = bio->bi_io_vec->bv_page->mapping->host;
8000 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8002 bio_for_each_segment_all(bvec, bio, i) {
8003 ret = __readpage_endio_check(done->inode, io_bio, i,
8004 bvec->bv_page, bvec->bv_offset,
8005 done->start, bvec->bv_len);
8007 clean_io_failure(done->inode, done->start,
8008 bvec->bv_page, bvec->bv_offset);
8013 done->uptodate = uptodate;
8015 complete(&done->done);
8019 static int __btrfs_subio_endio_read(struct inode *inode,
8020 struct btrfs_io_bio *io_bio, int err)
8022 struct btrfs_fs_info *fs_info;
8023 struct bio_vec *bvec;
8024 struct btrfs_retry_complete done;
8034 fs_info = BTRFS_I(inode)->root->fs_info;
8035 sectorsize = BTRFS_I(inode)->root->sectorsize;
8038 start = io_bio->logical;
8041 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8042 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8044 pgoff = bvec->bv_offset;
8046 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8047 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8048 bvec->bv_page, pgoff, start,
8055 init_completion(&done.done);
8057 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8058 pgoff, start, start + sectorsize - 1,
8060 btrfs_retry_endio, &done);
8066 wait_for_completion(&done.done);
8068 if (!done.uptodate) {
8069 /* We might have another mirror, so try again */
8073 offset += sectorsize;
8074 start += sectorsize;
8079 pgoff += sectorsize;
8087 static int btrfs_subio_endio_read(struct inode *inode,
8088 struct btrfs_io_bio *io_bio, int err)
8090 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8094 return __btrfs_correct_data_nocsum(inode, io_bio);
8098 return __btrfs_subio_endio_read(inode, io_bio, err);
8102 static void btrfs_endio_direct_read(struct bio *bio)
8104 struct btrfs_dio_private *dip = bio->bi_private;
8105 struct inode *inode = dip->inode;
8106 struct bio *dio_bio;
8107 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8108 int err = bio->bi_error;
8110 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8111 err = btrfs_subio_endio_read(inode, io_bio, err);
8113 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8114 dip->logical_offset + dip->bytes - 1);
8115 dio_bio = dip->dio_bio;
8119 dio_bio->bi_error = bio->bi_error;
8120 dio_end_io(dio_bio, bio->bi_error);
8123 io_bio->end_io(io_bio, err);
8127 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8132 struct btrfs_root *root = BTRFS_I(inode)->root;
8133 struct btrfs_ordered_extent *ordered = NULL;
8134 u64 ordered_offset = offset;
8135 u64 ordered_bytes = bytes;
8139 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8146 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8147 finish_ordered_fn, NULL, NULL);
8148 btrfs_queue_work(root->fs_info->endio_write_workers,
8152 * our bio might span multiple ordered extents. If we haven't
8153 * completed the accounting for the whole dio, go back and try again
8155 if (ordered_offset < offset + bytes) {
8156 ordered_bytes = offset + bytes - ordered_offset;
8162 static void btrfs_endio_direct_write(struct bio *bio)
8164 struct btrfs_dio_private *dip = bio->bi_private;
8165 struct bio *dio_bio = dip->dio_bio;
8167 btrfs_endio_direct_write_update_ordered(dip->inode,
8168 dip->logical_offset,
8174 dio_bio->bi_error = bio->bi_error;
8175 dio_end_io(dio_bio, bio->bi_error);
8179 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8180 struct bio *bio, int mirror_num,
8181 unsigned long bio_flags, u64 offset)
8184 struct btrfs_root *root = BTRFS_I(inode)->root;
8185 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8186 BUG_ON(ret); /* -ENOMEM */
8190 static void btrfs_end_dio_bio(struct bio *bio)
8192 struct btrfs_dio_private *dip = bio->bi_private;
8193 int err = bio->bi_error;
8196 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8197 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8198 btrfs_ino(dip->inode), bio->bi_rw,
8199 (unsigned long long)bio->bi_iter.bi_sector,
8200 bio->bi_iter.bi_size, err);
8202 if (dip->subio_endio)
8203 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8209 * before atomic variable goto zero, we must make sure
8210 * dip->errors is perceived to be set.
8212 smp_mb__before_atomic();
8215 /* if there are more bios still pending for this dio, just exit */
8216 if (!atomic_dec_and_test(&dip->pending_bios))
8220 bio_io_error(dip->orig_bio);
8222 dip->dio_bio->bi_error = 0;
8223 bio_endio(dip->orig_bio);
8229 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8230 u64 first_sector, gfp_t gfp_flags)
8233 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8235 bio_associate_current(bio);
8239 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8240 struct inode *inode,
8241 struct btrfs_dio_private *dip,
8245 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8246 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8250 * We load all the csum data we need when we submit
8251 * the first bio to reduce the csum tree search and
8254 if (dip->logical_offset == file_offset) {
8255 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8261 if (bio == dip->orig_bio)
8264 file_offset -= dip->logical_offset;
8265 file_offset >>= inode->i_sb->s_blocksize_bits;
8266 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8271 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8272 int rw, u64 file_offset, int skip_sum,
8275 struct btrfs_dio_private *dip = bio->bi_private;
8276 int write = rw & REQ_WRITE;
8277 struct btrfs_root *root = BTRFS_I(inode)->root;
8281 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8286 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8287 BTRFS_WQ_ENDIO_DATA);
8295 if (write && async_submit) {
8296 ret = btrfs_wq_submit_bio(root->fs_info,
8297 inode, rw, bio, 0, 0,
8299 __btrfs_submit_bio_start_direct_io,
8300 __btrfs_submit_bio_done);
8304 * If we aren't doing async submit, calculate the csum of the
8307 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8311 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8317 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8323 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8326 struct inode *inode = dip->inode;
8327 struct btrfs_root *root = BTRFS_I(inode)->root;
8329 struct bio *orig_bio = dip->orig_bio;
8330 struct bio_vec *bvec = orig_bio->bi_io_vec;
8331 u64 start_sector = orig_bio->bi_iter.bi_sector;
8332 u64 file_offset = dip->logical_offset;
8335 u32 blocksize = root->sectorsize;
8336 int async_submit = 0;
8341 map_length = orig_bio->bi_iter.bi_size;
8342 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8343 &map_length, NULL, 0);
8347 if (map_length >= orig_bio->bi_iter.bi_size) {
8349 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8353 /* async crcs make it difficult to collect full stripe writes. */
8354 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8359 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8363 bio->bi_private = dip;
8364 bio->bi_end_io = btrfs_end_dio_bio;
8365 btrfs_io_bio(bio)->logical = file_offset;
8366 atomic_inc(&dip->pending_bios);
8368 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8369 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8372 if (unlikely(map_length < submit_len + blocksize ||
8373 bio_add_page(bio, bvec->bv_page, blocksize,
8374 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8376 * inc the count before we submit the bio so
8377 * we know the end IO handler won't happen before
8378 * we inc the count. Otherwise, the dip might get freed
8379 * before we're done setting it up
8381 atomic_inc(&dip->pending_bios);
8382 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8383 file_offset, skip_sum,
8387 atomic_dec(&dip->pending_bios);
8391 start_sector += submit_len >> 9;
8392 file_offset += submit_len;
8396 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8397 start_sector, GFP_NOFS);
8400 bio->bi_private = dip;
8401 bio->bi_end_io = btrfs_end_dio_bio;
8402 btrfs_io_bio(bio)->logical = file_offset;
8404 map_length = orig_bio->bi_iter.bi_size;
8405 ret = btrfs_map_block(root->fs_info, rw,
8407 &map_length, NULL, 0);
8415 submit_len += blocksize;
8425 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8434 * before atomic variable goto zero, we must
8435 * make sure dip->errors is perceived to be set.
