1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
47 #include "compression.h"
49 #include "free-space-cache.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
57 #include "inode-item.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
69 #include "relocation.h"
75 struct btrfs_iget_args {
77 struct btrfs_root *root;
80 struct btrfs_dio_data {
82 struct extent_changeset *data_reserved;
83 struct btrfs_ordered_extent *ordered;
84 bool data_space_reserved;
88 struct btrfs_dio_private {
93 /* This must be last */
94 struct btrfs_bio bbio;
97 static struct bio_set btrfs_dio_bioset;
99 struct btrfs_rename_ctx {
100 /* Output field. Stores the index number of the old directory entry. */
105 * Used by data_reloc_print_warning_inode() to pass needed info for filename
106 * resolution and output of error message.
108 struct data_reloc_warn {
109 struct btrfs_path path;
110 struct btrfs_fs_info *fs_info;
111 u64 extent_item_size;
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
123 static struct kmem_cache *btrfs_inode_cachep;
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 struct page *locked_page, u64 start,
130 u64 end, struct writeback_control *wbc,
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 u64 len, u64 orig_start, u64 block_start,
134 u64 block_len, u64 orig_block_len,
135 u64 ram_bytes, int compress_type,
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 u64 root, void *warn_ctx)
141 struct data_reloc_warn *warn = warn_ctx;
142 struct btrfs_fs_info *fs_info = warn->fs_info;
143 struct extent_buffer *eb;
144 struct btrfs_inode_item *inode_item;
145 struct inode_fs_paths *ipath = NULL;
146 struct btrfs_root *local_root;
147 struct btrfs_key key;
148 unsigned int nofs_flag;
152 local_root = btrfs_get_fs_root(fs_info, root, true);
153 if (IS_ERR(local_root)) {
154 ret = PTR_ERR(local_root);
158 /* This makes the path point to (inum INODE_ITEM ioff). */
160 key.type = BTRFS_INODE_ITEM_KEY;
163 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
165 btrfs_put_root(local_root);
166 btrfs_release_path(&warn->path);
170 eb = warn->path.nodes[0];
171 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 nlink = btrfs_inode_nlink(eb, inode_item);
173 btrfs_release_path(&warn->path);
175 nofs_flag = memalloc_nofs_save();
176 ipath = init_ipath(4096, local_root, &warn->path);
177 memalloc_nofs_restore(nofs_flag);
179 btrfs_put_root(local_root);
180 ret = PTR_ERR(ipath);
183 * -ENOMEM, not a critical error, just output an generic error
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 warn->logical, warn->mirror_num, root, inum, offset);
191 ret = paths_from_inode(inum, ipath);
196 * We deliberately ignore the bit ipath might have been too small to
197 * hold all of the paths here
199 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 warn->logical, warn->mirror_num, root, inum, offset,
203 fs_info->sectorsize, nlink,
204 (char *)(unsigned long)ipath->fspath->val[i]);
207 btrfs_put_root(local_root);
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 warn->logical, warn->mirror_num, root, inum, offset, ret);
221 * Do extra user-friendly error output (e.g. lookup all the affected files).
223 * Return true if we succeeded doing the backref lookup.
224 * Return false if such lookup failed, and has to fallback to the old error message.
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 const u8 *csum, const u8 *csum_expected,
230 struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 struct btrfs_path path = { 0 };
232 struct btrfs_key found_key = { 0 };
233 struct extent_buffer *eb;
234 struct btrfs_extent_item *ei;
235 const u32 csum_size = fs_info->csum_size;
241 mutex_lock(&fs_info->reloc_mutex);
242 logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 mutex_unlock(&fs_info->reloc_mutex);
245 if (logical == U64_MAX) {
246 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 CSUM_FMT_VALUE(csum_size, csum),
251 CSUM_FMT_VALUE(csum_size, csum_expected),
257 btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 inode->root->root_key.objectid,
260 btrfs_ino(inode), file_off, logical,
261 CSUM_FMT_VALUE(csum_size, csum),
262 CSUM_FMT_VALUE(csum_size, csum_expected),
265 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
267 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
272 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 item_size = btrfs_item_size(eb, path.slots[0]);
274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 unsigned long ptr = 0;
280 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 item_size, &ref_root,
284 btrfs_warn_rl(fs_info,
285 "failed to resolve tree backref for logical %llu: %d",
292 btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
295 (ref_level ? "node" : "leaf"),
296 ref_level, ref_root);
298 btrfs_release_path(&path);
300 struct btrfs_backref_walk_ctx ctx = { 0 };
301 struct data_reloc_warn reloc_warn = { 0 };
303 btrfs_release_path(&path);
305 ctx.bytenr = found_key.objectid;
306 ctx.extent_item_pos = logical - found_key.objectid;
307 ctx.fs_info = fs_info;
309 reloc_warn.logical = logical;
310 reloc_warn.extent_item_size = found_key.offset;
311 reloc_warn.mirror_num = mirror_num;
312 reloc_warn.fs_info = fs_info;
314 iterate_extent_inodes(&ctx, true,
315 data_reloc_print_warning_inode, &reloc_warn);
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
322 struct btrfs_root *root = inode->root;
323 const u32 csum_size = root->fs_info->csum_size;
325 /* For data reloc tree, it's better to do a backref lookup instead. */
326 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 return print_data_reloc_error(inode, logical_start, csum,
328 csum_expected, mirror_num);
330 /* Output without objectid, which is more meaningful */
331 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 root->root_key.objectid, btrfs_ino(inode),
336 CSUM_FMT_VALUE(csum_size, csum),
337 CSUM_FMT_VALUE(csum_size, csum_expected),
340 btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 root->root_key.objectid, btrfs_ino(inode),
344 CSUM_FMT_VALUE(csum_size, csum),
345 CSUM_FMT_VALUE(csum_size, csum_expected),
351 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
353 * ilock_flags can have the following bit set:
355 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
358 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
362 if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 if (ilock_flags & BTRFS_ILOCK_TRY) {
364 if (!inode_trylock_shared(&inode->vfs_inode))
369 inode_lock_shared(&inode->vfs_inode);
371 if (ilock_flags & BTRFS_ILOCK_TRY) {
372 if (!inode_trylock(&inode->vfs_inode))
377 inode_lock(&inode->vfs_inode);
379 if (ilock_flags & BTRFS_ILOCK_MMAP)
380 down_write(&inode->i_mmap_lock);
385 * btrfs_inode_unlock - unock inode i_rwsem
387 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388 * to decide whether the lock acquired is shared or exclusive.
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
392 if (ilock_flags & BTRFS_ILOCK_MMAP)
393 up_write(&inode->i_mmap_lock);
394 if (ilock_flags & BTRFS_ILOCK_SHARED)
395 inode_unlock_shared(&inode->vfs_inode);
397 inode_unlock(&inode->vfs_inode);
401 * Cleanup all submitted ordered extents in specified range to handle errors
402 * from the btrfs_run_delalloc_range() callback.
404 * NOTE: caller must ensure that when an error happens, it can not call
405 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407 * to be released, which we want to happen only when finishing the ordered
408 * extent (btrfs_finish_ordered_io()).
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 struct page *locked_page,
412 u64 offset, u64 bytes)
414 unsigned long index = offset >> PAGE_SHIFT;
415 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 u64 page_start = 0, page_end = 0;
420 page_start = page_offset(locked_page);
421 page_end = page_start + PAGE_SIZE - 1;
424 while (index <= end_index) {
426 * For locked page, we will call btrfs_mark_ordered_io_finished
427 * through btrfs_mark_ordered_io_finished() on it
428 * in run_delalloc_range() for the error handling, which will
429 * clear page Ordered and run the ordered extent accounting.
431 * Here we can't just clear the Ordered bit, or
432 * btrfs_mark_ordered_io_finished() would skip the accounting
433 * for the page range, and the ordered extent will never finish.
435 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
439 page = find_get_page(inode->vfs_inode.i_mapping, index);
445 * Here we just clear all Ordered bits for every page in the
446 * range, then btrfs_mark_ordered_io_finished() will handle
447 * the ordered extent accounting for the range.
449 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
455 /* The locked page covers the full range, nothing needs to be done */
456 if (bytes + offset <= page_start + PAGE_SIZE)
459 * In case this page belongs to the delalloc range being
460 * instantiated then skip it, since the first page of a range is
461 * going to be properly cleaned up by the caller of
464 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 offset = page_offset(locked_page) + PAGE_SIZE;
470 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 struct btrfs_new_inode_args *args)
480 if (args->default_acl) {
481 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
487 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
491 if (!args->default_acl && !args->acl)
492 cache_no_acl(args->inode);
493 return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 &args->dentry->d_name);
498 * this does all the hard work for inserting an inline extent into
499 * the btree. The caller should have done a btrfs_drop_extents so that
500 * no overlapping inline items exist in the btree
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 struct btrfs_path *path,
504 struct btrfs_inode *inode, bool extent_inserted,
505 size_t size, size_t compressed_size,
507 struct page **compressed_pages,
510 struct btrfs_root *root = inode->root;
511 struct extent_buffer *leaf;
512 struct page *page = NULL;
515 struct btrfs_file_extent_item *ei;
517 size_t cur_size = size;
520 ASSERT((compressed_size > 0 && compressed_pages) ||
521 (compressed_size == 0 && !compressed_pages));
523 if (compressed_size && compressed_pages)
524 cur_size = compressed_size;
526 if (!extent_inserted) {
527 struct btrfs_key key;
530 key.objectid = btrfs_ino(inode);
532 key.type = BTRFS_EXTENT_DATA_KEY;
534 datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 ret = btrfs_insert_empty_item(trans, root, path, &key,
540 leaf = path->nodes[0];
541 ei = btrfs_item_ptr(leaf, path->slots[0],
542 struct btrfs_file_extent_item);
543 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 btrfs_set_file_extent_encryption(leaf, ei, 0);
546 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 ptr = btrfs_file_extent_inline_start(ei);
550 if (compress_type != BTRFS_COMPRESS_NONE) {
553 while (compressed_size > 0) {
554 cpage = compressed_pages[i];
555 cur_size = min_t(unsigned long, compressed_size,
558 kaddr = kmap_local_page(cpage);
559 write_extent_buffer(leaf, kaddr, ptr, cur_size);
564 compressed_size -= cur_size;
566 btrfs_set_file_extent_compression(leaf, ei,
569 page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 btrfs_set_file_extent_compression(leaf, ei, 0);
571 kaddr = kmap_local_page(page);
572 write_extent_buffer(leaf, kaddr, ptr, size);
576 btrfs_mark_buffer_dirty(trans, leaf);
577 btrfs_release_path(path);
580 * We align size to sectorsize for inline extents just for simplicity
583 ret = btrfs_inode_set_file_extent_range(inode, 0,
584 ALIGN(size, root->fs_info->sectorsize));
589 * We're an inline extent, so nobody can extend the file past i_size
590 * without locking a page we already have locked.
592 * We must do any i_size and inode updates before we unlock the pages.
593 * Otherwise we could end up racing with unlink.
595 i_size = i_size_read(&inode->vfs_inode);
596 if (update_i_size && size > i_size) {
597 i_size_write(&inode->vfs_inode, size);
600 inode->disk_i_size = i_size;
608 * conditionally insert an inline extent into the file. This
609 * does the checks required to make sure the data is small enough
610 * to fit as an inline extent.
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 size_t compressed_size,
615 struct page **compressed_pages,
618 struct btrfs_drop_extents_args drop_args = { 0 };
619 struct btrfs_root *root = inode->root;
620 struct btrfs_fs_info *fs_info = root->fs_info;
621 struct btrfs_trans_handle *trans;
622 u64 data_len = (compressed_size ?: size);
624 struct btrfs_path *path;
627 * We can create an inline extent if it ends at or beyond the current
628 * i_size, is no larger than a sector (decompressed), and the (possibly
629 * compressed) data fits in a leaf and the configured maximum inline
632 if (size < i_size_read(&inode->vfs_inode) ||
633 size > fs_info->sectorsize ||
634 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 data_len > fs_info->max_inline)
638 path = btrfs_alloc_path();
642 trans = btrfs_join_transaction(root);
644 btrfs_free_path(path);
645 return PTR_ERR(trans);
647 trans->block_rsv = &inode->block_rsv;
649 drop_args.path = path;
651 drop_args.end = fs_info->sectorsize;
652 drop_args.drop_cache = true;
653 drop_args.replace_extent = true;
654 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
657 btrfs_abort_transaction(trans, ret);
661 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 size, compressed_size, compress_type,
663 compressed_pages, update_i_size);
664 if (ret && ret != -ENOSPC) {
665 btrfs_abort_transaction(trans, ret);
667 } else if (ret == -ENOSPC) {
672 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 ret = btrfs_update_inode(trans, root, inode);
674 if (ret && ret != -ENOSPC) {
675 btrfs_abort_transaction(trans, ret);
677 } else if (ret == -ENOSPC) {
682 btrfs_set_inode_full_sync(inode);
685 * Don't forget to free the reserved space, as for inlined extent
686 * it won't count as data extent, free them directly here.
687 * And at reserve time, it's always aligned to page size, so
688 * just free one page here.
690 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
691 btrfs_free_path(path);
692 btrfs_end_transaction(trans);
696 struct async_extent {
701 unsigned long nr_pages;
703 struct list_head list;
707 struct btrfs_inode *inode;
708 struct page *locked_page;
711 blk_opf_t write_flags;
712 struct list_head extents;
713 struct cgroup_subsys_state *blkcg_css;
714 struct btrfs_work work;
715 struct async_cow *async_cow;
720 struct async_chunk chunks[];
723 static noinline int add_async_extent(struct async_chunk *cow,
724 u64 start, u64 ram_size,
727 unsigned long nr_pages,
730 struct async_extent *async_extent;
732 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 BUG_ON(!async_extent); /* -ENOMEM */
734 async_extent->start = start;
735 async_extent->ram_size = ram_size;
736 async_extent->compressed_size = compressed_size;
737 async_extent->pages = pages;
738 async_extent->nr_pages = nr_pages;
739 async_extent->compress_type = compress_type;
740 list_add_tail(&async_extent->list, &cow->extents);
745 * Check if the inode needs to be submitted to compression, based on mount
746 * options, defragmentation, properties or heuristics.
748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
751 struct btrfs_fs_info *fs_info = inode->root->fs_info;
753 if (!btrfs_inode_can_compress(inode)) {
754 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
755 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
760 * Special check for subpage.
762 * We lock the full page then run each delalloc range in the page, thus
763 * for the following case, we will hit some subpage specific corner case:
766 * | |///////| |///////|
769 * In above case, both range A and range B will try to unlock the full
770 * page [0, 64K), causing the one finished later will have page
771 * unlocked already, triggering various page lock requirement BUG_ON()s.
773 * So here we add an artificial limit that subpage compression can only
774 * if the range is fully page aligned.
776 * In theory we only need to ensure the first page is fully covered, but
777 * the tailing partial page will be locked until the full compression
778 * finishes, delaying the write of other range.
780 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
781 * first to prevent any submitted async extent to unlock the full page.
782 * By this, we can ensure for subpage case that only the last async_cow
783 * will unlock the full page.
785 if (fs_info->sectorsize < PAGE_SIZE) {
786 if (!PAGE_ALIGNED(start) ||
787 !PAGE_ALIGNED(end + 1))
792 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
795 if (inode->defrag_compress)
797 /* bad compression ratios */
798 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
800 if (btrfs_test_opt(fs_info, COMPRESS) ||
801 inode->flags & BTRFS_INODE_COMPRESS ||
802 inode->prop_compress)
803 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
807 static inline void inode_should_defrag(struct btrfs_inode *inode,
808 u64 start, u64 end, u64 num_bytes, u32 small_write)
810 /* If this is a small write inside eof, kick off a defrag */
811 if (num_bytes < small_write &&
812 (start > 0 || end + 1 < inode->disk_i_size))
813 btrfs_add_inode_defrag(NULL, inode, small_write);
817 * Work queue call back to started compression on a file and pages.
819 * This is done inside an ordered work queue, and the compression is spread
820 * across many cpus. The actual IO submission is step two, and the ordered work
821 * queue takes care of making sure that happens in the same order things were
822 * put onto the queue by writepages and friends.
824 * If this code finds it can't get good compression, it puts an entry onto the
825 * work queue to write the uncompressed bytes. This makes sure that both
826 * compressed inodes and uncompressed inodes are written in the same order that
827 * the flusher thread sent them down.
829 static void compress_file_range(struct btrfs_work *work)
831 struct async_chunk *async_chunk =
832 container_of(work, struct async_chunk, work);
833 struct btrfs_inode *inode = async_chunk->inode;
834 struct btrfs_fs_info *fs_info = inode->root->fs_info;
835 struct address_space *mapping = inode->vfs_inode.i_mapping;
836 u64 blocksize = fs_info->sectorsize;
837 u64 start = async_chunk->start;
838 u64 end = async_chunk->end;
843 unsigned long nr_pages;
844 unsigned long total_compressed = 0;
845 unsigned long total_in = 0;
848 int compress_type = fs_info->compress_type;
850 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
853 * We need to call clear_page_dirty_for_io on each page in the range.
854 * Otherwise applications with the file mmap'd can wander in and change
855 * the page contents while we are compressing them.
857 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
860 * We need to save i_size before now because it could change in between
861 * us evaluating the size and assigning it. This is because we lock and
862 * unlock the page in truncate and fallocate, and then modify the i_size
865 * The barriers are to emulate READ_ONCE, remove that once i_size_read
869 i_size = i_size_read(&inode->vfs_inode);
871 actual_end = min_t(u64, i_size, end + 1);
874 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
875 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
878 * we don't want to send crud past the end of i_size through
879 * compression, that's just a waste of CPU time. So, if the
880 * end of the file is before the start of our current
881 * requested range of bytes, we bail out to the uncompressed
882 * cleanup code that can deal with all of this.
884 * It isn't really the fastest way to fix things, but this is a
885 * very uncommon corner.
887 if (actual_end <= start)
888 goto cleanup_and_bail_uncompressed;
890 total_compressed = actual_end - start;
893 * Skip compression for a small file range(<=blocksize) that
894 * isn't an inline extent, since it doesn't save disk space at all.
896 if (total_compressed <= blocksize &&
897 (start > 0 || end + 1 < inode->disk_i_size))
898 goto cleanup_and_bail_uncompressed;
901 * For subpage case, we require full page alignment for the sector
903 * Thus we must also check against @actual_end, not just @end.
905 if (blocksize < PAGE_SIZE) {
906 if (!PAGE_ALIGNED(start) ||
907 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
908 goto cleanup_and_bail_uncompressed;
911 total_compressed = min_t(unsigned long, total_compressed,
912 BTRFS_MAX_UNCOMPRESSED);
917 * We do compression for mount -o compress and when the inode has not
918 * been flagged as NOCOMPRESS. This flag can change at any time if we
919 * discover bad compression ratios.
921 if (!inode_need_compress(inode, start, end))
922 goto cleanup_and_bail_uncompressed;
924 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
927 * Memory allocation failure is not a fatal error, we can fall
928 * back to uncompressed code.
930 goto cleanup_and_bail_uncompressed;
933 if (inode->defrag_compress)
934 compress_type = inode->defrag_compress;
935 else if (inode->prop_compress)
936 compress_type = inode->prop_compress;
938 /* Compression level is applied here. */
939 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
940 mapping, start, pages, &nr_pages, &total_in,
943 goto mark_incompressible;
946 * Zero the tail end of the last page, as we might be sending it down
949 poff = offset_in_page(total_compressed);
951 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
954 * Try to create an inline extent.
956 * If we didn't compress the entire range, try to create an uncompressed
957 * inline extent, else a compressed one.
959 * Check cow_file_range() for why we don't even try to create inline
960 * extent for the subpage case.
962 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
963 if (total_in < actual_end) {
964 ret = cow_file_range_inline(inode, actual_end, 0,
965 BTRFS_COMPRESS_NONE, NULL,
968 ret = cow_file_range_inline(inode, actual_end,
970 compress_type, pages,
974 unsigned long clear_flags = EXTENT_DELALLOC |
975 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
976 EXTENT_DO_ACCOUNTING;
979 mapping_set_error(mapping, -EIO);
982 * inline extent creation worked or returned error,
983 * we don't need to create any more async work items.
984 * Unlock and free up our temp pages.
986 * We use DO_ACCOUNTING here because we need the
987 * delalloc_release_metadata to be done _after_ we drop
988 * our outstanding extent for clearing delalloc for this
991 extent_clear_unlock_delalloc(inode, start, end,
995 PAGE_START_WRITEBACK |
1002 * We aren't doing an inline extent. Round the compressed size up to a
1003 * block size boundary so the allocator does sane things.
1005 total_compressed = ALIGN(total_compressed, blocksize);
1008 * One last check to make sure the compression is really a win, compare
1009 * the page count read with the blocks on disk, compression must free at
1012 total_in = round_up(total_in, fs_info->sectorsize);
1013 if (total_compressed + blocksize > total_in)
1014 goto mark_incompressible;
1017 * The async work queues will take care of doing actual allocation on
1018 * disk for these compressed pages, and will submit the bios.
1020 add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1021 nr_pages, compress_type);
1022 if (start + total_in < end) {
1029 mark_incompressible:
1030 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1031 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1032 cleanup_and_bail_uncompressed:
1033 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1034 BTRFS_COMPRESS_NONE);
1037 for (i = 0; i < nr_pages; i++) {
1038 WARN_ON(pages[i]->mapping);
1045 static void free_async_extent_pages(struct async_extent *async_extent)
1049 if (!async_extent->pages)
1052 for (i = 0; i < async_extent->nr_pages; i++) {
1053 WARN_ON(async_extent->pages[i]->mapping);
1054 put_page(async_extent->pages[i]);
1056 kfree(async_extent->pages);
1057 async_extent->nr_pages = 0;
1058 async_extent->pages = NULL;
1061 static void submit_uncompressed_range(struct btrfs_inode *inode,
1062 struct async_extent *async_extent,
1063 struct page *locked_page)
1065 u64 start = async_extent->start;
1066 u64 end = async_extent->start + async_extent->ram_size - 1;
1068 struct writeback_control wbc = {
1069 .sync_mode = WB_SYNC_ALL,
1070 .range_start = start,
1072 .no_cgroup_owner = 1,
1075 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1076 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1077 wbc_detach_inode(&wbc);
1079 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1081 const u64 page_start = page_offset(locked_page);
1083 set_page_writeback(locked_page);
1084 end_page_writeback(locked_page);
1085 btrfs_mark_ordered_io_finished(inode, locked_page,
1086 page_start, PAGE_SIZE,
1088 mapping_set_error(locked_page->mapping, ret);
1089 unlock_page(locked_page);
1094 static void submit_one_async_extent(struct async_chunk *async_chunk,
1095 struct async_extent *async_extent,
1098 struct btrfs_inode *inode = async_chunk->inode;
1099 struct extent_io_tree *io_tree = &inode->io_tree;
1100 struct btrfs_root *root = inode->root;
1101 struct btrfs_fs_info *fs_info = root->fs_info;
1102 struct btrfs_ordered_extent *ordered;
1103 struct btrfs_key ins;
1104 struct page *locked_page = NULL;
1105 struct extent_map *em;
1107 u64 start = async_extent->start;
1108 u64 end = async_extent->start + async_extent->ram_size - 1;
1110 if (async_chunk->blkcg_css)
1111 kthread_associate_blkcg(async_chunk->blkcg_css);
1114 * If async_chunk->locked_page is in the async_extent range, we need to
1117 if (async_chunk->locked_page) {
1118 u64 locked_page_start = page_offset(async_chunk->locked_page);
1119 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1121 if (!(start >= locked_page_end || end <= locked_page_start))
1122 locked_page = async_chunk->locked_page;
1124 lock_extent(io_tree, start, end, NULL);
1126 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1127 submit_uncompressed_range(inode, async_extent, locked_page);
1131 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1132 async_extent->compressed_size,
1133 async_extent->compressed_size,
1134 0, *alloc_hint, &ins, 1, 1);
1137 * Here we used to try again by going back to non-compressed
1138 * path for ENOSPC. But we can't reserve space even for
1139 * compressed size, how could it work for uncompressed size
1140 * which requires larger size? So here we directly go error
1146 /* Here we're doing allocation and writeback of the compressed pages */
1147 em = create_io_em(inode, start,
1148 async_extent->ram_size, /* len */
1149 start, /* orig_start */
1150 ins.objectid, /* block_start */
1151 ins.offset, /* block_len */
1152 ins.offset, /* orig_block_len */
1153 async_extent->ram_size, /* ram_bytes */
1154 async_extent->compress_type,
1155 BTRFS_ORDERED_COMPRESSED);
1158 goto out_free_reserve;
1160 free_extent_map(em);
1162 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
1163 async_extent->ram_size, /* num_bytes */
1164 async_extent->ram_size, /* ram_bytes */
1165 ins.objectid, /* disk_bytenr */
1166 ins.offset, /* disk_num_bytes */
1168 1 << BTRFS_ORDERED_COMPRESSED,
1169 async_extent->compress_type);
1170 if (IS_ERR(ordered)) {
1171 btrfs_drop_extent_map_range(inode, start, end, false);
1172 ret = PTR_ERR(ordered);
1173 goto out_free_reserve;
1175 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1177 /* Clear dirty, set writeback and unlock the pages. */
1178 extent_clear_unlock_delalloc(inode, start, end,
1179 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1180 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1181 btrfs_submit_compressed_write(ordered,
1182 async_extent->pages, /* compressed_pages */
1183 async_extent->nr_pages,
1184 async_chunk->write_flags, true);
1185 *alloc_hint = ins.objectid + ins.offset;
1187 if (async_chunk->blkcg_css)
1188 kthread_associate_blkcg(NULL);
1189 kfree(async_extent);
1193 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1194 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1196 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1197 extent_clear_unlock_delalloc(inode, start, end,
1198 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1199 EXTENT_DELALLOC_NEW |
1200 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1201 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1202 PAGE_END_WRITEBACK);
1203 free_async_extent_pages(async_extent);
1204 if (async_chunk->blkcg_css)
1205 kthread_associate_blkcg(NULL);
1206 btrfs_debug(fs_info,
1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1208 root->root_key.objectid, btrfs_ino(inode), start,
1209 async_extent->ram_size, ret);
1210 kfree(async_extent);
1213 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1216 struct extent_map_tree *em_tree = &inode->extent_tree;
1217 struct extent_map *em;
1220 read_lock(&em_tree->lock);
1221 em = search_extent_mapping(em_tree, start, num_bytes);
1224 * if block start isn't an actual block number then find the
1225 * first block in this inode and use that as a hint. If that
1226 * block is also bogus then just don't worry about it.
1228 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1229 free_extent_map(em);
1230 em = search_extent_mapping(em_tree, 0, 0);
1231 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1232 alloc_hint = em->block_start;
1234 free_extent_map(em);
1236 alloc_hint = em->block_start;
1237 free_extent_map(em);
1240 read_unlock(&em_tree->lock);
1246 * when extent_io.c finds a delayed allocation range in the file,
1247 * the call backs end up in this code. The basic idea is to
1248 * allocate extents on disk for the range, and create ordered data structs
1249 * in ram to track those extents.
1251 * locked_page is the page that writepage had locked already. We use
1252 * it to make sure we don't do extra locks or unlocks.
1254 * When this function fails, it unlocks all pages except @locked_page.
1256 * When this function successfully creates an inline extent, it returns 1 and
1257 * unlocks all pages including locked_page and starts I/O on them.
1258 * (In reality inline extents are limited to a single page, so locked_page is
1259 * the only page handled anyway).
1261 * When this function succeed and creates a normal extent, the page locking
1262 * status depends on the passed in flags:
1264 * - If @keep_locked is set, all pages are kept locked.
1265 * - Else all pages except for @locked_page are unlocked.
1267 * When a failure happens in the second or later iteration of the
1268 * while-loop, the ordered extents created in previous iterations are kept
1269 * intact. So, the caller must clean them up by calling
1270 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1273 static noinline int cow_file_range(struct btrfs_inode *inode,
1274 struct page *locked_page, u64 start, u64 end,
1276 bool keep_locked, bool no_inline)
1278 struct btrfs_root *root = inode->root;
1279 struct btrfs_fs_info *fs_info = root->fs_info;
1281 u64 orig_start = start;
1283 unsigned long ram_size;
1284 u64 cur_alloc_size = 0;
1286 u64 blocksize = fs_info->sectorsize;
1287 struct btrfs_key ins;
1288 struct extent_map *em;
1289 unsigned clear_bits;
1290 unsigned long page_ops;
1291 bool extent_reserved = false;
1294 if (btrfs_is_free_space_inode(inode)) {
1299 num_bytes = ALIGN(end - start + 1, blocksize);
1300 num_bytes = max(blocksize, num_bytes);
1301 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1303 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1306 * Due to the page size limit, for subpage we can only trigger the
1307 * writeback for the dirty sectors of page, that means data writeback
1308 * is doing more writeback than what we want.
1310 * This is especially unexpected for some call sites like fallocate,
1311 * where we only increase i_size after everything is done.
1312 * This means we can trigger inline extent even if we didn't want to.
1313 * So here we skip inline extent creation completely.
1315 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1316 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1319 /* lets try to make an inline extent */
1320 ret = cow_file_range_inline(inode, actual_end, 0,
1321 BTRFS_COMPRESS_NONE, NULL, false);
1324 * We use DO_ACCOUNTING here because we need the
1325 * delalloc_release_metadata to be run _after_ we drop
1326 * our outstanding extent for clearing delalloc for this
1329 extent_clear_unlock_delalloc(inode, start, end,
1331 EXTENT_LOCKED | EXTENT_DELALLOC |
1332 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1333 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1334 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1336 * locked_page is locked by the caller of
1337 * writepage_delalloc(), not locked by
1338 * __process_pages_contig().
1340 * We can't let __process_pages_contig() to unlock it,
1341 * as it doesn't have any subpage::writers recorded.
1343 * Here we manually unlock the page, since the caller
1344 * can't determine if it's an inline extent or a
1345 * compressed extent.
1347 unlock_page(locked_page);
1350 } else if (ret < 0) {
1355 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1358 * Relocation relies on the relocated extents to have exactly the same
1359 * size as the original extents. Normally writeback for relocation data
1360 * extents follows a NOCOW path because relocation preallocates the
1361 * extents. However, due to an operation such as scrub turning a block
1362 * group to RO mode, it may fallback to COW mode, so we must make sure
1363 * an extent allocated during COW has exactly the requested size and can
1364 * not be split into smaller extents, otherwise relocation breaks and
1365 * fails during the stage where it updates the bytenr of file extent
1368 if (btrfs_is_data_reloc_root(root))
1369 min_alloc_size = num_bytes;
1371 min_alloc_size = fs_info->sectorsize;
1373 while (num_bytes > 0) {
1374 struct btrfs_ordered_extent *ordered;
1376 cur_alloc_size = num_bytes;
1377 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1378 min_alloc_size, 0, alloc_hint,
1380 if (ret == -EAGAIN) {
1382 * btrfs_reserve_extent only returns -EAGAIN for zoned
1383 * file systems, which is an indication that there are
1384 * no active zones to allocate from at the moment.
1386 * If this is the first loop iteration, wait for at
1387 * least one zone to finish before retrying the
1388 * allocation. Otherwise ask the caller to write out
1389 * the already allocated blocks before coming back to
1390 * us, or return -ENOSPC if it can't handle retries.
