1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "ordered-data.h"
42 #include "compression.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
52 struct btrfs_iget_args {
53 struct btrfs_key *location;
54 struct btrfs_root *root;
57 struct btrfs_dio_data {
59 u64 unsubmitted_oe_range_start;
60 u64 unsubmitted_oe_range_end;
64 static const struct inode_operations btrfs_dir_inode_operations;
65 static const struct inode_operations btrfs_symlink_inode_operations;
66 static const struct inode_operations btrfs_dir_ro_inode_operations;
67 static const struct inode_operations btrfs_special_inode_operations;
68 static const struct inode_operations btrfs_file_inode_operations;
69 static const struct address_space_operations btrfs_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static const struct extent_io_ops btrfs_extent_io_ops;
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
78 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
79 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
81 static noinline int cow_file_range(struct inode *inode,
82 struct page *locked_page,
83 u64 start, u64 end, int *page_started,
84 unsigned long *nr_written, int unlock);
85 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
86 u64 orig_start, u64 block_start,
87 u64 block_len, u64 orig_block_len,
88 u64 ram_bytes, int compress_type,
91 static void __endio_write_update_ordered(struct inode *inode,
92 const u64 offset, const u64 bytes,
96 * Cleanup all submitted ordered extents in specified range to handle errors
97 * from the btrfs_run_delalloc_range() callback.
99 * NOTE: caller must ensure that when an error happens, it can not call
100 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
101 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
102 * to be released, which we want to happen only when finishing the ordered
103 * extent (btrfs_finish_ordered_io()).
105 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
106 struct page *locked_page,
107 u64 offset, u64 bytes)
109 unsigned long index = offset >> PAGE_SHIFT;
110 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
111 u64 page_start = page_offset(locked_page);
112 u64 page_end = page_start + PAGE_SIZE - 1;
116 while (index <= end_index) {
117 page = find_get_page(inode->i_mapping, index);
121 ClearPagePrivate2(page);
126 * In case this page belongs to the delalloc range being instantiated
127 * then skip it, since the first page of a range is going to be
128 * properly cleaned up by the caller of run_delalloc_range
130 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
135 return __endio_write_update_ordered(inode, offset, bytes, false);
138 static int btrfs_dirty_inode(struct inode *inode);
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode *inode)
143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148 struct inode *inode, struct inode *dir,
149 const struct qstr *qstr)
153 err = btrfs_init_acl(trans, inode, dir);
155 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
160 * this does all the hard work for inserting an inline extent into
161 * the btree. The caller should have done a btrfs_drop_extents so that
162 * no overlapping inline items exist in the btree
164 static int insert_inline_extent(struct btrfs_trans_handle *trans,
165 struct btrfs_path *path, int extent_inserted,
166 struct btrfs_root *root, struct inode *inode,
167 u64 start, size_t size, size_t compressed_size,
169 struct page **compressed_pages)
171 struct extent_buffer *leaf;
172 struct page *page = NULL;
175 struct btrfs_file_extent_item *ei;
177 size_t cur_size = size;
178 unsigned long offset;
180 ASSERT((compressed_size > 0 && compressed_pages) ||
181 (compressed_size == 0 && !compressed_pages));
183 if (compressed_size && compressed_pages)
184 cur_size = compressed_size;
186 inode_add_bytes(inode, size);
188 if (!extent_inserted) {
189 struct btrfs_key key;
192 key.objectid = btrfs_ino(BTRFS_I(inode));
194 key.type = BTRFS_EXTENT_DATA_KEY;
196 datasize = btrfs_file_extent_calc_inline_size(cur_size);
197 path->leave_spinning = 1;
198 ret = btrfs_insert_empty_item(trans, root, path, &key,
203 leaf = path->nodes[0];
204 ei = btrfs_item_ptr(leaf, path->slots[0],
205 struct btrfs_file_extent_item);
206 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
207 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
208 btrfs_set_file_extent_encryption(leaf, ei, 0);
209 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
210 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
211 ptr = btrfs_file_extent_inline_start(ei);
213 if (compress_type != BTRFS_COMPRESS_NONE) {
216 while (compressed_size > 0) {
217 cpage = compressed_pages[i];
218 cur_size = min_t(unsigned long, compressed_size,
221 kaddr = kmap_atomic(cpage);
222 write_extent_buffer(leaf, kaddr, ptr, cur_size);
223 kunmap_atomic(kaddr);
227 compressed_size -= cur_size;
229 btrfs_set_file_extent_compression(leaf, ei,
232 page = find_get_page(inode->i_mapping,
233 start >> PAGE_SHIFT);
234 btrfs_set_file_extent_compression(leaf, ei, 0);
235 kaddr = kmap_atomic(page);
236 offset = offset_in_page(start);
237 write_extent_buffer(leaf, kaddr + offset, ptr, size);
238 kunmap_atomic(kaddr);
241 btrfs_mark_buffer_dirty(leaf);
242 btrfs_release_path(path);
245 * we're an inline extent, so nobody can
246 * extend the file past i_size without locking
247 * a page we already have locked.
249 * We must do any isize and inode updates
250 * before we unlock the pages. Otherwise we
251 * could end up racing with unlink.
253 BTRFS_I(inode)->disk_i_size = inode->i_size;
254 ret = btrfs_update_inode(trans, root, inode);
262 * conditionally insert an inline extent into the file. This
263 * does the checks required to make sure the data is small enough
264 * to fit as an inline extent.
266 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
267 u64 end, size_t compressed_size,
269 struct page **compressed_pages)
271 struct btrfs_root *root = BTRFS_I(inode)->root;
272 struct btrfs_fs_info *fs_info = root->fs_info;
273 struct btrfs_trans_handle *trans;
274 u64 isize = i_size_read(inode);
275 u64 actual_end = min(end + 1, isize);
276 u64 inline_len = actual_end - start;
277 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
278 u64 data_len = inline_len;
280 struct btrfs_path *path;
281 int extent_inserted = 0;
282 u32 extent_item_size;
285 data_len = compressed_size;
288 actual_end > fs_info->sectorsize ||
289 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
291 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
293 data_len > fs_info->max_inline) {
297 path = btrfs_alloc_path();
301 trans = btrfs_join_transaction(root);
303 btrfs_free_path(path);
304 return PTR_ERR(trans);
306 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
308 if (compressed_size && compressed_pages)
309 extent_item_size = btrfs_file_extent_calc_inline_size(
312 extent_item_size = btrfs_file_extent_calc_inline_size(
315 ret = __btrfs_drop_extents(trans, root, inode, path,
316 start, aligned_end, NULL,
317 1, 1, extent_item_size, &extent_inserted);
319 btrfs_abort_transaction(trans, ret);
323 if (isize > actual_end)
324 inline_len = min_t(u64, isize, actual_end);
325 ret = insert_inline_extent(trans, path, extent_inserted,
327 inline_len, compressed_size,
328 compress_type, compressed_pages);
329 if (ret && ret != -ENOSPC) {
330 btrfs_abort_transaction(trans, ret);
332 } else if (ret == -ENOSPC) {
337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
338 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
341 * Don't forget to free the reserved space, as for inlined extent
342 * it won't count as data extent, free them directly here.
343 * And at reserve time, it's always aligned to page size, so
344 * just free one page here.
346 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
347 btrfs_free_path(path);
348 btrfs_end_transaction(trans);
352 struct async_extent {
357 unsigned long nr_pages;
359 struct list_head list;
364 struct page *locked_page;
367 unsigned int write_flags;
368 struct list_head extents;
369 struct btrfs_work work;
374 /* Number of chunks in flight; must be first in the structure */
376 struct async_chunk chunks[];
379 static noinline int add_async_extent(struct async_chunk *cow,
380 u64 start, u64 ram_size,
383 unsigned long nr_pages,
386 struct async_extent *async_extent;
388 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
389 BUG_ON(!async_extent); /* -ENOMEM */
390 async_extent->start = start;
391 async_extent->ram_size = ram_size;
392 async_extent->compressed_size = compressed_size;
393 async_extent->pages = pages;
394 async_extent->nr_pages = nr_pages;
395 async_extent->compress_type = compress_type;
396 list_add_tail(&async_extent->list, &cow->extents);
401 * Check if the inode has flags compatible with compression
403 static inline bool inode_can_compress(struct inode *inode)
405 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
406 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
412 * Check if the inode needs to be submitted to compression, based on mount
413 * options, defragmentation, properties or heuristics.
415 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
419 if (!inode_can_compress(inode)) {
420 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
421 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
422 btrfs_ino(BTRFS_I(inode)));
426 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
429 if (BTRFS_I(inode)->defrag_compress)
431 /* bad compression ratios */
432 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
434 if (btrfs_test_opt(fs_info, COMPRESS) ||
435 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
436 BTRFS_I(inode)->prop_compress)
437 return btrfs_compress_heuristic(inode, start, end);
441 static inline void inode_should_defrag(struct btrfs_inode *inode,
442 u64 start, u64 end, u64 num_bytes, u64 small_write)
444 /* If this is a small write inside eof, kick off a defrag */
445 if (num_bytes < small_write &&
446 (start > 0 || end + 1 < inode->disk_i_size))
447 btrfs_add_inode_defrag(NULL, inode);
451 * we create compressed extents in two phases. The first
452 * phase compresses a range of pages that have already been
453 * locked (both pages and state bits are locked).
455 * This is done inside an ordered work queue, and the compression
456 * is spread across many cpus. The actual IO submission is step
457 * two, and the ordered work queue takes care of making sure that
458 * happens in the same order things were put onto the queue by
459 * writepages and friends.
461 * If this code finds it can't get good compression, it puts an
462 * entry onto the work queue to write the uncompressed bytes. This
463 * makes sure that both compressed inodes and uncompressed inodes
464 * are written in the same order that the flusher thread sent them
467 static noinline int compress_file_range(struct async_chunk *async_chunk)
469 struct inode *inode = async_chunk->inode;
470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
471 u64 blocksize = fs_info->sectorsize;
472 u64 start = async_chunk->start;
473 u64 end = async_chunk->end;
476 struct page **pages = NULL;
477 unsigned long nr_pages;
478 unsigned long total_compressed = 0;
479 unsigned long total_in = 0;
482 int compress_type = fs_info->compress_type;
483 int compressed_extents = 0;
486 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
489 actual_end = min_t(u64, i_size_read(inode), end + 1);
492 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
493 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
494 nr_pages = min_t(unsigned long, nr_pages,
495 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
498 * we don't want to send crud past the end of i_size through
499 * compression, that's just a waste of CPU time. So, if the
500 * end of the file is before the start of our current
501 * requested range of bytes, we bail out to the uncompressed
502 * cleanup code that can deal with all of this.
504 * It isn't really the fastest way to fix things, but this is a
505 * very uncommon corner.
507 if (actual_end <= start)
508 goto cleanup_and_bail_uncompressed;
510 total_compressed = actual_end - start;
513 * skip compression for a small file range(<=blocksize) that
514 * isn't an inline extent, since it doesn't save disk space at all.
516 if (total_compressed <= blocksize &&
517 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
518 goto cleanup_and_bail_uncompressed;
520 total_compressed = min_t(unsigned long, total_compressed,
521 BTRFS_MAX_UNCOMPRESSED);
526 * we do compression for mount -o compress and when the
527 * inode has not been flagged as nocompress. This flag can
528 * change at any time if we discover bad compression ratios.
530 if (inode_need_compress(inode, start, end)) {
532 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
534 /* just bail out to the uncompressed code */
539 if (BTRFS_I(inode)->defrag_compress)
540 compress_type = BTRFS_I(inode)->defrag_compress;
541 else if (BTRFS_I(inode)->prop_compress)
542 compress_type = BTRFS_I(inode)->prop_compress;
545 * we need to call clear_page_dirty_for_io on each
546 * page in the range. Otherwise applications with the file
547 * mmap'd can wander in and change the page contents while
548 * we are compressing them.
550 * If the compression fails for any reason, we set the pages
551 * dirty again later on.
553 * Note that the remaining part is redirtied, the start pointer
554 * has moved, the end is the original one.
557 extent_range_clear_dirty_for_io(inode, start, end);
561 /* Compression level is applied here and only here */
562 ret = btrfs_compress_pages(
563 compress_type | (fs_info->compress_level << 4),
564 inode->i_mapping, start,
571 unsigned long offset = offset_in_page(total_compressed);
572 struct page *page = pages[nr_pages - 1];
575 /* zero the tail end of the last page, we might be
576 * sending it down to disk
579 kaddr = kmap_atomic(page);
580 memset(kaddr + offset, 0,
582 kunmap_atomic(kaddr);
589 /* lets try to make an inline extent */
590 if (ret || total_in < actual_end) {
591 /* we didn't compress the entire range, try
592 * to make an uncompressed inline extent.
594 ret = cow_file_range_inline(inode, start, end, 0,
595 BTRFS_COMPRESS_NONE, NULL);
597 /* try making a compressed inline extent */
598 ret = cow_file_range_inline(inode, start, end,
600 compress_type, pages);
603 unsigned long clear_flags = EXTENT_DELALLOC |
604 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
605 EXTENT_DO_ACCOUNTING;
606 unsigned long page_error_op;
608 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
611 * inline extent creation worked or returned error,
612 * we don't need to create any more async work items.
613 * Unlock and free up our temp pages.
615 * We use DO_ACCOUNTING here because we need the
616 * delalloc_release_metadata to be done _after_ we drop
617 * our outstanding extent for clearing delalloc for this
620 extent_clear_unlock_delalloc(inode, start, end, NULL,
628 for (i = 0; i < nr_pages; i++) {
629 WARN_ON(pages[i]->mapping);
640 * we aren't doing an inline extent round the compressed size
641 * up to a block size boundary so the allocator does sane
644 total_compressed = ALIGN(total_compressed, blocksize);
647 * one last check to make sure the compression is really a
648 * win, compare the page count read with the blocks on disk,
649 * compression must free at least one sector size
651 total_in = ALIGN(total_in, PAGE_SIZE);
652 if (total_compressed + blocksize <= total_in) {
653 compressed_extents++;
656 * The async work queues will take care of doing actual
657 * allocation on disk for these compressed pages, and
658 * will submit them to the elevator.
660 add_async_extent(async_chunk, start, total_in,
661 total_compressed, pages, nr_pages,
664 if (start + total_in < end) {
670 return compressed_extents;
675 * the compression code ran but failed to make things smaller,
676 * free any pages it allocated and our page pointer array
678 for (i = 0; i < nr_pages; i++) {
679 WARN_ON(pages[i]->mapping);
684 total_compressed = 0;
687 /* flag the file so we don't compress in the future */
688 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
689 !(BTRFS_I(inode)->prop_compress)) {
690 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
693 cleanup_and_bail_uncompressed:
695 * No compression, but we still need to write the pages in the file
696 * we've been given so far. redirty the locked page if it corresponds
697 * to our extent and set things up for the async work queue to run
698 * cow_file_range to do the normal delalloc dance.
700 if (page_offset(async_chunk->locked_page) >= start &&
701 page_offset(async_chunk->locked_page) <= end)
702 __set_page_dirty_nobuffers(async_chunk->locked_page);
703 /* unlocked later on in the async handlers */
706 extent_range_redirty_for_io(inode, start, end);
707 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
708 BTRFS_COMPRESS_NONE);
709 compressed_extents++;
711 return compressed_extents;
714 static void free_async_extent_pages(struct async_extent *async_extent)
718 if (!async_extent->pages)
721 for (i = 0; i < async_extent->nr_pages; i++) {
722 WARN_ON(async_extent->pages[i]->mapping);
723 put_page(async_extent->pages[i]);
725 kfree(async_extent->pages);
726 async_extent->nr_pages = 0;
727 async_extent->pages = NULL;
731 * phase two of compressed writeback. This is the ordered portion
732 * of the code, which only gets called in the order the work was
733 * queued. We walk all the async extents created by compress_file_range
734 * and send them down to the disk.
736 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
738 struct inode *inode = async_chunk->inode;
739 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
740 struct async_extent *async_extent;
742 struct btrfs_key ins;
743 struct extent_map *em;
744 struct btrfs_root *root = BTRFS_I(inode)->root;
745 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
749 while (!list_empty(&async_chunk->extents)) {
750 async_extent = list_entry(async_chunk->extents.next,
751 struct async_extent, list);
752 list_del(&async_extent->list);
755 lock_extent(io_tree, async_extent->start,
756 async_extent->start + async_extent->ram_size - 1);
757 /* did the compression code fall back to uncompressed IO? */
758 if (!async_extent->pages) {
759 int page_started = 0;
760 unsigned long nr_written = 0;
762 /* allocate blocks */
763 ret = cow_file_range(inode, async_chunk->locked_page,
765 async_extent->start +
766 async_extent->ram_size - 1,
767 &page_started, &nr_written, 0);
772 * if page_started, cow_file_range inserted an
773 * inline extent and took care of all the unlocking
774 * and IO for us. Otherwise, we need to submit
775 * all those pages down to the drive.
777 if (!page_started && !ret)
778 extent_write_locked_range(inode,
780 async_extent->start +
781 async_extent->ram_size - 1,
784 unlock_page(async_chunk->locked_page);
790 ret = btrfs_reserve_extent(root, async_extent->ram_size,
791 async_extent->compressed_size,
792 async_extent->compressed_size,
793 0, alloc_hint, &ins, 1, 1);
795 free_async_extent_pages(async_extent);
797 if (ret == -ENOSPC) {
798 unlock_extent(io_tree, async_extent->start,
799 async_extent->start +
800 async_extent->ram_size - 1);
803 * we need to redirty the pages if we decide to
804 * fallback to uncompressed IO, otherwise we
805 * will not submit these pages down to lower
808 extent_range_redirty_for_io(inode,
810 async_extent->start +
811 async_extent->ram_size - 1);
818 * here we're doing allocation and writeback of the
821 em = create_io_em(inode, async_extent->start,
822 async_extent->ram_size, /* len */
823 async_extent->start, /* orig_start */
824 ins.objectid, /* block_start */
825 ins.offset, /* block_len */
826 ins.offset, /* orig_block_len */
827 async_extent->ram_size, /* ram_bytes */
828 async_extent->compress_type,
829 BTRFS_ORDERED_COMPRESSED);
831 /* ret value is not necessary due to void function */
832 goto out_free_reserve;
835 ret = btrfs_add_ordered_extent_compress(inode,
838 async_extent->ram_size,
840 BTRFS_ORDERED_COMPRESSED,
841 async_extent->compress_type);
843 btrfs_drop_extent_cache(BTRFS_I(inode),
845 async_extent->start +
846 async_extent->ram_size - 1, 0);
847 goto out_free_reserve;
849 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
852 * clear dirty, set writeback and unlock the pages.
854 extent_clear_unlock_delalloc(inode, async_extent->start,
855 async_extent->start +
856 async_extent->ram_size - 1,
857 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
860 if (btrfs_submit_compressed_write(inode,
862 async_extent->ram_size,
864 ins.offset, async_extent->pages,
865 async_extent->nr_pages,
866 async_chunk->write_flags)) {
867 struct page *p = async_extent->pages[0];
868 const u64 start = async_extent->start;
869 const u64 end = start + async_extent->ram_size - 1;
871 p->mapping = inode->i_mapping;
872 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
875 extent_clear_unlock_delalloc(inode, start, end,
879 free_async_extent_pages(async_extent);
881 alloc_hint = ins.objectid + ins.offset;
887 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
888 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
890 extent_clear_unlock_delalloc(inode, async_extent->start,
891 async_extent->start +
892 async_extent->ram_size - 1,
893 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
894 EXTENT_DELALLOC_NEW |
895 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
896 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
897 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
899 free_async_extent_pages(async_extent);
904 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
907 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
908 struct extent_map *em;
911 read_lock(&em_tree->lock);
912 em = search_extent_mapping(em_tree, start, num_bytes);
915 * if block start isn't an actual block number then find the
916 * first block in this inode and use that as a hint. If that
917 * block is also bogus then just don't worry about it.
919 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
921 em = search_extent_mapping(em_tree, 0, 0);
922 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
923 alloc_hint = em->block_start;
927 alloc_hint = em->block_start;
931 read_unlock(&em_tree->lock);
937 * when extent_io.c finds a delayed allocation range in the file,
938 * the call backs end up in this code. The basic idea is to
939 * allocate extents on disk for the range, and create ordered data structs
940 * in ram to track those extents.
942 * locked_page is the page that writepage had locked already. We use
943 * it to make sure we don't do extra locks or unlocks.
945 * *page_started is set to one if we unlock locked_page and do everything
946 * required to start IO on it. It may be clean and already done with
949 static noinline int cow_file_range(struct inode *inode,
950 struct page *locked_page,
951 u64 start, u64 end, int *page_started,
952 unsigned long *nr_written, int unlock)
954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
955 struct btrfs_root *root = BTRFS_I(inode)->root;
958 unsigned long ram_size;
959 u64 cur_alloc_size = 0;
960 u64 blocksize = fs_info->sectorsize;
961 struct btrfs_key ins;
962 struct extent_map *em;
964 unsigned long page_ops;
965 bool extent_reserved = false;
968 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
974 num_bytes = ALIGN(end - start + 1, blocksize);
975 num_bytes = max(blocksize, num_bytes);
976 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
978 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
981 /* lets try to make an inline extent */
982 ret = cow_file_range_inline(inode, start, end, 0,
983 BTRFS_COMPRESS_NONE, NULL);
986 * We use DO_ACCOUNTING here because we need the
987 * delalloc_release_metadata to be run _after_ we drop
988 * our outstanding extent for clearing delalloc for this
991 extent_clear_unlock_delalloc(inode, start, end, NULL,
992 EXTENT_LOCKED | EXTENT_DELALLOC |
993 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
994 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
995 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
997 *nr_written = *nr_written +
998 (end - start + PAGE_SIZE) / PAGE_SIZE;
1001 } else if (ret < 0) {
1006 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1007 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1008 start + num_bytes - 1, 0);
1010 while (num_bytes > 0) {
1011 cur_alloc_size = num_bytes;
1012 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1013 fs_info->sectorsize, 0, alloc_hint,
1017 cur_alloc_size = ins.offset;
1018 extent_reserved = true;
1020 ram_size = ins.offset;
1021 em = create_io_em(inode, start, ins.offset, /* len */
1022 start, /* orig_start */
1023 ins.objectid, /* block_start */
1024 ins.offset, /* block_len */
1025 ins.offset, /* orig_block_len */
1026 ram_size, /* ram_bytes */
1027 BTRFS_COMPRESS_NONE, /* compress_type */
1028 BTRFS_ORDERED_REGULAR /* type */);
1033 free_extent_map(em);
1035 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1036 ram_size, cur_alloc_size, 0);
1038 goto out_drop_extent_cache;
1040 if (root->root_key.objectid ==
1041 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1042 ret = btrfs_reloc_clone_csums(inode, start,
1045 * Only drop cache here, and process as normal.
1047 * We must not allow extent_clear_unlock_delalloc()
1048 * at out_unlock label to free meta of this ordered
1049 * extent, as its meta should be freed by
1050 * btrfs_finish_ordered_io().
1052 * So we must continue until @start is increased to
1053 * skip current ordered extent.
1056 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1057 start + ram_size - 1, 0);
1060 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1062 /* we're not doing compressed IO, don't unlock the first
1063 * page (which the caller expects to stay locked), don't
1064 * clear any dirty bits and don't set any writeback bits
1066 * Do set the Private2 bit so we know this page was properly
1067 * setup for writepage
1069 page_ops = unlock ? PAGE_UNLOCK : 0;
1070 page_ops |= PAGE_SET_PRIVATE2;
1072 extent_clear_unlock_delalloc(inode, start,
1073 start + ram_size - 1,
1075 EXTENT_LOCKED | EXTENT_DELALLOC,
1077 if (num_bytes < cur_alloc_size)
1080 num_bytes -= cur_alloc_size;
1081 alloc_hint = ins.objectid + ins.offset;
1082 start += cur_alloc_size;
1083 extent_reserved = false;
1086 * btrfs_reloc_clone_csums() error, since start is increased
1087 * extent_clear_unlock_delalloc() at out_unlock label won't
1088 * free metadata of current ordered extent, we're OK to exit.
1096 out_drop_extent_cache:
1097 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1099 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1100 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1102 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1103 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1104 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1107 * If we reserved an extent for our delalloc range (or a subrange) and
1108 * failed to create the respective ordered extent, then it means that
1109 * when we reserved the extent we decremented the extent's size from
1110 * the data space_info's bytes_may_use counter and incremented the
1111 * space_info's bytes_reserved counter by the same amount. We must make
1112 * sure extent_clear_unlock_delalloc() does not try to decrement again
1113 * the data space_info's bytes_may_use counter, therefore we do not pass
1114 * it the flag EXTENT_CLEAR_DATA_RESV.
1116 if (extent_reserved) {
1117 extent_clear_unlock_delalloc(inode, start,
1118 start + cur_alloc_size,
1122 start += cur_alloc_size;
1126 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1127 clear_bits | EXTENT_CLEAR_DATA_RESV,
1133 * work queue call back to started compression on a file and pages
1135 static noinline void async_cow_start(struct btrfs_work *work)
1137 struct async_chunk *async_chunk;
1138 int compressed_extents;
1140 async_chunk = container_of(work, struct async_chunk, work);
1142 compressed_extents = compress_file_range(async_chunk);
1143 if (compressed_extents == 0) {
1144 btrfs_add_delayed_iput(async_chunk->inode);
1145 async_chunk->inode = NULL;
1150 * work queue call back to submit previously compressed pages
1152 static noinline void async_cow_submit(struct btrfs_work *work)
1154 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1156 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1157 unsigned long nr_pages;
1159 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1162 /* atomic_sub_return implies a barrier */
1163 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1165 cond_wake_up_nomb(&fs_info->async_submit_wait);
1168 * ->inode could be NULL if async_chunk_start has failed to compress,
1169 * in which case we don't have anything to submit, yet we need to
1170 * always adjust ->async_delalloc_pages as its paired with the init
1171 * happening in cow_file_range_async
1173 if (async_chunk->inode)
1174 submit_compressed_extents(async_chunk);
1177 static noinline void async_cow_free(struct btrfs_work *work)
1179 struct async_chunk *async_chunk;
1181 async_chunk = container_of(work, struct async_chunk, work);
1182 if (async_chunk->inode)
1183 btrfs_add_delayed_iput(async_chunk->inode);
1185 * Since the pointer to 'pending' is at the beginning of the array of
1186 * async_chunk's, freeing it ensures the whole array has been freed.
1188 if (atomic_dec_and_test(async_chunk->pending))
1189 kvfree(async_chunk->pending);
1192 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1193 u64 start, u64 end, int *page_started,
1194 unsigned long *nr_written,
1195 unsigned int write_flags)
1197 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1198 struct async_cow *ctx;
1199 struct async_chunk *async_chunk;
1200 unsigned long nr_pages;
1202 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1204 bool should_compress;
1207 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1209 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1210 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1212 should_compress = false;
1214 should_compress = true;
1217 nofs_flag = memalloc_nofs_save();
1218 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1219 memalloc_nofs_restore(nofs_flag);
1222 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1223 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1224 EXTENT_DO_ACCOUNTING;
1225 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1226 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1229 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1230 clear_bits, page_ops);
1234 async_chunk = ctx->chunks;
1235 atomic_set(&ctx->num_chunks, num_chunks);
1237 for (i = 0; i < num_chunks; i++) {
1238 if (should_compress)
1239 cur_end = min(end, start + SZ_512K - 1);
1244 * igrab is called higher up in the call chain, take only the
1245 * lightweight reference for the callback lifetime
1248 async_chunk[i].pending = &ctx->num_chunks;
1249 async_chunk[i].inode = inode;
1250 async_chunk[i].start = start;
1251 async_chunk[i].end = cur_end;
1252 async_chunk[i].locked_page = locked_page;
1253 async_chunk[i].write_flags = write_flags;
1254 INIT_LIST_HEAD(&async_chunk[i].extents);
1256 btrfs_init_work(&async_chunk[i].work,
1257 btrfs_delalloc_helper,
1258 async_cow_start, async_cow_submit,
1261 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1262 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1264 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1266 *nr_written += nr_pages;
1267 start = cur_end + 1;
1273 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1274 u64 bytenr, u64 num_bytes)
1277 struct btrfs_ordered_sum *sums;
1280 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1281 bytenr + num_bytes - 1, &list, 0);
1282 if (ret == 0 && list_empty(&list))
1285 while (!list_empty(&list)) {
1286 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1287 list_del(&sums->list);
1296 * when nowcow writeback call back. This checks for snapshots or COW copies
1297 * of the extents that exist in the file, and COWs the file as required.
1299 * If no cow copies or snapshots exist, we write directly to the existing
1302 static noinline int run_delalloc_nocow(struct inode *inode,
1303 struct page *locked_page,
1304 const u64 start, const u64 end,
1305 int *page_started, int force,
1306 unsigned long *nr_written)
1308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1309 struct btrfs_root *root = BTRFS_I(inode)->root;
1310 struct btrfs_path *path;
1311 u64 cow_start = (u64)-1;
1312 u64 cur_offset = start;
1314 bool check_prev = true;
1315 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1316 u64 ino = btrfs_ino(BTRFS_I(inode));
1318 u64 disk_bytenr = 0;
1320 path = btrfs_alloc_path();
1322 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1323 EXTENT_LOCKED | EXTENT_DELALLOC |
1324 EXTENT_DO_ACCOUNTING |
1325 EXTENT_DEFRAG, PAGE_UNLOCK |
1327 PAGE_SET_WRITEBACK |
1328 PAGE_END_WRITEBACK);
1333 struct btrfs_key found_key;
1334 struct btrfs_file_extent_item *fi;
1335 struct extent_buffer *leaf;
1345 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1351 * If there is no extent for our range when doing the initial
1352 * search, then go back to the previous slot as it will be the
1353 * one containing the search offset
1355 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1356 leaf = path->nodes[0];
1357 btrfs_item_key_to_cpu(leaf, &found_key,
1358 path->slots[0] - 1);
1359 if (found_key.objectid == ino &&
1360 found_key.type == BTRFS_EXTENT_DATA_KEY)
1365 /* Go to next leaf if we have exhausted the current one */
1366 leaf = path->nodes[0];
1367 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1368 ret = btrfs_next_leaf(root, path);
1370 if (cow_start != (u64)-1)
1371 cur_offset = cow_start;
1376 leaf = path->nodes[0];
1379 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1381 /* Didn't find anything for our INO */
1382 if (found_key.objectid > ino)
1385 * Keep searching until we find an EXTENT_ITEM or there are no
1386 * more extents for this inode
1388 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1389 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1394 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1395 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1396 found_key.offset > end)
1400 * If the found extent starts after requested offset, then
1401 * adjust extent_end to be right before this extent begins
1403 if (found_key.offset > cur_offset) {
1404 extent_end = found_key.offset;
1410 * Found extent which begins before our range and potentially
1413 fi = btrfs_item_ptr(leaf, path->slots[0],
1414 struct btrfs_file_extent_item);
1415 extent_type = btrfs_file_extent_type(leaf, fi);
1417 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1418 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1419 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1420 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1421 extent_offset = btrfs_file_extent_offset(leaf, fi);
1422 extent_end = found_key.offset +
1423 btrfs_file_extent_num_bytes(leaf, fi);
1425 btrfs_file_extent_disk_num_bytes(leaf, fi);
1427 * If extent we got ends before our range starts, skip
1430 if (extent_end <= start) {
1435 if (disk_bytenr == 0)
1437 /* Skip compressed/encrypted/encoded extents */
1438 if (btrfs_file_extent_compression(leaf, fi) ||
1439 btrfs_file_extent_encryption(leaf, fi) ||
1440 btrfs_file_extent_other_encoding(leaf, fi))
1443 * If extent is created before the last volume's snapshot
1444 * this implies the extent is shared, hence we can't do
1445 * nocow. This is the same check as in
1446 * btrfs_cross_ref_exist but without calling
1447 * btrfs_search_slot.