8437 smp_mb__before_atomic();
8438 if (atomic_dec_and_test(&dip->pending_bios))
8439 bio_io_error(dip->orig_bio);
8441 /* bio_end_io() will handle error, so we needn't return it */
8445 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8446 struct inode *inode, loff_t file_offset)
8448 struct btrfs_dio_private *dip = NULL;
8449 struct bio *io_bio = NULL;
8450 struct btrfs_io_bio *btrfs_bio;
8452 int write = rw & REQ_WRITE;
8455 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8457 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8463 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8469 dip->private = dio_bio->bi_private;
8471 dip->logical_offset = file_offset;
8472 dip->bytes = dio_bio->bi_iter.bi_size;
8473 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8474 io_bio->bi_private = dip;
8475 dip->orig_bio = io_bio;
8476 dip->dio_bio = dio_bio;
8477 atomic_set(&dip->pending_bios, 0);
8478 btrfs_bio = btrfs_io_bio(io_bio);
8479 btrfs_bio->logical = file_offset;
8482 io_bio->bi_end_io = btrfs_endio_direct_write;
8484 io_bio->bi_end_io = btrfs_endio_direct_read;
8485 dip->subio_endio = btrfs_subio_endio_read;
8489 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8490 * even if we fail to submit a bio, because in such case we do the
8491 * corresponding error handling below and it must not be done a second
8492 * time by btrfs_direct_IO().
8495 struct btrfs_dio_data *dio_data = current->journal_info;
8497 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8499 dio_data->unsubmitted_oe_range_start =
8500 dio_data->unsubmitted_oe_range_end;
8503 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8507 if (btrfs_bio->end_io)
8508 btrfs_bio->end_io(btrfs_bio, ret);
8512 * If we arrived here it means either we failed to submit the dip
8513 * or we either failed to clone the dio_bio or failed to allocate the
8514 * dip. If we cloned the dio_bio and allocated the dip, we can just
8515 * call bio_endio against our io_bio so that we get proper resource
8516 * cleanup if we fail to submit the dip, otherwise, we must do the
8517 * same as btrfs_endio_direct_[write|read] because we can't call these
8518 * callbacks - they require an allocated dip and a clone of dio_bio.
8520 if (io_bio && dip) {
8521 io_bio->bi_error = -EIO;
8524 * The end io callbacks free our dip, do the final put on io_bio
8525 * and all the cleanup and final put for dio_bio (through
8532 btrfs_endio_direct_write_update_ordered(inode,
8534 dio_bio->bi_iter.bi_size,
8537 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8538 file_offset + dio_bio->bi_iter.bi_size - 1);
8540 dio_bio->bi_error = -EIO;
8542 * Releases and cleans up our dio_bio, no need to bio_put()
8543 * nor bio_endio()/bio_io_error() against dio_bio.
8545 dio_end_io(dio_bio, ret);
8552 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8553 const struct iov_iter *iter, loff_t offset)
8557 unsigned blocksize_mask = root->sectorsize - 1;
8558 ssize_t retval = -EINVAL;
8560 if (offset & blocksize_mask)
8563 if (iov_iter_alignment(iter) & blocksize_mask)
8566 /* If this is a write we don't need to check anymore */
8567 if (iov_iter_rw(iter) == WRITE)
8570 * Check to make sure we don't have duplicate iov_base's in this
8571 * iovec, if so return EINVAL, otherwise we'll get csum errors
8572 * when reading back.
8574 for (seg = 0; seg < iter->nr_segs; seg++) {
8575 for (i = seg + 1; i < iter->nr_segs; i++) {
8576 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8585 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8587 struct file *file = iocb->ki_filp;
8588 struct inode *inode = file->f_mapping->host;
8589 struct btrfs_root *root = BTRFS_I(inode)->root;
8590 struct btrfs_dio_data dio_data = { 0 };
8591 loff_t offset = iocb->ki_pos;
8595 bool relock = false;
8598 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8601 inode_dio_begin(inode);
8602 smp_mb__after_atomic();
8605 * The generic stuff only does filemap_write_and_wait_range, which
8606 * isn't enough if we've written compressed pages to this area, so
8607 * we need to flush the dirty pages again to make absolutely sure
8608 * that any outstanding dirty pages are on disk.
8610 count = iov_iter_count(iter);
8611 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8612 &BTRFS_I(inode)->runtime_flags))
8613 filemap_fdatawrite_range(inode->i_mapping, offset,
8614 offset + count - 1);
8616 if (iov_iter_rw(iter) == WRITE) {
8618 * If the write DIO is beyond the EOF, we need update
8619 * the isize, but it is protected by i_mutex. So we can
8620 * not unlock the i_mutex at this case.
8622 if (offset + count <= inode->i_size) {
8623 inode_unlock(inode);
8626 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8629 dio_data.outstanding_extents = div64_u64(count +
8630 BTRFS_MAX_EXTENT_SIZE - 1,
8631 BTRFS_MAX_EXTENT_SIZE);
8634 * We need to know how many extents we reserved so that we can
8635 * do the accounting properly if we go over the number we
8636 * originally calculated. Abuse current->journal_info for this.
8638 dio_data.reserve = round_up(count, root->sectorsize);
8639 dio_data.unsubmitted_oe_range_start = (u64)offset;
8640 dio_data.unsubmitted_oe_range_end = (u64)offset;
8641 current->journal_info = &dio_data;
8642 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8643 &BTRFS_I(inode)->runtime_flags)) {
8644 inode_dio_end(inode);
8645 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8649 ret = __blockdev_direct_IO(iocb, inode,
8650 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8651 iter, btrfs_get_blocks_direct, NULL,
8652 btrfs_submit_direct, flags);
8653 if (iov_iter_rw(iter) == WRITE) {
8654 current->journal_info = NULL;
8655 if (ret < 0 && ret != -EIOCBQUEUED) {
8656 if (dio_data.reserve)
8657 btrfs_delalloc_release_space(inode, offset,
8660 * On error we might have left some ordered extents
8661 * without submitting corresponding bios for them, so
8662 * cleanup them up to avoid other tasks getting them
8663 * and waiting for them to complete forever.
8665 if (dio_data.unsubmitted_oe_range_start <
8666 dio_data.unsubmitted_oe_range_end)
8667 btrfs_endio_direct_write_update_ordered(inode,
8668 dio_data.unsubmitted_oe_range_start,
8669 dio_data.unsubmitted_oe_range_end -
8670 dio_data.unsubmitted_oe_range_start,
8672 } else if (ret >= 0 && (size_t)ret < count)
8673 btrfs_delalloc_release_space(inode, offset,
8674 count - (size_t)ret);
8678 inode_dio_end(inode);
8685 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8687 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8688 __u64 start, __u64 len)
8692 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8696 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8699 int btrfs_readpage(struct file *file, struct page *page)
8701 struct extent_io_tree *tree;
8702 tree = &BTRFS_I(page->mapping->host)->io_tree;
8703 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8706 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8708 struct extent_io_tree *tree;
8709 struct inode *inode = page->mapping->host;
8712 if (current->flags & PF_MEMALLOC) {
8713 redirty_page_for_writepage(wbc, page);
8719 * If we are under memory pressure we will call this directly from the
8720 * VM, we need to make sure we have the inode referenced for the ordered
8721 * extent. If not just return like we didn't do anything.
8723 if (!igrab(inode)) {
8724 redirty_page_for_writepage(wbc, page);
8725 return AOP_WRITEPAGE_ACTIVATE;
8727 tree = &BTRFS_I(page->mapping->host)->io_tree;
8728 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8729 btrfs_add_delayed_iput(inode);
8733 static int btrfs_writepages(struct address_space *mapping,
8734 struct writeback_control *wbc)
8736 struct extent_io_tree *tree;
8738 tree = &BTRFS_I(mapping->host)->io_tree;
8739 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8743 btrfs_readpages(struct file *file, struct address_space *mapping,
8744 struct list_head *pages, unsigned nr_pages)
8746 struct extent_io_tree *tree;
8747 tree = &BTRFS_I(mapping->host)->io_tree;
8748 return extent_readpages(tree, mapping, pages, nr_pages,
8751 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8753 struct extent_io_tree *tree;
8754 struct extent_map_tree *map;
8757 tree = &BTRFS_I(page->mapping->host)->io_tree;
8758 map = &BTRFS_I(page->mapping->host)->extent_tree;
8759 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8761 ClearPagePrivate(page);
8762 set_page_private(page, 0);
8768 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8770 if (PageWriteback(page) || PageDirty(page))
8772 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8775 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8776 unsigned int length)
8778 struct inode *inode = page->mapping->host;
8779 struct extent_io_tree *tree;
8780 struct btrfs_ordered_extent *ordered;
8781 struct extent_state *cached_state = NULL;
8782 u64 page_start = page_offset(page);
8783 u64 page_end = page_start + PAGE_SIZE - 1;
8786 int inode_evicting = inode->i_state & I_FREEING;
8789 * we have the page locked, so new writeback can't start,
8790 * and the dirty bit won't be cleared while we are here.