1392 ASSERT(btrfs_is_zoned(fs_info));
1393 if (start == orig_start) {
1394 wait_on_bit_io(&inode->root->fs_info->flags,
1395 BTRFS_FS_NEED_ZONE_FINISH,
1396 TASK_UNINTERRUPTIBLE);
1400 *done_offset = start - 1;
1407 cur_alloc_size = ins.offset;
1408 extent_reserved = true;
1410 ram_size = ins.offset;
1411 em = create_io_em(inode, start, ins.offset, /* len */
1412 start, /* orig_start */
1413 ins.objectid, /* block_start */
1414 ins.offset, /* block_len */
1415 ins.offset, /* orig_block_len */
1416 ram_size, /* ram_bytes */
1417 BTRFS_COMPRESS_NONE, /* compress_type */
1418 BTRFS_ORDERED_REGULAR /* type */);
1423 free_extent_map(em);
1425 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1426 ram_size, ins.objectid, cur_alloc_size,
1427 0, 1 << BTRFS_ORDERED_REGULAR,
1428 BTRFS_COMPRESS_NONE);
1429 if (IS_ERR(ordered)) {
1430 ret = PTR_ERR(ordered);
1431 goto out_drop_extent_cache;
1434 if (btrfs_is_data_reloc_root(root)) {
1435 ret = btrfs_reloc_clone_csums(ordered);
1438 * Only drop cache here, and process as normal.
1440 * We must not allow extent_clear_unlock_delalloc()
1441 * at out_unlock label to free meta of this ordered
1442 * extent, as its meta should be freed by
1443 * btrfs_finish_ordered_io().
1445 * So we must continue until @start is increased to
1446 * skip current ordered extent.
1449 btrfs_drop_extent_map_range(inode, start,
1450 start + ram_size - 1,
1453 btrfs_put_ordered_extent(ordered);
1455 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1458 * We're not doing compressed IO, don't unlock the first page
1459 * (which the caller expects to stay locked), don't clear any
1460 * dirty bits and don't set any writeback bits
1462 * Do set the Ordered (Private2) bit so we know this page was
1463 * properly setup for writepage.
1465 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1466 page_ops |= PAGE_SET_ORDERED;
1468 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1470 EXTENT_LOCKED | EXTENT_DELALLOC,
1472 if (num_bytes < cur_alloc_size)
1475 num_bytes -= cur_alloc_size;
1476 alloc_hint = ins.objectid + ins.offset;
1477 start += cur_alloc_size;
1478 extent_reserved = false;
1481 * btrfs_reloc_clone_csums() error, since start is increased
1482 * extent_clear_unlock_delalloc() at out_unlock label won't
1483 * free metadata of current ordered extent, we're OK to exit.
1493 out_drop_extent_cache:
1494 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1496 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1497 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1500 * Now, we have three regions to clean up:
1502 * |-------(1)----|---(2)---|-------------(3)----------|
1503 * `- orig_start `- start `- start + cur_alloc_size `- end
1505 * We process each region below.
1508 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1509 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1510 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1513 * For the range (1). We have already instantiated the ordered extents
1514 * for this region. They are cleaned up by
1515 * btrfs_cleanup_ordered_extents() in e.g,
1516 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1517 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1518 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1521 * However, in case of @keep_locked, we still need to unlock the pages
1522 * (except @locked_page) to ensure all the pages are unlocked.
1524 if (keep_locked && orig_start < start) {
1526 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1527 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1528 locked_page, 0, page_ops);
1532 * For the range (2). If we reserved an extent for our delalloc range
1533 * (or a subrange) and failed to create the respective ordered extent,
1534 * then it means that when we reserved the extent we decremented the
1535 * extent's size from the data space_info's bytes_may_use counter and
1536 * incremented the space_info's bytes_reserved counter by the same
1537 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1538 * to decrement again the data space_info's bytes_may_use counter,
1539 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1541 if (extent_reserved) {
1542 extent_clear_unlock_delalloc(inode, start,
1543 start + cur_alloc_size - 1,
1547 start += cur_alloc_size;
1551 * For the range (3). We never touched the region. In addition to the
1552 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1553 * space_info's bytes_may_use counter, reserved in
1554 * btrfs_check_data_free_space().
1557 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1558 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1559 clear_bits, page_ops);
1565 * Phase two of compressed writeback. This is the ordered portion of the code,
1566 * which only gets called in the order the work was queued. We walk all the
1567 * async extents created by compress_file_range and send them down to the disk.
1569 static noinline void submit_compressed_extents(struct btrfs_work *work)
1571 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1573 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1574 struct async_extent *async_extent;
1575 unsigned long nr_pages;
1578 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1581 while (!list_empty(&async_chunk->extents)) {
1582 async_extent = list_entry(async_chunk->extents.next,
1583 struct async_extent, list);
1584 list_del(&async_extent->list);
1585 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1588 /* atomic_sub_return implies a barrier */
1589 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1591 cond_wake_up_nomb(&fs_info->async_submit_wait);
1594 static noinline void async_cow_free(struct btrfs_work *work)
1596 struct async_chunk *async_chunk;
1597 struct async_cow *async_cow;
1599 async_chunk = container_of(work, struct async_chunk, work);
1600 btrfs_add_delayed_iput(async_chunk->inode);
1601 if (async_chunk->blkcg_css)
1602 css_put(async_chunk->blkcg_css);
1604 async_cow = async_chunk->async_cow;
1605 if (atomic_dec_and_test(&async_cow->num_chunks))
1609 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1610 struct page *locked_page, u64 start,
1611 u64 end, struct writeback_control *wbc)
1613 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1614 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1615 struct async_cow *ctx;
1616 struct async_chunk *async_chunk;
1617 unsigned long nr_pages;
1618 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1621 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1623 nofs_flag = memalloc_nofs_save();
1624 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1625 memalloc_nofs_restore(nofs_flag);
1629 unlock_extent(&inode->io_tree, start, end, NULL);
1630 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1632 async_chunk = ctx->chunks;
1633 atomic_set(&ctx->num_chunks, num_chunks);
1635 for (i = 0; i < num_chunks; i++) {
1636 u64 cur_end = min(end, start + SZ_512K - 1);
1639 * igrab is called higher up in the call chain, take only the
1640 * lightweight reference for the callback lifetime
1642 ihold(&inode->vfs_inode);
1643 async_chunk[i].async_cow = ctx;
1644 async_chunk[i].inode = inode;
1645 async_chunk[i].start = start;
1646 async_chunk[i].end = cur_end;
1647 async_chunk[i].write_flags = write_flags;
1648 INIT_LIST_HEAD(&async_chunk[i].extents);
1651 * The locked_page comes all the way from writepage and its
1652 * the original page we were actually given. As we spread
1653 * this large delalloc region across multiple async_chunk
1654 * structs, only the first struct needs a pointer to locked_page
1656 * This way we don't need racey decisions about who is supposed
1661 * Depending on the compressibility, the pages might or
1662 * might not go through async. We want all of them to
1663 * be accounted against wbc once. Let's do it here
1664 * before the paths diverge. wbc accounting is used
1665 * only for foreign writeback detection and doesn't
1666 * need full accuracy. Just account the whole thing
1667 * against the first page.
1669 wbc_account_cgroup_owner(wbc, locked_page,
1671 async_chunk[i].locked_page = locked_page;
1674 async_chunk[i].locked_page = NULL;
1677 if (blkcg_css != blkcg_root_css) {
1679 async_chunk[i].blkcg_css = blkcg_css;
1680 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1682 async_chunk[i].blkcg_css = NULL;
1685 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1686 submit_compressed_extents, async_cow_free);
1688 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1689 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1691 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1693 start = cur_end + 1;
1699 * Run the delalloc range from start to end, and write back any dirty pages
1700 * covered by the range.
1702 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1703 struct page *locked_page, u64 start,
1704 u64 end, struct writeback_control *wbc,
1707 u64 done_offset = end;
1710 while (start <= end) {
1711 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1715 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1716 done_offset, wbc, pages_dirty);
1717 start = done_offset + 1;
1723 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1724 u64 bytenr, u64 num_bytes, bool nowait)
1726 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1727 struct btrfs_ordered_sum *sums;
1731 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1733 if (ret == 0 && list_empty(&list))
1736 while (!list_empty(&list)) {
1737 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1738 list_del(&sums->list);
1746 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1747 const u64 start, const u64 end)
1749 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1750 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1751 const u64 range_bytes = end + 1 - start;
1752 struct extent_io_tree *io_tree = &inode->io_tree;
1753 u64 range_start = start;
1758 * If EXTENT_NORESERVE is set it means that when the buffered write was
1759 * made we had not enough available data space and therefore we did not
1760 * reserve data space for it, since we though we could do NOCOW for the
1761 * respective file range (either there is prealloc extent or the inode
1762 * has the NOCOW bit set).
1764 * However when we need to fallback to COW mode (because for example the
1765 * block group for the corresponding extent was turned to RO mode by a
1766 * scrub or relocation) we need to do the following:
1768 * 1) We increment the bytes_may_use counter of the data space info.
1769 * If COW succeeds, it allocates a new data extent and after doing
1770 * that it decrements the space info's bytes_may_use counter and
1771 * increments its bytes_reserved counter by the same amount (we do
1772 * this at btrfs_add_reserved_bytes()). So we need to increment the
1773 * bytes_may_use counter to compensate (when space is reserved at
1774 * buffered write time, the bytes_may_use counter is incremented);
1776 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1777 * that if the COW path fails for any reason, it decrements (through
1778 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1779 * data space info, which we incremented in the step above.
1781 * If we need to fallback to cow and the inode corresponds to a free
1782 * space cache inode or an inode of the data relocation tree, we must
1783 * also increment bytes_may_use of the data space_info for the same
1784 * reason. Space caches and relocated data extents always get a prealloc
1785 * extent for them, however scrub or balance may have set the block
1786 * group that contains that extent to RO mode and therefore force COW
1787 * when starting writeback.
1789 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1790 EXTENT_NORESERVE, 0, NULL);
1791 if (count > 0 || is_space_ino || is_reloc_ino) {
1793 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1794 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1796 if (is_space_ino || is_reloc_ino)
1797 bytes = range_bytes;
1799 spin_lock(&sinfo->lock);
1800 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1801 spin_unlock(&sinfo->lock);
1804 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1809 * Don't try to create inline extents, as a mix of inline extent that
1810 * is written out and unlocked directly and a normal NOCOW extent
1813 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1818 struct can_nocow_file_extent_args {
1821 /* Start file offset of the range we want to NOCOW. */
1823 /* End file offset (inclusive) of the range we want to NOCOW. */
1825 bool writeback_path;
1828 * Free the path passed to can_nocow_file_extent() once it's not needed
1833 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1838 /* Number of bytes that can be written to in NOCOW mode. */
1843 * Check if we can NOCOW the file extent that the path points to.
1844 * This function may return with the path released, so the caller should check
1845 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1847 * Returns: < 0 on error
1848 * 0 if we can not NOCOW
1851 static int can_nocow_file_extent(struct btrfs_path *path,
1852 struct btrfs_key *key,
1853 struct btrfs_inode *inode,
1854 struct can_nocow_file_extent_args *args)
1856 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1857 struct extent_buffer *leaf = path->nodes[0];
1858 struct btrfs_root *root = inode->root;
1859 struct btrfs_file_extent_item *fi;
1864 bool nowait = path->nowait;
1866 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1867 extent_type = btrfs_file_extent_type(leaf, fi);
1869 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1872 /* Can't access these fields unless we know it's not an inline extent. */
1873 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1874 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1875 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1877 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1878 extent_type == BTRFS_FILE_EXTENT_REG)
1882 * If the extent was created before the generation where the last snapshot
1883 * for its subvolume was created, then this implies the extent is shared,
1884 * hence we must COW.
1886 if (!args->strict &&
1887 btrfs_file_extent_generation(leaf, fi) <=
1888 btrfs_root_last_snapshot(&root->root_item))
1891 /* An explicit hole, must COW. */
1892 if (args->disk_bytenr == 0)
1895 /* Compressed/encrypted/encoded extents must be COWed. */
1896 if (btrfs_file_extent_compression(leaf, fi) ||
1897 btrfs_file_extent_encryption(leaf, fi) ||
1898 btrfs_file_extent_other_encoding(leaf, fi))
1901 extent_end = btrfs_file_extent_end(path);
1904 * The following checks can be expensive, as they need to take other
1905 * locks and do btree or rbtree searches, so release the path to avoid
1906 * blocking other tasks for too long.
1908 btrfs_release_path(path);
1910 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1911 key->offset - args->extent_offset,
1912 args->disk_bytenr, args->strict, path);
1913 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1917 if (args->free_path) {
1919 * We don't need the path anymore, plus through the
1920 * csum_exist_in_range() call below we will end up allocating
1921 * another path. So free the path to avoid unnecessary extra
1924 btrfs_free_path(path);
1928 /* If there are pending snapshots for this root, we must COW. */
1929 if (args->writeback_path && !is_freespace_inode &&
1930 atomic_read(&root->snapshot_force_cow))
1933 args->disk_bytenr += args->extent_offset;
1934 args->disk_bytenr += args->start - key->offset;
1935 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1938 * Force COW if csums exist in the range. This ensures that csums for a
1939 * given extent are either valid or do not exist.
1941 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1943 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1949 if (args->free_path && path)
1950 btrfs_free_path(path);
1952 return ret < 0 ? ret : can_nocow;
1956 * when nowcow writeback call back. This checks for snapshots or COW copies
1957 * of the extents that exist in the file, and COWs the file as required.
1959 * If no cow copies or snapshots exist, we write directly to the existing
1962 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1963 struct page *locked_page,
1964 const u64 start, const u64 end)
1966 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1967 struct btrfs_root *root = inode->root;
1968 struct btrfs_path *path;
1969 u64 cow_start = (u64)-1;
1970 u64 cur_offset = start;
1972 bool check_prev = true;
1973 u64 ino = btrfs_ino(inode);
1974 struct can_nocow_file_extent_args nocow_args = { 0 };
1977 * Normally on a zoned device we're only doing COW writes, but in case
1978 * of relocation on a zoned filesystem serializes I/O so that we're only
1979 * writing sequentially and can end up here as well.
1981 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1983 path = btrfs_alloc_path();
1989 nocow_args.end = end;
1990 nocow_args.writeback_path = true;
1993 struct btrfs_block_group *nocow_bg = NULL;
1994 struct btrfs_ordered_extent *ordered;
1995 struct btrfs_key found_key;
1996 struct btrfs_file_extent_item *fi;
1997 struct extent_buffer *leaf;
2004 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2010 * If there is no extent for our range when doing the initial
2011 * search, then go back to the previous slot as it will be the
2012 * one containing the search offset
2014 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2015 leaf = path->nodes[0];
2016 btrfs_item_key_to_cpu(leaf, &found_key,
2017 path->slots[0] - 1);
2018 if (found_key.objectid == ino &&
2019 found_key.type == BTRFS_EXTENT_DATA_KEY)
2024 /* Go to next leaf if we have exhausted the current one */
2025 leaf = path->nodes[0];
2026 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2027 ret = btrfs_next_leaf(root, path);
2032 leaf = path->nodes[0];
2035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2037 /* Didn't find anything for our INO */
2038 if (found_key.objectid > ino)
2041 * Keep searching until we find an EXTENT_ITEM or there are no
2042 * more extents for this inode
2044 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2045 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2050 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2051 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2052 found_key.offset > end)
2056 * If the found extent starts after requested offset, then
2057 * adjust extent_end to be right before this extent begins
2059 if (found_key.offset > cur_offset) {
2060 extent_end = found_key.offset;
2066 * Found extent which begins before our range and potentially
2069 fi = btrfs_item_ptr(leaf, path->slots[0],
2070 struct btrfs_file_extent_item);
2071 extent_type = btrfs_file_extent_type(leaf, fi);
2072 /* If this is triggered then we have a memory corruption. */
2073 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2074 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2078 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2079 extent_end = btrfs_file_extent_end(path);
2082 * If the extent we got ends before our current offset, skip to
2085 if (extent_end <= cur_offset) {
2090 nocow_args.start = cur_offset;
2091 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2098 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2102 * If we can't perform NOCOW writeback for the range,
2103 * then record the beginning of the range that needs to
2104 * be COWed. It will be written out before the next
2105 * NOCOW range if we find one, or when exiting this
2108 if (cow_start == (u64)-1)
2109 cow_start = cur_offset;
2110 cur_offset = extent_end;
2111 if (cur_offset > end)
2113 if (!path->nodes[0])
2120 * COW range from cow_start to found_key.offset - 1. As the key
2121 * will contain the beginning of the first extent that can be
2122 * NOCOW, following one which needs to be COW'ed
2124 if (cow_start != (u64)-1) {
2125 ret = fallback_to_cow(inode, locked_page,
2126 cow_start, found_key.offset - 1);
2127 cow_start = (u64)-1;
2129 btrfs_dec_nocow_writers(nocow_bg);
2134 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2135 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2137 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2138 struct extent_map *em;
2140 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2142 nocow_args.disk_bytenr, /* block_start */
2143 nocow_args.num_bytes, /* block_len */
2144 nocow_args.disk_num_bytes, /* orig_block_len */
2145 ram_bytes, BTRFS_COMPRESS_NONE,
2146 BTRFS_ORDERED_PREALLOC);
2148 btrfs_dec_nocow_writers(nocow_bg);
2152 free_extent_map(em);
2155 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2156 nocow_args.num_bytes, nocow_args.num_bytes,
2157 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2159 ? (1 << BTRFS_ORDERED_PREALLOC)
2160 : (1 << BTRFS_ORDERED_NOCOW),
2161 BTRFS_COMPRESS_NONE);
2162 btrfs_dec_nocow_writers(nocow_bg);
2163 if (IS_ERR(ordered)) {
2165 btrfs_drop_extent_map_range(inode, cur_offset,
2168 ret = PTR_ERR(ordered);
2172 if (btrfs_is_data_reloc_root(root))
2174 * Error handled later, as we must prevent
2175 * extent_clear_unlock_delalloc() in error handler
2176 * from freeing metadata of created ordered extent.
2178 ret = btrfs_reloc_clone_csums(ordered);
2179 btrfs_put_ordered_extent(ordered);
2181 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2182 locked_page, EXTENT_LOCKED |
2184 EXTENT_CLEAR_DATA_RESV,
2185 PAGE_UNLOCK | PAGE_SET_ORDERED);
2187 cur_offset = extent_end;
2190 * btrfs_reloc_clone_csums() error, now we're OK to call error
2191 * handler, as metadata for created ordered extent will only
2192 * be freed by btrfs_finish_ordered_io().
2196 if (cur_offset > end)
2199 btrfs_release_path(path);
2201 if (cur_offset <= end && cow_start == (u64)-1)
2202 cow_start = cur_offset;
2204 if (cow_start != (u64)-1) {
2206 ret = fallback_to_cow(inode, locked_page, cow_start, end);
2207 cow_start = (u64)-1;
2212 btrfs_free_path(path);
2217 * If an error happened while a COW region is outstanding, cur_offset
2218 * needs to be reset to cow_start to ensure the COW region is unlocked
2221 if (cow_start != (u64)-1)
2222 cur_offset = cow_start;
2223 if (cur_offset < end)
2224 extent_clear_unlock_delalloc(inode, cur_offset, end,
2225 locked_page, EXTENT_LOCKED |
2226 EXTENT_DELALLOC | EXTENT_DEFRAG |
2227 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2228 PAGE_START_WRITEBACK |
2229 PAGE_END_WRITEBACK);
2230 btrfs_free_path(path);
2234 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2236 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2237 if (inode->defrag_bytes &&
2238 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2247 * Function to process delayed allocation (create CoW) for ranges which are
2248 * being touched for the first time.
2250 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2251 u64 start, u64 end, struct writeback_control *wbc)
2253 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2257 * The range must cover part of the @locked_page, or a return of 1
2258 * can confuse the caller.
2260 ASSERT(!(end <= page_offset(locked_page) ||
2261 start >= page_offset(locked_page) + PAGE_SIZE));
2263 if (should_nocow(inode, start, end)) {
2264 ret = run_delalloc_nocow(inode, locked_page, start, end);
2268 if (btrfs_inode_can_compress(inode) &&
2269 inode_need_compress(inode, start, end) &&
2270 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2274 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2277 ret = cow_file_range(inode, locked_page, start, end, NULL,
2282 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2287 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2288 struct extent_state *orig, u64 split)
2290 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2293 /* not delalloc, ignore it */
2294 if (!(orig->state & EXTENT_DELALLOC))
2297 size = orig->end - orig->start + 1;
2298 if (size > fs_info->max_extent_size) {
2303 * See the explanation in btrfs_merge_delalloc_extent, the same
2304 * applies here, just in reverse.
2306 new_size = orig->end - split + 1;
2307 num_extents = count_max_extents(fs_info, new_size);
2308 new_size = split - orig->start;
2309 num_extents += count_max_extents(fs_info, new_size);
2310 if (count_max_extents(fs_info, size) >= num_extents)
2314 spin_lock(&inode->lock);
2315 btrfs_mod_outstanding_extents(inode, 1);
2316 spin_unlock(&inode->lock);
2320 * Handle merged delayed allocation extents so we can keep track of new extents
2321 * that are just merged onto old extents, such as when we are doing sequential
2322 * writes, so we can properly account for the metadata space we'll need.
2324 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2325 struct extent_state *other)
2327 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2328 u64 new_size, old_size;
2331 /* not delalloc, ignore it */
2332 if (!(other->state & EXTENT_DELALLOC))
2335 if (new->start > other->start)
2336 new_size = new->end - other->start + 1;
2338 new_size = other->end - new->start + 1;
2340 /* we're not bigger than the max, unreserve the space and go */
2341 if (new_size <= fs_info->max_extent_size) {
2342 spin_lock(&inode->lock);
2343 btrfs_mod_outstanding_extents(inode, -1);
2344 spin_unlock(&inode->lock);
2349 * We have to add up either side to figure out how many extents were
2350 * accounted for before we merged into one big extent. If the number of
2351 * extents we accounted for is <= the amount we need for the new range
2352 * then we can return, otherwise drop. Think of it like this
2356 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2357 * need 2 outstanding extents, on one side we have 1 and the other side
2358 * we have 1 so they are == and we can return. But in this case
2360 * [MAX_SIZE+4k][MAX_SIZE+4k]
2362 * Each range on their own accounts for 2 extents, but merged together
2363 * they are only 3 extents worth of accounting, so we need to drop in
2366 old_size = other->end - other->start + 1;
2367 num_extents = count_max_extents(fs_info, old_size);
2368 old_size = new->end - new->start + 1;
2369 num_extents += count_max_extents(fs_info, old_size);
2370 if (count_max_extents(fs_info, new_size) >= num_extents)
2373 spin_lock(&inode->lock);
2374 btrfs_mod_outstanding_extents(inode, -1);
2375 spin_unlock(&inode->lock);
2378 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2379 struct btrfs_inode *inode)
2381 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2383 spin_lock(&root->delalloc_lock);
2384 if (list_empty(&inode->delalloc_inodes)) {
2385 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2386 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2387 root->nr_delalloc_inodes++;
2388 if (root->nr_delalloc_inodes == 1) {
2389 spin_lock(&fs_info->delalloc_root_lock);
2390 BUG_ON(!list_empty(&root->delalloc_root));
2391 list_add_tail(&root->delalloc_root,
2392 &fs_info->delalloc_roots);
2393 spin_unlock(&fs_info->delalloc_root_lock);
2396 spin_unlock(&root->delalloc_lock);
2399 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2400 struct btrfs_inode *inode)
2402 struct btrfs_fs_info *fs_info = root->fs_info;
2404 if (!list_empty(&inode->delalloc_inodes)) {
2405 list_del_init(&inode->delalloc_inodes);
2406 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2407 &inode->runtime_flags);
2408 root->nr_delalloc_inodes--;
2409 if (!root->nr_delalloc_inodes) {
2410 ASSERT(list_empty(&root->delalloc_inodes));
2411 spin_lock(&fs_info->delalloc_root_lock);
2412 BUG_ON(list_empty(&root->delalloc_root));
2413 list_del_init(&root->delalloc_root);
2414 spin_unlock(&fs_info->delalloc_root_lock);
2419 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2420 struct btrfs_inode *inode)
2422 spin_lock(&root->delalloc_lock);
2423 __btrfs_del_delalloc_inode(root, inode);
2424 spin_unlock(&root->delalloc_lock);
2428 * Properly track delayed allocation bytes in the inode and to maintain the
2429 * list of inodes that have pending delalloc work to be done.
2431 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2434 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2436 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2439 * set_bit and clear bit hooks normally require _irqsave/restore
2440 * but in this case, we are only testing for the DELALLOC
2441 * bit, which is only set or cleared with irqs on
2443 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2444 struct btrfs_root *root = inode->root;
2445 u64 len = state->end + 1 - state->start;
2446 u32 num_extents = count_max_extents(fs_info, len);
2447 bool do_list = !btrfs_is_free_space_inode(inode);
2449 spin_lock(&inode->lock);
2450 btrfs_mod_outstanding_extents(inode, num_extents);
2451 spin_unlock(&inode->lock);
2453 /* For sanity tests */
2454 if (btrfs_is_testing(fs_info))
2457 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2458 fs_info->delalloc_batch);
2459 spin_lock(&inode->lock);
2460 inode->delalloc_bytes += len;
2461 if (bits & EXTENT_DEFRAG)
2462 inode->defrag_bytes += len;
2463 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2464 &inode->runtime_flags))
2465 btrfs_add_delalloc_inodes(root, inode);
2466 spin_unlock(&inode->lock);
2469 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2470 (bits & EXTENT_DELALLOC_NEW)) {
2471 spin_lock(&inode->lock);
2472 inode->new_delalloc_bytes += state->end + 1 - state->start;
2473 spin_unlock(&inode->lock);
2478 * Once a range is no longer delalloc this function ensures that proper
2479 * accounting happens.
2481 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2482 struct extent_state *state, u32 bits)
2484 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2485 u64 len = state->end + 1 - state->start;
2486 u32 num_extents = count_max_extents(fs_info, len);
2488 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2489 spin_lock(&inode->lock);
2490 inode->defrag_bytes -= len;
2491 spin_unlock(&inode->lock);
2495 * set_bit and clear bit hooks normally require _irqsave/restore
2496 * but in this case, we are only testing for the DELALLOC
2497 * bit, which is only set or cleared with irqs on
2499 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2500 struct btrfs_root *root = inode->root;
2501 bool do_list = !btrfs_is_free_space_inode(inode);
2503 spin_lock(&inode->lock);
2504 btrfs_mod_outstanding_extents(inode, -num_extents);
2505 spin_unlock(&inode->lock);
2508 * We don't reserve metadata space for space cache inodes so we
2509 * don't need to call delalloc_release_metadata if there is an
2512 if (bits & EXTENT_CLEAR_META_RESV &&
2513 root != fs_info->tree_root)
2514 btrfs_delalloc_release_metadata(inode, len, false);
2516 /* For sanity tests. */
2517 if (btrfs_is_testing(fs_info))
2520 if (!btrfs_is_data_reloc_root(root) &&
2521 do_list && !(state->state & EXTENT_NORESERVE) &&
2522 (bits & EXTENT_CLEAR_DATA_RESV))
2523 btrfs_free_reserved_data_space_noquota(fs_info, len);
2525 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2526 fs_info->delalloc_batch);
2527 spin_lock(&inode->lock);
2528 inode->delalloc_bytes -= len;
2529 if (do_list && inode->delalloc_bytes == 0 &&
2530 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2531 &inode->runtime_flags))
2532 btrfs_del_delalloc_inode(root, inode);
2533 spin_unlock(&inode->lock);
2536 if ((state->state & EXTENT_DELALLOC_NEW) &&
2537 (bits & EXTENT_DELALLOC_NEW)) {
2538 spin_lock(&inode->lock);
2539 ASSERT(inode->new_delalloc_bytes >= len);
2540 inode->new_delalloc_bytes -= len;
2541 if (bits & EXTENT_ADD_INODE_BYTES)
2542 inode_add_bytes(&inode->vfs_inode, len);
2543 spin_unlock(&inode->lock);
2547 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2548 struct btrfs_ordered_extent *ordered)
2550 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2551 u64 len = bbio->bio.bi_iter.bi_size;
2552 struct btrfs_ordered_extent *new;
2555 /* Must always be called for the beginning of an ordered extent. */
2556 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2559 /* No need to split if the ordered extent covers the entire bio. */
2560 if (ordered->disk_num_bytes == len) {
2561 refcount_inc(&ordered->refs);
2562 bbio->ordered = ordered;
2567 * Don't split the extent_map for NOCOW extents, as we're writing into
2568 * a pre-existing one.
2570 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2571 ret = split_extent_map(bbio->inode, bbio->file_offset,
2572 ordered->num_bytes, len,
2573 ordered->disk_bytenr);
2578 new = btrfs_split_ordered_extent(ordered, len);
2580 return PTR_ERR(new);
2581 bbio->ordered = new;
2586 * given a list of ordered sums record them in the inode. This happens
2587 * at IO completion time based on sums calculated at bio submission time.
2589 static int add_pending_csums(struct btrfs_trans_handle *trans,
2590 struct list_head *list)
2592 struct btrfs_ordered_sum *sum;
2593 struct btrfs_root *csum_root = NULL;
2596 list_for_each_entry(sum, list, list) {
2597 trans->adding_csums = true;
2599 csum_root = btrfs_csum_root(trans->fs_info,
2601 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2602 trans->adding_csums = false;
2609 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2612 struct extent_state **cached_state)
2614 u64 search_start = start;
2615 const u64 end = start + len - 1;
2617 while (search_start < end) {
2618 const u64 search_len = end - search_start + 1;
2619 struct extent_map *em;
2623 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2627 if (em->block_start != EXTENT_MAP_HOLE)
2631 if (em->start < search_start)
2632 em_len -= search_start - em->start;
2633 if (em_len > search_len)
2634 em_len = search_len;
2636 ret = set_extent_bit(&inode->io_tree, search_start,
2637 search_start + em_len - 1,
2638 EXTENT_DELALLOC_NEW, cached_state);
2640 search_start = extent_map_end(em);
2641 free_extent_map(em);
2648 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2649 unsigned int extra_bits,
2650 struct extent_state **cached_state)
2652 WARN_ON(PAGE_ALIGNED(end));
2654 if (start >= i_size_read(&inode->vfs_inode) &&
2655 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2657 * There can't be any extents following eof in this case so just
2658 * set the delalloc new bit for the range directly.
2660 extra_bits |= EXTENT_DELALLOC_NEW;
2664 ret = btrfs_find_new_delalloc_bytes(inode, start,
2671 return set_extent_bit(&inode->io_tree, start, end,
2672 EXTENT_DELALLOC | extra_bits, cached_state);
2675 /* see btrfs_writepage_start_hook for details on why this is required */
2676 struct btrfs_writepage_fixup {
2678 struct btrfs_inode *inode;
2679 struct btrfs_work work;
2682 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2684 struct btrfs_writepage_fixup *fixup =
2685 container_of(work, struct btrfs_writepage_fixup, work);
2686 struct btrfs_ordered_extent *ordered;
2687 struct extent_state *cached_state = NULL;
2688 struct extent_changeset *data_reserved = NULL;
2689 struct page *page = fixup->page;
2690 struct btrfs_inode *inode = fixup->inode;
2691 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2692 u64 page_start = page_offset(page);
2693 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2695 bool free_delalloc_space = true;
2698 * This is similar to page_mkwrite, we need to reserve the space before
2699 * we take the page lock.
2701 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2707 * Before we queued this fixup, we took a reference on the page.
2708 * page->mapping may go NULL, but it shouldn't be moved to a different
2711 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2713 * Unfortunately this is a little tricky, either
2715 * 1) We got here and our page had already been dealt with and
2716 * we reserved our space, thus ret == 0, so we need to just
2717 * drop our space reservation and bail. This can happen the
2718 * first time we come into the fixup worker, or could happen
2719 * while waiting for the ordered extent.
2720 * 2) Our page was already dealt with, but we happened to get an
2721 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2722 * this case we obviously don't have anything to release, but
2723 * because the page was already dealt with we don't want to
2724 * mark the page with an error, so make sure we're resetting
2725 * ret to 0. This is why we have this check _before_ the ret
2726 * check, because we do not want to have a surprise ENOSPC
2727 * when the page was already properly dealt with.