1449 if (!freespace_inode &&
1450 btrfs_file_extent_generation(leaf, fi) <=
1451 btrfs_root_last_snapshot(&root->root_item))
1453 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1455 /* If extent is RO, we must COW it */
1456 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1458 ret = btrfs_cross_ref_exist(root, ino,
1460 extent_offset, disk_bytenr);
1463 * ret could be -EIO if the above fails to read
1467 if (cow_start != (u64)-1)
1468 cur_offset = cow_start;
1472 WARN_ON_ONCE(freespace_inode);
1475 disk_bytenr += extent_offset;
1476 disk_bytenr += cur_offset - found_key.offset;
1477 num_bytes = min(end + 1, extent_end) - cur_offset;
1479 * If there are pending snapshots for this root, we
1480 * fall into common COW way
1482 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1485 * force cow if csum exists in the range.
1486 * this ensure that csum for a given extent are
1487 * either valid or do not exist.
1489 ret = csum_exist_in_range(fs_info, disk_bytenr,
1493 * ret could be -EIO if the above fails to read
1497 if (cow_start != (u64)-1)
1498 cur_offset = cow_start;
1501 WARN_ON_ONCE(freespace_inode);
1504 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1507 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1508 extent_end = found_key.offset + ram_bytes;
1509 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1510 /* Skip extents outside of our requested range */
1511 if (extent_end <= start) {
1516 /* If this triggers then we have a memory corruption */
1521 * If nocow is false then record the beginning of the range
1522 * that needs to be COWed
1525 if (cow_start == (u64)-1)
1526 cow_start = cur_offset;
1527 cur_offset = extent_end;
1528 if (cur_offset > end)
1534 btrfs_release_path(path);
1537 * COW range from cow_start to found_key.offset - 1. As the key
1538 * will contain the beginning of the first extent that can be
1539 * NOCOW, following one which needs to be COW'ed
1541 if (cow_start != (u64)-1) {
1542 ret = cow_file_range(inode, locked_page,
1543 cow_start, found_key.offset - 1,
1544 page_started, nr_written, 1);
1547 btrfs_dec_nocow_writers(fs_info,
1551 cow_start = (u64)-1;
1554 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1555 u64 orig_start = found_key.offset - extent_offset;
1556 struct extent_map *em;
1558 em = create_io_em(inode, cur_offset, num_bytes,
1560 disk_bytenr, /* block_start */
1561 num_bytes, /* block_len */
1562 disk_num_bytes, /* orig_block_len */
1563 ram_bytes, BTRFS_COMPRESS_NONE,
1564 BTRFS_ORDERED_PREALLOC);
1567 btrfs_dec_nocow_writers(fs_info,
1572 free_extent_map(em);
1573 ret = btrfs_add_ordered_extent(inode, cur_offset,
1574 disk_bytenr, num_bytes,
1576 BTRFS_ORDERED_PREALLOC);
1578 btrfs_drop_extent_cache(BTRFS_I(inode),
1580 cur_offset + num_bytes - 1,
1585 ret = btrfs_add_ordered_extent(inode, cur_offset,
1586 disk_bytenr, num_bytes,
1588 BTRFS_ORDERED_NOCOW);
1594 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1597 if (root->root_key.objectid ==
1598 BTRFS_DATA_RELOC_TREE_OBJECTID)
1600 * Error handled later, as we must prevent
1601 * extent_clear_unlock_delalloc() in error handler
1602 * from freeing metadata of created ordered extent.
1604 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1607 extent_clear_unlock_delalloc(inode, cur_offset,
1608 cur_offset + num_bytes - 1,
1609 locked_page, EXTENT_LOCKED |
1611 EXTENT_CLEAR_DATA_RESV,
1612 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1614 cur_offset = extent_end;
1617 * btrfs_reloc_clone_csums() error, now we're OK to call error
1618 * handler, as metadata for created ordered extent will only
1619 * be freed by btrfs_finish_ordered_io().
1623 if (cur_offset > end)
1626 btrfs_release_path(path);
1628 if (cur_offset <= end && cow_start == (u64)-1)
1629 cow_start = cur_offset;
1631 if (cow_start != (u64)-1) {
1633 ret = cow_file_range(inode, locked_page, cow_start, end,
1634 page_started, nr_written, 1);
1641 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1643 if (ret && cur_offset < end)
1644 extent_clear_unlock_delalloc(inode, cur_offset, end,
1645 locked_page, EXTENT_LOCKED |
1646 EXTENT_DELALLOC | EXTENT_DEFRAG |
1647 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1649 PAGE_SET_WRITEBACK |
1650 PAGE_END_WRITEBACK);
1651 btrfs_free_path(path);
1655 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1658 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1659 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1663 * @defrag_bytes is a hint value, no spinlock held here,
1664 * if is not zero, it means the file is defragging.
1665 * Force cow if given extent needs to be defragged.
1667 if (BTRFS_I(inode)->defrag_bytes &&
1668 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1669 EXTENT_DEFRAG, 0, NULL))
1676 * Function to process delayed allocation (create CoW) for ranges which are
1677 * being touched for the first time.
1679 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1680 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1681 struct writeback_control *wbc)
1684 int force_cow = need_force_cow(inode, start, end);
1685 unsigned int write_flags = wbc_to_write_flags(wbc);
1687 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1688 ret = run_delalloc_nocow(inode, locked_page, start, end,
1689 page_started, 1, nr_written);
1690 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1691 ret = run_delalloc_nocow(inode, locked_page, start, end,
1692 page_started, 0, nr_written);
1693 } else if (!inode_can_compress(inode) ||
1694 !inode_need_compress(inode, start, end)) {
1695 ret = cow_file_range(inode, locked_page, start, end,
1696 page_started, nr_written, 1);
1698 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1699 &BTRFS_I(inode)->runtime_flags);
1700 ret = cow_file_range_async(inode, locked_page, start, end,
1701 page_started, nr_written,
1705 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1710 void btrfs_split_delalloc_extent(struct inode *inode,
1711 struct extent_state *orig, u64 split)
1715 /* not delalloc, ignore it */
1716 if (!(orig->state & EXTENT_DELALLOC))
1719 size = orig->end - orig->start + 1;
1720 if (size > BTRFS_MAX_EXTENT_SIZE) {
1725 * See the explanation in btrfs_merge_delalloc_extent, the same
1726 * applies here, just in reverse.
1728 new_size = orig->end - split + 1;
1729 num_extents = count_max_extents(new_size);
1730 new_size = split - orig->start;
1731 num_extents += count_max_extents(new_size);
1732 if (count_max_extents(size) >= num_extents)
1736 spin_lock(&BTRFS_I(inode)->lock);
1737 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1738 spin_unlock(&BTRFS_I(inode)->lock);
1742 * Handle merged delayed allocation extents so we can keep track of new extents
1743 * that are just merged onto old extents, such as when we are doing sequential
1744 * writes, so we can properly account for the metadata space we'll need.
1746 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1747 struct extent_state *other)
1749 u64 new_size, old_size;
1752 /* not delalloc, ignore it */
1753 if (!(other->state & EXTENT_DELALLOC))
1756 if (new->start > other->start)
1757 new_size = new->end - other->start + 1;
1759 new_size = other->end - new->start + 1;
1761 /* we're not bigger than the max, unreserve the space and go */
1762 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1763 spin_lock(&BTRFS_I(inode)->lock);
1764 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1765 spin_unlock(&BTRFS_I(inode)->lock);
1770 * We have to add up either side to figure out how many extents were
1771 * accounted for before we merged into one big extent. If the number of
1772 * extents we accounted for is <= the amount we need for the new range
1773 * then we can return, otherwise drop. Think of it like this
1777 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1778 * need 2 outstanding extents, on one side we have 1 and the other side
1779 * we have 1 so they are == and we can return. But in this case
1781 * [MAX_SIZE+4k][MAX_SIZE+4k]
1783 * Each range on their own accounts for 2 extents, but merged together
1784 * they are only 3 extents worth of accounting, so we need to drop in
1787 old_size = other->end - other->start + 1;
1788 num_extents = count_max_extents(old_size);
1789 old_size = new->end - new->start + 1;
1790 num_extents += count_max_extents(old_size);
1791 if (count_max_extents(new_size) >= num_extents)
1794 spin_lock(&BTRFS_I(inode)->lock);
1795 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1796 spin_unlock(&BTRFS_I(inode)->lock);
1799 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1800 struct inode *inode)
1802 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1804 spin_lock(&root->delalloc_lock);
1805 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1806 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1807 &root->delalloc_inodes);
1808 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1809 &BTRFS_I(inode)->runtime_flags);
1810 root->nr_delalloc_inodes++;
1811 if (root->nr_delalloc_inodes == 1) {
1812 spin_lock(&fs_info->delalloc_root_lock);
1813 BUG_ON(!list_empty(&root->delalloc_root));
1814 list_add_tail(&root->delalloc_root,
1815 &fs_info->delalloc_roots);
1816 spin_unlock(&fs_info->delalloc_root_lock);
1819 spin_unlock(&root->delalloc_lock);
1823 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1824 struct btrfs_inode *inode)
1826 struct btrfs_fs_info *fs_info = root->fs_info;
1828 if (!list_empty(&inode->delalloc_inodes)) {
1829 list_del_init(&inode->delalloc_inodes);
1830 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1831 &inode->runtime_flags);
1832 root->nr_delalloc_inodes--;
1833 if (!root->nr_delalloc_inodes) {
1834 ASSERT(list_empty(&root->delalloc_inodes));
1835 spin_lock(&fs_info->delalloc_root_lock);
1836 BUG_ON(list_empty(&root->delalloc_root));
1837 list_del_init(&root->delalloc_root);
1838 spin_unlock(&fs_info->delalloc_root_lock);
1843 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1844 struct btrfs_inode *inode)
1846 spin_lock(&root->delalloc_lock);
1847 __btrfs_del_delalloc_inode(root, inode);
1848 spin_unlock(&root->delalloc_lock);
1852 * Properly track delayed allocation bytes in the inode and to maintain the
1853 * list of inodes that have pending delalloc work to be done.
1855 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1858 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1860 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1863 * set_bit and clear bit hooks normally require _irqsave/restore
1864 * but in this case, we are only testing for the DELALLOC
1865 * bit, which is only set or cleared with irqs on
1867 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1868 struct btrfs_root *root = BTRFS_I(inode)->root;
1869 u64 len = state->end + 1 - state->start;
1870 u32 num_extents = count_max_extents(len);
1871 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1873 spin_lock(&BTRFS_I(inode)->lock);
1874 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1875 spin_unlock(&BTRFS_I(inode)->lock);
1877 /* For sanity tests */
1878 if (btrfs_is_testing(fs_info))
1881 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1882 fs_info->delalloc_batch);
1883 spin_lock(&BTRFS_I(inode)->lock);
1884 BTRFS_I(inode)->delalloc_bytes += len;
1885 if (*bits & EXTENT_DEFRAG)
1886 BTRFS_I(inode)->defrag_bytes += len;
1887 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1888 &BTRFS_I(inode)->runtime_flags))
1889 btrfs_add_delalloc_inodes(root, inode);
1890 spin_unlock(&BTRFS_I(inode)->lock);
1893 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1894 (*bits & EXTENT_DELALLOC_NEW)) {
1895 spin_lock(&BTRFS_I(inode)->lock);
1896 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1898 spin_unlock(&BTRFS_I(inode)->lock);
1903 * Once a range is no longer delalloc this function ensures that proper
1904 * accounting happens.
1906 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1907 struct extent_state *state, unsigned *bits)
1909 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1910 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1911 u64 len = state->end + 1 - state->start;
1912 u32 num_extents = count_max_extents(len);
1914 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1915 spin_lock(&inode->lock);
1916 inode->defrag_bytes -= len;
1917 spin_unlock(&inode->lock);
1921 * set_bit and clear bit hooks normally require _irqsave/restore
1922 * but in this case, we are only testing for the DELALLOC
1923 * bit, which is only set or cleared with irqs on
1925 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1926 struct btrfs_root *root = inode->root;
1927 bool do_list = !btrfs_is_free_space_inode(inode);
1929 spin_lock(&inode->lock);
1930 btrfs_mod_outstanding_extents(inode, -num_extents);
1931 spin_unlock(&inode->lock);
1934 * We don't reserve metadata space for space cache inodes so we
1935 * don't need to call delalloc_release_metadata if there is an
1938 if (*bits & EXTENT_CLEAR_META_RESV &&
1939 root != fs_info->tree_root)
1940 btrfs_delalloc_release_metadata(inode, len, false);
1942 /* For sanity tests. */
1943 if (btrfs_is_testing(fs_info))
1946 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1947 do_list && !(state->state & EXTENT_NORESERVE) &&
1948 (*bits & EXTENT_CLEAR_DATA_RESV))
1949 btrfs_free_reserved_data_space_noquota(
1953 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1954 fs_info->delalloc_batch);
1955 spin_lock(&inode->lock);
1956 inode->delalloc_bytes -= len;
1957 if (do_list && inode->delalloc_bytes == 0 &&
1958 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1959 &inode->runtime_flags))
1960 btrfs_del_delalloc_inode(root, inode);
1961 spin_unlock(&inode->lock);
1964 if ((state->state & EXTENT_DELALLOC_NEW) &&
1965 (*bits & EXTENT_DELALLOC_NEW)) {
1966 spin_lock(&inode->lock);
1967 ASSERT(inode->new_delalloc_bytes >= len);
1968 inode->new_delalloc_bytes -= len;
1969 spin_unlock(&inode->lock);
1974 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1975 * in a chunk's stripe. This function ensures that bios do not span a
1978 * @page - The page we are about to add to the bio
1979 * @size - size we want to add to the bio
1980 * @bio - bio we want to ensure is smaller than a stripe
1981 * @bio_flags - flags of the bio
1983 * return 1 if page cannot be added to the bio
1984 * return 0 if page can be added to the bio
1985 * return error otherwise
1987 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1988 unsigned long bio_flags)
1990 struct inode *inode = page->mapping->host;
1991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1992 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1996 struct btrfs_io_geometry geom;
1998 if (bio_flags & EXTENT_BIO_COMPRESSED)
2001 length = bio->bi_iter.bi_size;
2002 map_length = length;
2003 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2008 if (geom.len < length + size)
2014 * in order to insert checksums into the metadata in large chunks,
2015 * we wait until bio submission time. All the pages in the bio are
2016 * checksummed and sums are attached onto the ordered extent record.
2018 * At IO completion time the cums attached on the ordered extent record
2019 * are inserted into the btree
2021 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2024 struct inode *inode = private_data;
2025 blk_status_t ret = 0;
2027 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2028 BUG_ON(ret); /* -ENOMEM */
2033 * extent_io.c submission hook. This does the right thing for csum calculation
2034 * on write, or reading the csums from the tree before a read.
2036 * Rules about async/sync submit,
2037 * a) read: sync submit
2039 * b) write without checksum: sync submit
2041 * c) write with checksum:
2042 * c-1) if bio is issued by fsync: sync submit
2043 * (sync_writers != 0)
2045 * c-2) if root is reloc root: sync submit
2046 * (only in case of buffered IO)
2048 * c-3) otherwise: async submit
2050 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2052 unsigned long bio_flags)
2055 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2056 struct btrfs_root *root = BTRFS_I(inode)->root;
2057 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2058 blk_status_t ret = 0;
2060 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2062 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2064 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2065 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2067 if (bio_op(bio) != REQ_OP_WRITE) {
2068 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2072 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2073 ret = btrfs_submit_compressed_read(inode, bio,
2077 } else if (!skip_sum) {
2078 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2083 } else if (async && !skip_sum) {
2084 /* csum items have already been cloned */
2085 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2087 /* we're doing a write, do the async checksumming */
2088 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2089 0, inode, btrfs_submit_bio_start);
2091 } else if (!skip_sum) {
2092 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2098 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2102 bio->bi_status = ret;
2109 * given a list of ordered sums record them in the inode. This happens
2110 * at IO completion time based on sums calculated at bio submission time.
2112 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2113 struct inode *inode, struct list_head *list)
2115 struct btrfs_ordered_sum *sum;
2118 list_for_each_entry(sum, list, list) {
2119 trans->adding_csums = true;
2120 ret = btrfs_csum_file_blocks(trans,
2121 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2122 trans->adding_csums = false;
2129 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2130 unsigned int extra_bits,
2131 struct extent_state **cached_state)
2133 WARN_ON(PAGE_ALIGNED(end));
2134 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2135 extra_bits, cached_state);
2138 /* see btrfs_writepage_start_hook for details on why this is required */
2139 struct btrfs_writepage_fixup {
2141 struct btrfs_work work;
2144 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2146 struct btrfs_writepage_fixup *fixup;
2147 struct btrfs_ordered_extent *ordered;
2148 struct extent_state *cached_state = NULL;
2149 struct extent_changeset *data_reserved = NULL;
2151 struct inode *inode;
2156 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2160 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2161 ClearPageChecked(page);
2165 inode = page->mapping->host;
2166 page_start = page_offset(page);
2167 page_end = page_offset(page) + PAGE_SIZE - 1;
2169 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2172 /* already ordered? We're done */
2173 if (PagePrivate2(page))
2176 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2179 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2180 page_end, &cached_state);
2182 btrfs_start_ordered_extent(inode, ordered, 1);
2183 btrfs_put_ordered_extent(ordered);
2187 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2190 mapping_set_error(page->mapping, ret);
2191 end_extent_writepage(page, ret, page_start, page_end);
2192 ClearPageChecked(page);
2196 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2199 mapping_set_error(page->mapping, ret);
2200 end_extent_writepage(page, ret, page_start, page_end);
2201 ClearPageChecked(page);
2205 ClearPageChecked(page);
2206 set_page_dirty(page);
2207 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2209 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2215 extent_changeset_free(data_reserved);
2219 * There are a few paths in the higher layers of the kernel that directly
2220 * set the page dirty bit without asking the filesystem if it is a
2221 * good idea. This causes problems because we want to make sure COW
2222 * properly happens and the data=ordered rules are followed.
2224 * In our case any range that doesn't have the ORDERED bit set
2225 * hasn't been properly setup for IO. We kick off an async process
2226 * to fix it up. The async helper will wait for ordered extents, set
2227 * the delalloc bit and make it safe to write the page.
2229 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2231 struct inode *inode = page->mapping->host;
2232 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2233 struct btrfs_writepage_fixup *fixup;
2235 /* this page is properly in the ordered list */
2236 if (TestClearPagePrivate2(page))
2239 if (PageChecked(page))
2242 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2246 SetPageChecked(page);
2248 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2249 btrfs_writepage_fixup_worker, NULL, NULL);
2251 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2255 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2256 struct inode *inode, u64 file_pos,
2257 u64 disk_bytenr, u64 disk_num_bytes,
2258 u64 num_bytes, u64 ram_bytes,
2259 u8 compression, u8 encryption,
2260 u16 other_encoding, int extent_type)
2262 struct btrfs_root *root = BTRFS_I(inode)->root;
2263 struct btrfs_file_extent_item *fi;
2264 struct btrfs_path *path;
2265 struct extent_buffer *leaf;
2266 struct btrfs_key ins;
2268 int extent_inserted = 0;
2271 path = btrfs_alloc_path();
2276 * we may be replacing one extent in the tree with another.
2277 * The new extent is pinned in the extent map, and we don't want
2278 * to drop it from the cache until it is completely in the btree.
2280 * So, tell btrfs_drop_extents to leave this extent in the cache.
2281 * the caller is expected to unpin it and allow it to be merged
2284 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2285 file_pos + num_bytes, NULL, 0,
2286 1, sizeof(*fi), &extent_inserted);
2290 if (!extent_inserted) {
2291 ins.objectid = btrfs_ino(BTRFS_I(inode));
2292 ins.offset = file_pos;
2293 ins.type = BTRFS_EXTENT_DATA_KEY;
2295 path->leave_spinning = 1;
2296 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2301 leaf = path->nodes[0];
2302 fi = btrfs_item_ptr(leaf, path->slots[0],
2303 struct btrfs_file_extent_item);
2304 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2305 btrfs_set_file_extent_type(leaf, fi, extent_type);
2306 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2307 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2308 btrfs_set_file_extent_offset(leaf, fi, 0);
2309 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2310 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2311 btrfs_set_file_extent_compression(leaf, fi, compression);
2312 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2313 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2315 btrfs_mark_buffer_dirty(leaf);
2316 btrfs_release_path(path);
2318 inode_add_bytes(inode, num_bytes);
2320 ins.objectid = disk_bytenr;
2321 ins.offset = disk_num_bytes;
2322 ins.type = BTRFS_EXTENT_ITEM_KEY;
2325 * Release the reserved range from inode dirty range map, as it is
2326 * already moved into delayed_ref_head
2328 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2332 ret = btrfs_alloc_reserved_file_extent(trans, root,
2333 btrfs_ino(BTRFS_I(inode)),
2334 file_pos, qg_released, &ins);
2336 btrfs_free_path(path);
2341 /* snapshot-aware defrag */
2342 struct sa_defrag_extent_backref {
2343 struct rb_node node;
2344 struct old_sa_defrag_extent *old;
2353 struct old_sa_defrag_extent {
2354 struct list_head list;
2355 struct new_sa_defrag_extent *new;
2364 struct new_sa_defrag_extent {
2365 struct rb_root root;
2366 struct list_head head;
2367 struct btrfs_path *path;
2368 struct inode *inode;
2376 static int backref_comp(struct sa_defrag_extent_backref *b1,
2377 struct sa_defrag_extent_backref *b2)
2379 if (b1->root_id < b2->root_id)
2381 else if (b1->root_id > b2->root_id)
2384 if (b1->inum < b2->inum)
2386 else if (b1->inum > b2->inum)
2389 if (b1->file_pos < b2->file_pos)
2391 else if (b1->file_pos > b2->file_pos)
2395 * [------------------------------] ===> (a range of space)
2396 * |<--->| |<---->| =============> (fs/file tree A)
2397 * |<---------------------------->| ===> (fs/file tree B)
2399 * A range of space can refer to two file extents in one tree while
2400 * refer to only one file extent in another tree.
2402 * So we may process a disk offset more than one time(two extents in A)
2403 * and locate at the same extent(one extent in B), then insert two same
2404 * backrefs(both refer to the extent in B).
2409 static void backref_insert(struct rb_root *root,
2410 struct sa_defrag_extent_backref *backref)
2412 struct rb_node **p = &root->rb_node;
2413 struct rb_node *parent = NULL;
2414 struct sa_defrag_extent_backref *entry;
2419 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2421 ret = backref_comp(backref, entry);
2425 p = &(*p)->rb_right;
2428 rb_link_node(&backref->node, parent, p);
2429 rb_insert_color(&backref->node, root);
2433 * Note the backref might has changed, and in this case we just return 0.
2435 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2438 struct btrfs_file_extent_item *extent;
2439 struct old_sa_defrag_extent *old = ctx;
2440 struct new_sa_defrag_extent *new = old->new;
2441 struct btrfs_path *path = new->path;
2442 struct btrfs_key key;
2443 struct btrfs_root *root;
2444 struct sa_defrag_extent_backref *backref;
2445 struct extent_buffer *leaf;
2446 struct inode *inode = new->inode;
2447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2453 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2454 inum == btrfs_ino(BTRFS_I(inode)))
2457 key.objectid = root_id;
2458 key.type = BTRFS_ROOT_ITEM_KEY;
2459 key.offset = (u64)-1;
2461 root = btrfs_read_fs_root_no_name(fs_info, &key);
2463 if (PTR_ERR(root) == -ENOENT)
2466 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2467 inum, offset, root_id);
2468 return PTR_ERR(root);
2471 key.objectid = inum;
2472 key.type = BTRFS_EXTENT_DATA_KEY;
2473 if (offset > (u64)-1 << 32)
2476 key.offset = offset;
2478 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2479 if (WARN_ON(ret < 0))
2486 leaf = path->nodes[0];
2487 slot = path->slots[0];
2489 if (slot >= btrfs_header_nritems(leaf)) {
2490 ret = btrfs_next_leaf(root, path);
2493 } else if (ret > 0) {
2502 btrfs_item_key_to_cpu(leaf, &key, slot);
2504 if (key.objectid > inum)
2507 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2510 extent = btrfs_item_ptr(leaf, slot,
2511 struct btrfs_file_extent_item);
2513 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2517 * 'offset' refers to the exact key.offset,
2518 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2519 * (key.offset - extent_offset).
2521 if (key.offset != offset)
2524 extent_offset = btrfs_file_extent_offset(leaf, extent);
2525 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2527 if (extent_offset >= old->extent_offset + old->offset +
2528 old->len || extent_offset + num_bytes <=
2529 old->extent_offset + old->offset)
2534 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2540 backref->root_id = root_id;
2541 backref->inum = inum;
2542 backref->file_pos = offset;
2543 backref->num_bytes = num_bytes;
2544 backref->extent_offset = extent_offset;
2545 backref->generation = btrfs_file_extent_generation(leaf, extent);
2547 backref_insert(&new->root, backref);
2550 btrfs_release_path(path);
2555 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2556 struct new_sa_defrag_extent *new)
2558 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2559 struct old_sa_defrag_extent *old, *tmp;
2564 list_for_each_entry_safe(old, tmp, &new->head, list) {
2565 ret = iterate_inodes_from_logical(old->bytenr +
2566 old->extent_offset, fs_info,
2567 path, record_one_backref,
2569 if (ret < 0 && ret != -ENOENT)
2572 /* no backref to be processed for this extent */
2574 list_del(&old->list);
2579 if (list_empty(&new->head))
2585 static int relink_is_mergable(struct extent_buffer *leaf,
2586 struct btrfs_file_extent_item *fi,
2587 struct new_sa_defrag_extent *new)
2589 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2592 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2595 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2598 if (btrfs_file_extent_encryption(leaf, fi) ||
2599 btrfs_file_extent_other_encoding(leaf, fi))
2606 * Note the backref might has changed, and in this case we just return 0.
