2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
54 #include "compression.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
118 static int btrfs_dirty_inode(struct inode *inode);
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121 void btrfs_test_inode_set_ops(struct inode *inode)
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
133 err = btrfs_init_acl(trans, inode, dir);
135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
144 static int insert_inline_extent(struct btrfs_trans_handle *trans,
145 struct btrfs_path *path, int extent_inserted,
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
149 struct page **compressed_pages)
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
155 struct btrfs_file_extent_item *ei;
158 size_t cur_size = size;
159 unsigned long offset;
161 if (compressed_size && compressed_pages)
162 cur_size = compressed_size;
164 inode_add_bytes(inode, size);
166 if (!extent_inserted) {
167 struct btrfs_key key;
170 key.objectid = btrfs_ino(BTRFS_I(inode));
172 key.type = BTRFS_EXTENT_DATA_KEY;
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
193 if (compress_type != BTRFS_COMPRESS_NONE) {
196 while (compressed_size > 0) {
197 cpage = compressed_pages[i];
198 cur_size = min_t(unsigned long, compressed_size,
201 kaddr = kmap_atomic(cpage);
202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
203 kunmap_atomic(kaddr);
207 compressed_size -= cur_size;
209 btrfs_set_file_extent_compression(leaf, ei,
212 page = find_get_page(inode->i_mapping,
213 start >> PAGE_SHIFT);
214 btrfs_set_file_extent_compression(leaf, ei, 0);
215 kaddr = kmap_atomic(page);
216 offset = start & (PAGE_SIZE - 1);
217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
218 kunmap_atomic(kaddr);
221 btrfs_mark_buffer_dirty(leaf);
222 btrfs_release_path(path);
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
233 BTRFS_I(inode)->disk_i_size = inode->i_size;
234 ret = btrfs_update_inode(trans, root, inode);
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
247 static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
251 struct page **compressed_pages)
253 struct btrfs_fs_info *fs_info = root->fs_info;
254 struct btrfs_trans_handle *trans;
255 u64 isize = i_size_read(inode);
256 u64 actual_end = min(end + 1, isize);
257 u64 inline_len = actual_end - start;
258 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
259 u64 data_len = inline_len;
261 struct btrfs_path *path;
262 int extent_inserted = 0;
263 u32 extent_item_size;
266 data_len = compressed_size;
269 actual_end > fs_info->sectorsize ||
270 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
272 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
274 data_len > fs_info->max_inline) {
278 path = btrfs_alloc_path();
282 trans = btrfs_join_transaction(root);
284 btrfs_free_path(path);
285 return PTR_ERR(trans);
287 trans->block_rsv = &fs_info->delalloc_block_rsv;
289 if (compressed_size && compressed_pages)
290 extent_item_size = btrfs_file_extent_calc_inline_size(
293 extent_item_size = btrfs_file_extent_calc_inline_size(
296 ret = __btrfs_drop_extents(trans, root, inode, path,
297 start, aligned_end, NULL,
298 1, 1, extent_item_size, &extent_inserted);
300 btrfs_abort_transaction(trans, ret);
304 if (isize > actual_end)
305 inline_len = min_t(u64, isize, actual_end);
306 ret = insert_inline_extent(trans, path, extent_inserted,
308 inline_len, compressed_size,
309 compress_type, compressed_pages);
310 if (ret && ret != -ENOSPC) {
311 btrfs_abort_transaction(trans, ret);
313 } else if (ret == -ENOSPC) {
318 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
319 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
320 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
323 * Don't forget to free the reserved space, as for inlined extent
324 * it won't count as data extent, free them directly here.
325 * And at reserve time, it's always aligned to page size, so
326 * just free one page here.
328 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
329 btrfs_free_path(path);
330 btrfs_end_transaction(trans);
334 struct async_extent {
339 unsigned long nr_pages;
341 struct list_head list;
346 struct btrfs_root *root;
347 struct page *locked_page;
350 struct list_head extents;
351 struct btrfs_work work;
354 static noinline int add_async_extent(struct async_cow *cow,
355 u64 start, u64 ram_size,
358 unsigned long nr_pages,
361 struct async_extent *async_extent;
363 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
364 BUG_ON(!async_extent); /* -ENOMEM */
365 async_extent->start = start;
366 async_extent->ram_size = ram_size;
367 async_extent->compressed_size = compressed_size;
368 async_extent->pages = pages;
369 async_extent->nr_pages = nr_pages;
370 async_extent->compress_type = compress_type;
371 list_add_tail(&async_extent->list, &cow->extents);
375 static inline int inode_need_compress(struct inode *inode)
377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
380 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
382 /* bad compression ratios */
383 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
385 if (btrfs_test_opt(fs_info, COMPRESS) ||
386 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
387 BTRFS_I(inode)->force_compress)
392 static inline void inode_should_defrag(struct btrfs_inode *inode,
393 u64 start, u64 end, u64 num_bytes, u64 small_write)
395 /* If this is a small write inside eof, kick off a defrag */
396 if (num_bytes < small_write &&
397 (start > 0 || end + 1 < inode->disk_i_size))
398 btrfs_add_inode_defrag(NULL, inode);
402 * we create compressed extents in two phases. The first
403 * phase compresses a range of pages that have already been
404 * locked (both pages and state bits are locked).
406 * This is done inside an ordered work queue, and the compression
407 * is spread across many cpus. The actual IO submission is step
408 * two, and the ordered work queue takes care of making sure that
409 * happens in the same order things were put onto the queue by
410 * writepages and friends.
412 * If this code finds it can't get good compression, it puts an
413 * entry onto the work queue to write the uncompressed bytes. This
414 * makes sure that both compressed inodes and uncompressed inodes
415 * are written in the same order that the flusher thread sent them
418 static noinline void compress_file_range(struct inode *inode,
419 struct page *locked_page,
421 struct async_cow *async_cow,
424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
425 struct btrfs_root *root = BTRFS_I(inode)->root;
427 u64 blocksize = fs_info->sectorsize;
429 u64 isize = i_size_read(inode);
431 struct page **pages = NULL;
432 unsigned long nr_pages;
433 unsigned long total_compressed = 0;
434 unsigned long total_in = 0;
437 int compress_type = fs_info->compress_type;
440 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
443 actual_end = min_t(u64, isize, end + 1);
446 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
447 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
448 nr_pages = min_t(unsigned long, nr_pages,
449 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
452 * we don't want to send crud past the end of i_size through
453 * compression, that's just a waste of CPU time. So, if the
454 * end of the file is before the start of our current
455 * requested range of bytes, we bail out to the uncompressed
456 * cleanup code that can deal with all of this.
458 * It isn't really the fastest way to fix things, but this is a
459 * very uncommon corner.
461 if (actual_end <= start)
462 goto cleanup_and_bail_uncompressed;
464 total_compressed = actual_end - start;
467 * skip compression for a small file range(<=blocksize) that
468 * isn't an inline extent, since it doesn't save disk space at all.
470 if (total_compressed <= blocksize &&
471 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
472 goto cleanup_and_bail_uncompressed;
474 total_compressed = min_t(unsigned long, total_compressed,
475 BTRFS_MAX_UNCOMPRESSED);
476 num_bytes = ALIGN(end - start + 1, blocksize);
477 num_bytes = max(blocksize, num_bytes);
482 * we do compression for mount -o compress and when the
483 * inode has not been flagged as nocompress. This flag can
484 * change at any time if we discover bad compression ratios.
486 if (inode_need_compress(inode)) {
488 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
490 /* just bail out to the uncompressed code */
494 if (BTRFS_I(inode)->force_compress)
495 compress_type = BTRFS_I(inode)->force_compress;
498 * we need to call clear_page_dirty_for_io on each
499 * page in the range. Otherwise applications with the file
500 * mmap'd can wander in and change the page contents while
501 * we are compressing them.
503 * If the compression fails for any reason, we set the pages
504 * dirty again later on.
506 extent_range_clear_dirty_for_io(inode, start, end);
508 ret = btrfs_compress_pages(compress_type,
509 inode->i_mapping, start,
516 unsigned long offset = total_compressed &
518 struct page *page = pages[nr_pages - 1];
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
525 kaddr = kmap_atomic(page);
526 memset(kaddr + offset, 0,
528 kunmap_atomic(kaddr);
535 /* lets try to make an inline extent */
536 if (ret || total_in < (actual_end - start)) {
537 /* we didn't compress the entire range, try
538 * to make an uncompressed inline extent.
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, BTRFS_COMPRESS_NONE, NULL);
543 /* try making a compressed inline extent */
544 ret = cow_file_range_inline(root, inode, start, end,
546 compress_type, pages);
549 unsigned long clear_flags = EXTENT_DELALLOC |
551 unsigned long page_error_op;
553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
561 extent_clear_unlock_delalloc(inode, start, end, end,
568 btrfs_free_reserved_data_space_noquota(inode, start,
576 * we aren't doing an inline extent round the compressed size
577 * up to a block size boundary so the allocator does sane
580 total_compressed = ALIGN(total_compressed, blocksize);
583 * one last check to make sure the compression is really a
584 * win, compare the page count read with the blocks on disk
586 total_in = ALIGN(total_in, PAGE_SIZE);
587 if (total_compressed >= total_in) {
590 num_bytes = total_in;
594 * The async work queues will take care of doing actual
595 * allocation on disk for these compressed pages, and
596 * will submit them to the elevator.
598 add_async_extent(async_cow, start, num_bytes,
599 total_compressed, pages, nr_pages,
602 if (start + num_bytes < end) {
613 * the compression code ran but failed to make things smaller,
614 * free any pages it allocated and our page pointer array
616 for (i = 0; i < nr_pages; i++) {
617 WARN_ON(pages[i]->mapping);
622 total_compressed = 0;
625 /* flag the file so we don't compress in the future */
626 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
627 !(BTRFS_I(inode)->force_compress)) {
628 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
631 cleanup_and_bail_uncompressed:
633 * No compression, but we still need to write the pages in the file
634 * we've been given so far. redirty the locked page if it corresponds
635 * to our extent and set things up for the async work queue to run
636 * cow_file_range to do the normal delalloc dance.
638 if (page_offset(locked_page) >= start &&
639 page_offset(locked_page) <= end)
640 __set_page_dirty_nobuffers(locked_page);
641 /* unlocked later on in the async handlers */
644 extent_range_redirty_for_io(inode, start, end);
645 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
646 BTRFS_COMPRESS_NONE);
652 for (i = 0; i < nr_pages; i++) {
653 WARN_ON(pages[i]->mapping);
659 static void free_async_extent_pages(struct async_extent *async_extent)
663 if (!async_extent->pages)
666 for (i = 0; i < async_extent->nr_pages; i++) {
667 WARN_ON(async_extent->pages[i]->mapping);
668 put_page(async_extent->pages[i]);
670 kfree(async_extent->pages);
671 async_extent->nr_pages = 0;
672 async_extent->pages = NULL;
676 * phase two of compressed writeback. This is the ordered portion
677 * of the code, which only gets called in the order the work was
678 * queued. We walk all the async extents created by compress_file_range
679 * and send them down to the disk.
681 static noinline void submit_compressed_extents(struct inode *inode,
682 struct async_cow *async_cow)
684 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
685 struct async_extent *async_extent;
687 struct btrfs_key ins;
688 struct extent_map *em;
689 struct btrfs_root *root = BTRFS_I(inode)->root;
690 struct extent_io_tree *io_tree;
694 while (!list_empty(&async_cow->extents)) {
695 async_extent = list_entry(async_cow->extents.next,
696 struct async_extent, list);
697 list_del(&async_extent->list);
699 io_tree = &BTRFS_I(inode)->io_tree;
702 /* did the compression code fall back to uncompressed IO? */
703 if (!async_extent->pages) {
704 int page_started = 0;
705 unsigned long nr_written = 0;
707 lock_extent(io_tree, async_extent->start,
708 async_extent->start +
709 async_extent->ram_size - 1);
711 /* allocate blocks */
712 ret = cow_file_range(inode, async_cow->locked_page,
714 async_extent->start +
715 async_extent->ram_size - 1,
716 async_extent->start +
717 async_extent->ram_size - 1,
718 &page_started, &nr_written, 0,
724 * if page_started, cow_file_range inserted an
725 * inline extent and took care of all the unlocking
726 * and IO for us. Otherwise, we need to submit
727 * all those pages down to the drive.
729 if (!page_started && !ret)
730 extent_write_locked_range(io_tree,
731 inode, async_extent->start,
732 async_extent->start +
733 async_extent->ram_size - 1,
737 unlock_page(async_cow->locked_page);
743 lock_extent(io_tree, async_extent->start,
744 async_extent->start + async_extent->ram_size - 1);
746 ret = btrfs_reserve_extent(root, async_extent->ram_size,
747 async_extent->compressed_size,
748 async_extent->compressed_size,
749 0, alloc_hint, &ins, 1, 1);
751 free_async_extent_pages(async_extent);
753 if (ret == -ENOSPC) {
754 unlock_extent(io_tree, async_extent->start,
755 async_extent->start +
756 async_extent->ram_size - 1);
759 * we need to redirty the pages if we decide to
760 * fallback to uncompressed IO, otherwise we
761 * will not submit these pages down to lower
764 extent_range_redirty_for_io(inode,
766 async_extent->start +
767 async_extent->ram_size - 1);
774 * here we're doing allocation and writeback of the
777 em = create_io_em(inode, async_extent->start,
778 async_extent->ram_size, /* len */
779 async_extent->start, /* orig_start */
780 ins.objectid, /* block_start */
781 ins.offset, /* block_len */
782 ins.offset, /* orig_block_len */
783 async_extent->ram_size, /* ram_bytes */
784 async_extent->compress_type,
785 BTRFS_ORDERED_COMPRESSED);
787 /* ret value is not necessary due to void function */
788 goto out_free_reserve;
791 ret = btrfs_add_ordered_extent_compress(inode,
794 async_extent->ram_size,
796 BTRFS_ORDERED_COMPRESSED,
797 async_extent->compress_type);
799 btrfs_drop_extent_cache(BTRFS_I(inode),
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
803 goto out_free_reserve;
805 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
808 * clear dirty, set writeback and unlock the pages.
810 extent_clear_unlock_delalloc(inode, async_extent->start,
811 async_extent->start +
812 async_extent->ram_size - 1,
813 async_extent->start +
814 async_extent->ram_size - 1,
815 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
816 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
818 ret = btrfs_submit_compressed_write(inode,
820 async_extent->ram_size,
822 ins.offset, async_extent->pages,
823 async_extent->nr_pages);
825 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
826 struct page *p = async_extent->pages[0];
827 const u64 start = async_extent->start;
828 const u64 end = start + async_extent->ram_size - 1;
830 p->mapping = inode->i_mapping;
831 tree->ops->writepage_end_io_hook(p, start, end,
834 extent_clear_unlock_delalloc(inode, start, end, end,
838 free_async_extent_pages(async_extent);
840 alloc_hint = ins.objectid + ins.offset;
846 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
847 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
849 extent_clear_unlock_delalloc(inode, async_extent->start,
850 async_extent->start +
851 async_extent->ram_size - 1,
852 async_extent->start +
853 async_extent->ram_size - 1,
854 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
855 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
856 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
857 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
859 free_async_extent_pages(async_extent);
864 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
868 struct extent_map *em;
871 read_lock(&em_tree->lock);
872 em = search_extent_mapping(em_tree, start, num_bytes);
875 * if block start isn't an actual block number then find the
876 * first block in this inode and use that as a hint. If that
877 * block is also bogus then just don't worry about it.
879 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
881 em = search_extent_mapping(em_tree, 0, 0);
882 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
883 alloc_hint = em->block_start;
887 alloc_hint = em->block_start;
891 read_unlock(&em_tree->lock);
897 * when extent_io.c finds a delayed allocation range in the file,
898 * the call backs end up in this code. The basic idea is to
899 * allocate extents on disk for the range, and create ordered data structs
900 * in ram to track those extents.
902 * locked_page is the page that writepage had locked already. We use
903 * it to make sure we don't do extra locks or unlocks.
905 * *page_started is set to one if we unlock locked_page and do everything
906 * required to start IO on it. It may be clean and already done with
909 static noinline int cow_file_range(struct inode *inode,
910 struct page *locked_page,
911 u64 start, u64 end, u64 delalloc_end,
912 int *page_started, unsigned long *nr_written,
913 int unlock, struct btrfs_dedupe_hash *hash)
915 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
916 struct btrfs_root *root = BTRFS_I(inode)->root;
919 unsigned long ram_size;
922 u64 blocksize = fs_info->sectorsize;
923 struct btrfs_key ins;
924 struct extent_map *em;
927 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
933 num_bytes = ALIGN(end - start + 1, blocksize);
934 num_bytes = max(blocksize, num_bytes);
935 disk_num_bytes = num_bytes;
937 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
940 /* lets try to make an inline extent */
941 ret = cow_file_range_inline(root, inode, start, end, 0,
942 BTRFS_COMPRESS_NONE, NULL);
944 extent_clear_unlock_delalloc(inode, start, end,
946 EXTENT_LOCKED | EXTENT_DELALLOC |
947 EXTENT_DEFRAG, PAGE_UNLOCK |
948 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
950 btrfs_free_reserved_data_space_noquota(inode, start,
952 *nr_written = *nr_written +
953 (end - start + PAGE_SIZE) / PAGE_SIZE;
956 } else if (ret < 0) {
961 BUG_ON(disk_num_bytes >
962 btrfs_super_total_bytes(fs_info->super_copy));
964 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
965 btrfs_drop_extent_cache(BTRFS_I(inode), start,
966 start + num_bytes - 1, 0);
968 while (disk_num_bytes > 0) {
971 cur_alloc_size = disk_num_bytes;
972 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
973 fs_info->sectorsize, 0, alloc_hint,
978 ram_size = ins.offset;
979 em = create_io_em(inode, start, ins.offset, /* len */
980 start, /* orig_start */
981 ins.objectid, /* block_start */
982 ins.offset, /* block_len */
983 ins.offset, /* orig_block_len */
984 ram_size, /* ram_bytes */
985 BTRFS_COMPRESS_NONE, /* compress_type */
986 BTRFS_ORDERED_REGULAR /* type */);
991 cur_alloc_size = ins.offset;
992 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
993 ram_size, cur_alloc_size, 0);
995 goto out_drop_extent_cache;
997 if (root->root_key.objectid ==
998 BTRFS_DATA_RELOC_TREE_OBJECTID) {
999 ret = btrfs_reloc_clone_csums(inode, start,
1002 goto out_drop_extent_cache;
1005 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1007 if (disk_num_bytes < cur_alloc_size)
1010 /* we're not doing compressed IO, don't unlock the first
1011 * page (which the caller expects to stay locked), don't
1012 * clear any dirty bits and don't set any writeback bits
1014 * Do set the Private2 bit so we know this page was properly
1015 * setup for writepage
1017 op = unlock ? PAGE_UNLOCK : 0;
1018 op |= PAGE_SET_PRIVATE2;
1020 extent_clear_unlock_delalloc(inode, start,
1021 start + ram_size - 1,
1022 delalloc_end, locked_page,
1023 EXTENT_LOCKED | EXTENT_DELALLOC,
1025 disk_num_bytes -= cur_alloc_size;
1026 num_bytes -= cur_alloc_size;
1027 alloc_hint = ins.objectid + ins.offset;
1028 start += cur_alloc_size;
1033 out_drop_extent_cache:
1034 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1036 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1037 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1039 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1041 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1042 EXTENT_DELALLOC | EXTENT_DEFRAG,
1043 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1044 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1049 * work queue call back to started compression on a file and pages
1051 static noinline void async_cow_start(struct btrfs_work *work)
1053 struct async_cow *async_cow;
1055 async_cow = container_of(work, struct async_cow, work);
1057 compress_file_range(async_cow->inode, async_cow->locked_page,
1058 async_cow->start, async_cow->end, async_cow,
1060 if (num_added == 0) {
1061 btrfs_add_delayed_iput(async_cow->inode);
1062 async_cow->inode = NULL;
1067 * work queue call back to submit previously compressed pages
1069 static noinline void async_cow_submit(struct btrfs_work *work)
1071 struct btrfs_fs_info *fs_info;
1072 struct async_cow *async_cow;
1073 struct btrfs_root *root;
1074 unsigned long nr_pages;
1076 async_cow = container_of(work, struct async_cow, work);
1078 root = async_cow->root;
1079 fs_info = root->fs_info;
1080 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1084 * atomic_sub_return implies a barrier for waitqueue_active
1086 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1088 waitqueue_active(&fs_info->async_submit_wait))
1089 wake_up(&fs_info->async_submit_wait);
1091 if (async_cow->inode)
1092 submit_compressed_extents(async_cow->inode, async_cow);
1095 static noinline void async_cow_free(struct btrfs_work *work)
1097 struct async_cow *async_cow;
1098 async_cow = container_of(work, struct async_cow, work);
1099 if (async_cow->inode)
1100 btrfs_add_delayed_iput(async_cow->inode);
1104 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1105 u64 start, u64 end, int *page_started,
1106 unsigned long *nr_written)
1108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1109 struct async_cow *async_cow;
1110 struct btrfs_root *root = BTRFS_I(inode)->root;
1111 unsigned long nr_pages;
1114 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1115 1, 0, NULL, GFP_NOFS);
1116 while (start < end) {
1117 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1118 BUG_ON(!async_cow); /* -ENOMEM */
1119 async_cow->inode = igrab(inode);
1120 async_cow->root = root;
1121 async_cow->locked_page = locked_page;
1122 async_cow->start = start;
1124 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1125 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1128 cur_end = min(end, start + SZ_512K - 1);
1130 async_cow->end = cur_end;
1131 INIT_LIST_HEAD(&async_cow->extents);
1133 btrfs_init_work(&async_cow->work,
1134 btrfs_delalloc_helper,
1135 async_cow_start, async_cow_submit,
1138 nr_pages = (cur_end - start + PAGE_SIZE) >>
1140 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1142 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1144 while (atomic_read(&fs_info->async_submit_draining) &&
1145 atomic_read(&fs_info->async_delalloc_pages)) {
1146 wait_event(fs_info->async_submit_wait,
1147 (atomic_read(&fs_info->async_delalloc_pages) ==
1151 *nr_written += nr_pages;
1152 start = cur_end + 1;
1158 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1159 u64 bytenr, u64 num_bytes)
1162 struct btrfs_ordered_sum *sums;
1165 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1166 bytenr + num_bytes - 1, &list, 0);
1167 if (ret == 0 && list_empty(&list))
1170 while (!list_empty(&list)) {
1171 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1172 list_del(&sums->list);
1179 * when nowcow writeback call back. This checks for snapshots or COW copies
1180 * of the extents that exist in the file, and COWs the file as required.