2730 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2731 btrfs_delalloc_release_space(inode, data_reserved,
2732 page_start, PAGE_SIZE,
2740 * We can't mess with the page state unless it is locked, so now that
2741 * it is locked bail if we failed to make our space reservation.
2746 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2748 /* already ordered? We're done */
2749 if (PageOrdered(page))
2752 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2754 unlock_extent(&inode->io_tree, page_start, page_end,
2757 btrfs_start_ordered_extent(ordered);
2758 btrfs_put_ordered_extent(ordered);
2762 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2768 * Everything went as planned, we're now the owner of a dirty page with
2769 * delayed allocation bits set and space reserved for our COW
2772 * The page was dirty when we started, nothing should have cleaned it.
2774 BUG_ON(!PageDirty(page));
2775 free_delalloc_space = false;
2777 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2778 if (free_delalloc_space)
2779 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2781 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2785 * We hit ENOSPC or other errors. Update the mapping and page
2786 * to reflect the errors and clean the page.
2788 mapping_set_error(page->mapping, ret);
2789 btrfs_mark_ordered_io_finished(inode, page, page_start,
2791 clear_page_dirty_for_io(page);
2793 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2797 extent_changeset_free(data_reserved);
2799 * As a precaution, do a delayed iput in case it would be the last iput
2800 * that could need flushing space. Recursing back to fixup worker would
2803 btrfs_add_delayed_iput(inode);
2807 * There are a few paths in the higher layers of the kernel that directly
2808 * set the page dirty bit without asking the filesystem if it is a
2809 * good idea. This causes problems because we want to make sure COW
2810 * properly happens and the data=ordered rules are followed.
2812 * In our case any range that doesn't have the ORDERED bit set
2813 * hasn't been properly setup for IO. We kick off an async process
2814 * to fix it up. The async helper will wait for ordered extents, set
2815 * the delalloc bit and make it safe to write the page.
2817 int btrfs_writepage_cow_fixup(struct page *page)
2819 struct inode *inode = page->mapping->host;
2820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2821 struct btrfs_writepage_fixup *fixup;
2823 /* This page has ordered extent covering it already */
2824 if (PageOrdered(page))
2828 * PageChecked is set below when we create a fixup worker for this page,
2829 * don't try to create another one if we're already PageChecked()
2831 * The extent_io writepage code will redirty the page if we send back
2834 if (PageChecked(page))
2837 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2842 * We are already holding a reference to this inode from
2843 * write_cache_pages. We need to hold it because the space reservation
2844 * takes place outside of the page lock, and we can't trust
2845 * page->mapping outside of the page lock.
2848 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2850 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2852 fixup->inode = BTRFS_I(inode);
2853 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2858 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2859 struct btrfs_inode *inode, u64 file_pos,
2860 struct btrfs_file_extent_item *stack_fi,
2861 const bool update_inode_bytes,
2862 u64 qgroup_reserved)
2864 struct btrfs_root *root = inode->root;
2865 const u64 sectorsize = root->fs_info->sectorsize;
2866 struct btrfs_path *path;
2867 struct extent_buffer *leaf;
2868 struct btrfs_key ins;
2869 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2870 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2871 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2872 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2873 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2874 struct btrfs_drop_extents_args drop_args = { 0 };
2877 path = btrfs_alloc_path();
2882 * we may be replacing one extent in the tree with another.
2883 * The new extent is pinned in the extent map, and we don't want
2884 * to drop it from the cache until it is completely in the btree.
2886 * So, tell btrfs_drop_extents to leave this extent in the cache.
2887 * the caller is expected to unpin it and allow it to be merged
2890 drop_args.path = path;
2891 drop_args.start = file_pos;
2892 drop_args.end = file_pos + num_bytes;
2893 drop_args.replace_extent = true;
2894 drop_args.extent_item_size = sizeof(*stack_fi);
2895 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2899 if (!drop_args.extent_inserted) {
2900 ins.objectid = btrfs_ino(inode);
2901 ins.offset = file_pos;
2902 ins.type = BTRFS_EXTENT_DATA_KEY;
2904 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2909 leaf = path->nodes[0];
2910 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2911 write_extent_buffer(leaf, stack_fi,
2912 btrfs_item_ptr_offset(leaf, path->slots[0]),
2913 sizeof(struct btrfs_file_extent_item));
2915 btrfs_mark_buffer_dirty(trans, leaf);
2916 btrfs_release_path(path);
2919 * If we dropped an inline extent here, we know the range where it is
2920 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2921 * number of bytes only for that range containing the inline extent.
2922 * The remaining of the range will be processed when clearning the
2923 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2925 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2926 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2928 inline_size = drop_args.bytes_found - inline_size;
2929 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2930 drop_args.bytes_found -= inline_size;
2931 num_bytes -= sectorsize;
2934 if (update_inode_bytes)
2935 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2937 ins.objectid = disk_bytenr;
2938 ins.offset = disk_num_bytes;
2939 ins.type = BTRFS_EXTENT_ITEM_KEY;
2941 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2945 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2947 qgroup_reserved, &ins);
2949 btrfs_free_path(path);
2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2957 struct btrfs_block_group *cache;
2959 cache = btrfs_lookup_block_group(fs_info, start);
2962 spin_lock(&cache->lock);
2963 cache->delalloc_bytes -= len;
2964 spin_unlock(&cache->lock);
2966 btrfs_put_block_group(cache);
2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2970 struct btrfs_ordered_extent *oe)
2972 struct btrfs_file_extent_item stack_fi;
2973 bool update_inode_bytes;
2974 u64 num_bytes = oe->num_bytes;
2975 u64 ram_bytes = oe->ram_bytes;
2977 memset(&stack_fi, 0, sizeof(stack_fi));
2978 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2979 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2980 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2981 oe->disk_num_bytes);
2982 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2983 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2984 num_bytes = oe->truncated_len;
2985 ram_bytes = num_bytes;
2987 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2988 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2989 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2990 /* Encryption and other encoding is reserved and all 0 */
2993 * For delalloc, when completing an ordered extent we update the inode's
2994 * bytes when clearing the range in the inode's io tree, so pass false
2995 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2996 * except if the ordered extent was truncated.
2998 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2999 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3000 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3002 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3003 oe->file_offset, &stack_fi,
3004 update_inode_bytes, oe->qgroup_rsv);
3008 * As ordered data IO finishes, this gets called so we can finish
3009 * an ordered extent if the range of bytes in the file it covers are
3012 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3014 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3015 struct btrfs_root *root = inode->root;
3016 struct btrfs_fs_info *fs_info = root->fs_info;
3017 struct btrfs_trans_handle *trans = NULL;
3018 struct extent_io_tree *io_tree = &inode->io_tree;
3019 struct extent_state *cached_state = NULL;
3021 int compress_type = 0;
3023 u64 logical_len = ordered_extent->num_bytes;
3024 bool freespace_inode;
3025 bool truncated = false;
3026 bool clear_reserved_extent = true;
3027 unsigned int clear_bits = EXTENT_DEFRAG;
3029 start = ordered_extent->file_offset;
3030 end = start + ordered_extent->num_bytes - 1;
3032 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3033 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3034 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3035 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3036 clear_bits |= EXTENT_DELALLOC_NEW;
3038 freespace_inode = btrfs_is_free_space_inode(inode);
3039 if (!freespace_inode)
3040 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3042 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3047 if (btrfs_is_zoned(fs_info))
3048 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3049 ordered_extent->disk_num_bytes);
3051 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3053 logical_len = ordered_extent->truncated_len;
3054 /* Truncated the entire extent, don't bother adding */
3059 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3060 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3062 btrfs_inode_safe_disk_i_size_write(inode, 0);
3063 if (freespace_inode)
3064 trans = btrfs_join_transaction_spacecache(root);
3066 trans = btrfs_join_transaction(root);
3067 if (IS_ERR(trans)) {
3068 ret = PTR_ERR(trans);
3072 trans->block_rsv = &inode->block_rsv;
3073 ret = btrfs_update_inode_fallback(trans, root, inode);
3074 if (ret) /* -ENOMEM or corruption */
3075 btrfs_abort_transaction(trans, ret);
3079 clear_bits |= EXTENT_LOCKED;
3080 lock_extent(io_tree, start, end, &cached_state);
3082 if (freespace_inode)
3083 trans = btrfs_join_transaction_spacecache(root);
3085 trans = btrfs_join_transaction(root);
3086 if (IS_ERR(trans)) {
3087 ret = PTR_ERR(trans);
3092 trans->block_rsv = &inode->block_rsv;
3094 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3095 compress_type = ordered_extent->compress_type;
3096 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3097 BUG_ON(compress_type);
3098 ret = btrfs_mark_extent_written(trans, inode,
3099 ordered_extent->file_offset,
3100 ordered_extent->file_offset +
3102 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3103 ordered_extent->disk_num_bytes);
3105 BUG_ON(root == fs_info->tree_root);
3106 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3108 clear_reserved_extent = false;
3109 btrfs_release_delalloc_bytes(fs_info,
3110 ordered_extent->disk_bytenr,
3111 ordered_extent->disk_num_bytes);
3114 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3115 ordered_extent->num_bytes, trans->transid);
3117 btrfs_abort_transaction(trans, ret);
3121 ret = add_pending_csums(trans, &ordered_extent->list);
3123 btrfs_abort_transaction(trans, ret);
3128 * If this is a new delalloc range, clear its new delalloc flag to
3129 * update the inode's number of bytes. This needs to be done first
3130 * before updating the inode item.
3132 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3133 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3134 clear_extent_bit(&inode->io_tree, start, end,
3135 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3138 btrfs_inode_safe_disk_i_size_write(inode, 0);
3139 ret = btrfs_update_inode_fallback(trans, root, inode);
3140 if (ret) { /* -ENOMEM or corruption */
3141 btrfs_abort_transaction(trans, ret);
3146 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3150 btrfs_end_transaction(trans);
3152 if (ret || truncated) {
3153 u64 unwritten_start = start;
3156 * If we failed to finish this ordered extent for any reason we
3157 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3158 * extent, and mark the inode with the error if it wasn't
3159 * already set. Any error during writeback would have already
3160 * set the mapping error, so we need to set it if we're the ones
3161 * marking this ordered extent as failed.
3163 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3164 &ordered_extent->flags))
3165 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3168 unwritten_start += logical_len;
3169 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3171 /* Drop extent maps for the part of the extent we didn't write. */
3172 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3175 * If the ordered extent had an IOERR or something else went
3176 * wrong we need to return the space for this ordered extent
3177 * back to the allocator. We only free the extent in the
3178 * truncated case if we didn't write out the extent at all.
3180 * If we made it past insert_reserved_file_extent before we
3181 * errored out then we don't need to do this as the accounting
3182 * has already been done.
3184 if ((ret || !logical_len) &&
3185 clear_reserved_extent &&
3186 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3187 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3189 * Discard the range before returning it back to the
3192 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3193 btrfs_discard_extent(fs_info,
3194 ordered_extent->disk_bytenr,
3195 ordered_extent->disk_num_bytes,
3197 btrfs_free_reserved_extent(fs_info,
3198 ordered_extent->disk_bytenr,
3199 ordered_extent->disk_num_bytes, 1);
3201 * Actually free the qgroup rsv which was released when
3202 * the ordered extent was created.
3204 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3205 ordered_extent->qgroup_rsv,
3206 BTRFS_QGROUP_RSV_DATA);
3211 * This needs to be done to make sure anybody waiting knows we are done
3212 * updating everything for this ordered extent.
3214 btrfs_remove_ordered_extent(inode, ordered_extent);
3217 btrfs_put_ordered_extent(ordered_extent);
3218 /* once for the tree */
3219 btrfs_put_ordered_extent(ordered_extent);
3224 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3226 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3227 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3228 btrfs_finish_ordered_zoned(ordered);
3229 return btrfs_finish_one_ordered(ordered);
3233 * Verify the checksum for a single sector without any extra action that depend
3234 * on the type of I/O.
3236 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3237 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3239 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3242 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3244 shash->tfm = fs_info->csum_shash;
3246 kaddr = kmap_local_page(page) + pgoff;
3247 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3248 kunmap_local(kaddr);
3250 if (memcmp(csum, csum_expected, fs_info->csum_size))
3256 * Verify the checksum of a single data sector.
3258 * @bbio: btrfs_io_bio which contains the csum
3259 * @dev: device the sector is on
3260 * @bio_offset: offset to the beginning of the bio (in bytes)
3261 * @bv: bio_vec to check
3263 * Check if the checksum on a data block is valid. When a checksum mismatch is
3264 * detected, report the error and fill the corrupted range with zero.
3266 * Return %true if the sector is ok or had no checksum to start with, else %false.
3268 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3269 u32 bio_offset, struct bio_vec *bv)
3271 struct btrfs_inode *inode = bbio->inode;
3272 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3273 u64 file_offset = bbio->file_offset + bio_offset;
3274 u64 end = file_offset + bv->bv_len - 1;
3276 u8 csum[BTRFS_CSUM_SIZE];
3278 ASSERT(bv->bv_len == fs_info->sectorsize);
3283 if (btrfs_is_data_reloc_root(inode->root) &&
3284 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3286 /* Skip the range without csum for data reloc inode */
3287 clear_extent_bits(&inode->io_tree, file_offset, end,
3292 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3294 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3300 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3303 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3309 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3311 * @inode: The inode we want to perform iput on
3313 * This function uses the generic vfs_inode::i_count to track whether we should
3314 * just decrement it (in case it's > 1) or if this is the last iput then link
3315 * the inode to the delayed iput machinery. Delayed iputs are processed at
3316 * transaction commit time/superblock commit/cleaner kthread.
3318 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3320 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3321 unsigned long flags;
3323 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3326 atomic_inc(&fs_info->nr_delayed_iputs);
3328 * Need to be irq safe here because we can be called from either an irq
3329 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3332 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3333 ASSERT(list_empty(&inode->delayed_iput));
3334 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3335 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3336 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3337 wake_up_process(fs_info->cleaner_kthread);
3340 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3341 struct btrfs_inode *inode)
3343 list_del_init(&inode->delayed_iput);
3344 spin_unlock_irq(&fs_info->delayed_iput_lock);
3345 iput(&inode->vfs_inode);
3346 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3347 wake_up(&fs_info->delayed_iputs_wait);
3348 spin_lock_irq(&fs_info->delayed_iput_lock);
3351 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3352 struct btrfs_inode *inode)
3354 if (!list_empty(&inode->delayed_iput)) {
3355 spin_lock_irq(&fs_info->delayed_iput_lock);
3356 if (!list_empty(&inode->delayed_iput))
3357 run_delayed_iput_locked(fs_info, inode);
3358 spin_unlock_irq(&fs_info->delayed_iput_lock);
3362 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3365 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3366 * calls btrfs_add_delayed_iput() and that needs to lock
3367 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3368 * prevent a deadlock.
3370 spin_lock_irq(&fs_info->delayed_iput_lock);
3371 while (!list_empty(&fs_info->delayed_iputs)) {
3372 struct btrfs_inode *inode;
3374 inode = list_first_entry(&fs_info->delayed_iputs,
3375 struct btrfs_inode, delayed_iput);
3376 run_delayed_iput_locked(fs_info, inode);
3377 if (need_resched()) {
3378 spin_unlock_irq(&fs_info->delayed_iput_lock);
3380 spin_lock_irq(&fs_info->delayed_iput_lock);
3383 spin_unlock_irq(&fs_info->delayed_iput_lock);
3387 * Wait for flushing all delayed iputs
3389 * @fs_info: the filesystem
3391 * This will wait on any delayed iputs that are currently running with KILLABLE
3392 * set. Once they are all done running we will return, unless we are killed in
3393 * which case we return EINTR. This helps in user operations like fallocate etc
3394 * that might get blocked on the iputs.
3396 * Return EINTR if we were killed, 0 if nothing's pending
3398 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3400 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3401 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3408 * This creates an orphan entry for the given inode in case something goes wrong
3409 * in the middle of an unlink.
3411 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3412 struct btrfs_inode *inode)
3416 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3417 if (ret && ret != -EEXIST) {
3418 btrfs_abort_transaction(trans, ret);
3426 * We have done the delete so we can go ahead and remove the orphan item for
3427 * this particular inode.
3429 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3430 struct btrfs_inode *inode)
3432 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3436 * this cleans up any orphans that may be left on the list from the last use
3439 int btrfs_orphan_cleanup(struct btrfs_root *root)
3441 struct btrfs_fs_info *fs_info = root->fs_info;
3442 struct btrfs_path *path;
3443 struct extent_buffer *leaf;
3444 struct btrfs_key key, found_key;
3445 struct btrfs_trans_handle *trans;
3446 struct inode *inode;
3447 u64 last_objectid = 0;
3448 int ret = 0, nr_unlink = 0;
3450 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3453 path = btrfs_alloc_path();
3458 path->reada = READA_BACK;
3460 key.objectid = BTRFS_ORPHAN_OBJECTID;
3461 key.type = BTRFS_ORPHAN_ITEM_KEY;
3462 key.offset = (u64)-1;
3465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3470 * if ret == 0 means we found what we were searching for, which
3471 * is weird, but possible, so only screw with path if we didn't
3472 * find the key and see if we have stuff that matches
3476 if (path->slots[0] == 0)
3481 /* pull out the item */
3482 leaf = path->nodes[0];
3483 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3485 /* make sure the item matches what we want */
3486 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3488 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3491 /* release the path since we're done with it */
3492 btrfs_release_path(path);
3495 * this is where we are basically btrfs_lookup, without the
3496 * crossing root thing. we store the inode number in the
3497 * offset of the orphan item.
3500 if (found_key.offset == last_objectid) {
3502 * We found the same inode as before. This means we were
3503 * not able to remove its items via eviction triggered
3504 * by an iput(). A transaction abort may have happened,
3505 * due to -ENOSPC for example, so try to grab the error
3506 * that lead to a transaction abort, if any.
3509 "Error removing orphan entry, stopping orphan cleanup");
3510 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3514 last_objectid = found_key.offset;
3516 found_key.objectid = found_key.offset;
3517 found_key.type = BTRFS_INODE_ITEM_KEY;
3518 found_key.offset = 0;
3519 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3520 if (IS_ERR(inode)) {
3521 ret = PTR_ERR(inode);
3527 if (!inode && root == fs_info->tree_root) {
3528 struct btrfs_root *dead_root;
3529 int is_dead_root = 0;
3532 * This is an orphan in the tree root. Currently these
3533 * could come from 2 sources:
3534 * a) a root (snapshot/subvolume) deletion in progress
3535 * b) a free space cache inode
3536 * We need to distinguish those two, as the orphan item
3537 * for a root must not get deleted before the deletion
3538 * of the snapshot/subvolume's tree completes.
3540 * btrfs_find_orphan_roots() ran before us, which has
3541 * found all deleted roots and loaded them into
3542 * fs_info->fs_roots_radix. So here we can find if an
3543 * orphan item corresponds to a deleted root by looking
3544 * up the root from that radix tree.
3547 spin_lock(&fs_info->fs_roots_radix_lock);
3548 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3549 (unsigned long)found_key.objectid);
3550 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3552 spin_unlock(&fs_info->fs_roots_radix_lock);
3555 /* prevent this orphan from being found again */
3556 key.offset = found_key.objectid - 1;
3563 * If we have an inode with links, there are a couple of
3566 * 1. We were halfway through creating fsverity metadata for the
3567 * file. In that case, the orphan item represents incomplete
3568 * fsverity metadata which must be cleaned up with
3569 * btrfs_drop_verity_items and deleting the orphan item.
3571 * 2. Old kernels (before v3.12) used to create an
3572 * orphan item for truncate indicating that there were possibly
3573 * extent items past i_size that needed to be deleted. In v3.12,
3574 * truncate was changed to update i_size in sync with the extent
3575 * items, but the (useless) orphan item was still created. Since
3576 * v4.18, we don't create the orphan item for truncate at all.
3578 * So, this item could mean that we need to do a truncate, but
3579 * only if this filesystem was last used on a pre-v3.12 kernel
3580 * and was not cleanly unmounted. The odds of that are quite
3581 * slim, and it's a pain to do the truncate now, so just delete
3584 * It's also possible that this orphan item was supposed to be
3585 * deleted but wasn't. The inode number may have been reused,
3586 * but either way, we can delete the orphan item.
3588 if (!inode || inode->i_nlink) {
3590 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3596 trans = btrfs_start_transaction(root, 1);
3597 if (IS_ERR(trans)) {
3598 ret = PTR_ERR(trans);
3601 btrfs_debug(fs_info, "auto deleting %Lu",
3602 found_key.objectid);
3603 ret = btrfs_del_orphan_item(trans, root,
3604 found_key.objectid);
3605 btrfs_end_transaction(trans);
3613 /* this will do delete_inode and everything for us */
3616 /* release the path since we're done with it */
3617 btrfs_release_path(path);
3619 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3620 trans = btrfs_join_transaction(root);
3622 btrfs_end_transaction(trans);
3626 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3630 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3631 btrfs_free_path(path);
3636 * very simple check to peek ahead in the leaf looking for xattrs. If we
3637 * don't find any xattrs, we know there can't be any acls.
3639 * slot is the slot the inode is in, objectid is the objectid of the inode
3641 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3642 int slot, u64 objectid,
3643 int *first_xattr_slot)
3645 u32 nritems = btrfs_header_nritems(leaf);
3646 struct btrfs_key found_key;
3647 static u64 xattr_access = 0;
3648 static u64 xattr_default = 0;
3651 if (!xattr_access) {
3652 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3653 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3654 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3655 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3659 *first_xattr_slot = -1;
3660 while (slot < nritems) {
3661 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3663 /* we found a different objectid, there must not be acls */
3664 if (found_key.objectid != objectid)
3667 /* we found an xattr, assume we've got an acl */
3668 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3669 if (*first_xattr_slot == -1)
3670 *first_xattr_slot = slot;
3671 if (found_key.offset == xattr_access ||
3672 found_key.offset == xattr_default)
3677 * we found a key greater than an xattr key, there can't
3678 * be any acls later on
3680 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3687 * it goes inode, inode backrefs, xattrs, extents,
3688 * so if there are a ton of hard links to an inode there can
3689 * be a lot of backrefs. Don't waste time searching too hard,
3690 * this is just an optimization
3695 /* we hit the end of the leaf before we found an xattr or
3696 * something larger than an xattr. We have to assume the inode
3699 if (*first_xattr_slot == -1)
3700 *first_xattr_slot = slot;
3705 * read an inode from the btree into the in-memory inode
3707 static int btrfs_read_locked_inode(struct inode *inode,
3708 struct btrfs_path *in_path)
3710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3711 struct btrfs_path *path = in_path;
3712 struct extent_buffer *leaf;
3713 struct btrfs_inode_item *inode_item;
3714 struct btrfs_root *root = BTRFS_I(inode)->root;
3715 struct btrfs_key location;
3720 bool filled = false;
3721 int first_xattr_slot;
3723 ret = btrfs_fill_inode(inode, &rdev);
3728 path = btrfs_alloc_path();
3733 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3735 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3737 if (path != in_path)
3738 btrfs_free_path(path);
3742 leaf = path->nodes[0];
3747 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3748 struct btrfs_inode_item);
3749 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3750 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3751 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3752 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3753 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3754 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3755 round_up(i_size_read(inode), fs_info->sectorsize));
3757 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3758 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3760 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3761 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3763 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3764 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3766 BTRFS_I(inode)->i_otime.tv_sec =
3767 btrfs_timespec_sec(leaf, &inode_item->otime);
3768 BTRFS_I(inode)->i_otime.tv_nsec =
3769 btrfs_timespec_nsec(leaf, &inode_item->otime);
3771 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3772 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3773 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3775 inode_set_iversion_queried(inode,
3776 btrfs_inode_sequence(leaf, inode_item));
3777 inode->i_generation = BTRFS_I(inode)->generation;
3779 rdev = btrfs_inode_rdev(leaf, inode_item);
3781 BTRFS_I(inode)->index_cnt = (u64)-1;
3782 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3783 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3787 * If we were modified in the current generation and evicted from memory
3788 * and then re-read we need to do a full sync since we don't have any
3789 * idea about which extents were modified before we were evicted from
3792 * This is required for both inode re-read from disk and delayed inode
3793 * in delayed_nodes_tree.
3795 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3796 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3797 &BTRFS_I(inode)->runtime_flags);
3800 * We don't persist the id of the transaction where an unlink operation
3801 * against the inode was last made. So here we assume the inode might
3802 * have been evicted, and therefore the exact value of last_unlink_trans
3803 * lost, and set it to last_trans to avoid metadata inconsistencies
3804 * between the inode and its parent if the inode is fsync'ed and the log
3805 * replayed. For example, in the scenario:
3808 * ln mydir/foo mydir/bar
3811 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3812 * xfs_io -c fsync mydir/foo
3814 * mount fs, triggers fsync log replay
3816 * We must make sure that when we fsync our inode foo we also log its
3817 * parent inode, otherwise after log replay the parent still has the
3818 * dentry with the "bar" name but our inode foo has a link count of 1
3819 * and doesn't have an inode ref with the name "bar" anymore.
3821 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3822 * but it guarantees correctness at the expense of occasional full
3823 * transaction commits on fsync if our inode is a directory, or if our
3824 * inode is not a directory, logging its parent unnecessarily.
3826 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3829 * Same logic as for last_unlink_trans. We don't persist the generation
3830 * of the last transaction where this inode was used for a reflink
3831 * operation, so after eviction and reloading the inode we must be
3832 * pessimistic and assume the last transaction that modified the inode.
3834 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3837 if (inode->i_nlink != 1 ||
3838 path->slots[0] >= btrfs_header_nritems(leaf))
3841 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3842 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3845 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3846 if (location.type == BTRFS_INODE_REF_KEY) {
3847 struct btrfs_inode_ref *ref;
3849 ref = (struct btrfs_inode_ref *)ptr;
3850 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3851 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3852 struct btrfs_inode_extref *extref;
3854 extref = (struct btrfs_inode_extref *)ptr;
3855 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3860 * try to precache a NULL acl entry for files that don't have
3861 * any xattrs or acls
3863 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3864 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3865 if (first_xattr_slot != -1) {
3866 path->slots[0] = first_xattr_slot;
3867 ret = btrfs_load_inode_props(inode, path);
3870 "error loading props for ino %llu (root %llu): %d",
3871 btrfs_ino(BTRFS_I(inode)),
3872 root->root_key.objectid, ret);
3874 if (path != in_path)
3875 btrfs_free_path(path);
3878 cache_no_acl(inode);
3880 switch (inode->i_mode & S_IFMT) {
3882 inode->i_mapping->a_ops = &btrfs_aops;
3883 inode->i_fop = &btrfs_file_operations;
3884 inode->i_op = &btrfs_file_inode_operations;
3887 inode->i_fop = &btrfs_dir_file_operations;
3888 inode->i_op = &btrfs_dir_inode_operations;
3891 inode->i_op = &btrfs_symlink_inode_operations;
3892 inode_nohighmem(inode);
3893 inode->i_mapping->a_ops = &btrfs_aops;
3896 inode->i_op = &btrfs_special_inode_operations;
3897 init_special_inode(inode, inode->i_mode, rdev);
3901 btrfs_sync_inode_flags_to_i_flags(inode);
3906 * given a leaf and an inode, copy the inode fields into the leaf
3908 static void fill_inode_item(struct btrfs_trans_handle *trans,
3909 struct extent_buffer *leaf,
3910 struct btrfs_inode_item *item,
3911 struct inode *inode)
3913 struct btrfs_map_token token;
3916 btrfs_init_map_token(&token, leaf);
3918 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3919 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3920 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3921 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3922 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3924 btrfs_set_token_timespec_sec(&token, &item->atime,
3925 inode->i_atime.tv_sec);
3926 btrfs_set_token_timespec_nsec(&token, &item->atime,
3927 inode->i_atime.tv_nsec);
3929 btrfs_set_token_timespec_sec(&token, &item->mtime,
3930 inode->i_mtime.tv_sec);
3931 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3932 inode->i_mtime.tv_nsec);
3934 btrfs_set_token_timespec_sec(&token, &item->ctime,
3935 inode_get_ctime(inode).tv_sec);
3936 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3937 inode_get_ctime(inode).tv_nsec);
3939 btrfs_set_token_timespec_sec(&token, &item->otime,
3940 BTRFS_I(inode)->i_otime.tv_sec);
3941 btrfs_set_token_timespec_nsec(&token, &item->otime,
3942 BTRFS_I(inode)->i_otime.tv_nsec);
3944 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3945 btrfs_set_token_inode_generation(&token, item,
3946 BTRFS_I(inode)->generation);
3947 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3948 btrfs_set_token_inode_transid(&token, item, trans->transid);
3949 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3950 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3951 BTRFS_I(inode)->ro_flags);
3952 btrfs_set_token_inode_flags(&token, item, flags);
3953 btrfs_set_token_inode_block_group(&token, item, 0);
3957 * copy everything in the in-memory inode into the btree.
3959 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3960 struct btrfs_root *root,
3961 struct btrfs_inode *inode)
3963 struct btrfs_inode_item *inode_item;
3964 struct btrfs_path *path;
3965 struct extent_buffer *leaf;
3968 path = btrfs_alloc_path();
3972 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3979 leaf = path->nodes[0];
3980 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3981 struct btrfs_inode_item);
3983 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3984 btrfs_mark_buffer_dirty(trans, leaf);
3985 btrfs_set_inode_last_trans(trans, inode);
3988 btrfs_free_path(path);
3993 * copy everything in the in-memory inode into the btree.
3995 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3996 struct btrfs_root *root,
3997 struct btrfs_inode *inode)
3999 struct btrfs_fs_info *fs_info = root->fs_info;
4003 * If the inode is a free space inode, we can deadlock during commit
4004 * if we put it into the delayed code.
4006 * The data relocation inode should also be directly updated
4009 if (!btrfs_is_free_space_inode(inode)
4010 && !btrfs_is_data_reloc_root(root)
4011 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4012 btrfs_update_root_times(trans, root);
4014 ret = btrfs_delayed_update_inode(trans, root, inode);
4016 btrfs_set_inode_last_trans(trans, inode);
4020 return btrfs_update_inode_item(trans, root, inode);
4023 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4024 struct btrfs_root *root, struct btrfs_inode *inode)
4028 ret = btrfs_update_inode(trans, root, inode);
4030 return btrfs_update_inode_item(trans, root, inode);
4035 * unlink helper that gets used here in inode.c and in the tree logging
4036 * recovery code. It remove a link in a directory with a given name, and
4037 * also drops the back refs in the inode to the directory
4039 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4040 struct btrfs_inode *dir,
4041 struct btrfs_inode *inode,
4042 const struct fscrypt_str *name,
4043 struct btrfs_rename_ctx *rename_ctx)
4045 struct btrfs_root *root = dir->root;
4046 struct btrfs_fs_info *fs_info = root->fs_info;
4047 struct btrfs_path *path;
4049 struct btrfs_dir_item *di;
4051 u64 ino = btrfs_ino(inode);
4052 u64 dir_ino = btrfs_ino(dir);
4054 path = btrfs_alloc_path();
4060 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4061 if (IS_ERR_OR_NULL(di)) {
4062 ret = di ? PTR_ERR(di) : -ENOENT;
4065 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4068 btrfs_release_path(path);
4071 * If we don't have dir index, we have to get it by looking up
4072 * the inode ref, since we get the inode ref, remove it directly,
4073 * it is unnecessary to do delayed deletion.
4075 * But if we have dir index, needn't search inode ref to get it.
4076 * Since the inode ref is close to the inode item, it is better
4077 * that we delay to delete it, and just do this deletion when
4078 * we update the inode item.