2608 static noinline int relink_extent_backref(struct btrfs_path *path,
2609 struct sa_defrag_extent_backref *prev,
2610 struct sa_defrag_extent_backref *backref)
2612 struct btrfs_file_extent_item *extent;
2613 struct btrfs_file_extent_item *item;
2614 struct btrfs_ordered_extent *ordered;
2615 struct btrfs_trans_handle *trans;
2616 struct btrfs_ref ref = { 0 };
2617 struct btrfs_root *root;
2618 struct btrfs_key key;
2619 struct extent_buffer *leaf;
2620 struct old_sa_defrag_extent *old = backref->old;
2621 struct new_sa_defrag_extent *new = old->new;
2622 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2623 struct inode *inode;
2624 struct extent_state *cached = NULL;
2633 if (prev && prev->root_id == backref->root_id &&
2634 prev->inum == backref->inum &&
2635 prev->file_pos + prev->num_bytes == backref->file_pos)
2638 /* step 1: get root */
2639 key.objectid = backref->root_id;
2640 key.type = BTRFS_ROOT_ITEM_KEY;
2641 key.offset = (u64)-1;
2643 index = srcu_read_lock(&fs_info->subvol_srcu);
2645 root = btrfs_read_fs_root_no_name(fs_info, &key);
2647 srcu_read_unlock(&fs_info->subvol_srcu, index);
2648 if (PTR_ERR(root) == -ENOENT)
2650 return PTR_ERR(root);
2653 if (btrfs_root_readonly(root)) {
2654 srcu_read_unlock(&fs_info->subvol_srcu, index);
2658 /* step 2: get inode */
2659 key.objectid = backref->inum;
2660 key.type = BTRFS_INODE_ITEM_KEY;
2663 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2664 if (IS_ERR(inode)) {
2665 srcu_read_unlock(&fs_info->subvol_srcu, index);
2669 srcu_read_unlock(&fs_info->subvol_srcu, index);
2671 /* step 3: relink backref */
2672 lock_start = backref->file_pos;
2673 lock_end = backref->file_pos + backref->num_bytes - 1;
2674 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2677 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2679 btrfs_put_ordered_extent(ordered);
2683 trans = btrfs_join_transaction(root);
2684 if (IS_ERR(trans)) {
2685 ret = PTR_ERR(trans);
2689 key.objectid = backref->inum;
2690 key.type = BTRFS_EXTENT_DATA_KEY;
2691 key.offset = backref->file_pos;
2693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696 } else if (ret > 0) {
2701 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2702 struct btrfs_file_extent_item);
2704 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2705 backref->generation)
2708 btrfs_release_path(path);
2710 start = backref->file_pos;
2711 if (backref->extent_offset < old->extent_offset + old->offset)
2712 start += old->extent_offset + old->offset -
2713 backref->extent_offset;
2715 len = min(backref->extent_offset + backref->num_bytes,
2716 old->extent_offset + old->offset + old->len);
2717 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2719 ret = btrfs_drop_extents(trans, root, inode, start,
2724 key.objectid = btrfs_ino(BTRFS_I(inode));
2725 key.type = BTRFS_EXTENT_DATA_KEY;
2728 path->leave_spinning = 1;
2730 struct btrfs_file_extent_item *fi;
2732 struct btrfs_key found_key;
2734 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2739 leaf = path->nodes[0];
2740 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2742 fi = btrfs_item_ptr(leaf, path->slots[0],
2743 struct btrfs_file_extent_item);
2744 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2746 if (extent_len + found_key.offset == start &&
2747 relink_is_mergable(leaf, fi, new)) {
2748 btrfs_set_file_extent_num_bytes(leaf, fi,
2750 btrfs_mark_buffer_dirty(leaf);
2751 inode_add_bytes(inode, len);
2757 btrfs_release_path(path);
2762 ret = btrfs_insert_empty_item(trans, root, path, &key,
2765 btrfs_abort_transaction(trans, ret);
2769 leaf = path->nodes[0];
2770 item = btrfs_item_ptr(leaf, path->slots[0],
2771 struct btrfs_file_extent_item);
2772 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2773 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2774 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2775 btrfs_set_file_extent_num_bytes(leaf, item, len);
2776 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2777 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2778 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2779 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2780 btrfs_set_file_extent_encryption(leaf, item, 0);
2781 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2783 btrfs_mark_buffer_dirty(leaf);
2784 inode_add_bytes(inode, len);
2785 btrfs_release_path(path);
2787 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2789 btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2790 new->file_pos); /* start - extent_offset */
2791 ret = btrfs_inc_extent_ref(trans, &ref);
2793 btrfs_abort_transaction(trans, ret);
2799 btrfs_release_path(path);
2800 path->leave_spinning = 0;
2801 btrfs_end_transaction(trans);
2803 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2809 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2811 struct old_sa_defrag_extent *old, *tmp;
2816 list_for_each_entry_safe(old, tmp, &new->head, list) {
2822 static void relink_file_extents(struct new_sa_defrag_extent *new)
2824 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2825 struct btrfs_path *path;
2826 struct sa_defrag_extent_backref *backref;
2827 struct sa_defrag_extent_backref *prev = NULL;
2828 struct rb_node *node;
2831 path = btrfs_alloc_path();
2835 if (!record_extent_backrefs(path, new)) {
2836 btrfs_free_path(path);
2839 btrfs_release_path(path);
2842 node = rb_first(&new->root);
2845 rb_erase(node, &new->root);
2847 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2849 ret = relink_extent_backref(path, prev, backref);
2862 btrfs_free_path(path);
2864 free_sa_defrag_extent(new);
2866 atomic_dec(&fs_info->defrag_running);
2867 wake_up(&fs_info->transaction_wait);
2870 static struct new_sa_defrag_extent *
2871 record_old_file_extents(struct inode *inode,
2872 struct btrfs_ordered_extent *ordered)
2874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2875 struct btrfs_root *root = BTRFS_I(inode)->root;
2876 struct btrfs_path *path;
2877 struct btrfs_key key;
2878 struct old_sa_defrag_extent *old;
2879 struct new_sa_defrag_extent *new;
2882 new = kmalloc(sizeof(*new), GFP_NOFS);
2887 new->file_pos = ordered->file_offset;
2888 new->len = ordered->len;
2889 new->bytenr = ordered->start;
2890 new->disk_len = ordered->disk_len;
2891 new->compress_type = ordered->compress_type;
2892 new->root = RB_ROOT;
2893 INIT_LIST_HEAD(&new->head);
2895 path = btrfs_alloc_path();
2899 key.objectid = btrfs_ino(BTRFS_I(inode));
2900 key.type = BTRFS_EXTENT_DATA_KEY;
2901 key.offset = new->file_pos;
2903 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2906 if (ret > 0 && path->slots[0] > 0)
2909 /* find out all the old extents for the file range */
2911 struct btrfs_file_extent_item *extent;
2912 struct extent_buffer *l;
2921 slot = path->slots[0];
2923 if (slot >= btrfs_header_nritems(l)) {
2924 ret = btrfs_next_leaf(root, path);
2932 btrfs_item_key_to_cpu(l, &key, slot);
2934 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2936 if (key.type != BTRFS_EXTENT_DATA_KEY)
2938 if (key.offset >= new->file_pos + new->len)
2941 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2943 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2944 if (key.offset + num_bytes < new->file_pos)
2947 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2951 extent_offset = btrfs_file_extent_offset(l, extent);
2953 old = kmalloc(sizeof(*old), GFP_NOFS);
2957 offset = max(new->file_pos, key.offset);
2958 end = min(new->file_pos + new->len, key.offset + num_bytes);
2960 old->bytenr = disk_bytenr;
2961 old->extent_offset = extent_offset;
2962 old->offset = offset - key.offset;
2963 old->len = end - offset;
2966 list_add_tail(&old->list, &new->head);
2972 btrfs_free_path(path);
2973 atomic_inc(&fs_info->defrag_running);
2978 btrfs_free_path(path);
2980 free_sa_defrag_extent(new);
2984 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2987 struct btrfs_block_group_cache *cache;
2989 cache = btrfs_lookup_block_group(fs_info, start);
2992 spin_lock(&cache->lock);
2993 cache->delalloc_bytes -= len;
2994 spin_unlock(&cache->lock);
2996 btrfs_put_block_group(cache);
2999 /* as ordered data IO finishes, this gets called so we can finish
3000 * an ordered extent if the range of bytes in the file it covers are
3003 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3005 struct inode *inode = ordered_extent->inode;
3006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3007 struct btrfs_root *root = BTRFS_I(inode)->root;
3008 struct btrfs_trans_handle *trans = NULL;
3009 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3010 struct extent_state *cached_state = NULL;
3011 struct new_sa_defrag_extent *new = NULL;
3012 int compress_type = 0;
3014 u64 logical_len = ordered_extent->len;
3016 bool truncated = false;
3017 bool range_locked = false;
3018 bool clear_new_delalloc_bytes = false;
3019 bool clear_reserved_extent = true;
3021 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3022 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3023 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3024 clear_new_delalloc_bytes = true;
3026 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3028 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3033 btrfs_free_io_failure_record(BTRFS_I(inode),
3034 ordered_extent->file_offset,
3035 ordered_extent->file_offset +
3036 ordered_extent->len - 1);
3038 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3040 logical_len = ordered_extent->truncated_len;
3041 /* Truncated the entire extent, don't bother adding */
3046 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3047 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3050 * For mwrite(mmap + memset to write) case, we still reserve
3051 * space for NOCOW range.
3052 * As NOCOW won't cause a new delayed ref, just free the space
3054 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3055 ordered_extent->len);
3056 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3058 trans = btrfs_join_transaction_nolock(root);
3060 trans = btrfs_join_transaction(root);
3061 if (IS_ERR(trans)) {
3062 ret = PTR_ERR(trans);
3066 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3067 ret = btrfs_update_inode_fallback(trans, root, inode);
3068 if (ret) /* -ENOMEM or corruption */
3069 btrfs_abort_transaction(trans, ret);
3073 range_locked = true;
3074 lock_extent_bits(io_tree, ordered_extent->file_offset,
3075 ordered_extent->file_offset + ordered_extent->len - 1,
3078 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3079 ordered_extent->file_offset + ordered_extent->len - 1,
3080 EXTENT_DEFRAG, 0, cached_state);
3082 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3083 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3084 /* the inode is shared */
3085 new = record_old_file_extents(inode, ordered_extent);
3087 clear_extent_bit(io_tree, ordered_extent->file_offset,
3088 ordered_extent->file_offset + ordered_extent->len - 1,
3089 EXTENT_DEFRAG, 0, 0, &cached_state);
3093 trans = btrfs_join_transaction_nolock(root);
3095 trans = btrfs_join_transaction(root);
3096 if (IS_ERR(trans)) {
3097 ret = PTR_ERR(trans);
3102 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3104 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3105 compress_type = ordered_extent->compress_type;
3106 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3107 BUG_ON(compress_type);
3108 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3109 ordered_extent->len);
3110 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3111 ordered_extent->file_offset,
3112 ordered_extent->file_offset +
3115 BUG_ON(root == fs_info->tree_root);
3116 ret = insert_reserved_file_extent(trans, inode,
3117 ordered_extent->file_offset,
3118 ordered_extent->start,
3119 ordered_extent->disk_len,
3120 logical_len, logical_len,
3121 compress_type, 0, 0,
3122 BTRFS_FILE_EXTENT_REG);
3124 clear_reserved_extent = false;
3125 btrfs_release_delalloc_bytes(fs_info,
3126 ordered_extent->start,
3127 ordered_extent->disk_len);
3130 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3131 ordered_extent->file_offset, ordered_extent->len,
3134 btrfs_abort_transaction(trans, ret);
3138 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3140 btrfs_abort_transaction(trans, ret);
3144 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3145 ret = btrfs_update_inode_fallback(trans, root, inode);
3146 if (ret) { /* -ENOMEM or corruption */
3147 btrfs_abort_transaction(trans, ret);
3152 if (range_locked || clear_new_delalloc_bytes) {
3153 unsigned int clear_bits = 0;
3156 clear_bits |= EXTENT_LOCKED;
3157 if (clear_new_delalloc_bytes)
3158 clear_bits |= EXTENT_DELALLOC_NEW;
3159 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3160 ordered_extent->file_offset,
3161 ordered_extent->file_offset +
3162 ordered_extent->len - 1,
3164 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3169 btrfs_end_transaction(trans);
3171 if (ret || truncated) {
3175 start = ordered_extent->file_offset + logical_len;
3177 start = ordered_extent->file_offset;
3178 end = ordered_extent->file_offset + ordered_extent->len - 1;
3179 clear_extent_uptodate(io_tree, start, end, NULL);
3181 /* Drop the cache for the part of the extent we didn't write. */
3182 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3185 * If the ordered extent had an IOERR or something else went
3186 * wrong we need to return the space for this ordered extent
3187 * back to the allocator. We only free the extent in the
3188 * truncated case if we didn't write out the extent at all.
3190 * If we made it past insert_reserved_file_extent before we
3191 * errored out then we don't need to do this as the accounting
3192 * has already been done.
3194 if ((ret || !logical_len) &&
3195 clear_reserved_extent &&
3196 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3197 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3198 btrfs_free_reserved_extent(fs_info,
3199 ordered_extent->start,
3200 ordered_extent->disk_len, 1);
3205 * This needs to be done to make sure anybody waiting knows we are done
3206 * updating everything for this ordered extent.
3208 btrfs_remove_ordered_extent(inode, ordered_extent);
3210 /* for snapshot-aware defrag */
3213 free_sa_defrag_extent(new);
3214 atomic_dec(&fs_info->defrag_running);
3216 relink_file_extents(new);
3221 btrfs_put_ordered_extent(ordered_extent);
3222 /* once for the tree */
3223 btrfs_put_ordered_extent(ordered_extent);
3228 static void finish_ordered_fn(struct btrfs_work *work)
3230 struct btrfs_ordered_extent *ordered_extent;
3231 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3232 btrfs_finish_ordered_io(ordered_extent);
3235 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3236 u64 end, int uptodate)
3238 struct inode *inode = page->mapping->host;
3239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3240 struct btrfs_ordered_extent *ordered_extent = NULL;
3241 struct btrfs_workqueue *wq;
3242 btrfs_work_func_t func;
3244 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3246 ClearPagePrivate2(page);
3247 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3248 end - start + 1, uptodate))
3251 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3252 wq = fs_info->endio_freespace_worker;
3253 func = btrfs_freespace_write_helper;
3255 wq = fs_info->endio_write_workers;
3256 func = btrfs_endio_write_helper;
3259 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3261 btrfs_queue_work(wq, &ordered_extent->work);
3264 static int __readpage_endio_check(struct inode *inode,
3265 struct btrfs_io_bio *io_bio,
3266 int icsum, struct page *page,
3267 int pgoff, u64 start, size_t len)
3269 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3270 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3272 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3274 u8 csum[BTRFS_CSUM_SIZE];
3276 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3278 kaddr = kmap_atomic(page);
3279 shash->tfm = fs_info->csum_shash;
3281 crypto_shash_init(shash);
3282 crypto_shash_update(shash, kaddr + pgoff, len);
3283 crypto_shash_final(shash, csum);
3285 if (memcmp(csum, csum_expected, csum_size))
3288 kunmap_atomic(kaddr);
3291 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3292 io_bio->mirror_num);
3293 memset(kaddr + pgoff, 1, len);
3294 flush_dcache_page(page);
3295 kunmap_atomic(kaddr);
3300 * when reads are done, we need to check csums to verify the data is correct
3301 * if there's a match, we allow the bio to finish. If not, the code in
3302 * extent_io.c will try to find good copies for us.
3304 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3305 u64 phy_offset, struct page *page,
3306 u64 start, u64 end, int mirror)
3308 size_t offset = start - page_offset(page);
3309 struct inode *inode = page->mapping->host;
3310 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3311 struct btrfs_root *root = BTRFS_I(inode)->root;
3313 if (PageChecked(page)) {
3314 ClearPageChecked(page);
3318 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3321 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3322 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3323 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3327 phy_offset >>= inode->i_sb->s_blocksize_bits;
3328 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3329 start, (size_t)(end - start + 1));
3333 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3335 * @inode: The inode we want to perform iput on
3337 * This function uses the generic vfs_inode::i_count to track whether we should
3338 * just decrement it (in case it's > 1) or if this is the last iput then link
3339 * the inode to the delayed iput machinery. Delayed iputs are processed at
3340 * transaction commit time/superblock commit/cleaner kthread.
3342 void btrfs_add_delayed_iput(struct inode *inode)
3344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3345 struct btrfs_inode *binode = BTRFS_I(inode);
3347 if (atomic_add_unless(&inode->i_count, -1, 1))
3350 atomic_inc(&fs_info->nr_delayed_iputs);
3351 spin_lock(&fs_info->delayed_iput_lock);
3352 ASSERT(list_empty(&binode->delayed_iput));
3353 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3354 spin_unlock(&fs_info->delayed_iput_lock);
3355 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3356 wake_up_process(fs_info->cleaner_kthread);
3359 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3360 struct btrfs_inode *inode)
3362 list_del_init(&inode->delayed_iput);
3363 spin_unlock(&fs_info->delayed_iput_lock);
3364 iput(&inode->vfs_inode);
3365 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3366 wake_up(&fs_info->delayed_iputs_wait);
3367 spin_lock(&fs_info->delayed_iput_lock);
3370 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3371 struct btrfs_inode *inode)
3373 if (!list_empty(&inode->delayed_iput)) {
3374 spin_lock(&fs_info->delayed_iput_lock);
3375 if (!list_empty(&inode->delayed_iput))
3376 run_delayed_iput_locked(fs_info, inode);
3377 spin_unlock(&fs_info->delayed_iput_lock);
3381 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3384 spin_lock(&fs_info->delayed_iput_lock);
3385 while (!list_empty(&fs_info->delayed_iputs)) {
3386 struct btrfs_inode *inode;
3388 inode = list_first_entry(&fs_info->delayed_iputs,
3389 struct btrfs_inode, delayed_iput);
3390 run_delayed_iput_locked(fs_info, inode);
3392 spin_unlock(&fs_info->delayed_iput_lock);
3396 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3397 * @fs_info - the fs_info for this fs
3398 * @return - EINTR if we were killed, 0 if nothing's pending
3400 * This will wait on any delayed iputs that are currently running with KILLABLE
3401 * set. Once they are all done running we will return, unless we are killed in
3402 * which case we return EINTR. This helps in user operations like fallocate etc
3403 * that might get blocked on the iputs.
3405 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3407 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3408 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3415 * This creates an orphan entry for the given inode in case something goes wrong
3416 * in the middle of an unlink.
3418 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3419 struct btrfs_inode *inode)
3423 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3424 if (ret && ret != -EEXIST) {
3425 btrfs_abort_transaction(trans, ret);
3433 * We have done the delete so we can go ahead and remove the orphan item for
3434 * this particular inode.
3436 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3437 struct btrfs_inode *inode)
3439 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3443 * this cleans up any orphans that may be left on the list from the last use
3446 int btrfs_orphan_cleanup(struct btrfs_root *root)
3448 struct btrfs_fs_info *fs_info = root->fs_info;
3449 struct btrfs_path *path;
3450 struct extent_buffer *leaf;
3451 struct btrfs_key key, found_key;
3452 struct btrfs_trans_handle *trans;
3453 struct inode *inode;
3454 u64 last_objectid = 0;
3455 int ret = 0, nr_unlink = 0;
3457 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3460 path = btrfs_alloc_path();
3465 path->reada = READA_BACK;
3467 key.objectid = BTRFS_ORPHAN_OBJECTID;
3468 key.type = BTRFS_ORPHAN_ITEM_KEY;
3469 key.offset = (u64)-1;
3472 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3477 * if ret == 0 means we found what we were searching for, which
3478 * is weird, but possible, so only screw with path if we didn't
3479 * find the key and see if we have stuff that matches
3483 if (path->slots[0] == 0)
3488 /* pull out the item */
3489 leaf = path->nodes[0];
3490 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3492 /* make sure the item matches what we want */
3493 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3495 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3498 /* release the path since we're done with it */
3499 btrfs_release_path(path);
3502 * this is where we are basically btrfs_lookup, without the
3503 * crossing root thing. we store the inode number in the
3504 * offset of the orphan item.
3507 if (found_key.offset == last_objectid) {
3509 "Error removing orphan entry, stopping orphan cleanup");
3514 last_objectid = found_key.offset;
3516 found_key.objectid = found_key.offset;
3517 found_key.type = BTRFS_INODE_ITEM_KEY;
3518 found_key.offset = 0;
3519 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3520 ret = PTR_ERR_OR_ZERO(inode);
3521 if (ret && ret != -ENOENT)
3524 if (ret == -ENOENT && root == fs_info->tree_root) {
3525 struct btrfs_root *dead_root;
3526 struct btrfs_fs_info *fs_info = root->fs_info;
3527 int is_dead_root = 0;
3530 * this is an orphan in the tree root. Currently these
3531 * could come from 2 sources:
3532 * a) a snapshot deletion in progress
3533 * b) a free space cache inode
3534 * We need to distinguish those two, as the snapshot
3535 * orphan must not get deleted.
3536 * find_dead_roots already ran before us, so if this
3537 * is a snapshot deletion, we should find the root
3538 * in the dead_roots list
3540 spin_lock(&fs_info->trans_lock);
3541 list_for_each_entry(dead_root, &fs_info->dead_roots,
3543 if (dead_root->root_key.objectid ==
3544 found_key.objectid) {
3549 spin_unlock(&fs_info->trans_lock);
3551 /* prevent this orphan from being found again */
3552 key.offset = found_key.objectid - 1;
3559 * If we have an inode with links, there are a couple of
3560 * possibilities. Old kernels (before v3.12) used to create an
3561 * orphan item for truncate indicating that there were possibly
3562 * extent items past i_size that needed to be deleted. In v3.12,
3563 * truncate was changed to update i_size in sync with the extent
3564 * items, but the (useless) orphan item was still created. Since
3565 * v4.18, we don't create the orphan item for truncate at all.
3567 * So, this item could mean that we need to do a truncate, but
3568 * only if this filesystem was last used on a pre-v3.12 kernel
3569 * and was not cleanly unmounted. The odds of that are quite
3570 * slim, and it's a pain to do the truncate now, so just delete
3573 * It's also possible that this orphan item was supposed to be
3574 * deleted but wasn't. The inode number may have been reused,
3575 * but either way, we can delete the orphan item.
3577 if (ret == -ENOENT || inode->i_nlink) {
3580 trans = btrfs_start_transaction(root, 1);
3581 if (IS_ERR(trans)) {
3582 ret = PTR_ERR(trans);
3585 btrfs_debug(fs_info, "auto deleting %Lu",
3586 found_key.objectid);
3587 ret = btrfs_del_orphan_item(trans, root,
3588 found_key.objectid);
3589 btrfs_end_transaction(trans);
3597 /* this will do delete_inode and everything for us */
3600 /* release the path since we're done with it */
3601 btrfs_release_path(path);
3603 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3605 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3606 trans = btrfs_join_transaction(root);
3608 btrfs_end_transaction(trans);
3612 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3616 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3617 btrfs_free_path(path);
3622 * very simple check to peek ahead in the leaf looking for xattrs. If we
3623 * don't find any xattrs, we know there can't be any acls.
3625 * slot is the slot the inode is in, objectid is the objectid of the inode
3627 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3628 int slot, u64 objectid,
3629 int *first_xattr_slot)
3631 u32 nritems = btrfs_header_nritems(leaf);
3632 struct btrfs_key found_key;
3633 static u64 xattr_access = 0;
3634 static u64 xattr_default = 0;
3637 if (!xattr_access) {
3638 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3639 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3640 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3641 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3645 *first_xattr_slot = -1;
3646 while (slot < nritems) {
3647 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3649 /* we found a different objectid, there must not be acls */
3650 if (found_key.objectid != objectid)
3653 /* we found an xattr, assume we've got an acl */
3654 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3655 if (*first_xattr_slot == -1)
3656 *first_xattr_slot = slot;
3657 if (found_key.offset == xattr_access ||
3658 found_key.offset == xattr_default)
3663 * we found a key greater than an xattr key, there can't
3664 * be any acls later on
3666 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3673 * it goes inode, inode backrefs, xattrs, extents,
3674 * so if there are a ton of hard links to an inode there can
3675 * be a lot of backrefs. Don't waste time searching too hard,
3676 * this is just an optimization
3681 /* we hit the end of the leaf before we found an xattr or
3682 * something larger than an xattr. We have to assume the inode
3685 if (*first_xattr_slot == -1)
3686 *first_xattr_slot = slot;
3691 * read an inode from the btree into the in-memory inode
3693 static int btrfs_read_locked_inode(struct inode *inode,
3694 struct btrfs_path *in_path)
3696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3697 struct btrfs_path *path = in_path;
3698 struct extent_buffer *leaf;
3699 struct btrfs_inode_item *inode_item;
3700 struct btrfs_root *root = BTRFS_I(inode)->root;
3701 struct btrfs_key location;
3706 bool filled = false;
3707 int first_xattr_slot;
3709 ret = btrfs_fill_inode(inode, &rdev);
3714 path = btrfs_alloc_path();
3719 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3721 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3723 if (path != in_path)
3724 btrfs_free_path(path);
3728 leaf = path->nodes[0];
3733 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3734 struct btrfs_inode_item);
3735 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3736 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3737 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3738 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3739 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3741 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3742 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3744 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3745 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3747 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3748 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3750 BTRFS_I(inode)->i_otime.tv_sec =
3751 btrfs_timespec_sec(leaf, &inode_item->otime);
3752 BTRFS_I(inode)->i_otime.tv_nsec =
3753 btrfs_timespec_nsec(leaf, &inode_item->otime);
3755 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3756 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3757 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3759 inode_set_iversion_queried(inode,
3760 btrfs_inode_sequence(leaf, inode_item));
3761 inode->i_generation = BTRFS_I(inode)->generation;
3763 rdev = btrfs_inode_rdev(leaf, inode_item);
3765 BTRFS_I(inode)->index_cnt = (u64)-1;
3766 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3770 * If we were modified in the current generation and evicted from memory
3771 * and then re-read we need to do a full sync since we don't have any
3772 * idea about which extents were modified before we were evicted from
3775 * This is required for both inode re-read from disk and delayed inode
3776 * in delayed_nodes_tree.
3778 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3779 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3780 &BTRFS_I(inode)->runtime_flags);
3783 * We don't persist the id of the transaction where an unlink operation
3784 * against the inode was last made. So here we assume the inode might
3785 * have been evicted, and therefore the exact value of last_unlink_trans
3786 * lost, and set it to last_trans to avoid metadata inconsistencies
3787 * between the inode and its parent if the inode is fsync'ed and the log
3788 * replayed. For example, in the scenario:
3791 * ln mydir/foo mydir/bar
3794 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3795 * xfs_io -c fsync mydir/foo
3797 * mount fs, triggers fsync log replay
3799 * We must make sure that when we fsync our inode foo we also log its
3800 * parent inode, otherwise after log replay the parent still has the
3801 * dentry with the "bar" name but our inode foo has a link count of 1
3802 * and doesn't have an inode ref with the name "bar" anymore.
3804 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3805 * but it guarantees correctness at the expense of occasional full
3806 * transaction commits on fsync if our inode is a directory, or if our
3807 * inode is not a directory, logging its parent unnecessarily.
3809 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3812 if (inode->i_nlink != 1 ||
3813 path->slots[0] >= btrfs_header_nritems(leaf))
3816 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3817 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3820 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3821 if (location.type == BTRFS_INODE_REF_KEY) {
3822 struct btrfs_inode_ref *ref;
3824 ref = (struct btrfs_inode_ref *)ptr;
3825 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3826 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3827 struct btrfs_inode_extref *extref;
3829 extref = (struct btrfs_inode_extref *)ptr;
3830 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3835 * try to precache a NULL acl entry for files that don't have
3836 * any xattrs or acls
3838 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3839 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3840 if (first_xattr_slot != -1) {
3841 path->slots[0] = first_xattr_slot;
3842 ret = btrfs_load_inode_props(inode, path);
3845 "error loading props for ino %llu (root %llu): %d",
3846 btrfs_ino(BTRFS_I(inode)),
3847 root->root_key.objectid, ret);
3849 if (path != in_path)
3850 btrfs_free_path(path);
3853 cache_no_acl(inode);
3855 switch (inode->i_mode & S_IFMT) {
3857 inode->i_mapping->a_ops = &btrfs_aops;
3858 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3859 inode->i_fop = &btrfs_file_operations;
3860 inode->i_op = &btrfs_file_inode_operations;
3863 inode->i_fop = &btrfs_dir_file_operations;
3864 inode->i_op = &btrfs_dir_inode_operations;
3867 inode->i_op = &btrfs_symlink_inode_operations;
3868 inode_nohighmem(inode);
3869 inode->i_mapping->a_ops = &btrfs_aops;
3872 inode->i_op = &btrfs_special_inode_operations;
3873 init_special_inode(inode, inode->i_mode, rdev);
3877 btrfs_sync_inode_flags_to_i_flags(inode);
3882 * given a leaf and an inode, copy the inode fields into the leaf
3884 static void fill_inode_item(struct btrfs_trans_handle *trans,
3885 struct extent_buffer *leaf,
3886 struct btrfs_inode_item *item,
3887 struct inode *inode)
3889 struct btrfs_map_token token;
3891 btrfs_init_map_token(&token);
3893 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3894 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3895 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3897 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3898 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3900 btrfs_set_token_timespec_sec(leaf, &item->atime,
3901 inode->i_atime.tv_sec, &token);
3902 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3903 inode->i_atime.tv_nsec, &token);
3905 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3906 inode->i_mtime.tv_sec, &token);
3907 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3908 inode->i_mtime.tv_nsec, &token);
3910 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3911 inode->i_ctime.tv_sec, &token);
3912 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3913 inode->i_ctime.tv_nsec, &token);
3915 btrfs_set_token_timespec_sec(leaf, &item->otime,
3916 BTRFS_I(inode)->i_otime.tv_sec, &token);
3917 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3918 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3920 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3922 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3924 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3926 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3927 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3928 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3929 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3933 * copy everything in the in-memory inode into the btree.
3935 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3936 struct btrfs_root *root, struct inode *inode)
3938 struct btrfs_inode_item *inode_item;
3939 struct btrfs_path *path;
3940 struct extent_buffer *leaf;
3943 path = btrfs_alloc_path();
3947 path->leave_spinning = 1;
3948 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3956 leaf = path->nodes[0];
3957 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3958 struct btrfs_inode_item);
3960 fill_inode_item(trans, leaf, inode_item, inode);
3961 btrfs_mark_buffer_dirty(leaf);
3962 btrfs_set_inode_last_trans(trans, inode);
3965 btrfs_free_path(path);
3970 * copy everything in the in-memory inode into the btree.
3972 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3973 struct btrfs_root *root, struct inode *inode)
3975 struct btrfs_fs_info *fs_info = root->fs_info;
3979 * If the inode is a free space inode, we can deadlock during commit
3980 * if we put it into the delayed code.
3982 * The data relocation inode should also be directly updated
3985 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3986 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3987 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3988 btrfs_update_root_times(trans, root);
3990 ret = btrfs_delayed_update_inode(trans, root, inode);
3992 btrfs_set_inode_last_trans(trans, inode);
3996 return btrfs_update_inode_item(trans, root, inode);
3999 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4000 struct btrfs_root *root,
4001 struct inode *inode)
4005 ret = btrfs_update_inode(trans, root, inode);
4007 return btrfs_update_inode_item(trans, root, inode);
4012 * unlink helper that gets used here in inode.c and in the tree logging
4013 * recovery code. It remove a link in a directory with a given name, and
4014 * also drops the back refs in the inode to the directory
4016 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4017 struct btrfs_root *root,
4018 struct btrfs_inode *dir,
4019 struct btrfs_inode *inode,
4020 const char *name, int name_len)
4022 struct btrfs_fs_info *fs_info = root->fs_info;
4023 struct btrfs_path *path;
4025 struct btrfs_dir_item *di;
4027 u64 ino = btrfs_ino(inode);
4028 u64 dir_ino = btrfs_ino(dir);
4030 path = btrfs_alloc_path();
4036 path->leave_spinning = 1;
4037 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4038 name, name_len, -1);
4039 if (IS_ERR_OR_NULL(di)) {
4040 ret = di ? PTR_ERR(di) : -ENOENT;
4043 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4046 btrfs_release_path(path);
4049 * If we don't have dir index, we have to get it by looking up
4050 * the inode ref, since we get the inode ref, remove it directly,
4051 * it is unnecessary to do delayed deletion.
4053 * But if we have dir index, needn't search inode ref to get it.
4054 * Since the inode ref is close to the inode item, it is better
4055 * that we delay to delete it, and just do this deletion when
4056 * we update the inode item.
4058 if (inode->dir_index) {
4059 ret = btrfs_delayed_delete_inode_ref(inode);
4061 index = inode->dir_index;
4066 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4070 "failed to delete reference to %.*s, inode %llu parent %llu",
4071 name_len, name, ino, dir_ino);
4072 btrfs_abort_transaction(trans, ret);
4076 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4078 btrfs_abort_transaction(trans, ret);
4082 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4084 if (ret != 0 && ret != -ENOENT) {
4085 btrfs_abort_transaction(trans, ret);
4089 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4094 btrfs_abort_transaction(trans, ret);
4097 * If we have a pending delayed iput we could end up with the final iput
4098 * being run in btrfs-cleaner context. If we have enough of these built
4099 * up we can end up burning a lot of time in btrfs-cleaner without any
4100 * way to throttle the unlinks. Since we're currently holding a ref on
4101 * the inode we can run the delayed iput here without any issues as the
4102 * final iput won't be done until after we drop the ref we're currently
4105 btrfs_run_delayed_iput(fs_info, inode);
4107 btrfs_free_path(path);
4111 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4112 inode_inc_iversion(&inode->vfs_inode);
4113 inode_inc_iversion(&dir->vfs_inode);
4114 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4115 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4116 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4121 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4122 struct btrfs_root *root,
4123 struct btrfs_inode *dir, struct btrfs_inode *inode,
4124 const char *name, int name_len)
4127 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4129 drop_nlink(&inode->vfs_inode);
4130 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4136 * helper to start transaction for unlink and rmdir.