1182 * If no cow copies or snapshots exist, we write directly to the existing
1185 static noinline int run_delalloc_nocow(struct inode *inode,
1186 struct page *locked_page,
1187 u64 start, u64 end, int *page_started, int force,
1188 unsigned long *nr_written)
1190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1191 struct btrfs_root *root = BTRFS_I(inode)->root;
1192 struct extent_buffer *leaf;
1193 struct btrfs_path *path;
1194 struct btrfs_file_extent_item *fi;
1195 struct btrfs_key found_key;
1196 struct extent_map *em;
1211 u64 ino = btrfs_ino(BTRFS_I(inode));
1213 path = btrfs_alloc_path();
1215 extent_clear_unlock_delalloc(inode, start, end, end,
1217 EXTENT_LOCKED | EXTENT_DELALLOC |
1218 EXTENT_DO_ACCOUNTING |
1219 EXTENT_DEFRAG, PAGE_UNLOCK |
1221 PAGE_SET_WRITEBACK |
1222 PAGE_END_WRITEBACK);
1226 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1228 cow_start = (u64)-1;
1231 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1235 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1236 leaf = path->nodes[0];
1237 btrfs_item_key_to_cpu(leaf, &found_key,
1238 path->slots[0] - 1);
1239 if (found_key.objectid == ino &&
1240 found_key.type == BTRFS_EXTENT_DATA_KEY)
1245 leaf = path->nodes[0];
1246 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1247 ret = btrfs_next_leaf(root, path);
1252 leaf = path->nodes[0];
1258 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1260 if (found_key.objectid > ino)
1262 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1263 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1267 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1268 found_key.offset > end)
1271 if (found_key.offset > cur_offset) {
1272 extent_end = found_key.offset;
1277 fi = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_file_extent_item);
1279 extent_type = btrfs_file_extent_type(leaf, fi);
1281 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1282 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1283 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1284 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1285 extent_offset = btrfs_file_extent_offset(leaf, fi);
1286 extent_end = found_key.offset +
1287 btrfs_file_extent_num_bytes(leaf, fi);
1289 btrfs_file_extent_disk_num_bytes(leaf, fi);
1290 if (extent_end <= start) {
1294 if (disk_bytenr == 0)
1296 if (btrfs_file_extent_compression(leaf, fi) ||
1297 btrfs_file_extent_encryption(leaf, fi) ||
1298 btrfs_file_extent_other_encoding(leaf, fi))
1300 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1302 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1304 if (btrfs_cross_ref_exist(root, ino,
1306 extent_offset, disk_bytenr))
1308 disk_bytenr += extent_offset;
1309 disk_bytenr += cur_offset - found_key.offset;
1310 num_bytes = min(end + 1, extent_end) - cur_offset;
1312 * if there are pending snapshots for this root,
1313 * we fall into common COW way.
1316 err = btrfs_start_write_no_snapshoting(root);
1321 * force cow if csum exists in the range.
1322 * this ensure that csum for a given extent are
1323 * either valid or do not exist.
1325 if (csum_exist_in_range(fs_info, disk_bytenr,
1328 btrfs_end_write_no_snapshoting(root);
1331 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1333 btrfs_end_write_no_snapshoting(root);
1337 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1338 extent_end = found_key.offset +
1339 btrfs_file_extent_inline_len(leaf,
1340 path->slots[0], fi);
1341 extent_end = ALIGN(extent_end,
1342 fs_info->sectorsize);
1347 if (extent_end <= start) {
1349 if (!nolock && nocow)
1350 btrfs_end_write_no_snapshoting(root);
1352 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1356 if (cow_start == (u64)-1)
1357 cow_start = cur_offset;
1358 cur_offset = extent_end;
1359 if (cur_offset > end)
1365 btrfs_release_path(path);
1366 if (cow_start != (u64)-1) {
1367 ret = cow_file_range(inode, locked_page,
1368 cow_start, found_key.offset - 1,
1369 end, page_started, nr_written, 1,
1372 if (!nolock && nocow)
1373 btrfs_end_write_no_snapshoting(root);
1375 btrfs_dec_nocow_writers(fs_info,
1379 cow_start = (u64)-1;
1382 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1383 u64 orig_start = found_key.offset - extent_offset;
1385 em = create_io_em(inode, cur_offset, num_bytes,
1387 disk_bytenr, /* block_start */
1388 num_bytes, /* block_len */
1389 disk_num_bytes, /* orig_block_len */
1390 ram_bytes, BTRFS_COMPRESS_NONE,
1391 BTRFS_ORDERED_PREALLOC);
1393 if (!nolock && nocow)
1394 btrfs_end_write_no_snapshoting(root);
1396 btrfs_dec_nocow_writers(fs_info,
1401 free_extent_map(em);
1404 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1405 type = BTRFS_ORDERED_PREALLOC;
1407 type = BTRFS_ORDERED_NOCOW;
1410 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1411 num_bytes, num_bytes, type);
1413 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1414 BUG_ON(ret); /* -ENOMEM */
1416 if (root->root_key.objectid ==
1417 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1418 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1421 if (!nolock && nocow)
1422 btrfs_end_write_no_snapshoting(root);
1427 extent_clear_unlock_delalloc(inode, cur_offset,
1428 cur_offset + num_bytes - 1, end,
1429 locked_page, EXTENT_LOCKED |
1431 EXTENT_CLEAR_DATA_RESV,
1432 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1434 if (!nolock && nocow)
1435 btrfs_end_write_no_snapshoting(root);
1436 cur_offset = extent_end;
1437 if (cur_offset > end)
1440 btrfs_release_path(path);
1442 if (cur_offset <= end && cow_start == (u64)-1) {
1443 cow_start = cur_offset;
1447 if (cow_start != (u64)-1) {
1448 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1449 page_started, nr_written, 1, NULL);
1455 if (ret && cur_offset < end)
1456 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1457 locked_page, EXTENT_LOCKED |
1458 EXTENT_DELALLOC | EXTENT_DEFRAG |
1459 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1461 PAGE_SET_WRITEBACK |
1462 PAGE_END_WRITEBACK);
1463 btrfs_free_path(path);
1467 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1470 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1471 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1475 * @defrag_bytes is a hint value, no spinlock held here,
1476 * if is not zero, it means the file is defragging.
1477 * Force cow if given extent needs to be defragged.
1479 if (BTRFS_I(inode)->defrag_bytes &&
1480 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1481 EXTENT_DEFRAG, 0, NULL))
1488 * extent_io.c call back to do delayed allocation processing
1490 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1491 u64 start, u64 end, int *page_started,
1492 unsigned long *nr_written)
1495 int force_cow = need_force_cow(inode, start, end);
1497 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1498 ret = run_delalloc_nocow(inode, locked_page, start, end,
1499 page_started, 1, nr_written);
1500 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1501 ret = run_delalloc_nocow(inode, locked_page, start, end,
1502 page_started, 0, nr_written);
1503 } else if (!inode_need_compress(inode)) {
1504 ret = cow_file_range(inode, locked_page, start, end, end,
1505 page_started, nr_written, 1, NULL);
1507 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1508 &BTRFS_I(inode)->runtime_flags);
1509 ret = cow_file_range_async(inode, locked_page, start, end,
1510 page_started, nr_written);
1515 static void btrfs_split_extent_hook(struct inode *inode,
1516 struct extent_state *orig, u64 split)
1520 /* not delalloc, ignore it */
1521 if (!(orig->state & EXTENT_DELALLOC))
1524 size = orig->end - orig->start + 1;
1525 if (size > BTRFS_MAX_EXTENT_SIZE) {
1530 * See the explanation in btrfs_merge_extent_hook, the same
1531 * applies here, just in reverse.
1533 new_size = orig->end - split + 1;
1534 num_extents = count_max_extents(new_size);
1535 new_size = split - orig->start;
1536 num_extents += count_max_extents(new_size);
1537 if (count_max_extents(size) >= num_extents)
1541 spin_lock(&BTRFS_I(inode)->lock);
1542 BTRFS_I(inode)->outstanding_extents++;
1543 spin_unlock(&BTRFS_I(inode)->lock);
1547 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1548 * extents so we can keep track of new extents that are just merged onto old
1549 * extents, such as when we are doing sequential writes, so we can properly
1550 * account for the metadata space we'll need.
1552 static void btrfs_merge_extent_hook(struct inode *inode,
1553 struct extent_state *new,
1554 struct extent_state *other)
1556 u64 new_size, old_size;
1559 /* not delalloc, ignore it */
1560 if (!(other->state & EXTENT_DELALLOC))
1563 if (new->start > other->start)
1564 new_size = new->end - other->start + 1;
1566 new_size = other->end - new->start + 1;
1568 /* we're not bigger than the max, unreserve the space and go */
1569 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1570 spin_lock(&BTRFS_I(inode)->lock);
1571 BTRFS_I(inode)->outstanding_extents--;
1572 spin_unlock(&BTRFS_I(inode)->lock);
1577 * We have to add up either side to figure out how many extents were
1578 * accounted for before we merged into one big extent. If the number of
1579 * extents we accounted for is <= the amount we need for the new range
1580 * then we can return, otherwise drop. Think of it like this
1584 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1585 * need 2 outstanding extents, on one side we have 1 and the other side
1586 * we have 1 so they are == and we can return. But in this case
1588 * [MAX_SIZE+4k][MAX_SIZE+4k]
1590 * Each range on their own accounts for 2 extents, but merged together
1591 * they are only 3 extents worth of accounting, so we need to drop in
1594 old_size = other->end - other->start + 1;
1595 num_extents = count_max_extents(old_size);
1596 old_size = new->end - new->start + 1;
1597 num_extents += count_max_extents(old_size);
1598 if (count_max_extents(new_size) >= num_extents)
1601 spin_lock(&BTRFS_I(inode)->lock);
1602 BTRFS_I(inode)->outstanding_extents--;
1603 spin_unlock(&BTRFS_I(inode)->lock);
1606 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1607 struct inode *inode)
1609 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1611 spin_lock(&root->delalloc_lock);
1612 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1613 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1614 &root->delalloc_inodes);
1615 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1616 &BTRFS_I(inode)->runtime_flags);
1617 root->nr_delalloc_inodes++;
1618 if (root->nr_delalloc_inodes == 1) {
1619 spin_lock(&fs_info->delalloc_root_lock);
1620 BUG_ON(!list_empty(&root->delalloc_root));
1621 list_add_tail(&root->delalloc_root,
1622 &fs_info->delalloc_roots);
1623 spin_unlock(&fs_info->delalloc_root_lock);
1626 spin_unlock(&root->delalloc_lock);
1629 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1630 struct btrfs_inode *inode)
1632 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1634 spin_lock(&root->delalloc_lock);
1635 if (!list_empty(&inode->delalloc_inodes)) {
1636 list_del_init(&inode->delalloc_inodes);
1637 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1638 &inode->runtime_flags);
1639 root->nr_delalloc_inodes--;
1640 if (!root->nr_delalloc_inodes) {
1641 spin_lock(&fs_info->delalloc_root_lock);
1642 BUG_ON(list_empty(&root->delalloc_root));
1643 list_del_init(&root->delalloc_root);
1644 spin_unlock(&fs_info->delalloc_root_lock);
1647 spin_unlock(&root->delalloc_lock);
1651 * extent_io.c set_bit_hook, used to track delayed allocation
1652 * bytes in this file, and to maintain the list of inodes that
1653 * have pending delalloc work to be done.
1655 static void btrfs_set_bit_hook(struct inode *inode,
1656 struct extent_state *state, unsigned *bits)
1659 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1661 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1664 * set_bit and clear bit hooks normally require _irqsave/restore
1665 * but in this case, we are only testing for the DELALLOC
1666 * bit, which is only set or cleared with irqs on
1668 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1669 struct btrfs_root *root = BTRFS_I(inode)->root;
1670 u64 len = state->end + 1 - state->start;
1671 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1673 if (*bits & EXTENT_FIRST_DELALLOC) {
1674 *bits &= ~EXTENT_FIRST_DELALLOC;
1676 spin_lock(&BTRFS_I(inode)->lock);
1677 BTRFS_I(inode)->outstanding_extents++;
1678 spin_unlock(&BTRFS_I(inode)->lock);
1681 /* For sanity tests */
1682 if (btrfs_is_testing(fs_info))
1685 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1686 fs_info->delalloc_batch);
1687 spin_lock(&BTRFS_I(inode)->lock);
1688 BTRFS_I(inode)->delalloc_bytes += len;
1689 if (*bits & EXTENT_DEFRAG)
1690 BTRFS_I(inode)->defrag_bytes += len;
1691 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1692 &BTRFS_I(inode)->runtime_flags))
1693 btrfs_add_delalloc_inodes(root, inode);
1694 spin_unlock(&BTRFS_I(inode)->lock);
1699 * extent_io.c clear_bit_hook, see set_bit_hook for why
1701 static void btrfs_clear_bit_hook(struct btrfs_inode *inode,
1702 struct extent_state *state,
1705 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1706 u64 len = state->end + 1 - state->start;
1707 u32 num_extents = count_max_extents(len);
1709 spin_lock(&inode->lock);
1710 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1711 inode->defrag_bytes -= len;
1712 spin_unlock(&inode->lock);
1715 * set_bit and clear bit hooks normally require _irqsave/restore
1716 * but in this case, we are only testing for the DELALLOC
1717 * bit, which is only set or cleared with irqs on
1719 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1720 struct btrfs_root *root = inode->root;
1721 bool do_list = !btrfs_is_free_space_inode(inode);
1723 if (*bits & EXTENT_FIRST_DELALLOC) {
1724 *bits &= ~EXTENT_FIRST_DELALLOC;
1725 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1726 spin_lock(&inode->lock);
1727 inode->outstanding_extents -= num_extents;
1728 spin_unlock(&inode->lock);
1732 * We don't reserve metadata space for space cache inodes so we
1733 * don't need to call dellalloc_release_metadata if there is an
1736 if (*bits & EXTENT_DO_ACCOUNTING &&
1737 root != fs_info->tree_root)
1738 btrfs_delalloc_release_metadata(inode, len);
1740 /* For sanity tests. */
1741 if (btrfs_is_testing(fs_info))
1744 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1745 && do_list && !(state->state & EXTENT_NORESERVE)
1746 && (*bits & (EXTENT_DO_ACCOUNTING |
1747 EXTENT_CLEAR_DATA_RESV)))
1748 btrfs_free_reserved_data_space_noquota(
1752 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1753 fs_info->delalloc_batch);
1754 spin_lock(&inode->lock);
1755 inode->delalloc_bytes -= len;
1756 if (do_list && inode->delalloc_bytes == 0 &&
1757 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1758 &inode->runtime_flags))
1759 btrfs_del_delalloc_inode(root, inode);
1760 spin_unlock(&inode->lock);
1765 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1766 * we don't create bios that span stripes or chunks
1768 * return 1 if page cannot be merged to bio
1769 * return 0 if page can be merged to bio
1770 * return error otherwise
1772 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1773 size_t size, struct bio *bio,
1774 unsigned long bio_flags)
1776 struct inode *inode = page->mapping->host;
1777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1778 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1783 if (bio_flags & EXTENT_BIO_COMPRESSED)
1786 length = bio->bi_iter.bi_size;
1787 map_length = length;
1788 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1792 if (map_length < length + size)
1798 * in order to insert checksums into the metadata in large chunks,
1799 * we wait until bio submission time. All the pages in the bio are
1800 * checksummed and sums are attached onto the ordered extent record.
1802 * At IO completion time the cums attached on the ordered extent record
1803 * are inserted into the btree
1805 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1806 int mirror_num, unsigned long bio_flags,
1811 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1812 BUG_ON(ret); /* -ENOMEM */
1817 * in order to insert checksums into the metadata in large chunks,
1818 * we wait until bio submission time. All the pages in the bio are
1819 * checksummed and sums are attached onto the ordered extent record.
1821 * At IO completion time the cums attached on the ordered extent record
1822 * are inserted into the btree
1824 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1825 int mirror_num, unsigned long bio_flags,
1828 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1831 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1833 bio->bi_error = ret;
1840 * extent_io.c submission hook. This does the right thing for csum calculation
1841 * on write, or reading the csums from the tree before a read
1843 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1844 int mirror_num, unsigned long bio_flags,
1847 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1848 struct btrfs_root *root = BTRFS_I(inode)->root;
1849 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1852 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1854 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1856 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1857 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1859 if (bio_op(bio) != REQ_OP_WRITE) {
1860 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1864 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1865 ret = btrfs_submit_compressed_read(inode, bio,
1869 } else if (!skip_sum) {
1870 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1875 } else if (async && !skip_sum) {
1876 /* csum items have already been cloned */
1877 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1879 /* we're doing a write, do the async checksumming */
1880 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1881 bio_flags, bio_offset,
1882 __btrfs_submit_bio_start,
1883 __btrfs_submit_bio_done);
1885 } else if (!skip_sum) {
1886 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1892 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1896 bio->bi_error = ret;
1903 * given a list of ordered sums record them in the inode. This happens
1904 * at IO completion time based on sums calculated at bio submission time.
1906 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1907 struct inode *inode, struct list_head *list)
1909 struct btrfs_ordered_sum *sum;
1911 list_for_each_entry(sum, list, list) {
1912 trans->adding_csums = 1;
1913 btrfs_csum_file_blocks(trans,
1914 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1915 trans->adding_csums = 0;
1920 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1921 struct extent_state **cached_state, int dedupe)
1923 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1924 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1928 /* see btrfs_writepage_start_hook for details on why this is required */
1929 struct btrfs_writepage_fixup {
1931 struct btrfs_work work;
1934 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1936 struct btrfs_writepage_fixup *fixup;
1937 struct btrfs_ordered_extent *ordered;
1938 struct extent_state *cached_state = NULL;
1940 struct inode *inode;
1945 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1949 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1950 ClearPageChecked(page);
1954 inode = page->mapping->host;
1955 page_start = page_offset(page);
1956 page_end = page_offset(page) + PAGE_SIZE - 1;
1958 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
1961 /* already ordered? We're done */
1962 if (PagePrivate2(page))
1965 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
1968 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1969 page_end, &cached_state, GFP_NOFS);
1971 btrfs_start_ordered_extent(inode, ordered, 1);
1972 btrfs_put_ordered_extent(ordered);
1976 ret = btrfs_delalloc_reserve_space(inode, page_start,
1979 mapping_set_error(page->mapping, ret);
1980 end_extent_writepage(page, ret, page_start, page_end);
1981 ClearPageChecked(page);
1985 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
1987 ClearPageChecked(page);
1988 set_page_dirty(page);
1990 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1991 &cached_state, GFP_NOFS);
1999 * There are a few paths in the higher layers of the kernel that directly
2000 * set the page dirty bit without asking the filesystem if it is a
2001 * good idea. This causes problems because we want to make sure COW
2002 * properly happens and the data=ordered rules are followed.
2004 * In our case any range that doesn't have the ORDERED bit set
2005 * hasn't been properly setup for IO. We kick off an async process
2006 * to fix it up. The async helper will wait for ordered extents, set
2007 * the delalloc bit and make it safe to write the page.
2009 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2011 struct inode *inode = page->mapping->host;
2012 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2013 struct btrfs_writepage_fixup *fixup;
2015 /* this page is properly in the ordered list */
2016 if (TestClearPagePrivate2(page))
2019 if (PageChecked(page))
2022 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2026 SetPageChecked(page);
2028 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2029 btrfs_writepage_fixup_worker, NULL, NULL);
2031 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2035 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2036 struct inode *inode, u64 file_pos,
2037 u64 disk_bytenr, u64 disk_num_bytes,
2038 u64 num_bytes, u64 ram_bytes,
2039 u8 compression, u8 encryption,
2040 u16 other_encoding, int extent_type)
2042 struct btrfs_root *root = BTRFS_I(inode)->root;
2043 struct btrfs_file_extent_item *fi;
2044 struct btrfs_path *path;
2045 struct extent_buffer *leaf;
2046 struct btrfs_key ins;
2047 int extent_inserted = 0;
2050 path = btrfs_alloc_path();
2055 * we may be replacing one extent in the tree with another.