8792 * Wait for IO on this page so that we can safely clear
8793 * the PagePrivate2 bit and do ordered accounting
8795 wait_on_page_writeback(page);
8797 tree = &BTRFS_I(inode)->io_tree;
8799 btrfs_releasepage(page, GFP_NOFS);
8803 if (!inode_evicting)
8804 lock_extent_bits(tree, page_start, page_end, &cached_state);
8807 ordered = btrfs_lookup_ordered_range(inode, start,
8808 page_end - start + 1);
8810 end = min(page_end, ordered->file_offset + ordered->len - 1);
8812 * IO on this page will never be started, so we need
8813 * to account for any ordered extents now
8815 if (!inode_evicting)
8816 clear_extent_bit(tree, start, end,
8817 EXTENT_DIRTY | EXTENT_DELALLOC |
8818 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8819 EXTENT_DEFRAG, 1, 0, &cached_state,
8822 * whoever cleared the private bit is responsible
8823 * for the finish_ordered_io
8825 if (TestClearPagePrivate2(page)) {
8826 struct btrfs_ordered_inode_tree *tree;
8829 tree = &BTRFS_I(inode)->ordered_tree;
8831 spin_lock_irq(&tree->lock);
8832 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8833 new_len = start - ordered->file_offset;
8834 if (new_len < ordered->truncated_len)
8835 ordered->truncated_len = new_len;
8836 spin_unlock_irq(&tree->lock);
8838 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8840 end - start + 1, 1))
8841 btrfs_finish_ordered_io(ordered);
8843 btrfs_put_ordered_extent(ordered);
8844 if (!inode_evicting) {
8845 cached_state = NULL;
8846 lock_extent_bits(tree, start, end,
8851 if (start < page_end)
8856 * Qgroup reserved space handler
8857 * Page here will be either
8858 * 1) Already written to disk
8859 * In this case, its reserved space is released from data rsv map
8860 * and will be freed by delayed_ref handler finally.
8861 * So even we call qgroup_free_data(), it won't decrease reserved
8863 * 2) Not written to disk
8864 * This means the reserved space should be freed here.
8866 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8867 if (!inode_evicting) {
8868 clear_extent_bit(tree, page_start, page_end,
8869 EXTENT_LOCKED | EXTENT_DIRTY |
8870 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8871 EXTENT_DEFRAG, 1, 1,
8872 &cached_state, GFP_NOFS);
8874 __btrfs_releasepage(page, GFP_NOFS);
8877 ClearPageChecked(page);
8878 if (PagePrivate(page)) {
8879 ClearPagePrivate(page);
8880 set_page_private(page, 0);
8886 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8887 * called from a page fault handler when a page is first dirtied. Hence we must
8888 * be careful to check for EOF conditions here. We set the page up correctly
8889 * for a written page which means we get ENOSPC checking when writing into
8890 * holes and correct delalloc and unwritten extent mapping on filesystems that
8891 * support these features.
8893 * We are not allowed to take the i_mutex here so we have to play games to
8894 * protect against truncate races as the page could now be beyond EOF. Because
8895 * vmtruncate() writes the inode size before removing pages, once we have the
8896 * page lock we can determine safely if the page is beyond EOF. If it is not
8897 * beyond EOF, then the page is guaranteed safe against truncation until we
8900 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8902 struct page *page = vmf->page;
8903 struct inode *inode = file_inode(vma->vm_file);
8904 struct btrfs_root *root = BTRFS_I(inode)->root;
8905 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8906 struct btrfs_ordered_extent *ordered;
8907 struct extent_state *cached_state = NULL;
8909 unsigned long zero_start;
8918 reserved_space = PAGE_SIZE;
8920 sb_start_pagefault(inode->i_sb);
8921 page_start = page_offset(page);
8922 page_end = page_start + PAGE_SIZE - 1;
8926 * Reserving delalloc space after obtaining the page lock can lead to
8927 * deadlock. For example, if a dirty page is locked by this function
8928 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8929 * dirty page write out, then the btrfs_writepage() function could
8930 * end up waiting indefinitely to get a lock on the page currently
8931 * being processed by btrfs_page_mkwrite() function.
8933 ret = btrfs_delalloc_reserve_space(inode, page_start,
8936 ret = file_update_time(vma->vm_file);
8942 else /* -ENOSPC, -EIO, etc */
8943 ret = VM_FAULT_SIGBUS;
8949 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8952 size = i_size_read(inode);
8954 if ((page->mapping != inode->i_mapping) ||
8955 (page_start >= size)) {
8956 /* page got truncated out from underneath us */
8959 wait_on_page_writeback(page);
8961 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8962 set_page_extent_mapped(page);
8965 * we can't set the delalloc bits if there are pending ordered
8966 * extents. Drop our locks and wait for them to finish
8968 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8970 unlock_extent_cached(io_tree, page_start, page_end,
8971 &cached_state, GFP_NOFS);
8973 btrfs_start_ordered_extent(inode, ordered, 1);
8974 btrfs_put_ordered_extent(ordered);
8978 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8979 reserved_space = round_up(size - page_start, root->sectorsize);
8980 if (reserved_space < PAGE_SIZE) {
8981 end = page_start + reserved_space - 1;
8982 spin_lock(&BTRFS_I(inode)->lock);
8983 BTRFS_I(inode)->outstanding_extents++;
8984 spin_unlock(&BTRFS_I(inode)->lock);
8985 btrfs_delalloc_release_space(inode, page_start,
8986 PAGE_SIZE - reserved_space);
8991 * XXX - page_mkwrite gets called every time the page is dirtied, even
8992 * if it was already dirty, so for space accounting reasons we need to
8993 * clear any delalloc bits for the range we are fixing to save. There
8994 * is probably a better way to do this, but for now keep consistent with
8995 * prepare_pages in the normal write path.
8997 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8998 EXTENT_DIRTY | EXTENT_DELALLOC |
8999 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9000 0, 0, &cached_state, GFP_NOFS);
9002 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9005 unlock_extent_cached(io_tree, page_start, page_end,
9006 &cached_state, GFP_NOFS);
9007 ret = VM_FAULT_SIGBUS;
9012 /* page is wholly or partially inside EOF */
9013 if (page_start + PAGE_SIZE > size)
9014 zero_start = size & ~PAGE_MASK;
9016 zero_start = PAGE_SIZE;
9018 if (zero_start != PAGE_SIZE) {
9020 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9021 flush_dcache_page(page);
9024 ClearPageChecked(page);
9025 set_page_dirty(page);
9026 SetPageUptodate(page);
9028 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9029 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9030 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9032 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9036 sb_end_pagefault(inode->i_sb);
9037 return VM_FAULT_LOCKED;
9041 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9043 sb_end_pagefault(inode->i_sb);
9047 static int btrfs_truncate(struct inode *inode)
9049 struct btrfs_root *root = BTRFS_I(inode)->root;
9050 struct btrfs_block_rsv *rsv;
9053 struct btrfs_trans_handle *trans;
9054 u64 mask = root->sectorsize - 1;
9055 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9057 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9063 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9064 * 3 things going on here
9066 * 1) We need to reserve space for our orphan item and the space to
9067 * delete our orphan item. Lord knows we don't want to have a dangling
9068 * orphan item because we didn't reserve space to remove it.
9070 * 2) We need to reserve space to update our inode.
9072 * 3) We need to have something to cache all the space that is going to
9073 * be free'd up by the truncate operation, but also have some slack
9074 * space reserved in case it uses space during the truncate (thank you
9075 * very much snapshotting).