4138 * unlink and rmdir are special in btrfs, they do not always free space, so
4139 * if we cannot make our reservations the normal way try and see if there is
4140 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4141 * allow the unlink to occur.
4143 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4145 struct btrfs_root *root = BTRFS_I(dir)->root;
4148 * 1 for the possible orphan item
4149 * 1 for the dir item
4150 * 1 for the dir index
4151 * 1 for the inode ref
4154 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4157 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4159 struct btrfs_root *root = BTRFS_I(dir)->root;
4160 struct btrfs_trans_handle *trans;
4161 struct inode *inode = d_inode(dentry);
4164 trans = __unlink_start_trans(dir);
4166 return PTR_ERR(trans);
4168 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4171 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4172 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4173 dentry->d_name.len);
4177 if (inode->i_nlink == 0) {
4178 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4184 btrfs_end_transaction(trans);
4185 btrfs_btree_balance_dirty(root->fs_info);
4189 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4190 struct inode *dir, u64 objectid,
4191 const char *name, int name_len)
4193 struct btrfs_root *root = BTRFS_I(dir)->root;
4194 struct btrfs_path *path;
4195 struct extent_buffer *leaf;
4196 struct btrfs_dir_item *di;
4197 struct btrfs_key key;
4200 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4202 path = btrfs_alloc_path();
4206 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4207 name, name_len, -1);
4208 if (IS_ERR_OR_NULL(di)) {
4209 ret = di ? PTR_ERR(di) : -ENOENT;
4213 leaf = path->nodes[0];
4214 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4215 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4216 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4218 btrfs_abort_transaction(trans, ret);
4221 btrfs_release_path(path);
4223 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4224 dir_ino, &index, name, name_len);
4226 if (ret != -ENOENT) {
4227 btrfs_abort_transaction(trans, ret);
4230 di = btrfs_search_dir_index_item(root, path, dir_ino,
4232 if (IS_ERR_OR_NULL(di)) {
4237 btrfs_abort_transaction(trans, ret);
4241 leaf = path->nodes[0];
4242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4245 btrfs_release_path(path);
4247 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4249 btrfs_abort_transaction(trans, ret);
4253 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4254 inode_inc_iversion(dir);
4255 dir->i_mtime = dir->i_ctime = current_time(dir);
4256 ret = btrfs_update_inode_fallback(trans, root, dir);
4258 btrfs_abort_transaction(trans, ret);
4260 btrfs_free_path(path);
4265 * Helper to check if the subvolume references other subvolumes or if it's
4268 static noinline int may_destroy_subvol(struct btrfs_root *root)
4270 struct btrfs_fs_info *fs_info = root->fs_info;
4271 struct btrfs_path *path;
4272 struct btrfs_dir_item *di;
4273 struct btrfs_key key;
4277 path = btrfs_alloc_path();
4281 /* Make sure this root isn't set as the default subvol */
4282 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4283 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4284 dir_id, "default", 7, 0);
4285 if (di && !IS_ERR(di)) {
4286 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4287 if (key.objectid == root->root_key.objectid) {
4290 "deleting default subvolume %llu is not allowed",
4294 btrfs_release_path(path);
4297 key.objectid = root->root_key.objectid;
4298 key.type = BTRFS_ROOT_REF_KEY;
4299 key.offset = (u64)-1;
4301 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4307 if (path->slots[0] > 0) {
4309 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4310 if (key.objectid == root->root_key.objectid &&
4311 key.type == BTRFS_ROOT_REF_KEY)
4315 btrfs_free_path(path);
4319 /* Delete all dentries for inodes belonging to the root */
4320 static void btrfs_prune_dentries(struct btrfs_root *root)
4322 struct btrfs_fs_info *fs_info = root->fs_info;
4323 struct rb_node *node;
4324 struct rb_node *prev;
4325 struct btrfs_inode *entry;
4326 struct inode *inode;
4329 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4330 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4332 spin_lock(&root->inode_lock);
4334 node = root->inode_tree.rb_node;
4338 entry = rb_entry(node, struct btrfs_inode, rb_node);
4340 if (objectid < btrfs_ino(entry))
4341 node = node->rb_left;
4342 else if (objectid > btrfs_ino(entry))
4343 node = node->rb_right;
4349 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4350 if (objectid <= btrfs_ino(entry)) {
4354 prev = rb_next(prev);
4358 entry = rb_entry(node, struct btrfs_inode, rb_node);
4359 objectid = btrfs_ino(entry) + 1;
4360 inode = igrab(&entry->vfs_inode);
4362 spin_unlock(&root->inode_lock);
4363 if (atomic_read(&inode->i_count) > 1)
4364 d_prune_aliases(inode);
4366 * btrfs_drop_inode will have it removed from the inode
4367 * cache when its usage count hits zero.
4371 spin_lock(&root->inode_lock);
4375 if (cond_resched_lock(&root->inode_lock))
4378 node = rb_next(node);
4380 spin_unlock(&root->inode_lock);
4383 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4385 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4386 struct btrfs_root *root = BTRFS_I(dir)->root;
4387 struct inode *inode = d_inode(dentry);
4388 struct btrfs_root *dest = BTRFS_I(inode)->root;
4389 struct btrfs_trans_handle *trans;
4390 struct btrfs_block_rsv block_rsv;
4396 * Don't allow to delete a subvolume with send in progress. This is
4397 * inside the inode lock so the error handling that has to drop the bit
4398 * again is not run concurrently.
4400 spin_lock(&dest->root_item_lock);
4401 if (dest->send_in_progress) {
4402 spin_unlock(&dest->root_item_lock);
4404 "attempt to delete subvolume %llu during send",
4405 dest->root_key.objectid);
4408 root_flags = btrfs_root_flags(&dest->root_item);
4409 btrfs_set_root_flags(&dest->root_item,
4410 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4411 spin_unlock(&dest->root_item_lock);
4413 down_write(&fs_info->subvol_sem);
4415 err = may_destroy_subvol(dest);
4419 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4421 * One for dir inode,
4422 * two for dir entries,
4423 * two for root ref/backref.
4425 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4429 trans = btrfs_start_transaction(root, 0);
4430 if (IS_ERR(trans)) {
4431 err = PTR_ERR(trans);
4434 trans->block_rsv = &block_rsv;
4435 trans->bytes_reserved = block_rsv.size;
4437 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4439 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4440 dentry->d_name.name, dentry->d_name.len);
4443 btrfs_abort_transaction(trans, ret);
4447 btrfs_record_root_in_trans(trans, dest);
4449 memset(&dest->root_item.drop_progress, 0,
4450 sizeof(dest->root_item.drop_progress));
4451 dest->root_item.drop_level = 0;
4452 btrfs_set_root_refs(&dest->root_item, 0);
4454 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4455 ret = btrfs_insert_orphan_item(trans,
4457 dest->root_key.objectid);
4459 btrfs_abort_transaction(trans, ret);
4465 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4466 BTRFS_UUID_KEY_SUBVOL,
4467 dest->root_key.objectid);
4468 if (ret && ret != -ENOENT) {
4469 btrfs_abort_transaction(trans, ret);
4473 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4474 ret = btrfs_uuid_tree_remove(trans,
4475 dest->root_item.received_uuid,
4476 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4477 dest->root_key.objectid);
4478 if (ret && ret != -ENOENT) {
4479 btrfs_abort_transaction(trans, ret);
4486 trans->block_rsv = NULL;
4487 trans->bytes_reserved = 0;
4488 ret = btrfs_end_transaction(trans);
4491 inode->i_flags |= S_DEAD;
4493 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4495 up_write(&fs_info->subvol_sem);
4497 spin_lock(&dest->root_item_lock);
4498 root_flags = btrfs_root_flags(&dest->root_item);
4499 btrfs_set_root_flags(&dest->root_item,
4500 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4501 spin_unlock(&dest->root_item_lock);
4503 d_invalidate(dentry);
4504 btrfs_prune_dentries(dest);
4505 ASSERT(dest->send_in_progress == 0);
4508 if (dest->ino_cache_inode) {
4509 iput(dest->ino_cache_inode);
4510 dest->ino_cache_inode = NULL;
4517 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4519 struct inode *inode = d_inode(dentry);
4521 struct btrfs_root *root = BTRFS_I(dir)->root;
4522 struct btrfs_trans_handle *trans;
4523 u64 last_unlink_trans;
4525 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4527 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4528 return btrfs_delete_subvolume(dir, dentry);
4530 trans = __unlink_start_trans(dir);
4532 return PTR_ERR(trans);
4534 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4535 err = btrfs_unlink_subvol(trans, dir,
4536 BTRFS_I(inode)->location.objectid,
4537 dentry->d_name.name,
4538 dentry->d_name.len);
4542 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4546 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4548 /* now the directory is empty */
4549 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4550 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4551 dentry->d_name.len);
4553 btrfs_i_size_write(BTRFS_I(inode), 0);
4555 * Propagate the last_unlink_trans value of the deleted dir to
4556 * its parent directory. This is to prevent an unrecoverable
4557 * log tree in the case we do something like this:
4559 * 2) create snapshot under dir foo
4560 * 3) delete the snapshot
4563 * 6) fsync foo or some file inside foo
4565 if (last_unlink_trans >= trans->transid)
4566 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4569 btrfs_end_transaction(trans);
4570 btrfs_btree_balance_dirty(root->fs_info);
4576 * Return this if we need to call truncate_block for the last bit of the
4579 #define NEED_TRUNCATE_BLOCK 1
4582 * this can truncate away extent items, csum items and directory items.
4583 * It starts at a high offset and removes keys until it can't find
4584 * any higher than new_size
4586 * csum items that cross the new i_size are truncated to the new size
4589 * min_type is the minimum key type to truncate down to. If set to 0, this
4590 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4592 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4593 struct btrfs_root *root,
4594 struct inode *inode,
4595 u64 new_size, u32 min_type)
4597 struct btrfs_fs_info *fs_info = root->fs_info;
4598 struct btrfs_path *path;
4599 struct extent_buffer *leaf;
4600 struct btrfs_file_extent_item *fi;
4601 struct btrfs_key key;
4602 struct btrfs_key found_key;
4603 u64 extent_start = 0;
4604 u64 extent_num_bytes = 0;
4605 u64 extent_offset = 0;
4607 u64 last_size = new_size;
4608 u32 found_type = (u8)-1;
4611 int pending_del_nr = 0;
4612 int pending_del_slot = 0;
4613 int extent_type = -1;
4615 u64 ino = btrfs_ino(BTRFS_I(inode));
4616 u64 bytes_deleted = 0;
4617 bool be_nice = false;
4618 bool should_throttle = false;
4620 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4623 * for non-free space inodes and ref cows, we want to back off from
4626 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4627 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4630 path = btrfs_alloc_path();
4633 path->reada = READA_BACK;
4636 * We want to drop from the next block forward in case this new size is
4637 * not block aligned since we will be keeping the last block of the
4638 * extent just the way it is.
4640 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4641 root == fs_info->tree_root)
4642 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4643 fs_info->sectorsize),
4647 * This function is also used to drop the items in the log tree before
4648 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4649 * it is used to drop the logged items. So we shouldn't kill the delayed
4652 if (min_type == 0 && root == BTRFS_I(inode)->root)
4653 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4656 key.offset = (u64)-1;
4661 * with a 16K leaf size and 128MB extents, you can actually queue
4662 * up a huge file in a single leaf. Most of the time that
4663 * bytes_deleted is > 0, it will be huge by the time we get here
4665 if (be_nice && bytes_deleted > SZ_32M &&
4666 btrfs_should_end_transaction(trans)) {
4671 path->leave_spinning = 1;
4672 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4678 /* there are no items in the tree for us to truncate, we're
4681 if (path->slots[0] == 0)
4688 leaf = path->nodes[0];
4689 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4690 found_type = found_key.type;
4692 if (found_key.objectid != ino)
4695 if (found_type < min_type)
4698 item_end = found_key.offset;
4699 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4700 fi = btrfs_item_ptr(leaf, path->slots[0],
4701 struct btrfs_file_extent_item);
4702 extent_type = btrfs_file_extent_type(leaf, fi);
4703 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4705 btrfs_file_extent_num_bytes(leaf, fi);
4707 trace_btrfs_truncate_show_fi_regular(
4708 BTRFS_I(inode), leaf, fi,
4710 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4711 item_end += btrfs_file_extent_ram_bytes(leaf,
4714 trace_btrfs_truncate_show_fi_inline(
4715 BTRFS_I(inode), leaf, fi, path->slots[0],
4720 if (found_type > min_type) {
4723 if (item_end < new_size)
4725 if (found_key.offset >= new_size)
4731 /* FIXME, shrink the extent if the ref count is only 1 */
4732 if (found_type != BTRFS_EXTENT_DATA_KEY)
4735 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4737 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4739 u64 orig_num_bytes =
4740 btrfs_file_extent_num_bytes(leaf, fi);
4741 extent_num_bytes = ALIGN(new_size -
4743 fs_info->sectorsize);
4744 btrfs_set_file_extent_num_bytes(leaf, fi,
4746 num_dec = (orig_num_bytes -
4748 if (test_bit(BTRFS_ROOT_REF_COWS,
4751 inode_sub_bytes(inode, num_dec);
4752 btrfs_mark_buffer_dirty(leaf);
4755 btrfs_file_extent_disk_num_bytes(leaf,
4757 extent_offset = found_key.offset -
4758 btrfs_file_extent_offset(leaf, fi);
4760 /* FIXME blocksize != 4096 */
4761 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4762 if (extent_start != 0) {
4764 if (test_bit(BTRFS_ROOT_REF_COWS,
4766 inode_sub_bytes(inode, num_dec);
4769 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4771 * we can't truncate inline items that have had
4775 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4776 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4777 btrfs_file_extent_compression(leaf, fi) == 0) {
4778 u32 size = (u32)(new_size - found_key.offset);
4780 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4781 size = btrfs_file_extent_calc_inline_size(size);
4782 btrfs_truncate_item(path, size, 1);
4783 } else if (!del_item) {
4785 * We have to bail so the last_size is set to
4786 * just before this extent.
4788 ret = NEED_TRUNCATE_BLOCK;
4792 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4793 inode_sub_bytes(inode, item_end + 1 - new_size);
4797 last_size = found_key.offset;
4799 last_size = new_size;
4801 if (!pending_del_nr) {
4802 /* no pending yet, add ourselves */
4803 pending_del_slot = path->slots[0];
4805 } else if (pending_del_nr &&
4806 path->slots[0] + 1 == pending_del_slot) {
4807 /* hop on the pending chunk */
4809 pending_del_slot = path->slots[0];
4816 should_throttle = false;
4819 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4820 root == fs_info->tree_root)) {
4821 struct btrfs_ref ref = { 0 };
4823 btrfs_set_path_blocking(path);
4824 bytes_deleted += extent_num_bytes;
4826 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4827 extent_start, extent_num_bytes, 0);
4828 ref.real_root = root->root_key.objectid;
4829 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4830 ino, extent_offset);
4831 ret = btrfs_free_extent(trans, &ref);
4833 btrfs_abort_transaction(trans, ret);
4837 if (btrfs_should_throttle_delayed_refs(trans))
4838 should_throttle = true;
4842 if (found_type == BTRFS_INODE_ITEM_KEY)
4845 if (path->slots[0] == 0 ||
4846 path->slots[0] != pending_del_slot ||
4848 if (pending_del_nr) {
4849 ret = btrfs_del_items(trans, root, path,
4853 btrfs_abort_transaction(trans, ret);
4858 btrfs_release_path(path);
4861 * We can generate a lot of delayed refs, so we need to
4862 * throttle every once and a while and make sure we're
4863 * adding enough space to keep up with the work we are
4864 * generating. Since we hold a transaction here we
4865 * can't flush, and we don't want to FLUSH_LIMIT because
4866 * we could have generated too many delayed refs to
4867 * actually allocate, so just bail if we're short and
4868 * let the normal reservation dance happen higher up.
4870 if (should_throttle) {
4871 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4872 BTRFS_RESERVE_NO_FLUSH);
4884 if (ret >= 0 && pending_del_nr) {
4887 err = btrfs_del_items(trans, root, path, pending_del_slot,
4890 btrfs_abort_transaction(trans, err);
4894 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4895 ASSERT(last_size >= new_size);
4896 if (!ret && last_size > new_size)
4897 last_size = new_size;
4898 btrfs_ordered_update_i_size(inode, last_size, NULL);
4901 btrfs_free_path(path);
4906 * btrfs_truncate_block - read, zero a chunk and write a block
4907 * @inode - inode that we're zeroing
4908 * @from - the offset to start zeroing
4909 * @len - the length to zero, 0 to zero the entire range respective to the
4911 * @front - zero up to the offset instead of from the offset on
4913 * This will find the block for the "from" offset and cow the block and zero the
4914 * part we want to zero. This is used with truncate and hole punching.
4916 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4920 struct address_space *mapping = inode->i_mapping;
4921 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4922 struct btrfs_ordered_extent *ordered;
4923 struct extent_state *cached_state = NULL;
4924 struct extent_changeset *data_reserved = NULL;
4926 u32 blocksize = fs_info->sectorsize;
4927 pgoff_t index = from >> PAGE_SHIFT;
4928 unsigned offset = from & (blocksize - 1);
4930 gfp_t mask = btrfs_alloc_write_mask(mapping);
4935 if (IS_ALIGNED(offset, blocksize) &&
4936 (!len || IS_ALIGNED(len, blocksize)))
4939 block_start = round_down(from, blocksize);
4940 block_end = block_start + blocksize - 1;
4942 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4943 block_start, blocksize);
4948 page = find_or_create_page(mapping, index, mask);
4950 btrfs_delalloc_release_space(inode, data_reserved,
4951 block_start, blocksize, true);
4952 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4957 if (!PageUptodate(page)) {
4958 ret = btrfs_readpage(NULL, page);
4960 if (page->mapping != mapping) {
4965 if (!PageUptodate(page)) {
4970 wait_on_page_writeback(page);
4972 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4973 set_page_extent_mapped(page);
4975 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4977 unlock_extent_cached(io_tree, block_start, block_end,
4981 btrfs_start_ordered_extent(inode, ordered, 1);
4982 btrfs_put_ordered_extent(ordered);
4986 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4987 EXTENT_DIRTY | EXTENT_DELALLOC |
4988 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4989 0, 0, &cached_state);
4991 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4994 unlock_extent_cached(io_tree, block_start, block_end,
4999 if (offset != blocksize) {
5001 len = blocksize - offset;
5004 memset(kaddr + (block_start - page_offset(page)),
5007 memset(kaddr + (block_start - page_offset(page)) + offset,
5009 flush_dcache_page(page);
5012 ClearPageChecked(page);
5013 set_page_dirty(page);
5014 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5018 btrfs_delalloc_release_space(inode, data_reserved, block_start,
5020 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
5024 extent_changeset_free(data_reserved);
5028 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5029 u64 offset, u64 len)
5031 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5032 struct btrfs_trans_handle *trans;
5036 * Still need to make sure the inode looks like it's been updated so
5037 * that any holes get logged if we fsync.
5039 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5040 BTRFS_I(inode)->last_trans = fs_info->generation;
5041 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5042 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5047 * 1 - for the one we're dropping
5048 * 1 - for the one we're adding
5049 * 1 - for updating the inode.
5051 trans = btrfs_start_transaction(root, 3);
5053 return PTR_ERR(trans);
5055 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5057 btrfs_abort_transaction(trans, ret);
5058 btrfs_end_transaction(trans);
5062 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5063 offset, 0, 0, len, 0, len, 0, 0, 0);
5065 btrfs_abort_transaction(trans, ret);
5067 btrfs_update_inode(trans, root, inode);
5068 btrfs_end_transaction(trans);
5073 * This function puts in dummy file extents for the area we're creating a hole
5074 * for. So if we are truncating this file to a larger size we need to insert
5075 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5076 * the range between oldsize and size
5078 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5080 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5081 struct btrfs_root *root = BTRFS_I(inode)->root;
5082 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5083 struct extent_map *em = NULL;
5084 struct extent_state *cached_state = NULL;
5085 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5086 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5087 u64 block_end = ALIGN(size, fs_info->sectorsize);
5094 * If our size started in the middle of a block we need to zero out the
5095 * rest of the block before we expand the i_size, otherwise we could
5096 * expose stale data.
5098 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5102 if (size <= hole_start)
5105 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5106 block_end - 1, &cached_state);
5107 cur_offset = hole_start;
5109 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5110 block_end - cur_offset, 0);
5116 last_byte = min(extent_map_end(em), block_end);
5117 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5118 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5119 struct extent_map *hole_em;
5120 hole_size = last_byte - cur_offset;
5122 err = maybe_insert_hole(root, inode, cur_offset,
5126 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5127 cur_offset + hole_size - 1, 0);
5128 hole_em = alloc_extent_map();
5130 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5131 &BTRFS_I(inode)->runtime_flags);
5134 hole_em->start = cur_offset;
5135 hole_em->len = hole_size;
5136 hole_em->orig_start = cur_offset;
5138 hole_em->block_start = EXTENT_MAP_HOLE;
5139 hole_em->block_len = 0;
5140 hole_em->orig_block_len = 0;
5141 hole_em->ram_bytes = hole_size;
5142 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5143 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5144 hole_em->generation = fs_info->generation;
5147 write_lock(&em_tree->lock);
5148 err = add_extent_mapping(em_tree, hole_em, 1);
5149 write_unlock(&em_tree->lock);
5152 btrfs_drop_extent_cache(BTRFS_I(inode),
5157 free_extent_map(hole_em);
5160 free_extent_map(em);
5162 cur_offset = last_byte;
5163 if (cur_offset >= block_end)
5166 free_extent_map(em);
5167 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5171 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5173 struct btrfs_root *root = BTRFS_I(inode)->root;
5174 struct btrfs_trans_handle *trans;
5175 loff_t oldsize = i_size_read(inode);
5176 loff_t newsize = attr->ia_size;
5177 int mask = attr->ia_valid;
5181 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5182 * special case where we need to update the times despite not having
5183 * these flags set. For all other operations the VFS set these flags
5184 * explicitly if it wants a timestamp update.
5186 if (newsize != oldsize) {
5187 inode_inc_iversion(inode);
5188 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5189 inode->i_ctime = inode->i_mtime =
5190 current_time(inode);
5193 if (newsize > oldsize) {
5195 * Don't do an expanding truncate while snapshotting is ongoing.
5196 * This is to ensure the snapshot captures a fully consistent
5197 * state of this file - if the snapshot captures this expanding
5198 * truncation, it must capture all writes that happened before
5201 btrfs_wait_for_snapshot_creation(root);
5202 ret = btrfs_cont_expand(inode, oldsize, newsize);
5204 btrfs_end_write_no_snapshotting(root);
5208 trans = btrfs_start_transaction(root, 1);
5209 if (IS_ERR(trans)) {
5210 btrfs_end_write_no_snapshotting(root);
5211 return PTR_ERR(trans);
5214 i_size_write(inode, newsize);
5215 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5216 pagecache_isize_extended(inode, oldsize, newsize);
5217 ret = btrfs_update_inode(trans, root, inode);
5218 btrfs_end_write_no_snapshotting(root);
5219 btrfs_end_transaction(trans);
5223 * We're truncating a file that used to have good data down to
5224 * zero. Make sure it gets into the ordered flush list so that
5225 * any new writes get down to disk quickly.
5228 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5229 &BTRFS_I(inode)->runtime_flags);
5231 truncate_setsize(inode, newsize);
5233 /* Disable nonlocked read DIO to avoid the endless truncate */
5234 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5235 inode_dio_wait(inode);
5236 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5238 ret = btrfs_truncate(inode, newsize == oldsize);
5239 if (ret && inode->i_nlink) {
5243 * Truncate failed, so fix up the in-memory size. We
5244 * adjusted disk_i_size down as we removed extents, so
5245 * wait for disk_i_size to be stable and then update the
5246 * in-memory size to match.
5248 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5251 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5258 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5260 struct inode *inode = d_inode(dentry);
5261 struct btrfs_root *root = BTRFS_I(inode)->root;
5264 if (btrfs_root_readonly(root))
5267 err = setattr_prepare(dentry, attr);
5271 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5272 err = btrfs_setsize(inode, attr);
5277 if (attr->ia_valid) {
5278 setattr_copy(inode, attr);
5279 inode_inc_iversion(inode);
5280 err = btrfs_dirty_inode(inode);
5282 if (!err && attr->ia_valid & ATTR_MODE)
5283 err = posix_acl_chmod(inode, inode->i_mode);
5290 * While truncating the inode pages during eviction, we get the VFS calling
5291 * btrfs_invalidatepage() against each page of the inode. This is slow because
5292 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5293 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5294 * extent_state structures over and over, wasting lots of time.
5296 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5297 * those expensive operations on a per page basis and do only the ordered io
5298 * finishing, while we release here the extent_map and extent_state structures,
5299 * without the excessive merging and splitting.
5301 static void evict_inode_truncate_pages(struct inode *inode)
5303 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5304 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5305 struct rb_node *node;
5307 ASSERT(inode->i_state & I_FREEING);
5308 truncate_inode_pages_final(&inode->i_data);
5310 write_lock(&map_tree->lock);
5311 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5312 struct extent_map *em;
5314 node = rb_first_cached(&map_tree->map);
5315 em = rb_entry(node, struct extent_map, rb_node);
5316 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5317 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5318 remove_extent_mapping(map_tree, em);
5319 free_extent_map(em);
5320 if (need_resched()) {
5321 write_unlock(&map_tree->lock);
5323 write_lock(&map_tree->lock);
5326 write_unlock(&map_tree->lock);
5329 * Keep looping until we have no more ranges in the io tree.
5330 * We can have ongoing bios started by readpages (called from readahead)
5331 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5332 * still in progress (unlocked the pages in the bio but did not yet
5333 * unlocked the ranges in the io tree). Therefore this means some
5334 * ranges can still be locked and eviction started because before
5335 * submitting those bios, which are executed by a separate task (work
5336 * queue kthread), inode references (inode->i_count) were not taken
5337 * (which would be dropped in the end io callback of each bio).
5338 * Therefore here we effectively end up waiting for those bios and
5339 * anyone else holding locked ranges without having bumped the inode's
5340 * reference count - if we don't do it, when they access the inode's
5341 * io_tree to unlock a range it may be too late, leading to an
5342 * use-after-free issue.
5344 spin_lock(&io_tree->lock);
5345 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5346 struct extent_state *state;
5347 struct extent_state *cached_state = NULL;
5350 unsigned state_flags;
5352 node = rb_first(&io_tree->state);
5353 state = rb_entry(node, struct extent_state, rb_node);
5354 start = state->start;
5356 state_flags = state->state;
5357 spin_unlock(&io_tree->lock);
5359 lock_extent_bits(io_tree, start, end, &cached_state);
5362 * If still has DELALLOC flag, the extent didn't reach disk,
5363 * and its reserved space won't be freed by delayed_ref.
5364 * So we need to free its reserved space here.
5365 * (Refer to comment in btrfs_invalidatepage, case 2)
5367 * Note, end is the bytenr of last byte, so we need + 1 here.
5369 if (state_flags & EXTENT_DELALLOC)
5370 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5372 clear_extent_bit(io_tree, start, end,
5373 EXTENT_LOCKED | EXTENT_DIRTY |
5374 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5375 EXTENT_DEFRAG, 1, 1, &cached_state);
5378 spin_lock(&io_tree->lock);
5380 spin_unlock(&io_tree->lock);
5383 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5384 struct btrfs_block_rsv *rsv)
5386 struct btrfs_fs_info *fs_info = root->fs_info;
5387 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5388 struct btrfs_trans_handle *trans;
5389 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5393 * Eviction should be taking place at some place safe because of our
5394 * delayed iputs. However the normal flushing code will run delayed
5395 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5397 * We reserve the delayed_refs_extra here again because we can't use
5398 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5399 * above. We reserve our extra bit here because we generate a ton of
5400 * delayed refs activity by truncating.
5402 * If we cannot make our reservation we'll attempt to steal from the
5403 * global reserve, because we really want to be able to free up space.
5405 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5406 BTRFS_RESERVE_FLUSH_EVICT);
5409 * Try to steal from the global reserve if there is space for
5412 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5413 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5415 "could not allocate space for delete; will truncate on mount");
5416 return ERR_PTR(-ENOSPC);
5418 delayed_refs_extra = 0;
5421 trans = btrfs_join_transaction(root);
5425 if (delayed_refs_extra) {
5426 trans->block_rsv = &fs_info->trans_block_rsv;
5427 trans->bytes_reserved = delayed_refs_extra;
5428 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5429 delayed_refs_extra, 1);
5434 void btrfs_evict_inode(struct inode *inode)
5436 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5437 struct btrfs_trans_handle *trans;
5438 struct btrfs_root *root = BTRFS_I(inode)->root;
5439 struct btrfs_block_rsv *rsv;
5442 trace_btrfs_inode_evict(inode);
5449 evict_inode_truncate_pages(inode);
5451 if (inode->i_nlink &&
5452 ((btrfs_root_refs(&root->root_item) != 0 &&
5453 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5454 btrfs_is_free_space_inode(BTRFS_I(inode))))
5457 if (is_bad_inode(inode))
5460 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5462 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5465 if (inode->i_nlink > 0) {
5466 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5467 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5471 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5475 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5478 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5481 btrfs_i_size_write(BTRFS_I(inode), 0);
5484 trans = evict_refill_and_join(root, rsv);
5488 trans->block_rsv = rsv;
5490 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5491 trans->block_rsv = &fs_info->trans_block_rsv;
5492 btrfs_end_transaction(trans);
5493 btrfs_btree_balance_dirty(fs_info);
5494 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5501 * Errors here aren't a big deal, it just means we leave orphan items in
5502 * the tree. They will be cleaned up on the next mount. If the inode
5503 * number gets reused, cleanup deletes the orphan item without doing
5504 * anything, and unlink reuses the existing orphan item.
5506 * If it turns out that we are dropping too many of these, we might want
5507 * to add a mechanism for retrying these after a commit.
5509 trans = evict_refill_and_join(root, rsv);
5510 if (!IS_ERR(trans)) {
5511 trans->block_rsv = rsv;
5512 btrfs_orphan_del(trans, BTRFS_I(inode));
5513 trans->block_rsv = &fs_info->trans_block_rsv;
5514 btrfs_end_transaction(trans);
5517 if (!(root == fs_info->tree_root ||
5518 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5519 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5522 btrfs_free_block_rsv(fs_info, rsv);
5525 * If we didn't successfully delete, the orphan item will still be in
5526 * the tree and we'll retry on the next mount. Again, we might also want
5527 * to retry these periodically in the future.