4080 if (inode->dir_index) {
4081 ret = btrfs_delayed_delete_inode_ref(inode);
4083 index = inode->dir_index;
4088 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4091 "failed to delete reference to %.*s, inode %llu parent %llu",
4092 name->len, name->name, ino, dir_ino);
4093 btrfs_abort_transaction(trans, ret);
4098 rename_ctx->index = index;
4100 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4102 btrfs_abort_transaction(trans, ret);
4107 * If we are in a rename context, we don't need to update anything in the
4108 * log. That will be done later during the rename by btrfs_log_new_name().
4109 * Besides that, doing it here would only cause extra unnecessary btree
4110 * operations on the log tree, increasing latency for applications.
4113 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4114 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4118 * If we have a pending delayed iput we could end up with the final iput
4119 * being run in btrfs-cleaner context. If we have enough of these built
4120 * up we can end up burning a lot of time in btrfs-cleaner without any
4121 * way to throttle the unlinks. Since we're currently holding a ref on
4122 * the inode we can run the delayed iput here without any issues as the
4123 * final iput won't be done until after we drop the ref we're currently
4126 btrfs_run_delayed_iput(fs_info, inode);
4128 btrfs_free_path(path);
4132 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4133 inode_inc_iversion(&inode->vfs_inode);
4134 inode_inc_iversion(&dir->vfs_inode);
4135 inode_set_ctime_current(&inode->vfs_inode);
4136 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4137 ret = btrfs_update_inode(trans, root, dir);
4142 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4143 struct btrfs_inode *dir, struct btrfs_inode *inode,
4144 const struct fscrypt_str *name)
4148 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4150 drop_nlink(&inode->vfs_inode);
4151 ret = btrfs_update_inode(trans, inode->root, inode);
4157 * helper to start transaction for unlink and rmdir.
4159 * unlink and rmdir are special in btrfs, they do not always free space, so
4160 * if we cannot make our reservations the normal way try and see if there is
4161 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4162 * allow the unlink to occur.
4164 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4166 struct btrfs_root *root = dir->root;
4168 return btrfs_start_transaction_fallback_global_rsv(root,
4169 BTRFS_UNLINK_METADATA_UNITS);
4172 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4174 struct btrfs_trans_handle *trans;
4175 struct inode *inode = d_inode(dentry);
4177 struct fscrypt_name fname;
4179 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4183 /* This needs to handle no-key deletions later on */
4185 trans = __unlink_start_trans(BTRFS_I(dir));
4186 if (IS_ERR(trans)) {
4187 ret = PTR_ERR(trans);
4191 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4194 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4199 if (inode->i_nlink == 0) {
4200 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4206 btrfs_end_transaction(trans);
4207 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4209 fscrypt_free_filename(&fname);
4213 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4214 struct btrfs_inode *dir, struct dentry *dentry)
4216 struct btrfs_root *root = dir->root;
4217 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4218 struct btrfs_path *path;
4219 struct extent_buffer *leaf;
4220 struct btrfs_dir_item *di;
4221 struct btrfs_key key;
4225 u64 dir_ino = btrfs_ino(dir);
4226 struct fscrypt_name fname;
4228 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4232 /* This needs to handle no-key deletions later on */
4234 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4235 objectid = inode->root->root_key.objectid;
4236 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4237 objectid = inode->location.objectid;
4240 fscrypt_free_filename(&fname);
4244 path = btrfs_alloc_path();
4250 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4251 &fname.disk_name, -1);
4252 if (IS_ERR_OR_NULL(di)) {
4253 ret = di ? PTR_ERR(di) : -ENOENT;
4257 leaf = path->nodes[0];
4258 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4259 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4260 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4262 btrfs_abort_transaction(trans, ret);
4265 btrfs_release_path(path);
4268 * This is a placeholder inode for a subvolume we didn't have a
4269 * reference to at the time of the snapshot creation. In the meantime
4270 * we could have renamed the real subvol link into our snapshot, so
4271 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4272 * Instead simply lookup the dir_index_item for this entry so we can
4273 * remove it. Otherwise we know we have a ref to the root and we can
4274 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4276 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4277 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4278 if (IS_ERR_OR_NULL(di)) {
4283 btrfs_abort_transaction(trans, ret);
4287 leaf = path->nodes[0];
4288 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4290 btrfs_release_path(path);
4292 ret = btrfs_del_root_ref(trans, objectid,
4293 root->root_key.objectid, dir_ino,
4294 &index, &fname.disk_name);
4296 btrfs_abort_transaction(trans, ret);
4301 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4303 btrfs_abort_transaction(trans, ret);
4307 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4308 inode_inc_iversion(&dir->vfs_inode);
4309 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4310 ret = btrfs_update_inode_fallback(trans, root, dir);
4312 btrfs_abort_transaction(trans, ret);
4314 btrfs_free_path(path);
4315 fscrypt_free_filename(&fname);
4320 * Helper to check if the subvolume references other subvolumes or if it's
4323 static noinline int may_destroy_subvol(struct btrfs_root *root)
4325 struct btrfs_fs_info *fs_info = root->fs_info;
4326 struct btrfs_path *path;
4327 struct btrfs_dir_item *di;
4328 struct btrfs_key key;
4329 struct fscrypt_str name = FSTR_INIT("default", 7);
4333 path = btrfs_alloc_path();
4337 /* Make sure this root isn't set as the default subvol */
4338 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4339 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4341 if (di && !IS_ERR(di)) {
4342 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4343 if (key.objectid == root->root_key.objectid) {
4346 "deleting default subvolume %llu is not allowed",
4350 btrfs_release_path(path);
4353 key.objectid = root->root_key.objectid;
4354 key.type = BTRFS_ROOT_REF_KEY;
4355 key.offset = (u64)-1;
4357 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4363 if (path->slots[0] > 0) {
4365 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4366 if (key.objectid == root->root_key.objectid &&
4367 key.type == BTRFS_ROOT_REF_KEY)
4371 btrfs_free_path(path);
4375 /* Delete all dentries for inodes belonging to the root */
4376 static void btrfs_prune_dentries(struct btrfs_root *root)
4378 struct btrfs_fs_info *fs_info = root->fs_info;
4379 struct rb_node *node;
4380 struct rb_node *prev;
4381 struct btrfs_inode *entry;
4382 struct inode *inode;
4385 if (!BTRFS_FS_ERROR(fs_info))
4386 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4388 spin_lock(&root->inode_lock);
4390 node = root->inode_tree.rb_node;
4394 entry = rb_entry(node, struct btrfs_inode, rb_node);
4396 if (objectid < btrfs_ino(entry))
4397 node = node->rb_left;
4398 else if (objectid > btrfs_ino(entry))
4399 node = node->rb_right;
4405 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4406 if (objectid <= btrfs_ino(entry)) {
4410 prev = rb_next(prev);
4414 entry = rb_entry(node, struct btrfs_inode, rb_node);
4415 objectid = btrfs_ino(entry) + 1;
4416 inode = igrab(&entry->vfs_inode);
4418 spin_unlock(&root->inode_lock);
4419 if (atomic_read(&inode->i_count) > 1)
4420 d_prune_aliases(inode);
4422 * btrfs_drop_inode will have it removed from the inode
4423 * cache when its usage count hits zero.
4427 spin_lock(&root->inode_lock);
4431 if (cond_resched_lock(&root->inode_lock))
4434 node = rb_next(node);
4436 spin_unlock(&root->inode_lock);
4439 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4441 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4442 struct btrfs_root *root = dir->root;
4443 struct inode *inode = d_inode(dentry);
4444 struct btrfs_root *dest = BTRFS_I(inode)->root;
4445 struct btrfs_trans_handle *trans;
4446 struct btrfs_block_rsv block_rsv;
4451 * Don't allow to delete a subvolume with send in progress. This is
4452 * inside the inode lock so the error handling that has to drop the bit
4453 * again is not run concurrently.
4455 spin_lock(&dest->root_item_lock);
4456 if (dest->send_in_progress) {
4457 spin_unlock(&dest->root_item_lock);
4459 "attempt to delete subvolume %llu during send",
4460 dest->root_key.objectid);
4463 if (atomic_read(&dest->nr_swapfiles)) {
4464 spin_unlock(&dest->root_item_lock);
4466 "attempt to delete subvolume %llu with active swapfile",
4467 root->root_key.objectid);
4470 root_flags = btrfs_root_flags(&dest->root_item);
4471 btrfs_set_root_flags(&dest->root_item,
4472 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4473 spin_unlock(&dest->root_item_lock);
4475 down_write(&fs_info->subvol_sem);
4477 ret = may_destroy_subvol(dest);
4481 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4483 * One for dir inode,
4484 * two for dir entries,
4485 * two for root ref/backref.
4487 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4491 trans = btrfs_start_transaction(root, 0);
4492 if (IS_ERR(trans)) {
4493 ret = PTR_ERR(trans);
4496 trans->block_rsv = &block_rsv;
4497 trans->bytes_reserved = block_rsv.size;
4499 btrfs_record_snapshot_destroy(trans, dir);
4501 ret = btrfs_unlink_subvol(trans, dir, dentry);
4503 btrfs_abort_transaction(trans, ret);
4507 ret = btrfs_record_root_in_trans(trans, dest);
4509 btrfs_abort_transaction(trans, ret);
4513 memset(&dest->root_item.drop_progress, 0,
4514 sizeof(dest->root_item.drop_progress));
4515 btrfs_set_root_drop_level(&dest->root_item, 0);
4516 btrfs_set_root_refs(&dest->root_item, 0);
4518 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4519 ret = btrfs_insert_orphan_item(trans,
4521 dest->root_key.objectid);
4523 btrfs_abort_transaction(trans, ret);
4528 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4529 BTRFS_UUID_KEY_SUBVOL,
4530 dest->root_key.objectid);
4531 if (ret && ret != -ENOENT) {
4532 btrfs_abort_transaction(trans, ret);
4535 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4536 ret = btrfs_uuid_tree_remove(trans,
4537 dest->root_item.received_uuid,
4538 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4539 dest->root_key.objectid);
4540 if (ret && ret != -ENOENT) {
4541 btrfs_abort_transaction(trans, ret);
4546 free_anon_bdev(dest->anon_dev);
4549 trans->block_rsv = NULL;
4550 trans->bytes_reserved = 0;
4551 ret = btrfs_end_transaction(trans);
4552 inode->i_flags |= S_DEAD;
4554 btrfs_subvolume_release_metadata(root, &block_rsv);
4556 up_write(&fs_info->subvol_sem);
4558 spin_lock(&dest->root_item_lock);
4559 root_flags = btrfs_root_flags(&dest->root_item);
4560 btrfs_set_root_flags(&dest->root_item,
4561 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4562 spin_unlock(&dest->root_item_lock);
4564 d_invalidate(dentry);
4565 btrfs_prune_dentries(dest);
4566 ASSERT(dest->send_in_progress == 0);
4572 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4574 struct inode *inode = d_inode(dentry);
4575 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4577 struct btrfs_trans_handle *trans;
4578 u64 last_unlink_trans;
4579 struct fscrypt_name fname;
4581 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4583 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4584 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4586 "extent tree v2 doesn't support snapshot deletion yet");
4589 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4592 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4596 /* This needs to handle no-key deletions later on */
4598 trans = __unlink_start_trans(BTRFS_I(dir));
4599 if (IS_ERR(trans)) {
4600 err = PTR_ERR(trans);
4604 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4605 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4609 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4613 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4615 /* now the directory is empty */
4616 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4619 btrfs_i_size_write(BTRFS_I(inode), 0);
4621 * Propagate the last_unlink_trans value of the deleted dir to
4622 * its parent directory. This is to prevent an unrecoverable
4623 * log tree in the case we do something like this:
4625 * 2) create snapshot under dir foo
4626 * 3) delete the snapshot
4629 * 6) fsync foo or some file inside foo
4631 if (last_unlink_trans >= trans->transid)
4632 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4635 btrfs_end_transaction(trans);
4637 btrfs_btree_balance_dirty(fs_info);
4638 fscrypt_free_filename(&fname);
4644 * btrfs_truncate_block - read, zero a chunk and write a block
4645 * @inode - inode that we're zeroing
4646 * @from - the offset to start zeroing
4647 * @len - the length to zero, 0 to zero the entire range respective to the
4649 * @front - zero up to the offset instead of from the offset on
4651 * This will find the block for the "from" offset and cow the block and zero the
4652 * part we want to zero. This is used with truncate and hole punching.
4654 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4657 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4658 struct address_space *mapping = inode->vfs_inode.i_mapping;
4659 struct extent_io_tree *io_tree = &inode->io_tree;
4660 struct btrfs_ordered_extent *ordered;
4661 struct extent_state *cached_state = NULL;
4662 struct extent_changeset *data_reserved = NULL;
4663 bool only_release_metadata = false;
4664 u32 blocksize = fs_info->sectorsize;
4665 pgoff_t index = from >> PAGE_SHIFT;
4666 unsigned offset = from & (blocksize - 1);
4668 gfp_t mask = btrfs_alloc_write_mask(mapping);
4669 size_t write_bytes = blocksize;
4674 if (IS_ALIGNED(offset, blocksize) &&
4675 (!len || IS_ALIGNED(len, blocksize)))
4678 block_start = round_down(from, blocksize);
4679 block_end = block_start + blocksize - 1;
4681 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4684 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4685 /* For nocow case, no need to reserve data space */
4686 only_release_metadata = true;
4691 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4693 if (!only_release_metadata)
4694 btrfs_free_reserved_data_space(inode, data_reserved,
4695 block_start, blocksize);
4699 page = find_or_create_page(mapping, index, mask);
4701 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4703 btrfs_delalloc_release_extents(inode, blocksize);
4708 if (!PageUptodate(page)) {
4709 ret = btrfs_read_folio(NULL, page_folio(page));
4711 if (page->mapping != mapping) {
4716 if (!PageUptodate(page)) {
4723 * We unlock the page after the io is completed and then re-lock it
4724 * above. release_folio() could have come in between that and cleared
4725 * PagePrivate(), but left the page in the mapping. Set the page mapped
4726 * here to make sure it's properly set for the subpage stuff.
4728 ret = set_page_extent_mapped(page);
4732 wait_on_page_writeback(page);
4734 lock_extent(io_tree, block_start, block_end, &cached_state);
4736 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4738 unlock_extent(io_tree, block_start, block_end, &cached_state);
4741 btrfs_start_ordered_extent(ordered);
4742 btrfs_put_ordered_extent(ordered);
4746 clear_extent_bit(&inode->io_tree, block_start, block_end,
4747 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4750 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4753 unlock_extent(io_tree, block_start, block_end, &cached_state);
4757 if (offset != blocksize) {
4759 len = blocksize - offset;
4761 memzero_page(page, (block_start - page_offset(page)),
4764 memzero_page(page, (block_start - page_offset(page)) + offset,
4767 btrfs_page_clear_checked(fs_info, page, block_start,
4768 block_end + 1 - block_start);
4769 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4770 unlock_extent(io_tree, block_start, block_end, &cached_state);
4772 if (only_release_metadata)
4773 set_extent_bit(&inode->io_tree, block_start, block_end,
4774 EXTENT_NORESERVE, NULL);
4778 if (only_release_metadata)
4779 btrfs_delalloc_release_metadata(inode, blocksize, true);
4781 btrfs_delalloc_release_space(inode, data_reserved,
4782 block_start, blocksize, true);
4784 btrfs_delalloc_release_extents(inode, blocksize);
4788 if (only_release_metadata)
4789 btrfs_check_nocow_unlock(inode);
4790 extent_changeset_free(data_reserved);
4794 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4795 u64 offset, u64 len)
4797 struct btrfs_fs_info *fs_info = root->fs_info;
4798 struct btrfs_trans_handle *trans;
4799 struct btrfs_drop_extents_args drop_args = { 0 };
4803 * If NO_HOLES is enabled, we don't need to do anything.
4804 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4805 * or btrfs_update_inode() will be called, which guarantee that the next
4806 * fsync will know this inode was changed and needs to be logged.
4808 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4812 * 1 - for the one we're dropping
4813 * 1 - for the one we're adding
4814 * 1 - for updating the inode.
4816 trans = btrfs_start_transaction(root, 3);
4818 return PTR_ERR(trans);
4820 drop_args.start = offset;
4821 drop_args.end = offset + len;
4822 drop_args.drop_cache = true;
4824 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4826 btrfs_abort_transaction(trans, ret);
4827 btrfs_end_transaction(trans);
4831 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4833 btrfs_abort_transaction(trans, ret);
4835 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4836 btrfs_update_inode(trans, root, inode);
4838 btrfs_end_transaction(trans);
4843 * This function puts in dummy file extents for the area we're creating a hole
4844 * for. So if we are truncating this file to a larger size we need to insert
4845 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4846 * the range between oldsize and size
4848 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4850 struct btrfs_root *root = inode->root;
4851 struct btrfs_fs_info *fs_info = root->fs_info;
4852 struct extent_io_tree *io_tree = &inode->io_tree;
4853 struct extent_map *em = NULL;
4854 struct extent_state *cached_state = NULL;
4855 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4856 u64 block_end = ALIGN(size, fs_info->sectorsize);
4863 * If our size started in the middle of a block we need to zero out the
4864 * rest of the block before we expand the i_size, otherwise we could
4865 * expose stale data.
4867 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4871 if (size <= hole_start)
4874 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4876 cur_offset = hole_start;
4878 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4879 block_end - cur_offset);
4885 last_byte = min(extent_map_end(em), block_end);
4886 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4887 hole_size = last_byte - cur_offset;
4889 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4890 struct extent_map *hole_em;
4892 err = maybe_insert_hole(root, inode, cur_offset,
4897 err = btrfs_inode_set_file_extent_range(inode,
4898 cur_offset, hole_size);
4902 hole_em = alloc_extent_map();
4904 btrfs_drop_extent_map_range(inode, cur_offset,
4905 cur_offset + hole_size - 1,
4907 btrfs_set_inode_full_sync(inode);
4910 hole_em->start = cur_offset;
4911 hole_em->len = hole_size;
4912 hole_em->orig_start = cur_offset;
4914 hole_em->block_start = EXTENT_MAP_HOLE;
4915 hole_em->block_len = 0;
4916 hole_em->orig_block_len = 0;
4917 hole_em->ram_bytes = hole_size;
4918 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4919 hole_em->generation = fs_info->generation;
4921 err = btrfs_replace_extent_map_range(inode, hole_em, true);
4922 free_extent_map(hole_em);
4924 err = btrfs_inode_set_file_extent_range(inode,
4925 cur_offset, hole_size);
4930 free_extent_map(em);
4932 cur_offset = last_byte;
4933 if (cur_offset >= block_end)
4936 free_extent_map(em);
4937 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4941 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4943 struct btrfs_root *root = BTRFS_I(inode)->root;
4944 struct btrfs_trans_handle *trans;
4945 loff_t oldsize = i_size_read(inode);
4946 loff_t newsize = attr->ia_size;
4947 int mask = attr->ia_valid;
4951 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4952 * special case where we need to update the times despite not having
4953 * these flags set. For all other operations the VFS set these flags
4954 * explicitly if it wants a timestamp update.
4956 if (newsize != oldsize) {
4957 inode_inc_iversion(inode);
4958 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4959 inode->i_mtime = inode_set_ctime_current(inode);
4963 if (newsize > oldsize) {
4965 * Don't do an expanding truncate while snapshotting is ongoing.
4966 * This is to ensure the snapshot captures a fully consistent
4967 * state of this file - if the snapshot captures this expanding
4968 * truncation, it must capture all writes that happened before
4971 btrfs_drew_write_lock(&root->snapshot_lock);
4972 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4974 btrfs_drew_write_unlock(&root->snapshot_lock);
4978 trans = btrfs_start_transaction(root, 1);
4979 if (IS_ERR(trans)) {
4980 btrfs_drew_write_unlock(&root->snapshot_lock);
4981 return PTR_ERR(trans);
4984 i_size_write(inode, newsize);
4985 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
4986 pagecache_isize_extended(inode, oldsize, newsize);
4987 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
4988 btrfs_drew_write_unlock(&root->snapshot_lock);
4989 btrfs_end_transaction(trans);
4991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4993 if (btrfs_is_zoned(fs_info)) {
4994 ret = btrfs_wait_ordered_range(inode,
4995 ALIGN(newsize, fs_info->sectorsize),
5002 * We're truncating a file that used to have good data down to
5003 * zero. Make sure any new writes to the file get on disk
5007 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5008 &BTRFS_I(inode)->runtime_flags);
5010 truncate_setsize(inode, newsize);
5012 inode_dio_wait(inode);
5014 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5015 if (ret && inode->i_nlink) {
5019 * Truncate failed, so fix up the in-memory size. We
5020 * adjusted disk_i_size down as we removed extents, so
5021 * wait for disk_i_size to be stable and then update the
5022 * in-memory size to match.
5024 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5027 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5034 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5037 struct inode *inode = d_inode(dentry);
5038 struct btrfs_root *root = BTRFS_I(inode)->root;
5041 if (btrfs_root_readonly(root))
5044 err = setattr_prepare(idmap, dentry, attr);
5048 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5049 err = btrfs_setsize(inode, attr);
5054 if (attr->ia_valid) {
5055 setattr_copy(idmap, inode, attr);
5056 inode_inc_iversion(inode);
5057 err = btrfs_dirty_inode(BTRFS_I(inode));
5059 if (!err && attr->ia_valid & ATTR_MODE)
5060 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5067 * While truncating the inode pages during eviction, we get the VFS
5068 * calling btrfs_invalidate_folio() against each folio of the inode. This
5069 * is slow because the calls to btrfs_invalidate_folio() result in a
5070 * huge amount of calls to lock_extent() and clear_extent_bit(),
5071 * which keep merging and splitting extent_state structures over and over,
5072 * wasting lots of time.
5074 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5075 * skip all those expensive operations on a per folio basis and do only
5076 * the ordered io finishing, while we release here the extent_map and
5077 * extent_state structures, without the excessive merging and splitting.
5079 static void evict_inode_truncate_pages(struct inode *inode)
5081 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5082 struct rb_node *node;
5084 ASSERT(inode->i_state & I_FREEING);
5085 truncate_inode_pages_final(&inode->i_data);
5087 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5090 * Keep looping until we have no more ranges in the io tree.
5091 * We can have ongoing bios started by readahead that have
5092 * their endio callback (extent_io.c:end_bio_extent_readpage)
5093 * still in progress (unlocked the pages in the bio but did not yet
5094 * unlocked the ranges in the io tree). Therefore this means some
5095 * ranges can still be locked and eviction started because before
5096 * submitting those bios, which are executed by a separate task (work
5097 * queue kthread), inode references (inode->i_count) were not taken
5098 * (which would be dropped in the end io callback of each bio).
5099 * Therefore here we effectively end up waiting for those bios and
5100 * anyone else holding locked ranges without having bumped the inode's
5101 * reference count - if we don't do it, when they access the inode's
5102 * io_tree to unlock a range it may be too late, leading to an
5103 * use-after-free issue.
5105 spin_lock(&io_tree->lock);
5106 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5107 struct extent_state *state;
5108 struct extent_state *cached_state = NULL;
5111 unsigned state_flags;
5113 node = rb_first(&io_tree->state);
5114 state = rb_entry(node, struct extent_state, rb_node);
5115 start = state->start;
5117 state_flags = state->state;
5118 spin_unlock(&io_tree->lock);
5120 lock_extent(io_tree, start, end, &cached_state);
5123 * If still has DELALLOC flag, the extent didn't reach disk,
5124 * and its reserved space won't be freed by delayed_ref.
5125 * So we need to free its reserved space here.
5126 * (Refer to comment in btrfs_invalidate_folio, case 2)
5128 * Note, end is the bytenr of last byte, so we need + 1 here.
5130 if (state_flags & EXTENT_DELALLOC)
5131 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5134 clear_extent_bit(io_tree, start, end,
5135 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5139 spin_lock(&io_tree->lock);
5141 spin_unlock(&io_tree->lock);
5144 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5145 struct btrfs_block_rsv *rsv)
5147 struct btrfs_fs_info *fs_info = root->fs_info;
5148 struct btrfs_trans_handle *trans;
5149 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5153 * Eviction should be taking place at some place safe because of our
5154 * delayed iputs. However the normal flushing code will run delayed
5155 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5157 * We reserve the delayed_refs_extra here again because we can't use
5158 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5159 * above. We reserve our extra bit here because we generate a ton of
5160 * delayed refs activity by truncating.
5162 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5163 * if we fail to make this reservation we can re-try without the
5164 * delayed_refs_extra so we can make some forward progress.
5166 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5167 BTRFS_RESERVE_FLUSH_EVICT);
5169 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5170 BTRFS_RESERVE_FLUSH_EVICT);
5173 "could not allocate space for delete; will truncate on mount");
5174 return ERR_PTR(-ENOSPC);
5176 delayed_refs_extra = 0;
5179 trans = btrfs_join_transaction(root);
5183 if (delayed_refs_extra) {
5184 trans->block_rsv = &fs_info->trans_block_rsv;
5185 trans->bytes_reserved = delayed_refs_extra;
5186 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5187 delayed_refs_extra, true);
5192 void btrfs_evict_inode(struct inode *inode)
5194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5195 struct btrfs_trans_handle *trans;
5196 struct btrfs_root *root = BTRFS_I(inode)->root;
5197 struct btrfs_block_rsv *rsv = NULL;
5200 trace_btrfs_inode_evict(inode);
5203 fsverity_cleanup_inode(inode);
5208 evict_inode_truncate_pages(inode);
5210 if (inode->i_nlink &&
5211 ((btrfs_root_refs(&root->root_item) != 0 &&
5212 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5213 btrfs_is_free_space_inode(BTRFS_I(inode))))
5216 if (is_bad_inode(inode))
5219 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5222 if (inode->i_nlink > 0) {
5223 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5224 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5229 * This makes sure the inode item in tree is uptodate and the space for
5230 * the inode update is released.
5232 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5237 * This drops any pending insert or delete operations we have for this
5238 * inode. We could have a delayed dir index deletion queued up, but
5239 * we're removing the inode completely so that'll be taken care of in
5242 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5244 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5247 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5248 rsv->failfast = true;
5250 btrfs_i_size_write(BTRFS_I(inode), 0);
5253 struct btrfs_truncate_control control = {
5254 .inode = BTRFS_I(inode),
5255 .ino = btrfs_ino(BTRFS_I(inode)),
5260 trans = evict_refill_and_join(root, rsv);
5264 trans->block_rsv = rsv;
5266 ret = btrfs_truncate_inode_items(trans, root, &control);
5267 trans->block_rsv = &fs_info->trans_block_rsv;
5268 btrfs_end_transaction(trans);
5270 * We have not added new delayed items for our inode after we
5271 * have flushed its delayed items, so no need to throttle on
5272 * delayed items. However we have modified extent buffers.
5274 btrfs_btree_balance_dirty_nodelay(fs_info);
5275 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5282 * Errors here aren't a big deal, it just means we leave orphan items in
5283 * the tree. They will be cleaned up on the next mount. If the inode
5284 * number gets reused, cleanup deletes the orphan item without doing
5285 * anything, and unlink reuses the existing orphan item.
5287 * If it turns out that we are dropping too many of these, we might want
5288 * to add a mechanism for retrying these after a commit.
5290 trans = evict_refill_and_join(root, rsv);
5291 if (!IS_ERR(trans)) {
5292 trans->block_rsv = rsv;
5293 btrfs_orphan_del(trans, BTRFS_I(inode));
5294 trans->block_rsv = &fs_info->trans_block_rsv;
5295 btrfs_end_transaction(trans);
5299 btrfs_free_block_rsv(fs_info, rsv);
5301 * If we didn't successfully delete, the orphan item will still be in
5302 * the tree and we'll retry on the next mount. Again, we might also want
5303 * to retry these periodically in the future.
5305 btrfs_remove_delayed_node(BTRFS_I(inode));
5306 fsverity_cleanup_inode(inode);
5311 * Return the key found in the dir entry in the location pointer, fill @type
5312 * with BTRFS_FT_*, and return 0.
5314 * If no dir entries were found, returns -ENOENT.
5315 * If found a corrupted location in dir entry, returns -EUCLEAN.
5317 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5318 struct btrfs_key *location, u8 *type)
5320 struct btrfs_dir_item *di;
5321 struct btrfs_path *path;
5322 struct btrfs_root *root = dir->root;
5324 struct fscrypt_name fname;
5326 path = btrfs_alloc_path();
5330 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5334 * fscrypt_setup_filename() should never return a positive value, but
5335 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5339 /* This needs to handle no-key deletions later on */
5341 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5342 &fname.disk_name, 0);
5343 if (IS_ERR_OR_NULL(di)) {
5344 ret = di ? PTR_ERR(di) : -ENOENT;
5348 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5349 if (location->type != BTRFS_INODE_ITEM_KEY &&
5350 location->type != BTRFS_ROOT_ITEM_KEY) {
5352 btrfs_warn(root->fs_info,
5353 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5354 __func__, fname.disk_name.name, btrfs_ino(dir),
5355 location->objectid, location->type, location->offset);
5358 *type = btrfs_dir_ftype(path->nodes[0], di);
5360 fscrypt_free_filename(&fname);
5361 btrfs_free_path(path);
5366 * when we hit a tree root in a directory, the btrfs part of the inode
5367 * needs to be changed to reflect the root directory of the tree root. This
5368 * is kind of like crossing a mount point.
5370 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5371 struct btrfs_inode *dir,
5372 struct dentry *dentry,
5373 struct btrfs_key *location,
5374 struct btrfs_root **sub_root)
5376 struct btrfs_path *path;
5377 struct btrfs_root *new_root;
5378 struct btrfs_root_ref *ref;
5379 struct extent_buffer *leaf;
5380 struct btrfs_key key;
5383 struct fscrypt_name fname;
5385 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5389 path = btrfs_alloc_path();
5396 key.objectid = dir->root->root_key.objectid;
5397 key.type = BTRFS_ROOT_REF_KEY;
5398 key.offset = location->objectid;
5400 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5407 leaf = path->nodes[0];
5408 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5409 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5410 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5413 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5414 (unsigned long)(ref + 1), fname.disk_name.len);
5418 btrfs_release_path(path);
5420 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5421 if (IS_ERR(new_root)) {
5422 err = PTR_ERR(new_root);
5426 *sub_root = new_root;
5427 location->objectid = btrfs_root_dirid(&new_root->root_item);
5428 location->type = BTRFS_INODE_ITEM_KEY;
5429 location->offset = 0;
5432 btrfs_free_path(path);
5433 fscrypt_free_filename(&fname);
5437 static void inode_tree_add(struct btrfs_inode *inode)
5439 struct btrfs_root *root = inode->root;
5440 struct btrfs_inode *entry;
5442 struct rb_node *parent;
5443 struct rb_node *new = &inode->rb_node;
5444 u64 ino = btrfs_ino(inode);
5446 if (inode_unhashed(&inode->vfs_inode))
5449 spin_lock(&root->inode_lock);
5450 p = &root->inode_tree.rb_node;
5453 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5455 if (ino < btrfs_ino(entry))
5456 p = &parent->rb_left;
5457 else if (ino > btrfs_ino(entry))
5458 p = &parent->rb_right;
5460 WARN_ON(!(entry->vfs_inode.i_state &
5461 (I_WILL_FREE | I_FREEING)));
5462 rb_replace_node(parent, new, &root->inode_tree);
5463 RB_CLEAR_NODE(parent);
5464 spin_unlock(&root->inode_lock);
5468 rb_link_node(new, parent, p);
5469 rb_insert_color(new, &root->inode_tree);
5470 spin_unlock(&root->inode_lock);
5473 static void inode_tree_del(struct btrfs_inode *inode)
5475 struct btrfs_root *root = inode->root;
5478 spin_lock(&root->inode_lock);
5479 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5480 rb_erase(&inode->rb_node, &root->inode_tree);
5481 RB_CLEAR_NODE(&inode->rb_node);
5482 empty = RB_EMPTY_ROOT(&root->inode_tree);
5484 spin_unlock(&root->inode_lock);
5486 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5487 spin_lock(&root->inode_lock);
5488 empty = RB_EMPTY_ROOT(&root->inode_tree);
5489 spin_unlock(&root->inode_lock);
5491 btrfs_add_dead_root(root);
5496 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5498 struct btrfs_iget_args *args = p;
5500 inode->i_ino = args->ino;
5501 BTRFS_I(inode)->location.objectid = args->ino;
5502 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5503 BTRFS_I(inode)->location.offset = 0;
5504 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5505 BUG_ON(args->root && !BTRFS_I(inode)->root);
5507 if (args->root && args->root == args->root->fs_info->tree_root &&
5508 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5509 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5510 &BTRFS_I(inode)->runtime_flags);
5514 static int btrfs_find_actor(struct inode *inode, void *opaque)
5516 struct btrfs_iget_args *args = opaque;
5518 return args->ino == BTRFS_I(inode)->location.objectid &&
5519 args->root == BTRFS_I(inode)->root;
5522 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5523 struct btrfs_root *root)
5525 struct inode *inode;
5526 struct btrfs_iget_args args;
5527 unsigned long hashval = btrfs_inode_hash(ino, root);
5532 inode = iget5_locked(s, hashval, btrfs_find_actor,
5533 btrfs_init_locked_inode,
5539 * Get an inode object given its inode number and corresponding root.