9077 * And we need these to all be separate. The fact is we can use a lot of
9078 * space doing the truncate, and we have no earthly idea how much space
9079 * we will use, so we need the truncate reservation to be separate so it
9080 * doesn't end up using space reserved for updating the inode or
9081 * removing the orphan item. We also need to be able to stop the
9082 * transaction and start a new one, which means we need to be able to
9083 * update the inode several times, and we have no idea of knowing how
9084 * many times that will be, so we can't just reserve 1 item for the
9085 * entirety of the operation, so that has to be done separately as well.
9086 * Then there is the orphan item, which does indeed need to be held on
9087 * to for the whole operation, and we need nobody to touch this reserved
9088 * space except the orphan code.
9090 * So that leaves us with
9092 * 1) root->orphan_block_rsv - for the orphan deletion.
9093 * 2) rsv - for the truncate reservation, which we will steal from the
9094 * transaction reservation.
9095 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9096 * updating the inode.
9098 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9101 rsv->size = min_size;
9105 * 1 for the truncate slack space
9106 * 1 for updating the inode.
9108 trans = btrfs_start_transaction(root, 2);
9109 if (IS_ERR(trans)) {
9110 err = PTR_ERR(trans);
9114 /* Migrate the slack space for the truncate to our reserve */
9115 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9120 * So if we truncate and then write and fsync we normally would just
9121 * write the extents that changed, which is a problem if we need to
9122 * first truncate that entire inode. So set this flag so we write out
9123 * all of the extents in the inode to the sync log so we're completely
9126 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9127 trans->block_rsv = rsv;
9130 ret = btrfs_truncate_inode_items(trans, root, inode,
9132 BTRFS_EXTENT_DATA_KEY);
9133 if (ret != -ENOSPC && ret != -EAGAIN) {
9138 trans->block_rsv = &root->fs_info->trans_block_rsv;
9139 ret = btrfs_update_inode(trans, root, inode);
9145 btrfs_end_transaction(trans, root);
9146 btrfs_btree_balance_dirty(root);
9148 trans = btrfs_start_transaction(root, 2);
9149 if (IS_ERR(trans)) {
9150 ret = err = PTR_ERR(trans);
9155 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9157 BUG_ON(ret); /* shouldn't happen */
9158 trans->block_rsv = rsv;
9161 if (ret == 0 && inode->i_nlink > 0) {
9162 trans->block_rsv = root->orphan_block_rsv;
9163 ret = btrfs_orphan_del(trans, inode);
9169 trans->block_rsv = &root->fs_info->trans_block_rsv;
9170 ret = btrfs_update_inode(trans, root, inode);
9174 ret = btrfs_end_transaction(trans, root);
9175 btrfs_btree_balance_dirty(root);
9179 btrfs_free_block_rsv(root, rsv);
9188 * create a new subvolume directory/inode (helper for the ioctl).
9190 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9191 struct btrfs_root *new_root,
9192 struct btrfs_root *parent_root,
9195 struct inode *inode;
9199 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9200 new_dirid, new_dirid,
9201 S_IFDIR | (~current_umask() & S_IRWXUGO),
9204 return PTR_ERR(inode);
9205 inode->i_op = &btrfs_dir_inode_operations;
9206 inode->i_fop = &btrfs_dir_file_operations;
9208 set_nlink(inode, 1);
9209 btrfs_i_size_write(inode, 0);
9210 unlock_new_inode(inode);
9212 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9214 btrfs_err(new_root->fs_info,
9215 "error inheriting subvolume %llu properties: %d",
9216 new_root->root_key.objectid, err);
9218 err = btrfs_update_inode(trans, new_root, inode);
9224 struct inode *btrfs_alloc_inode(struct super_block *sb)
9226 struct btrfs_inode *ei;
9227 struct inode *inode;
9229 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9236 ei->last_sub_trans = 0;
9237 ei->logged_trans = 0;
9238 ei->delalloc_bytes = 0;
9239 ei->defrag_bytes = 0;
9240 ei->disk_i_size = 0;
9243 ei->index_cnt = (u64)-1;
9245 ei->last_unlink_trans = 0;
9246 ei->last_log_commit = 0;
9247 ei->delayed_iput_count = 0;
9249 spin_lock_init(&ei->lock);
9250 ei->outstanding_extents = 0;
9251 ei->reserved_extents = 0;
9253 ei->runtime_flags = 0;
9254 ei->force_compress = BTRFS_COMPRESS_NONE;
9256 ei->delayed_node = NULL;
9258 ei->i_otime.tv_sec = 0;
9259 ei->i_otime.tv_nsec = 0;
9261 inode = &ei->vfs_inode;
9262 extent_map_tree_init(&ei->extent_tree);
9263 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9264 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9265 ei->io_tree.track_uptodate = 1;
9266 ei->io_failure_tree.track_uptodate = 1;
9267 atomic_set(&ei->sync_writers, 0);
9268 mutex_init(&ei->log_mutex);
9269 mutex_init(&ei->delalloc_mutex);
9270 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9271 INIT_LIST_HEAD(&ei->delalloc_inodes);
9272 INIT_LIST_HEAD(&ei->delayed_iput);
9273 RB_CLEAR_NODE(&ei->rb_node);
9274 init_rwsem(&ei->dio_sem);
9279 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9280 void btrfs_test_destroy_inode(struct inode *inode)
9282 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9283 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9287 static void btrfs_i_callback(struct rcu_head *head)
9289 struct inode *inode = container_of(head, struct inode, i_rcu);
9290 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9293 void btrfs_destroy_inode(struct inode *inode)
9295 struct btrfs_ordered_extent *ordered;
9296 struct btrfs_root *root = BTRFS_I(inode)->root;
9298 WARN_ON(!hlist_empty(&inode->i_dentry));
9299 WARN_ON(inode->i_data.nrpages);
9300 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9301 WARN_ON(BTRFS_I(inode)->reserved_extents);
9302 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9303 WARN_ON(BTRFS_I(inode)->csum_bytes);
9304 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9307 * This can happen where we create an inode, but somebody else also
9308 * created the same inode and we need to destroy the one we already
9314 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9315 &BTRFS_I(inode)->runtime_flags)) {
9316 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9318 atomic_dec(&root->orphan_inodes);
9322 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9326 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9327 ordered->file_offset, ordered->len);
9328 btrfs_remove_ordered_extent(inode, ordered);
9329 btrfs_put_ordered_extent(ordered);
9330 btrfs_put_ordered_extent(ordered);
9333 btrfs_qgroup_check_reserved_leak(inode);
9334 inode_tree_del(inode);
9335 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9337 call_rcu(&inode->i_rcu, btrfs_i_callback);
9340 int btrfs_drop_inode(struct inode *inode)
9342 struct btrfs_root *root = BTRFS_I(inode)->root;
9347 /* the snap/subvol tree is on deleting */
9348 if (btrfs_root_refs(&root->root_item) == 0)
9351 return generic_drop_inode(inode);
9354 static void init_once(void *foo)
9356 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9358 inode_init_once(&ei->vfs_inode);
9361 void btrfs_destroy_cachep(void)
9364 * Make sure all delayed rcu free inodes are flushed before we
9368 kmem_cache_destroy(btrfs_inode_cachep);
9369 kmem_cache_destroy(btrfs_trans_handle_cachep);
9370 kmem_cache_destroy(btrfs_transaction_cachep);
9371 kmem_cache_destroy(btrfs_path_cachep);
9372 kmem_cache_destroy(btrfs_free_space_cachep);
9375 int btrfs_init_cachep(void)
9377 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9378 sizeof(struct btrfs_inode), 0,
9379 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9381 if (!btrfs_inode_cachep)
9384 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9385 sizeof(struct btrfs_trans_handle), 0,
9386 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9387 if (!btrfs_trans_handle_cachep)
9390 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9391 sizeof(struct btrfs_transaction), 0,
9392 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9393 if (!btrfs_transaction_cachep)
9396 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9397 sizeof(struct btrfs_path), 0,
9398 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9399 if (!btrfs_path_cachep)
9402 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9403 sizeof(struct btrfs_free_space), 0,
9404 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9405 if (!btrfs_free_space_cachep)
9410 btrfs_destroy_cachep();
9414 static int btrfs_getattr(struct vfsmount *mnt,
9415 struct dentry *dentry, struct kstat *stat)
9418 struct inode *inode = d_inode(dentry);
9419 u32 blocksize = inode->i_sb->s_blocksize;
9421 generic_fillattr(inode, stat);
9422 stat->dev = BTRFS_I(inode)->root->anon_dev;
9424 spin_lock(&BTRFS_I(inode)->lock);
9425 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9426 spin_unlock(&BTRFS_I(inode)->lock);
9427 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9428 ALIGN(delalloc_bytes, blocksize)) >> 9;
9432 static int btrfs_rename_exchange(struct inode *old_dir,
9433 struct dentry *old_dentry,
9434 struct inode *new_dir,
9435 struct dentry *new_dentry)
9437 struct btrfs_trans_handle *trans;
9438 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9439 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9440 struct inode *new_inode = new_dentry->d_inode;
9441 struct inode *old_inode = old_dentry->d_inode;
9442 struct timespec ctime = CURRENT_TIME;
9443 struct dentry *parent;
9444 u64 old_ino = btrfs_ino(old_inode);
9445 u64 new_ino = btrfs_ino(new_inode);
9450 bool root_log_pinned = false;
9451 bool dest_log_pinned = false;
9453 /* we only allow rename subvolume link between subvolumes */
9454 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9457 /* close the race window with snapshot create/destroy ioctl */
9458 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9459 down_read(&root->fs_info->subvol_sem);
9460 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9461 down_read(&dest->fs_info->subvol_sem);
9464 * We want to reserve the absolute worst case amount of items. So if
9465 * both inodes are subvols and we need to unlink them then that would
9466 * require 4 item modifications, but if they are both normal inodes it
9467 * would require 5 item modifications, so we'll assume their normal
9468 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9469 * should cover the worst case number of items we'll modify.