5529 btrfs_remove_delayed_node(BTRFS_I(inode));
5534 * Return the key found in the dir entry in the location pointer, fill @type
5535 * with BTRFS_FT_*, and return 0.
5537 * If no dir entries were found, returns -ENOENT.
5538 * If found a corrupted location in dir entry, returns -EUCLEAN.
5540 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5541 struct btrfs_key *location, u8 *type)
5543 const char *name = dentry->d_name.name;
5544 int namelen = dentry->d_name.len;
5545 struct btrfs_dir_item *di;
5546 struct btrfs_path *path;
5547 struct btrfs_root *root = BTRFS_I(dir)->root;
5550 path = btrfs_alloc_path();
5554 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5556 if (IS_ERR_OR_NULL(di)) {
5557 ret = di ? PTR_ERR(di) : -ENOENT;
5561 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5562 if (location->type != BTRFS_INODE_ITEM_KEY &&
5563 location->type != BTRFS_ROOT_ITEM_KEY) {
5565 btrfs_warn(root->fs_info,
5566 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5567 __func__, name, btrfs_ino(BTRFS_I(dir)),
5568 location->objectid, location->type, location->offset);
5571 *type = btrfs_dir_type(path->nodes[0], di);
5573 btrfs_free_path(path);
5578 * when we hit a tree root in a directory, the btrfs part of the inode
5579 * needs to be changed to reflect the root directory of the tree root. This
5580 * is kind of like crossing a mount point.
5582 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5584 struct dentry *dentry,
5585 struct btrfs_key *location,
5586 struct btrfs_root **sub_root)
5588 struct btrfs_path *path;
5589 struct btrfs_root *new_root;
5590 struct btrfs_root_ref *ref;
5591 struct extent_buffer *leaf;
5592 struct btrfs_key key;
5596 path = btrfs_alloc_path();
5603 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5604 key.type = BTRFS_ROOT_REF_KEY;
5605 key.offset = location->objectid;
5607 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5614 leaf = path->nodes[0];
5615 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5616 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5617 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5620 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5621 (unsigned long)(ref + 1),
5622 dentry->d_name.len);
5626 btrfs_release_path(path);
5628 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5629 if (IS_ERR(new_root)) {
5630 err = PTR_ERR(new_root);
5634 *sub_root = new_root;
5635 location->objectid = btrfs_root_dirid(&new_root->root_item);
5636 location->type = BTRFS_INODE_ITEM_KEY;
5637 location->offset = 0;
5640 btrfs_free_path(path);
5644 static void inode_tree_add(struct inode *inode)
5646 struct btrfs_root *root = BTRFS_I(inode)->root;
5647 struct btrfs_inode *entry;
5649 struct rb_node *parent;
5650 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5651 u64 ino = btrfs_ino(BTRFS_I(inode));
5653 if (inode_unhashed(inode))
5656 spin_lock(&root->inode_lock);
5657 p = &root->inode_tree.rb_node;
5660 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5662 if (ino < btrfs_ino(entry))
5663 p = &parent->rb_left;
5664 else if (ino > btrfs_ino(entry))
5665 p = &parent->rb_right;
5667 WARN_ON(!(entry->vfs_inode.i_state &
5668 (I_WILL_FREE | I_FREEING)));
5669 rb_replace_node(parent, new, &root->inode_tree);
5670 RB_CLEAR_NODE(parent);
5671 spin_unlock(&root->inode_lock);
5675 rb_link_node(new, parent, p);
5676 rb_insert_color(new, &root->inode_tree);
5677 spin_unlock(&root->inode_lock);
5680 static void inode_tree_del(struct inode *inode)
5682 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5683 struct btrfs_root *root = BTRFS_I(inode)->root;
5686 spin_lock(&root->inode_lock);
5687 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5688 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5689 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5690 empty = RB_EMPTY_ROOT(&root->inode_tree);
5692 spin_unlock(&root->inode_lock);
5694 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5695 synchronize_srcu(&fs_info->subvol_srcu);
5696 spin_lock(&root->inode_lock);
5697 empty = RB_EMPTY_ROOT(&root->inode_tree);
5698 spin_unlock(&root->inode_lock);
5700 btrfs_add_dead_root(root);
5705 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5707 struct btrfs_iget_args *args = p;
5708 inode->i_ino = args->location->objectid;
5709 memcpy(&BTRFS_I(inode)->location, args->location,
5710 sizeof(*args->location));
5711 BTRFS_I(inode)->root = args->root;
5715 static int btrfs_find_actor(struct inode *inode, void *opaque)
5717 struct btrfs_iget_args *args = opaque;
5718 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5719 args->root == BTRFS_I(inode)->root;
5722 static struct inode *btrfs_iget_locked(struct super_block *s,
5723 struct btrfs_key *location,
5724 struct btrfs_root *root)
5726 struct inode *inode;
5727 struct btrfs_iget_args args;
5728 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5730 args.location = location;
5733 inode = iget5_locked(s, hashval, btrfs_find_actor,
5734 btrfs_init_locked_inode,
5739 /* Get an inode object given its location and corresponding root.
5740 * Returns in *is_new if the inode was read from disk
5742 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5743 struct btrfs_root *root, int *new,
5744 struct btrfs_path *path)
5746 struct inode *inode;
5748 inode = btrfs_iget_locked(s, location, root);
5750 return ERR_PTR(-ENOMEM);
5752 if (inode->i_state & I_NEW) {
5755 ret = btrfs_read_locked_inode(inode, path);
5757 inode_tree_add(inode);
5758 unlock_new_inode(inode);
5764 * ret > 0 can come from btrfs_search_slot called by
5765 * btrfs_read_locked_inode, this means the inode item
5770 inode = ERR_PTR(ret);
5777 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5778 struct btrfs_root *root, int *new)
5780 return btrfs_iget_path(s, location, root, new, NULL);
5783 static struct inode *new_simple_dir(struct super_block *s,
5784 struct btrfs_key *key,
5785 struct btrfs_root *root)
5787 struct inode *inode = new_inode(s);
5790 return ERR_PTR(-ENOMEM);
5792 BTRFS_I(inode)->root = root;
5793 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5794 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5796 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5797 inode->i_op = &btrfs_dir_ro_inode_operations;
5798 inode->i_opflags &= ~IOP_XATTR;
5799 inode->i_fop = &simple_dir_operations;
5800 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5801 inode->i_mtime = current_time(inode);
5802 inode->i_atime = inode->i_mtime;
5803 inode->i_ctime = inode->i_mtime;
5804 BTRFS_I(inode)->i_otime = inode->i_mtime;
5809 static inline u8 btrfs_inode_type(struct inode *inode)
5812 * Compile-time asserts that generic FT_* types still match
5815 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5816 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5817 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5818 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5819 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5820 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5821 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5822 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5824 return fs_umode_to_ftype(inode->i_mode);
5827 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5829 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5830 struct inode *inode;
5831 struct btrfs_root *root = BTRFS_I(dir)->root;
5832 struct btrfs_root *sub_root = root;
5833 struct btrfs_key location;
5838 if (dentry->d_name.len > BTRFS_NAME_LEN)
5839 return ERR_PTR(-ENAMETOOLONG);
5841 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5843 return ERR_PTR(ret);
5845 if (location.type == BTRFS_INODE_ITEM_KEY) {
5846 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5850 /* Do extra check against inode mode with di_type */
5851 if (btrfs_inode_type(inode) != di_type) {
5853 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5854 inode->i_mode, btrfs_inode_type(inode),
5857 return ERR_PTR(-EUCLEAN);
5862 index = srcu_read_lock(&fs_info->subvol_srcu);
5863 ret = fixup_tree_root_location(fs_info, dir, dentry,
5864 &location, &sub_root);
5867 inode = ERR_PTR(ret);
5869 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5871 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5873 srcu_read_unlock(&fs_info->subvol_srcu, index);
5875 if (!IS_ERR(inode) && root != sub_root) {
5876 down_read(&fs_info->cleanup_work_sem);
5877 if (!sb_rdonly(inode->i_sb))
5878 ret = btrfs_orphan_cleanup(sub_root);
5879 up_read(&fs_info->cleanup_work_sem);
5882 inode = ERR_PTR(ret);
5889 static int btrfs_dentry_delete(const struct dentry *dentry)
5891 struct btrfs_root *root;
5892 struct inode *inode = d_inode(dentry);
5894 if (!inode && !IS_ROOT(dentry))
5895 inode = d_inode(dentry->d_parent);
5898 root = BTRFS_I(inode)->root;
5899 if (btrfs_root_refs(&root->root_item) == 0)
5902 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5908 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5911 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5913 if (inode == ERR_PTR(-ENOENT))
5915 return d_splice_alias(inode, dentry);
5919 * All this infrastructure exists because dir_emit can fault, and we are holding
5920 * the tree lock when doing readdir. For now just allocate a buffer and copy
5921 * our information into that, and then dir_emit from the buffer. This is
5922 * similar to what NFS does, only we don't keep the buffer around in pagecache
5923 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5924 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5927 static int btrfs_opendir(struct inode *inode, struct file *file)
5929 struct btrfs_file_private *private;
5931 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5934 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5935 if (!private->filldir_buf) {
5939 file->private_data = private;
5950 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5953 struct dir_entry *entry = addr;
5954 char *name = (char *)(entry + 1);
5956 ctx->pos = get_unaligned(&entry->offset);
5957 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5958 get_unaligned(&entry->ino),
5959 get_unaligned(&entry->type)))
5961 addr += sizeof(struct dir_entry) +
5962 get_unaligned(&entry->name_len);
5968 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5970 struct inode *inode = file_inode(file);
5971 struct btrfs_root *root = BTRFS_I(inode)->root;
5972 struct btrfs_file_private *private = file->private_data;
5973 struct btrfs_dir_item *di;
5974 struct btrfs_key key;
5975 struct btrfs_key found_key;
5976 struct btrfs_path *path;
5978 struct list_head ins_list;
5979 struct list_head del_list;
5981 struct extent_buffer *leaf;
5988 struct btrfs_key location;
5990 if (!dir_emit_dots(file, ctx))
5993 path = btrfs_alloc_path();
5997 addr = private->filldir_buf;
5998 path->reada = READA_FORWARD;
6000 INIT_LIST_HEAD(&ins_list);
6001 INIT_LIST_HEAD(&del_list);
6002 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6005 key.type = BTRFS_DIR_INDEX_KEY;
6006 key.offset = ctx->pos;
6007 key.objectid = btrfs_ino(BTRFS_I(inode));
6009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6014 struct dir_entry *entry;
6016 leaf = path->nodes[0];
6017 slot = path->slots[0];
6018 if (slot >= btrfs_header_nritems(leaf)) {
6019 ret = btrfs_next_leaf(root, path);
6027 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6029 if (found_key.objectid != key.objectid)
6031 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6033 if (found_key.offset < ctx->pos)
6035 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6037 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6038 name_len = btrfs_dir_name_len(leaf, di);
6039 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6041 btrfs_release_path(path);
6042 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6045 addr = private->filldir_buf;
6052 put_unaligned(name_len, &entry->name_len);
6053 name_ptr = (char *)(entry + 1);
6054 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6056 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6058 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6059 put_unaligned(location.objectid, &entry->ino);
6060 put_unaligned(found_key.offset, &entry->offset);
6062 addr += sizeof(struct dir_entry) + name_len;
6063 total_len += sizeof(struct dir_entry) + name_len;
6067 btrfs_release_path(path);
6069 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6073 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6078 * Stop new entries from being returned after we return the last
6081 * New directory entries are assigned a strictly increasing
6082 * offset. This means that new entries created during readdir
6083 * are *guaranteed* to be seen in the future by that readdir.
6084 * This has broken buggy programs which operate on names as
6085 * they're returned by readdir. Until we re-use freed offsets
6086 * we have this hack to stop new entries from being returned
6087 * under the assumption that they'll never reach this huge
6090 * This is being careful not to overflow 32bit loff_t unless the
6091 * last entry requires it because doing so has broken 32bit apps
6094 if (ctx->pos >= INT_MAX)
6095 ctx->pos = LLONG_MAX;
6102 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6103 btrfs_free_path(path);
6108 * This is somewhat expensive, updating the tree every time the
6109 * inode changes. But, it is most likely to find the inode in cache.
6110 * FIXME, needs more benchmarking...there are no reasons other than performance
6111 * to keep or drop this code.
6113 static int btrfs_dirty_inode(struct inode *inode)
6115 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6116 struct btrfs_root *root = BTRFS_I(inode)->root;
6117 struct btrfs_trans_handle *trans;
6120 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6123 trans = btrfs_join_transaction(root);
6125 return PTR_ERR(trans);
6127 ret = btrfs_update_inode(trans, root, inode);
6128 if (ret && ret == -ENOSPC) {
6129 /* whoops, lets try again with the full transaction */
6130 btrfs_end_transaction(trans);
6131 trans = btrfs_start_transaction(root, 1);
6133 return PTR_ERR(trans);
6135 ret = btrfs_update_inode(trans, root, inode);
6137 btrfs_end_transaction(trans);
6138 if (BTRFS_I(inode)->delayed_node)
6139 btrfs_balance_delayed_items(fs_info);
6145 * This is a copy of file_update_time. We need this so we can return error on
6146 * ENOSPC for updating the inode in the case of file write and mmap writes.
6148 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6151 struct btrfs_root *root = BTRFS_I(inode)->root;
6152 bool dirty = flags & ~S_VERSION;
6154 if (btrfs_root_readonly(root))
6157 if (flags & S_VERSION)
6158 dirty |= inode_maybe_inc_iversion(inode, dirty);
6159 if (flags & S_CTIME)
6160 inode->i_ctime = *now;
6161 if (flags & S_MTIME)
6162 inode->i_mtime = *now;
6163 if (flags & S_ATIME)
6164 inode->i_atime = *now;
6165 return dirty ? btrfs_dirty_inode(inode) : 0;
6169 * find the highest existing sequence number in a directory
6170 * and then set the in-memory index_cnt variable to reflect
6171 * free sequence numbers
6173 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6175 struct btrfs_root *root = inode->root;
6176 struct btrfs_key key, found_key;
6177 struct btrfs_path *path;
6178 struct extent_buffer *leaf;
6181 key.objectid = btrfs_ino(inode);
6182 key.type = BTRFS_DIR_INDEX_KEY;
6183 key.offset = (u64)-1;
6185 path = btrfs_alloc_path();
6189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6192 /* FIXME: we should be able to handle this */
6198 * MAGIC NUMBER EXPLANATION:
6199 * since we search a directory based on f_pos we have to start at 2
6200 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6201 * else has to start at 2
6203 if (path->slots[0] == 0) {
6204 inode->index_cnt = 2;
6210 leaf = path->nodes[0];
6211 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6213 if (found_key.objectid != btrfs_ino(inode) ||
6214 found_key.type != BTRFS_DIR_INDEX_KEY) {
6215 inode->index_cnt = 2;
6219 inode->index_cnt = found_key.offset + 1;
6221 btrfs_free_path(path);
6226 * helper to find a free sequence number in a given directory. This current
6227 * code is very simple, later versions will do smarter things in the btree
6229 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6233 if (dir->index_cnt == (u64)-1) {
6234 ret = btrfs_inode_delayed_dir_index_count(dir);
6236 ret = btrfs_set_inode_index_count(dir);
6242 *index = dir->index_cnt;
6248 static int btrfs_insert_inode_locked(struct inode *inode)
6250 struct btrfs_iget_args args;
6251 args.location = &BTRFS_I(inode)->location;
6252 args.root = BTRFS_I(inode)->root;
6254 return insert_inode_locked4(inode,
6255 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6256 btrfs_find_actor, &args);
6260 * Inherit flags from the parent inode.
6262 * Currently only the compression flags and the cow flags are inherited.
6264 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6271 flags = BTRFS_I(dir)->flags;
6273 if (flags & BTRFS_INODE_NOCOMPRESS) {
6274 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6275 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6276 } else if (flags & BTRFS_INODE_COMPRESS) {
6277 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6278 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6281 if (flags & BTRFS_INODE_NODATACOW) {
6282 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6283 if (S_ISREG(inode->i_mode))
6284 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6287 btrfs_sync_inode_flags_to_i_flags(inode);
6290 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6291 struct btrfs_root *root,
6293 const char *name, int name_len,
6294 u64 ref_objectid, u64 objectid,
6295 umode_t mode, u64 *index)
6297 struct btrfs_fs_info *fs_info = root->fs_info;
6298 struct inode *inode;
6299 struct btrfs_inode_item *inode_item;
6300 struct btrfs_key *location;
6301 struct btrfs_path *path;
6302 struct btrfs_inode_ref *ref;
6303 struct btrfs_key key[2];
6305 int nitems = name ? 2 : 1;
6309 path = btrfs_alloc_path();
6311 return ERR_PTR(-ENOMEM);
6313 inode = new_inode(fs_info->sb);
6315 btrfs_free_path(path);
6316 return ERR_PTR(-ENOMEM);
6320 * O_TMPFILE, set link count to 0, so that after this point,
6321 * we fill in an inode item with the correct link count.
6324 set_nlink(inode, 0);
6327 * we have to initialize this early, so we can reclaim the inode
6328 * number if we fail afterwards in this function.
6330 inode->i_ino = objectid;
6333 trace_btrfs_inode_request(dir);
6335 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6337 btrfs_free_path(path);
6339 return ERR_PTR(ret);
6345 * index_cnt is ignored for everything but a dir,
6346 * btrfs_set_inode_index_count has an explanation for the magic
6349 BTRFS_I(inode)->index_cnt = 2;
6350 BTRFS_I(inode)->dir_index = *index;
6351 BTRFS_I(inode)->root = root;
6352 BTRFS_I(inode)->generation = trans->transid;
6353 inode->i_generation = BTRFS_I(inode)->generation;
6356 * We could have gotten an inode number from somebody who was fsynced
6357 * and then removed in this same transaction, so let's just set full
6358 * sync since it will be a full sync anyway and this will blow away the
6359 * old info in the log.
6361 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6363 key[0].objectid = objectid;
6364 key[0].type = BTRFS_INODE_ITEM_KEY;
6367 sizes[0] = sizeof(struct btrfs_inode_item);
6371 * Start new inodes with an inode_ref. This is slightly more
6372 * efficient for small numbers of hard links since they will
6373 * be packed into one item. Extended refs will kick in if we
6374 * add more hard links than can fit in the ref item.
6376 key[1].objectid = objectid;
6377 key[1].type = BTRFS_INODE_REF_KEY;
6378 key[1].offset = ref_objectid;
6380 sizes[1] = name_len + sizeof(*ref);
6383 location = &BTRFS_I(inode)->location;
6384 location->objectid = objectid;
6385 location->offset = 0;
6386 location->type = BTRFS_INODE_ITEM_KEY;
6388 ret = btrfs_insert_inode_locked(inode);
6394 path->leave_spinning = 1;
6395 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6399 inode_init_owner(inode, dir, mode);
6400 inode_set_bytes(inode, 0);
6402 inode->i_mtime = current_time(inode);
6403 inode->i_atime = inode->i_mtime;
6404 inode->i_ctime = inode->i_mtime;
6405 BTRFS_I(inode)->i_otime = inode->i_mtime;
6407 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6408 struct btrfs_inode_item);
6409 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6410 sizeof(*inode_item));
6411 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6414 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6415 struct btrfs_inode_ref);
6416 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6417 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6418 ptr = (unsigned long)(ref + 1);
6419 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6422 btrfs_mark_buffer_dirty(path->nodes[0]);
6423 btrfs_free_path(path);
6425 btrfs_inherit_iflags(inode, dir);
6427 if (S_ISREG(mode)) {
6428 if (btrfs_test_opt(fs_info, NODATASUM))
6429 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6430 if (btrfs_test_opt(fs_info, NODATACOW))
6431 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6432 BTRFS_INODE_NODATASUM;
6435 inode_tree_add(inode);
6437 trace_btrfs_inode_new(inode);
6438 btrfs_set_inode_last_trans(trans, inode);
6440 btrfs_update_root_times(trans, root);
6442 ret = btrfs_inode_inherit_props(trans, inode, dir);
6445 "error inheriting props for ino %llu (root %llu): %d",
6446 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6451 discard_new_inode(inode);
6454 BTRFS_I(dir)->index_cnt--;
6455 btrfs_free_path(path);
6456 return ERR_PTR(ret);
6460 * utility function to add 'inode' into 'parent_inode' with
6461 * a give name and a given sequence number.
6462 * if 'add_backref' is true, also insert a backref from the
6463 * inode to the parent directory.
6465 int btrfs_add_link(struct btrfs_trans_handle *trans,
6466 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6467 const char *name, int name_len, int add_backref, u64 index)
6470 struct btrfs_key key;
6471 struct btrfs_root *root = parent_inode->root;
6472 u64 ino = btrfs_ino(inode);
6473 u64 parent_ino = btrfs_ino(parent_inode);
6475 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6476 memcpy(&key, &inode->root->root_key, sizeof(key));
6479 key.type = BTRFS_INODE_ITEM_KEY;
6483 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6484 ret = btrfs_add_root_ref(trans, key.objectid,
6485 root->root_key.objectid, parent_ino,
6486 index, name, name_len);
6487 } else if (add_backref) {
6488 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6492 /* Nothing to clean up yet */
6496 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6497 btrfs_inode_type(&inode->vfs_inode), index);
6498 if (ret == -EEXIST || ret == -EOVERFLOW)
6501 btrfs_abort_transaction(trans, ret);
6505 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6507 inode_inc_iversion(&parent_inode->vfs_inode);
6509 * If we are replaying a log tree, we do not want to update the mtime
6510 * and ctime of the parent directory with the current time, since the
6511 * log replay procedure is responsible for setting them to their correct
6512 * values (the ones it had when the fsync was done).
6514 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6515 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6517 parent_inode->vfs_inode.i_mtime = now;
6518 parent_inode->vfs_inode.i_ctime = now;
6520 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6522 btrfs_abort_transaction(trans, ret);
6526 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6529 err = btrfs_del_root_ref(trans, key.objectid,
6530 root->root_key.objectid, parent_ino,
6531 &local_index, name, name_len);
6533 btrfs_abort_transaction(trans, err);
6534 } else if (add_backref) {
6538 err = btrfs_del_inode_ref(trans, root, name, name_len,
6539 ino, parent_ino, &local_index);
6541 btrfs_abort_transaction(trans, err);
6544 /* Return the original error code */
6548 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6549 struct btrfs_inode *dir, struct dentry *dentry,
6550 struct btrfs_inode *inode, int backref, u64 index)
6552 int err = btrfs_add_link(trans, dir, inode,
6553 dentry->d_name.name, dentry->d_name.len,
6560 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6561 umode_t mode, dev_t rdev)
6563 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6564 struct btrfs_trans_handle *trans;
6565 struct btrfs_root *root = BTRFS_I(dir)->root;
6566 struct inode *inode = NULL;
6572 * 2 for inode item and ref
6574 * 1 for xattr if selinux is on
6576 trans = btrfs_start_transaction(root, 5);
6578 return PTR_ERR(trans);
6580 err = btrfs_find_free_ino(root, &objectid);
6584 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6585 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6587 if (IS_ERR(inode)) {
6588 err = PTR_ERR(inode);
6594 * If the active LSM wants to access the inode during
6595 * d_instantiate it needs these. Smack checks to see
6596 * if the filesystem supports xattrs by looking at the
6599 inode->i_op = &btrfs_special_inode_operations;
6600 init_special_inode(inode, inode->i_mode, rdev);
6602 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6606 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6611 btrfs_update_inode(trans, root, inode);
6612 d_instantiate_new(dentry, inode);
6615 btrfs_end_transaction(trans);
6616 btrfs_btree_balance_dirty(fs_info);
6618 inode_dec_link_count(inode);
6619 discard_new_inode(inode);
6624 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6625 umode_t mode, bool excl)
6627 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6628 struct btrfs_trans_handle *trans;
6629 struct btrfs_root *root = BTRFS_I(dir)->root;
6630 struct inode *inode = NULL;
6636 * 2 for inode item and ref
6638 * 1 for xattr if selinux is on
6640 trans = btrfs_start_transaction(root, 5);
6642 return PTR_ERR(trans);
6644 err = btrfs_find_free_ino(root, &objectid);
6648 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6649 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6651 if (IS_ERR(inode)) {
6652 err = PTR_ERR(inode);
6657 * If the active LSM wants to access the inode during
6658 * d_instantiate it needs these. Smack checks to see
6659 * if the filesystem supports xattrs by looking at the
6662 inode->i_fop = &btrfs_file_operations;
6663 inode->i_op = &btrfs_file_inode_operations;
6664 inode->i_mapping->a_ops = &btrfs_aops;
6666 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6670 err = btrfs_update_inode(trans, root, inode);
6674 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6679 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6680 d_instantiate_new(dentry, inode);
6683 btrfs_end_transaction(trans);
6685 inode_dec_link_count(inode);
6686 discard_new_inode(inode);
6688 btrfs_btree_balance_dirty(fs_info);
6692 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6693 struct dentry *dentry)
6695 struct btrfs_trans_handle *trans = NULL;
6696 struct btrfs_root *root = BTRFS_I(dir)->root;
6697 struct inode *inode = d_inode(old_dentry);
6698 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6703 /* do not allow sys_link's with other subvols of the same device */
6704 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6707 if (inode->i_nlink >= BTRFS_LINK_MAX)
6710 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6715 * 2 items for inode and inode ref
6716 * 2 items for dir items
6717 * 1 item for parent inode
6718 * 1 item for orphan item deletion if O_TMPFILE
6720 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6721 if (IS_ERR(trans)) {
6722 err = PTR_ERR(trans);
6727 /* There are several dir indexes for this inode, clear the cache. */
6728 BTRFS_I(inode)->dir_index = 0ULL;
6730 inode_inc_iversion(inode);
6731 inode->i_ctime = current_time(inode);
6733 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6735 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6741 struct dentry *parent = dentry->d_parent;
6744 err = btrfs_update_inode(trans, root, inode);
6747 if (inode->i_nlink == 1) {
6749 * If new hard link count is 1, it's a file created
6750 * with open(2) O_TMPFILE flag.
6752 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6756 d_instantiate(dentry, inode);
6757 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6759 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6760 err = btrfs_commit_transaction(trans);
6767 btrfs_end_transaction(trans);
6769 inode_dec_link_count(inode);
6772 btrfs_btree_balance_dirty(fs_info);
6776 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6778 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6779 struct inode *inode = NULL;
6780 struct btrfs_trans_handle *trans;
6781 struct btrfs_root *root = BTRFS_I(dir)->root;
6787 * 2 items for inode and ref
6788 * 2 items for dir items
6789 * 1 for xattr if selinux is on
6791 trans = btrfs_start_transaction(root, 5);
6793 return PTR_ERR(trans);
6795 err = btrfs_find_free_ino(root, &objectid);
6799 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6800 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6801 S_IFDIR | mode, &index);
6802 if (IS_ERR(inode)) {
6803 err = PTR_ERR(inode);
6808 /* these must be set before we unlock the inode */
6809 inode->i_op = &btrfs_dir_inode_operations;
6810 inode->i_fop = &btrfs_dir_file_operations;
6812 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6816 btrfs_i_size_write(BTRFS_I(inode), 0);
6817 err = btrfs_update_inode(trans, root, inode);
6821 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6822 dentry->d_name.name,
6823 dentry->d_name.len, 0, index);
6827 d_instantiate_new(dentry, inode);
6830 btrfs_end_transaction(trans);
6832 inode_dec_link_count(inode);
6833 discard_new_inode(inode);
6835 btrfs_btree_balance_dirty(fs_info);
6839 static noinline int uncompress_inline(struct btrfs_path *path,
6841 size_t pg_offset, u64 extent_offset,
6842 struct btrfs_file_extent_item *item)
6845 struct extent_buffer *leaf = path->nodes[0];
6848 unsigned long inline_size;
6852 WARN_ON(pg_offset != 0);
6853 compress_type = btrfs_file_extent_compression(leaf, item);
6854 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6855 inline_size = btrfs_file_extent_inline_item_len(leaf,
6856 btrfs_item_nr(path->slots[0]));
6857 tmp = kmalloc(inline_size, GFP_NOFS);
6860 ptr = btrfs_file_extent_inline_start(item);
6862 read_extent_buffer(leaf, tmp, ptr, inline_size);
6864 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6865 ret = btrfs_decompress(compress_type, tmp, page,
6866 extent_offset, inline_size, max_size);
6869 * decompression code contains a memset to fill in any space between the end
6870 * of the uncompressed data and the end of max_size in case the decompressed
6871 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6872 * the end of an inline extent and the beginning of the next block, so we
6873 * cover that region here.
6876 if (max_size + pg_offset < PAGE_SIZE) {
6877 char *map = kmap(page);
6878 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6886 * a bit scary, this does extent mapping from logical file offset to the disk.
6887 * the ugly parts come from merging extents from the disk with the in-ram
6888 * representation. This gets more complex because of the data=ordered code,
6889 * where the in-ram extents might be locked pending data=ordered completion.
6891 * This also copies inline extents directly into the page.