5540 * Path can be preallocated to prevent recursing back to iget through
5541 * allocator. NULL is also valid but may require an additional allocation
5544 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5545 struct btrfs_root *root, struct btrfs_path *path)
5547 struct inode *inode;
5549 inode = btrfs_iget_locked(s, ino, root);
5551 return ERR_PTR(-ENOMEM);
5553 if (inode->i_state & I_NEW) {
5556 ret = btrfs_read_locked_inode(inode, path);
5558 inode_tree_add(BTRFS_I(inode));
5559 unlock_new_inode(inode);
5563 * ret > 0 can come from btrfs_search_slot called by
5564 * btrfs_read_locked_inode, this means the inode item
5569 inode = ERR_PTR(ret);
5576 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5578 return btrfs_iget_path(s, ino, root, NULL);
5581 static struct inode *new_simple_dir(struct inode *dir,
5582 struct btrfs_key *key,
5583 struct btrfs_root *root)
5585 struct inode *inode = new_inode(dir->i_sb);
5588 return ERR_PTR(-ENOMEM);
5590 BTRFS_I(inode)->root = btrfs_grab_root(root);
5591 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5592 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5594 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5596 * We only need lookup, the rest is read-only and there's no inode
5597 * associated with the dentry
5599 inode->i_op = &simple_dir_inode_operations;
5600 inode->i_opflags &= ~IOP_XATTR;
5601 inode->i_fop = &simple_dir_operations;
5602 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5603 inode->i_mtime = inode_set_ctime_current(inode);
5604 inode->i_atime = dir->i_atime;
5605 BTRFS_I(inode)->i_otime = inode->i_mtime;
5606 inode->i_uid = dir->i_uid;
5607 inode->i_gid = dir->i_gid;
5612 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5613 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5614 static_assert(BTRFS_FT_DIR == FT_DIR);
5615 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5616 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5617 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5618 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5619 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5621 static inline u8 btrfs_inode_type(struct inode *inode)
5623 return fs_umode_to_ftype(inode->i_mode);
5626 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5628 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5629 struct inode *inode;
5630 struct btrfs_root *root = BTRFS_I(dir)->root;
5631 struct btrfs_root *sub_root = root;
5632 struct btrfs_key location;
5636 if (dentry->d_name.len > BTRFS_NAME_LEN)
5637 return ERR_PTR(-ENAMETOOLONG);
5639 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5641 return ERR_PTR(ret);
5643 if (location.type == BTRFS_INODE_ITEM_KEY) {
5644 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5648 /* Do extra check against inode mode with di_type */
5649 if (btrfs_inode_type(inode) != di_type) {
5651 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5652 inode->i_mode, btrfs_inode_type(inode),
5655 return ERR_PTR(-EUCLEAN);
5660 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5661 &location, &sub_root);
5664 inode = ERR_PTR(ret);
5666 inode = new_simple_dir(dir, &location, root);
5668 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5669 btrfs_put_root(sub_root);
5674 down_read(&fs_info->cleanup_work_sem);
5675 if (!sb_rdonly(inode->i_sb))
5676 ret = btrfs_orphan_cleanup(sub_root);
5677 up_read(&fs_info->cleanup_work_sem);
5680 inode = ERR_PTR(ret);
5687 static int btrfs_dentry_delete(const struct dentry *dentry)
5689 struct btrfs_root *root;
5690 struct inode *inode = d_inode(dentry);
5692 if (!inode && !IS_ROOT(dentry))
5693 inode = d_inode(dentry->d_parent);
5696 root = BTRFS_I(inode)->root;
5697 if (btrfs_root_refs(&root->root_item) == 0)
5700 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5706 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5709 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5711 if (inode == ERR_PTR(-ENOENT))
5713 return d_splice_alias(inode, dentry);
5717 * Find the highest existing sequence number in a directory and then set the
5718 * in-memory index_cnt variable to the first free sequence number.
5720 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5722 struct btrfs_root *root = inode->root;
5723 struct btrfs_key key, found_key;
5724 struct btrfs_path *path;
5725 struct extent_buffer *leaf;
5728 key.objectid = btrfs_ino(inode);
5729 key.type = BTRFS_DIR_INDEX_KEY;
5730 key.offset = (u64)-1;
5732 path = btrfs_alloc_path();
5736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5739 /* FIXME: we should be able to handle this */
5744 if (path->slots[0] == 0) {
5745 inode->index_cnt = BTRFS_DIR_START_INDEX;
5751 leaf = path->nodes[0];
5752 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5754 if (found_key.objectid != btrfs_ino(inode) ||
5755 found_key.type != BTRFS_DIR_INDEX_KEY) {
5756 inode->index_cnt = BTRFS_DIR_START_INDEX;
5760 inode->index_cnt = found_key.offset + 1;
5762 btrfs_free_path(path);
5766 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5770 btrfs_inode_lock(dir, 0);
5771 if (dir->index_cnt == (u64)-1) {
5772 ret = btrfs_inode_delayed_dir_index_count(dir);
5774 ret = btrfs_set_inode_index_count(dir);
5780 /* index_cnt is the index number of next new entry, so decrement it. */
5781 *index = dir->index_cnt - 1;
5783 btrfs_inode_unlock(dir, 0);
5789 * All this infrastructure exists because dir_emit can fault, and we are holding
5790 * the tree lock when doing readdir. For now just allocate a buffer and copy
5791 * our information into that, and then dir_emit from the buffer. This is
5792 * similar to what NFS does, only we don't keep the buffer around in pagecache
5793 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5794 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5797 static int btrfs_opendir(struct inode *inode, struct file *file)
5799 struct btrfs_file_private *private;
5803 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5807 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5810 private->last_index = last_index;
5811 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5812 if (!private->filldir_buf) {
5816 file->private_data = private;
5820 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5822 struct btrfs_file_private *private = file->private_data;
5825 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5826 &private->last_index);
5830 return generic_file_llseek(file, offset, whence);
5840 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5843 struct dir_entry *entry = addr;
5844 char *name = (char *)(entry + 1);
5846 ctx->pos = get_unaligned(&entry->offset);
5847 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5848 get_unaligned(&entry->ino),
5849 get_unaligned(&entry->type)))
5851 addr += sizeof(struct dir_entry) +
5852 get_unaligned(&entry->name_len);
5858 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5860 struct inode *inode = file_inode(file);
5861 struct btrfs_root *root = BTRFS_I(inode)->root;
5862 struct btrfs_file_private *private = file->private_data;
5863 struct btrfs_dir_item *di;
5864 struct btrfs_key key;
5865 struct btrfs_key found_key;
5866 struct btrfs_path *path;
5868 LIST_HEAD(ins_list);
5869 LIST_HEAD(del_list);
5876 struct btrfs_key location;
5878 if (!dir_emit_dots(file, ctx))
5881 path = btrfs_alloc_path();
5885 addr = private->filldir_buf;
5886 path->reada = READA_FORWARD;
5888 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5889 &ins_list, &del_list);
5892 key.type = BTRFS_DIR_INDEX_KEY;
5893 key.offset = ctx->pos;
5894 key.objectid = btrfs_ino(BTRFS_I(inode));
5896 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5897 struct dir_entry *entry;
5898 struct extent_buffer *leaf = path->nodes[0];
5901 if (found_key.objectid != key.objectid)
5903 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5905 if (found_key.offset < ctx->pos)
5907 if (found_key.offset > private->last_index)
5909 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5911 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5912 name_len = btrfs_dir_name_len(leaf, di);
5913 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5915 btrfs_release_path(path);
5916 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5919 addr = private->filldir_buf;
5925 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5927 name_ptr = (char *)(entry + 1);
5928 read_extent_buffer(leaf, name_ptr,
5929 (unsigned long)(di + 1), name_len);
5930 put_unaligned(name_len, &entry->name_len);
5931 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5932 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5933 put_unaligned(location.objectid, &entry->ino);
5934 put_unaligned(found_key.offset, &entry->offset);
5936 addr += sizeof(struct dir_entry) + name_len;
5937 total_len += sizeof(struct dir_entry) + name_len;
5939 /* Catch error encountered during iteration */
5943 btrfs_release_path(path);
5945 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5949 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5954 * Stop new entries from being returned after we return the last
5957 * New directory entries are assigned a strictly increasing
5958 * offset. This means that new entries created during readdir
5959 * are *guaranteed* to be seen in the future by that readdir.
5960 * This has broken buggy programs which operate on names as
5961 * they're returned by readdir. Until we re-use freed offsets
5962 * we have this hack to stop new entries from being returned
5963 * under the assumption that they'll never reach this huge
5966 * This is being careful not to overflow 32bit loff_t unless the
5967 * last entry requires it because doing so has broken 32bit apps
5970 if (ctx->pos >= INT_MAX)
5971 ctx->pos = LLONG_MAX;
5978 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5979 btrfs_free_path(path);
5984 * This is somewhat expensive, updating the tree every time the
5985 * inode changes. But, it is most likely to find the inode in cache.
5986 * FIXME, needs more benchmarking...there are no reasons other than performance
5987 * to keep or drop this code.
5989 static int btrfs_dirty_inode(struct btrfs_inode *inode)
5991 struct btrfs_root *root = inode->root;
5992 struct btrfs_fs_info *fs_info = root->fs_info;
5993 struct btrfs_trans_handle *trans;
5996 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
5999 trans = btrfs_join_transaction(root);
6001 return PTR_ERR(trans);
6003 ret = btrfs_update_inode(trans, root, inode);
6004 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6005 /* whoops, lets try again with the full transaction */
6006 btrfs_end_transaction(trans);
6007 trans = btrfs_start_transaction(root, 1);
6009 return PTR_ERR(trans);
6011 ret = btrfs_update_inode(trans, root, inode);
6013 btrfs_end_transaction(trans);
6014 if (inode->delayed_node)
6015 btrfs_balance_delayed_items(fs_info);
6021 * This is a copy of file_update_time. We need this so we can return error on
6022 * ENOSPC for updating the inode in the case of file write and mmap writes.
6024 static int btrfs_update_time(struct inode *inode, int flags)
6026 struct btrfs_root *root = BTRFS_I(inode)->root;
6027 bool dirty = flags & ~S_VERSION;
6029 if (btrfs_root_readonly(root))
6032 dirty = inode_update_timestamps(inode, flags);
6033 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6037 * helper to find a free sequence number in a given directory. This current
6038 * code is very simple, later versions will do smarter things in the btree
6040 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6044 if (dir->index_cnt == (u64)-1) {
6045 ret = btrfs_inode_delayed_dir_index_count(dir);
6047 ret = btrfs_set_inode_index_count(dir);
6053 *index = dir->index_cnt;
6059 static int btrfs_insert_inode_locked(struct inode *inode)
6061 struct btrfs_iget_args args;
6063 args.ino = BTRFS_I(inode)->location.objectid;
6064 args.root = BTRFS_I(inode)->root;
6066 return insert_inode_locked4(inode,
6067 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6068 btrfs_find_actor, &args);
6071 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6072 unsigned int *trans_num_items)
6074 struct inode *dir = args->dir;
6075 struct inode *inode = args->inode;
6078 if (!args->orphan) {
6079 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6085 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6087 fscrypt_free_filename(&args->fname);
6091 /* 1 to add inode item */
6092 *trans_num_items = 1;
6093 /* 1 to add compression property */
6094 if (BTRFS_I(dir)->prop_compress)
6095 (*trans_num_items)++;
6096 /* 1 to add default ACL xattr */
6097 if (args->default_acl)
6098 (*trans_num_items)++;
6099 /* 1 to add access ACL xattr */
6101 (*trans_num_items)++;
6102 #ifdef CONFIG_SECURITY
6103 /* 1 to add LSM xattr */
6104 if (dir->i_security)
6105 (*trans_num_items)++;
6108 /* 1 to add orphan item */
6109 (*trans_num_items)++;
6113 * 1 to add dir index
6114 * 1 to update parent inode item
6116 * No need for 1 unit for the inode ref item because it is
6117 * inserted in a batch together with the inode item at
6118 * btrfs_create_new_inode().
6120 *trans_num_items += 3;
6125 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6127 posix_acl_release(args->acl);
6128 posix_acl_release(args->default_acl);
6129 fscrypt_free_filename(&args->fname);
6133 * Inherit flags from the parent inode.
6135 * Currently only the compression flags and the cow flags are inherited.
6137 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6143 if (flags & BTRFS_INODE_NOCOMPRESS) {
6144 inode->flags &= ~BTRFS_INODE_COMPRESS;
6145 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6146 } else if (flags & BTRFS_INODE_COMPRESS) {
6147 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6148 inode->flags |= BTRFS_INODE_COMPRESS;
6151 if (flags & BTRFS_INODE_NODATACOW) {
6152 inode->flags |= BTRFS_INODE_NODATACOW;
6153 if (S_ISREG(inode->vfs_inode.i_mode))
6154 inode->flags |= BTRFS_INODE_NODATASUM;
6157 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6160 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6161 struct btrfs_new_inode_args *args)
6163 struct inode *dir = args->dir;
6164 struct inode *inode = args->inode;
6165 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6166 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6167 struct btrfs_root *root;
6168 struct btrfs_inode_item *inode_item;
6169 struct btrfs_key *location;
6170 struct btrfs_path *path;
6172 struct btrfs_inode_ref *ref;
6173 struct btrfs_key key[2];
6175 struct btrfs_item_batch batch;
6179 path = btrfs_alloc_path();
6184 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6185 root = BTRFS_I(inode)->root;
6187 ret = btrfs_get_free_objectid(root, &objectid);
6190 inode->i_ino = objectid;
6194 * O_TMPFILE, set link count to 0, so that after this point, we
6195 * fill in an inode item with the correct link count.
6197 set_nlink(inode, 0);
6199 trace_btrfs_inode_request(dir);
6201 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6205 /* index_cnt is ignored for everything but a dir. */
6206 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6207 BTRFS_I(inode)->generation = trans->transid;
6208 inode->i_generation = BTRFS_I(inode)->generation;
6211 * Subvolumes don't inherit flags from their parent directory.
6212 * Originally this was probably by accident, but we probably can't
6213 * change it now without compatibility issues.
6216 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6218 if (S_ISREG(inode->i_mode)) {
6219 if (btrfs_test_opt(fs_info, NODATASUM))
6220 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6221 if (btrfs_test_opt(fs_info, NODATACOW))
6222 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6223 BTRFS_INODE_NODATASUM;
6226 location = &BTRFS_I(inode)->location;
6227 location->objectid = objectid;
6228 location->offset = 0;
6229 location->type = BTRFS_INODE_ITEM_KEY;
6231 ret = btrfs_insert_inode_locked(inode);
6234 BTRFS_I(dir)->index_cnt--;
6239 * We could have gotten an inode number from somebody who was fsynced
6240 * and then removed in this same transaction, so let's just set full
6241 * sync since it will be a full sync anyway and this will blow away the
6242 * old info in the log.
6244 btrfs_set_inode_full_sync(BTRFS_I(inode));
6246 key[0].objectid = objectid;
6247 key[0].type = BTRFS_INODE_ITEM_KEY;
6250 sizes[0] = sizeof(struct btrfs_inode_item);
6252 if (!args->orphan) {
6254 * Start new inodes with an inode_ref. This is slightly more
6255 * efficient for small numbers of hard links since they will
6256 * be packed into one item. Extended refs will kick in if we
6257 * add more hard links than can fit in the ref item.
6259 key[1].objectid = objectid;
6260 key[1].type = BTRFS_INODE_REF_KEY;
6262 key[1].offset = objectid;
6263 sizes[1] = 2 + sizeof(*ref);
6265 key[1].offset = btrfs_ino(BTRFS_I(dir));
6266 sizes[1] = name->len + sizeof(*ref);
6270 batch.keys = &key[0];
6271 batch.data_sizes = &sizes[0];
6272 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6273 batch.nr = args->orphan ? 1 : 2;
6274 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6276 btrfs_abort_transaction(trans, ret);
6280 inode->i_mtime = inode_set_ctime_current(inode);
6281 inode->i_atime = inode->i_mtime;
6282 BTRFS_I(inode)->i_otime = inode->i_mtime;
6285 * We're going to fill the inode item now, so at this point the inode
6286 * must be fully initialized.
6289 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6290 struct btrfs_inode_item);
6291 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6292 sizeof(*inode_item));
6293 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6295 if (!args->orphan) {
6296 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6297 struct btrfs_inode_ref);
6298 ptr = (unsigned long)(ref + 1);
6300 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6301 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6302 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6304 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6306 btrfs_set_inode_ref_index(path->nodes[0], ref,
6307 BTRFS_I(inode)->dir_index);
6308 write_extent_buffer(path->nodes[0], name->name, ptr,
6313 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6315 * We don't need the path anymore, plus inheriting properties, adding
6316 * ACLs, security xattrs, orphan item or adding the link, will result in
6317 * allocating yet another path. So just free our path.
6319 btrfs_free_path(path);
6323 struct inode *parent;
6326 * Subvolumes inherit properties from their parent subvolume,
6327 * not the directory they were created in.
6329 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6330 BTRFS_I(dir)->root);
6331 if (IS_ERR(parent)) {
6332 ret = PTR_ERR(parent);
6334 ret = btrfs_inode_inherit_props(trans, inode, parent);
6338 ret = btrfs_inode_inherit_props(trans, inode, dir);
6342 "error inheriting props for ino %llu (root %llu): %d",
6343 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6348 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6351 if (!args->subvol) {
6352 ret = btrfs_init_inode_security(trans, args);
6354 btrfs_abort_transaction(trans, ret);
6359 inode_tree_add(BTRFS_I(inode));
6361 trace_btrfs_inode_new(inode);
6362 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6364 btrfs_update_root_times(trans, root);
6367 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6369 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6370 0, BTRFS_I(inode)->dir_index);
6373 btrfs_abort_transaction(trans, ret);
6381 * discard_new_inode() calls iput(), but the caller owns the reference
6385 discard_new_inode(inode);
6387 btrfs_free_path(path);
6392 * utility function to add 'inode' into 'parent_inode' with
6393 * a give name and a given sequence number.
6394 * if 'add_backref' is true, also insert a backref from the
6395 * inode to the parent directory.
6397 int btrfs_add_link(struct btrfs_trans_handle *trans,
6398 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6399 const struct fscrypt_str *name, int add_backref, u64 index)
6402 struct btrfs_key key;
6403 struct btrfs_root *root = parent_inode->root;
6404 u64 ino = btrfs_ino(inode);
6405 u64 parent_ino = btrfs_ino(parent_inode);
6407 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6408 memcpy(&key, &inode->root->root_key, sizeof(key));
6411 key.type = BTRFS_INODE_ITEM_KEY;
6415 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6416 ret = btrfs_add_root_ref(trans, key.objectid,
6417 root->root_key.objectid, parent_ino,
6419 } else if (add_backref) {
6420 ret = btrfs_insert_inode_ref(trans, root, name,
6421 ino, parent_ino, index);
6424 /* Nothing to clean up yet */
6428 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6429 btrfs_inode_type(&inode->vfs_inode), index);
6430 if (ret == -EEXIST || ret == -EOVERFLOW)
6433 btrfs_abort_transaction(trans, ret);
6437 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6439 inode_inc_iversion(&parent_inode->vfs_inode);
6441 * If we are replaying a log tree, we do not want to update the mtime
6442 * and ctime of the parent directory with the current time, since the
6443 * log replay procedure is responsible for setting them to their correct
6444 * values (the ones it had when the fsync was done).
6446 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6447 parent_inode->vfs_inode.i_mtime =
6448 inode_set_ctime_current(&parent_inode->vfs_inode);
6450 ret = btrfs_update_inode(trans, root, parent_inode);
6452 btrfs_abort_transaction(trans, ret);
6456 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6459 err = btrfs_del_root_ref(trans, key.objectid,
6460 root->root_key.objectid, parent_ino,
6461 &local_index, name);
6463 btrfs_abort_transaction(trans, err);
6464 } else if (add_backref) {
6468 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6471 btrfs_abort_transaction(trans, err);
6474 /* Return the original error code */
6478 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6479 struct inode *inode)
6481 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6482 struct btrfs_root *root = BTRFS_I(dir)->root;
6483 struct btrfs_new_inode_args new_inode_args = {
6488 unsigned int trans_num_items;
6489 struct btrfs_trans_handle *trans;
6492 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6496 trans = btrfs_start_transaction(root, trans_num_items);
6497 if (IS_ERR(trans)) {
6498 err = PTR_ERR(trans);
6499 goto out_new_inode_args;
6502 err = btrfs_create_new_inode(trans, &new_inode_args);
6504 d_instantiate_new(dentry, inode);
6506 btrfs_end_transaction(trans);
6507 btrfs_btree_balance_dirty(fs_info);
6509 btrfs_new_inode_args_destroy(&new_inode_args);
6516 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6517 struct dentry *dentry, umode_t mode, dev_t rdev)
6519 struct inode *inode;
6521 inode = new_inode(dir->i_sb);
6524 inode_init_owner(idmap, inode, dir, mode);
6525 inode->i_op = &btrfs_special_inode_operations;
6526 init_special_inode(inode, inode->i_mode, rdev);
6527 return btrfs_create_common(dir, dentry, inode);
6530 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6531 struct dentry *dentry, umode_t mode, bool excl)
6533 struct inode *inode;
6535 inode = new_inode(dir->i_sb);
6538 inode_init_owner(idmap, inode, dir, mode);
6539 inode->i_fop = &btrfs_file_operations;
6540 inode->i_op = &btrfs_file_inode_operations;
6541 inode->i_mapping->a_ops = &btrfs_aops;
6542 return btrfs_create_common(dir, dentry, inode);
6545 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6546 struct dentry *dentry)
6548 struct btrfs_trans_handle *trans = NULL;
6549 struct btrfs_root *root = BTRFS_I(dir)->root;
6550 struct inode *inode = d_inode(old_dentry);
6551 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6552 struct fscrypt_name fname;
6557 /* do not allow sys_link's with other subvols of the same device */
6558 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6561 if (inode->i_nlink >= BTRFS_LINK_MAX)
6564 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6568 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6573 * 2 items for inode and inode ref
6574 * 2 items for dir items
6575 * 1 item for parent inode
6576 * 1 item for orphan item deletion if O_TMPFILE
6578 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6579 if (IS_ERR(trans)) {
6580 err = PTR_ERR(trans);
6585 /* There are several dir indexes for this inode, clear the cache. */
6586 BTRFS_I(inode)->dir_index = 0ULL;
6588 inode_inc_iversion(inode);
6589 inode_set_ctime_current(inode);
6591 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6593 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6594 &fname.disk_name, 1, index);
6599 struct dentry *parent = dentry->d_parent;
6601 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6604 if (inode->i_nlink == 1) {
6606 * If new hard link count is 1, it's a file created
6607 * with open(2) O_TMPFILE flag.
6609 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6613 d_instantiate(dentry, inode);
6614 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6618 fscrypt_free_filename(&fname);
6620 btrfs_end_transaction(trans);
6622 inode_dec_link_count(inode);
6625 btrfs_btree_balance_dirty(fs_info);
6629 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6630 struct dentry *dentry, umode_t mode)
6632 struct inode *inode;
6634 inode = new_inode(dir->i_sb);
6637 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6638 inode->i_op = &btrfs_dir_inode_operations;
6639 inode->i_fop = &btrfs_dir_file_operations;
6640 return btrfs_create_common(dir, dentry, inode);
6643 static noinline int uncompress_inline(struct btrfs_path *path,
6645 struct btrfs_file_extent_item *item)
6648 struct extent_buffer *leaf = path->nodes[0];
6651 unsigned long inline_size;
6655 compress_type = btrfs_file_extent_compression(leaf, item);
6656 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6657 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6658 tmp = kmalloc(inline_size, GFP_NOFS);
6661 ptr = btrfs_file_extent_inline_start(item);
6663 read_extent_buffer(leaf, tmp, ptr, inline_size);
6665 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6666 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6669 * decompression code contains a memset to fill in any space between the end
6670 * of the uncompressed data and the end of max_size in case the decompressed
6671 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6672 * the end of an inline extent and the beginning of the next block, so we
6673 * cover that region here.
6676 if (max_size < PAGE_SIZE)
6677 memzero_page(page, max_size, PAGE_SIZE - max_size);
6682 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6685 struct btrfs_file_extent_item *fi;
6689 if (!page || PageUptodate(page))
6692 ASSERT(page_offset(page) == 0);
6694 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6695 struct btrfs_file_extent_item);
6696 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6697 return uncompress_inline(path, page, fi);
6699 copy_size = min_t(u64, PAGE_SIZE,
6700 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6701 kaddr = kmap_local_page(page);
6702 read_extent_buffer(path->nodes[0], kaddr,
6703 btrfs_file_extent_inline_start(fi), copy_size);
6704 kunmap_local(kaddr);
6705 if (copy_size < PAGE_SIZE)
6706 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6711 * Lookup the first extent overlapping a range in a file.
6713 * @inode: file to search in
6714 * @page: page to read extent data into if the extent is inline
6715 * @pg_offset: offset into @page to copy to
6716 * @start: file offset
6717 * @len: length of range starting at @start
6719 * Return the first &struct extent_map which overlaps the given range, reading
6720 * it from the B-tree and caching it if necessary. Note that there may be more
6721 * extents which overlap the given range after the returned extent_map.
6723 * If @page is not NULL and the extent is inline, this also reads the extent
6724 * data directly into the page and marks the extent up to date in the io_tree.
6726 * Return: ERR_PTR on error, non-NULL extent_map on success.
6728 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6729 struct page *page, size_t pg_offset,
6732 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6734 u64 extent_start = 0;
6736 u64 objectid = btrfs_ino(inode);
6737 int extent_type = -1;
6738 struct btrfs_path *path = NULL;
6739 struct btrfs_root *root = inode->root;
6740 struct btrfs_file_extent_item *item;
6741 struct extent_buffer *leaf;
6742 struct btrfs_key found_key;
6743 struct extent_map *em = NULL;
6744 struct extent_map_tree *em_tree = &inode->extent_tree;
6746 read_lock(&em_tree->lock);
6747 em = lookup_extent_mapping(em_tree, start, len);
6748 read_unlock(&em_tree->lock);
6751 if (em->start > start || em->start + em->len <= start)
6752 free_extent_map(em);
6753 else if (em->block_start == EXTENT_MAP_INLINE && page)
6754 free_extent_map(em);
6758 em = alloc_extent_map();
6763 em->start = EXTENT_MAP_HOLE;
6764 em->orig_start = EXTENT_MAP_HOLE;
6766 em->block_len = (u64)-1;
6768 path = btrfs_alloc_path();
6774 /* Chances are we'll be called again, so go ahead and do readahead */
6775 path->reada = READA_FORWARD;
6778 * The same explanation in load_free_space_cache applies here as well,
6779 * we only read when we're loading the free space cache, and at that
6780 * point the commit_root has everything we need.
6782 if (btrfs_is_free_space_inode(inode)) {
6783 path->search_commit_root = 1;
6784 path->skip_locking = 1;
6787 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6790 } else if (ret > 0) {
6791 if (path->slots[0] == 0)
6797 leaf = path->nodes[0];
6798 item = btrfs_item_ptr(leaf, path->slots[0],
6799 struct btrfs_file_extent_item);
6800 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6801 if (found_key.objectid != objectid ||
6802 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6804 * If we backup past the first extent we want to move forward
6805 * and see if there is an extent in front of us, otherwise we'll
6806 * say there is a hole for our whole search range which can
6813 extent_type = btrfs_file_extent_type(leaf, item);
6814 extent_start = found_key.offset;
6815 extent_end = btrfs_file_extent_end(path);
6816 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6817 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6818 /* Only regular file could have regular/prealloc extent */
6819 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6822 "regular/prealloc extent found for non-regular inode %llu",
6826 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6828 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6829 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6834 if (start >= extent_end) {
6836 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6837 ret = btrfs_next_leaf(root, path);
6843 leaf = path->nodes[0];
6845 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6846 if (found_key.objectid != objectid ||
6847 found_key.type != BTRFS_EXTENT_DATA_KEY)
6849 if (start + len <= found_key.offset)
6851 if (start > found_key.offset)
6854 /* New extent overlaps with existing one */
6856 em->orig_start = start;
6857 em->len = found_key.offset - start;
6858 em->block_start = EXTENT_MAP_HOLE;
6862 btrfs_extent_item_to_extent_map(inode, path, item, em);
6864 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6865 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6867 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6869 * Inline extent can only exist at file offset 0. This is
6870 * ensured by tree-checker and inline extent creation path.
6871 * Thus all members representing file offsets should be zero.
6873 ASSERT(pg_offset == 0);
6874 ASSERT(extent_start == 0);
6875 ASSERT(em->start == 0);
6878 * btrfs_extent_item_to_extent_map() should have properly
6879 * initialized em members already.
6881 * Other members are not utilized for inline extents.
6883 ASSERT(em->block_start == EXTENT_MAP_INLINE);
6884 ASSERT(em->len == fs_info->sectorsize);
6886 ret = read_inline_extent(inode, path, page);
6893 em->orig_start = start;
6895 em->block_start = EXTENT_MAP_HOLE;
6898 btrfs_release_path(path);
6899 if (em->start > start || extent_map_end(em) <= start) {
6901 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6902 em->start, em->len, start, len);
6907 write_lock(&em_tree->lock);
6908 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6909 write_unlock(&em_tree->lock);
6911 btrfs_free_path(path);
6913 trace_btrfs_get_extent(root, inode, em);
6916 free_extent_map(em);
6917 return ERR_PTR(ret);
6922 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6923 struct btrfs_dio_data *dio_data,
6926 const u64 orig_start,
6927 const u64 block_start,
6928 const u64 block_len,
6929 const u64 orig_block_len,
6930 const u64 ram_bytes,
6933 struct extent_map *em = NULL;
6934 struct btrfs_ordered_extent *ordered;
6936 if (type != BTRFS_ORDERED_NOCOW) {
6937 em = create_io_em(inode, start, len, orig_start, block_start,
6938 block_len, orig_block_len, ram_bytes,
6939 BTRFS_COMPRESS_NONE, /* compress_type */
6944 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6945 block_start, block_len, 0,
6947 (1 << BTRFS_ORDERED_DIRECT),
6948 BTRFS_COMPRESS_NONE);
6949 if (IS_ERR(ordered)) {
6951 free_extent_map(em);
6952 btrfs_drop_extent_map_range(inode, start,
6953 start + len - 1, false);
6955 em = ERR_CAST(ordered);
6957 ASSERT(!dio_data->ordered);
6958 dio_data->ordered = ordered;
6965 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6966 struct btrfs_dio_data *dio_data,
6969 struct btrfs_root *root = inode->root;
6970 struct btrfs_fs_info *fs_info = root->fs_info;
6971 struct extent_map *em;
6972 struct btrfs_key ins;
6976 alloc_hint = get_extent_allocation_hint(inode, start, len);
6978 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6979 0, alloc_hint, &ins, 1, 1);
6980 if (ret == -EAGAIN) {
6981 ASSERT(btrfs_is_zoned(fs_info));
6982 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
6983 TASK_UNINTERRUPTIBLE);
6987 return ERR_PTR(ret);
6989 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
6990 ins.objectid, ins.offset, ins.offset,
6991 ins.offset, BTRFS_ORDERED_REGULAR);
6992 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6994 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7000 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7002 struct btrfs_block_group *block_group;
7003 bool readonly = false;
7005 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7006 if (!block_group || block_group->ro)
7009 btrfs_put_block_group(block_group);
7014 * Check if we can do nocow write into the range [@offset, @offset + @len)
7016 * @offset: File offset
7017 * @len: The length to write, will be updated to the nocow writeable
7019 * @orig_start: (optional) Return the original file offset of the file extent
7020 * @orig_len: (optional) Return the original on-disk length of the file extent
7021 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7022 * @strict: if true, omit optimizations that might force us into unnecessary
7023 * cow. e.g., don't trust generation number.