2056 * The new extent is pinned in the extent map, and we don't want
2057 * to drop it from the cache until it is completely in the btree.
2059 * So, tell btrfs_drop_extents to leave this extent in the cache.
2060 * the caller is expected to unpin it and allow it to be merged
2063 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2064 file_pos + num_bytes, NULL, 0,
2065 1, sizeof(*fi), &extent_inserted);
2069 if (!extent_inserted) {
2070 ins.objectid = btrfs_ino(BTRFS_I(inode));
2071 ins.offset = file_pos;
2072 ins.type = BTRFS_EXTENT_DATA_KEY;
2074 path->leave_spinning = 1;
2075 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2080 leaf = path->nodes[0];
2081 fi = btrfs_item_ptr(leaf, path->slots[0],
2082 struct btrfs_file_extent_item);
2083 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2084 btrfs_set_file_extent_type(leaf, fi, extent_type);
2085 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2086 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2087 btrfs_set_file_extent_offset(leaf, fi, 0);
2088 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2089 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2090 btrfs_set_file_extent_compression(leaf, fi, compression);
2091 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2092 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2094 btrfs_mark_buffer_dirty(leaf);
2095 btrfs_release_path(path);
2097 inode_add_bytes(inode, num_bytes);
2099 ins.objectid = disk_bytenr;
2100 ins.offset = disk_num_bytes;
2101 ins.type = BTRFS_EXTENT_ITEM_KEY;
2102 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2103 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
2105 * Release the reserved range from inode dirty range map, as it is
2106 * already moved into delayed_ref_head
2108 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2110 btrfs_free_path(path);
2115 /* snapshot-aware defrag */
2116 struct sa_defrag_extent_backref {
2117 struct rb_node node;
2118 struct old_sa_defrag_extent *old;
2127 struct old_sa_defrag_extent {
2128 struct list_head list;
2129 struct new_sa_defrag_extent *new;
2138 struct new_sa_defrag_extent {
2139 struct rb_root root;
2140 struct list_head head;
2141 struct btrfs_path *path;
2142 struct inode *inode;
2150 static int backref_comp(struct sa_defrag_extent_backref *b1,
2151 struct sa_defrag_extent_backref *b2)
2153 if (b1->root_id < b2->root_id)
2155 else if (b1->root_id > b2->root_id)
2158 if (b1->inum < b2->inum)
2160 else if (b1->inum > b2->inum)
2163 if (b1->file_pos < b2->file_pos)
2165 else if (b1->file_pos > b2->file_pos)
2169 * [------------------------------] ===> (a range of space)
2170 * |<--->| |<---->| =============> (fs/file tree A)
2171 * |<---------------------------->| ===> (fs/file tree B)
2173 * A range of space can refer to two file extents in one tree while
2174 * refer to only one file extent in another tree.
2176 * So we may process a disk offset more than one time(two extents in A)
2177 * and locate at the same extent(one extent in B), then insert two same
2178 * backrefs(both refer to the extent in B).
2183 static void backref_insert(struct rb_root *root,
2184 struct sa_defrag_extent_backref *backref)
2186 struct rb_node **p = &root->rb_node;
2187 struct rb_node *parent = NULL;
2188 struct sa_defrag_extent_backref *entry;
2193 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2195 ret = backref_comp(backref, entry);
2199 p = &(*p)->rb_right;
2202 rb_link_node(&backref->node, parent, p);
2203 rb_insert_color(&backref->node, root);
2207 * Note the backref might has changed, and in this case we just return 0.
2209 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2212 struct btrfs_file_extent_item *extent;
2213 struct old_sa_defrag_extent *old = ctx;
2214 struct new_sa_defrag_extent *new = old->new;
2215 struct btrfs_path *path = new->path;
2216 struct btrfs_key key;
2217 struct btrfs_root *root;
2218 struct sa_defrag_extent_backref *backref;
2219 struct extent_buffer *leaf;
2220 struct inode *inode = new->inode;
2221 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2227 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2228 inum == btrfs_ino(BTRFS_I(inode)))
2231 key.objectid = root_id;
2232 key.type = BTRFS_ROOT_ITEM_KEY;
2233 key.offset = (u64)-1;
2235 root = btrfs_read_fs_root_no_name(fs_info, &key);
2237 if (PTR_ERR(root) == -ENOENT)
2240 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2241 inum, offset, root_id);
2242 return PTR_ERR(root);
2245 key.objectid = inum;
2246 key.type = BTRFS_EXTENT_DATA_KEY;
2247 if (offset > (u64)-1 << 32)
2250 key.offset = offset;
2252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2253 if (WARN_ON(ret < 0))
2260 leaf = path->nodes[0];
2261 slot = path->slots[0];
2263 if (slot >= btrfs_header_nritems(leaf)) {
2264 ret = btrfs_next_leaf(root, path);
2267 } else if (ret > 0) {
2276 btrfs_item_key_to_cpu(leaf, &key, slot);
2278 if (key.objectid > inum)
2281 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2284 extent = btrfs_item_ptr(leaf, slot,
2285 struct btrfs_file_extent_item);
2287 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2291 * 'offset' refers to the exact key.offset,
2292 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2293 * (key.offset - extent_offset).
2295 if (key.offset != offset)
2298 extent_offset = btrfs_file_extent_offset(leaf, extent);
2299 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2301 if (extent_offset >= old->extent_offset + old->offset +
2302 old->len || extent_offset + num_bytes <=
2303 old->extent_offset + old->offset)
2308 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2314 backref->root_id = root_id;
2315 backref->inum = inum;
2316 backref->file_pos = offset;
2317 backref->num_bytes = num_bytes;
2318 backref->extent_offset = extent_offset;
2319 backref->generation = btrfs_file_extent_generation(leaf, extent);
2321 backref_insert(&new->root, backref);
2324 btrfs_release_path(path);
2329 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2330 struct new_sa_defrag_extent *new)
2332 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2333 struct old_sa_defrag_extent *old, *tmp;
2338 list_for_each_entry_safe(old, tmp, &new->head, list) {
2339 ret = iterate_inodes_from_logical(old->bytenr +
2340 old->extent_offset, fs_info,
2341 path, record_one_backref,
2343 if (ret < 0 && ret != -ENOENT)
2346 /* no backref to be processed for this extent */
2348 list_del(&old->list);
2353 if (list_empty(&new->head))
2359 static int relink_is_mergable(struct extent_buffer *leaf,
2360 struct btrfs_file_extent_item *fi,
2361 struct new_sa_defrag_extent *new)
2363 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2366 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2369 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2372 if (btrfs_file_extent_encryption(leaf, fi) ||
2373 btrfs_file_extent_other_encoding(leaf, fi))
2380 * Note the backref might has changed, and in this case we just return 0.
2382 static noinline int relink_extent_backref(struct btrfs_path *path,
2383 struct sa_defrag_extent_backref *prev,
2384 struct sa_defrag_extent_backref *backref)
2386 struct btrfs_file_extent_item *extent;
2387 struct btrfs_file_extent_item *item;
2388 struct btrfs_ordered_extent *ordered;
2389 struct btrfs_trans_handle *trans;
2390 struct btrfs_root *root;
2391 struct btrfs_key key;
2392 struct extent_buffer *leaf;
2393 struct old_sa_defrag_extent *old = backref->old;
2394 struct new_sa_defrag_extent *new = old->new;
2395 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2396 struct inode *inode;
2397 struct extent_state *cached = NULL;
2406 if (prev && prev->root_id == backref->root_id &&
2407 prev->inum == backref->inum &&
2408 prev->file_pos + prev->num_bytes == backref->file_pos)
2411 /* step 1: get root */
2412 key.objectid = backref->root_id;
2413 key.type = BTRFS_ROOT_ITEM_KEY;
2414 key.offset = (u64)-1;
2416 index = srcu_read_lock(&fs_info->subvol_srcu);
2418 root = btrfs_read_fs_root_no_name(fs_info, &key);
2420 srcu_read_unlock(&fs_info->subvol_srcu, index);
2421 if (PTR_ERR(root) == -ENOENT)
2423 return PTR_ERR(root);
2426 if (btrfs_root_readonly(root)) {
2427 srcu_read_unlock(&fs_info->subvol_srcu, index);
2431 /* step 2: get inode */
2432 key.objectid = backref->inum;
2433 key.type = BTRFS_INODE_ITEM_KEY;
2436 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2437 if (IS_ERR(inode)) {
2438 srcu_read_unlock(&fs_info->subvol_srcu, index);
2442 srcu_read_unlock(&fs_info->subvol_srcu, index);
2444 /* step 3: relink backref */
2445 lock_start = backref->file_pos;
2446 lock_end = backref->file_pos + backref->num_bytes - 1;
2447 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2450 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2452 btrfs_put_ordered_extent(ordered);
2456 trans = btrfs_join_transaction(root);
2457 if (IS_ERR(trans)) {
2458 ret = PTR_ERR(trans);
2462 key.objectid = backref->inum;
2463 key.type = BTRFS_EXTENT_DATA_KEY;
2464 key.offset = backref->file_pos;
2466 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2469 } else if (ret > 0) {
2474 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2475 struct btrfs_file_extent_item);
2477 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2478 backref->generation)
2481 btrfs_release_path(path);
2483 start = backref->file_pos;
2484 if (backref->extent_offset < old->extent_offset + old->offset)
2485 start += old->extent_offset + old->offset -
2486 backref->extent_offset;
2488 len = min(backref->extent_offset + backref->num_bytes,
2489 old->extent_offset + old->offset + old->len);
2490 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2492 ret = btrfs_drop_extents(trans, root, inode, start,
2497 key.objectid = btrfs_ino(BTRFS_I(inode));
2498 key.type = BTRFS_EXTENT_DATA_KEY;
2501 path->leave_spinning = 1;
2503 struct btrfs_file_extent_item *fi;
2505 struct btrfs_key found_key;
2507 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2512 leaf = path->nodes[0];
2513 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2515 fi = btrfs_item_ptr(leaf, path->slots[0],
2516 struct btrfs_file_extent_item);
2517 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2519 if (extent_len + found_key.offset == start &&
2520 relink_is_mergable(leaf, fi, new)) {
2521 btrfs_set_file_extent_num_bytes(leaf, fi,
2523 btrfs_mark_buffer_dirty(leaf);
2524 inode_add_bytes(inode, len);
2530 btrfs_release_path(path);
2535 ret = btrfs_insert_empty_item(trans, root, path, &key,
2538 btrfs_abort_transaction(trans, ret);
2542 leaf = path->nodes[0];
2543 item = btrfs_item_ptr(leaf, path->slots[0],
2544 struct btrfs_file_extent_item);
2545 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2546 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2547 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2548 btrfs_set_file_extent_num_bytes(leaf, item, len);
2549 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2550 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2551 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2552 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2553 btrfs_set_file_extent_encryption(leaf, item, 0);
2554 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2556 btrfs_mark_buffer_dirty(leaf);
2557 inode_add_bytes(inode, len);
2558 btrfs_release_path(path);
2560 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2562 backref->root_id, backref->inum,
2563 new->file_pos); /* start - extent_offset */
2565 btrfs_abort_transaction(trans, ret);
2571 btrfs_release_path(path);
2572 path->leave_spinning = 0;
2573 btrfs_end_transaction(trans);
2575 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2581 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2583 struct old_sa_defrag_extent *old, *tmp;
2588 list_for_each_entry_safe(old, tmp, &new->head, list) {
2594 static void relink_file_extents(struct new_sa_defrag_extent *new)
2596 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2597 struct btrfs_path *path;
2598 struct sa_defrag_extent_backref *backref;
2599 struct sa_defrag_extent_backref *prev = NULL;
2600 struct inode *inode;
2601 struct btrfs_root *root;
2602 struct rb_node *node;
2606 root = BTRFS_I(inode)->root;
2608 path = btrfs_alloc_path();
2612 if (!record_extent_backrefs(path, new)) {
2613 btrfs_free_path(path);
2616 btrfs_release_path(path);
2619 node = rb_first(&new->root);
2622 rb_erase(node, &new->root);
2624 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2626 ret = relink_extent_backref(path, prev, backref);
2639 btrfs_free_path(path);
2641 free_sa_defrag_extent(new);
2643 atomic_dec(&fs_info->defrag_running);
2644 wake_up(&fs_info->transaction_wait);
2647 static struct new_sa_defrag_extent *
2648 record_old_file_extents(struct inode *inode,
2649 struct btrfs_ordered_extent *ordered)
2651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2652 struct btrfs_root *root = BTRFS_I(inode)->root;
2653 struct btrfs_path *path;
2654 struct btrfs_key key;
2655 struct old_sa_defrag_extent *old;
2656 struct new_sa_defrag_extent *new;
2659 new = kmalloc(sizeof(*new), GFP_NOFS);
2664 new->file_pos = ordered->file_offset;
2665 new->len = ordered->len;
2666 new->bytenr = ordered->start;
2667 new->disk_len = ordered->disk_len;
2668 new->compress_type = ordered->compress_type;
2669 new->root = RB_ROOT;
2670 INIT_LIST_HEAD(&new->head);
2672 path = btrfs_alloc_path();
2676 key.objectid = btrfs_ino(BTRFS_I(inode));
2677 key.type = BTRFS_EXTENT_DATA_KEY;
2678 key.offset = new->file_pos;
2680 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2683 if (ret > 0 && path->slots[0] > 0)
2686 /* find out all the old extents for the file range */
2688 struct btrfs_file_extent_item *extent;
2689 struct extent_buffer *l;
2698 slot = path->slots[0];
2700 if (slot >= btrfs_header_nritems(l)) {
2701 ret = btrfs_next_leaf(root, path);
2709 btrfs_item_key_to_cpu(l, &key, slot);
2711 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2713 if (key.type != BTRFS_EXTENT_DATA_KEY)
2715 if (key.offset >= new->file_pos + new->len)
2718 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2720 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2721 if (key.offset + num_bytes < new->file_pos)
2724 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2728 extent_offset = btrfs_file_extent_offset(l, extent);
2730 old = kmalloc(sizeof(*old), GFP_NOFS);
2734 offset = max(new->file_pos, key.offset);
2735 end = min(new->file_pos + new->len, key.offset + num_bytes);
2737 old->bytenr = disk_bytenr;
2738 old->extent_offset = extent_offset;
2739 old->offset = offset - key.offset;
2740 old->len = end - offset;
2743 list_add_tail(&old->list, &new->head);
2749 btrfs_free_path(path);
2750 atomic_inc(&fs_info->defrag_running);
2755 btrfs_free_path(path);
2757 free_sa_defrag_extent(new);
2761 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2764 struct btrfs_block_group_cache *cache;
2766 cache = btrfs_lookup_block_group(fs_info, start);
2769 spin_lock(&cache->lock);
2770 cache->delalloc_bytes -= len;
2771 spin_unlock(&cache->lock);
2773 btrfs_put_block_group(cache);
2776 /* as ordered data IO finishes, this gets called so we can finish
2777 * an ordered extent if the range of bytes in the file it covers are
2780 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2782 struct inode *inode = ordered_extent->inode;
2783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2784 struct btrfs_root *root = BTRFS_I(inode)->root;
2785 struct btrfs_trans_handle *trans = NULL;
2786 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2787 struct extent_state *cached_state = NULL;
2788 struct new_sa_defrag_extent *new = NULL;
2789 int compress_type = 0;
2791 u64 logical_len = ordered_extent->len;
2793 bool truncated = false;
2795 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2797 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2802 btrfs_free_io_failure_record(BTRFS_I(inode),
2803 ordered_extent->file_offset,
2804 ordered_extent->file_offset +
2805 ordered_extent->len - 1);
2807 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2809 logical_len = ordered_extent->truncated_len;
2810 /* Truncated the entire extent, don't bother adding */
2815 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2816 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2819 * For mwrite(mmap + memset to write) case, we still reserve
2820 * space for NOCOW range.
2821 * As NOCOW won't cause a new delayed ref, just free the space
2823 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2824 ordered_extent->len);
2825 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2827 trans = btrfs_join_transaction_nolock(root);
2829 trans = btrfs_join_transaction(root);
2830 if (IS_ERR(trans)) {
2831 ret = PTR_ERR(trans);
2835 trans->block_rsv = &fs_info->delalloc_block_rsv;
2836 ret = btrfs_update_inode_fallback(trans, root, inode);
2837 if (ret) /* -ENOMEM or corruption */
2838 btrfs_abort_transaction(trans, ret);
2842 lock_extent_bits(io_tree, ordered_extent->file_offset,
2843 ordered_extent->file_offset + ordered_extent->len - 1,
2846 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2847 ordered_extent->file_offset + ordered_extent->len - 1,
2848 EXTENT_DEFRAG, 1, cached_state);
2850 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2851 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2852 /* the inode is shared */
2853 new = record_old_file_extents(inode, ordered_extent);
2855 clear_extent_bit(io_tree, ordered_extent->file_offset,
2856 ordered_extent->file_offset + ordered_extent->len - 1,
2857 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2861 trans = btrfs_join_transaction_nolock(root);
2863 trans = btrfs_join_transaction(root);
2864 if (IS_ERR(trans)) {
2865 ret = PTR_ERR(trans);
2870 trans->block_rsv = &fs_info->delalloc_block_rsv;
2872 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2873 compress_type = ordered_extent->compress_type;
2874 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2875 BUG_ON(compress_type);
2876 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2877 ordered_extent->file_offset,
2878 ordered_extent->file_offset +
2881 BUG_ON(root == fs_info->tree_root);
2882 ret = insert_reserved_file_extent(trans, inode,
2883 ordered_extent->file_offset,
2884 ordered_extent->start,
2885 ordered_extent->disk_len,
2886 logical_len, logical_len,
2887 compress_type, 0, 0,
2888 BTRFS_FILE_EXTENT_REG);
2890 btrfs_release_delalloc_bytes(fs_info,
2891 ordered_extent->start,
2892 ordered_extent->disk_len);
2894 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2895 ordered_extent->file_offset, ordered_extent->len,
2898 btrfs_abort_transaction(trans, ret);
2902 add_pending_csums(trans, inode, &ordered_extent->list);
2904 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2905 ret = btrfs_update_inode_fallback(trans, root, inode);
2906 if (ret) { /* -ENOMEM or corruption */
2907 btrfs_abort_transaction(trans, ret);
2912 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2913 ordered_extent->file_offset +
2914 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2916 if (root != fs_info->tree_root)
2917 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2918 ordered_extent->len);
2920 btrfs_end_transaction(trans);
2922 if (ret || truncated) {
2926 start = ordered_extent->file_offset + logical_len;
2928 start = ordered_extent->file_offset;
2929 end = ordered_extent->file_offset + ordered_extent->len - 1;
2930 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2932 /* Drop the cache for the part of the extent we didn't write. */
2933 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2936 * If the ordered extent had an IOERR or something else went
2937 * wrong we need to return the space for this ordered extent
2938 * back to the allocator. We only free the extent in the
2939 * truncated case if we didn't write out the extent at all.
2941 if ((ret || !logical_len) &&
2942 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2943 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2944 btrfs_free_reserved_extent(fs_info,
2945 ordered_extent->start,
2946 ordered_extent->disk_len, 1);
2951 * This needs to be done to make sure anybody waiting knows we are done
2952 * updating everything for this ordered extent.
2954 btrfs_remove_ordered_extent(inode, ordered_extent);
2956 /* for snapshot-aware defrag */
2959 free_sa_defrag_extent(new);
2960 atomic_dec(&fs_info->defrag_running);
2962 relink_file_extents(new);
2967 btrfs_put_ordered_extent(ordered_extent);
2968 /* once for the tree */
2969 btrfs_put_ordered_extent(ordered_extent);
2974 static void finish_ordered_fn(struct btrfs_work *work)
2976 struct btrfs_ordered_extent *ordered_extent;
2977 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2978 btrfs_finish_ordered_io(ordered_extent);
2981 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2982 struct extent_state *state, int uptodate)
2984 struct inode *inode = page->mapping->host;
2985 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2986 struct btrfs_ordered_extent *ordered_extent = NULL;
2987 struct btrfs_workqueue *wq;
2988 btrfs_work_func_t func;
2990 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2992 ClearPagePrivate2(page);
2993 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2994 end - start + 1, uptodate))
2997 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
2998 wq = fs_info->endio_freespace_worker;
2999 func = btrfs_freespace_write_helper;
3001 wq = fs_info->endio_write_workers;
3002 func = btrfs_endio_write_helper;
3005 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3007 btrfs_queue_work(wq, &ordered_extent->work);
3010 static int __readpage_endio_check(struct inode *inode,
3011 struct btrfs_io_bio *io_bio,
3012 int icsum, struct page *page,
3013 int pgoff, u64 start, size_t len)
3019 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3021 kaddr = kmap_atomic(page);
3022 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3023 btrfs_csum_final(csum, (u8 *)&csum);
3024 if (csum != csum_expected)
3027 kunmap_atomic(kaddr);
3030 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3031 io_bio->mirror_num);
3032 memset(kaddr + pgoff, 1, len);
3033 flush_dcache_page(page);
3034 kunmap_atomic(kaddr);
3035 if (csum_expected == 0)
3041 * when reads are done, we need to check csums to verify the data is correct
3042 * if there's a match, we allow the bio to finish. If not, the code in
3043 * extent_io.c will try to find good copies for us.