9471 trans = btrfs_start_transaction(root, 12);
9472 if (IS_ERR(trans)) {
9473 ret = PTR_ERR(trans);
9478 * We need to find a free sequence number both in the source and
9479 * in the destination directory for the exchange.
9481 ret = btrfs_set_inode_index(new_dir, &old_idx);
9484 ret = btrfs_set_inode_index(old_dir, &new_idx);
9488 BTRFS_I(old_inode)->dir_index = 0ULL;
9489 BTRFS_I(new_inode)->dir_index = 0ULL;
9491 /* Reference for the source. */
9492 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9493 /* force full log commit if subvolume involved. */
9494 btrfs_set_log_full_commit(root->fs_info, trans);
9496 btrfs_pin_log_trans(root);
9497 root_log_pinned = true;
9498 ret = btrfs_insert_inode_ref(trans, dest,
9499 new_dentry->d_name.name,
9500 new_dentry->d_name.len,
9502 btrfs_ino(new_dir), old_idx);
9507 /* And now for the dest. */
9508 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9509 /* force full log commit if subvolume involved. */
9510 btrfs_set_log_full_commit(dest->fs_info, trans);
9512 btrfs_pin_log_trans(dest);
9513 dest_log_pinned = true;
9514 ret = btrfs_insert_inode_ref(trans, root,
9515 old_dentry->d_name.name,
9516 old_dentry->d_name.len,
9518 btrfs_ino(old_dir), new_idx);
9523 /* Update inode version and ctime/mtime. */
9524 inode_inc_iversion(old_dir);
9525 inode_inc_iversion(new_dir);
9526 inode_inc_iversion(old_inode);
9527 inode_inc_iversion(new_inode);
9528 old_dir->i_ctime = old_dir->i_mtime = ctime;
9529 new_dir->i_ctime = new_dir->i_mtime = ctime;
9530 old_inode->i_ctime = ctime;
9531 new_inode->i_ctime = ctime;
9533 if (old_dentry->d_parent != new_dentry->d_parent) {
9534 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9535 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9538 /* src is a subvolume */
9539 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9540 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9541 ret = btrfs_unlink_subvol(trans, root, old_dir,
9543 old_dentry->d_name.name,
9544 old_dentry->d_name.len);
9545 } else { /* src is an inode */
9546 ret = __btrfs_unlink_inode(trans, root, old_dir,
9547 old_dentry->d_inode,
9548 old_dentry->d_name.name,
9549 old_dentry->d_name.len);
9551 ret = btrfs_update_inode(trans, root, old_inode);
9554 btrfs_abort_transaction(trans, root, ret);
9558 /* dest is a subvolume */
9559 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9560 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9561 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9563 new_dentry->d_name.name,
9564 new_dentry->d_name.len);
9565 } else { /* dest is an inode */
9566 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9567 new_dentry->d_inode,
9568 new_dentry->d_name.name,
9569 new_dentry->d_name.len);
9571 ret = btrfs_update_inode(trans, dest, new_inode);
9574 btrfs_abort_transaction(trans, root, ret);
9578 ret = btrfs_add_link(trans, new_dir, old_inode,
9579 new_dentry->d_name.name,
9580 new_dentry->d_name.len, 0, old_idx);
9582 btrfs_abort_transaction(trans, root, ret);
9586 ret = btrfs_add_link(trans, old_dir, new_inode,
9587 old_dentry->d_name.name,
9588 old_dentry->d_name.len, 0, new_idx);
9590 btrfs_abort_transaction(trans, root, ret);
9594 if (old_inode->i_nlink == 1)
9595 BTRFS_I(old_inode)->dir_index = old_idx;
9596 if (new_inode->i_nlink == 1)
9597 BTRFS_I(new_inode)->dir_index = new_idx;
9599 if (root_log_pinned) {
9600 parent = new_dentry->d_parent;
9601 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9602 btrfs_end_log_trans(root);
9603 root_log_pinned = false;
9605 if (dest_log_pinned) {
9606 parent = old_dentry->d_parent;
9607 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9608 btrfs_end_log_trans(dest);
9609 dest_log_pinned = false;
9613 * If we have pinned a log and an error happened, we unpin tasks
9614 * trying to sync the log and force them to fallback to a transaction
9615 * commit if the log currently contains any of the inodes involved in
9616 * this rename operation (to ensure we do not persist a log with an
9617 * inconsistent state for any of these inodes or leading to any
9618 * inconsistencies when replayed). If the transaction was aborted, the
9619 * abortion reason is propagated to userspace when attempting to commit
9620 * the transaction. If the log does not contain any of these inodes, we
9621 * allow the tasks to sync it.
9623 if (ret && (root_log_pinned || dest_log_pinned)) {
9624 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9625 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9626 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9628 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9629 btrfs_set_log_full_commit(root->fs_info, trans);
9631 if (root_log_pinned) {
9632 btrfs_end_log_trans(root);
9633 root_log_pinned = false;
9635 if (dest_log_pinned) {
9636 btrfs_end_log_trans(dest);
9637 dest_log_pinned = false;
9640 ret = btrfs_end_transaction(trans, root);
9642 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9643 up_read(&dest->fs_info->subvol_sem);
9644 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9645 up_read(&root->fs_info->subvol_sem);
9650 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9651 struct btrfs_root *root,
9653 struct dentry *dentry)
9656 struct inode *inode;
9660 ret = btrfs_find_free_ino(root, &objectid);
9664 inode = btrfs_new_inode(trans, root, dir,
9665 dentry->d_name.name,
9669 S_IFCHR | WHITEOUT_MODE,
9672 if (IS_ERR(inode)) {
9673 ret = PTR_ERR(inode);
9677 inode->i_op = &btrfs_special_inode_operations;
9678 init_special_inode(inode, inode->i_mode,
9681 ret = btrfs_init_inode_security(trans, inode, dir,
9686 ret = btrfs_add_nondir(trans, dir, dentry,
9691 ret = btrfs_update_inode(trans, root, inode);
9693 unlock_new_inode(inode);
9695 inode_dec_link_count(inode);
9701 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9702 struct inode *new_dir, struct dentry *new_dentry,
9705 struct btrfs_trans_handle *trans;
9706 unsigned int trans_num_items;
9707 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9708 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9709 struct inode *new_inode = d_inode(new_dentry);
9710 struct inode *old_inode = d_inode(old_dentry);
9714 u64 old_ino = btrfs_ino(old_inode);
9715 bool log_pinned = false;
9717 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9720 /* we only allow rename subvolume link between subvolumes */
9721 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9724 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9725 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9728 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9729 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9733 /* check for collisions, even if the name isn't there */
9734 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9735 new_dentry->d_name.name,
9736 new_dentry->d_name.len);
9739 if (ret == -EEXIST) {
9741 * eexist without a new_inode */
9742 if (WARN_ON(!new_inode)) {
9746 /* maybe -EOVERFLOW */
9753 * we're using rename to replace one file with another. Start IO on it
9754 * now so we don't add too much work to the end of the transaction
9756 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9757 filemap_flush(old_inode->i_mapping);
9759 /* close the racy window with snapshot create/destroy ioctl */
9760 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9761 down_read(&root->fs_info->subvol_sem);
9763 * We want to reserve the absolute worst case amount of items. So if
9764 * both inodes are subvols and we need to unlink them then that would
9765 * require 4 item modifications, but if they are both normal inodes it
9766 * would require 5 item modifications, so we'll assume they are normal
9767 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9768 * should cover the worst case number of items we'll modify.