6893 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6895 size_t pg_offset, u64 start, u64 len,
6898 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6901 u64 extent_start = 0;
6903 u64 objectid = btrfs_ino(inode);
6904 int extent_type = -1;
6905 struct btrfs_path *path = NULL;
6906 struct btrfs_root *root = inode->root;
6907 struct btrfs_file_extent_item *item;
6908 struct extent_buffer *leaf;
6909 struct btrfs_key found_key;
6910 struct extent_map *em = NULL;
6911 struct extent_map_tree *em_tree = &inode->extent_tree;
6912 struct extent_io_tree *io_tree = &inode->io_tree;
6913 const bool new_inline = !page || create;
6915 read_lock(&em_tree->lock);
6916 em = lookup_extent_mapping(em_tree, start, len);
6918 em->bdev = fs_info->fs_devices->latest_bdev;
6919 read_unlock(&em_tree->lock);
6922 if (em->start > start || em->start + em->len <= start)
6923 free_extent_map(em);
6924 else if (em->block_start == EXTENT_MAP_INLINE && page)
6925 free_extent_map(em);
6929 em = alloc_extent_map();
6934 em->bdev = fs_info->fs_devices->latest_bdev;
6935 em->start = EXTENT_MAP_HOLE;
6936 em->orig_start = EXTENT_MAP_HOLE;
6938 em->block_len = (u64)-1;
6940 path = btrfs_alloc_path();
6946 /* Chances are we'll be called again, so go ahead and do readahead */
6947 path->reada = READA_FORWARD;
6950 * Unless we're going to uncompress the inline extent, no sleep would
6953 path->leave_spinning = 1;
6955 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6959 } else if (ret > 0) {
6960 if (path->slots[0] == 0)
6965 leaf = path->nodes[0];
6966 item = btrfs_item_ptr(leaf, path->slots[0],
6967 struct btrfs_file_extent_item);
6968 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6969 if (found_key.objectid != objectid ||
6970 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6972 * If we backup past the first extent we want to move forward
6973 * and see if there is an extent in front of us, otherwise we'll
6974 * say there is a hole for our whole search range which can
6981 extent_type = btrfs_file_extent_type(leaf, item);
6982 extent_start = found_key.offset;
6983 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6984 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6985 /* Only regular file could have regular/prealloc extent */
6986 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6989 "regular/prealloc extent found for non-regular inode %llu",
6993 extent_end = extent_start +
6994 btrfs_file_extent_num_bytes(leaf, item);
6996 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6998 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7001 size = btrfs_file_extent_ram_bytes(leaf, item);
7002 extent_end = ALIGN(extent_start + size,
7003 fs_info->sectorsize);
7005 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7010 if (start >= extent_end) {
7012 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7013 ret = btrfs_next_leaf(root, path);
7017 } else if (ret > 0) {
7020 leaf = path->nodes[0];
7022 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7023 if (found_key.objectid != objectid ||
7024 found_key.type != BTRFS_EXTENT_DATA_KEY)
7026 if (start + len <= found_key.offset)
7028 if (start > found_key.offset)
7031 /* New extent overlaps with existing one */
7033 em->orig_start = start;
7034 em->len = found_key.offset - start;
7035 em->block_start = EXTENT_MAP_HOLE;
7039 btrfs_extent_item_to_extent_map(inode, path, item,
7042 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7043 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7045 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7049 size_t extent_offset;
7055 size = btrfs_file_extent_ram_bytes(leaf, item);
7056 extent_offset = page_offset(page) + pg_offset - extent_start;
7057 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7058 size - extent_offset);
7059 em->start = extent_start + extent_offset;
7060 em->len = ALIGN(copy_size, fs_info->sectorsize);
7061 em->orig_block_len = em->len;
7062 em->orig_start = em->start;
7063 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7065 btrfs_set_path_blocking(path);
7066 if (!PageUptodate(page)) {
7067 if (btrfs_file_extent_compression(leaf, item) !=
7068 BTRFS_COMPRESS_NONE) {
7069 ret = uncompress_inline(path, page, pg_offset,
7070 extent_offset, item);
7077 read_extent_buffer(leaf, map + pg_offset, ptr,
7079 if (pg_offset + copy_size < PAGE_SIZE) {
7080 memset(map + pg_offset + copy_size, 0,
7081 PAGE_SIZE - pg_offset -
7086 flush_dcache_page(page);
7088 set_extent_uptodate(io_tree, em->start,
7089 extent_map_end(em) - 1, NULL, GFP_NOFS);
7094 em->orig_start = start;
7096 em->block_start = EXTENT_MAP_HOLE;
7098 btrfs_release_path(path);
7099 if (em->start > start || extent_map_end(em) <= start) {
7101 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7102 em->start, em->len, start, len);
7108 write_lock(&em_tree->lock);
7109 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7110 write_unlock(&em_tree->lock);
7112 btrfs_free_path(path);
7114 trace_btrfs_get_extent(root, inode, em);
7117 free_extent_map(em);
7118 return ERR_PTR(err);
7120 BUG_ON(!em); /* Error is always set */
7124 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7127 struct extent_map *em;
7128 struct extent_map *hole_em = NULL;
7129 u64 delalloc_start = start;
7135 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7139 * If our em maps to:
7141 * - a pre-alloc extent,
7142 * there might actually be delalloc bytes behind it.
7144 if (em->block_start != EXTENT_MAP_HOLE &&
7145 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7150 /* check to see if we've wrapped (len == -1 or similar) */
7159 /* ok, we didn't find anything, lets look for delalloc */
7160 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7161 end, len, EXTENT_DELALLOC, 1);
7162 delalloc_end = delalloc_start + delalloc_len;
7163 if (delalloc_end < delalloc_start)
7164 delalloc_end = (u64)-1;
7167 * We didn't find anything useful, return the original results from
7170 if (delalloc_start > end || delalloc_end <= start) {
7177 * Adjust the delalloc_start to make sure it doesn't go backwards from
7178 * the start they passed in
7180 delalloc_start = max(start, delalloc_start);
7181 delalloc_len = delalloc_end - delalloc_start;
7183 if (delalloc_len > 0) {
7186 const u64 hole_end = extent_map_end(hole_em);
7188 em = alloc_extent_map();
7197 * When btrfs_get_extent can't find anything it returns one
7200 * Make sure what it found really fits our range, and adjust to
7201 * make sure it is based on the start from the caller
7203 if (hole_end <= start || hole_em->start > end) {
7204 free_extent_map(hole_em);
7207 hole_start = max(hole_em->start, start);
7208 hole_len = hole_end - hole_start;
7211 if (hole_em && delalloc_start > hole_start) {
7213 * Our hole starts before our delalloc, so we have to
7214 * return just the parts of the hole that go until the
7217 em->len = min(hole_len, delalloc_start - hole_start);
7218 em->start = hole_start;
7219 em->orig_start = hole_start;
7221 * Don't adjust block start at all, it is fixed at
7224 em->block_start = hole_em->block_start;
7225 em->block_len = hole_len;
7226 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7227 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7230 * Hole is out of passed range or it starts after
7233 em->start = delalloc_start;
7234 em->len = delalloc_len;
7235 em->orig_start = delalloc_start;
7236 em->block_start = EXTENT_MAP_DELALLOC;
7237 em->block_len = delalloc_len;
7244 free_extent_map(hole_em);
7246 free_extent_map(em);
7247 return ERR_PTR(err);
7252 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7255 const u64 orig_start,
7256 const u64 block_start,
7257 const u64 block_len,
7258 const u64 orig_block_len,
7259 const u64 ram_bytes,
7262 struct extent_map *em = NULL;
7265 if (type != BTRFS_ORDERED_NOCOW) {
7266 em = create_io_em(inode, start, len, orig_start,
7267 block_start, block_len, orig_block_len,
7269 BTRFS_COMPRESS_NONE, /* compress_type */
7274 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7275 len, block_len, type);
7278 free_extent_map(em);
7279 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7280 start + len - 1, 0);
7289 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7292 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7293 struct btrfs_root *root = BTRFS_I(inode)->root;
7294 struct extent_map *em;
7295 struct btrfs_key ins;
7299 alloc_hint = get_extent_allocation_hint(inode, start, len);
7300 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7301 0, alloc_hint, &ins, 1, 1);
7303 return ERR_PTR(ret);
7305 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7306 ins.objectid, ins.offset, ins.offset,
7307 ins.offset, BTRFS_ORDERED_REGULAR);
7308 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7310 btrfs_free_reserved_extent(fs_info, ins.objectid,
7317 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7318 * block must be cow'd
7320 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7321 u64 *orig_start, u64 *orig_block_len,
7324 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7325 struct btrfs_path *path;
7327 struct extent_buffer *leaf;
7328 struct btrfs_root *root = BTRFS_I(inode)->root;
7329 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7330 struct btrfs_file_extent_item *fi;
7331 struct btrfs_key key;
7338 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7340 path = btrfs_alloc_path();
7344 ret = btrfs_lookup_file_extent(NULL, root, path,
7345 btrfs_ino(BTRFS_I(inode)), offset, 0);
7349 slot = path->slots[0];
7352 /* can't find the item, must cow */
7359 leaf = path->nodes[0];
7360 btrfs_item_key_to_cpu(leaf, &key, slot);
7361 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7362 key.type != BTRFS_EXTENT_DATA_KEY) {
7363 /* not our file or wrong item type, must cow */
7367 if (key.offset > offset) {
7368 /* Wrong offset, must cow */
7372 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7373 found_type = btrfs_file_extent_type(leaf, fi);
7374 if (found_type != BTRFS_FILE_EXTENT_REG &&
7375 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7376 /* not a regular extent, must cow */
7380 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7383 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7384 if (extent_end <= offset)
7387 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7388 if (disk_bytenr == 0)
7391 if (btrfs_file_extent_compression(leaf, fi) ||
7392 btrfs_file_extent_encryption(leaf, fi) ||
7393 btrfs_file_extent_other_encoding(leaf, fi))
7397 * Do the same check as in btrfs_cross_ref_exist but without the
7398 * unnecessary search.
7400 if (btrfs_file_extent_generation(leaf, fi) <=
7401 btrfs_root_last_snapshot(&root->root_item))
7404 backref_offset = btrfs_file_extent_offset(leaf, fi);
7407 *orig_start = key.offset - backref_offset;
7408 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7409 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7412 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7415 num_bytes = min(offset + *len, extent_end) - offset;
7416 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7419 range_end = round_up(offset + num_bytes,
7420 root->fs_info->sectorsize) - 1;
7421 ret = test_range_bit(io_tree, offset, range_end,
7422 EXTENT_DELALLOC, 0, NULL);
7429 btrfs_release_path(path);
7432 * look for other files referencing this extent, if we
7433 * find any we must cow
7436 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7437 key.offset - backref_offset, disk_bytenr);
7444 * adjust disk_bytenr and num_bytes to cover just the bytes
7445 * in this extent we are about to write. If there
7446 * are any csums in that range we have to cow in order
7447 * to keep the csums correct
7449 disk_bytenr += backref_offset;
7450 disk_bytenr += offset - key.offset;
7451 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7454 * all of the above have passed, it is safe to overwrite this extent
7460 btrfs_free_path(path);
7464 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7465 struct extent_state **cached_state, int writing)
7467 struct btrfs_ordered_extent *ordered;
7471 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7474 * We're concerned with the entire range that we're going to be
7475 * doing DIO to, so we need to make sure there's no ordered
7476 * extents in this range.
7478 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7479 lockend - lockstart + 1);
7482 * We need to make sure there are no buffered pages in this
7483 * range either, we could have raced between the invalidate in
7484 * generic_file_direct_write and locking the extent. The
7485 * invalidate needs to happen so that reads after a write do not
7489 (!writing || !filemap_range_has_page(inode->i_mapping,
7490 lockstart, lockend)))
7493 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7498 * If we are doing a DIO read and the ordered extent we
7499 * found is for a buffered write, we can not wait for it
7500 * to complete and retry, because if we do so we can
7501 * deadlock with concurrent buffered writes on page
7502 * locks. This happens only if our DIO read covers more
7503 * than one extent map, if at this point has already
7504 * created an ordered extent for a previous extent map
7505 * and locked its range in the inode's io tree, and a
7506 * concurrent write against that previous extent map's
7507 * range and this range started (we unlock the ranges
7508 * in the io tree only when the bios complete and
7509 * buffered writes always lock pages before attempting
7510 * to lock range in the io tree).
7513 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7514 btrfs_start_ordered_extent(inode, ordered, 1);
7517 btrfs_put_ordered_extent(ordered);
7520 * We could trigger writeback for this range (and wait
7521 * for it to complete) and then invalidate the pages for
7522 * this range (through invalidate_inode_pages2_range()),
7523 * but that can lead us to a deadlock with a concurrent
7524 * call to readpages() (a buffered read or a defrag call
7525 * triggered a readahead) on a page lock due to an
7526 * ordered dio extent we created before but did not have
7527 * yet a corresponding bio submitted (whence it can not
7528 * complete), which makes readpages() wait for that
7529 * ordered extent to complete while holding a lock on
7544 /* The callers of this must take lock_extent() */
7545 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7546 u64 orig_start, u64 block_start,
7547 u64 block_len, u64 orig_block_len,
7548 u64 ram_bytes, int compress_type,
7551 struct extent_map_tree *em_tree;
7552 struct extent_map *em;
7553 struct btrfs_root *root = BTRFS_I(inode)->root;
7556 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7557 type == BTRFS_ORDERED_COMPRESSED ||
7558 type == BTRFS_ORDERED_NOCOW ||
7559 type == BTRFS_ORDERED_REGULAR);
7561 em_tree = &BTRFS_I(inode)->extent_tree;
7562 em = alloc_extent_map();
7564 return ERR_PTR(-ENOMEM);
7567 em->orig_start = orig_start;
7569 em->block_len = block_len;
7570 em->block_start = block_start;
7571 em->bdev = root->fs_info->fs_devices->latest_bdev;
7572 em->orig_block_len = orig_block_len;
7573 em->ram_bytes = ram_bytes;
7574 em->generation = -1;
7575 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7576 if (type == BTRFS_ORDERED_PREALLOC) {
7577 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7578 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7579 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7580 em->compress_type = compress_type;
7584 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7585 em->start + em->len - 1, 0);
7586 write_lock(&em_tree->lock);
7587 ret = add_extent_mapping(em_tree, em, 1);
7588 write_unlock(&em_tree->lock);
7590 * The caller has taken lock_extent(), who could race with us
7593 } while (ret == -EEXIST);
7596 free_extent_map(em);
7597 return ERR_PTR(ret);
7600 /* em got 2 refs now, callers needs to do free_extent_map once. */
7605 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7606 struct buffer_head *bh_result,
7607 struct inode *inode,
7610 if (em->block_start == EXTENT_MAP_HOLE ||
7611 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7614 len = min(len, em->len - (start - em->start));
7616 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7618 bh_result->b_size = len;
7619 bh_result->b_bdev = em->bdev;
7620 set_buffer_mapped(bh_result);
7625 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7626 struct buffer_head *bh_result,
7627 struct inode *inode,
7628 struct btrfs_dio_data *dio_data,
7631 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7632 struct extent_map *em = *map;
7636 * We don't allocate a new extent in the following cases
7638 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7640 * 2) The extent is marked as PREALLOC. We're good to go here and can
7641 * just use the extent.
7644 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7645 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7646 em->block_start != EXTENT_MAP_HOLE)) {
7648 u64 block_start, orig_start, orig_block_len, ram_bytes;
7650 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7651 type = BTRFS_ORDERED_PREALLOC;
7653 type = BTRFS_ORDERED_NOCOW;
7654 len = min(len, em->len - (start - em->start));
7655 block_start = em->block_start + (start - em->start);
7657 if (can_nocow_extent(inode, start, &len, &orig_start,
7658 &orig_block_len, &ram_bytes) == 1 &&
7659 btrfs_inc_nocow_writers(fs_info, block_start)) {
7660 struct extent_map *em2;
7662 em2 = btrfs_create_dio_extent(inode, start, len,
7663 orig_start, block_start,
7664 len, orig_block_len,
7666 btrfs_dec_nocow_writers(fs_info, block_start);
7667 if (type == BTRFS_ORDERED_PREALLOC) {
7668 free_extent_map(em);
7672 if (em2 && IS_ERR(em2)) {
7677 * For inode marked NODATACOW or extent marked PREALLOC,
7678 * use the existing or preallocated extent, so does not
7679 * need to adjust btrfs_space_info's bytes_may_use.
7681 btrfs_free_reserved_data_space_noquota(inode, start,
7687 /* this will cow the extent */
7688 len = bh_result->b_size;
7689 free_extent_map(em);
7690 *map = em = btrfs_new_extent_direct(inode, start, len);
7696 len = min(len, em->len - (start - em->start));
7699 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7701 bh_result->b_size = len;
7702 bh_result->b_bdev = em->bdev;
7703 set_buffer_mapped(bh_result);
7705 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7706 set_buffer_new(bh_result);
7709 * Need to update the i_size under the extent lock so buffered
7710 * readers will get the updated i_size when we unlock.
7712 if (!dio_data->overwrite && start + len > i_size_read(inode))
7713 i_size_write(inode, start + len);
7715 WARN_ON(dio_data->reserve < len);
7716 dio_data->reserve -= len;
7717 dio_data->unsubmitted_oe_range_end = start + len;
7718 current->journal_info = dio_data;
7723 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7724 struct buffer_head *bh_result, int create)
7726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7727 struct extent_map *em;
7728 struct extent_state *cached_state = NULL;
7729 struct btrfs_dio_data *dio_data = NULL;
7730 u64 start = iblock << inode->i_blkbits;
7731 u64 lockstart, lockend;
7732 u64 len = bh_result->b_size;
7733 int unlock_bits = EXTENT_LOCKED;
7737 unlock_bits |= EXTENT_DIRTY;
7739 len = min_t(u64, len, fs_info->sectorsize);
7742 lockend = start + len - 1;
7744 if (current->journal_info) {
7746 * Need to pull our outstanding extents and set journal_info to NULL so
7747 * that anything that needs to check if there's a transaction doesn't get
7750 dio_data = current->journal_info;
7751 current->journal_info = NULL;
7755 * If this errors out it's because we couldn't invalidate pagecache for
7756 * this range and we need to fallback to buffered.
7758 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7764 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7771 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7772 * io. INLINE is special, and we could probably kludge it in here, but
7773 * it's still buffered so for safety lets just fall back to the generic
7776 * For COMPRESSED we _have_ to read the entire extent in so we can
7777 * decompress it, so there will be buffering required no matter what we
7778 * do, so go ahead and fallback to buffered.
7780 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7781 * to buffered IO. Don't blame me, this is the price we pay for using
7784 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7785 em->block_start == EXTENT_MAP_INLINE) {
7786 free_extent_map(em);
7792 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7793 dio_data, start, len);
7797 /* clear and unlock the entire range */
7798 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7799 unlock_bits, 1, 0, &cached_state);
7801 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7803 /* Can be negative only if we read from a hole */
7806 free_extent_map(em);
7810 * We need to unlock only the end area that we aren't using.
7811 * The rest is going to be unlocked by the endio routine.
7813 lockstart = start + bh_result->b_size;
7814 if (lockstart < lockend) {
7815 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7816 lockend, unlock_bits, 1, 0,
7819 free_extent_state(cached_state);
7823 free_extent_map(em);
7828 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7829 unlock_bits, 1, 0, &cached_state);
7832 current->journal_info = dio_data;
7836 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7840 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7843 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7845 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7849 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7854 static int btrfs_check_dio_repairable(struct inode *inode,
7855 struct bio *failed_bio,
7856 struct io_failure_record *failrec,
7859 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7862 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7863 if (num_copies == 1) {
7865 * we only have a single copy of the data, so don't bother with
7866 * all the retry and error correction code that follows. no
7867 * matter what the error is, it is very likely to persist.
7869 btrfs_debug(fs_info,
7870 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7871 num_copies, failrec->this_mirror, failed_mirror);
7875 failrec->failed_mirror = failed_mirror;
7876 failrec->this_mirror++;
7877 if (failrec->this_mirror == failed_mirror)
7878 failrec->this_mirror++;
7880 if (failrec->this_mirror > num_copies) {
7881 btrfs_debug(fs_info,
7882 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7883 num_copies, failrec->this_mirror, failed_mirror);
7890 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7891 struct page *page, unsigned int pgoff,
7892 u64 start, u64 end, int failed_mirror,
7893 bio_end_io_t *repair_endio, void *repair_arg)
7895 struct io_failure_record *failrec;
7896 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7897 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7900 unsigned int read_mode = 0;
7903 blk_status_t status;
7904 struct bio_vec bvec;
7906 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7908 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7910 return errno_to_blk_status(ret);
7912 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7915 free_io_failure(failure_tree, io_tree, failrec);
7916 return BLK_STS_IOERR;
7919 segs = bio_segments(failed_bio);
7920 bio_get_first_bvec(failed_bio, &bvec);
7922 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7923 read_mode |= REQ_FAILFAST_DEV;
7925 isector = start - btrfs_io_bio(failed_bio)->logical;
7926 isector >>= inode->i_sb->s_blocksize_bits;
7927 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7928 pgoff, isector, repair_endio, repair_arg);
7929 bio->bi_opf = REQ_OP_READ | read_mode;
7931 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7932 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7933 read_mode, failrec->this_mirror, failrec->in_validation);
7935 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7937 free_io_failure(failure_tree, io_tree, failrec);
7944 struct btrfs_retry_complete {
7945 struct completion done;
7946 struct inode *inode;
7951 static void btrfs_retry_endio_nocsum(struct bio *bio)
7953 struct btrfs_retry_complete *done = bio->bi_private;
7954 struct inode *inode = done->inode;
7955 struct bio_vec *bvec;
7956 struct extent_io_tree *io_tree, *failure_tree;
7957 struct bvec_iter_all iter_all;
7962 ASSERT(bio->bi_vcnt == 1);
7963 io_tree = &BTRFS_I(inode)->io_tree;
7964 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7965 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7968 ASSERT(!bio_flagged(bio, BIO_CLONED));
7969 bio_for_each_segment_all(bvec, bio, iter_all)
7970 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7971 io_tree, done->start, bvec->bv_page,
7972 btrfs_ino(BTRFS_I(inode)), 0);
7974 complete(&done->done);
7978 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7979 struct btrfs_io_bio *io_bio)
7981 struct btrfs_fs_info *fs_info;
7982 struct bio_vec bvec;
7983 struct bvec_iter iter;
7984 struct btrfs_retry_complete done;
7990 blk_status_t err = BLK_STS_OK;
7992 fs_info = BTRFS_I(inode)->root->fs_info;
7993 sectorsize = fs_info->sectorsize;
7995 start = io_bio->logical;
7997 io_bio->bio.bi_iter = io_bio->iter;
7999 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8000 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8001 pgoff = bvec.bv_offset;
8003 next_block_or_try_again:
8006 init_completion(&done.done);
8008 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8009 pgoff, start, start + sectorsize - 1,
8011 btrfs_retry_endio_nocsum, &done);
8017 wait_for_completion_io(&done.done);
8019 if (!done.uptodate) {
8020 /* We might have another mirror, so try again */
8021 goto next_block_or_try_again;
8025 start += sectorsize;
8029 pgoff += sectorsize;
8030 ASSERT(pgoff < PAGE_SIZE);
8031 goto next_block_or_try_again;
8038 static void btrfs_retry_endio(struct bio *bio)
8040 struct btrfs_retry_complete *done = bio->bi_private;
8041 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8042 struct extent_io_tree *io_tree, *failure_tree;
8043 struct inode *inode = done->inode;
8044 struct bio_vec *bvec;
8048 struct bvec_iter_all iter_all;
8055 ASSERT(bio->bi_vcnt == 1);
8056 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8058 io_tree = &BTRFS_I(inode)->io_tree;
8059 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8061 ASSERT(!bio_flagged(bio, BIO_CLONED));
8062 bio_for_each_segment_all(bvec, bio, iter_all) {
8063 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8064 bvec->bv_offset, done->start,
8067 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8068 failure_tree, io_tree, done->start,
8070 btrfs_ino(BTRFS_I(inode)),
8077 done->uptodate = uptodate;
8079 complete(&done->done);
8083 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8084 struct btrfs_io_bio *io_bio, blk_status_t err)
8086 struct btrfs_fs_info *fs_info;
8087 struct bio_vec bvec;
8088 struct bvec_iter iter;
8089 struct btrfs_retry_complete done;
8096 bool uptodate = (err == 0);
8098 blk_status_t status;
8100 fs_info = BTRFS_I(inode)->root->fs_info;
8101 sectorsize = fs_info->sectorsize;
8104 start = io_bio->logical;
8106 io_bio->bio.bi_iter = io_bio->iter;
8108 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8109 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8111 pgoff = bvec.bv_offset;
8114 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8115 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8116 bvec.bv_page, pgoff, start, sectorsize);
8123 init_completion(&done.done);
8125 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8126 pgoff, start, start + sectorsize - 1,
8127 io_bio->mirror_num, btrfs_retry_endio,
8134 wait_for_completion_io(&done.done);
8136 if (!done.uptodate) {
8137 /* We might have another mirror, so try again */
8141 offset += sectorsize;
8142 start += sectorsize;
8148 pgoff += sectorsize;
8149 ASSERT(pgoff < PAGE_SIZE);
8157 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8158 struct btrfs_io_bio *io_bio, blk_status_t err)
8160 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8164 return __btrfs_correct_data_nocsum(inode, io_bio);
8168 return __btrfs_subio_endio_read(inode, io_bio, err);
8172 static void btrfs_endio_direct_read(struct bio *bio)
8174 struct btrfs_dio_private *dip = bio->bi_private;
8175 struct inode *inode = dip->inode;
8176 struct bio *dio_bio;
8177 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8178 blk_status_t err = bio->bi_status;
8180 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8181 err = btrfs_subio_endio_read(inode, io_bio, err);
8183 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8184 dip->logical_offset + dip->bytes - 1);
8185 dio_bio = dip->dio_bio;
8189 dio_bio->bi_status = err;
8190 dio_end_io(dio_bio);
8191 btrfs_io_bio_free_csum(io_bio);
8195 static void __endio_write_update_ordered(struct inode *inode,
8196 const u64 offset, const u64 bytes,
8197 const bool uptodate)
8199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8200 struct btrfs_ordered_extent *ordered = NULL;
8201 struct btrfs_workqueue *wq;
8202 btrfs_work_func_t func;
8203 u64 ordered_offset = offset;
8204 u64 ordered_bytes = bytes;
8207 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8208 wq = fs_info->endio_freespace_worker;
8209 func = btrfs_freespace_write_helper;
8211 wq = fs_info->endio_write_workers;
8212 func = btrfs_endio_write_helper;
8215 while (ordered_offset < offset + bytes) {
8216 last_offset = ordered_offset;
8217 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8221 btrfs_init_work(&ordered->work, func,
8224 btrfs_queue_work(wq, &ordered->work);
8227 * If btrfs_dec_test_ordered_pending does not find any ordered
8228 * extent in the range, we can exit.
8230 if (ordered_offset == last_offset)
8233 * Our bio might span multiple ordered extents. In this case
8234 * we keep going until we have accounted the whole dio.
8236 if (ordered_offset < offset + bytes) {
8237 ordered_bytes = offset + bytes - ordered_offset;
8243 static void btrfs_endio_direct_write(struct bio *bio)
8245 struct btrfs_dio_private *dip = bio->bi_private;
8246 struct bio *dio_bio = dip->dio_bio;
8248 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8249 dip->bytes, !bio->bi_status);
8253 dio_bio->bi_status = bio->bi_status;
8254 dio_end_io(dio_bio);
8258 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8259 struct bio *bio, u64 offset)
8261 struct inode *inode = private_data;
8263 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8264 BUG_ON(ret); /* -ENOMEM */
8268 static void btrfs_end_dio_bio(struct bio *bio)
8270 struct btrfs_dio_private *dip = bio->bi_private;
8271 blk_status_t err = bio->bi_status;
8274 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8275 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8276 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8278 (unsigned long long)bio->bi_iter.bi_sector,
8279 bio->bi_iter.bi_size, err);
8281 if (dip->subio_endio)
8282 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8286 * We want to perceive the errors flag being set before
8287 * decrementing the reference count. We don't need a barrier
8288 * since atomic operations with a return value are fully
8289 * ordered as per atomic_t.txt
8294 /* if there are more bios still pending for this dio, just exit */
8295 if (!atomic_dec_and_test(&dip->pending_bios))
8299 bio_io_error(dip->orig_bio);
8301 dip->dio_bio->bi_status = BLK_STS_OK;
8302 bio_endio(dip->orig_bio);
8308 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8309 struct btrfs_dio_private *dip,
8313 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8314 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8318 * We load all the csum data we need when we submit
8319 * the first bio to reduce the csum tree search and
8322 if (dip->logical_offset == file_offset) {
8323 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8329 if (bio == dip->orig_bio)
8332 file_offset -= dip->logical_offset;
8333 file_offset >>= inode->i_sb->s_blocksize_bits;
8334 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8339 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8340 struct inode *inode, u64 file_offset, int async_submit)
8342 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8343 struct btrfs_dio_private *dip = bio->bi_private;
8344 bool write = bio_op(bio) == REQ_OP_WRITE;
8347 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8349 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8352 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8357 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8360 if (write && async_submit) {
8361 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8363 btrfs_submit_bio_start_direct_io);
8367 * If we aren't doing async submit, calculate the csum of the
8370 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8374 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8380 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8385 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8387 struct inode *inode = dip->inode;
8388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8390 struct bio *orig_bio = dip->orig_bio;
8391 u64 start_sector = orig_bio->bi_iter.bi_sector;
8392 u64 file_offset = dip->logical_offset;
8393 int async_submit = 0;
8395 int clone_offset = 0;
8398 blk_status_t status;
8399 struct btrfs_io_geometry geom;
8401 submit_len = orig_bio->bi_iter.bi_size;
8402 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8403 start_sector << 9, submit_len, &geom);
8407 if (geom.len >= submit_len) {
8409 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8413 /* async crcs make it difficult to collect full stripe writes. */
8414 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8420 ASSERT(geom.len <= INT_MAX);
8421 atomic_inc(&dip->pending_bios);
8423 clone_len = min_t(int, submit_len, geom.len);
8426 * This will never fail as it's passing GPF_NOFS and
8427 * the allocation is backed by btrfs_bioset.
8429 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8431 bio->bi_private = dip;
8432 bio->bi_end_io = btrfs_end_dio_bio;
8433 btrfs_io_bio(bio)->logical = file_offset;
8435 ASSERT(submit_len >= clone_len);
8436 submit_len -= clone_len;
8437 if (submit_len == 0)
8441 * Increase the count before we submit the bio so we know
8442 * the end IO handler won't happen before we increase the
8443 * count. Otherwise, the dip might get freed before we're
8444 * done setting it up.
8446 atomic_inc(&dip->pending_bios);
8448 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8452 atomic_dec(&dip->pending_bios);
8456 clone_offset += clone_len;
8457 start_sector += clone_len >> 9;
8458 file_offset += clone_len;
8460 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8461 start_sector << 9, submit_len, &geom);
8464 } while (submit_len > 0);
8467 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8475 * Before atomic variable goto zero, we must make sure dip->errors is
8476 * perceived to be set. This ordering is ensured by the fact that an
8477 * atomic operations with a return value are fully ordered as per
8480 if (atomic_dec_and_test(&dip->pending_bios))
8481 bio_io_error(dip->orig_bio);
8483 /* bio_end_io() will handle error, so we needn't return it */
8487 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8490 struct btrfs_dio_private *dip = NULL;
8491 struct bio *bio = NULL;
8492 struct btrfs_io_bio *io_bio;
8493 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8496 bio = btrfs_bio_clone(dio_bio);
8498 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8504 dip->private = dio_bio->bi_private;
8506 dip->logical_offset = file_offset;
8507 dip->bytes = dio_bio->bi_iter.bi_size;
8508 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8509 bio->bi_private = dip;
8510 dip->orig_bio = bio;
8511 dip->dio_bio = dio_bio;
8512 atomic_set(&dip->pending_bios, 0);
8513 io_bio = btrfs_io_bio(bio);
8514 io_bio->logical = file_offset;
8517 bio->bi_end_io = btrfs_endio_direct_write;
8519 bio->bi_end_io = btrfs_endio_direct_read;
8520 dip->subio_endio = btrfs_subio_endio_read;
8524 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8525 * even if we fail to submit a bio, because in such case we do the
8526 * corresponding error handling below and it must not be done a second
8527 * time by btrfs_direct_IO().