3045 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3046 u64 phy_offset, struct page *page,
3047 u64 start, u64 end, int mirror)
3049 size_t offset = start - page_offset(page);
3050 struct inode *inode = page->mapping->host;
3051 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3052 struct btrfs_root *root = BTRFS_I(inode)->root;
3054 if (PageChecked(page)) {
3055 ClearPageChecked(page);
3059 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3062 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3063 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3064 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3068 phy_offset >>= inode->i_sb->s_blocksize_bits;
3069 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3070 start, (size_t)(end - start + 1));
3073 void btrfs_add_delayed_iput(struct inode *inode)
3075 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3076 struct btrfs_inode *binode = BTRFS_I(inode);
3078 if (atomic_add_unless(&inode->i_count, -1, 1))
3081 spin_lock(&fs_info->delayed_iput_lock);
3082 if (binode->delayed_iput_count == 0) {
3083 ASSERT(list_empty(&binode->delayed_iput));
3084 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3086 binode->delayed_iput_count++;
3088 spin_unlock(&fs_info->delayed_iput_lock);
3091 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3094 spin_lock(&fs_info->delayed_iput_lock);
3095 while (!list_empty(&fs_info->delayed_iputs)) {
3096 struct btrfs_inode *inode;
3098 inode = list_first_entry(&fs_info->delayed_iputs,
3099 struct btrfs_inode, delayed_iput);
3100 if (inode->delayed_iput_count) {
3101 inode->delayed_iput_count--;
3102 list_move_tail(&inode->delayed_iput,
3103 &fs_info->delayed_iputs);
3105 list_del_init(&inode->delayed_iput);
3107 spin_unlock(&fs_info->delayed_iput_lock);
3108 iput(&inode->vfs_inode);
3109 spin_lock(&fs_info->delayed_iput_lock);
3111 spin_unlock(&fs_info->delayed_iput_lock);
3115 * This is called in transaction commit time. If there are no orphan
3116 * files in the subvolume, it removes orphan item and frees block_rsv
3119 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3120 struct btrfs_root *root)
3122 struct btrfs_fs_info *fs_info = root->fs_info;
3123 struct btrfs_block_rsv *block_rsv;
3126 if (atomic_read(&root->orphan_inodes) ||
3127 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3130 spin_lock(&root->orphan_lock);
3131 if (atomic_read(&root->orphan_inodes)) {
3132 spin_unlock(&root->orphan_lock);
3136 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3137 spin_unlock(&root->orphan_lock);
3141 block_rsv = root->orphan_block_rsv;
3142 root->orphan_block_rsv = NULL;
3143 spin_unlock(&root->orphan_lock);
3145 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3146 btrfs_root_refs(&root->root_item) > 0) {
3147 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3148 root->root_key.objectid);
3150 btrfs_abort_transaction(trans, ret);
3152 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3157 WARN_ON(block_rsv->size > 0);
3158 btrfs_free_block_rsv(fs_info, block_rsv);
3163 * This creates an orphan entry for the given inode in case something goes
3164 * wrong in the middle of an unlink/truncate.
3166 * NOTE: caller of this function should reserve 5 units of metadata for
3169 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3170 struct btrfs_inode *inode)
3172 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3173 struct btrfs_root *root = inode->root;
3174 struct btrfs_block_rsv *block_rsv = NULL;
3179 if (!root->orphan_block_rsv) {
3180 block_rsv = btrfs_alloc_block_rsv(fs_info,
3181 BTRFS_BLOCK_RSV_TEMP);
3186 spin_lock(&root->orphan_lock);
3187 if (!root->orphan_block_rsv) {
3188 root->orphan_block_rsv = block_rsv;
3189 } else if (block_rsv) {
3190 btrfs_free_block_rsv(fs_info, block_rsv);
3194 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3195 &inode->runtime_flags)) {
3198 * For proper ENOSPC handling, we should do orphan
3199 * cleanup when mounting. But this introduces backward
3200 * compatibility issue.
3202 if (!xchg(&root->orphan_item_inserted, 1))
3208 atomic_inc(&root->orphan_inodes);
3211 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3212 &inode->runtime_flags))
3214 spin_unlock(&root->orphan_lock);
3216 /* grab metadata reservation from transaction handle */
3218 ret = btrfs_orphan_reserve_metadata(trans, inode);
3221 atomic_dec(&root->orphan_inodes);
3222 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3223 &inode->runtime_flags);
3225 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3226 &inode->runtime_flags);
3231 /* insert an orphan item to track this unlinked/truncated file */
3233 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3235 atomic_dec(&root->orphan_inodes);
3237 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3238 &inode->runtime_flags);
3239 btrfs_orphan_release_metadata(inode);
3241 if (ret != -EEXIST) {
3242 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3243 &inode->runtime_flags);
3244 btrfs_abort_transaction(trans, ret);
3251 /* insert an orphan item to track subvolume contains orphan files */
3253 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3254 root->root_key.objectid);
3255 if (ret && ret != -EEXIST) {
3256 btrfs_abort_transaction(trans, ret);
3264 * We have done the truncate/delete so we can go ahead and remove the orphan
3265 * item for this particular inode.
3267 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3268 struct btrfs_inode *inode)
3270 struct btrfs_root *root = inode->root;
3271 int delete_item = 0;
3272 int release_rsv = 0;
3275 spin_lock(&root->orphan_lock);
3276 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3277 &inode->runtime_flags))
3280 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3281 &inode->runtime_flags))
3283 spin_unlock(&root->orphan_lock);
3286 atomic_dec(&root->orphan_inodes);
3288 ret = btrfs_del_orphan_item(trans, root,
3293 btrfs_orphan_release_metadata(inode);
3299 * this cleans up any orphans that may be left on the list from the last use
3302 int btrfs_orphan_cleanup(struct btrfs_root *root)
3304 struct btrfs_fs_info *fs_info = root->fs_info;
3305 struct btrfs_path *path;
3306 struct extent_buffer *leaf;
3307 struct btrfs_key key, found_key;
3308 struct btrfs_trans_handle *trans;
3309 struct inode *inode;
3310 u64 last_objectid = 0;
3311 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3313 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3316 path = btrfs_alloc_path();
3321 path->reada = READA_BACK;
3323 key.objectid = BTRFS_ORPHAN_OBJECTID;
3324 key.type = BTRFS_ORPHAN_ITEM_KEY;
3325 key.offset = (u64)-1;
3328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3333 * if ret == 0 means we found what we were searching for, which
3334 * is weird, but possible, so only screw with path if we didn't
3335 * find the key and see if we have stuff that matches
3339 if (path->slots[0] == 0)
3344 /* pull out the item */
3345 leaf = path->nodes[0];
3346 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3348 /* make sure the item matches what we want */
3349 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3351 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3354 /* release the path since we're done with it */
3355 btrfs_release_path(path);
3358 * this is where we are basically btrfs_lookup, without the
3359 * crossing root thing. we store the inode number in the
3360 * offset of the orphan item.
3363 if (found_key.offset == last_objectid) {
3365 "Error removing orphan entry, stopping orphan cleanup");
3370 last_objectid = found_key.offset;
3372 found_key.objectid = found_key.offset;
3373 found_key.type = BTRFS_INODE_ITEM_KEY;
3374 found_key.offset = 0;
3375 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3376 ret = PTR_ERR_OR_ZERO(inode);
3377 if (ret && ret != -ENOENT)
3380 if (ret == -ENOENT && root == fs_info->tree_root) {
3381 struct btrfs_root *dead_root;
3382 struct btrfs_fs_info *fs_info = root->fs_info;
3383 int is_dead_root = 0;
3386 * this is an orphan in the tree root. Currently these
3387 * could come from 2 sources:
3388 * a) a snapshot deletion in progress
3389 * b) a free space cache inode
3390 * We need to distinguish those two, as the snapshot
3391 * orphan must not get deleted.
3392 * find_dead_roots already ran before us, so if this
3393 * is a snapshot deletion, we should find the root
3394 * in the dead_roots list
3396 spin_lock(&fs_info->trans_lock);
3397 list_for_each_entry(dead_root, &fs_info->dead_roots,
3399 if (dead_root->root_key.objectid ==
3400 found_key.objectid) {
3405 spin_unlock(&fs_info->trans_lock);
3407 /* prevent this orphan from being found again */
3408 key.offset = found_key.objectid - 1;
3413 * Inode is already gone but the orphan item is still there,
3414 * kill the orphan item.
3416 if (ret == -ENOENT) {
3417 trans = btrfs_start_transaction(root, 1);
3418 if (IS_ERR(trans)) {
3419 ret = PTR_ERR(trans);
3422 btrfs_debug(fs_info, "auto deleting %Lu",
3423 found_key.objectid);
3424 ret = btrfs_del_orphan_item(trans, root,
3425 found_key.objectid);
3426 btrfs_end_transaction(trans);
3433 * add this inode to the orphan list so btrfs_orphan_del does
3434 * the proper thing when we hit it
3436 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3437 &BTRFS_I(inode)->runtime_flags);
3438 atomic_inc(&root->orphan_inodes);
3440 /* if we have links, this was a truncate, lets do that */
3441 if (inode->i_nlink) {
3442 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3448 /* 1 for the orphan item deletion. */
3449 trans = btrfs_start_transaction(root, 1);
3450 if (IS_ERR(trans)) {
3452 ret = PTR_ERR(trans);
3455 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3456 btrfs_end_transaction(trans);
3462 ret = btrfs_truncate(inode);
3464 btrfs_orphan_del(NULL, BTRFS_I(inode));
3469 /* this will do delete_inode and everything for us */
3474 /* release the path since we're done with it */
3475 btrfs_release_path(path);
3477 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3479 if (root->orphan_block_rsv)
3480 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3483 if (root->orphan_block_rsv ||
3484 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3485 trans = btrfs_join_transaction(root);
3487 btrfs_end_transaction(trans);
3491 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3493 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3497 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3498 btrfs_free_path(path);
3503 * very simple check to peek ahead in the leaf looking for xattrs. If we
3504 * don't find any xattrs, we know there can't be any acls.
3506 * slot is the slot the inode is in, objectid is the objectid of the inode
3508 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3509 int slot, u64 objectid,
3510 int *first_xattr_slot)
3512 u32 nritems = btrfs_header_nritems(leaf);
3513 struct btrfs_key found_key;
3514 static u64 xattr_access = 0;
3515 static u64 xattr_default = 0;
3518 if (!xattr_access) {
3519 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3520 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3521 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3522 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3526 *first_xattr_slot = -1;
3527 while (slot < nritems) {
3528 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3530 /* we found a different objectid, there must not be acls */
3531 if (found_key.objectid != objectid)
3534 /* we found an xattr, assume we've got an acl */
3535 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3536 if (*first_xattr_slot == -1)
3537 *first_xattr_slot = slot;
3538 if (found_key.offset == xattr_access ||
3539 found_key.offset == xattr_default)
3544 * we found a key greater than an xattr key, there can't
3545 * be any acls later on
3547 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3554 * it goes inode, inode backrefs, xattrs, extents,
3555 * so if there are a ton of hard links to an inode there can
3556 * be a lot of backrefs. Don't waste time searching too hard,
3557 * this is just an optimization
3562 /* we hit the end of the leaf before we found an xattr or
3563 * something larger than an xattr. We have to assume the inode
3566 if (*first_xattr_slot == -1)
3567 *first_xattr_slot = slot;
3572 * read an inode from the btree into the in-memory inode
3574 static int btrfs_read_locked_inode(struct inode *inode)
3576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3577 struct btrfs_path *path;
3578 struct extent_buffer *leaf;
3579 struct btrfs_inode_item *inode_item;
3580 struct btrfs_root *root = BTRFS_I(inode)->root;
3581 struct btrfs_key location;
3586 bool filled = false;
3587 int first_xattr_slot;
3589 ret = btrfs_fill_inode(inode, &rdev);
3593 path = btrfs_alloc_path();
3599 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3601 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3608 leaf = path->nodes[0];
3613 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3614 struct btrfs_inode_item);
3615 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3616 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3617 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3618 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3619 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3621 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3622 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3624 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3625 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3627 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3628 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3630 BTRFS_I(inode)->i_otime.tv_sec =
3631 btrfs_timespec_sec(leaf, &inode_item->otime);
3632 BTRFS_I(inode)->i_otime.tv_nsec =
3633 btrfs_timespec_nsec(leaf, &inode_item->otime);
3635 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3636 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3637 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3639 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3640 inode->i_generation = BTRFS_I(inode)->generation;
3642 rdev = btrfs_inode_rdev(leaf, inode_item);
3644 BTRFS_I(inode)->index_cnt = (u64)-1;
3645 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3649 * If we were modified in the current generation and evicted from memory
3650 * and then re-read we need to do a full sync since we don't have any
3651 * idea about which extents were modified before we were evicted from
3654 * This is required for both inode re-read from disk and delayed inode
3655 * in delayed_nodes_tree.
3657 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3658 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3659 &BTRFS_I(inode)->runtime_flags);
3662 * We don't persist the id of the transaction where an unlink operation
3663 * against the inode was last made. So here we assume the inode might
3664 * have been evicted, and therefore the exact value of last_unlink_trans
3665 * lost, and set it to last_trans to avoid metadata inconsistencies
3666 * between the inode and its parent if the inode is fsync'ed and the log
3667 * replayed. For example, in the scenario:
3670 * ln mydir/foo mydir/bar
3673 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3674 * xfs_io -c fsync mydir/foo
3676 * mount fs, triggers fsync log replay
3678 * We must make sure that when we fsync our inode foo we also log its
3679 * parent inode, otherwise after log replay the parent still has the
3680 * dentry with the "bar" name but our inode foo has a link count of 1
3681 * and doesn't have an inode ref with the name "bar" anymore.
3683 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3684 * but it guarantees correctness at the expense of occasional full
3685 * transaction commits on fsync if our inode is a directory, or if our
3686 * inode is not a directory, logging its parent unnecessarily.
3688 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3691 if (inode->i_nlink != 1 ||
3692 path->slots[0] >= btrfs_header_nritems(leaf))
3695 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3696 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3699 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3700 if (location.type == BTRFS_INODE_REF_KEY) {
3701 struct btrfs_inode_ref *ref;
3703 ref = (struct btrfs_inode_ref *)ptr;
3704 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3705 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3706 struct btrfs_inode_extref *extref;
3708 extref = (struct btrfs_inode_extref *)ptr;
3709 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3714 * try to precache a NULL acl entry for files that don't have
3715 * any xattrs or acls
3717 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3718 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3719 if (first_xattr_slot != -1) {
3720 path->slots[0] = first_xattr_slot;
3721 ret = btrfs_load_inode_props(inode, path);
3724 "error loading props for ino %llu (root %llu): %d",
3725 btrfs_ino(BTRFS_I(inode)),
3726 root->root_key.objectid, ret);
3728 btrfs_free_path(path);
3731 cache_no_acl(inode);
3733 switch (inode->i_mode & S_IFMT) {
3735 inode->i_mapping->a_ops = &btrfs_aops;
3736 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3737 inode->i_fop = &btrfs_file_operations;
3738 inode->i_op = &btrfs_file_inode_operations;
3741 inode->i_fop = &btrfs_dir_file_operations;
3742 inode->i_op = &btrfs_dir_inode_operations;
3745 inode->i_op = &btrfs_symlink_inode_operations;
3746 inode_nohighmem(inode);
3747 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3750 inode->i_op = &btrfs_special_inode_operations;
3751 init_special_inode(inode, inode->i_mode, rdev);
3755 btrfs_update_iflags(inode);
3759 btrfs_free_path(path);
3760 make_bad_inode(inode);
3765 * given a leaf and an inode, copy the inode fields into the leaf
3767 static void fill_inode_item(struct btrfs_trans_handle *trans,
3768 struct extent_buffer *leaf,
3769 struct btrfs_inode_item *item,
3770 struct inode *inode)
3772 struct btrfs_map_token token;
3774 btrfs_init_map_token(&token);
3776 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3777 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3778 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3780 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3781 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3783 btrfs_set_token_timespec_sec(leaf, &item->atime,
3784 inode->i_atime.tv_sec, &token);
3785 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3786 inode->i_atime.tv_nsec, &token);
3788 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3789 inode->i_mtime.tv_sec, &token);
3790 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3791 inode->i_mtime.tv_nsec, &token);
3793 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3794 inode->i_ctime.tv_sec, &token);
3795 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3796 inode->i_ctime.tv_nsec, &token);
3798 btrfs_set_token_timespec_sec(leaf, &item->otime,
3799 BTRFS_I(inode)->i_otime.tv_sec, &token);
3800 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3801 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3803 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3805 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3807 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3808 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3809 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3810 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3811 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3815 * copy everything in the in-memory inode into the btree.
3817 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3818 struct btrfs_root *root, struct inode *inode)
3820 struct btrfs_inode_item *inode_item;
3821 struct btrfs_path *path;
3822 struct extent_buffer *leaf;
3825 path = btrfs_alloc_path();
3829 path->leave_spinning = 1;
3830 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3838 leaf = path->nodes[0];
3839 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3840 struct btrfs_inode_item);
3842 fill_inode_item(trans, leaf, inode_item, inode);
3843 btrfs_mark_buffer_dirty(leaf);
3844 btrfs_set_inode_last_trans(trans, inode);
3847 btrfs_free_path(path);
3852 * copy everything in the in-memory inode into the btree.
3854 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3855 struct btrfs_root *root, struct inode *inode)
3857 struct btrfs_fs_info *fs_info = root->fs_info;
3861 * If the inode is a free space inode, we can deadlock during commit
3862 * if we put it into the delayed code.
3864 * The data relocation inode should also be directly updated
3867 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3868 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3869 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3870 btrfs_update_root_times(trans, root);
3872 ret = btrfs_delayed_update_inode(trans, root, inode);
3874 btrfs_set_inode_last_trans(trans, inode);
3878 return btrfs_update_inode_item(trans, root, inode);
3881 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *root,
3883 struct inode *inode)
3887 ret = btrfs_update_inode(trans, root, inode);
3889 return btrfs_update_inode_item(trans, root, inode);
3894 * unlink helper that gets used here in inode.c and in the tree logging
3895 * recovery code. It remove a link in a directory with a given name, and
3896 * also drops the back refs in the inode to the directory
3898 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3899 struct btrfs_root *root,
3900 struct btrfs_inode *dir,
3901 struct btrfs_inode *inode,
3902 const char *name, int name_len)
3904 struct btrfs_fs_info *fs_info = root->fs_info;
3905 struct btrfs_path *path;
3907 struct extent_buffer *leaf;
3908 struct btrfs_dir_item *di;
3909 struct btrfs_key key;
3911 u64 ino = btrfs_ino(inode);
3912 u64 dir_ino = btrfs_ino(dir);
3914 path = btrfs_alloc_path();
3920 path->leave_spinning = 1;
3921 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3922 name, name_len, -1);
3931 leaf = path->nodes[0];
3932 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3933 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3936 btrfs_release_path(path);
3939 * If we don't have dir index, we have to get it by looking up
3940 * the inode ref, since we get the inode ref, remove it directly,
3941 * it is unnecessary to do delayed deletion.
3943 * But if we have dir index, needn't search inode ref to get it.
3944 * Since the inode ref is close to the inode item, it is better
3945 * that we delay to delete it, and just do this deletion when
3946 * we update the inode item.
3948 if (inode->dir_index) {
3949 ret = btrfs_delayed_delete_inode_ref(inode);
3951 index = inode->dir_index;
3956 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3960 "failed to delete reference to %.*s, inode %llu parent %llu",
3961 name_len, name, ino, dir_ino);
3962 btrfs_abort_transaction(trans, ret);
3966 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
3968 btrfs_abort_transaction(trans, ret);
3972 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3974 if (ret != 0 && ret != -ENOENT) {
3975 btrfs_abort_transaction(trans, ret);
3979 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3984 btrfs_abort_transaction(trans, ret);
3986 btrfs_free_path(path);
3990 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3991 inode_inc_iversion(&inode->vfs_inode);
3992 inode_inc_iversion(&dir->vfs_inode);
3993 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3994 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3995 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4000 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4001 struct btrfs_root *root,
4002 struct btrfs_inode *dir, struct btrfs_inode *inode,
4003 const char *name, int name_len)
4006 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4008 drop_nlink(&inode->vfs_inode);
4009 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4015 * helper to start transaction for unlink and rmdir.
4017 * unlink and rmdir are special in btrfs, they do not always free space, so
4018 * if we cannot make our reservations the normal way try and see if there is
4019 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4020 * allow the unlink to occur.