9769 * If our rename has the whiteout flag, we need more 5 units for the
9770 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9771 * when selinux is enabled).
9773 trans_num_items = 11;
9774 if (flags & RENAME_WHITEOUT)
9775 trans_num_items += 5;
9776 trans = btrfs_start_transaction(root, trans_num_items);
9777 if (IS_ERR(trans)) {
9778 ret = PTR_ERR(trans);
9783 btrfs_record_root_in_trans(trans, dest);
9785 ret = btrfs_set_inode_index(new_dir, &index);
9789 BTRFS_I(old_inode)->dir_index = 0ULL;
9790 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9791 /* force full log commit if subvolume involved. */
9792 btrfs_set_log_full_commit(root->fs_info, trans);
9794 btrfs_pin_log_trans(root);
9796 ret = btrfs_insert_inode_ref(trans, dest,
9797 new_dentry->d_name.name,
9798 new_dentry->d_name.len,
9800 btrfs_ino(new_dir), index);
9805 inode_inc_iversion(old_dir);
9806 inode_inc_iversion(new_dir);
9807 inode_inc_iversion(old_inode);
9808 old_dir->i_ctime = old_dir->i_mtime =
9809 new_dir->i_ctime = new_dir->i_mtime =
9810 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9812 if (old_dentry->d_parent != new_dentry->d_parent)
9813 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9815 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9816 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9817 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9818 old_dentry->d_name.name,
9819 old_dentry->d_name.len);
9821 ret = __btrfs_unlink_inode(trans, root, old_dir,
9822 d_inode(old_dentry),
9823 old_dentry->d_name.name,
9824 old_dentry->d_name.len);
9826 ret = btrfs_update_inode(trans, root, old_inode);
9829 btrfs_abort_transaction(trans, root, ret);
9834 inode_inc_iversion(new_inode);
9835 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9836 if (unlikely(btrfs_ino(new_inode) ==
9837 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9838 root_objectid = BTRFS_I(new_inode)->location.objectid;
9839 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9841 new_dentry->d_name.name,
9842 new_dentry->d_name.len);
9843 BUG_ON(new_inode->i_nlink == 0);
9845 ret = btrfs_unlink_inode(trans, dest, new_dir,
9846 d_inode(new_dentry),
9847 new_dentry->d_name.name,
9848 new_dentry->d_name.len);
9850 if (!ret && new_inode->i_nlink == 0)
9851 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9853 btrfs_abort_transaction(trans, root, ret);
9858 ret = btrfs_add_link(trans, new_dir, old_inode,
9859 new_dentry->d_name.name,
9860 new_dentry->d_name.len, 0, index);
9862 btrfs_abort_transaction(trans, root, ret);
9866 if (old_inode->i_nlink == 1)
9867 BTRFS_I(old_inode)->dir_index = index;
9870 struct dentry *parent = new_dentry->d_parent;
9872 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9873 btrfs_end_log_trans(root);
9877 if (flags & RENAME_WHITEOUT) {
9878 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9882 btrfs_abort_transaction(trans, root, ret);
9888 * If we have pinned the log and an error happened, we unpin tasks
9889 * trying to sync the log and force them to fallback to a transaction
9890 * commit if the log currently contains any of the inodes involved in
9891 * this rename operation (to ensure we do not persist a log with an
9892 * inconsistent state for any of these inodes or leading to any
9893 * inconsistencies when replayed). If the transaction was aborted, the
9894 * abortion reason is propagated to userspace when attempting to commit
9895 * the transaction. If the log does not contain any of these inodes, we
9896 * allow the tasks to sync it.
9898 if (ret && log_pinned) {
9899 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9900 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9901 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9903 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9904 btrfs_set_log_full_commit(root->fs_info, trans);
9906 btrfs_end_log_trans(root);
9909 btrfs_end_transaction(trans, root);
9911 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9912 up_read(&root->fs_info->subvol_sem);
9917 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9918 struct inode *new_dir, struct dentry *new_dentry,
9921 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9924 if (flags & RENAME_EXCHANGE)
9925 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9928 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9931 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9933 struct btrfs_delalloc_work *delalloc_work;
9934 struct inode *inode;
9936 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9938 inode = delalloc_work->inode;
9939 filemap_flush(inode->i_mapping);
9940 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9941 &BTRFS_I(inode)->runtime_flags))
9942 filemap_flush(inode->i_mapping);
9944 if (delalloc_work->delay_iput)
9945 btrfs_add_delayed_iput(inode);
9948 complete(&delalloc_work->completion);
9951 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9954 struct btrfs_delalloc_work *work;
9956 work = kmalloc(sizeof(*work), GFP_NOFS);
9960 init_completion(&work->completion);
9961 INIT_LIST_HEAD(&work->list);
9962 work->inode = inode;
9963 work->delay_iput = delay_iput;
9964 WARN_ON_ONCE(!inode);
9965 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9966 btrfs_run_delalloc_work, NULL, NULL);
9971 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9973 wait_for_completion(&work->completion);
9978 * some fairly slow code that needs optimization. This walks the list
9979 * of all the inodes with pending delalloc and forces them to disk.