8530 struct btrfs_dio_data *dio_data = current->journal_info;
8532 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8534 dio_data->unsubmitted_oe_range_start =
8535 dio_data->unsubmitted_oe_range_end;
8538 ret = btrfs_submit_direct_hook(dip);
8542 btrfs_io_bio_free_csum(io_bio);
8546 * If we arrived here it means either we failed to submit the dip
8547 * or we either failed to clone the dio_bio or failed to allocate the
8548 * dip. If we cloned the dio_bio and allocated the dip, we can just
8549 * call bio_endio against our io_bio so that we get proper resource
8550 * cleanup if we fail to submit the dip, otherwise, we must do the
8551 * same as btrfs_endio_direct_[write|read] because we can't call these
8552 * callbacks - they require an allocated dip and a clone of dio_bio.
8557 * The end io callbacks free our dip, do the final put on bio
8558 * and all the cleanup and final put for dio_bio (through
8565 __endio_write_update_ordered(inode,
8567 dio_bio->bi_iter.bi_size,
8570 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8571 file_offset + dio_bio->bi_iter.bi_size - 1);
8573 dio_bio->bi_status = BLK_STS_IOERR;
8575 * Releases and cleans up our dio_bio, no need to bio_put()
8576 * nor bio_endio()/bio_io_error() against dio_bio.
8578 dio_end_io(dio_bio);
8585 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8586 const struct iov_iter *iter, loff_t offset)
8590 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8591 ssize_t retval = -EINVAL;
8593 if (offset & blocksize_mask)
8596 if (iov_iter_alignment(iter) & blocksize_mask)
8599 /* If this is a write we don't need to check anymore */
8600 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8603 * Check to make sure we don't have duplicate iov_base's in this
8604 * iovec, if so return EINVAL, otherwise we'll get csum errors
8605 * when reading back.
8607 for (seg = 0; seg < iter->nr_segs; seg++) {
8608 for (i = seg + 1; i < iter->nr_segs; i++) {
8609 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8618 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8620 struct file *file = iocb->ki_filp;
8621 struct inode *inode = file->f_mapping->host;
8622 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8623 struct btrfs_dio_data dio_data = { 0 };
8624 struct extent_changeset *data_reserved = NULL;
8625 loff_t offset = iocb->ki_pos;
8629 bool relock = false;
8632 if (check_direct_IO(fs_info, iter, offset))
8635 inode_dio_begin(inode);
8638 * The generic stuff only does filemap_write_and_wait_range, which
8639 * isn't enough if we've written compressed pages to this area, so
8640 * we need to flush the dirty pages again to make absolutely sure
8641 * that any outstanding dirty pages are on disk.
8643 count = iov_iter_count(iter);
8644 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8645 &BTRFS_I(inode)->runtime_flags))
8646 filemap_fdatawrite_range(inode->i_mapping, offset,
8647 offset + count - 1);
8649 if (iov_iter_rw(iter) == WRITE) {
8651 * If the write DIO is beyond the EOF, we need update
8652 * the isize, but it is protected by i_mutex. So we can
8653 * not unlock the i_mutex at this case.
8655 if (offset + count <= inode->i_size) {
8656 dio_data.overwrite = 1;
8657 inode_unlock(inode);
8659 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8663 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8669 * We need to know how many extents we reserved so that we can
8670 * do the accounting properly if we go over the number we
8671 * originally calculated. Abuse current->journal_info for this.
8673 dio_data.reserve = round_up(count,
8674 fs_info->sectorsize);
8675 dio_data.unsubmitted_oe_range_start = (u64)offset;
8676 dio_data.unsubmitted_oe_range_end = (u64)offset;
8677 current->journal_info = &dio_data;
8678 down_read(&BTRFS_I(inode)->dio_sem);
8679 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8680 &BTRFS_I(inode)->runtime_flags)) {
8681 inode_dio_end(inode);
8682 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8686 ret = __blockdev_direct_IO(iocb, inode,
8687 fs_info->fs_devices->latest_bdev,
8688 iter, btrfs_get_blocks_direct, NULL,
8689 btrfs_submit_direct, flags);
8690 if (iov_iter_rw(iter) == WRITE) {
8691 up_read(&BTRFS_I(inode)->dio_sem);
8692 current->journal_info = NULL;
8693 if (ret < 0 && ret != -EIOCBQUEUED) {
8694 if (dio_data.reserve)
8695 btrfs_delalloc_release_space(inode, data_reserved,
8696 offset, dio_data.reserve, true);
8698 * On error we might have left some ordered extents
8699 * without submitting corresponding bios for them, so
8700 * cleanup them up to avoid other tasks getting them
8701 * and waiting for them to complete forever.
8703 if (dio_data.unsubmitted_oe_range_start <
8704 dio_data.unsubmitted_oe_range_end)
8705 __endio_write_update_ordered(inode,
8706 dio_data.unsubmitted_oe_range_start,
8707 dio_data.unsubmitted_oe_range_end -
8708 dio_data.unsubmitted_oe_range_start,
8710 } else if (ret >= 0 && (size_t)ret < count)
8711 btrfs_delalloc_release_space(inode, data_reserved,
8712 offset, count - (size_t)ret, true);
8713 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8717 inode_dio_end(inode);
8721 extent_changeset_free(data_reserved);
8725 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8727 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8728 __u64 start, __u64 len)
8732 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8736 return extent_fiemap(inode, fieinfo, start, len);
8739 int btrfs_readpage(struct file *file, struct page *page)
8741 struct extent_io_tree *tree;
8742 tree = &BTRFS_I(page->mapping->host)->io_tree;
8743 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8746 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8748 struct inode *inode = page->mapping->host;
8751 if (current->flags & PF_MEMALLOC) {
8752 redirty_page_for_writepage(wbc, page);
8758 * If we are under memory pressure we will call this directly from the
8759 * VM, we need to make sure we have the inode referenced for the ordered
8760 * extent. If not just return like we didn't do anything.
8762 if (!igrab(inode)) {
8763 redirty_page_for_writepage(wbc, page);
8764 return AOP_WRITEPAGE_ACTIVATE;
8766 ret = extent_write_full_page(page, wbc);
8767 btrfs_add_delayed_iput(inode);
8771 static int btrfs_writepages(struct address_space *mapping,
8772 struct writeback_control *wbc)
8774 return extent_writepages(mapping, wbc);
8778 btrfs_readpages(struct file *file, struct address_space *mapping,
8779 struct list_head *pages, unsigned nr_pages)
8781 return extent_readpages(mapping, pages, nr_pages);
8784 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8786 int ret = try_release_extent_mapping(page, gfp_flags);
8788 ClearPagePrivate(page);
8789 set_page_private(page, 0);
8795 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8797 if (PageWriteback(page) || PageDirty(page))
8799 return __btrfs_releasepage(page, gfp_flags);
8802 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8803 unsigned int length)
8805 struct inode *inode = page->mapping->host;
8806 struct extent_io_tree *tree;
8807 struct btrfs_ordered_extent *ordered;
8808 struct extent_state *cached_state = NULL;
8809 u64 page_start = page_offset(page);
8810 u64 page_end = page_start + PAGE_SIZE - 1;
8813 int inode_evicting = inode->i_state & I_FREEING;
8816 * we have the page locked, so new writeback can't start,
8817 * and the dirty bit won't be cleared while we are here.
8819 * Wait for IO on this page so that we can safely clear
8820 * the PagePrivate2 bit and do ordered accounting
8822 wait_on_page_writeback(page);
8824 tree = &BTRFS_I(inode)->io_tree;
8826 btrfs_releasepage(page, GFP_NOFS);
8830 if (!inode_evicting)
8831 lock_extent_bits(tree, page_start, page_end, &cached_state);
8834 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8835 page_end - start + 1);
8837 end = min(page_end, ordered->file_offset + ordered->len - 1);
8839 * IO on this page will never be started, so we need
8840 * to account for any ordered extents now
8842 if (!inode_evicting)
8843 clear_extent_bit(tree, start, end,
8844 EXTENT_DIRTY | EXTENT_DELALLOC |
8845 EXTENT_DELALLOC_NEW |
8846 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8847 EXTENT_DEFRAG, 1, 0, &cached_state);
8849 * whoever cleared the private bit is responsible
8850 * for the finish_ordered_io
8852 if (TestClearPagePrivate2(page)) {
8853 struct btrfs_ordered_inode_tree *tree;
8856 tree = &BTRFS_I(inode)->ordered_tree;
8858 spin_lock_irq(&tree->lock);
8859 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8860 new_len = start - ordered->file_offset;
8861 if (new_len < ordered->truncated_len)
8862 ordered->truncated_len = new_len;
8863 spin_unlock_irq(&tree->lock);
8865 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8867 end - start + 1, 1))
8868 btrfs_finish_ordered_io(ordered);
8870 btrfs_put_ordered_extent(ordered);
8871 if (!inode_evicting) {
8872 cached_state = NULL;
8873 lock_extent_bits(tree, start, end,
8878 if (start < page_end)
8883 * Qgroup reserved space handler
8884 * Page here will be either
8885 * 1) Already written to disk
8886 * In this case, its reserved space is released from data rsv map
8887 * and will be freed by delayed_ref handler finally.
8888 * So even we call qgroup_free_data(), it won't decrease reserved
8890 * 2) Not written to disk
8891 * This means the reserved space should be freed here. However,
8892 * if a truncate invalidates the page (by clearing PageDirty)
8893 * and the page is accounted for while allocating extent
8894 * in btrfs_check_data_free_space() we let delayed_ref to
8895 * free the entire extent.
8897 if (PageDirty(page))
8898 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8899 if (!inode_evicting) {
8900 clear_extent_bit(tree, page_start, page_end,
8901 EXTENT_LOCKED | EXTENT_DIRTY |
8902 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8903 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8906 __btrfs_releasepage(page, GFP_NOFS);
8909 ClearPageChecked(page);
8910 if (PagePrivate(page)) {
8911 ClearPagePrivate(page);
8912 set_page_private(page, 0);
8918 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8919 * called from a page fault handler when a page is first dirtied. Hence we must
8920 * be careful to check for EOF conditions here. We set the page up correctly
8921 * for a written page which means we get ENOSPC checking when writing into
8922 * holes and correct delalloc and unwritten extent mapping on filesystems that
8923 * support these features.
8925 * We are not allowed to take the i_mutex here so we have to play games to
8926 * protect against truncate races as the page could now be beyond EOF. Because
8927 * truncate_setsize() writes the inode size before removing pages, once we have
8928 * the page lock we can determine safely if the page is beyond EOF. If it is not
8929 * beyond EOF, then the page is guaranteed safe against truncation until we
8932 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8934 struct page *page = vmf->page;
8935 struct inode *inode = file_inode(vmf->vma->vm_file);
8936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8937 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8938 struct btrfs_ordered_extent *ordered;
8939 struct extent_state *cached_state = NULL;
8940 struct extent_changeset *data_reserved = NULL;
8942 unsigned long zero_start;
8952 reserved_space = PAGE_SIZE;
8954 sb_start_pagefault(inode->i_sb);
8955 page_start = page_offset(page);
8956 page_end = page_start + PAGE_SIZE - 1;
8960 * Reserving delalloc space after obtaining the page lock can lead to
8961 * deadlock. For example, if a dirty page is locked by this function
8962 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8963 * dirty page write out, then the btrfs_writepage() function could
8964 * end up waiting indefinitely to get a lock on the page currently
8965 * being processed by btrfs_page_mkwrite() function.
8967 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8970 ret2 = file_update_time(vmf->vma->vm_file);
8974 ret = vmf_error(ret2);
8980 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8983 size = i_size_read(inode);
8985 if ((page->mapping != inode->i_mapping) ||
8986 (page_start >= size)) {
8987 /* page got truncated out from underneath us */
8990 wait_on_page_writeback(page);
8992 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8993 set_page_extent_mapped(page);
8996 * we can't set the delalloc bits if there are pending ordered
8997 * extents. Drop our locks and wait for them to finish
8999 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9002 unlock_extent_cached(io_tree, page_start, page_end,
9005 btrfs_start_ordered_extent(inode, ordered, 1);
9006 btrfs_put_ordered_extent(ordered);
9010 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9011 reserved_space = round_up(size - page_start,
9012 fs_info->sectorsize);
9013 if (reserved_space < PAGE_SIZE) {
9014 end = page_start + reserved_space - 1;
9015 btrfs_delalloc_release_space(inode, data_reserved,
9016 page_start, PAGE_SIZE - reserved_space,
9022 * page_mkwrite gets called when the page is firstly dirtied after it's
9023 * faulted in, but write(2) could also dirty a page and set delalloc
9024 * bits, thus in this case for space account reason, we still need to
9025 * clear any delalloc bits within this page range since we have to
9026 * reserve data&meta space before lock_page() (see above comments).
9028 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9029 EXTENT_DIRTY | EXTENT_DELALLOC |
9030 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9031 0, 0, &cached_state);
9033 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9036 unlock_extent_cached(io_tree, page_start, page_end,
9038 ret = VM_FAULT_SIGBUS;
9043 /* page is wholly or partially inside EOF */
9044 if (page_start + PAGE_SIZE > size)
9045 zero_start = offset_in_page(size);
9047 zero_start = PAGE_SIZE;
9049 if (zero_start != PAGE_SIZE) {
9051 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9052 flush_dcache_page(page);
9055 ClearPageChecked(page);
9056 set_page_dirty(page);
9057 SetPageUptodate(page);
9059 BTRFS_I(inode)->last_trans = fs_info->generation;
9060 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9061 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9063 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9066 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9067 sb_end_pagefault(inode->i_sb);
9068 extent_changeset_free(data_reserved);
9069 return VM_FAULT_LOCKED;
9075 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9076 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9077 reserved_space, (ret != 0));
9079 sb_end_pagefault(inode->i_sb);
9080 extent_changeset_free(data_reserved);
9084 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9087 struct btrfs_root *root = BTRFS_I(inode)->root;
9088 struct btrfs_block_rsv *rsv;
9090 struct btrfs_trans_handle *trans;
9091 u64 mask = fs_info->sectorsize - 1;
9092 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9094 if (!skip_writeback) {
9095 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9102 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9103 * things going on here:
9105 * 1) We need to reserve space to update our inode.
9107 * 2) We need to have something to cache all the space that is going to
9108 * be free'd up by the truncate operation, but also have some slack
9109 * space reserved in case it uses space during the truncate (thank you
9110 * very much snapshotting).
9112 * And we need these to be separate. The fact is we can use a lot of
9113 * space doing the truncate, and we have no earthly idea how much space
9114 * we will use, so we need the truncate reservation to be separate so it
9115 * doesn't end up using space reserved for updating the inode. We also
9116 * need to be able to stop the transaction and start a new one, which
9117 * means we need to be able to update the inode several times, and we
9118 * have no idea of knowing how many times that will be, so we can't just
9119 * reserve 1 item for the entirety of the operation, so that has to be
9120 * done separately as well.
9122 * So that leaves us with
9124 * 1) rsv - for the truncate reservation, which we will steal from the
9125 * transaction reservation.
9126 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9127 * updating the inode.
9129 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9132 rsv->size = min_size;
9136 * 1 for the truncate slack space
9137 * 1 for updating the inode.
9139 trans = btrfs_start_transaction(root, 2);
9140 if (IS_ERR(trans)) {
9141 ret = PTR_ERR(trans);
9145 /* Migrate the slack space for the truncate to our reserve */
9146 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9151 * So if we truncate and then write and fsync we normally would just
9152 * write the extents that changed, which is a problem if we need to
9153 * first truncate that entire inode. So set this flag so we write out
9154 * all of the extents in the inode to the sync log so we're completely
9157 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9158 trans->block_rsv = rsv;
9161 ret = btrfs_truncate_inode_items(trans, root, inode,
9163 BTRFS_EXTENT_DATA_KEY);
9164 trans->block_rsv = &fs_info->trans_block_rsv;
9165 if (ret != -ENOSPC && ret != -EAGAIN)
9168 ret = btrfs_update_inode(trans, root, inode);
9172 btrfs_end_transaction(trans);
9173 btrfs_btree_balance_dirty(fs_info);
9175 trans = btrfs_start_transaction(root, 2);
9176 if (IS_ERR(trans)) {
9177 ret = PTR_ERR(trans);
9182 btrfs_block_rsv_release(fs_info, rsv, -1);
9183 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9184 rsv, min_size, false);
9185 BUG_ON(ret); /* shouldn't happen */
9186 trans->block_rsv = rsv;
9190 * We can't call btrfs_truncate_block inside a trans handle as we could
9191 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9192 * we've truncated everything except the last little bit, and can do
9193 * btrfs_truncate_block and then update the disk_i_size.
9195 if (ret == NEED_TRUNCATE_BLOCK) {
9196 btrfs_end_transaction(trans);
9197 btrfs_btree_balance_dirty(fs_info);
9199 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9202 trans = btrfs_start_transaction(root, 1);
9203 if (IS_ERR(trans)) {
9204 ret = PTR_ERR(trans);
9207 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9213 trans->block_rsv = &fs_info->trans_block_rsv;
9214 ret2 = btrfs_update_inode(trans, root, inode);
9218 ret2 = btrfs_end_transaction(trans);
9221 btrfs_btree_balance_dirty(fs_info);
9224 btrfs_free_block_rsv(fs_info, rsv);
9230 * create a new subvolume directory/inode (helper for the ioctl).
9232 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9233 struct btrfs_root *new_root,
9234 struct btrfs_root *parent_root,
9237 struct inode *inode;
9241 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9242 new_dirid, new_dirid,
9243 S_IFDIR | (~current_umask() & S_IRWXUGO),
9246 return PTR_ERR(inode);
9247 inode->i_op = &btrfs_dir_inode_operations;
9248 inode->i_fop = &btrfs_dir_file_operations;
9250 set_nlink(inode, 1);
9251 btrfs_i_size_write(BTRFS_I(inode), 0);
9252 unlock_new_inode(inode);
9254 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9256 btrfs_err(new_root->fs_info,
9257 "error inheriting subvolume %llu properties: %d",
9258 new_root->root_key.objectid, err);
9260 err = btrfs_update_inode(trans, new_root, inode);
9266 struct inode *btrfs_alloc_inode(struct super_block *sb)
9268 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9269 struct btrfs_inode *ei;
9270 struct inode *inode;
9272 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9279 ei->last_sub_trans = 0;
9280 ei->logged_trans = 0;
9281 ei->delalloc_bytes = 0;
9282 ei->new_delalloc_bytes = 0;
9283 ei->defrag_bytes = 0;
9284 ei->disk_i_size = 0;
9287 ei->index_cnt = (u64)-1;
9289 ei->last_unlink_trans = 0;
9290 ei->last_log_commit = 0;
9292 spin_lock_init(&ei->lock);
9293 ei->outstanding_extents = 0;
9294 if (sb->s_magic != BTRFS_TEST_MAGIC)
9295 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9296 BTRFS_BLOCK_RSV_DELALLOC);
9297 ei->runtime_flags = 0;
9298 ei->prop_compress = BTRFS_COMPRESS_NONE;
9299 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9301 ei->delayed_node = NULL;
9303 ei->i_otime.tv_sec = 0;
9304 ei->i_otime.tv_nsec = 0;
9306 inode = &ei->vfs_inode;
9307 extent_map_tree_init(&ei->extent_tree);
9308 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9309 extent_io_tree_init(fs_info, &ei->io_failure_tree,
9310 IO_TREE_INODE_IO_FAILURE, inode);
9311 ei->io_tree.track_uptodate = true;
9312 ei->io_failure_tree.track_uptodate = true;
9313 atomic_set(&ei->sync_writers, 0);
9314 mutex_init(&ei->log_mutex);
9315 mutex_init(&ei->delalloc_mutex);
9316 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9317 INIT_LIST_HEAD(&ei->delalloc_inodes);
9318 INIT_LIST_HEAD(&ei->delayed_iput);
9319 RB_CLEAR_NODE(&ei->rb_node);
9320 init_rwsem(&ei->dio_sem);
9325 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9326 void btrfs_test_destroy_inode(struct inode *inode)
9328 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9329 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9333 void btrfs_free_inode(struct inode *inode)
9335 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9338 void btrfs_destroy_inode(struct inode *inode)
9340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9341 struct btrfs_ordered_extent *ordered;
9342 struct btrfs_root *root = BTRFS_I(inode)->root;
9344 WARN_ON(!hlist_empty(&inode->i_dentry));
9345 WARN_ON(inode->i_data.nrpages);
9346 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9347 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9348 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9349 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9350 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9351 WARN_ON(BTRFS_I(inode)->csum_bytes);
9352 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9355 * This can happen where we create an inode, but somebody else also
9356 * created the same inode and we need to destroy the one we already
9363 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9368 "found ordered extent %llu %llu on inode cleanup",
9369 ordered->file_offset, ordered->len);
9370 btrfs_remove_ordered_extent(inode, ordered);
9371 btrfs_put_ordered_extent(ordered);
9372 btrfs_put_ordered_extent(ordered);
9375 btrfs_qgroup_check_reserved_leak(inode);
9376 inode_tree_del(inode);
9377 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9380 int btrfs_drop_inode(struct inode *inode)
9382 struct btrfs_root *root = BTRFS_I(inode)->root;
9387 /* the snap/subvol tree is on deleting */
9388 if (btrfs_root_refs(&root->root_item) == 0)
9391 return generic_drop_inode(inode);
9394 static void init_once(void *foo)
9396 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9398 inode_init_once(&ei->vfs_inode);
9401 void __cold btrfs_destroy_cachep(void)
9404 * Make sure all delayed rcu free inodes are flushed before we
9408 kmem_cache_destroy(btrfs_inode_cachep);
9409 kmem_cache_destroy(btrfs_trans_handle_cachep);
9410 kmem_cache_destroy(btrfs_path_cachep);
9411 kmem_cache_destroy(btrfs_free_space_cachep);
9414 int __init btrfs_init_cachep(void)
9416 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9417 sizeof(struct btrfs_inode), 0,
9418 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9420 if (!btrfs_inode_cachep)
9423 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9424 sizeof(struct btrfs_trans_handle), 0,
9425 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9426 if (!btrfs_trans_handle_cachep)
9429 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9430 sizeof(struct btrfs_path), 0,
9431 SLAB_MEM_SPREAD, NULL);
9432 if (!btrfs_path_cachep)
9435 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9436 sizeof(struct btrfs_free_space), 0,
9437 SLAB_MEM_SPREAD, NULL);
9438 if (!btrfs_free_space_cachep)
9443 btrfs_destroy_cachep();
9447 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9448 u32 request_mask, unsigned int flags)
9451 struct inode *inode = d_inode(path->dentry);
9452 u32 blocksize = inode->i_sb->s_blocksize;
9453 u32 bi_flags = BTRFS_I(inode)->flags;
9455 stat->result_mask |= STATX_BTIME;
9456 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9457 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9458 if (bi_flags & BTRFS_INODE_APPEND)
9459 stat->attributes |= STATX_ATTR_APPEND;
9460 if (bi_flags & BTRFS_INODE_COMPRESS)
9461 stat->attributes |= STATX_ATTR_COMPRESSED;
9462 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9463 stat->attributes |= STATX_ATTR_IMMUTABLE;
9464 if (bi_flags & BTRFS_INODE_NODUMP)
9465 stat->attributes |= STATX_ATTR_NODUMP;
9467 stat->attributes_mask |= (STATX_ATTR_APPEND |
9468 STATX_ATTR_COMPRESSED |
9469 STATX_ATTR_IMMUTABLE |
9472 generic_fillattr(inode, stat);
9473 stat->dev = BTRFS_I(inode)->root->anon_dev;
9475 spin_lock(&BTRFS_I(inode)->lock);
9476 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9477 spin_unlock(&BTRFS_I(inode)->lock);
9478 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9479 ALIGN(delalloc_bytes, blocksize)) >> 9;
9483 static int btrfs_rename_exchange(struct inode *old_dir,
9484 struct dentry *old_dentry,
9485 struct inode *new_dir,
9486 struct dentry *new_dentry)
9488 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9489 struct btrfs_trans_handle *trans;
9490 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9491 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9492 struct inode *new_inode = new_dentry->d_inode;
9493 struct inode *old_inode = old_dentry->d_inode;
9494 struct timespec64 ctime = current_time(old_inode);
9495 struct dentry *parent;
9496 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9497 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9502 bool root_log_pinned = false;
9503 bool dest_log_pinned = false;
9504 struct btrfs_log_ctx ctx_root;
9505 struct btrfs_log_ctx ctx_dest;
9506 bool sync_log_root = false;
9507 bool sync_log_dest = false;
9508 bool commit_transaction = false;
9510 /* we only allow rename subvolume link between subvolumes */
9511 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9514 btrfs_init_log_ctx(&ctx_root, old_inode);
9515 btrfs_init_log_ctx(&ctx_dest, new_inode);
9517 /* close the race window with snapshot create/destroy ioctl */
9518 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9519 down_read(&fs_info->subvol_sem);
9520 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9521 down_read(&fs_info->subvol_sem);
9524 * We want to reserve the absolute worst case amount of items. So if
9525 * both inodes are subvols and we need to unlink them then that would
9526 * require 4 item modifications, but if they are both normal inodes it
9527 * would require 5 item modifications, so we'll assume their normal
9528 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9529 * should cover the worst case number of items we'll modify.
9531 trans = btrfs_start_transaction(root, 12);
9532 if (IS_ERR(trans)) {
9533 ret = PTR_ERR(trans);
9538 * We need to find a free sequence number both in the source and
9539 * in the destination directory for the exchange.
9541 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9544 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9548 BTRFS_I(old_inode)->dir_index = 0ULL;
9549 BTRFS_I(new_inode)->dir_index = 0ULL;
9551 /* Reference for the source. */
9552 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9553 /* force full log commit if subvolume involved. */
9554 btrfs_set_log_full_commit(trans);
9556 btrfs_pin_log_trans(root);
9557 root_log_pinned = true;
9558 ret = btrfs_insert_inode_ref(trans, dest,
9559 new_dentry->d_name.name,
9560 new_dentry->d_name.len,
9562 btrfs_ino(BTRFS_I(new_dir)),
9568 /* And now for the dest. */
9569 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9570 /* force full log commit if subvolume involved. */
9571 btrfs_set_log_full_commit(trans);
9573 btrfs_pin_log_trans(dest);
9574 dest_log_pinned = true;
9575 ret = btrfs_insert_inode_ref(trans, root,
9576 old_dentry->d_name.name,
9577 old_dentry->d_name.len,
9579 btrfs_ino(BTRFS_I(old_dir)),
9585 /* Update inode version and ctime/mtime. */
9586 inode_inc_iversion(old_dir);
9587 inode_inc_iversion(new_dir);
9588 inode_inc_iversion(old_inode);
9589 inode_inc_iversion(new_inode);
9590 old_dir->i_ctime = old_dir->i_mtime = ctime;
9591 new_dir->i_ctime = new_dir->i_mtime = ctime;
9592 old_inode->i_ctime = ctime;
9593 new_inode->i_ctime = ctime;
9595 if (old_dentry->d_parent != new_dentry->d_parent) {
9596 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9597 BTRFS_I(old_inode), 1);
9598 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9599 BTRFS_I(new_inode), 1);
9602 /* src is a subvolume */
9603 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9604 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9605 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9606 old_dentry->d_name.name,
9607 old_dentry->d_name.len);
9608 } else { /* src is an inode */
9609 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9610 BTRFS_I(old_dentry->d_inode),
9611 old_dentry->d_name.name,
9612 old_dentry->d_name.len);
9614 ret = btrfs_update_inode(trans, root, old_inode);
9617 btrfs_abort_transaction(trans, ret);
9621 /* dest is a subvolume */
9622 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9623 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9624 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9625 new_dentry->d_name.name,
9626 new_dentry->d_name.len);
9627 } else { /* dest is an inode */
9628 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9629 BTRFS_I(new_dentry->d_inode),
9630 new_dentry->d_name.name,
9631 new_dentry->d_name.len);
9633 ret = btrfs_update_inode(trans, dest, new_inode);
9636 btrfs_abort_transaction(trans, ret);
9640 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9641 new_dentry->d_name.name,
9642 new_dentry->d_name.len, 0, old_idx);
9644 btrfs_abort_transaction(trans, ret);
9648 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9649 old_dentry->d_name.name,
9650 old_dentry->d_name.len, 0, new_idx);
9652 btrfs_abort_transaction(trans, ret);
9656 if (old_inode->i_nlink == 1)
9657 BTRFS_I(old_inode)->dir_index = old_idx;
9658 if (new_inode->i_nlink == 1)
9659 BTRFS_I(new_inode)->dir_index = new_idx;
9661 if (root_log_pinned) {
9662 parent = new_dentry->d_parent;
9663 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9664 BTRFS_I(old_dir), parent,
9666 if (ret == BTRFS_NEED_LOG_SYNC)
9667 sync_log_root = true;
9668 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9669 commit_transaction = true;
9671 btrfs_end_log_trans(root);
9672 root_log_pinned = false;
9674 if (dest_log_pinned) {
9675 if (!commit_transaction) {
9676 parent = old_dentry->d_parent;
9677 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9678 BTRFS_I(new_dir), parent,
9680 if (ret == BTRFS_NEED_LOG_SYNC)
9681 sync_log_dest = true;
9682 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9683 commit_transaction = true;
9686 btrfs_end_log_trans(dest);
9687 dest_log_pinned = false;
9691 * If we have pinned a log and an error happened, we unpin tasks
9692 * trying to sync the log and force them to fallback to a transaction
9693 * commit if the log currently contains any of the inodes involved in
9694 * this rename operation (to ensure we do not persist a log with an
9695 * inconsistent state for any of these inodes or leading to any
9696 * inconsistencies when replayed). If the transaction was aborted, the
9697 * abortion reason is propagated to userspace when attempting to commit
9698 * the transaction. If the log does not contain any of these inodes, we
9699 * allow the tasks to sync it.