4022 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4024 struct btrfs_root *root = BTRFS_I(dir)->root;
4027 * 1 for the possible orphan item
4028 * 1 for the dir item
4029 * 1 for the dir index
4030 * 1 for the inode ref
4033 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4036 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4038 struct btrfs_root *root = BTRFS_I(dir)->root;
4039 struct btrfs_trans_handle *trans;
4040 struct inode *inode = d_inode(dentry);
4043 trans = __unlink_start_trans(dir);
4045 return PTR_ERR(trans);
4047 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4050 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4051 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4052 dentry->d_name.len);
4056 if (inode->i_nlink == 0) {
4057 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4063 btrfs_end_transaction(trans);
4064 btrfs_btree_balance_dirty(root->fs_info);
4068 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4069 struct btrfs_root *root,
4070 struct inode *dir, u64 objectid,
4071 const char *name, int name_len)
4073 struct btrfs_fs_info *fs_info = root->fs_info;
4074 struct btrfs_path *path;
4075 struct extent_buffer *leaf;
4076 struct btrfs_dir_item *di;
4077 struct btrfs_key key;
4080 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4082 path = btrfs_alloc_path();
4086 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4087 name, name_len, -1);
4088 if (IS_ERR_OR_NULL(di)) {
4096 leaf = path->nodes[0];
4097 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4098 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4099 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4101 btrfs_abort_transaction(trans, ret);
4104 btrfs_release_path(path);
4106 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4107 root->root_key.objectid, dir_ino,
4108 &index, name, name_len);
4110 if (ret != -ENOENT) {
4111 btrfs_abort_transaction(trans, ret);
4114 di = btrfs_search_dir_index_item(root, path, dir_ino,
4116 if (IS_ERR_OR_NULL(di)) {
4121 btrfs_abort_transaction(trans, ret);
4125 leaf = path->nodes[0];
4126 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4127 btrfs_release_path(path);
4130 btrfs_release_path(path);
4132 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4134 btrfs_abort_transaction(trans, ret);
4138 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4139 inode_inc_iversion(dir);
4140 dir->i_mtime = dir->i_ctime = current_time(dir);
4141 ret = btrfs_update_inode_fallback(trans, root, dir);
4143 btrfs_abort_transaction(trans, ret);
4145 btrfs_free_path(path);
4149 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4151 struct inode *inode = d_inode(dentry);
4153 struct btrfs_root *root = BTRFS_I(dir)->root;
4154 struct btrfs_trans_handle *trans;
4155 u64 last_unlink_trans;
4157 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4159 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4162 trans = __unlink_start_trans(dir);
4164 return PTR_ERR(trans);
4166 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4167 err = btrfs_unlink_subvol(trans, root, dir,
4168 BTRFS_I(inode)->location.objectid,
4169 dentry->d_name.name,
4170 dentry->d_name.len);
4174 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4178 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4180 /* now the directory is empty */
4181 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4182 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4183 dentry->d_name.len);
4185 btrfs_i_size_write(BTRFS_I(inode), 0);
4187 * Propagate the last_unlink_trans value of the deleted dir to
4188 * its parent directory. This is to prevent an unrecoverable
4189 * log tree in the case we do something like this:
4191 * 2) create snapshot under dir foo
4192 * 3) delete the snapshot
4195 * 6) fsync foo or some file inside foo
4197 if (last_unlink_trans >= trans->transid)
4198 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4201 btrfs_end_transaction(trans);
4202 btrfs_btree_balance_dirty(root->fs_info);
4207 static int truncate_space_check(struct btrfs_trans_handle *trans,
4208 struct btrfs_root *root,
4211 struct btrfs_fs_info *fs_info = root->fs_info;
4215 * This is only used to apply pressure to the enospc system, we don't
4216 * intend to use this reservation at all.
4218 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4219 bytes_deleted *= fs_info->nodesize;
4220 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4221 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4223 trace_btrfs_space_reservation(fs_info, "transaction",
4226 trans->bytes_reserved += bytes_deleted;
4232 static int truncate_inline_extent(struct inode *inode,
4233 struct btrfs_path *path,
4234 struct btrfs_key *found_key,
4238 struct extent_buffer *leaf = path->nodes[0];
4239 int slot = path->slots[0];
4240 struct btrfs_file_extent_item *fi;
4241 u32 size = (u32)(new_size - found_key->offset);
4242 struct btrfs_root *root = BTRFS_I(inode)->root;
4244 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4246 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4247 loff_t offset = new_size;
4248 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4251 * Zero out the remaining of the last page of our inline extent,
4252 * instead of directly truncating our inline extent here - that
4253 * would be much more complex (decompressing all the data, then
4254 * compressing the truncated data, which might be bigger than
4255 * the size of the inline extent, resize the extent, etc).
4256 * We release the path because to get the page we might need to
4257 * read the extent item from disk (data not in the page cache).
4259 btrfs_release_path(path);
4260 return btrfs_truncate_block(inode, offset, page_end - offset,
4264 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4265 size = btrfs_file_extent_calc_inline_size(size);
4266 btrfs_truncate_item(root->fs_info, path, size, 1);
4268 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4269 inode_sub_bytes(inode, item_end + 1 - new_size);
4275 * this can truncate away extent items, csum items and directory items.
4276 * It starts at a high offset and removes keys until it can't find
4277 * any higher than new_size
4279 * csum items that cross the new i_size are truncated to the new size
4282 * min_type is the minimum key type to truncate down to. If set to 0, this
4283 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4285 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4286 struct btrfs_root *root,
4287 struct inode *inode,
4288 u64 new_size, u32 min_type)
4290 struct btrfs_fs_info *fs_info = root->fs_info;
4291 struct btrfs_path *path;
4292 struct extent_buffer *leaf;
4293 struct btrfs_file_extent_item *fi;
4294 struct btrfs_key key;
4295 struct btrfs_key found_key;
4296 u64 extent_start = 0;
4297 u64 extent_num_bytes = 0;
4298 u64 extent_offset = 0;
4300 u64 last_size = new_size;
4301 u32 found_type = (u8)-1;
4304 int pending_del_nr = 0;
4305 int pending_del_slot = 0;
4306 int extent_type = -1;
4309 u64 ino = btrfs_ino(BTRFS_I(inode));
4310 u64 bytes_deleted = 0;
4312 bool should_throttle = 0;
4313 bool should_end = 0;
4315 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4318 * for non-free space inodes and ref cows, we want to back off from
4321 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4322 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4325 path = btrfs_alloc_path();
4328 path->reada = READA_BACK;
4331 * We want to drop from the next block forward in case this new size is
4332 * not block aligned since we will be keeping the last block of the
4333 * extent just the way it is.
4335 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4336 root == fs_info->tree_root)
4337 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4338 fs_info->sectorsize),
4342 * This function is also used to drop the items in the log tree before
4343 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4344 * it is used to drop the loged items. So we shouldn't kill the delayed
4347 if (min_type == 0 && root == BTRFS_I(inode)->root)
4348 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4351 key.offset = (u64)-1;
4356 * with a 16K leaf size and 128MB extents, you can actually queue
4357 * up a huge file in a single leaf. Most of the time that
4358 * bytes_deleted is > 0, it will be huge by the time we get here
4360 if (be_nice && bytes_deleted > SZ_32M) {
4361 if (btrfs_should_end_transaction(trans)) {
4368 path->leave_spinning = 1;
4369 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4376 /* there are no items in the tree for us to truncate, we're
4379 if (path->slots[0] == 0)
4386 leaf = path->nodes[0];
4387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4388 found_type = found_key.type;
4390 if (found_key.objectid != ino)
4393 if (found_type < min_type)
4396 item_end = found_key.offset;
4397 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4398 fi = btrfs_item_ptr(leaf, path->slots[0],
4399 struct btrfs_file_extent_item);
4400 extent_type = btrfs_file_extent_type(leaf, fi);
4401 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4403 btrfs_file_extent_num_bytes(leaf, fi);
4404 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4405 item_end += btrfs_file_extent_inline_len(leaf,
4406 path->slots[0], fi);
4410 if (found_type > min_type) {
4413 if (item_end < new_size)
4415 if (found_key.offset >= new_size)
4421 /* FIXME, shrink the extent if the ref count is only 1 */
4422 if (found_type != BTRFS_EXTENT_DATA_KEY)
4426 last_size = found_key.offset;
4428 last_size = new_size;
4430 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4432 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4434 u64 orig_num_bytes =
4435 btrfs_file_extent_num_bytes(leaf, fi);
4436 extent_num_bytes = ALIGN(new_size -
4438 fs_info->sectorsize);
4439 btrfs_set_file_extent_num_bytes(leaf, fi,
4441 num_dec = (orig_num_bytes -
4443 if (test_bit(BTRFS_ROOT_REF_COWS,
4446 inode_sub_bytes(inode, num_dec);
4447 btrfs_mark_buffer_dirty(leaf);
4450 btrfs_file_extent_disk_num_bytes(leaf,
4452 extent_offset = found_key.offset -
4453 btrfs_file_extent_offset(leaf, fi);
4455 /* FIXME blocksize != 4096 */
4456 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4457 if (extent_start != 0) {
4459 if (test_bit(BTRFS_ROOT_REF_COWS,
4461 inode_sub_bytes(inode, num_dec);
4464 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4466 * we can't truncate inline items that have had
4470 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4471 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4474 * Need to release path in order to truncate a
4475 * compressed extent. So delete any accumulated
4476 * extent items so far.
4478 if (btrfs_file_extent_compression(leaf, fi) !=
4479 BTRFS_COMPRESS_NONE && pending_del_nr) {
4480 err = btrfs_del_items(trans, root, path,
4484 btrfs_abort_transaction(trans,
4491 err = truncate_inline_extent(inode, path,
4496 btrfs_abort_transaction(trans, err);
4499 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4501 inode_sub_bytes(inode, item_end + 1 - new_size);
4506 if (!pending_del_nr) {
4507 /* no pending yet, add ourselves */
4508 pending_del_slot = path->slots[0];
4510 } else if (pending_del_nr &&
4511 path->slots[0] + 1 == pending_del_slot) {
4512 /* hop on the pending chunk */
4514 pending_del_slot = path->slots[0];
4521 should_throttle = 0;
4524 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4525 root == fs_info->tree_root)) {
4526 btrfs_set_path_blocking(path);
4527 bytes_deleted += extent_num_bytes;
4528 ret = btrfs_free_extent(trans, fs_info, extent_start,
4529 extent_num_bytes, 0,
4530 btrfs_header_owner(leaf),
4531 ino, extent_offset);
4533 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4534 btrfs_async_run_delayed_refs(fs_info,
4535 trans->delayed_ref_updates * 2,
4538 if (truncate_space_check(trans, root,
4539 extent_num_bytes)) {
4542 if (btrfs_should_throttle_delayed_refs(trans,
4544 should_throttle = 1;
4548 if (found_type == BTRFS_INODE_ITEM_KEY)
4551 if (path->slots[0] == 0 ||
4552 path->slots[0] != pending_del_slot ||
4553 should_throttle || should_end) {
4554 if (pending_del_nr) {
4555 ret = btrfs_del_items(trans, root, path,
4559 btrfs_abort_transaction(trans, ret);
4564 btrfs_release_path(path);
4565 if (should_throttle) {
4566 unsigned long updates = trans->delayed_ref_updates;
4568 trans->delayed_ref_updates = 0;
4569 ret = btrfs_run_delayed_refs(trans,
4577 * if we failed to refill our space rsv, bail out
4578 * and let the transaction restart
4590 if (pending_del_nr) {
4591 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4594 btrfs_abort_transaction(trans, ret);
4597 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4598 ASSERT(last_size >= new_size);
4599 if (!err && last_size > new_size)
4600 last_size = new_size;
4601 btrfs_ordered_update_i_size(inode, last_size, NULL);
4604 btrfs_free_path(path);
4607 /* only inline file may have last_size != new_size */
4608 if (new_size >= fs_info->sectorsize ||
4609 new_size > fs_info->max_inline)
4610 ASSERT(last_size == new_size);
4613 if (be_nice && bytes_deleted > SZ_32M) {
4614 unsigned long updates = trans->delayed_ref_updates;
4616 trans->delayed_ref_updates = 0;
4617 ret = btrfs_run_delayed_refs(trans, fs_info,
4627 * btrfs_truncate_block - read, zero a chunk and write a block
4628 * @inode - inode that we're zeroing
4629 * @from - the offset to start zeroing
4630 * @len - the length to zero, 0 to zero the entire range respective to the
4632 * @front - zero up to the offset instead of from the offset on
4634 * This will find the block for the "from" offset and cow the block and zero the
4635 * part we want to zero. This is used with truncate and hole punching.
4637 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4640 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4641 struct address_space *mapping = inode->i_mapping;
4642 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4643 struct btrfs_ordered_extent *ordered;
4644 struct extent_state *cached_state = NULL;
4646 u32 blocksize = fs_info->sectorsize;
4647 pgoff_t index = from >> PAGE_SHIFT;
4648 unsigned offset = from & (blocksize - 1);
4650 gfp_t mask = btrfs_alloc_write_mask(mapping);
4655 if ((offset & (blocksize - 1)) == 0 &&
4656 (!len || ((len & (blocksize - 1)) == 0)))
4659 ret = btrfs_delalloc_reserve_space(inode,
4660 round_down(from, blocksize), blocksize);
4665 page = find_or_create_page(mapping, index, mask);
4667 btrfs_delalloc_release_space(inode,
4668 round_down(from, blocksize),
4674 block_start = round_down(from, blocksize);
4675 block_end = block_start + blocksize - 1;
4677 if (!PageUptodate(page)) {
4678 ret = btrfs_readpage(NULL, page);
4680 if (page->mapping != mapping) {
4685 if (!PageUptodate(page)) {
4690 wait_on_page_writeback(page);
4692 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4693 set_page_extent_mapped(page);
4695 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4697 unlock_extent_cached(io_tree, block_start, block_end,
4698 &cached_state, GFP_NOFS);
4701 btrfs_start_ordered_extent(inode, ordered, 1);
4702 btrfs_put_ordered_extent(ordered);
4706 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4707 EXTENT_DIRTY | EXTENT_DELALLOC |
4708 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4709 0, 0, &cached_state, GFP_NOFS);
4711 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4714 unlock_extent_cached(io_tree, block_start, block_end,
4715 &cached_state, GFP_NOFS);
4719 if (offset != blocksize) {
4721 len = blocksize - offset;
4724 memset(kaddr + (block_start - page_offset(page)),
4727 memset(kaddr + (block_start - page_offset(page)) + offset,
4729 flush_dcache_page(page);
4732 ClearPageChecked(page);
4733 set_page_dirty(page);
4734 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4739 btrfs_delalloc_release_space(inode, block_start,
4747 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4748 u64 offset, u64 len)
4750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4751 struct btrfs_trans_handle *trans;
4755 * Still need to make sure the inode looks like it's been updated so
4756 * that any holes get logged if we fsync.
4758 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4759 BTRFS_I(inode)->last_trans = fs_info->generation;
4760 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4761 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4766 * 1 - for the one we're dropping
4767 * 1 - for the one we're adding
4768 * 1 - for updating the inode.
4770 trans = btrfs_start_transaction(root, 3);
4772 return PTR_ERR(trans);
4774 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4776 btrfs_abort_transaction(trans, ret);
4777 btrfs_end_transaction(trans);
4781 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4782 offset, 0, 0, len, 0, len, 0, 0, 0);
4784 btrfs_abort_transaction(trans, ret);
4786 btrfs_update_inode(trans, root, inode);
4787 btrfs_end_transaction(trans);
4792 * This function puts in dummy file extents for the area we're creating a hole
4793 * for. So if we are truncating this file to a larger size we need to insert
4794 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4795 * the range between oldsize and size
4797 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4800 struct btrfs_root *root = BTRFS_I(inode)->root;
4801 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4802 struct extent_map *em = NULL;
4803 struct extent_state *cached_state = NULL;
4804 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4805 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4806 u64 block_end = ALIGN(size, fs_info->sectorsize);
4813 * If our size started in the middle of a block we need to zero out the
4814 * rest of the block before we expand the i_size, otherwise we could
4815 * expose stale data.
4817 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4821 if (size <= hole_start)
4825 struct btrfs_ordered_extent *ordered;
4827 lock_extent_bits(io_tree, hole_start, block_end - 1,
4829 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4830 block_end - hole_start);
4833 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4834 &cached_state, GFP_NOFS);
4835 btrfs_start_ordered_extent(inode, ordered, 1);
4836 btrfs_put_ordered_extent(ordered);
4839 cur_offset = hole_start;
4841 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4842 block_end - cur_offset, 0);
4848 last_byte = min(extent_map_end(em), block_end);
4849 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4850 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4851 struct extent_map *hole_em;
4852 hole_size = last_byte - cur_offset;
4854 err = maybe_insert_hole(root, inode, cur_offset,
4858 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4859 cur_offset + hole_size - 1, 0);
4860 hole_em = alloc_extent_map();
4862 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4863 &BTRFS_I(inode)->runtime_flags);
4866 hole_em->start = cur_offset;
4867 hole_em->len = hole_size;
4868 hole_em->orig_start = cur_offset;
4870 hole_em->block_start = EXTENT_MAP_HOLE;
4871 hole_em->block_len = 0;
4872 hole_em->orig_block_len = 0;
4873 hole_em->ram_bytes = hole_size;
4874 hole_em->bdev = fs_info->fs_devices->latest_bdev;
4875 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4876 hole_em->generation = fs_info->generation;
4879 write_lock(&em_tree->lock);
4880 err = add_extent_mapping(em_tree, hole_em, 1);
4881 write_unlock(&em_tree->lock);
4884 btrfs_drop_extent_cache(BTRFS_I(inode),
4889 free_extent_map(hole_em);
4892 free_extent_map(em);
4894 cur_offset = last_byte;
4895 if (cur_offset >= block_end)
4898 free_extent_map(em);
4899 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4904 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4906 struct btrfs_root *root = BTRFS_I(inode)->root;
4907 struct btrfs_trans_handle *trans;
4908 loff_t oldsize = i_size_read(inode);
4909 loff_t newsize = attr->ia_size;
4910 int mask = attr->ia_valid;
4914 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4915 * special case where we need to update the times despite not having
4916 * these flags set. For all other operations the VFS set these flags
4917 * explicitly if it wants a timestamp update.
4919 if (newsize != oldsize) {
4920 inode_inc_iversion(inode);
4921 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4922 inode->i_ctime = inode->i_mtime =
4923 current_time(inode);
4926 if (newsize > oldsize) {
4928 * Don't do an expanding truncate while snapshoting is ongoing.
4929 * This is to ensure the snapshot captures a fully consistent
4930 * state of this file - if the snapshot captures this expanding
4931 * truncation, it must capture all writes that happened before
4934 btrfs_wait_for_snapshot_creation(root);
4935 ret = btrfs_cont_expand(inode, oldsize, newsize);
4937 btrfs_end_write_no_snapshoting(root);
4941 trans = btrfs_start_transaction(root, 1);
4942 if (IS_ERR(trans)) {
4943 btrfs_end_write_no_snapshoting(root);
4944 return PTR_ERR(trans);
4947 i_size_write(inode, newsize);
4948 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4949 pagecache_isize_extended(inode, oldsize, newsize);
4950 ret = btrfs_update_inode(trans, root, inode);
4951 btrfs_end_write_no_snapshoting(root);
4952 btrfs_end_transaction(trans);
4956 * We're truncating a file that used to have good data down to
4957 * zero. Make sure it gets into the ordered flush list so that
4958 * any new writes get down to disk quickly.
4961 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4962 &BTRFS_I(inode)->runtime_flags);
4965 * 1 for the orphan item we're going to add
4966 * 1 for the orphan item deletion.
4968 trans = btrfs_start_transaction(root, 2);
4970 return PTR_ERR(trans);
4973 * We need to do this in case we fail at _any_ point during the
4974 * actual truncate. Once we do the truncate_setsize we could
4975 * invalidate pages which forces any outstanding ordered io to
4976 * be instantly completed which will give us extents that need
4977 * to be truncated. If we fail to get an orphan inode down we
4978 * could have left over extents that were never meant to live,
4979 * so we need to guarantee from this point on that everything
4980 * will be consistent.
4982 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4983 btrfs_end_transaction(trans);
4987 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4988 truncate_setsize(inode, newsize);
4990 /* Disable nonlocked read DIO to avoid the end less truncate */
4991 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
4992 inode_dio_wait(inode);
4993 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
4995 ret = btrfs_truncate(inode);
4996 if (ret && inode->i_nlink) {
4999 /* To get a stable disk_i_size */
5000 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5002 btrfs_orphan_del(NULL, BTRFS_I(inode));
5007 * failed to truncate, disk_i_size is only adjusted down
5008 * as we remove extents, so it should represent the true
5009 * size of the inode, so reset the in memory size and
5010 * delete our orphan entry.
5012 trans = btrfs_join_transaction(root);
5013 if (IS_ERR(trans)) {
5014 btrfs_orphan_del(NULL, BTRFS_I(inode));
5017 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5018 err = btrfs_orphan_del(trans, BTRFS_I(inode));
5020 btrfs_abort_transaction(trans, err);
5021 btrfs_end_transaction(trans);
5028 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5030 struct inode *inode = d_inode(dentry);
5031 struct btrfs_root *root = BTRFS_I(inode)->root;
5034 if (btrfs_root_readonly(root))
5037 err = setattr_prepare(dentry, attr);
5041 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5042 err = btrfs_setsize(inode, attr);
5047 if (attr->ia_valid) {
5048 setattr_copy(inode, attr);
5049 inode_inc_iversion(inode);
5050 err = btrfs_dirty_inode(inode);
5052 if (!err && attr->ia_valid & ATTR_MODE)
5053 err = posix_acl_chmod(inode, inode->i_mode);
5060 * While truncating the inode pages during eviction, we get the VFS calling
5061 * btrfs_invalidatepage() against each page of the inode. This is slow because
5062 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5063 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5064 * extent_state structures over and over, wasting lots of time.
5066 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5067 * those expensive operations on a per page basis and do only the ordered io
5068 * finishing, while we release here the extent_map and extent_state structures,
5069 * without the excessive merging and splitting.