9981 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9984 struct btrfs_inode *binode;
9985 struct inode *inode;
9986 struct btrfs_delalloc_work *work, *next;
9987 struct list_head works;
9988 struct list_head splice;
9991 INIT_LIST_HEAD(&works);
9992 INIT_LIST_HEAD(&splice);
9994 mutex_lock(&root->delalloc_mutex);
9995 spin_lock(&root->delalloc_lock);
9996 list_splice_init(&root->delalloc_inodes, &splice);
9997 while (!list_empty(&splice)) {
9998 binode = list_entry(splice.next, struct btrfs_inode,
10001 list_move_tail(&binode->delalloc_inodes,
10002 &root->delalloc_inodes);
10003 inode = igrab(&binode->vfs_inode);
10005 cond_resched_lock(&root->delalloc_lock);
10008 spin_unlock(&root->delalloc_lock);
10010 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10013 btrfs_add_delayed_iput(inode);
10019 list_add_tail(&work->list, &works);
10020 btrfs_queue_work(root->fs_info->flush_workers,
10023 if (nr != -1 && ret >= nr)
10026 spin_lock(&root->delalloc_lock);
10028 spin_unlock(&root->delalloc_lock);
10031 list_for_each_entry_safe(work, next, &works, list) {
10032 list_del_init(&work->list);
10033 btrfs_wait_and_free_delalloc_work(work);
10036 if (!list_empty_careful(&splice)) {
10037 spin_lock(&root->delalloc_lock);
10038 list_splice_tail(&splice, &root->delalloc_inodes);
10039 spin_unlock(&root->delalloc_lock);
10041 mutex_unlock(&root->delalloc_mutex);
10045 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10049 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10052 ret = __start_delalloc_inodes(root, delay_iput, -1);
10056 * the filemap_flush will queue IO into the worker threads, but
10057 * we have to make sure the IO is actually started and that
10058 * ordered extents get created before we return
10060 atomic_inc(&root->fs_info->async_submit_draining);
10061 while (atomic_read(&root->fs_info->nr_async_submits) ||
10062 atomic_read(&root->fs_info->async_delalloc_pages)) {
10063 wait_event(root->fs_info->async_submit_wait,
10064 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10065 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10067 atomic_dec(&root->fs_info->async_submit_draining);
10071 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10074 struct btrfs_root *root;
10075 struct list_head splice;
10078 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10081 INIT_LIST_HEAD(&splice);
10083 mutex_lock(&fs_info->delalloc_root_mutex);
10084 spin_lock(&fs_info->delalloc_root_lock);
10085 list_splice_init(&fs_info->delalloc_roots, &splice);
10086 while (!list_empty(&splice) && nr) {
10087 root = list_first_entry(&splice, struct btrfs_root,
10089 root = btrfs_grab_fs_root(root);
10091 list_move_tail(&root->delalloc_root,
10092 &fs_info->delalloc_roots);
10093 spin_unlock(&fs_info->delalloc_root_lock);
10095 ret = __start_delalloc_inodes(root, delay_iput, nr);
10096 btrfs_put_fs_root(root);
10104 spin_lock(&fs_info->delalloc_root_lock);
10106 spin_unlock(&fs_info->delalloc_root_lock);
10109 atomic_inc(&fs_info->async_submit_draining);
10110 while (atomic_read(&fs_info->nr_async_submits) ||
10111 atomic_read(&fs_info->async_delalloc_pages)) {
10112 wait_event(fs_info->async_submit_wait,
10113 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10114 atomic_read(&fs_info->async_delalloc_pages) == 0));
10116 atomic_dec(&fs_info->async_submit_draining);
10118 if (!list_empty_careful(&splice)) {
10119 spin_lock(&fs_info->delalloc_root_lock);
10120 list_splice_tail(&splice, &fs_info->delalloc_roots);
10121 spin_unlock(&fs_info->delalloc_root_lock);
10123 mutex_unlock(&fs_info->delalloc_root_mutex);
10127 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10128 const char *symname)
10130 struct btrfs_trans_handle *trans;
10131 struct btrfs_root *root = BTRFS_I(dir)->root;
10132 struct btrfs_path *path;
10133 struct btrfs_key key;
10134 struct inode *inode = NULL;
10136 int drop_inode = 0;
10142 struct btrfs_file_extent_item *ei;
10143 struct extent_buffer *leaf;
10145 name_len = strlen(symname);
10146 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10147 return -ENAMETOOLONG;
10150 * 2 items for inode item and ref
10151 * 2 items for dir items
10152 * 1 item for updating parent inode item
10153 * 1 item for the inline extent item
10154 * 1 item for xattr if selinux is on
10156 trans = btrfs_start_transaction(root, 7);
10158 return PTR_ERR(trans);
10160 err = btrfs_find_free_ino(root, &objectid);
10164 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10165 dentry->d_name.len, btrfs_ino(dir), objectid,
10166 S_IFLNK|S_IRWXUGO, &index);
10167 if (IS_ERR(inode)) {
10168 err = PTR_ERR(inode);
10173 * If the active LSM wants to access the inode during
10174 * d_instantiate it needs these. Smack checks to see
10175 * if the filesystem supports xattrs by looking at the
10178 inode->i_fop = &btrfs_file_operations;
10179 inode->i_op = &btrfs_file_inode_operations;
10180 inode->i_mapping->a_ops = &btrfs_aops;
10181 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10183 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10185 goto out_unlock_inode;
10187 path = btrfs_alloc_path();
10190 goto out_unlock_inode;
10192 key.objectid = btrfs_ino(inode);
10194 key.type = BTRFS_EXTENT_DATA_KEY;
10195 datasize = btrfs_file_extent_calc_inline_size(name_len);
10196 err = btrfs_insert_empty_item(trans, root, path, &key,
10199 btrfs_free_path(path);
10200 goto out_unlock_inode;
10202 leaf = path->nodes[0];
10203 ei = btrfs_item_ptr(leaf, path->slots[0],
10204 struct btrfs_file_extent_item);
10205 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10206 btrfs_set_file_extent_type(leaf, ei,
10207 BTRFS_FILE_EXTENT_INLINE);
10208 btrfs_set_file_extent_encryption(leaf, ei, 0);
10209 btrfs_set_file_extent_compression(leaf, ei, 0);
10210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10211 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10213 ptr = btrfs_file_extent_inline_start(ei);
10214 write_extent_buffer(leaf, symname, ptr, name_len);
10215 btrfs_mark_buffer_dirty(leaf);
10216 btrfs_free_path(path);
10218 inode->i_op = &btrfs_symlink_inode_operations;
10219 inode_nohighmem(inode);
10220 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10221 inode_set_bytes(inode, name_len);
10222 btrfs_i_size_write(inode, name_len);
10223 err = btrfs_update_inode(trans, root, inode);
10225 * Last step, add directory indexes for our symlink inode. This is the
10226 * last step to avoid extra cleanup of these indexes if an error happens
10230 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10233 goto out_unlock_inode;
10236 unlock_new_inode(inode);
10237 d_instantiate(dentry, inode);
10240 btrfs_end_transaction(trans, root);
10242 inode_dec_link_count(inode);
10245 btrfs_btree_balance_dirty(root);
10250 unlock_new_inode(inode);
10254 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10255 u64 start, u64 num_bytes, u64 min_size,
10256 loff_t actual_len, u64 *alloc_hint,
10257 struct btrfs_trans_handle *trans)
10259 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10260 struct extent_map *em;
10261 struct btrfs_root *root = BTRFS_I(inode)->root;
10262 struct btrfs_key ins;
10263 u64 cur_offset = start;
10266 u64 last_alloc = (u64)-1;
10268 bool own_trans = true;
10272 while (num_bytes > 0) {
10274 trans = btrfs_start_transaction(root, 3);
10275 if (IS_ERR(trans)) {
10276 ret = PTR_ERR(trans);
10281 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10282 cur_bytes = max(cur_bytes, min_size);
10284 * If we are severely fragmented we could end up with really
10285 * small allocations, so if the allocator is returning small
10286 * chunks lets make its job easier by only searching for those
10289 cur_bytes = min(cur_bytes, last_alloc);
10290 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
10291 *alloc_hint, &ins, 1, 0);
10294 btrfs_end_transaction(trans, root);
10297 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10299 last_alloc = ins.offset;
10300 ret = insert_reserved_file_extent(trans, inode,
10301 cur_offset, ins.objectid,
10302 ins.offset, ins.offset,
10303 ins.offset, 0, 0, 0,
10304 BTRFS_FILE_EXTENT_PREALLOC);
10306 btrfs_free_reserved_extent(root, ins.objectid,
10308 btrfs_abort_transaction(trans, root, ret);
10310 btrfs_end_transaction(trans, root);
10314 btrfs_drop_extent_cache(inode, cur_offset,
10315 cur_offset + ins.offset -1, 0);
10317 em = alloc_extent_map();
10319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10320 &BTRFS_I(inode)->runtime_flags);
10324 em->start = cur_offset;
10325 em->orig_start = cur_offset;
10326 em->len = ins.offset;