7026 * >0 and update @len if we can do nocow write
7027 * 0 if we can't do nocow write
7028 * <0 if error happened
7030 * NOTE: This only checks the file extents, caller is responsible to wait for
7031 * any ordered extents.
7033 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7034 u64 *orig_start, u64 *orig_block_len,
7035 u64 *ram_bytes, bool nowait, bool strict)
7037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7038 struct can_nocow_file_extent_args nocow_args = { 0 };
7039 struct btrfs_path *path;
7041 struct extent_buffer *leaf;
7042 struct btrfs_root *root = BTRFS_I(inode)->root;
7043 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7044 struct btrfs_file_extent_item *fi;
7045 struct btrfs_key key;
7048 path = btrfs_alloc_path();
7051 path->nowait = nowait;
7053 ret = btrfs_lookup_file_extent(NULL, root, path,
7054 btrfs_ino(BTRFS_I(inode)), offset, 0);
7059 if (path->slots[0] == 0) {
7060 /* can't find the item, must cow */
7067 leaf = path->nodes[0];
7068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7069 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7070 key.type != BTRFS_EXTENT_DATA_KEY) {
7071 /* not our file or wrong item type, must cow */
7075 if (key.offset > offset) {
7076 /* Wrong offset, must cow */
7080 if (btrfs_file_extent_end(path) <= offset)
7083 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7084 found_type = btrfs_file_extent_type(leaf, fi);
7086 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7088 nocow_args.start = offset;
7089 nocow_args.end = offset + *len - 1;
7090 nocow_args.strict = strict;
7091 nocow_args.free_path = true;
7093 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7094 /* can_nocow_file_extent() has freed the path. */
7098 /* Treat errors as not being able to NOCOW. */
7104 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7107 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7108 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7111 range_end = round_up(offset + nocow_args.num_bytes,
7112 root->fs_info->sectorsize) - 1;
7113 ret = test_range_bit(io_tree, offset, range_end,
7114 EXTENT_DELALLOC, 0, NULL);
7122 *orig_start = key.offset - nocow_args.extent_offset;
7124 *orig_block_len = nocow_args.disk_num_bytes;
7126 *len = nocow_args.num_bytes;
7129 btrfs_free_path(path);
7133 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7134 struct extent_state **cached_state,
7135 unsigned int iomap_flags)
7137 const bool writing = (iomap_flags & IOMAP_WRITE);
7138 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7139 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7140 struct btrfs_ordered_extent *ordered;
7145 if (!try_lock_extent(io_tree, lockstart, lockend,
7149 lock_extent(io_tree, lockstart, lockend, cached_state);
7152 * We're concerned with the entire range that we're going to be
7153 * doing DIO to, so we need to make sure there's no ordered
7154 * extents in this range.
7156 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7157 lockend - lockstart + 1);
7160 * We need to make sure there are no buffered pages in this
7161 * range either, we could have raced between the invalidate in
7162 * generic_file_direct_write and locking the extent. The
7163 * invalidate needs to happen so that reads after a write do not
7167 (!writing || !filemap_range_has_page(inode->i_mapping,
7168 lockstart, lockend)))
7171 unlock_extent(io_tree, lockstart, lockend, cached_state);
7175 btrfs_put_ordered_extent(ordered);
7180 * If we are doing a DIO read and the ordered extent we
7181 * found is for a buffered write, we can not wait for it
7182 * to complete and retry, because if we do so we can
7183 * deadlock with concurrent buffered writes on page
7184 * locks. This happens only if our DIO read covers more
7185 * than one extent map, if at this point has already
7186 * created an ordered extent for a previous extent map
7187 * and locked its range in the inode's io tree, and a
7188 * concurrent write against that previous extent map's
7189 * range and this range started (we unlock the ranges
7190 * in the io tree only when the bios complete and
7191 * buffered writes always lock pages before attempting
7192 * to lock range in the io tree).
7195 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7196 btrfs_start_ordered_extent(ordered);
7198 ret = nowait ? -EAGAIN : -ENOTBLK;
7199 btrfs_put_ordered_extent(ordered);
7202 * We could trigger writeback for this range (and wait
7203 * for it to complete) and then invalidate the pages for
7204 * this range (through invalidate_inode_pages2_range()),
7205 * but that can lead us to a deadlock with a concurrent
7206 * call to readahead (a buffered read or a defrag call
7207 * triggered a readahead) on a page lock due to an
7208 * ordered dio extent we created before but did not have
7209 * yet a corresponding bio submitted (whence it can not
7210 * complete), which makes readahead wait for that
7211 * ordered extent to complete while holding a lock on
7214 ret = nowait ? -EAGAIN : -ENOTBLK;
7226 /* The callers of this must take lock_extent() */
7227 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7228 u64 len, u64 orig_start, u64 block_start,
7229 u64 block_len, u64 orig_block_len,
7230 u64 ram_bytes, int compress_type,
7233 struct extent_map *em;
7236 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7237 type == BTRFS_ORDERED_COMPRESSED ||
7238 type == BTRFS_ORDERED_NOCOW ||
7239 type == BTRFS_ORDERED_REGULAR);
7241 em = alloc_extent_map();
7243 return ERR_PTR(-ENOMEM);
7246 em->orig_start = orig_start;
7248 em->block_len = block_len;
7249 em->block_start = block_start;
7250 em->orig_block_len = orig_block_len;
7251 em->ram_bytes = ram_bytes;
7252 em->generation = -1;
7253 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7254 if (type == BTRFS_ORDERED_PREALLOC) {
7255 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7256 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7257 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7258 em->compress_type = compress_type;
7261 ret = btrfs_replace_extent_map_range(inode, em, true);
7263 free_extent_map(em);
7264 return ERR_PTR(ret);
7267 /* em got 2 refs now, callers needs to do free_extent_map once. */
7272 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7273 struct inode *inode,
7274 struct btrfs_dio_data *dio_data,
7275 u64 start, u64 *lenp,
7276 unsigned int iomap_flags)
7278 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7280 struct extent_map *em = *map;
7282 u64 block_start, orig_start, orig_block_len, ram_bytes;
7283 struct btrfs_block_group *bg;
7284 bool can_nocow = false;
7285 bool space_reserved = false;
7291 * We don't allocate a new extent in the following cases
7293 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7295 * 2) The extent is marked as PREALLOC. We're good to go here and can
7296 * just use the extent.
7299 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7300 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7301 em->block_start != EXTENT_MAP_HOLE)) {
7302 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7303 type = BTRFS_ORDERED_PREALLOC;
7305 type = BTRFS_ORDERED_NOCOW;
7306 len = min(len, em->len - (start - em->start));
7307 block_start = em->block_start + (start - em->start);
7309 if (can_nocow_extent(inode, start, &len, &orig_start,
7310 &orig_block_len, &ram_bytes, false, false) == 1) {
7311 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7319 struct extent_map *em2;
7321 /* We can NOCOW, so only need to reserve metadata space. */
7322 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7325 /* Our caller expects us to free the input extent map. */
7326 free_extent_map(em);
7328 btrfs_dec_nocow_writers(bg);
7329 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7333 space_reserved = true;
7335 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7336 orig_start, block_start,
7337 len, orig_block_len,
7339 btrfs_dec_nocow_writers(bg);
7340 if (type == BTRFS_ORDERED_PREALLOC) {
7341 free_extent_map(em);
7351 dio_data->nocow_done = true;
7353 /* Our caller expects us to free the input extent map. */
7354 free_extent_map(em);
7363 * If we could not allocate data space before locking the file
7364 * range and we can't do a NOCOW write, then we have to fail.
7366 if (!dio_data->data_space_reserved) {
7372 * We have to COW and we have already reserved data space before,
7373 * so now we reserve only metadata.
7375 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7379 space_reserved = true;
7381 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7387 len = min(len, em->len - (start - em->start));
7389 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7390 prev_len - len, true);
7394 * We have created our ordered extent, so we can now release our reservation
7395 * for an outstanding extent.
7397 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7400 * Need to update the i_size under the extent lock so buffered
7401 * readers will get the updated i_size when we unlock.
7403 if (start + len > i_size_read(inode))
7404 i_size_write(inode, start + len);
7406 if (ret && space_reserved) {
7407 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7408 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7414 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7415 loff_t length, unsigned int flags, struct iomap *iomap,
7416 struct iomap *srcmap)
7418 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7420 struct extent_map *em;
7421 struct extent_state *cached_state = NULL;
7422 struct btrfs_dio_data *dio_data = iter->private;
7423 u64 lockstart, lockend;
7424 const bool write = !!(flags & IOMAP_WRITE);
7427 const u64 data_alloc_len = length;
7428 bool unlock_extents = false;
7431 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7432 * we're NOWAIT we may submit a bio for a partial range and return
7433 * EIOCBQUEUED, which would result in an errant short read.
7435 * The best way to handle this would be to allow for partial completions
7436 * of iocb's, so we could submit the partial bio, return and fault in
7437 * the rest of the pages, and then submit the io for the rest of the
7438 * range. However we don't have that currently, so simply return
7439 * -EAGAIN at this point so that the normal path is used.
7441 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7445 * Cap the size of reads to that usually seen in buffered I/O as we need
7446 * to allocate a contiguous array for the checksums.
7449 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7452 lockend = start + len - 1;
7455 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7456 * enough if we've written compressed pages to this area, so we need to
7457 * flush the dirty pages again to make absolutely sure that any
7458 * outstanding dirty pages are on disk - the first flush only starts
7459 * compression on the data, while keeping the pages locked, so by the
7460 * time the second flush returns we know bios for the compressed pages
7461 * were submitted and finished, and the pages no longer under writeback.
7463 * If we have a NOWAIT request and we have any pages in the range that
7464 * are locked, likely due to compression still in progress, we don't want
7465 * to block on page locks. We also don't want to block on pages marked as
7466 * dirty or under writeback (same as for the non-compression case).
7467 * iomap_dio_rw() did the same check, but after that and before we got
7468 * here, mmap'ed writes may have happened or buffered reads started
7469 * (readpage() and readahead(), which lock pages), as we haven't locked
7470 * the file range yet.
7472 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7473 &BTRFS_I(inode)->runtime_flags)) {
7474 if (flags & IOMAP_NOWAIT) {
7475 if (filemap_range_needs_writeback(inode->i_mapping,
7476 lockstart, lockend))
7479 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7480 start + length - 1);
7486 memset(dio_data, 0, sizeof(*dio_data));
7489 * We always try to allocate data space and must do it before locking
7490 * the file range, to avoid deadlocks with concurrent writes to the same
7491 * range if the range has several extents and the writes don't expand the
7492 * current i_size (the inode lock is taken in shared mode). If we fail to
7493 * allocate data space here we continue and later, after locking the
7494 * file range, we fail with ENOSPC only if we figure out we can not do a
7497 if (write && !(flags & IOMAP_NOWAIT)) {
7498 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7499 &dio_data->data_reserved,
7500 start, data_alloc_len, false);
7502 dio_data->data_space_reserved = true;
7503 else if (ret && !(BTRFS_I(inode)->flags &
7504 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7509 * If this errors out it's because we couldn't invalidate pagecache for
7510 * this range and we need to fallback to buffered IO, or we are doing a
7511 * NOWAIT read/write and we need to block.
7513 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7517 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7524 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7525 * io. INLINE is special, and we could probably kludge it in here, but
7526 * it's still buffered so for safety lets just fall back to the generic
7529 * For COMPRESSED we _have_ to read the entire extent in so we can
7530 * decompress it, so there will be buffering required no matter what we
7531 * do, so go ahead and fallback to buffered.
7533 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7534 * to buffered IO. Don't blame me, this is the price we pay for using
7537 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7538 em->block_start == EXTENT_MAP_INLINE) {
7539 free_extent_map(em);
7541 * If we are in a NOWAIT context, return -EAGAIN in order to
7542 * fallback to buffered IO. This is not only because we can
7543 * block with buffered IO (no support for NOWAIT semantics at
7544 * the moment) but also to avoid returning short reads to user
7545 * space - this happens if we were able to read some data from
7546 * previous non-compressed extents and then when we fallback to
7547 * buffered IO, at btrfs_file_read_iter() by calling
7548 * filemap_read(), we fail to fault in pages for the read buffer,
7549 * in which case filemap_read() returns a short read (the number
7550 * of bytes previously read is > 0, so it does not return -EFAULT).
7552 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7556 len = min(len, em->len - (start - em->start));
7559 * If we have a NOWAIT request and the range contains multiple extents
7560 * (or a mix of extents and holes), then we return -EAGAIN to make the
7561 * caller fallback to a context where it can do a blocking (without
7562 * NOWAIT) request. This way we avoid doing partial IO and returning
7563 * success to the caller, which is not optimal for writes and for reads
7564 * it can result in unexpected behaviour for an application.
7566 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7567 * iomap_dio_rw(), we can end up returning less data then what the caller
7568 * asked for, resulting in an unexpected, and incorrect, short read.
7569 * That is, the caller asked to read N bytes and we return less than that,
7570 * which is wrong unless we are crossing EOF. This happens if we get a
7571 * page fault error when trying to fault in pages for the buffer that is
7572 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7573 * have previously submitted bios for other extents in the range, in
7574 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7575 * those bios have completed by the time we get the page fault error,
7576 * which we return back to our caller - we should only return EIOCBQUEUED
7577 * after we have submitted bios for all the extents in the range.
7579 if ((flags & IOMAP_NOWAIT) && len < length) {
7580 free_extent_map(em);
7586 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7587 start, &len, flags);
7590 unlock_extents = true;
7591 /* Recalc len in case the new em is smaller than requested */
7592 len = min(len, em->len - (start - em->start));
7593 if (dio_data->data_space_reserved) {
7595 u64 release_len = 0;
7597 if (dio_data->nocow_done) {
7598 release_offset = start;
7599 release_len = data_alloc_len;
7600 } else if (len < data_alloc_len) {
7601 release_offset = start + len;
7602 release_len = data_alloc_len - len;
7605 if (release_len > 0)
7606 btrfs_free_reserved_data_space(BTRFS_I(inode),
7607 dio_data->data_reserved,
7613 * We need to unlock only the end area that we aren't using.
7614 * The rest is going to be unlocked by the endio routine.
7616 lockstart = start + len;
7617 if (lockstart < lockend)
7618 unlock_extents = true;
7622 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7625 free_extent_state(cached_state);
7628 * Translate extent map information to iomap.
7629 * We trim the extents (and move the addr) even though iomap code does
7630 * that, since we have locked only the parts we are performing I/O in.
7632 if ((em->block_start == EXTENT_MAP_HOLE) ||
7633 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7634 iomap->addr = IOMAP_NULL_ADDR;
7635 iomap->type = IOMAP_HOLE;
7637 iomap->addr = em->block_start + (start - em->start);
7638 iomap->type = IOMAP_MAPPED;
7640 iomap->offset = start;
7641 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7642 iomap->length = len;
7643 free_extent_map(em);
7648 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7651 if (dio_data->data_space_reserved) {
7652 btrfs_free_reserved_data_space(BTRFS_I(inode),
7653 dio_data->data_reserved,
7654 start, data_alloc_len);
7655 extent_changeset_free(dio_data->data_reserved);
7661 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7662 ssize_t written, unsigned int flags, struct iomap *iomap)
7664 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7665 struct btrfs_dio_data *dio_data = iter->private;
7666 size_t submitted = dio_data->submitted;
7667 const bool write = !!(flags & IOMAP_WRITE);
7670 if (!write && (iomap->type == IOMAP_HOLE)) {
7671 /* If reading from a hole, unlock and return */
7672 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7677 if (submitted < length) {
7679 length -= submitted;
7681 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7682 pos, length, false);
7684 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7685 pos + length - 1, NULL);
7689 btrfs_put_ordered_extent(dio_data->ordered);
7690 dio_data->ordered = NULL;
7694 extent_changeset_free(dio_data->data_reserved);
7698 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7700 struct btrfs_dio_private *dip =
7701 container_of(bbio, struct btrfs_dio_private, bbio);
7702 struct btrfs_inode *inode = bbio->inode;
7703 struct bio *bio = &bbio->bio;
7705 if (bio->bi_status) {
7706 btrfs_warn(inode->root->fs_info,
7707 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7708 btrfs_ino(inode), bio->bi_opf,
7709 dip->file_offset, dip->bytes, bio->bi_status);
7712 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7713 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7714 dip->file_offset, dip->bytes,
7717 unlock_extent(&inode->io_tree, dip->file_offset,
7718 dip->file_offset + dip->bytes - 1, NULL);
7721 bbio->bio.bi_private = bbio->private;
7722 iomap_dio_bio_end_io(bio);
7725 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7728 struct btrfs_bio *bbio = btrfs_bio(bio);
7729 struct btrfs_dio_private *dip =
7730 container_of(bbio, struct btrfs_dio_private, bbio);
7731 struct btrfs_dio_data *dio_data = iter->private;
7733 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7734 btrfs_dio_end_io, bio->bi_private);
7735 bbio->inode = BTRFS_I(iter->inode);
7736 bbio->file_offset = file_offset;
7738 dip->file_offset = file_offset;
7739 dip->bytes = bio->bi_iter.bi_size;
7741 dio_data->submitted += bio->bi_iter.bi_size;
7744 * Check if we are doing a partial write. If we are, we need to split
7745 * the ordered extent to match the submitted bio. Hang on to the
7746 * remaining unfinishable ordered_extent in dio_data so that it can be
7747 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7748 * remaining pages is blocked on the outstanding ordered extent.
7750 if (iter->flags & IOMAP_WRITE) {
7753 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7755 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7756 file_offset, dip->bytes,
7758 bio->bi_status = errno_to_blk_status(ret);
7759 iomap_dio_bio_end_io(bio);
7764 btrfs_submit_bio(bbio, 0);
7767 static const struct iomap_ops btrfs_dio_iomap_ops = {
7768 .iomap_begin = btrfs_dio_iomap_begin,
7769 .iomap_end = btrfs_dio_iomap_end,
7772 static const struct iomap_dio_ops btrfs_dio_ops = {
7773 .submit_io = btrfs_dio_submit_io,
7774 .bio_set = &btrfs_dio_bioset,
7777 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7779 struct btrfs_dio_data data = { 0 };
7781 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7782 IOMAP_DIO_PARTIAL, &data, done_before);
7785 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7788 struct btrfs_dio_data data = { 0 };
7790 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7791 IOMAP_DIO_PARTIAL, &data, done_before);
7794 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7799 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7804 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7805 * file range (0 to LLONG_MAX), but that is not enough if we have
7806 * compression enabled. The first filemap_fdatawrite_range() only kicks
7807 * in the compression of data (in an async thread) and will return
7808 * before the compression is done and writeback is started. A second
7809 * filemap_fdatawrite_range() is needed to wait for the compression to
7810 * complete and writeback to start. We also need to wait for ordered
7811 * extents to complete, because our fiemap implementation uses mainly
7812 * file extent items to list the extents, searching for extent maps
7813 * only for file ranges with holes or prealloc extents to figure out
7814 * if we have delalloc in those ranges.
7816 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7817 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7822 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7825 static int btrfs_writepages(struct address_space *mapping,
7826 struct writeback_control *wbc)
7828 return extent_writepages(mapping, wbc);
7831 static void btrfs_readahead(struct readahead_control *rac)
7833 extent_readahead(rac);
7837 * For release_folio() and invalidate_folio() we have a race window where
7838 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7839 * If we continue to release/invalidate the page, we could cause use-after-free
7840 * for subpage spinlock. So this function is to spin and wait for subpage
7843 static void wait_subpage_spinlock(struct page *page)
7845 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7846 struct btrfs_subpage *subpage;
7848 if (!btrfs_is_subpage(fs_info, page))
7851 ASSERT(PagePrivate(page) && page->private);
7852 subpage = (struct btrfs_subpage *)page->private;
7855 * This may look insane as we just acquire the spinlock and release it,
7856 * without doing anything. But we just want to make sure no one is
7857 * still holding the subpage spinlock.
7858 * And since the page is not dirty nor writeback, and we have page
7859 * locked, the only possible way to hold a spinlock is from the endio
7860 * function to clear page writeback.
7862 * Here we just acquire the spinlock so that all existing callers
7863 * should exit and we're safe to release/invalidate the page.
7865 spin_lock_irq(&subpage->lock);
7866 spin_unlock_irq(&subpage->lock);
7869 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7871 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7874 wait_subpage_spinlock(&folio->page);
7875 clear_page_extent_mapped(&folio->page);
7880 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7882 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7884 return __btrfs_release_folio(folio, gfp_flags);
7887 #ifdef CONFIG_MIGRATION
7888 static int btrfs_migrate_folio(struct address_space *mapping,
7889 struct folio *dst, struct folio *src,
7890 enum migrate_mode mode)
7892 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7894 if (ret != MIGRATEPAGE_SUCCESS)
7897 if (folio_test_ordered(src)) {
7898 folio_clear_ordered(src);
7899 folio_set_ordered(dst);
7902 return MIGRATEPAGE_SUCCESS;
7905 #define btrfs_migrate_folio NULL
7908 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7911 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7912 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7913 struct extent_io_tree *tree = &inode->io_tree;
7914 struct extent_state *cached_state = NULL;
7915 u64 page_start = folio_pos(folio);
7916 u64 page_end = page_start + folio_size(folio) - 1;
7918 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7921 * We have folio locked so no new ordered extent can be created on this
7922 * page, nor bio can be submitted for this folio.
7924 * But already submitted bio can still be finished on this folio.
7925 * Furthermore, endio function won't skip folio which has Ordered
7926 * (Private2) already cleared, so it's possible for endio and
7927 * invalidate_folio to do the same ordered extent accounting twice
7930 * So here we wait for any submitted bios to finish, so that we won't
7931 * do double ordered extent accounting on the same folio.
7933 folio_wait_writeback(folio);
7934 wait_subpage_spinlock(&folio->page);
7937 * For subpage case, we have call sites like
7938 * btrfs_punch_hole_lock_range() which passes range not aligned to
7940 * If the range doesn't cover the full folio, we don't need to and
7941 * shouldn't clear page extent mapped, as folio->private can still
7942 * record subpage dirty bits for other part of the range.
7944 * For cases that invalidate the full folio even the range doesn't
7945 * cover the full folio, like invalidating the last folio, we're
7946 * still safe to wait for ordered extent to finish.
7948 if (!(offset == 0 && length == folio_size(folio))) {
7949 btrfs_release_folio(folio, GFP_NOFS);
7953 if (!inode_evicting)
7954 lock_extent(tree, page_start, page_end, &cached_state);
7957 while (cur < page_end) {
7958 struct btrfs_ordered_extent *ordered;
7961 u32 extra_flags = 0;
7963 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7964 page_end + 1 - cur);
7966 range_end = page_end;
7968 * No ordered extent covering this range, we are safe
7969 * to delete all extent states in the range.
7971 extra_flags = EXTENT_CLEAR_ALL_BITS;
7974 if (ordered->file_offset > cur) {
7976 * There is a range between [cur, oe->file_offset) not
7977 * covered by any ordered extent.
7978 * We are safe to delete all extent states, and handle
7979 * the ordered extent in the next iteration.
7981 range_end = ordered->file_offset - 1;
7982 extra_flags = EXTENT_CLEAR_ALL_BITS;
7986 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7988 ASSERT(range_end + 1 - cur < U32_MAX);
7989 range_len = range_end + 1 - cur;
7990 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
7992 * If Ordered (Private2) is cleared, it means endio has
7993 * already been executed for the range.
7994 * We can't delete the extent states as
7995 * btrfs_finish_ordered_io() may still use some of them.
7999 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8002 * IO on this page will never be started, so we need to account
8003 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8004 * here, must leave that up for the ordered extent completion.
8006 * This will also unlock the range for incoming
8007 * btrfs_finish_ordered_io().
8009 if (!inode_evicting)
8010 clear_extent_bit(tree, cur, range_end,
8012 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8013 EXTENT_DEFRAG, &cached_state);
8015 spin_lock_irq(&inode->ordered_tree.lock);
8016 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8017 ordered->truncated_len = min(ordered->truncated_len,
8018 cur - ordered->file_offset);
8019 spin_unlock_irq(&inode->ordered_tree.lock);
8022 * If the ordered extent has finished, we're safe to delete all
8023 * the extent states of the range, otherwise
8024 * btrfs_finish_ordered_io() will get executed by endio for
8025 * other pages, so we can't delete extent states.
8027 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8028 cur, range_end + 1 - cur)) {
8029 btrfs_finish_ordered_io(ordered);
8031 * The ordered extent has finished, now we're again
8032 * safe to delete all extent states of the range.
8034 extra_flags = EXTENT_CLEAR_ALL_BITS;
8038 btrfs_put_ordered_extent(ordered);
8040 * Qgroup reserved space handler
8041 * Sector(s) here will be either:
8043 * 1) Already written to disk or bio already finished
8044 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8045 * Qgroup will be handled by its qgroup_record then.
8046 * btrfs_qgroup_free_data() call will do nothing here.
8048 * 2) Not written to disk yet
8049 * Then btrfs_qgroup_free_data() call will clear the
8050 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8051 * reserved data space.
8052 * Since the IO will never happen for this page.
8054 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8055 if (!inode_evicting) {
8056 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8057 EXTENT_DELALLOC | EXTENT_UPTODATE |
8058 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8059 extra_flags, &cached_state);
8061 cur = range_end + 1;
8064 * We have iterated through all ordered extents of the page, the page
8065 * should not have Ordered (Private2) anymore, or the above iteration
8066 * did something wrong.
8068 ASSERT(!folio_test_ordered(folio));
8069 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8070 if (!inode_evicting)
8071 __btrfs_release_folio(folio, GFP_NOFS);
8072 clear_page_extent_mapped(&folio->page);
8076 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8077 * called from a page fault handler when a page is first dirtied. Hence we must
8078 * be careful to check for EOF conditions here. We set the page up correctly
8079 * for a written page which means we get ENOSPC checking when writing into
8080 * holes and correct delalloc and unwritten extent mapping on filesystems that
8081 * support these features.
8083 * We are not allowed to take the i_mutex here so we have to play games to
8084 * protect against truncate races as the page could now be beyond EOF. Because
8085 * truncate_setsize() writes the inode size before removing pages, once we have
8086 * the page lock we can determine safely if the page is beyond EOF. If it is not
8087 * beyond EOF, then the page is guaranteed safe against truncation until we
8090 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8092 struct page *page = vmf->page;
8093 struct inode *inode = file_inode(vmf->vma->vm_file);
8094 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8095 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8096 struct btrfs_ordered_extent *ordered;
8097 struct extent_state *cached_state = NULL;
8098 struct extent_changeset *data_reserved = NULL;
8099 unsigned long zero_start;
8109 reserved_space = PAGE_SIZE;
8111 sb_start_pagefault(inode->i_sb);
8112 page_start = page_offset(page);
8113 page_end = page_start + PAGE_SIZE - 1;
8117 * Reserving delalloc space after obtaining the page lock can lead to
8118 * deadlock. For example, if a dirty page is locked by this function
8119 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8120 * dirty page write out, then the btrfs_writepages() function could
8121 * end up waiting indefinitely to get a lock on the page currently
8122 * being processed by btrfs_page_mkwrite() function.
8124 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8125 page_start, reserved_space);
8127 ret2 = file_update_time(vmf->vma->vm_file);
8131 ret = vmf_error(ret2);
8137 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8139 down_read(&BTRFS_I(inode)->i_mmap_lock);
8141 size = i_size_read(inode);
8143 if ((page->mapping != inode->i_mapping) ||
8144 (page_start >= size)) {
8145 /* page got truncated out from underneath us */
8148 wait_on_page_writeback(page);
8150 lock_extent(io_tree, page_start, page_end, &cached_state);
8151 ret2 = set_page_extent_mapped(page);
8153 ret = vmf_error(ret2);
8154 unlock_extent(io_tree, page_start, page_end, &cached_state);
8159 * we can't set the delalloc bits if there are pending ordered
8160 * extents. Drop our locks and wait for them to finish
8162 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8165 unlock_extent(io_tree, page_start, page_end, &cached_state);
8167 up_read(&BTRFS_I(inode)->i_mmap_lock);
8168 btrfs_start_ordered_extent(ordered);
8169 btrfs_put_ordered_extent(ordered);
8173 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8174 reserved_space = round_up(size - page_start,
8175 fs_info->sectorsize);
8176 if (reserved_space < PAGE_SIZE) {
8177 end = page_start + reserved_space - 1;
8178 btrfs_delalloc_release_space(BTRFS_I(inode),
8179 data_reserved, page_start,
8180 PAGE_SIZE - reserved_space, true);
8185 * page_mkwrite gets called when the page is firstly dirtied after it's
8186 * faulted in, but write(2) could also dirty a page and set delalloc
8187 * bits, thus in this case for space account reason, we still need to
8188 * clear any delalloc bits within this page range since we have to
8189 * reserve data&meta space before lock_page() (see above comments).
8191 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8192 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8193 EXTENT_DEFRAG, &cached_state);
8195 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8198 unlock_extent(io_tree, page_start, page_end, &cached_state);
8199 ret = VM_FAULT_SIGBUS;
8203 /* page is wholly or partially inside EOF */
8204 if (page_start + PAGE_SIZE > size)
8205 zero_start = offset_in_page(size);
8207 zero_start = PAGE_SIZE;
8209 if (zero_start != PAGE_SIZE)
8210 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8212 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8213 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8214 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8216 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8218 unlock_extent(io_tree, page_start, page_end, &cached_state);
8219 up_read(&BTRFS_I(inode)->i_mmap_lock);
8221 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8222 sb_end_pagefault(inode->i_sb);
8223 extent_changeset_free(data_reserved);
8224 return VM_FAULT_LOCKED;
8228 up_read(&BTRFS_I(inode)->i_mmap_lock);
8230 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8231 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8232 reserved_space, (ret != 0));
8234 sb_end_pagefault(inode->i_sb);
8235 extent_changeset_free(data_reserved);
8239 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8241 struct btrfs_truncate_control control = {
8243 .ino = btrfs_ino(inode),
8244 .min_type = BTRFS_EXTENT_DATA_KEY,
8245 .clear_extent_range = true,
8247 struct btrfs_root *root = inode->root;
8248 struct btrfs_fs_info *fs_info = root->fs_info;
8249 struct btrfs_block_rsv *rsv;
8251 struct btrfs_trans_handle *trans;
8252 u64 mask = fs_info->sectorsize - 1;
8253 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8255 if (!skip_writeback) {
8256 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8257 inode->vfs_inode.i_size & (~mask),
8264 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8265 * things going on here:
8267 * 1) We need to reserve space to update our inode.