5071 static void evict_inode_truncate_pages(struct inode *inode)
5073 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5074 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5075 struct rb_node *node;
5077 ASSERT(inode->i_state & I_FREEING);
5078 truncate_inode_pages_final(&inode->i_data);
5080 write_lock(&map_tree->lock);
5081 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5082 struct extent_map *em;
5084 node = rb_first(&map_tree->map);
5085 em = rb_entry(node, struct extent_map, rb_node);
5086 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5087 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5088 remove_extent_mapping(map_tree, em);
5089 free_extent_map(em);
5090 if (need_resched()) {
5091 write_unlock(&map_tree->lock);
5093 write_lock(&map_tree->lock);
5096 write_unlock(&map_tree->lock);
5099 * Keep looping until we have no more ranges in the io tree.
5100 * We can have ongoing bios started by readpages (called from readahead)
5101 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5102 * still in progress (unlocked the pages in the bio but did not yet
5103 * unlocked the ranges in the io tree). Therefore this means some
5104 * ranges can still be locked and eviction started because before
5105 * submitting those bios, which are executed by a separate task (work
5106 * queue kthread), inode references (inode->i_count) were not taken
5107 * (which would be dropped in the end io callback of each bio).
5108 * Therefore here we effectively end up waiting for those bios and
5109 * anyone else holding locked ranges without having bumped the inode's
5110 * reference count - if we don't do it, when they access the inode's
5111 * io_tree to unlock a range it may be too late, leading to an
5112 * use-after-free issue.
5114 spin_lock(&io_tree->lock);
5115 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5116 struct extent_state *state;
5117 struct extent_state *cached_state = NULL;
5121 node = rb_first(&io_tree->state);
5122 state = rb_entry(node, struct extent_state, rb_node);
5123 start = state->start;
5125 spin_unlock(&io_tree->lock);
5127 lock_extent_bits(io_tree, start, end, &cached_state);
5130 * If still has DELALLOC flag, the extent didn't reach disk,
5131 * and its reserved space won't be freed by delayed_ref.
5132 * So we need to free its reserved space here.
5133 * (Refer to comment in btrfs_invalidatepage, case 2)
5135 * Note, end is the bytenr of last byte, so we need + 1 here.
5137 if (state->state & EXTENT_DELALLOC)
5138 btrfs_qgroup_free_data(inode, start, end - start + 1);
5140 clear_extent_bit(io_tree, start, end,
5141 EXTENT_LOCKED | EXTENT_DIRTY |
5142 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5143 EXTENT_DEFRAG, 1, 1,
5144 &cached_state, GFP_NOFS);
5147 spin_lock(&io_tree->lock);
5149 spin_unlock(&io_tree->lock);
5152 void btrfs_evict_inode(struct inode *inode)
5154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5155 struct btrfs_trans_handle *trans;
5156 struct btrfs_root *root = BTRFS_I(inode)->root;
5157 struct btrfs_block_rsv *rsv, *global_rsv;
5158 int steal_from_global = 0;
5162 trace_btrfs_inode_evict(inode);
5165 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5169 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5171 evict_inode_truncate_pages(inode);
5173 if (inode->i_nlink &&
5174 ((btrfs_root_refs(&root->root_item) != 0 &&
5175 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5176 btrfs_is_free_space_inode(BTRFS_I(inode))))
5179 if (is_bad_inode(inode)) {
5180 btrfs_orphan_del(NULL, BTRFS_I(inode));
5183 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5184 if (!special_file(inode->i_mode))
5185 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5187 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5189 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5190 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5191 &BTRFS_I(inode)->runtime_flags));
5195 if (inode->i_nlink > 0) {
5196 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5197 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5201 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5203 btrfs_orphan_del(NULL, BTRFS_I(inode));
5207 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5209 btrfs_orphan_del(NULL, BTRFS_I(inode));
5212 rsv->size = min_size;
5214 global_rsv = &fs_info->global_block_rsv;
5216 btrfs_i_size_write(BTRFS_I(inode), 0);
5219 * This is a bit simpler than btrfs_truncate since we've already
5220 * reserved our space for our orphan item in the unlink, so we just
5221 * need to reserve some slack space in case we add bytes and update
5222 * inode item when doing the truncate.
5225 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5226 BTRFS_RESERVE_FLUSH_LIMIT);
5229 * Try and steal from the global reserve since we will
5230 * likely not use this space anyway, we want to try as
5231 * hard as possible to get this to work.
5234 steal_from_global++;
5236 steal_from_global = 0;
5240 * steal_from_global == 0: we reserved stuff, hooray!
5241 * steal_from_global == 1: we didn't reserve stuff, boo!
5242 * steal_from_global == 2: we've committed, still not a lot of
5243 * room but maybe we'll have room in the global reserve this
5245 * steal_from_global == 3: abandon all hope!
5247 if (steal_from_global > 2) {
5249 "Could not get space for a delete, will truncate on mount %d",
5251 btrfs_orphan_del(NULL, BTRFS_I(inode));
5252 btrfs_free_block_rsv(fs_info, rsv);
5256 trans = btrfs_join_transaction(root);
5257 if (IS_ERR(trans)) {
5258 btrfs_orphan_del(NULL, BTRFS_I(inode));
5259 btrfs_free_block_rsv(fs_info, rsv);
5264 * We can't just steal from the global reserve, we need to make
5265 * sure there is room to do it, if not we need to commit and try
5268 if (steal_from_global) {
5269 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5270 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5277 * Couldn't steal from the global reserve, we have too much
5278 * pending stuff built up, commit the transaction and try it
5282 ret = btrfs_commit_transaction(trans);
5284 btrfs_orphan_del(NULL, BTRFS_I(inode));
5285 btrfs_free_block_rsv(fs_info, rsv);
5290 steal_from_global = 0;
5293 trans->block_rsv = rsv;
5295 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5296 if (ret != -ENOSPC && ret != -EAGAIN)
5299 trans->block_rsv = &fs_info->trans_block_rsv;
5300 btrfs_end_transaction(trans);
5302 btrfs_btree_balance_dirty(fs_info);
5305 btrfs_free_block_rsv(fs_info, rsv);
5308 * Errors here aren't a big deal, it just means we leave orphan items
5309 * in the tree. They will be cleaned up on the next mount.
5312 trans->block_rsv = root->orphan_block_rsv;
5313 btrfs_orphan_del(trans, BTRFS_I(inode));
5315 btrfs_orphan_del(NULL, BTRFS_I(inode));
5318 trans->block_rsv = &fs_info->trans_block_rsv;
5319 if (!(root == fs_info->tree_root ||
5320 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5321 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5323 btrfs_end_transaction(trans);
5324 btrfs_btree_balance_dirty(fs_info);
5326 btrfs_remove_delayed_node(BTRFS_I(inode));
5331 * this returns the key found in the dir entry in the location pointer.
5332 * If no dir entries were found, location->objectid is 0.
5334 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5335 struct btrfs_key *location)
5337 const char *name = dentry->d_name.name;
5338 int namelen = dentry->d_name.len;
5339 struct btrfs_dir_item *di;
5340 struct btrfs_path *path;
5341 struct btrfs_root *root = BTRFS_I(dir)->root;
5344 path = btrfs_alloc_path();
5348 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5353 if (IS_ERR_OR_NULL(di))
5356 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5358 btrfs_free_path(path);
5361 location->objectid = 0;
5366 * when we hit a tree root in a directory, the btrfs part of the inode
5367 * needs to be changed to reflect the root directory of the tree root. This
5368 * is kind of like crossing a mount point.
5370 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5372 struct dentry *dentry,
5373 struct btrfs_key *location,
5374 struct btrfs_root **sub_root)
5376 struct btrfs_path *path;
5377 struct btrfs_root *new_root;
5378 struct btrfs_root_ref *ref;
5379 struct extent_buffer *leaf;
5380 struct btrfs_key key;
5384 path = btrfs_alloc_path();
5391 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5392 key.type = BTRFS_ROOT_REF_KEY;
5393 key.offset = location->objectid;
5395 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5402 leaf = path->nodes[0];
5403 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5404 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5405 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5408 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5409 (unsigned long)(ref + 1),
5410 dentry->d_name.len);
5414 btrfs_release_path(path);
5416 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5417 if (IS_ERR(new_root)) {
5418 err = PTR_ERR(new_root);
5422 *sub_root = new_root;
5423 location->objectid = btrfs_root_dirid(&new_root->root_item);
5424 location->type = BTRFS_INODE_ITEM_KEY;
5425 location->offset = 0;
5428 btrfs_free_path(path);
5432 static void inode_tree_add(struct inode *inode)
5434 struct btrfs_root *root = BTRFS_I(inode)->root;
5435 struct btrfs_inode *entry;
5437 struct rb_node *parent;
5438 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5439 u64 ino = btrfs_ino(BTRFS_I(inode));
5441 if (inode_unhashed(inode))
5444 spin_lock(&root->inode_lock);
5445 p = &root->inode_tree.rb_node;
5448 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5450 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5451 p = &parent->rb_left;
5452 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5453 p = &parent->rb_right;
5455 WARN_ON(!(entry->vfs_inode.i_state &
5456 (I_WILL_FREE | I_FREEING)));
5457 rb_replace_node(parent, new, &root->inode_tree);
5458 RB_CLEAR_NODE(parent);
5459 spin_unlock(&root->inode_lock);
5463 rb_link_node(new, parent, p);
5464 rb_insert_color(new, &root->inode_tree);
5465 spin_unlock(&root->inode_lock);
5468 static void inode_tree_del(struct inode *inode)
5470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5471 struct btrfs_root *root = BTRFS_I(inode)->root;
5474 spin_lock(&root->inode_lock);
5475 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5476 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5477 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5478 empty = RB_EMPTY_ROOT(&root->inode_tree);
5480 spin_unlock(&root->inode_lock);
5482 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5483 synchronize_srcu(&fs_info->subvol_srcu);
5484 spin_lock(&root->inode_lock);
5485 empty = RB_EMPTY_ROOT(&root->inode_tree);
5486 spin_unlock(&root->inode_lock);
5488 btrfs_add_dead_root(root);
5492 void btrfs_invalidate_inodes(struct btrfs_root *root)
5494 struct btrfs_fs_info *fs_info = root->fs_info;
5495 struct rb_node *node;
5496 struct rb_node *prev;
5497 struct btrfs_inode *entry;
5498 struct inode *inode;
5501 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5502 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5504 spin_lock(&root->inode_lock);
5506 node = root->inode_tree.rb_node;
5510 entry = rb_entry(node, struct btrfs_inode, rb_node);
5512 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5513 node = node->rb_left;
5514 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5515 node = node->rb_right;
5521 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5522 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5526 prev = rb_next(prev);
5530 entry = rb_entry(node, struct btrfs_inode, rb_node);
5531 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5532 inode = igrab(&entry->vfs_inode);
5534 spin_unlock(&root->inode_lock);
5535 if (atomic_read(&inode->i_count) > 1)
5536 d_prune_aliases(inode);
5538 * btrfs_drop_inode will have it removed from
5539 * the inode cache when its usage count
5544 spin_lock(&root->inode_lock);
5548 if (cond_resched_lock(&root->inode_lock))
5551 node = rb_next(node);
5553 spin_unlock(&root->inode_lock);
5556 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5558 struct btrfs_iget_args *args = p;
5559 inode->i_ino = args->location->objectid;
5560 memcpy(&BTRFS_I(inode)->location, args->location,
5561 sizeof(*args->location));
5562 BTRFS_I(inode)->root = args->root;
5566 static int btrfs_find_actor(struct inode *inode, void *opaque)
5568 struct btrfs_iget_args *args = opaque;
5569 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5570 args->root == BTRFS_I(inode)->root;
5573 static struct inode *btrfs_iget_locked(struct super_block *s,
5574 struct btrfs_key *location,
5575 struct btrfs_root *root)
5577 struct inode *inode;
5578 struct btrfs_iget_args args;
5579 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5581 args.location = location;
5584 inode = iget5_locked(s, hashval, btrfs_find_actor,
5585 btrfs_init_locked_inode,
5590 /* Get an inode object given its location and corresponding root.
5591 * Returns in *is_new if the inode was read from disk
5593 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5594 struct btrfs_root *root, int *new)
5596 struct inode *inode;
5598 inode = btrfs_iget_locked(s, location, root);
5600 return ERR_PTR(-ENOMEM);
5602 if (inode->i_state & I_NEW) {
5605 ret = btrfs_read_locked_inode(inode);
5606 if (!is_bad_inode(inode)) {
5607 inode_tree_add(inode);
5608 unlock_new_inode(inode);
5612 unlock_new_inode(inode);
5615 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5622 static struct inode *new_simple_dir(struct super_block *s,
5623 struct btrfs_key *key,
5624 struct btrfs_root *root)
5626 struct inode *inode = new_inode(s);
5629 return ERR_PTR(-ENOMEM);
5631 BTRFS_I(inode)->root = root;
5632 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5633 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5635 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5636 inode->i_op = &btrfs_dir_ro_inode_operations;
5637 inode->i_opflags &= ~IOP_XATTR;
5638 inode->i_fop = &simple_dir_operations;
5639 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5640 inode->i_mtime = current_time(inode);
5641 inode->i_atime = inode->i_mtime;
5642 inode->i_ctime = inode->i_mtime;
5643 BTRFS_I(inode)->i_otime = inode->i_mtime;
5648 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5650 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5651 struct inode *inode;
5652 struct btrfs_root *root = BTRFS_I(dir)->root;
5653 struct btrfs_root *sub_root = root;
5654 struct btrfs_key location;
5658 if (dentry->d_name.len > BTRFS_NAME_LEN)
5659 return ERR_PTR(-ENAMETOOLONG);
5661 ret = btrfs_inode_by_name(dir, dentry, &location);
5663 return ERR_PTR(ret);
5665 if (location.objectid == 0)
5666 return ERR_PTR(-ENOENT);
5668 if (location.type == BTRFS_INODE_ITEM_KEY) {
5669 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5673 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5675 index = srcu_read_lock(&fs_info->subvol_srcu);
5676 ret = fixup_tree_root_location(fs_info, dir, dentry,
5677 &location, &sub_root);
5680 inode = ERR_PTR(ret);
5682 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5684 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5686 srcu_read_unlock(&fs_info->subvol_srcu, index);
5688 if (!IS_ERR(inode) && root != sub_root) {
5689 down_read(&fs_info->cleanup_work_sem);
5690 if (!(inode->i_sb->s_flags & MS_RDONLY))
5691 ret = btrfs_orphan_cleanup(sub_root);
5692 up_read(&fs_info->cleanup_work_sem);
5695 inode = ERR_PTR(ret);
5702 static int btrfs_dentry_delete(const struct dentry *dentry)
5704 struct btrfs_root *root;
5705 struct inode *inode = d_inode(dentry);
5707 if (!inode && !IS_ROOT(dentry))
5708 inode = d_inode(dentry->d_parent);
5711 root = BTRFS_I(inode)->root;
5712 if (btrfs_root_refs(&root->root_item) == 0)
5715 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5721 static void btrfs_dentry_release(struct dentry *dentry)
5723 kfree(dentry->d_fsdata);
5726 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5729 struct inode *inode;
5731 inode = btrfs_lookup_dentry(dir, dentry);
5732 if (IS_ERR(inode)) {
5733 if (PTR_ERR(inode) == -ENOENT)
5736 return ERR_CAST(inode);
5739 return d_splice_alias(inode, dentry);
5742 unsigned char btrfs_filetype_table[] = {
5743 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5746 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5748 struct inode *inode = file_inode(file);
5749 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5750 struct btrfs_root *root = BTRFS_I(inode)->root;
5751 struct btrfs_item *item;
5752 struct btrfs_dir_item *di;
5753 struct btrfs_key key;
5754 struct btrfs_key found_key;
5755 struct btrfs_path *path;
5756 struct list_head ins_list;
5757 struct list_head del_list;
5759 struct extent_buffer *leaf;
5761 unsigned char d_type;
5767 struct btrfs_key location;
5769 if (!dir_emit_dots(file, ctx))
5772 path = btrfs_alloc_path();
5776 path->reada = READA_FORWARD;
5778 INIT_LIST_HEAD(&ins_list);
5779 INIT_LIST_HEAD(&del_list);
5780 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5782 key.type = BTRFS_DIR_INDEX_KEY;
5783 key.offset = ctx->pos;
5784 key.objectid = btrfs_ino(BTRFS_I(inode));
5786 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5791 leaf = path->nodes[0];
5792 slot = path->slots[0];
5793 if (slot >= btrfs_header_nritems(leaf)) {
5794 ret = btrfs_next_leaf(root, path);
5802 item = btrfs_item_nr(slot);
5803 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5805 if (found_key.objectid != key.objectid)
5807 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5809 if (found_key.offset < ctx->pos)
5811 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5814 ctx->pos = found_key.offset;
5816 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5817 if (verify_dir_item(fs_info, leaf, di))
5820 name_len = btrfs_dir_name_len(leaf, di);
5821 if (name_len <= sizeof(tmp_name)) {
5822 name_ptr = tmp_name;
5824 name_ptr = kmalloc(name_len, GFP_KERNEL);
5830 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5833 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5834 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5836 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5839 if (name_ptr != tmp_name)
5849 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5854 * Stop new entries from being returned after we return the last
5857 * New directory entries are assigned a strictly increasing
5858 * offset. This means that new entries created during readdir
5859 * are *guaranteed* to be seen in the future by that readdir.
5860 * This has broken buggy programs which operate on names as
5861 * they're returned by readdir. Until we re-use freed offsets
5862 * we have this hack to stop new entries from being returned
5863 * under the assumption that they'll never reach this huge
5866 * This is being careful not to overflow 32bit loff_t unless the
5867 * last entry requires it because doing so has broken 32bit apps
5870 if (ctx->pos >= INT_MAX)
5871 ctx->pos = LLONG_MAX;
5878 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5879 btrfs_free_path(path);
5883 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5885 struct btrfs_root *root = BTRFS_I(inode)->root;
5886 struct btrfs_trans_handle *trans;
5888 bool nolock = false;
5890 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5893 if (btrfs_fs_closing(root->fs_info) &&
5894 btrfs_is_free_space_inode(BTRFS_I(inode)))
5897 if (wbc->sync_mode == WB_SYNC_ALL) {
5899 trans = btrfs_join_transaction_nolock(root);
5901 trans = btrfs_join_transaction(root);
5903 return PTR_ERR(trans);
5904 ret = btrfs_commit_transaction(trans);
5910 * This is somewhat expensive, updating the tree every time the
5911 * inode changes. But, it is most likely to find the inode in cache.
5912 * FIXME, needs more benchmarking...there are no reasons other than performance
5913 * to keep or drop this code.
5915 static int btrfs_dirty_inode(struct inode *inode)
5917 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5918 struct btrfs_root *root = BTRFS_I(inode)->root;
5919 struct btrfs_trans_handle *trans;
5922 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5925 trans = btrfs_join_transaction(root);
5927 return PTR_ERR(trans);
5929 ret = btrfs_update_inode(trans, root, inode);
5930 if (ret && ret == -ENOSPC) {
5931 /* whoops, lets try again with the full transaction */
5932 btrfs_end_transaction(trans);
5933 trans = btrfs_start_transaction(root, 1);
5935 return PTR_ERR(trans);
5937 ret = btrfs_update_inode(trans, root, inode);
5939 btrfs_end_transaction(trans);
5940 if (BTRFS_I(inode)->delayed_node)
5941 btrfs_balance_delayed_items(fs_info);
5947 * This is a copy of file_update_time. We need this so we can return error on
5948 * ENOSPC for updating the inode in the case of file write and mmap writes.
5950 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5953 struct btrfs_root *root = BTRFS_I(inode)->root;
5955 if (btrfs_root_readonly(root))
5958 if (flags & S_VERSION)
5959 inode_inc_iversion(inode);
5960 if (flags & S_CTIME)
5961 inode->i_ctime = *now;
5962 if (flags & S_MTIME)
5963 inode->i_mtime = *now;
5964 if (flags & S_ATIME)
5965 inode->i_atime = *now;
5966 return btrfs_dirty_inode(inode);
5970 * find the highest existing sequence number in a directory
5971 * and then set the in-memory index_cnt variable to reflect
5972 * free sequence numbers
5974 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5976 struct btrfs_root *root = inode->root;
5977 struct btrfs_key key, found_key;
5978 struct btrfs_path *path;
5979 struct extent_buffer *leaf;
5982 key.objectid = btrfs_ino(inode);
5983 key.type = BTRFS_DIR_INDEX_KEY;
5984 key.offset = (u64)-1;
5986 path = btrfs_alloc_path();
5990 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5993 /* FIXME: we should be able to handle this */
5999 * MAGIC NUMBER EXPLANATION:
6000 * since we search a directory based on f_pos we have to start at 2
6001 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6002 * else has to start at 2
6004 if (path->slots[0] == 0) {
6005 inode->index_cnt = 2;
6011 leaf = path->nodes[0];
6012 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6014 if (found_key.objectid != btrfs_ino(inode) ||
6015 found_key.type != BTRFS_DIR_INDEX_KEY) {
6016 inode->index_cnt = 2;
6020 inode->index_cnt = found_key.offset + 1;
6022 btrfs_free_path(path);
6027 * helper to find a free sequence number in a given directory. This current
6028 * code is very simple, later versions will do smarter things in the btree
6030 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6034 if (dir->index_cnt == (u64)-1) {
6035 ret = btrfs_inode_delayed_dir_index_count(dir);
6037 ret = btrfs_set_inode_index_count(dir);
6043 *index = dir->index_cnt;
6049 static int btrfs_insert_inode_locked(struct inode *inode)
6051 struct btrfs_iget_args args;
6052 args.location = &BTRFS_I(inode)->location;
6053 args.root = BTRFS_I(inode)->root;
6055 return insert_inode_locked4(inode,
6056 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6057 btrfs_find_actor, &args);
6060 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6061 struct btrfs_root *root,
6063 const char *name, int name_len,
6064 u64 ref_objectid, u64 objectid,
6065 umode_t mode, u64 *index)
6067 struct btrfs_fs_info *fs_info = root->fs_info;
6068 struct inode *inode;
6069 struct btrfs_inode_item *inode_item;
6070 struct btrfs_key *location;
6071 struct btrfs_path *path;
6072 struct btrfs_inode_ref *ref;
6073 struct btrfs_key key[2];
6075 int nitems = name ? 2 : 1;
6079 path = btrfs_alloc_path();
6081 return ERR_PTR(-ENOMEM);
6083 inode = new_inode(fs_info->sb);
6085 btrfs_free_path(path);
6086 return ERR_PTR(-ENOMEM);
6090 * O_TMPFILE, set link count to 0, so that after this point,
6091 * we fill in an inode item with the correct link count.