9701 if (ret && (root_log_pinned || dest_log_pinned)) {
9702 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9703 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9704 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9706 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9707 btrfs_set_log_full_commit(trans);
9709 if (root_log_pinned) {
9710 btrfs_end_log_trans(root);
9711 root_log_pinned = false;
9713 if (dest_log_pinned) {
9714 btrfs_end_log_trans(dest);
9715 dest_log_pinned = false;
9718 if (!ret && sync_log_root && !commit_transaction) {
9719 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9722 commit_transaction = true;
9724 if (!ret && sync_log_dest && !commit_transaction) {
9725 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9728 commit_transaction = true;
9730 if (commit_transaction) {
9731 ret = btrfs_commit_transaction(trans);
9735 ret2 = btrfs_end_transaction(trans);
9736 ret = ret ? ret : ret2;
9739 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9740 up_read(&fs_info->subvol_sem);
9741 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9742 up_read(&fs_info->subvol_sem);
9747 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9748 struct btrfs_root *root,
9750 struct dentry *dentry)
9753 struct inode *inode;
9757 ret = btrfs_find_free_ino(root, &objectid);
9761 inode = btrfs_new_inode(trans, root, dir,
9762 dentry->d_name.name,
9764 btrfs_ino(BTRFS_I(dir)),
9766 S_IFCHR | WHITEOUT_MODE,
9769 if (IS_ERR(inode)) {
9770 ret = PTR_ERR(inode);
9774 inode->i_op = &btrfs_special_inode_operations;
9775 init_special_inode(inode, inode->i_mode,
9778 ret = btrfs_init_inode_security(trans, inode, dir,
9783 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9784 BTRFS_I(inode), 0, index);
9788 ret = btrfs_update_inode(trans, root, inode);
9790 unlock_new_inode(inode);
9792 inode_dec_link_count(inode);
9798 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9799 struct inode *new_dir, struct dentry *new_dentry,
9802 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9803 struct btrfs_trans_handle *trans;
9804 unsigned int trans_num_items;
9805 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9806 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9807 struct inode *new_inode = d_inode(new_dentry);
9808 struct inode *old_inode = d_inode(old_dentry);
9812 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9813 bool log_pinned = false;
9814 struct btrfs_log_ctx ctx;
9815 bool sync_log = false;
9816 bool commit_transaction = false;
9818 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9821 /* we only allow rename subvolume link between subvolumes */
9822 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9825 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9826 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9829 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9830 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9834 /* check for collisions, even if the name isn't there */
9835 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9836 new_dentry->d_name.name,
9837 new_dentry->d_name.len);
9840 if (ret == -EEXIST) {
9842 * eexist without a new_inode */
9843 if (WARN_ON(!new_inode)) {
9847 /* maybe -EOVERFLOW */
9854 * we're using rename to replace one file with another. Start IO on it
9855 * now so we don't add too much work to the end of the transaction
9857 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9858 filemap_flush(old_inode->i_mapping);
9860 /* close the racy window with snapshot create/destroy ioctl */
9861 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9862 down_read(&fs_info->subvol_sem);
9864 * We want to reserve the absolute worst case amount of items. So if
9865 * both inodes are subvols and we need to unlink them then that would
9866 * require 4 item modifications, but if they are both normal inodes it
9867 * would require 5 item modifications, so we'll assume they are normal
9868 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9869 * should cover the worst case number of items we'll modify.
9870 * If our rename has the whiteout flag, we need more 5 units for the
9871 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9872 * when selinux is enabled).
9874 trans_num_items = 11;
9875 if (flags & RENAME_WHITEOUT)
9876 trans_num_items += 5;
9877 trans = btrfs_start_transaction(root, trans_num_items);
9878 if (IS_ERR(trans)) {
9879 ret = PTR_ERR(trans);
9884 btrfs_record_root_in_trans(trans, dest);
9886 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9890 BTRFS_I(old_inode)->dir_index = 0ULL;
9891 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9892 /* force full log commit if subvolume involved. */
9893 btrfs_set_log_full_commit(trans);
9895 btrfs_pin_log_trans(root);
9897 ret = btrfs_insert_inode_ref(trans, dest,
9898 new_dentry->d_name.name,
9899 new_dentry->d_name.len,
9901 btrfs_ino(BTRFS_I(new_dir)), index);
9906 inode_inc_iversion(old_dir);
9907 inode_inc_iversion(new_dir);
9908 inode_inc_iversion(old_inode);
9909 old_dir->i_ctime = old_dir->i_mtime =
9910 new_dir->i_ctime = new_dir->i_mtime =
9911 old_inode->i_ctime = current_time(old_dir);
9913 if (old_dentry->d_parent != new_dentry->d_parent)
9914 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9915 BTRFS_I(old_inode), 1);
9917 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9918 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9919 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9920 old_dentry->d_name.name,
9921 old_dentry->d_name.len);
9923 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9924 BTRFS_I(d_inode(old_dentry)),
9925 old_dentry->d_name.name,
9926 old_dentry->d_name.len);
9928 ret = btrfs_update_inode(trans, root, old_inode);
9931 btrfs_abort_transaction(trans, ret);
9936 inode_inc_iversion(new_inode);
9937 new_inode->i_ctime = current_time(new_inode);
9938 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9939 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9940 root_objectid = BTRFS_I(new_inode)->location.objectid;
9941 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9942 new_dentry->d_name.name,
9943 new_dentry->d_name.len);
9944 BUG_ON(new_inode->i_nlink == 0);
9946 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9947 BTRFS_I(d_inode(new_dentry)),
9948 new_dentry->d_name.name,
9949 new_dentry->d_name.len);
9951 if (!ret && new_inode->i_nlink == 0)
9952 ret = btrfs_orphan_add(trans,
9953 BTRFS_I(d_inode(new_dentry)));
9955 btrfs_abort_transaction(trans, ret);
9960 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9961 new_dentry->d_name.name,
9962 new_dentry->d_name.len, 0, index);
9964 btrfs_abort_transaction(trans, ret);
9968 if (old_inode->i_nlink == 1)
9969 BTRFS_I(old_inode)->dir_index = index;
9972 struct dentry *parent = new_dentry->d_parent;
9974 btrfs_init_log_ctx(&ctx, old_inode);
9975 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9976 BTRFS_I(old_dir), parent,
9978 if (ret == BTRFS_NEED_LOG_SYNC)
9980 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9981 commit_transaction = true;
9983 btrfs_end_log_trans(root);
9987 if (flags & RENAME_WHITEOUT) {
9988 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9992 btrfs_abort_transaction(trans, ret);
9998 * If we have pinned the log and an error happened, we unpin tasks
9999 * trying to sync the log and force them to fallback to a transaction
10000 * commit if the log currently contains any of the inodes involved in
10001 * this rename operation (to ensure we do not persist a log with an
10002 * inconsistent state for any of these inodes or leading to any
10003 * inconsistencies when replayed). If the transaction was aborted, the
10004 * abortion reason is propagated to userspace when attempting to commit
10005 * the transaction. If the log does not contain any of these inodes, we
10006 * allow the tasks to sync it.
10008 if (ret && log_pinned) {
10009 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10010 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10011 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10013 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10014 btrfs_set_log_full_commit(trans);
10016 btrfs_end_log_trans(root);
10017 log_pinned = false;
10019 if (!ret && sync_log) {
10020 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10022 commit_transaction = true;
10024 if (commit_transaction) {
10025 ret = btrfs_commit_transaction(trans);
10029 ret2 = btrfs_end_transaction(trans);
10030 ret = ret ? ret : ret2;
10033 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10034 up_read(&fs_info->subvol_sem);
10039 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10040 struct inode *new_dir, struct dentry *new_dentry,
10041 unsigned int flags)
10043 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10046 if (flags & RENAME_EXCHANGE)
10047 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10050 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10053 struct btrfs_delalloc_work {
10054 struct inode *inode;
10055 struct completion completion;
10056 struct list_head list;
10057 struct btrfs_work work;
10060 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10062 struct btrfs_delalloc_work *delalloc_work;
10063 struct inode *inode;
10065 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10067 inode = delalloc_work->inode;
10068 filemap_flush(inode->i_mapping);
10069 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10070 &BTRFS_I(inode)->runtime_flags))
10071 filemap_flush(inode->i_mapping);
10074 complete(&delalloc_work->completion);
10077 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10079 struct btrfs_delalloc_work *work;
10081 work = kmalloc(sizeof(*work), GFP_NOFS);
10085 init_completion(&work->completion);
10086 INIT_LIST_HEAD(&work->list);
10087 work->inode = inode;
10088 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10089 btrfs_run_delalloc_work, NULL, NULL);
10095 * some fairly slow code that needs optimization. This walks the list
10096 * of all the inodes with pending delalloc and forces them to disk.
10098 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10100 struct btrfs_inode *binode;
10101 struct inode *inode;
10102 struct btrfs_delalloc_work *work, *next;
10103 struct list_head works;
10104 struct list_head splice;
10107 INIT_LIST_HEAD(&works);
10108 INIT_LIST_HEAD(&splice);
10110 mutex_lock(&root->delalloc_mutex);
10111 spin_lock(&root->delalloc_lock);
10112 list_splice_init(&root->delalloc_inodes, &splice);
10113 while (!list_empty(&splice)) {
10114 binode = list_entry(splice.next, struct btrfs_inode,
10117 list_move_tail(&binode->delalloc_inodes,
10118 &root->delalloc_inodes);
10119 inode = igrab(&binode->vfs_inode);
10121 cond_resched_lock(&root->delalloc_lock);
10124 spin_unlock(&root->delalloc_lock);
10127 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10128 &binode->runtime_flags);
10129 work = btrfs_alloc_delalloc_work(inode);
10135 list_add_tail(&work->list, &works);
10136 btrfs_queue_work(root->fs_info->flush_workers,
10139 if (nr != -1 && ret >= nr)
10142 spin_lock(&root->delalloc_lock);
10144 spin_unlock(&root->delalloc_lock);
10147 list_for_each_entry_safe(work, next, &works, list) {
10148 list_del_init(&work->list);
10149 wait_for_completion(&work->completion);
10153 if (!list_empty(&splice)) {
10154 spin_lock(&root->delalloc_lock);
10155 list_splice_tail(&splice, &root->delalloc_inodes);
10156 spin_unlock(&root->delalloc_lock);
10158 mutex_unlock(&root->delalloc_mutex);
10162 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10164 struct btrfs_fs_info *fs_info = root->fs_info;
10167 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10170 ret = start_delalloc_inodes(root, -1, true);
10176 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10178 struct btrfs_root *root;
10179 struct list_head splice;
10182 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10185 INIT_LIST_HEAD(&splice);
10187 mutex_lock(&fs_info->delalloc_root_mutex);
10188 spin_lock(&fs_info->delalloc_root_lock);
10189 list_splice_init(&fs_info->delalloc_roots, &splice);
10190 while (!list_empty(&splice) && nr) {
10191 root = list_first_entry(&splice, struct btrfs_root,
10193 root = btrfs_grab_fs_root(root);
10195 list_move_tail(&root->delalloc_root,
10196 &fs_info->delalloc_roots);
10197 spin_unlock(&fs_info->delalloc_root_lock);
10199 ret = start_delalloc_inodes(root, nr, false);
10200 btrfs_put_fs_root(root);
10208 spin_lock(&fs_info->delalloc_root_lock);
10210 spin_unlock(&fs_info->delalloc_root_lock);
10214 if (!list_empty(&splice)) {
10215 spin_lock(&fs_info->delalloc_root_lock);
10216 list_splice_tail(&splice, &fs_info->delalloc_roots);
10217 spin_unlock(&fs_info->delalloc_root_lock);
10219 mutex_unlock(&fs_info->delalloc_root_mutex);
10223 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10224 const char *symname)
10226 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10227 struct btrfs_trans_handle *trans;
10228 struct btrfs_root *root = BTRFS_I(dir)->root;
10229 struct btrfs_path *path;
10230 struct btrfs_key key;
10231 struct inode *inode = NULL;
10238 struct btrfs_file_extent_item *ei;
10239 struct extent_buffer *leaf;
10241 name_len = strlen(symname);
10242 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10243 return -ENAMETOOLONG;
10246 * 2 items for inode item and ref
10247 * 2 items for dir items
10248 * 1 item for updating parent inode item
10249 * 1 item for the inline extent item
10250 * 1 item for xattr if selinux is on
10252 trans = btrfs_start_transaction(root, 7);
10254 return PTR_ERR(trans);
10256 err = btrfs_find_free_ino(root, &objectid);
10260 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10261 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10262 objectid, S_IFLNK|S_IRWXUGO, &index);
10263 if (IS_ERR(inode)) {
10264 err = PTR_ERR(inode);
10270 * If the active LSM wants to access the inode during
10271 * d_instantiate it needs these. Smack checks to see
10272 * if the filesystem supports xattrs by looking at the
10275 inode->i_fop = &btrfs_file_operations;
10276 inode->i_op = &btrfs_file_inode_operations;
10277 inode->i_mapping->a_ops = &btrfs_aops;
10278 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10280 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10284 path = btrfs_alloc_path();
10289 key.objectid = btrfs_ino(BTRFS_I(inode));
10291 key.type = BTRFS_EXTENT_DATA_KEY;
10292 datasize = btrfs_file_extent_calc_inline_size(name_len);
10293 err = btrfs_insert_empty_item(trans, root, path, &key,
10296 btrfs_free_path(path);
10299 leaf = path->nodes[0];
10300 ei = btrfs_item_ptr(leaf, path->slots[0],
10301 struct btrfs_file_extent_item);
10302 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10303 btrfs_set_file_extent_type(leaf, ei,
10304 BTRFS_FILE_EXTENT_INLINE);
10305 btrfs_set_file_extent_encryption(leaf, ei, 0);
10306 btrfs_set_file_extent_compression(leaf, ei, 0);
10307 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10308 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10310 ptr = btrfs_file_extent_inline_start(ei);
10311 write_extent_buffer(leaf, symname, ptr, name_len);
10312 btrfs_mark_buffer_dirty(leaf);
10313 btrfs_free_path(path);
10315 inode->i_op = &btrfs_symlink_inode_operations;
10316 inode_nohighmem(inode);
10317 inode_set_bytes(inode, name_len);
10318 btrfs_i_size_write(BTRFS_I(inode), name_len);
10319 err = btrfs_update_inode(trans, root, inode);
10321 * Last step, add directory indexes for our symlink inode. This is the
10322 * last step to avoid extra cleanup of these indexes if an error happens
10326 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10327 BTRFS_I(inode), 0, index);
10331 d_instantiate_new(dentry, inode);
10334 btrfs_end_transaction(trans);
10335 if (err && inode) {
10336 inode_dec_link_count(inode);
10337 discard_new_inode(inode);
10339 btrfs_btree_balance_dirty(fs_info);
10343 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10344 u64 start, u64 num_bytes, u64 min_size,
10345 loff_t actual_len, u64 *alloc_hint,
10346 struct btrfs_trans_handle *trans)
10348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10349 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10350 struct extent_map *em;
10351 struct btrfs_root *root = BTRFS_I(inode)->root;
10352 struct btrfs_key ins;
10353 u64 cur_offset = start;
10356 u64 last_alloc = (u64)-1;
10358 bool own_trans = true;
10359 u64 end = start + num_bytes - 1;
10363 while (num_bytes > 0) {
10365 trans = btrfs_start_transaction(root, 3);
10366 if (IS_ERR(trans)) {
10367 ret = PTR_ERR(trans);
10372 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10373 cur_bytes = max(cur_bytes, min_size);
10375 * If we are severely fragmented we could end up with really
10376 * small allocations, so if the allocator is returning small
10377 * chunks lets make its job easier by only searching for those
10380 cur_bytes = min(cur_bytes, last_alloc);
10381 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10382 min_size, 0, *alloc_hint, &ins, 1, 0);
10385 btrfs_end_transaction(trans);
10388 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10390 last_alloc = ins.offset;
10391 ret = insert_reserved_file_extent(trans, inode,
10392 cur_offset, ins.objectid,
10393 ins.offset, ins.offset,
10394 ins.offset, 0, 0, 0,
10395 BTRFS_FILE_EXTENT_PREALLOC);
10397 btrfs_free_reserved_extent(fs_info, ins.objectid,
10399 btrfs_abort_transaction(trans, ret);
10401 btrfs_end_transaction(trans);
10405 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10406 cur_offset + ins.offset -1, 0);
10408 em = alloc_extent_map();
10410 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10411 &BTRFS_I(inode)->runtime_flags);
10415 em->start = cur_offset;
10416 em->orig_start = cur_offset;
10417 em->len = ins.offset;
10418 em->block_start = ins.objectid;
10419 em->block_len = ins.offset;
10420 em->orig_block_len = ins.offset;
10421 em->ram_bytes = ins.offset;
10422 em->bdev = fs_info->fs_devices->latest_bdev;
10423 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10424 em->generation = trans->transid;
10427 write_lock(&em_tree->lock);
10428 ret = add_extent_mapping(em_tree, em, 1);
10429 write_unlock(&em_tree->lock);
10430 if (ret != -EEXIST)
10432 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10433 cur_offset + ins.offset - 1,
10436 free_extent_map(em);
10438 num_bytes -= ins.offset;
10439 cur_offset += ins.offset;
10440 *alloc_hint = ins.objectid + ins.offset;
10442 inode_inc_iversion(inode);
10443 inode->i_ctime = current_time(inode);
10444 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10445 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10446 (actual_len > inode->i_size) &&
10447 (cur_offset > inode->i_size)) {
10448 if (cur_offset > actual_len)
10449 i_size = actual_len;
10451 i_size = cur_offset;
10452 i_size_write(inode, i_size);
10453 btrfs_ordered_update_i_size(inode, i_size, NULL);
10456 ret = btrfs_update_inode(trans, root, inode);
10459 btrfs_abort_transaction(trans, ret);
10461 btrfs_end_transaction(trans);
10466 btrfs_end_transaction(trans);
10468 if (cur_offset < end)
10469 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10470 end - cur_offset + 1);
10474 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10475 u64 start, u64 num_bytes, u64 min_size,
10476 loff_t actual_len, u64 *alloc_hint)
10478 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10479 min_size, actual_len, alloc_hint,
10483 int btrfs_prealloc_file_range_trans(struct inode *inode,
10484 struct btrfs_trans_handle *trans, int mode,
10485 u64 start, u64 num_bytes, u64 min_size,
10486 loff_t actual_len, u64 *alloc_hint)
10488 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10489 min_size, actual_len, alloc_hint, trans);
10492 static int btrfs_set_page_dirty(struct page *page)
10494 return __set_page_dirty_nobuffers(page);
10497 static int btrfs_permission(struct inode *inode, int mask)
10499 struct btrfs_root *root = BTRFS_I(inode)->root;
10500 umode_t mode = inode->i_mode;
10502 if (mask & MAY_WRITE &&
10503 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10504 if (btrfs_root_readonly(root))
10506 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10509 return generic_permission(inode, mask);
10512 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10514 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10515 struct btrfs_trans_handle *trans;
10516 struct btrfs_root *root = BTRFS_I(dir)->root;
10517 struct inode *inode = NULL;
10523 * 5 units required for adding orphan entry
10525 trans = btrfs_start_transaction(root, 5);
10527 return PTR_ERR(trans);
10529 ret = btrfs_find_free_ino(root, &objectid);
10533 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10534 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10535 if (IS_ERR(inode)) {
10536 ret = PTR_ERR(inode);
10541 inode->i_fop = &btrfs_file_operations;
10542 inode->i_op = &btrfs_file_inode_operations;
10544 inode->i_mapping->a_ops = &btrfs_aops;
10545 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10547 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10551 ret = btrfs_update_inode(trans, root, inode);
10554 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10559 * We set number of links to 0 in btrfs_new_inode(), and here we set
10560 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10563 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10565 set_nlink(inode, 1);
10566 d_tmpfile(dentry, inode);
10567 unlock_new_inode(inode);
10568 mark_inode_dirty(inode);
10570 btrfs_end_transaction(trans);
10572 discard_new_inode(inode);
10573 btrfs_btree_balance_dirty(fs_info);
10577 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10579 struct inode *inode = tree->private_data;
10580 unsigned long index = start >> PAGE_SHIFT;
10581 unsigned long end_index = end >> PAGE_SHIFT;
10584 while (index <= end_index) {
10585 page = find_get_page(inode->i_mapping, index);
10586 ASSERT(page); /* Pages should be in the extent_io_tree */
10587 set_page_writeback(page);
10595 * Add an entry indicating a block group or device which is pinned by a
10596 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10597 * negative errno on failure.
10599 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10600 bool is_block_group)
10602 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10603 struct btrfs_swapfile_pin *sp, *entry;
10604 struct rb_node **p;
10605 struct rb_node *parent = NULL;
10607 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10612 sp->is_block_group = is_block_group;
10614 spin_lock(&fs_info->swapfile_pins_lock);
10615 p = &fs_info->swapfile_pins.rb_node;
10618 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10619 if (sp->ptr < entry->ptr ||
10620 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10621 p = &(*p)->rb_left;
10622 } else if (sp->ptr > entry->ptr ||
10623 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10624 p = &(*p)->rb_right;
10626 spin_unlock(&fs_info->swapfile_pins_lock);
10631 rb_link_node(&sp->node, parent, p);
10632 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10633 spin_unlock(&fs_info->swapfile_pins_lock);
10637 /* Free all of the entries pinned by this swapfile. */
10638 static void btrfs_free_swapfile_pins(struct inode *inode)
10640 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10641 struct btrfs_swapfile_pin *sp;
10642 struct rb_node *node, *next;
10644 spin_lock(&fs_info->swapfile_pins_lock);
10645 node = rb_first(&fs_info->swapfile_pins);
10647 next = rb_next(node);
10648 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10649 if (sp->inode == inode) {
10650 rb_erase(&sp->node, &fs_info->swapfile_pins);
10651 if (sp->is_block_group)
10652 btrfs_put_block_group(sp->ptr);
10657 spin_unlock(&fs_info->swapfile_pins_lock);
10660 struct btrfs_swap_info {
10666 unsigned long nr_pages;
10670 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10671 struct btrfs_swap_info *bsi)
10673 unsigned long nr_pages;
10674 u64 first_ppage, first_ppage_reported, next_ppage;
10677 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10678 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10679 PAGE_SIZE) >> PAGE_SHIFT;
10681 if (first_ppage >= next_ppage)
10683 nr_pages = next_ppage - first_ppage;
10685 first_ppage_reported = first_ppage;
10686 if (bsi->start == 0)
10687 first_ppage_reported++;
10688 if (bsi->lowest_ppage > first_ppage_reported)
10689 bsi->lowest_ppage = first_ppage_reported;
10690 if (bsi->highest_ppage < (next_ppage - 1))
10691 bsi->highest_ppage = next_ppage - 1;
10693 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10696 bsi->nr_extents += ret;
10697 bsi->nr_pages += nr_pages;
10701 static void btrfs_swap_deactivate(struct file *file)
10703 struct inode *inode = file_inode(file);
10705 btrfs_free_swapfile_pins(inode);
10706 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10709 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10712 struct inode *inode = file_inode(file);
10713 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10714 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10715 struct extent_state *cached_state = NULL;
10716 struct extent_map *em = NULL;
10717 struct btrfs_device *device = NULL;
10718 struct btrfs_swap_info bsi = {
10719 .lowest_ppage = (sector_t)-1ULL,
10726 * If the swap file was just created, make sure delalloc is done. If the
10727 * file changes again after this, the user is doing something stupid and
10728 * we don't really care.
10730 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10735 * The inode is locked, so these flags won't change after we check them.
10737 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10738 btrfs_warn(fs_info, "swapfile must not be compressed");
10741 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10742 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10745 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10746 btrfs_warn(fs_info, "swapfile must not be checksummed");
10751 * Balance or device remove/replace/resize can move stuff around from
10752 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10753 * concurrently while we are mapping the swap extents, and
10754 * fs_info->swapfile_pins prevents them from running while the swap file
10755 * is active and moving the extents. Note that this also prevents a
10756 * concurrent device add which isn't actually necessary, but it's not
10757 * really worth the trouble to allow it.
10759 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10760 btrfs_warn(fs_info,
10761 "cannot activate swapfile while exclusive operation is running");
10765 * Snapshots can create extents which require COW even if NODATACOW is
10766 * set. We use this counter to prevent snapshots. We must increment it
10767 * before walking the extents because we don't want a concurrent
10768 * snapshot to run after we've already checked the extents.
10770 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10772 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10774 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10776 while (start < isize) {
10777 u64 logical_block_start, physical_block_start;
10778 struct btrfs_block_group_cache *bg;
10779 u64 len = isize - start;
10781 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10787 if (em->block_start == EXTENT_MAP_HOLE) {
10788 btrfs_warn(fs_info, "swapfile must not have holes");
10792 if (em->block_start == EXTENT_MAP_INLINE) {
10794 * It's unlikely we'll ever actually find ourselves
10795 * here, as a file small enough to fit inline won't be
10796 * big enough to store more than the swap header, but in
10797 * case something changes in the future, let's catch it
10798 * here rather than later.
10800 btrfs_warn(fs_info, "swapfile must not be inline");
10804 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10805 btrfs_warn(fs_info, "swapfile must not be compressed");
10810 logical_block_start = em->block_start + (start - em->start);
10811 len = min(len, em->len - (start - em->start));
10812 free_extent_map(em);
10815 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10821 btrfs_warn(fs_info,
10822 "swapfile must not be copy-on-write");
10827 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10833 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10834 btrfs_warn(fs_info,
10835 "swapfile must have single data profile");
10840 if (device == NULL) {
10841 device = em->map_lookup->stripes[0].dev;
10842 ret = btrfs_add_swapfile_pin(inode, device, false);
10847 } else if (device != em->map_lookup->stripes[0].dev) {
10848 btrfs_warn(fs_info, "swapfile must be on one device");
10853 physical_block_start = (em->map_lookup->stripes[0].physical +
10854 (logical_block_start - em->start));
10855 len = min(len, em->len - (logical_block_start - em->start));
10856 free_extent_map(em);
10859 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10861 btrfs_warn(fs_info,
10862 "could not find block group containing swapfile");
10867 ret = btrfs_add_swapfile_pin(inode, bg, true);
10869 btrfs_put_block_group(bg);
10876 if (bsi.block_len &&
10877 bsi.block_start + bsi.block_len == physical_block_start) {
10878 bsi.block_len += len;
10880 if (bsi.block_len) {
10881 ret = btrfs_add_swap_extent(sis, &bsi);
10886 bsi.block_start = physical_block_start;
10887 bsi.block_len = len;
10894 ret = btrfs_add_swap_extent(sis, &bsi);
10897 if (!IS_ERR_OR_NULL(em))
10898 free_extent_map(em);
10900 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10903 btrfs_swap_deactivate(file);
10905 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10911 sis->bdev = device->bdev;
10912 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10913 sis->max = bsi.nr_pages;
10914 sis->pages = bsi.nr_pages - 1;
10915 sis->highest_bit = bsi.nr_pages - 1;
10916 return bsi.nr_extents;
10919 static void btrfs_swap_deactivate(struct file *file)
10923 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10926 return -EOPNOTSUPP;
10930 static const struct inode_operations btrfs_dir_inode_operations = {
10931 .getattr = btrfs_getattr,
10932 .lookup = btrfs_lookup,
10933 .create = btrfs_create,
10934 .unlink = btrfs_unlink,
10935 .link = btrfs_link,
10936 .mkdir = btrfs_mkdir,
10937 .rmdir = btrfs_rmdir,
10938 .rename = btrfs_rename2,
10939 .symlink = btrfs_symlink,
10940 .setattr = btrfs_setattr,
10941 .mknod = btrfs_mknod,
10942 .listxattr = btrfs_listxattr,
10943 .permission = btrfs_permission,
10944 .get_acl = btrfs_get_acl,
10945 .set_acl = btrfs_set_acl,
10946 .update_time = btrfs_update_time,
10947 .tmpfile = btrfs_tmpfile,
10949 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10950 .lookup = btrfs_lookup,
10951 .permission = btrfs_permission,
10952 .update_time = btrfs_update_time,
10955 static const struct file_operations btrfs_dir_file_operations = {
10956 .llseek = generic_file_llseek,
10957 .read = generic_read_dir,
10958 .iterate_shared = btrfs_real_readdir,
10959 .open = btrfs_opendir,
10960 .unlocked_ioctl = btrfs_ioctl,
10961 #ifdef CONFIG_COMPAT
10962 .compat_ioctl = btrfs_compat_ioctl,
10964 .release = btrfs_release_file,
10965 .fsync = btrfs_sync_file,
10968 static const struct extent_io_ops btrfs_extent_io_ops = {
10969 /* mandatory callbacks */
10970 .submit_bio_hook = btrfs_submit_bio_hook,
10971 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10975 * btrfs doesn't support the bmap operation because swapfiles
10976 * use bmap to make a mapping of extents in the file. They assume
10977 * these extents won't change over the life of the file and they
10978 * use the bmap result to do IO directly to the drive.
10980 * the btrfs bmap call would return logical addresses that aren't
10981 * suitable for IO and they also will change frequently as COW
10982 * operations happen. So, swapfile + btrfs == corruption.
10984 * For now we're avoiding this by dropping bmap.
10986 static const struct address_space_operations btrfs_aops = {
10987 .readpage = btrfs_readpage,
10988 .writepage = btrfs_writepage,
10989 .writepages = btrfs_writepages,
10990 .readpages = btrfs_readpages,
10991 .direct_IO = btrfs_direct_IO,
10992 .invalidatepage = btrfs_invalidatepage,
10993 .releasepage = btrfs_releasepage,
10994 .set_page_dirty = btrfs_set_page_dirty,
10995 .error_remove_page = generic_error_remove_page,
10996 .swap_activate = btrfs_swap_activate,
10997 .swap_deactivate = btrfs_swap_deactivate,
11000 static const struct inode_operations btrfs_file_inode_operations = {
11001 .getattr = btrfs_getattr,
11002 .setattr = btrfs_setattr,
11003 .listxattr = btrfs_listxattr,
11004 .permission = btrfs_permission,
11005 .fiemap = btrfs_fiemap,
11006 .get_acl = btrfs_get_acl,
11007 .set_acl = btrfs_set_acl,
11008 .update_time = btrfs_update_time,
11010 static const struct inode_operations btrfs_special_inode_operations = {
11011 .getattr = btrfs_getattr,
11012 .setattr = btrfs_setattr,
11013 .permission = btrfs_permission,
11014 .listxattr = btrfs_listxattr,
11015 .get_acl = btrfs_get_acl,
11016 .set_acl = btrfs_set_acl,
11017 .update_time = btrfs_update_time,
11019 static const struct inode_operations btrfs_symlink_inode_operations = {
11020 .get_link = page_get_link,
11021 .getattr = btrfs_getattr,
11022 .setattr = btrfs_setattr,
11023 .permission = btrfs_permission,
11024 .listxattr = btrfs_listxattr,
11025 .update_time = btrfs_update_time,
11028 const struct dentry_operations btrfs_dentry_operations = {
11029 .d_delete = btrfs_dentry_delete,