8269 * 2) We need to have something to cache all the space that is going to
8270 * be free'd up by the truncate operation, but also have some slack
8271 * space reserved in case it uses space during the truncate (thank you
8272 * very much snapshotting).
8274 * And we need these to be separate. The fact is we can use a lot of
8275 * space doing the truncate, and we have no earthly idea how much space
8276 * we will use, so we need the truncate reservation to be separate so it
8277 * doesn't end up using space reserved for updating the inode. We also
8278 * need to be able to stop the transaction and start a new one, which
8279 * means we need to be able to update the inode several times, and we
8280 * have no idea of knowing how many times that will be, so we can't just
8281 * reserve 1 item for the entirety of the operation, so that has to be
8282 * done separately as well.
8284 * So that leaves us with
8286 * 1) rsv - for the truncate reservation, which we will steal from the
8287 * transaction reservation.
8288 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8289 * updating the inode.
8291 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8294 rsv->size = min_size;
8295 rsv->failfast = true;
8298 * 1 for the truncate slack space
8299 * 1 for updating the inode.
8301 trans = btrfs_start_transaction(root, 2);
8302 if (IS_ERR(trans)) {
8303 ret = PTR_ERR(trans);
8307 /* Migrate the slack space for the truncate to our reserve */
8308 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8311 * We have reserved 2 metadata units when we started the transaction and
8312 * min_size matches 1 unit, so this should never fail, but if it does,
8313 * it's not critical we just fail truncation.
8316 btrfs_end_transaction(trans);
8320 trans->block_rsv = rsv;
8323 struct extent_state *cached_state = NULL;
8324 const u64 new_size = inode->vfs_inode.i_size;
8325 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8327 control.new_size = new_size;
8328 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8330 * We want to drop from the next block forward in case this new
8331 * size is not block aligned since we will be keeping the last
8332 * block of the extent just the way it is.
8334 btrfs_drop_extent_map_range(inode,
8335 ALIGN(new_size, fs_info->sectorsize),
8338 ret = btrfs_truncate_inode_items(trans, root, &control);
8340 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8341 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8343 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8345 trans->block_rsv = &fs_info->trans_block_rsv;
8346 if (ret != -ENOSPC && ret != -EAGAIN)
8349 ret = btrfs_update_inode(trans, root, inode);
8353 btrfs_end_transaction(trans);
8354 btrfs_btree_balance_dirty(fs_info);
8356 trans = btrfs_start_transaction(root, 2);
8357 if (IS_ERR(trans)) {
8358 ret = PTR_ERR(trans);
8363 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8364 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8365 rsv, min_size, false);
8367 * We have reserved 2 metadata units when we started the
8368 * transaction and min_size matches 1 unit, so this should never
8369 * fail, but if it does, it's not critical we just fail truncation.
8374 trans->block_rsv = rsv;
8378 * We can't call btrfs_truncate_block inside a trans handle as we could
8379 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8380 * know we've truncated everything except the last little bit, and can
8381 * do btrfs_truncate_block and then update the disk_i_size.
8383 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8384 btrfs_end_transaction(trans);
8385 btrfs_btree_balance_dirty(fs_info);
8387 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8390 trans = btrfs_start_transaction(root, 1);
8391 if (IS_ERR(trans)) {
8392 ret = PTR_ERR(trans);
8395 btrfs_inode_safe_disk_i_size_write(inode, 0);
8401 trans->block_rsv = &fs_info->trans_block_rsv;
8402 ret2 = btrfs_update_inode(trans, root, inode);
8406 ret2 = btrfs_end_transaction(trans);
8409 btrfs_btree_balance_dirty(fs_info);
8412 btrfs_free_block_rsv(fs_info, rsv);
8414 * So if we truncate and then write and fsync we normally would just
8415 * write the extents that changed, which is a problem if we need to
8416 * first truncate that entire inode. So set this flag so we write out
8417 * all of the extents in the inode to the sync log so we're completely
8420 * If no extents were dropped or trimmed we don't need to force the next
8421 * fsync to truncate all the inode's items from the log and re-log them
8422 * all. This means the truncate operation did not change the file size,
8423 * or changed it to a smaller size but there was only an implicit hole
8424 * between the old i_size and the new i_size, and there were no prealloc
8425 * extents beyond i_size to drop.
8427 if (control.extents_found > 0)
8428 btrfs_set_inode_full_sync(inode);
8433 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8436 struct inode *inode;
8438 inode = new_inode(dir->i_sb);
8441 * Subvolumes don't inherit the sgid bit or the parent's gid if
8442 * the parent's sgid bit is set. This is probably a bug.
8444 inode_init_owner(idmap, inode, NULL,
8445 S_IFDIR | (~current_umask() & S_IRWXUGO));
8446 inode->i_op = &btrfs_dir_inode_operations;
8447 inode->i_fop = &btrfs_dir_file_operations;
8452 struct inode *btrfs_alloc_inode(struct super_block *sb)
8454 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8455 struct btrfs_inode *ei;
8456 struct inode *inode;
8458 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8465 ei->last_sub_trans = 0;
8466 ei->logged_trans = 0;
8467 ei->delalloc_bytes = 0;
8468 ei->new_delalloc_bytes = 0;
8469 ei->defrag_bytes = 0;
8470 ei->disk_i_size = 0;
8474 ei->index_cnt = (u64)-1;
8476 ei->last_unlink_trans = 0;
8477 ei->last_reflink_trans = 0;
8478 ei->last_log_commit = 0;
8480 spin_lock_init(&ei->lock);
8481 ei->outstanding_extents = 0;
8482 if (sb->s_magic != BTRFS_TEST_MAGIC)
8483 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8484 BTRFS_BLOCK_RSV_DELALLOC);
8485 ei->runtime_flags = 0;
8486 ei->prop_compress = BTRFS_COMPRESS_NONE;
8487 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8489 ei->delayed_node = NULL;
8491 ei->i_otime.tv_sec = 0;
8492 ei->i_otime.tv_nsec = 0;
8494 inode = &ei->vfs_inode;
8495 extent_map_tree_init(&ei->extent_tree);
8496 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8497 ei->io_tree.inode = ei;
8498 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8499 IO_TREE_INODE_FILE_EXTENT);
8500 mutex_init(&ei->log_mutex);
8501 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8502 INIT_LIST_HEAD(&ei->delalloc_inodes);
8503 INIT_LIST_HEAD(&ei->delayed_iput);
8504 RB_CLEAR_NODE(&ei->rb_node);
8505 init_rwsem(&ei->i_mmap_lock);
8510 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8511 void btrfs_test_destroy_inode(struct inode *inode)
8513 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8514 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8518 void btrfs_free_inode(struct inode *inode)
8520 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8523 void btrfs_destroy_inode(struct inode *vfs_inode)
8525 struct btrfs_ordered_extent *ordered;
8526 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8527 struct btrfs_root *root = inode->root;
8528 bool freespace_inode;
8530 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8531 WARN_ON(vfs_inode->i_data.nrpages);
8532 WARN_ON(inode->block_rsv.reserved);
8533 WARN_ON(inode->block_rsv.size);
8534 WARN_ON(inode->outstanding_extents);
8535 if (!S_ISDIR(vfs_inode->i_mode)) {
8536 WARN_ON(inode->delalloc_bytes);
8537 WARN_ON(inode->new_delalloc_bytes);
8539 WARN_ON(inode->csum_bytes);
8540 WARN_ON(inode->defrag_bytes);
8543 * This can happen where we create an inode, but somebody else also
8544 * created the same inode and we need to destroy the one we already
8551 * If this is a free space inode do not take the ordered extents lockdep
8554 freespace_inode = btrfs_is_free_space_inode(inode);
8557 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8561 btrfs_err(root->fs_info,
8562 "found ordered extent %llu %llu on inode cleanup",
8563 ordered->file_offset, ordered->num_bytes);
8565 if (!freespace_inode)
8566 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8568 btrfs_remove_ordered_extent(inode, ordered);
8569 btrfs_put_ordered_extent(ordered);
8570 btrfs_put_ordered_extent(ordered);
8573 btrfs_qgroup_check_reserved_leak(inode);
8574 inode_tree_del(inode);
8575 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8576 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8577 btrfs_put_root(inode->root);
8580 int btrfs_drop_inode(struct inode *inode)
8582 struct btrfs_root *root = BTRFS_I(inode)->root;
8587 /* the snap/subvol tree is on deleting */
8588 if (btrfs_root_refs(&root->root_item) == 0)
8591 return generic_drop_inode(inode);
8594 static void init_once(void *foo)
8596 struct btrfs_inode *ei = foo;
8598 inode_init_once(&ei->vfs_inode);
8601 void __cold btrfs_destroy_cachep(void)
8604 * Make sure all delayed rcu free inodes are flushed before we
8608 bioset_exit(&btrfs_dio_bioset);
8609 kmem_cache_destroy(btrfs_inode_cachep);
8612 int __init btrfs_init_cachep(void)
8614 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8615 sizeof(struct btrfs_inode), 0,
8616 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8618 if (!btrfs_inode_cachep)
8621 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8622 offsetof(struct btrfs_dio_private, bbio.bio),
8628 btrfs_destroy_cachep();
8632 static int btrfs_getattr(struct mnt_idmap *idmap,
8633 const struct path *path, struct kstat *stat,
8634 u32 request_mask, unsigned int flags)
8638 struct inode *inode = d_inode(path->dentry);
8639 u32 blocksize = inode->i_sb->s_blocksize;
8640 u32 bi_flags = BTRFS_I(inode)->flags;
8641 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8643 stat->result_mask |= STATX_BTIME;
8644 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8645 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8646 if (bi_flags & BTRFS_INODE_APPEND)
8647 stat->attributes |= STATX_ATTR_APPEND;
8648 if (bi_flags & BTRFS_INODE_COMPRESS)
8649 stat->attributes |= STATX_ATTR_COMPRESSED;
8650 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8651 stat->attributes |= STATX_ATTR_IMMUTABLE;
8652 if (bi_flags & BTRFS_INODE_NODUMP)
8653 stat->attributes |= STATX_ATTR_NODUMP;
8654 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8655 stat->attributes |= STATX_ATTR_VERITY;
8657 stat->attributes_mask |= (STATX_ATTR_APPEND |
8658 STATX_ATTR_COMPRESSED |
8659 STATX_ATTR_IMMUTABLE |
8662 generic_fillattr(idmap, request_mask, inode, stat);
8663 stat->dev = BTRFS_I(inode)->root->anon_dev;
8665 spin_lock(&BTRFS_I(inode)->lock);
8666 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8667 inode_bytes = inode_get_bytes(inode);
8668 spin_unlock(&BTRFS_I(inode)->lock);
8669 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8670 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8674 static int btrfs_rename_exchange(struct inode *old_dir,
8675 struct dentry *old_dentry,
8676 struct inode *new_dir,
8677 struct dentry *new_dentry)
8679 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8680 struct btrfs_trans_handle *trans;
8681 unsigned int trans_num_items;
8682 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8683 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8684 struct inode *new_inode = new_dentry->d_inode;
8685 struct inode *old_inode = old_dentry->d_inode;
8686 struct btrfs_rename_ctx old_rename_ctx;
8687 struct btrfs_rename_ctx new_rename_ctx;
8688 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8689 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8694 bool need_abort = false;
8695 struct fscrypt_name old_fname, new_fname;
8696 struct fscrypt_str *old_name, *new_name;
8699 * For non-subvolumes allow exchange only within one subvolume, in the
8700 * same inode namespace. Two subvolumes (represented as directory) can
8701 * be exchanged as they're a logical link and have a fixed inode number.
8704 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8705 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8708 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8712 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8714 fscrypt_free_filename(&old_fname);
8718 old_name = &old_fname.disk_name;
8719 new_name = &new_fname.disk_name;
8721 /* close the race window with snapshot create/destroy ioctl */
8722 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8723 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8724 down_read(&fs_info->subvol_sem);
8728 * 1 to remove old dir item
8729 * 1 to remove old dir index
8730 * 1 to add new dir item
8731 * 1 to add new dir index
8732 * 1 to update parent inode
8734 * If the parents are the same, we only need to account for one
8736 trans_num_items = (old_dir == new_dir ? 9 : 10);
8737 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8739 * 1 to remove old root ref
8740 * 1 to remove old root backref
8741 * 1 to add new root ref
8742 * 1 to add new root backref
8744 trans_num_items += 4;
8747 * 1 to update inode item
8748 * 1 to remove old inode ref
8749 * 1 to add new inode ref
8751 trans_num_items += 3;
8753 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8754 trans_num_items += 4;
8756 trans_num_items += 3;
8757 trans = btrfs_start_transaction(root, trans_num_items);
8758 if (IS_ERR(trans)) {
8759 ret = PTR_ERR(trans);
8764 ret = btrfs_record_root_in_trans(trans, dest);
8770 * We need to find a free sequence number both in the source and
8771 * in the destination directory for the exchange.
8773 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8776 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8780 BTRFS_I(old_inode)->dir_index = 0ULL;
8781 BTRFS_I(new_inode)->dir_index = 0ULL;
8783 /* Reference for the source. */
8784 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8785 /* force full log commit if subvolume involved. */
8786 btrfs_set_log_full_commit(trans);
8788 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8789 btrfs_ino(BTRFS_I(new_dir)),
8796 /* And now for the dest. */
8797 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8798 /* force full log commit if subvolume involved. */
8799 btrfs_set_log_full_commit(trans);
8801 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8802 btrfs_ino(BTRFS_I(old_dir)),
8806 btrfs_abort_transaction(trans, ret);
8811 /* Update inode version and ctime/mtime. */
8812 inode_inc_iversion(old_dir);
8813 inode_inc_iversion(new_dir);
8814 inode_inc_iversion(old_inode);
8815 inode_inc_iversion(new_inode);
8816 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8818 if (old_dentry->d_parent != new_dentry->d_parent) {
8819 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8820 BTRFS_I(old_inode), true);
8821 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8822 BTRFS_I(new_inode), true);
8825 /* src is a subvolume */
8826 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8827 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8828 } else { /* src is an inode */
8829 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8830 BTRFS_I(old_dentry->d_inode),
8831 old_name, &old_rename_ctx);
8833 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8836 btrfs_abort_transaction(trans, ret);
8840 /* dest is a subvolume */
8841 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8842 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8843 } else { /* dest is an inode */
8844 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8845 BTRFS_I(new_dentry->d_inode),
8846 new_name, &new_rename_ctx);
8848 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8851 btrfs_abort_transaction(trans, ret);
8855 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8856 new_name, 0, old_idx);
8858 btrfs_abort_transaction(trans, ret);
8862 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8863 old_name, 0, new_idx);
8865 btrfs_abort_transaction(trans, ret);
8869 if (old_inode->i_nlink == 1)
8870 BTRFS_I(old_inode)->dir_index = old_idx;
8871 if (new_inode->i_nlink == 1)
8872 BTRFS_I(new_inode)->dir_index = new_idx;
8875 * Now pin the logs of the roots. We do it to ensure that no other task
8876 * can sync the logs while we are in progress with the rename, because
8877 * that could result in an inconsistency in case any of the inodes that
8878 * are part of this rename operation were logged before.
8880 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8881 btrfs_pin_log_trans(root);
8882 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8883 btrfs_pin_log_trans(dest);
8885 /* Do the log updates for all inodes. */
8886 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8887 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8888 old_rename_ctx.index, new_dentry->d_parent);
8889 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8890 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8891 new_rename_ctx.index, old_dentry->d_parent);
8893 /* Now unpin the logs. */
8894 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8895 btrfs_end_log_trans(root);
8896 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8897 btrfs_end_log_trans(dest);
8899 ret2 = btrfs_end_transaction(trans);
8900 ret = ret ? ret : ret2;
8902 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8903 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8904 up_read(&fs_info->subvol_sem);
8906 fscrypt_free_filename(&new_fname);
8907 fscrypt_free_filename(&old_fname);
8911 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8914 struct inode *inode;
8916 inode = new_inode(dir->i_sb);
8918 inode_init_owner(idmap, inode, dir,
8919 S_IFCHR | WHITEOUT_MODE);
8920 inode->i_op = &btrfs_special_inode_operations;
8921 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8926 static int btrfs_rename(struct mnt_idmap *idmap,
8927 struct inode *old_dir, struct dentry *old_dentry,
8928 struct inode *new_dir, struct dentry *new_dentry,
8931 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8932 struct btrfs_new_inode_args whiteout_args = {
8934 .dentry = old_dentry,
8936 struct btrfs_trans_handle *trans;
8937 unsigned int trans_num_items;
8938 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8939 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8940 struct inode *new_inode = d_inode(new_dentry);
8941 struct inode *old_inode = d_inode(old_dentry);
8942 struct btrfs_rename_ctx rename_ctx;
8946 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8947 struct fscrypt_name old_fname, new_fname;
8949 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8952 /* we only allow rename subvolume link between subvolumes */
8953 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8956 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8957 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8960 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8961 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8964 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8968 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8970 fscrypt_free_filename(&old_fname);
8974 /* check for collisions, even if the name isn't there */
8975 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8977 if (ret == -EEXIST) {
8979 * eexist without a new_inode */
8980 if (WARN_ON(!new_inode)) {
8981 goto out_fscrypt_names;
8984 /* maybe -EOVERFLOW */
8985 goto out_fscrypt_names;
8991 * we're using rename to replace one file with another. Start IO on it
8992 * now so we don't add too much work to the end of the transaction
8994 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8995 filemap_flush(old_inode->i_mapping);
8997 if (flags & RENAME_WHITEOUT) {
8998 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8999 if (!whiteout_args.inode) {
9001 goto out_fscrypt_names;
9003 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9005 goto out_whiteout_inode;
9007 /* 1 to update the old parent inode. */
9008 trans_num_items = 1;
9011 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9012 /* Close the race window with snapshot create/destroy ioctl */
9013 down_read(&fs_info->subvol_sem);
9015 * 1 to remove old root ref
9016 * 1 to remove old root backref
9017 * 1 to add new root ref
9018 * 1 to add new root backref
9020 trans_num_items += 4;
9024 * 1 to remove old inode ref
9025 * 1 to add new inode ref
9027 trans_num_items += 3;
9030 * 1 to remove old dir item
9031 * 1 to remove old dir index
9032 * 1 to add new dir item
9033 * 1 to add new dir index
9035 trans_num_items += 4;
9036 /* 1 to update new parent inode if it's not the same as the old parent */
9037 if (new_dir != old_dir)
9042 * 1 to remove inode ref
9043 * 1 to remove dir item
9044 * 1 to remove dir index
9045 * 1 to possibly add orphan item
9047 trans_num_items += 5;
9049 trans = btrfs_start_transaction(root, trans_num_items);
9050 if (IS_ERR(trans)) {
9051 ret = PTR_ERR(trans);
9056 ret = btrfs_record_root_in_trans(trans, dest);
9061 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9065 BTRFS_I(old_inode)->dir_index = 0ULL;
9066 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9067 /* force full log commit if subvolume involved. */
9068 btrfs_set_log_full_commit(trans);
9070 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9071 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9077 inode_inc_iversion(old_dir);
9078 inode_inc_iversion(new_dir);
9079 inode_inc_iversion(old_inode);
9080 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9082 if (old_dentry->d_parent != new_dentry->d_parent)
9083 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9084 BTRFS_I(old_inode), true);
9086 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9087 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9089 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9090 BTRFS_I(d_inode(old_dentry)),
9091 &old_fname.disk_name, &rename_ctx);
9093 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9096 btrfs_abort_transaction(trans, ret);
9101 inode_inc_iversion(new_inode);
9102 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9103 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9104 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9105 BUG_ON(new_inode->i_nlink == 0);
9107 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9108 BTRFS_I(d_inode(new_dentry)),
9109 &new_fname.disk_name);
9111 if (!ret && new_inode->i_nlink == 0)
9112 ret = btrfs_orphan_add(trans,
9113 BTRFS_I(d_inode(new_dentry)));
9115 btrfs_abort_transaction(trans, ret);
9120 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9121 &new_fname.disk_name, 0, index);
9123 btrfs_abort_transaction(trans, ret);
9127 if (old_inode->i_nlink == 1)
9128 BTRFS_I(old_inode)->dir_index = index;
9130 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9131 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9132 rename_ctx.index, new_dentry->d_parent);
9134 if (flags & RENAME_WHITEOUT) {
9135 ret = btrfs_create_new_inode(trans, &whiteout_args);
9137 btrfs_abort_transaction(trans, ret);
9140 unlock_new_inode(whiteout_args.inode);
9141 iput(whiteout_args.inode);
9142 whiteout_args.inode = NULL;
9146 ret2 = btrfs_end_transaction(trans);
9147 ret = ret ? ret : ret2;
9149 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9150 up_read(&fs_info->subvol_sem);
9151 if (flags & RENAME_WHITEOUT)
9152 btrfs_new_inode_args_destroy(&whiteout_args);
9154 if (flags & RENAME_WHITEOUT)
9155 iput(whiteout_args.inode);
9157 fscrypt_free_filename(&old_fname);
9158 fscrypt_free_filename(&new_fname);
9162 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9163 struct dentry *old_dentry, struct inode *new_dir,
9164 struct dentry *new_dentry, unsigned int flags)
9168 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9171 if (flags & RENAME_EXCHANGE)
9172 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9175 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9178 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9183 struct btrfs_delalloc_work {
9184 struct inode *inode;
9185 struct completion completion;
9186 struct list_head list;
9187 struct btrfs_work work;
9190 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9192 struct btrfs_delalloc_work *delalloc_work;
9193 struct inode *inode;
9195 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9197 inode = delalloc_work->inode;
9198 filemap_flush(inode->i_mapping);
9199 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9200 &BTRFS_I(inode)->runtime_flags))
9201 filemap_flush(inode->i_mapping);
9204 complete(&delalloc_work->completion);
9207 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9209 struct btrfs_delalloc_work *work;
9211 work = kmalloc(sizeof(*work), GFP_NOFS);
9215 init_completion(&work->completion);
9216 INIT_LIST_HEAD(&work->list);
9217 work->inode = inode;
9218 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9224 * some fairly slow code that needs optimization. This walks the list
9225 * of all the inodes with pending delalloc and forces them to disk.
9227 static int start_delalloc_inodes(struct btrfs_root *root,
9228 struct writeback_control *wbc, bool snapshot,
9229 bool in_reclaim_context)
9231 struct btrfs_inode *binode;
9232 struct inode *inode;
9233 struct btrfs_delalloc_work *work, *next;
9237 bool full_flush = wbc->nr_to_write == LONG_MAX;
9239 mutex_lock(&root->delalloc_mutex);
9240 spin_lock(&root->delalloc_lock);
9241 list_splice_init(&root->delalloc_inodes, &splice);
9242 while (!list_empty(&splice)) {
9243 binode = list_entry(splice.next, struct btrfs_inode,
9246 list_move_tail(&binode->delalloc_inodes,
9247 &root->delalloc_inodes);
9249 if (in_reclaim_context &&
9250 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9253 inode = igrab(&binode->vfs_inode);
9255 cond_resched_lock(&root->delalloc_lock);
9258 spin_unlock(&root->delalloc_lock);
9261 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9262 &binode->runtime_flags);
9264 work = btrfs_alloc_delalloc_work(inode);
9270 list_add_tail(&work->list, &works);
9271 btrfs_queue_work(root->fs_info->flush_workers,
9274 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9275 btrfs_add_delayed_iput(BTRFS_I(inode));
9276 if (ret || wbc->nr_to_write <= 0)
9280 spin_lock(&root->delalloc_lock);
9282 spin_unlock(&root->delalloc_lock);
9285 list_for_each_entry_safe(work, next, &works, list) {
9286 list_del_init(&work->list);
9287 wait_for_completion(&work->completion);
9291 if (!list_empty(&splice)) {
9292 spin_lock(&root->delalloc_lock);
9293 list_splice_tail(&splice, &root->delalloc_inodes);
9294 spin_unlock(&root->delalloc_lock);
9296 mutex_unlock(&root->delalloc_mutex);
9300 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9302 struct writeback_control wbc = {
9303 .nr_to_write = LONG_MAX,
9304 .sync_mode = WB_SYNC_NONE,
9306 .range_end = LLONG_MAX,
9308 struct btrfs_fs_info *fs_info = root->fs_info;
9310 if (BTRFS_FS_ERROR(fs_info))
9313 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9316 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9317 bool in_reclaim_context)
9319 struct writeback_control wbc = {
9321 .sync_mode = WB_SYNC_NONE,
9323 .range_end = LLONG_MAX,
9325 struct btrfs_root *root;
9329 if (BTRFS_FS_ERROR(fs_info))
9332 mutex_lock(&fs_info->delalloc_root_mutex);
9333 spin_lock(&fs_info->delalloc_root_lock);
9334 list_splice_init(&fs_info->delalloc_roots, &splice);
9335 while (!list_empty(&splice)) {
9337 * Reset nr_to_write here so we know that we're doing a full
9341 wbc.nr_to_write = LONG_MAX;
9343 root = list_first_entry(&splice, struct btrfs_root,
9345 root = btrfs_grab_root(root);
9347 list_move_tail(&root->delalloc_root,
9348 &fs_info->delalloc_roots);
9349 spin_unlock(&fs_info->delalloc_root_lock);
9351 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9352 btrfs_put_root(root);
9353 if (ret < 0 || wbc.nr_to_write <= 0)
9355 spin_lock(&fs_info->delalloc_root_lock);
9357 spin_unlock(&fs_info->delalloc_root_lock);
9361 if (!list_empty(&splice)) {
9362 spin_lock(&fs_info->delalloc_root_lock);
9363 list_splice_tail(&splice, &fs_info->delalloc_roots);
9364 spin_unlock(&fs_info->delalloc_root_lock);
9366 mutex_unlock(&fs_info->delalloc_root_mutex);
9370 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9371 struct dentry *dentry, const char *symname)
9373 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9374 struct btrfs_trans_handle *trans;
9375 struct btrfs_root *root = BTRFS_I(dir)->root;
9376 struct btrfs_path *path;
9377 struct btrfs_key key;
9378 struct inode *inode;
9379 struct btrfs_new_inode_args new_inode_args = {
9383 unsigned int trans_num_items;
9388 struct btrfs_file_extent_item *ei;
9389 struct extent_buffer *leaf;
9391 name_len = strlen(symname);
9392 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9393 return -ENAMETOOLONG;
9395 inode = new_inode(dir->i_sb);
9398 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9399 inode->i_op = &btrfs_symlink_inode_operations;
9400 inode_nohighmem(inode);
9401 inode->i_mapping->a_ops = &btrfs_aops;
9402 btrfs_i_size_write(BTRFS_I(inode), name_len);
9403 inode_set_bytes(inode, name_len);
9405 new_inode_args.inode = inode;
9406 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9409 /* 1 additional item for the inline extent */
9412 trans = btrfs_start_transaction(root, trans_num_items);
9413 if (IS_ERR(trans)) {
9414 err = PTR_ERR(trans);
9415 goto out_new_inode_args;
9418 err = btrfs_create_new_inode(trans, &new_inode_args);
9422 path = btrfs_alloc_path();
9425 btrfs_abort_transaction(trans, err);
9426 discard_new_inode(inode);
9430 key.objectid = btrfs_ino(BTRFS_I(inode));
9432 key.type = BTRFS_EXTENT_DATA_KEY;
9433 datasize = btrfs_file_extent_calc_inline_size(name_len);
9434 err = btrfs_insert_empty_item(trans, root, path, &key,
9437 btrfs_abort_transaction(trans, err);
9438 btrfs_free_path(path);
9439 discard_new_inode(inode);
9443 leaf = path->nodes[0];
9444 ei = btrfs_item_ptr(leaf, path->slots[0],
9445 struct btrfs_file_extent_item);
9446 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9447 btrfs_set_file_extent_type(leaf, ei,
9448 BTRFS_FILE_EXTENT_INLINE);
9449 btrfs_set_file_extent_encryption(leaf, ei, 0);
9450 btrfs_set_file_extent_compression(leaf, ei, 0);
9451 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9452 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9454 ptr = btrfs_file_extent_inline_start(ei);
9455 write_extent_buffer(leaf, symname, ptr, name_len);
9456 btrfs_mark_buffer_dirty(trans, leaf);
9457 btrfs_free_path(path);
9459 d_instantiate_new(dentry, inode);
9462 btrfs_end_transaction(trans);
9463 btrfs_btree_balance_dirty(fs_info);
9465 btrfs_new_inode_args_destroy(&new_inode_args);
9472 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9473 struct btrfs_trans_handle *trans_in,
9474 struct btrfs_inode *inode,
9475 struct btrfs_key *ins,
9478 struct btrfs_file_extent_item stack_fi;
9479 struct btrfs_replace_extent_info extent_info;
9480 struct btrfs_trans_handle *trans = trans_in;
9481 struct btrfs_path *path;
9482 u64 start = ins->objectid;
9483 u64 len = ins->offset;
9484 int qgroup_released;
9487 memset(&stack_fi, 0, sizeof(stack_fi));
9489 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9490 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9491 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9492 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9493 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9494 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9495 /* Encryption and other encoding is reserved and all 0 */
9497 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9498 if (qgroup_released < 0)
9499 return ERR_PTR(qgroup_released);
9502 ret = insert_reserved_file_extent(trans, inode,
9503 file_offset, &stack_fi,
9504 true, qgroup_released);
9510 extent_info.disk_offset = start;
9511 extent_info.disk_len = len;
9512 extent_info.data_offset = 0;
9513 extent_info.data_len = len;
9514 extent_info.file_offset = file_offset;
9515 extent_info.extent_buf = (char *)&stack_fi;
9516 extent_info.is_new_extent = true;
9517 extent_info.update_times = true;
9518 extent_info.qgroup_reserved = qgroup_released;
9519 extent_info.insertions = 0;
9521 path = btrfs_alloc_path();
9527 ret = btrfs_replace_file_extents(inode, path, file_offset,
9528 file_offset + len - 1, &extent_info,
9530 btrfs_free_path(path);
9537 * We have released qgroup data range at the beginning of the function,
9538 * and normally qgroup_released bytes will be freed when committing
9540 * But if we error out early, we have to free what we have released
9541 * or we leak qgroup data reservation.
9543 btrfs_qgroup_free_refroot(inode->root->fs_info,
9544 inode->root->root_key.objectid, qgroup_released,
9545 BTRFS_QGROUP_RSV_DATA);
9546 return ERR_PTR(ret);
9549 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9550 u64 start, u64 num_bytes, u64 min_size,
9551 loff_t actual_len, u64 *alloc_hint,
9552 struct btrfs_trans_handle *trans)
9554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9555 struct extent_map *em;
9556 struct btrfs_root *root = BTRFS_I(inode)->root;
9557 struct btrfs_key ins;
9558 u64 cur_offset = start;
9559 u64 clear_offset = start;
9562 u64 last_alloc = (u64)-1;
9564 bool own_trans = true;
9565 u64 end = start + num_bytes - 1;
9569 while (num_bytes > 0) {
9570 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9571 cur_bytes = max(cur_bytes, min_size);
9573 * If we are severely fragmented we could end up with really
9574 * small allocations, so if the allocator is returning small
9575 * chunks lets make its job easier by only searching for those
9578 cur_bytes = min(cur_bytes, last_alloc);
9579 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9580 min_size, 0, *alloc_hint, &ins, 1, 0);
9585 * We've reserved this space, and thus converted it from
9586 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9587 * from here on out we will only need to clear our reservation
9588 * for the remaining unreserved area, so advance our
9589 * clear_offset by our extent size.