6094 set_nlink(inode, 0);
6097 * we have to initialize this early, so we can reclaim the inode
6098 * number if we fail afterwards in this function.
6100 inode->i_ino = objectid;
6103 trace_btrfs_inode_request(dir);
6105 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6107 btrfs_free_path(path);
6109 return ERR_PTR(ret);
6115 * index_cnt is ignored for everything but a dir,
6116 * btrfs_get_inode_index_count has an explanation for the magic
6119 BTRFS_I(inode)->index_cnt = 2;
6120 BTRFS_I(inode)->dir_index = *index;
6121 BTRFS_I(inode)->root = root;
6122 BTRFS_I(inode)->generation = trans->transid;
6123 inode->i_generation = BTRFS_I(inode)->generation;
6126 * We could have gotten an inode number from somebody who was fsynced
6127 * and then removed in this same transaction, so let's just set full
6128 * sync since it will be a full sync anyway and this will blow away the
6129 * old info in the log.
6131 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6133 key[0].objectid = objectid;
6134 key[0].type = BTRFS_INODE_ITEM_KEY;
6137 sizes[0] = sizeof(struct btrfs_inode_item);
6141 * Start new inodes with an inode_ref. This is slightly more
6142 * efficient for small numbers of hard links since they will
6143 * be packed into one item. Extended refs will kick in if we
6144 * add more hard links than can fit in the ref item.
6146 key[1].objectid = objectid;
6147 key[1].type = BTRFS_INODE_REF_KEY;
6148 key[1].offset = ref_objectid;
6150 sizes[1] = name_len + sizeof(*ref);
6153 location = &BTRFS_I(inode)->location;
6154 location->objectid = objectid;
6155 location->offset = 0;
6156 location->type = BTRFS_INODE_ITEM_KEY;
6158 ret = btrfs_insert_inode_locked(inode);
6162 path->leave_spinning = 1;
6163 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6167 inode_init_owner(inode, dir, mode);
6168 inode_set_bytes(inode, 0);
6170 inode->i_mtime = current_time(inode);
6171 inode->i_atime = inode->i_mtime;
6172 inode->i_ctime = inode->i_mtime;
6173 BTRFS_I(inode)->i_otime = inode->i_mtime;
6175 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6176 struct btrfs_inode_item);
6177 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6178 sizeof(*inode_item));
6179 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6182 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6183 struct btrfs_inode_ref);
6184 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6185 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6186 ptr = (unsigned long)(ref + 1);
6187 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6190 btrfs_mark_buffer_dirty(path->nodes[0]);
6191 btrfs_free_path(path);
6193 btrfs_inherit_iflags(inode, dir);
6195 if (S_ISREG(mode)) {
6196 if (btrfs_test_opt(fs_info, NODATASUM))
6197 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6198 if (btrfs_test_opt(fs_info, NODATACOW))
6199 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6200 BTRFS_INODE_NODATASUM;
6203 inode_tree_add(inode);
6205 trace_btrfs_inode_new(inode);
6206 btrfs_set_inode_last_trans(trans, inode);
6208 btrfs_update_root_times(trans, root);
6210 ret = btrfs_inode_inherit_props(trans, inode, dir);
6213 "error inheriting props for ino %llu (root %llu): %d",
6214 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6219 unlock_new_inode(inode);
6222 BTRFS_I(dir)->index_cnt--;
6223 btrfs_free_path(path);
6225 return ERR_PTR(ret);
6228 static inline u8 btrfs_inode_type(struct inode *inode)
6230 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6234 * utility function to add 'inode' into 'parent_inode' with
6235 * a give name and a given sequence number.
6236 * if 'add_backref' is true, also insert a backref from the
6237 * inode to the parent directory.
6239 int btrfs_add_link(struct btrfs_trans_handle *trans,
6240 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6241 const char *name, int name_len, int add_backref, u64 index)
6243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6245 struct btrfs_key key;
6246 struct btrfs_root *root = parent_inode->root;
6247 u64 ino = btrfs_ino(inode);
6248 u64 parent_ino = btrfs_ino(parent_inode);
6250 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6251 memcpy(&key, &inode->root->root_key, sizeof(key));
6254 key.type = BTRFS_INODE_ITEM_KEY;
6258 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6259 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6260 root->root_key.objectid, parent_ino,
6261 index, name, name_len);
6262 } else if (add_backref) {
6263 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6267 /* Nothing to clean up yet */
6271 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6273 btrfs_inode_type(&inode->vfs_inode), index);
6274 if (ret == -EEXIST || ret == -EOVERFLOW)
6277 btrfs_abort_transaction(trans, ret);
6281 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6283 inode_inc_iversion(&parent_inode->vfs_inode);
6284 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6285 current_time(&parent_inode->vfs_inode);
6286 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6288 btrfs_abort_transaction(trans, ret);
6292 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6295 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6296 root->root_key.objectid, parent_ino,
6297 &local_index, name, name_len);
6299 } else if (add_backref) {
6303 err = btrfs_del_inode_ref(trans, root, name, name_len,
6304 ino, parent_ino, &local_index);
6309 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6310 struct btrfs_inode *dir, struct dentry *dentry,
6311 struct btrfs_inode *inode, int backref, u64 index)
6313 int err = btrfs_add_link(trans, dir, inode,
6314 dentry->d_name.name, dentry->d_name.len,
6321 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6322 umode_t mode, dev_t rdev)
6324 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6325 struct btrfs_trans_handle *trans;
6326 struct btrfs_root *root = BTRFS_I(dir)->root;
6327 struct inode *inode = NULL;
6334 * 2 for inode item and ref
6336 * 1 for xattr if selinux is on
6338 trans = btrfs_start_transaction(root, 5);
6340 return PTR_ERR(trans);
6342 err = btrfs_find_free_ino(root, &objectid);
6346 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6347 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6349 if (IS_ERR(inode)) {
6350 err = PTR_ERR(inode);
6355 * If the active LSM wants to access the inode during
6356 * d_instantiate it needs these. Smack checks to see
6357 * if the filesystem supports xattrs by looking at the
6360 inode->i_op = &btrfs_special_inode_operations;
6361 init_special_inode(inode, inode->i_mode, rdev);
6363 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6365 goto out_unlock_inode;
6367 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6370 goto out_unlock_inode;
6372 btrfs_update_inode(trans, root, inode);
6373 unlock_new_inode(inode);
6374 d_instantiate(dentry, inode);
6378 btrfs_end_transaction(trans);
6379 btrfs_balance_delayed_items(fs_info);
6380 btrfs_btree_balance_dirty(fs_info);
6382 inode_dec_link_count(inode);
6389 unlock_new_inode(inode);
6394 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6395 umode_t mode, bool excl)
6397 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6398 struct btrfs_trans_handle *trans;
6399 struct btrfs_root *root = BTRFS_I(dir)->root;
6400 struct inode *inode = NULL;
6401 int drop_inode_on_err = 0;
6407 * 2 for inode item and ref
6409 * 1 for xattr if selinux is on
6411 trans = btrfs_start_transaction(root, 5);
6413 return PTR_ERR(trans);
6415 err = btrfs_find_free_ino(root, &objectid);
6419 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6420 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6422 if (IS_ERR(inode)) {
6423 err = PTR_ERR(inode);
6426 drop_inode_on_err = 1;
6428 * If the active LSM wants to access the inode during
6429 * d_instantiate it needs these. Smack checks to see
6430 * if the filesystem supports xattrs by looking at the
6433 inode->i_fop = &btrfs_file_operations;
6434 inode->i_op = &btrfs_file_inode_operations;
6435 inode->i_mapping->a_ops = &btrfs_aops;
6437 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6439 goto out_unlock_inode;
6441 err = btrfs_update_inode(trans, root, inode);
6443 goto out_unlock_inode;
6445 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6448 goto out_unlock_inode;
6450 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6451 unlock_new_inode(inode);
6452 d_instantiate(dentry, inode);
6455 btrfs_end_transaction(trans);
6456 if (err && drop_inode_on_err) {
6457 inode_dec_link_count(inode);
6460 btrfs_balance_delayed_items(fs_info);
6461 btrfs_btree_balance_dirty(fs_info);
6465 unlock_new_inode(inode);
6470 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6471 struct dentry *dentry)
6473 struct btrfs_trans_handle *trans = NULL;
6474 struct btrfs_root *root = BTRFS_I(dir)->root;
6475 struct inode *inode = d_inode(old_dentry);
6476 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6481 /* do not allow sys_link's with other subvols of the same device */
6482 if (root->objectid != BTRFS_I(inode)->root->objectid)
6485 if (inode->i_nlink >= BTRFS_LINK_MAX)
6488 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6493 * 2 items for inode and inode ref
6494 * 2 items for dir items
6495 * 1 item for parent inode
6497 trans = btrfs_start_transaction(root, 5);
6498 if (IS_ERR(trans)) {
6499 err = PTR_ERR(trans);
6504 /* There are several dir indexes for this inode, clear the cache. */
6505 BTRFS_I(inode)->dir_index = 0ULL;
6507 inode_inc_iversion(inode);
6508 inode->i_ctime = current_time(inode);
6510 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6512 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6518 struct dentry *parent = dentry->d_parent;
6519 err = btrfs_update_inode(trans, root, inode);
6522 if (inode->i_nlink == 1) {
6524 * If new hard link count is 1, it's a file created
6525 * with open(2) O_TMPFILE flag.
6527 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6531 d_instantiate(dentry, inode);
6532 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6535 btrfs_balance_delayed_items(fs_info);
6538 btrfs_end_transaction(trans);
6540 inode_dec_link_count(inode);
6543 btrfs_btree_balance_dirty(fs_info);
6547 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6549 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6550 struct inode *inode = NULL;
6551 struct btrfs_trans_handle *trans;
6552 struct btrfs_root *root = BTRFS_I(dir)->root;
6554 int drop_on_err = 0;
6559 * 2 items for inode and ref
6560 * 2 items for dir items
6561 * 1 for xattr if selinux is on
6563 trans = btrfs_start_transaction(root, 5);
6565 return PTR_ERR(trans);
6567 err = btrfs_find_free_ino(root, &objectid);
6571 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6572 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6573 S_IFDIR | mode, &index);
6574 if (IS_ERR(inode)) {
6575 err = PTR_ERR(inode);
6580 /* these must be set before we unlock the inode */
6581 inode->i_op = &btrfs_dir_inode_operations;
6582 inode->i_fop = &btrfs_dir_file_operations;
6584 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6586 goto out_fail_inode;
6588 btrfs_i_size_write(BTRFS_I(inode), 0);
6589 err = btrfs_update_inode(trans, root, inode);
6591 goto out_fail_inode;
6593 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6594 dentry->d_name.name,
6595 dentry->d_name.len, 0, index);
6597 goto out_fail_inode;
6599 d_instantiate(dentry, inode);
6601 * mkdir is special. We're unlocking after we call d_instantiate
6602 * to avoid a race with nfsd calling d_instantiate.
6604 unlock_new_inode(inode);
6608 btrfs_end_transaction(trans);
6610 inode_dec_link_count(inode);
6613 btrfs_balance_delayed_items(fs_info);
6614 btrfs_btree_balance_dirty(fs_info);
6618 unlock_new_inode(inode);
6622 /* Find next extent map of a given extent map, caller needs to ensure locks */
6623 static struct extent_map *next_extent_map(struct extent_map *em)
6625 struct rb_node *next;
6627 next = rb_next(&em->rb_node);
6630 return container_of(next, struct extent_map, rb_node);
6633 static struct extent_map *prev_extent_map(struct extent_map *em)
6635 struct rb_node *prev;
6637 prev = rb_prev(&em->rb_node);
6640 return container_of(prev, struct extent_map, rb_node);
6643 /* helper for btfs_get_extent. Given an existing extent in the tree,
6644 * the existing extent is the nearest extent to map_start,
6645 * and an extent that you want to insert, deal with overlap and insert
6646 * the best fitted new extent into the tree.
6648 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6649 struct extent_map *existing,
6650 struct extent_map *em,
6653 struct extent_map *prev;
6654 struct extent_map *next;
6659 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6661 if (existing->start > map_start) {
6663 prev = prev_extent_map(next);
6666 next = next_extent_map(prev);
6669 start = prev ? extent_map_end(prev) : em->start;
6670 start = max_t(u64, start, em->start);
6671 end = next ? next->start : extent_map_end(em);
6672 end = min_t(u64, end, extent_map_end(em));
6673 start_diff = start - em->start;
6675 em->len = end - start;
6676 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6677 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6678 em->block_start += start_diff;
6679 em->block_len -= start_diff;
6681 return add_extent_mapping(em_tree, em, 0);
6684 static noinline int uncompress_inline(struct btrfs_path *path,
6686 size_t pg_offset, u64 extent_offset,
6687 struct btrfs_file_extent_item *item)
6690 struct extent_buffer *leaf = path->nodes[0];
6693 unsigned long inline_size;
6697 WARN_ON(pg_offset != 0);
6698 compress_type = btrfs_file_extent_compression(leaf, item);
6699 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6700 inline_size = btrfs_file_extent_inline_item_len(leaf,
6701 btrfs_item_nr(path->slots[0]));
6702 tmp = kmalloc(inline_size, GFP_NOFS);
6705 ptr = btrfs_file_extent_inline_start(item);
6707 read_extent_buffer(leaf, tmp, ptr, inline_size);
6709 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6710 ret = btrfs_decompress(compress_type, tmp, page,
6711 extent_offset, inline_size, max_size);
6714 * decompression code contains a memset to fill in any space between the end
6715 * of the uncompressed data and the end of max_size in case the decompressed
6716 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6717 * the end of an inline extent and the beginning of the next block, so we
6718 * cover that region here.
6721 if (max_size + pg_offset < PAGE_SIZE) {
6722 char *map = kmap(page);
6723 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6731 * a bit scary, this does extent mapping from logical file offset to the disk.
6732 * the ugly parts come from merging extents from the disk with the in-ram
6733 * representation. This gets more complex because of the data=ordered code,
6734 * where the in-ram extents might be locked pending data=ordered completion.
6736 * This also copies inline extents directly into the page.
6739 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6741 size_t pg_offset, u64 start, u64 len,
6744 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6747 u64 extent_start = 0;
6749 u64 objectid = btrfs_ino(inode);
6751 struct btrfs_path *path = NULL;
6752 struct btrfs_root *root = inode->root;
6753 struct btrfs_file_extent_item *item;
6754 struct extent_buffer *leaf;
6755 struct btrfs_key found_key;
6756 struct extent_map *em = NULL;
6757 struct extent_map_tree *em_tree = &inode->extent_tree;
6758 struct extent_io_tree *io_tree = &inode->io_tree;
6759 struct btrfs_trans_handle *trans = NULL;
6760 const bool new_inline = !page || create;
6763 read_lock(&em_tree->lock);
6764 em = lookup_extent_mapping(em_tree, start, len);
6766 em->bdev = fs_info->fs_devices->latest_bdev;
6767 read_unlock(&em_tree->lock);
6770 if (em->start > start || em->start + em->len <= start)
6771 free_extent_map(em);
6772 else if (em->block_start == EXTENT_MAP_INLINE && page)
6773 free_extent_map(em);
6777 em = alloc_extent_map();
6782 em->bdev = fs_info->fs_devices->latest_bdev;
6783 em->start = EXTENT_MAP_HOLE;
6784 em->orig_start = EXTENT_MAP_HOLE;
6786 em->block_len = (u64)-1;
6789 path = btrfs_alloc_path();
6795 * Chances are we'll be called again, so go ahead and do
6798 path->reada = READA_FORWARD;
6801 ret = btrfs_lookup_file_extent(trans, root, path,
6802 objectid, start, trans != NULL);
6809 if (path->slots[0] == 0)
6814 leaf = path->nodes[0];
6815 item = btrfs_item_ptr(leaf, path->slots[0],
6816 struct btrfs_file_extent_item);
6817 /* are we inside the extent that was found? */
6818 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6819 found_type = found_key.type;
6820 if (found_key.objectid != objectid ||
6821 found_type != BTRFS_EXTENT_DATA_KEY) {
6823 * If we backup past the first extent we want to move forward
6824 * and see if there is an extent in front of us, otherwise we'll
6825 * say there is a hole for our whole search range which can
6832 found_type = btrfs_file_extent_type(leaf, item);
6833 extent_start = found_key.offset;
6834 if (found_type == BTRFS_FILE_EXTENT_REG ||
6835 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6836 extent_end = extent_start +
6837 btrfs_file_extent_num_bytes(leaf, item);
6838 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6840 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6841 extent_end = ALIGN(extent_start + size,
6842 fs_info->sectorsize);
6845 if (start >= extent_end) {
6847 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6848 ret = btrfs_next_leaf(root, path);
6855 leaf = path->nodes[0];
6857 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6858 if (found_key.objectid != objectid ||
6859 found_key.type != BTRFS_EXTENT_DATA_KEY)
6861 if (start + len <= found_key.offset)
6863 if (start > found_key.offset)
6866 em->orig_start = start;
6867 em->len = found_key.offset - start;
6871 btrfs_extent_item_to_extent_map(inode, path, item,
6874 if (found_type == BTRFS_FILE_EXTENT_REG ||
6875 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6877 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6881 size_t extent_offset;
6887 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6888 extent_offset = page_offset(page) + pg_offset - extent_start;
6889 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6890 size - extent_offset);
6891 em->start = extent_start + extent_offset;
6892 em->len = ALIGN(copy_size, fs_info->sectorsize);
6893 em->orig_block_len = em->len;
6894 em->orig_start = em->start;
6895 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6896 if (create == 0 && !PageUptodate(page)) {
6897 if (btrfs_file_extent_compression(leaf, item) !=
6898 BTRFS_COMPRESS_NONE) {
6899 ret = uncompress_inline(path, page, pg_offset,
6900 extent_offset, item);
6907 read_extent_buffer(leaf, map + pg_offset, ptr,
6909 if (pg_offset + copy_size < PAGE_SIZE) {
6910 memset(map + pg_offset + copy_size, 0,
6911 PAGE_SIZE - pg_offset -
6916 flush_dcache_page(page);
6917 } else if (create && PageUptodate(page)) {
6921 free_extent_map(em);
6924 btrfs_release_path(path);
6925 trans = btrfs_join_transaction(root);
6928 return ERR_CAST(trans);
6932 write_extent_buffer(leaf, map + pg_offset, ptr,
6935 btrfs_mark_buffer_dirty(leaf);
6937 set_extent_uptodate(io_tree, em->start,
6938 extent_map_end(em) - 1, NULL, GFP_NOFS);
6943 em->orig_start = start;
6946 em->block_start = EXTENT_MAP_HOLE;
6947 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6949 btrfs_release_path(path);
6950 if (em->start > start || extent_map_end(em) <= start) {
6952 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6953 em->start, em->len, start, len);
6959 write_lock(&em_tree->lock);
6960 ret = add_extent_mapping(em_tree, em, 0);
6961 /* it is possible that someone inserted the extent into the tree
6962 * while we had the lock dropped. It is also possible that
6963 * an overlapping map exists in the tree
6965 if (ret == -EEXIST) {
6966 struct extent_map *existing;
6970 existing = search_extent_mapping(em_tree, start, len);
6972 * existing will always be non-NULL, since there must be
6973 * extent causing the -EEXIST.
6975 if (existing->start == em->start &&
6976 extent_map_end(existing) >= extent_map_end(em) &&
6977 em->block_start == existing->block_start) {
6979 * The existing extent map already encompasses the
6980 * entire extent map we tried to add.
6982 free_extent_map(em);
6986 } else if (start >= extent_map_end(existing) ||
6987 start <= existing->start) {
6989 * The existing extent map is the one nearest to
6990 * the [start, start + len) range which overlaps
6992 err = merge_extent_mapping(em_tree, existing,
6994 free_extent_map(existing);
6996 free_extent_map(em);
7000 free_extent_map(em);
7005 write_unlock(&em_tree->lock);
7008 trace_btrfs_get_extent(root, inode, em);
7010 btrfs_free_path(path);
7012 ret = btrfs_end_transaction(trans);
7017 free_extent_map(em);
7018 return ERR_PTR(err);
7020 BUG_ON(!em); /* Error is always set */
7024 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7026 size_t pg_offset, u64 start, u64 len,
7029 struct extent_map *em;
7030 struct extent_map *hole_em = NULL;
7031 u64 range_start = start;
7037 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7044 * - a pre-alloc extent,
7045 * there might actually be delalloc bytes behind it.