10327 em->block_start = ins.objectid;
10328 em->block_len = ins.offset;
10329 em->orig_block_len = ins.offset;
10330 em->ram_bytes = ins.offset;
10331 em->bdev = root->fs_info->fs_devices->latest_bdev;
10332 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10333 em->generation = trans->transid;
10336 write_lock(&em_tree->lock);
10337 ret = add_extent_mapping(em_tree, em, 1);
10338 write_unlock(&em_tree->lock);
10339 if (ret != -EEXIST)
10341 btrfs_drop_extent_cache(inode, cur_offset,
10342 cur_offset + ins.offset - 1,
10345 free_extent_map(em);
10347 num_bytes -= ins.offset;
10348 cur_offset += ins.offset;
10349 *alloc_hint = ins.objectid + ins.offset;
10351 inode_inc_iversion(inode);
10352 inode->i_ctime = current_fs_time(inode->i_sb);
10353 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10354 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10355 (actual_len > inode->i_size) &&
10356 (cur_offset > inode->i_size)) {
10357 if (cur_offset > actual_len)
10358 i_size = actual_len;
10360 i_size = cur_offset;
10361 i_size_write(inode, i_size);
10362 btrfs_ordered_update_i_size(inode, i_size, NULL);
10365 ret = btrfs_update_inode(trans, root, inode);
10368 btrfs_abort_transaction(trans, root, ret);
10370 btrfs_end_transaction(trans, root);
10375 btrfs_end_transaction(trans, root);
10380 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10381 u64 start, u64 num_bytes, u64 min_size,
10382 loff_t actual_len, u64 *alloc_hint)
10384 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10385 min_size, actual_len, alloc_hint,
10389 int btrfs_prealloc_file_range_trans(struct inode *inode,
10390 struct btrfs_trans_handle *trans, int mode,
10391 u64 start, u64 num_bytes, u64 min_size,
10392 loff_t actual_len, u64 *alloc_hint)
10394 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10395 min_size, actual_len, alloc_hint, trans);
10398 static int btrfs_set_page_dirty(struct page *page)
10400 return __set_page_dirty_nobuffers(page);
10403 static int btrfs_permission(struct inode *inode, int mask)
10405 struct btrfs_root *root = BTRFS_I(inode)->root;
10406 umode_t mode = inode->i_mode;
10408 if (mask & MAY_WRITE &&
10409 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10410 if (btrfs_root_readonly(root))
10412 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10415 return generic_permission(inode, mask);
10418 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10420 struct btrfs_trans_handle *trans;
10421 struct btrfs_root *root = BTRFS_I(dir)->root;
10422 struct inode *inode = NULL;
10428 * 5 units required for adding orphan entry
10430 trans = btrfs_start_transaction(root, 5);
10432 return PTR_ERR(trans);
10434 ret = btrfs_find_free_ino(root, &objectid);
10438 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10439 btrfs_ino(dir), objectid, mode, &index);
10440 if (IS_ERR(inode)) {
10441 ret = PTR_ERR(inode);
10446 inode->i_fop = &btrfs_file_operations;
10447 inode->i_op = &btrfs_file_inode_operations;
10449 inode->i_mapping->a_ops = &btrfs_aops;
10450 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10452 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10456 ret = btrfs_update_inode(trans, root, inode);
10459 ret = btrfs_orphan_add(trans, inode);
10464 * We set number of links to 0 in btrfs_new_inode(), and here we set
10465 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10468 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10470 set_nlink(inode, 1);
10471 unlock_new_inode(inode);
10472 d_tmpfile(dentry, inode);
10473 mark_inode_dirty(inode);
10476 btrfs_end_transaction(trans, root);
10479 btrfs_balance_delayed_items(root);
10480 btrfs_btree_balance_dirty(root);
10484 unlock_new_inode(inode);
10489 /* Inspired by filemap_check_errors() */
10490 int btrfs_inode_check_errors(struct inode *inode)
10494 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10495 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10497 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10498 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10504 static const struct inode_operations btrfs_dir_inode_operations = {
10505 .getattr = btrfs_getattr,
10506 .lookup = btrfs_lookup,
10507 .create = btrfs_create,
10508 .unlink = btrfs_unlink,
10509 .link = btrfs_link,
10510 .mkdir = btrfs_mkdir,
10511 .rmdir = btrfs_rmdir,
10512 .rename2 = btrfs_rename2,
10513 .symlink = btrfs_symlink,
10514 .setattr = btrfs_setattr,
10515 .mknod = btrfs_mknod,
10516 .setxattr = generic_setxattr,
10517 .getxattr = generic_getxattr,
10518 .listxattr = btrfs_listxattr,
10519 .removexattr = generic_removexattr,
10520 .permission = btrfs_permission,
10521 .get_acl = btrfs_get_acl,
10522 .set_acl = btrfs_set_acl,
10523 .update_time = btrfs_update_time,
10524 .tmpfile = btrfs_tmpfile,
10526 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10527 .lookup = btrfs_lookup,
10528 .permission = btrfs_permission,
10529 .get_acl = btrfs_get_acl,
10530 .set_acl = btrfs_set_acl,
10531 .update_time = btrfs_update_time,
10534 static const struct file_operations btrfs_dir_file_operations = {
10535 .llseek = generic_file_llseek,
10536 .read = generic_read_dir,
10537 .iterate = btrfs_real_readdir,
10538 .unlocked_ioctl = btrfs_ioctl,
10539 #ifdef CONFIG_COMPAT
10540 .compat_ioctl = btrfs_compat_ioctl,
10542 .release = btrfs_release_file,
10543 .fsync = btrfs_sync_file,
10546 static const struct extent_io_ops btrfs_extent_io_ops = {
10547 .fill_delalloc = run_delalloc_range,
10548 .submit_bio_hook = btrfs_submit_bio_hook,
10549 .merge_bio_hook = btrfs_merge_bio_hook,
10550 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10551 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10552 .writepage_start_hook = btrfs_writepage_start_hook,
10553 .set_bit_hook = btrfs_set_bit_hook,
10554 .clear_bit_hook = btrfs_clear_bit_hook,
10555 .merge_extent_hook = btrfs_merge_extent_hook,
10556 .split_extent_hook = btrfs_split_extent_hook,
10560 * btrfs doesn't support the bmap operation because swapfiles
10561 * use bmap to make a mapping of extents in the file. They assume
10562 * these extents won't change over the life of the file and they
10563 * use the bmap result to do IO directly to the drive.
10565 * the btrfs bmap call would return logical addresses that aren't
10566 * suitable for IO and they also will change frequently as COW
10567 * operations happen. So, swapfile + btrfs == corruption.
10569 * For now we're avoiding this by dropping bmap.
10571 static const struct address_space_operations btrfs_aops = {
10572 .readpage = btrfs_readpage,
10573 .writepage = btrfs_writepage,
10574 .writepages = btrfs_writepages,
10575 .readpages = btrfs_readpages,
10576 .direct_IO = btrfs_direct_IO,
10577 .invalidatepage = btrfs_invalidatepage,
10578 .releasepage = btrfs_releasepage,
10579 .set_page_dirty = btrfs_set_page_dirty,
10580 .error_remove_page = generic_error_remove_page,
10583 static const struct address_space_operations btrfs_symlink_aops = {
10584 .readpage = btrfs_readpage,
10585 .writepage = btrfs_writepage,
10586 .invalidatepage = btrfs_invalidatepage,
10587 .releasepage = btrfs_releasepage,
10590 static const struct inode_operations btrfs_file_inode_operations = {
10591 .getattr = btrfs_getattr,
10592 .setattr = btrfs_setattr,
10593 .setxattr = generic_setxattr,
10594 .getxattr = generic_getxattr,
10595 .listxattr = btrfs_listxattr,
10596 .removexattr = generic_removexattr,
10597 .permission = btrfs_permission,
10598 .fiemap = btrfs_fiemap,
10599 .get_acl = btrfs_get_acl,
10600 .set_acl = btrfs_set_acl,
10601 .update_time = btrfs_update_time,
10603 static const struct inode_operations btrfs_special_inode_operations = {
10604 .getattr = btrfs_getattr,
10605 .setattr = btrfs_setattr,
10606 .permission = btrfs_permission,
10607 .setxattr = generic_setxattr,
10608 .getxattr = generic_getxattr,
10609 .listxattr = btrfs_listxattr,
10610 .removexattr = generic_removexattr,
10611 .get_acl = btrfs_get_acl,
10612 .set_acl = btrfs_set_acl,
10613 .update_time = btrfs_update_time,
10615 static const struct inode_operations btrfs_symlink_inode_operations = {
10616 .readlink = generic_readlink,
10617 .get_link = page_get_link,
10618 .getattr = btrfs_getattr,
10619 .setattr = btrfs_setattr,
10620 .permission = btrfs_permission,
10621 .setxattr = generic_setxattr,
10622 .getxattr = generic_getxattr,
10623 .listxattr = btrfs_listxattr,
10624 .removexattr = generic_removexattr,
10625 .update_time = btrfs_update_time,
10628 const struct dentry_operations btrfs_dentry_operations = {
10629 .d_delete = btrfs_dentry_delete,
10630 .d_release = btrfs_dentry_release,