9591 clear_offset += ins.offset;
9593 last_alloc = ins.offset;
9594 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9597 * Now that we inserted the prealloc extent we can finally
9598 * decrement the number of reservations in the block group.
9599 * If we did it before, we could race with relocation and have
9600 * relocation miss the reserved extent, making it fail later.
9602 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9603 if (IS_ERR(trans)) {
9604 ret = PTR_ERR(trans);
9605 btrfs_free_reserved_extent(fs_info, ins.objectid,
9610 em = alloc_extent_map();
9612 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9613 cur_offset + ins.offset - 1, false);
9614 btrfs_set_inode_full_sync(BTRFS_I(inode));
9618 em->start = cur_offset;
9619 em->orig_start = cur_offset;
9620 em->len = ins.offset;
9621 em->block_start = ins.objectid;
9622 em->block_len = ins.offset;
9623 em->orig_block_len = ins.offset;
9624 em->ram_bytes = ins.offset;
9625 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9626 em->generation = trans->transid;
9628 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9629 free_extent_map(em);
9631 num_bytes -= ins.offset;
9632 cur_offset += ins.offset;
9633 *alloc_hint = ins.objectid + ins.offset;
9635 inode_inc_iversion(inode);
9636 inode_set_ctime_current(inode);
9637 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9638 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9639 (actual_len > inode->i_size) &&
9640 (cur_offset > inode->i_size)) {
9641 if (cur_offset > actual_len)
9642 i_size = actual_len;
9644 i_size = cur_offset;
9645 i_size_write(inode, i_size);
9646 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9649 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9652 btrfs_abort_transaction(trans, ret);
9654 btrfs_end_transaction(trans);
9659 btrfs_end_transaction(trans);
9663 if (clear_offset < end)
9664 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9665 end - clear_offset + 1);
9669 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9670 u64 start, u64 num_bytes, u64 min_size,
9671 loff_t actual_len, u64 *alloc_hint)
9673 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9674 min_size, actual_len, alloc_hint,
9678 int btrfs_prealloc_file_range_trans(struct inode *inode,
9679 struct btrfs_trans_handle *trans, int mode,
9680 u64 start, u64 num_bytes, u64 min_size,
9681 loff_t actual_len, u64 *alloc_hint)
9683 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9684 min_size, actual_len, alloc_hint, trans);
9687 static int btrfs_permission(struct mnt_idmap *idmap,
9688 struct inode *inode, int mask)
9690 struct btrfs_root *root = BTRFS_I(inode)->root;
9691 umode_t mode = inode->i_mode;
9693 if (mask & MAY_WRITE &&
9694 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9695 if (btrfs_root_readonly(root))
9697 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9700 return generic_permission(idmap, inode, mask);
9703 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9704 struct file *file, umode_t mode)
9706 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9707 struct btrfs_trans_handle *trans;
9708 struct btrfs_root *root = BTRFS_I(dir)->root;
9709 struct inode *inode;
9710 struct btrfs_new_inode_args new_inode_args = {
9712 .dentry = file->f_path.dentry,
9715 unsigned int trans_num_items;
9718 inode = new_inode(dir->i_sb);
9721 inode_init_owner(idmap, inode, dir, mode);
9722 inode->i_fop = &btrfs_file_operations;
9723 inode->i_op = &btrfs_file_inode_operations;
9724 inode->i_mapping->a_ops = &btrfs_aops;
9726 new_inode_args.inode = inode;
9727 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9731 trans = btrfs_start_transaction(root, trans_num_items);
9732 if (IS_ERR(trans)) {
9733 ret = PTR_ERR(trans);
9734 goto out_new_inode_args;
9737 ret = btrfs_create_new_inode(trans, &new_inode_args);
9740 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9741 * set it to 1 because d_tmpfile() will issue a warning if the count is
9744 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9746 set_nlink(inode, 1);
9749 d_tmpfile(file, inode);
9750 unlock_new_inode(inode);
9751 mark_inode_dirty(inode);
9754 btrfs_end_transaction(trans);
9755 btrfs_btree_balance_dirty(fs_info);
9757 btrfs_new_inode_args_destroy(&new_inode_args);
9761 return finish_open_simple(file, ret);
9764 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9766 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9767 unsigned long index = start >> PAGE_SHIFT;
9768 unsigned long end_index = end >> PAGE_SHIFT;
9772 ASSERT(end + 1 - start <= U32_MAX);
9773 len = end + 1 - start;
9774 while (index <= end_index) {
9775 page = find_get_page(inode->vfs_inode.i_mapping, index);
9776 ASSERT(page); /* Pages should be in the extent_io_tree */
9778 btrfs_page_set_writeback(fs_info, page, start, len);
9784 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9787 switch (compress_type) {
9788 case BTRFS_COMPRESS_NONE:
9789 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9790 case BTRFS_COMPRESS_ZLIB:
9791 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9792 case BTRFS_COMPRESS_LZO:
9794 * The LZO format depends on the sector size. 64K is the maximum
9795 * sector size that we support.
9797 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9799 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9800 (fs_info->sectorsize_bits - 12);
9801 case BTRFS_COMPRESS_ZSTD:
9802 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9808 static ssize_t btrfs_encoded_read_inline(
9810 struct iov_iter *iter, u64 start,
9812 struct extent_state **cached_state,
9813 u64 extent_start, size_t count,
9814 struct btrfs_ioctl_encoded_io_args *encoded,
9817 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9818 struct btrfs_root *root = inode->root;
9819 struct btrfs_fs_info *fs_info = root->fs_info;
9820 struct extent_io_tree *io_tree = &inode->io_tree;
9821 struct btrfs_path *path;
9822 struct extent_buffer *leaf;
9823 struct btrfs_file_extent_item *item;
9829 path = btrfs_alloc_path();
9834 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9838 /* The extent item disappeared? */
9843 leaf = path->nodes[0];
9844 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9846 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9847 ptr = btrfs_file_extent_inline_start(item);
9849 encoded->len = min_t(u64, extent_start + ram_bytes,
9850 inode->vfs_inode.i_size) - iocb->ki_pos;
9851 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9852 btrfs_file_extent_compression(leaf, item));
9855 encoded->compression = ret;
9856 if (encoded->compression) {
9859 inline_size = btrfs_file_extent_inline_item_len(leaf,
9861 if (inline_size > count) {
9865 count = inline_size;
9866 encoded->unencoded_len = ram_bytes;
9867 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9869 count = min_t(u64, count, encoded->len);
9870 encoded->len = count;
9871 encoded->unencoded_len = count;
9872 ptr += iocb->ki_pos - extent_start;
9875 tmp = kmalloc(count, GFP_NOFS);
9880 read_extent_buffer(leaf, tmp, ptr, count);
9881 btrfs_release_path(path);
9882 unlock_extent(io_tree, start, lockend, cached_state);
9883 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9886 ret = copy_to_iter(tmp, count, iter);
9891 btrfs_free_path(path);
9895 struct btrfs_encoded_read_private {
9896 wait_queue_head_t wait;
9898 blk_status_t status;
9901 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9903 struct btrfs_encoded_read_private *priv = bbio->private;
9905 if (bbio->bio.bi_status) {
9907 * The memory barrier implied by the atomic_dec_return() here
9908 * pairs with the memory barrier implied by the
9909 * atomic_dec_return() or io_wait_event() in
9910 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9911 * write is observed before the load of status in
9912 * btrfs_encoded_read_regular_fill_pages().
9914 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9916 if (!atomic_dec_return(&priv->pending))
9917 wake_up(&priv->wait);
9918 bio_put(&bbio->bio);
9921 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9922 u64 file_offset, u64 disk_bytenr,
9923 u64 disk_io_size, struct page **pages)
9925 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9926 struct btrfs_encoded_read_private priv = {
9927 .pending = ATOMIC_INIT(1),
9929 unsigned long i = 0;
9930 struct btrfs_bio *bbio;
9932 init_waitqueue_head(&priv.wait);
9934 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9935 btrfs_encoded_read_endio, &priv);
9936 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9937 bbio->inode = inode;
9940 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9942 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9943 atomic_inc(&priv.pending);
9944 btrfs_submit_bio(bbio, 0);
9946 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9947 btrfs_encoded_read_endio, &priv);
9948 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9949 bbio->inode = inode;
9954 disk_bytenr += bytes;
9955 disk_io_size -= bytes;
9956 } while (disk_io_size);
9958 atomic_inc(&priv.pending);
9959 btrfs_submit_bio(bbio, 0);
9961 if (atomic_dec_return(&priv.pending))
9962 io_wait_event(priv.wait, !atomic_read(&priv.pending));
9963 /* See btrfs_encoded_read_endio() for ordering. */
9964 return blk_status_to_errno(READ_ONCE(priv.status));
9967 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9968 struct iov_iter *iter,
9969 u64 start, u64 lockend,
9970 struct extent_state **cached_state,
9971 u64 disk_bytenr, u64 disk_io_size,
9972 size_t count, bool compressed,
9975 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9976 struct extent_io_tree *io_tree = &inode->io_tree;
9977 struct page **pages;
9978 unsigned long nr_pages, i;
9983 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9984 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9987 ret = btrfs_alloc_page_array(nr_pages, pages);
9993 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9994 disk_io_size, pages);
9998 unlock_extent(io_tree, start, lockend, cached_state);
9999 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10006 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10007 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10010 while (cur < count) {
10011 size_t bytes = min_t(size_t, count - cur,
10012 PAGE_SIZE - page_offset);
10014 if (copy_page_to_iter(pages[i], page_offset, bytes,
10025 for (i = 0; i < nr_pages; i++) {
10027 __free_page(pages[i]);
10033 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10034 struct btrfs_ioctl_encoded_io_args *encoded)
10036 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10037 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10038 struct extent_io_tree *io_tree = &inode->io_tree;
10040 size_t count = iov_iter_count(iter);
10041 u64 start, lockend, disk_bytenr, disk_io_size;
10042 struct extent_state *cached_state = NULL;
10043 struct extent_map *em;
10044 bool unlocked = false;
10046 file_accessed(iocb->ki_filp);
10048 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10050 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10051 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10054 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10056 * We don't know how long the extent containing iocb->ki_pos is, but if
10057 * it's compressed we know that it won't be longer than this.
10059 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10062 struct btrfs_ordered_extent *ordered;
10064 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10065 lockend - start + 1);
10067 goto out_unlock_inode;
10068 lock_extent(io_tree, start, lockend, &cached_state);
10069 ordered = btrfs_lookup_ordered_range(inode, start,
10070 lockend - start + 1);
10073 btrfs_put_ordered_extent(ordered);
10074 unlock_extent(io_tree, start, lockend, &cached_state);
10078 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10081 goto out_unlock_extent;
10084 if (em->block_start == EXTENT_MAP_INLINE) {
10085 u64 extent_start = em->start;
10088 * For inline extents we get everything we need out of the
10091 free_extent_map(em);
10093 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10094 &cached_state, extent_start,
10095 count, encoded, &unlocked);
10100 * We only want to return up to EOF even if the extent extends beyond
10103 encoded->len = min_t(u64, extent_map_end(em),
10104 inode->vfs_inode.i_size) - iocb->ki_pos;
10105 if (em->block_start == EXTENT_MAP_HOLE ||
10106 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10107 disk_bytenr = EXTENT_MAP_HOLE;
10108 count = min_t(u64, count, encoded->len);
10109 encoded->len = count;
10110 encoded->unencoded_len = count;
10111 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10112 disk_bytenr = em->block_start;
10114 * Bail if the buffer isn't large enough to return the whole
10115 * compressed extent.
10117 if (em->block_len > count) {
10121 disk_io_size = em->block_len;
10122 count = em->block_len;
10123 encoded->unencoded_len = em->ram_bytes;
10124 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10125 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10126 em->compress_type);
10129 encoded->compression = ret;
10131 disk_bytenr = em->block_start + (start - em->start);
10132 if (encoded->len > count)
10133 encoded->len = count;
10135 * Don't read beyond what we locked. This also limits the page
10136 * allocations that we'll do.
10138 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10139 count = start + disk_io_size - iocb->ki_pos;
10140 encoded->len = count;
10141 encoded->unencoded_len = count;
10142 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10144 free_extent_map(em);
10147 if (disk_bytenr == EXTENT_MAP_HOLE) {
10148 unlock_extent(io_tree, start, lockend, &cached_state);
10149 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10151 ret = iov_iter_zero(count, iter);
10155 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10156 &cached_state, disk_bytenr,
10157 disk_io_size, count,
10158 encoded->compression,
10164 iocb->ki_pos += encoded->len;
10166 free_extent_map(em);
10169 unlock_extent(io_tree, start, lockend, &cached_state);
10172 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10176 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10177 const struct btrfs_ioctl_encoded_io_args *encoded)
10179 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10180 struct btrfs_root *root = inode->root;
10181 struct btrfs_fs_info *fs_info = root->fs_info;
10182 struct extent_io_tree *io_tree = &inode->io_tree;
10183 struct extent_changeset *data_reserved = NULL;
10184 struct extent_state *cached_state = NULL;
10185 struct btrfs_ordered_extent *ordered;
10189 u64 num_bytes, ram_bytes, disk_num_bytes;
10190 unsigned long nr_pages, i;
10191 struct page **pages;
10192 struct btrfs_key ins;
10193 bool extent_reserved = false;
10194 struct extent_map *em;
10197 switch (encoded->compression) {
10198 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10199 compression = BTRFS_COMPRESS_ZLIB;
10201 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10202 compression = BTRFS_COMPRESS_ZSTD;
10204 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10205 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10206 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10207 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10208 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10209 /* The sector size must match for LZO. */
10210 if (encoded->compression -
10211 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10212 fs_info->sectorsize_bits)
10214 compression = BTRFS_COMPRESS_LZO;
10219 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10222 orig_count = iov_iter_count(from);
10224 /* The extent size must be sane. */
10225 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10226 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10230 * The compressed data must be smaller than the decompressed data.
10232 * It's of course possible for data to compress to larger or the same
10233 * size, but the buffered I/O path falls back to no compression for such
10234 * data, and we don't want to break any assumptions by creating these
10237 * Note that this is less strict than the current check we have that the
10238 * compressed data must be at least one sector smaller than the
10239 * decompressed data. We only want to enforce the weaker requirement
10240 * from old kernels that it is at least one byte smaller.
10242 if (orig_count >= encoded->unencoded_len)
10245 /* The extent must start on a sector boundary. */
10246 start = iocb->ki_pos;
10247 if (!IS_ALIGNED(start, fs_info->sectorsize))
10251 * The extent must end on a sector boundary. However, we allow a write
10252 * which ends at or extends i_size to have an unaligned length; we round
10253 * up the extent size and set i_size to the unaligned end.
10255 if (start + encoded->len < inode->vfs_inode.i_size &&
10256 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10259 /* Finally, the offset in the unencoded data must be sector-aligned. */
10260 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10263 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10264 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10265 end = start + num_bytes - 1;
10268 * If the extent cannot be inline, the compressed data on disk must be
10269 * sector-aligned. For convenience, we extend it with zeroes if it
10272 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10273 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10274 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10277 for (i = 0; i < nr_pages; i++) {
10278 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10281 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10286 kaddr = kmap_local_page(pages[i]);
10287 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10288 kunmap_local(kaddr);
10292 if (bytes < PAGE_SIZE)
10293 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10294 kunmap_local(kaddr);
10298 struct btrfs_ordered_extent *ordered;
10300 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10303 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10304 start >> PAGE_SHIFT,
10305 end >> PAGE_SHIFT);
10308 lock_extent(io_tree, start, end, &cached_state);
10309 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10311 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10314 btrfs_put_ordered_extent(ordered);
10315 unlock_extent(io_tree, start, end, &cached_state);
10320 * We don't use the higher-level delalloc space functions because our
10321 * num_bytes and disk_num_bytes are different.
10323 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10326 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10328 goto out_free_data_space;
10329 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10332 goto out_qgroup_free_data;
10334 /* Try an inline extent first. */
10335 if (start == 0 && encoded->unencoded_len == encoded->len &&
10336 encoded->unencoded_offset == 0) {
10337 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10338 compression, pages, true);
10342 goto out_delalloc_release;
10346 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10347 disk_num_bytes, 0, 0, &ins, 1, 1);
10349 goto out_delalloc_release;
10350 extent_reserved = true;
10352 em = create_io_em(inode, start, num_bytes,
10353 start - encoded->unencoded_offset, ins.objectid,
10354 ins.offset, ins.offset, ram_bytes, compression,
10355 BTRFS_ORDERED_COMPRESSED);
10358 goto out_free_reserved;
10360 free_extent_map(em);
10362 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10363 ins.objectid, ins.offset,
10364 encoded->unencoded_offset,
10365 (1 << BTRFS_ORDERED_ENCODED) |
10366 (1 << BTRFS_ORDERED_COMPRESSED),
10368 if (IS_ERR(ordered)) {
10369 btrfs_drop_extent_map_range(inode, start, end, false);
10370 ret = PTR_ERR(ordered);
10371 goto out_free_reserved;
10373 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10375 if (start + encoded->len > inode->vfs_inode.i_size)
10376 i_size_write(&inode->vfs_inode, start + encoded->len);
10378 unlock_extent(io_tree, start, end, &cached_state);
10380 btrfs_delalloc_release_extents(inode, num_bytes);
10382 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10387 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10388 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10389 out_delalloc_release:
10390 btrfs_delalloc_release_extents(inode, num_bytes);
10391 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10392 out_qgroup_free_data:
10394 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10395 out_free_data_space:
10397 * If btrfs_reserve_extent() succeeded, then we already decremented
10400 if (!extent_reserved)
10401 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10403 unlock_extent(io_tree, start, end, &cached_state);
10405 for (i = 0; i < nr_pages; i++) {
10407 __free_page(pages[i]);
10412 iocb->ki_pos += encoded->len;
10418 * Add an entry indicating a block group or device which is pinned by a
10419 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10420 * negative errno on failure.
10422 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10423 bool is_block_group)
10425 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10426 struct btrfs_swapfile_pin *sp, *entry;
10427 struct rb_node **p;
10428 struct rb_node *parent = NULL;
10430 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10435 sp->is_block_group = is_block_group;
10436 sp->bg_extent_count = 1;
10438 spin_lock(&fs_info->swapfile_pins_lock);
10439 p = &fs_info->swapfile_pins.rb_node;
10442 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10443 if (sp->ptr < entry->ptr ||
10444 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10445 p = &(*p)->rb_left;
10446 } else if (sp->ptr > entry->ptr ||
10447 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10448 p = &(*p)->rb_right;
10450 if (is_block_group)
10451 entry->bg_extent_count++;
10452 spin_unlock(&fs_info->swapfile_pins_lock);
10457 rb_link_node(&sp->node, parent, p);
10458 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10459 spin_unlock(&fs_info->swapfile_pins_lock);
10463 /* Free all of the entries pinned by this swapfile. */
10464 static void btrfs_free_swapfile_pins(struct inode *inode)
10466 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10467 struct btrfs_swapfile_pin *sp;
10468 struct rb_node *node, *next;
10470 spin_lock(&fs_info->swapfile_pins_lock);
10471 node = rb_first(&fs_info->swapfile_pins);
10473 next = rb_next(node);
10474 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10475 if (sp->inode == inode) {
10476 rb_erase(&sp->node, &fs_info->swapfile_pins);
10477 if (sp->is_block_group) {
10478 btrfs_dec_block_group_swap_extents(sp->ptr,
10479 sp->bg_extent_count);
10480 btrfs_put_block_group(sp->ptr);
10486 spin_unlock(&fs_info->swapfile_pins_lock);
10489 struct btrfs_swap_info {
10495 unsigned long nr_pages;
10499 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10500 struct btrfs_swap_info *bsi)
10502 unsigned long nr_pages;
10503 unsigned long max_pages;
10504 u64 first_ppage, first_ppage_reported, next_ppage;
10508 * Our swapfile may have had its size extended after the swap header was
10509 * written. In that case activating the swapfile should not go beyond
10510 * the max size set in the swap header.
10512 if (bsi->nr_pages >= sis->max)
10515 max_pages = sis->max - bsi->nr_pages;
10516 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10517 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10519 if (first_ppage >= next_ppage)
10521 nr_pages = next_ppage - first_ppage;
10522 nr_pages = min(nr_pages, max_pages);
10524 first_ppage_reported = first_ppage;
10525 if (bsi->start == 0)
10526 first_ppage_reported++;
10527 if (bsi->lowest_ppage > first_ppage_reported)
10528 bsi->lowest_ppage = first_ppage_reported;
10529 if (bsi->highest_ppage < (next_ppage - 1))
10530 bsi->highest_ppage = next_ppage - 1;
10532 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10535 bsi->nr_extents += ret;
10536 bsi->nr_pages += nr_pages;
10540 static void btrfs_swap_deactivate(struct file *file)
10542 struct inode *inode = file_inode(file);
10544 btrfs_free_swapfile_pins(inode);
10545 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10548 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10551 struct inode *inode = file_inode(file);
10552 struct btrfs_root *root = BTRFS_I(inode)->root;
10553 struct btrfs_fs_info *fs_info = root->fs_info;
10554 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10555 struct extent_state *cached_state = NULL;
10556 struct extent_map *em = NULL;
10557 struct btrfs_device *device = NULL;
10558 struct btrfs_swap_info bsi = {
10559 .lowest_ppage = (sector_t)-1ULL,
10566 * If the swap file was just created, make sure delalloc is done. If the
10567 * file changes again after this, the user is doing something stupid and
10568 * we don't really care.
10570 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10575 * The inode is locked, so these flags won't change after we check them.
10577 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10578 btrfs_warn(fs_info, "swapfile must not be compressed");
10581 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10582 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10585 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10586 btrfs_warn(fs_info, "swapfile must not be checksummed");
10591 * Balance or device remove/replace/resize can move stuff around from
10592 * under us. The exclop protection makes sure they aren't running/won't
10593 * run concurrently while we are mapping the swap extents, and
10594 * fs_info->swapfile_pins prevents them from running while the swap
10595 * file is active and moving the extents. Note that this also prevents
10596 * a concurrent device add which isn't actually necessary, but it's not
10597 * really worth the trouble to allow it.
10599 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10600 btrfs_warn(fs_info,
10601 "cannot activate swapfile while exclusive operation is running");
10606 * Prevent snapshot creation while we are activating the swap file.
10607 * We do not want to race with snapshot creation. If snapshot creation
10608 * already started before we bumped nr_swapfiles from 0 to 1 and
10609 * completes before the first write into the swap file after it is
10610 * activated, than that write would fallback to COW.
10612 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10613 btrfs_exclop_finish(fs_info);
10614 btrfs_warn(fs_info,
10615 "cannot activate swapfile because snapshot creation is in progress");
10619 * Snapshots can create extents which require COW even if NODATACOW is
10620 * set. We use this counter to prevent snapshots. We must increment it
10621 * before walking the extents because we don't want a concurrent
10622 * snapshot to run after we've already checked the extents.
10624 * It is possible that subvolume is marked for deletion but still not
10625 * removed yet. To prevent this race, we check the root status before
10626 * activating the swapfile.
10628 spin_lock(&root->root_item_lock);
10629 if (btrfs_root_dead(root)) {
10630 spin_unlock(&root->root_item_lock);
10632 btrfs_exclop_finish(fs_info);
10633 btrfs_warn(fs_info,
10634 "cannot activate swapfile because subvolume %llu is being deleted",
10635 root->root_key.objectid);
10638 atomic_inc(&root->nr_swapfiles);
10639 spin_unlock(&root->root_item_lock);
10641 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10643 lock_extent(io_tree, 0, isize - 1, &cached_state);
10645 while (start < isize) {
10646 u64 logical_block_start, physical_block_start;
10647 struct btrfs_block_group *bg;
10648 u64 len = isize - start;
10650 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10656 if (em->block_start == EXTENT_MAP_HOLE) {
10657 btrfs_warn(fs_info, "swapfile must not have holes");
10661 if (em->block_start == EXTENT_MAP_INLINE) {
10663 * It's unlikely we'll ever actually find ourselves
10664 * here, as a file small enough to fit inline won't be
10665 * big enough to store more than the swap header, but in
10666 * case something changes in the future, let's catch it
10667 * here rather than later.
10669 btrfs_warn(fs_info, "swapfile must not be inline");
10673 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10674 btrfs_warn(fs_info, "swapfile must not be compressed");
10679 logical_block_start = em->block_start + (start - em->start);
10680 len = min(len, em->len - (start - em->start));
10681 free_extent_map(em);
10684 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10690 btrfs_warn(fs_info,
10691 "swapfile must not be copy-on-write");
10696 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10702 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10703 btrfs_warn(fs_info,
10704 "swapfile must have single data profile");
10709 if (device == NULL) {
10710 device = em->map_lookup->stripes[0].dev;
10711 ret = btrfs_add_swapfile_pin(inode, device, false);
10716 } else if (device != em->map_lookup->stripes[0].dev) {
10717 btrfs_warn(fs_info, "swapfile must be on one device");
10722 physical_block_start = (em->map_lookup->stripes[0].physical +
10723 (logical_block_start - em->start));
10724 len = min(len, em->len - (logical_block_start - em->start));
10725 free_extent_map(em);
10728 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10730 btrfs_warn(fs_info,
10731 "could not find block group containing swapfile");
10736 if (!btrfs_inc_block_group_swap_extents(bg)) {
10737 btrfs_warn(fs_info,
10738 "block group for swapfile at %llu is read-only%s",
10740 atomic_read(&fs_info->scrubs_running) ?
10741 " (scrub running)" : "");
10742 btrfs_put_block_group(bg);
10747 ret = btrfs_add_swapfile_pin(inode, bg, true);
10749 btrfs_put_block_group(bg);
10756 if (bsi.block_len &&
10757 bsi.block_start + bsi.block_len == physical_block_start) {
10758 bsi.block_len += len;
10760 if (bsi.block_len) {
10761 ret = btrfs_add_swap_extent(sis, &bsi);
10766 bsi.block_start = physical_block_start;
10767 bsi.block_len = len;
10774 ret = btrfs_add_swap_extent(sis, &bsi);
10777 if (!IS_ERR_OR_NULL(em))
10778 free_extent_map(em);
10780 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10783 btrfs_swap_deactivate(file);
10785 btrfs_drew_write_unlock(&root->snapshot_lock);
10787 btrfs_exclop_finish(fs_info);
10793 sis->bdev = device->bdev;
10794 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10795 sis->max = bsi.nr_pages;
10796 sis->pages = bsi.nr_pages - 1;
10797 sis->highest_bit = bsi.nr_pages - 1;
10798 return bsi.nr_extents;
10801 static void btrfs_swap_deactivate(struct file *file)
10805 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10808 return -EOPNOTSUPP;
10813 * Update the number of bytes used in the VFS' inode. When we replace extents in
10814 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10815 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10816 * always get a correct value.
10818 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10819 const u64 add_bytes,
10820 const u64 del_bytes)
10822 if (add_bytes == del_bytes)
10825 spin_lock(&inode->lock);
10827 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10829 inode_add_bytes(&inode->vfs_inode, add_bytes);
10830 spin_unlock(&inode->lock);
10834 * Verify that there are no ordered extents for a given file range.
10836 * @inode: The target inode.
10837 * @start: Start offset of the file range, should be sector size aligned.
10838 * @end: End offset (inclusive) of the file range, its value +1 should be
10839 * sector size aligned.
10841 * This should typically be used for cases where we locked an inode's VFS lock in
10842 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10843 * we have flushed all delalloc in the range, we have waited for all ordered
10844 * extents in the range to complete and finally we have locked the file range in
10845 * the inode's io_tree.
10847 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10849 struct btrfs_root *root = inode->root;
10850 struct btrfs_ordered_extent *ordered;
10852 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10855 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10857 btrfs_err(root->fs_info,
10858 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10859 start, end, btrfs_ino(inode), root->root_key.objectid,
10860 ordered->file_offset,
10861 ordered->file_offset + ordered->num_bytes - 1);
10862 btrfs_put_ordered_extent(ordered);
10865 ASSERT(ordered == NULL);
10868 static const struct inode_operations btrfs_dir_inode_operations = {
10869 .getattr = btrfs_getattr,
10870 .lookup = btrfs_lookup,
10871 .create = btrfs_create,
10872 .unlink = btrfs_unlink,
10873 .link = btrfs_link,
10874 .mkdir = btrfs_mkdir,
10875 .rmdir = btrfs_rmdir,
10876 .rename = btrfs_rename2,
10877 .symlink = btrfs_symlink,
10878 .setattr = btrfs_setattr,
10879 .mknod = btrfs_mknod,
10880 .listxattr = btrfs_listxattr,
10881 .permission = btrfs_permission,
10882 .get_inode_acl = btrfs_get_acl,
10883 .set_acl = btrfs_set_acl,
10884 .update_time = btrfs_update_time,
10885 .tmpfile = btrfs_tmpfile,
10886 .fileattr_get = btrfs_fileattr_get,
10887 .fileattr_set = btrfs_fileattr_set,
10890 static const struct file_operations btrfs_dir_file_operations = {
10891 .llseek = btrfs_dir_llseek,
10892 .read = generic_read_dir,
10893 .iterate_shared = btrfs_real_readdir,
10894 .open = btrfs_opendir,
10895 .unlocked_ioctl = btrfs_ioctl,
10896 #ifdef CONFIG_COMPAT
10897 .compat_ioctl = btrfs_compat_ioctl,
10899 .release = btrfs_release_file,
10900 .fsync = btrfs_sync_file,
10904 * btrfs doesn't support the bmap operation because swapfiles
10905 * use bmap to make a mapping of extents in the file. They assume
10906 * these extents won't change over the life of the file and they
10907 * use the bmap result to do IO directly to the drive.
10909 * the btrfs bmap call would return logical addresses that aren't
10910 * suitable for IO and they also will change frequently as COW
10911 * operations happen. So, swapfile + btrfs == corruption.
10913 * For now we're avoiding this by dropping bmap.
10915 static const struct address_space_operations btrfs_aops = {
10916 .read_folio = btrfs_read_folio,
10917 .writepages = btrfs_writepages,
10918 .readahead = btrfs_readahead,
10919 .invalidate_folio = btrfs_invalidate_folio,
10920 .release_folio = btrfs_release_folio,
10921 .migrate_folio = btrfs_migrate_folio,
10922 .dirty_folio = filemap_dirty_folio,
10923 .error_remove_page = generic_error_remove_page,
10924 .swap_activate = btrfs_swap_activate,
10925 .swap_deactivate = btrfs_swap_deactivate,
10928 static const struct inode_operations btrfs_file_inode_operations = {
10929 .getattr = btrfs_getattr,
10930 .setattr = btrfs_setattr,
10931 .listxattr = btrfs_listxattr,
10932 .permission = btrfs_permission,
10933 .fiemap = btrfs_fiemap,
10934 .get_inode_acl = btrfs_get_acl,
10935 .set_acl = btrfs_set_acl,
10936 .update_time = btrfs_update_time,
10937 .fileattr_get = btrfs_fileattr_get,
10938 .fileattr_set = btrfs_fileattr_set,
10940 static const struct inode_operations btrfs_special_inode_operations = {
10941 .getattr = btrfs_getattr,
10942 .setattr = btrfs_setattr,
10943 .permission = btrfs_permission,
10944 .listxattr = btrfs_listxattr,
10945 .get_inode_acl = btrfs_get_acl,
10946 .set_acl = btrfs_set_acl,
10947 .update_time = btrfs_update_time,
10949 static const struct inode_operations btrfs_symlink_inode_operations = {
10950 .get_link = page_get_link,
10951 .getattr = btrfs_getattr,
10952 .setattr = btrfs_setattr,
10953 .permission = btrfs_permission,
10954 .listxattr = btrfs_listxattr,
10955 .update_time = btrfs_update_time,
10958 const struct dentry_operations btrfs_dentry_operations = {
10959 .d_delete = btrfs_dentry_delete,