7047 if (em->block_start != EXTENT_MAP_HOLE &&
7048 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7054 /* check to see if we've wrapped (len == -1 or similar) */
7063 /* ok, we didn't find anything, lets look for delalloc */
7064 found = count_range_bits(&inode->io_tree, &range_start,
7065 end, len, EXTENT_DELALLOC, 1);
7066 found_end = range_start + found;
7067 if (found_end < range_start)
7068 found_end = (u64)-1;
7071 * we didn't find anything useful, return
7072 * the original results from get_extent()
7074 if (range_start > end || found_end <= start) {
7080 /* adjust the range_start to make sure it doesn't
7081 * go backwards from the start they passed in
7083 range_start = max(start, range_start);
7084 found = found_end - range_start;
7087 u64 hole_start = start;
7090 em = alloc_extent_map();
7096 * when btrfs_get_extent can't find anything it
7097 * returns one huge hole
7099 * make sure what it found really fits our range, and
7100 * adjust to make sure it is based on the start from
7104 u64 calc_end = extent_map_end(hole_em);
7106 if (calc_end <= start || (hole_em->start > end)) {
7107 free_extent_map(hole_em);
7110 hole_start = max(hole_em->start, start);
7111 hole_len = calc_end - hole_start;
7115 if (hole_em && range_start > hole_start) {
7116 /* our hole starts before our delalloc, so we
7117 * have to return just the parts of the hole
7118 * that go until the delalloc starts
7120 em->len = min(hole_len,
7121 range_start - hole_start);
7122 em->start = hole_start;
7123 em->orig_start = hole_start;
7125 * don't adjust block start at all,
7126 * it is fixed at EXTENT_MAP_HOLE
7128 em->block_start = hole_em->block_start;
7129 em->block_len = hole_len;
7130 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7131 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7133 em->start = range_start;
7135 em->orig_start = range_start;
7136 em->block_start = EXTENT_MAP_DELALLOC;
7137 em->block_len = found;
7139 } else if (hole_em) {
7144 free_extent_map(hole_em);
7146 free_extent_map(em);
7147 return ERR_PTR(err);
7152 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7155 const u64 orig_start,
7156 const u64 block_start,
7157 const u64 block_len,
7158 const u64 orig_block_len,
7159 const u64 ram_bytes,
7162 struct extent_map *em = NULL;
7165 if (type != BTRFS_ORDERED_NOCOW) {
7166 em = create_io_em(inode, start, len, orig_start,
7167 block_start, block_len, orig_block_len,
7169 BTRFS_COMPRESS_NONE, /* compress_type */
7174 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7175 len, block_len, type);
7178 free_extent_map(em);
7179 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7180 start + len - 1, 0);
7189 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7193 struct btrfs_root *root = BTRFS_I(inode)->root;
7194 struct extent_map *em;
7195 struct btrfs_key ins;
7199 alloc_hint = get_extent_allocation_hint(inode, start, len);
7200 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7201 0, alloc_hint, &ins, 1, 1);
7203 return ERR_PTR(ret);
7205 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7206 ins.objectid, ins.offset, ins.offset,
7207 ins.offset, BTRFS_ORDERED_REGULAR);
7208 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7210 btrfs_free_reserved_extent(fs_info, ins.objectid,
7217 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7218 * block must be cow'd
7220 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7221 u64 *orig_start, u64 *orig_block_len,
7224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7225 struct btrfs_path *path;
7227 struct extent_buffer *leaf;
7228 struct btrfs_root *root = BTRFS_I(inode)->root;
7229 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7230 struct btrfs_file_extent_item *fi;
7231 struct btrfs_key key;
7238 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7240 path = btrfs_alloc_path();
7244 ret = btrfs_lookup_file_extent(NULL, root, path,
7245 btrfs_ino(BTRFS_I(inode)), offset, 0);
7249 slot = path->slots[0];
7252 /* can't find the item, must cow */
7259 leaf = path->nodes[0];
7260 btrfs_item_key_to_cpu(leaf, &key, slot);
7261 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7262 key.type != BTRFS_EXTENT_DATA_KEY) {
7263 /* not our file or wrong item type, must cow */
7267 if (key.offset > offset) {
7268 /* Wrong offset, must cow */
7272 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7273 found_type = btrfs_file_extent_type(leaf, fi);
7274 if (found_type != BTRFS_FILE_EXTENT_REG &&
7275 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7276 /* not a regular extent, must cow */
7280 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7283 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7284 if (extent_end <= offset)
7287 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7288 if (disk_bytenr == 0)
7291 if (btrfs_file_extent_compression(leaf, fi) ||
7292 btrfs_file_extent_encryption(leaf, fi) ||
7293 btrfs_file_extent_other_encoding(leaf, fi))
7296 backref_offset = btrfs_file_extent_offset(leaf, fi);
7299 *orig_start = key.offset - backref_offset;
7300 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7301 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7304 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7307 num_bytes = min(offset + *len, extent_end) - offset;
7308 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7311 range_end = round_up(offset + num_bytes,
7312 root->fs_info->sectorsize) - 1;
7313 ret = test_range_bit(io_tree, offset, range_end,
7314 EXTENT_DELALLOC, 0, NULL);
7321 btrfs_release_path(path);
7324 * look for other files referencing this extent, if we
7325 * find any we must cow
7328 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7329 key.offset - backref_offset, disk_bytenr);
7336 * adjust disk_bytenr and num_bytes to cover just the bytes
7337 * in this extent we are about to write. If there
7338 * are any csums in that range we have to cow in order
7339 * to keep the csums correct
7341 disk_bytenr += backref_offset;
7342 disk_bytenr += offset - key.offset;
7343 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7346 * all of the above have passed, it is safe to overwrite this extent
7352 btrfs_free_path(path);
7356 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7358 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7360 void **pagep = NULL;
7361 struct page *page = NULL;
7365 start_idx = start >> PAGE_SHIFT;
7368 * end is the last byte in the last page. end == start is legal
7370 end_idx = end >> PAGE_SHIFT;
7374 /* Most of the code in this while loop is lifted from
7375 * find_get_page. It's been modified to begin searching from a
7376 * page and return just the first page found in that range. If the
7377 * found idx is less than or equal to the end idx then we know that
7378 * a page exists. If no pages are found or if those pages are
7379 * outside of the range then we're fine (yay!) */
7380 while (page == NULL &&
7381 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7382 page = radix_tree_deref_slot(pagep);
7383 if (unlikely(!page))
7386 if (radix_tree_exception(page)) {
7387 if (radix_tree_deref_retry(page)) {
7392 * Otherwise, shmem/tmpfs must be storing a swap entry
7393 * here as an exceptional entry: so return it without
7394 * attempting to raise page count.
7397 break; /* TODO: Is this relevant for this use case? */
7400 if (!page_cache_get_speculative(page)) {
7406 * Has the page moved?
7407 * This is part of the lockless pagecache protocol. See
7408 * include/linux/pagemap.h for details.
7410 if (unlikely(page != *pagep)) {
7417 if (page->index <= end_idx)
7426 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7427 struct extent_state **cached_state, int writing)
7429 struct btrfs_ordered_extent *ordered;
7433 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7436 * We're concerned with the entire range that we're going to be
7437 * doing DIO to, so we need to make sure there's no ordered
7438 * extents in this range.
7440 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7441 lockend - lockstart + 1);
7444 * We need to make sure there are no buffered pages in this
7445 * range either, we could have raced between the invalidate in
7446 * generic_file_direct_write and locking the extent. The
7447 * invalidate needs to happen so that reads after a write do not
7452 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7455 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7456 cached_state, GFP_NOFS);
7460 * If we are doing a DIO read and the ordered extent we
7461 * found is for a buffered write, we can not wait for it
7462 * to complete and retry, because if we do so we can
7463 * deadlock with concurrent buffered writes on page
7464 * locks. This happens only if our DIO read covers more
7465 * than one extent map, if at this point has already
7466 * created an ordered extent for a previous extent map
7467 * and locked its range in the inode's io tree, and a
7468 * concurrent write against that previous extent map's
7469 * range and this range started (we unlock the ranges
7470 * in the io tree only when the bios complete and
7471 * buffered writes always lock pages before attempting
7472 * to lock range in the io tree).
7475 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7476 btrfs_start_ordered_extent(inode, ordered, 1);
7479 btrfs_put_ordered_extent(ordered);
7482 * We could trigger writeback for this range (and wait
7483 * for it to complete) and then invalidate the pages for
7484 * this range (through invalidate_inode_pages2_range()),
7485 * but that can lead us to a deadlock with a concurrent
7486 * call to readpages() (a buffered read or a defrag call
7487 * triggered a readahead) on a page lock due to an
7488 * ordered dio extent we created before but did not have
7489 * yet a corresponding bio submitted (whence it can not
7490 * complete), which makes readpages() wait for that
7491 * ordered extent to complete while holding a lock on
7506 /* The callers of this must take lock_extent() */
7507 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7508 u64 orig_start, u64 block_start,
7509 u64 block_len, u64 orig_block_len,
7510 u64 ram_bytes, int compress_type,
7513 struct extent_map_tree *em_tree;
7514 struct extent_map *em;
7515 struct btrfs_root *root = BTRFS_I(inode)->root;
7518 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7519 type == BTRFS_ORDERED_COMPRESSED ||
7520 type == BTRFS_ORDERED_NOCOW ||
7521 type == BTRFS_ORDERED_REGULAR);
7523 em_tree = &BTRFS_I(inode)->extent_tree;
7524 em = alloc_extent_map();
7526 return ERR_PTR(-ENOMEM);
7529 em->orig_start = orig_start;
7531 em->block_len = block_len;
7532 em->block_start = block_start;
7533 em->bdev = root->fs_info->fs_devices->latest_bdev;
7534 em->orig_block_len = orig_block_len;
7535 em->ram_bytes = ram_bytes;
7536 em->generation = -1;
7537 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7538 if (type == BTRFS_ORDERED_PREALLOC) {
7539 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7540 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7541 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7542 em->compress_type = compress_type;
7546 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7547 em->start + em->len - 1, 0);
7548 write_lock(&em_tree->lock);
7549 ret = add_extent_mapping(em_tree, em, 1);
7550 write_unlock(&em_tree->lock);
7552 * The caller has taken lock_extent(), who could race with us
7555 } while (ret == -EEXIST);
7558 free_extent_map(em);
7559 return ERR_PTR(ret);
7562 /* em got 2 refs now, callers needs to do free_extent_map once. */
7566 static void adjust_dio_outstanding_extents(struct inode *inode,
7567 struct btrfs_dio_data *dio_data,
7570 unsigned num_extents = count_max_extents(len);
7573 * If we have an outstanding_extents count still set then we're
7574 * within our reservation, otherwise we need to adjust our inode
7575 * counter appropriately.
7577 if (dio_data->outstanding_extents >= num_extents) {
7578 dio_data->outstanding_extents -= num_extents;
7581 * If dio write length has been split due to no large enough
7582 * contiguous space, we need to compensate our inode counter
7585 u64 num_needed = num_extents - dio_data->outstanding_extents;
7587 spin_lock(&BTRFS_I(inode)->lock);
7588 BTRFS_I(inode)->outstanding_extents += num_needed;
7589 spin_unlock(&BTRFS_I(inode)->lock);
7593 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7594 struct buffer_head *bh_result, int create)
7596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7597 struct extent_map *em;
7598 struct extent_state *cached_state = NULL;
7599 struct btrfs_dio_data *dio_data = NULL;
7600 u64 start = iblock << inode->i_blkbits;
7601 u64 lockstart, lockend;
7602 u64 len = bh_result->b_size;
7603 int unlock_bits = EXTENT_LOCKED;
7607 unlock_bits |= EXTENT_DIRTY;
7609 len = min_t(u64, len, fs_info->sectorsize);
7612 lockend = start + len - 1;
7614 if (current->journal_info) {
7616 * Need to pull our outstanding extents and set journal_info to NULL so
7617 * that anything that needs to check if there's a transaction doesn't get
7620 dio_data = current->journal_info;
7621 current->journal_info = NULL;
7625 * If this errors out it's because we couldn't invalidate pagecache for
7626 * this range and we need to fallback to buffered.
7628 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7634 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7641 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7642 * io. INLINE is special, and we could probably kludge it in here, but
7643 * it's still buffered so for safety lets just fall back to the generic
7646 * For COMPRESSED we _have_ to read the entire extent in so we can
7647 * decompress it, so there will be buffering required no matter what we
7648 * do, so go ahead and fallback to buffered.
7650 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7651 * to buffered IO. Don't blame me, this is the price we pay for using
7654 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7655 em->block_start == EXTENT_MAP_INLINE) {
7656 free_extent_map(em);
7661 /* Just a good old fashioned hole, return */
7662 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7663 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7664 free_extent_map(em);
7669 * We don't allocate a new extent in the following cases
7671 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7673 * 2) The extent is marked as PREALLOC. We're good to go here and can
7674 * just use the extent.
7678 len = min(len, em->len - (start - em->start));
7679 lockstart = start + len;
7683 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7684 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7685 em->block_start != EXTENT_MAP_HOLE)) {
7687 u64 block_start, orig_start, orig_block_len, ram_bytes;
7689 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7690 type = BTRFS_ORDERED_PREALLOC;
7692 type = BTRFS_ORDERED_NOCOW;
7693 len = min(len, em->len - (start - em->start));
7694 block_start = em->block_start + (start - em->start);
7696 if (can_nocow_extent(inode, start, &len, &orig_start,
7697 &orig_block_len, &ram_bytes) == 1 &&
7698 btrfs_inc_nocow_writers(fs_info, block_start)) {
7699 struct extent_map *em2;
7701 em2 = btrfs_create_dio_extent(inode, start, len,
7702 orig_start, block_start,
7703 len, orig_block_len,
7705 btrfs_dec_nocow_writers(fs_info, block_start);
7706 if (type == BTRFS_ORDERED_PREALLOC) {
7707 free_extent_map(em);
7710 if (em2 && IS_ERR(em2)) {
7715 * For inode marked NODATACOW or extent marked PREALLOC,
7716 * use the existing or preallocated extent, so does not
7717 * need to adjust btrfs_space_info's bytes_may_use.
7719 btrfs_free_reserved_data_space_noquota(inode,
7726 * this will cow the extent, reset the len in case we changed
7729 len = bh_result->b_size;
7730 free_extent_map(em);
7731 em = btrfs_new_extent_direct(inode, start, len);
7736 len = min(len, em->len - (start - em->start));
7738 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7740 bh_result->b_size = len;
7741 bh_result->b_bdev = em->bdev;
7742 set_buffer_mapped(bh_result);
7744 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7745 set_buffer_new(bh_result);
7748 * Need to update the i_size under the extent lock so buffered
7749 * readers will get the updated i_size when we unlock.
7751 if (!dio_data->overwrite && start + len > i_size_read(inode))
7752 i_size_write(inode, start + len);
7754 adjust_dio_outstanding_extents(inode, dio_data, len);
7755 WARN_ON(dio_data->reserve < len);
7756 dio_data->reserve -= len;
7757 dio_data->unsubmitted_oe_range_end = start + len;
7758 current->journal_info = dio_data;
7762 * In the case of write we need to clear and unlock the entire range,
7763 * in the case of read we need to unlock only the end area that we
7764 * aren't using if there is any left over space.
7766 if (lockstart < lockend) {
7767 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7768 lockend, unlock_bits, 1, 0,
7769 &cached_state, GFP_NOFS);
7771 free_extent_state(cached_state);
7774 free_extent_map(em);
7779 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7780 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7783 current->journal_info = dio_data;
7785 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7786 * write less data then expected, so that we don't underflow our inode's
7787 * outstanding extents counter.
7789 if (create && dio_data)
7790 adjust_dio_outstanding_extents(inode, dio_data, len);
7795 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7801 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7805 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7809 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7815 static int btrfs_check_dio_repairable(struct inode *inode,
7816 struct bio *failed_bio,
7817 struct io_failure_record *failrec,
7820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7823 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7824 if (num_copies == 1) {
7826 * we only have a single copy of the data, so don't bother with
7827 * all the retry and error correction code that follows. no
7828 * matter what the error is, it is very likely to persist.
7830 btrfs_debug(fs_info,
7831 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7832 num_copies, failrec->this_mirror, failed_mirror);
7836 failrec->failed_mirror = failed_mirror;
7837 failrec->this_mirror++;
7838 if (failrec->this_mirror == failed_mirror)
7839 failrec->this_mirror++;
7841 if (failrec->this_mirror > num_copies) {
7842 btrfs_debug(fs_info,
7843 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7844 num_copies, failrec->this_mirror, failed_mirror);
7851 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7852 struct page *page, unsigned int pgoff,
7853 u64 start, u64 end, int failed_mirror,
7854 bio_end_io_t *repair_endio, void *repair_arg)
7856 struct io_failure_record *failrec;
7862 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7864 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7868 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7871 free_io_failure(BTRFS_I(inode), failrec);
7875 if ((failed_bio->bi_vcnt > 1)
7876 || (failed_bio->bi_io_vec->bv_len
7877 > btrfs_inode_sectorsize(inode)))
7878 read_mode |= REQ_FAILFAST_DEV;
7880 isector = start - btrfs_io_bio(failed_bio)->logical;
7881 isector >>= inode->i_sb->s_blocksize_bits;
7882 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7883 pgoff, isector, repair_endio, repair_arg);
7885 free_io_failure(BTRFS_I(inode), failrec);
7888 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7890 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7891 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7892 read_mode, failrec->this_mirror, failrec->in_validation);
7894 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7896 free_io_failure(BTRFS_I(inode), failrec);
7903 struct btrfs_retry_complete {
7904 struct completion done;
7905 struct inode *inode;
7910 static void btrfs_retry_endio_nocsum(struct bio *bio)
7912 struct btrfs_retry_complete *done = bio->bi_private;
7913 struct inode *inode;
7914 struct bio_vec *bvec;
7920 ASSERT(bio->bi_vcnt == 1);
7921 inode = bio->bi_io_vec->bv_page->mapping->host;
7922 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
7925 bio_for_each_segment_all(bvec, bio, i)
7926 clean_io_failure(BTRFS_I(done->inode), done->start, bvec->bv_page, 0);
7928 complete(&done->done);
7932 static int __btrfs_correct_data_nocsum(struct inode *inode,
7933 struct btrfs_io_bio *io_bio)
7935 struct btrfs_fs_info *fs_info;
7936 struct bio_vec *bvec;
7937 struct btrfs_retry_complete done;
7945 fs_info = BTRFS_I(inode)->root->fs_info;
7946 sectorsize = fs_info->sectorsize;
7948 start = io_bio->logical;
7951 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7952 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7953 pgoff = bvec->bv_offset;
7955 next_block_or_try_again:
7958 init_completion(&done.done);
7960 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7961 pgoff, start, start + sectorsize - 1,
7963 btrfs_retry_endio_nocsum, &done);
7967 wait_for_completion(&done.done);
7969 if (!done.uptodate) {
7970 /* We might have another mirror, so try again */
7971 goto next_block_or_try_again;
7974 start += sectorsize;
7977 pgoff += sectorsize;
7978 goto next_block_or_try_again;
7985 static void btrfs_retry_endio(struct bio *bio)
7987 struct btrfs_retry_complete *done = bio->bi_private;
7988 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7989 struct inode *inode;
7990 struct bio_vec *bvec;
8001 start = done->start;
8003 ASSERT(bio->bi_vcnt == 1);
8004 inode = bio->bi_io_vec->bv_page->mapping->host;
8005 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
8007 bio_for_each_segment_all(bvec, bio, i) {
8008 ret = __readpage_endio_check(done->inode, io_bio, i,
8009 bvec->bv_page, bvec->bv_offset,
8010 done->start, bvec->bv_len);
8012 clean_io_failure(BTRFS_I(done->inode), done->start,
8013 bvec->bv_page, bvec->bv_offset);
8018 done->uptodate = uptodate;
8020 complete(&done->done);
8024 static int __btrfs_subio_endio_read(struct inode *inode,
8025 struct btrfs_io_bio *io_bio, int err)
8027 struct btrfs_fs_info *fs_info;
8028 struct bio_vec *bvec;
8029 struct btrfs_retry_complete done;
8039 fs_info = BTRFS_I(inode)->root->fs_info;
8040 sectorsize = fs_info->sectorsize;
8043 start = io_bio->logical;
8046 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8047 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8049 pgoff = bvec->bv_offset;
8051 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8052 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8053 bvec->bv_page, pgoff, start,
8060 init_completion(&done.done);
8062 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8063 pgoff, start, start + sectorsize - 1,
8065 btrfs_retry_endio, &done);
8071 wait_for_completion(&done.done);
8073 if (!done.uptodate) {
8074 /* We might have another mirror, so try again */
8078 offset += sectorsize;
8079 start += sectorsize;
8084 pgoff += sectorsize;
8092 static int btrfs_subio_endio_read(struct inode *inode,
8093 struct btrfs_io_bio *io_bio, int err)
8095 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8099 return __btrfs_correct_data_nocsum(inode, io_bio);
8103 return __btrfs_subio_endio_read(inode, io_bio, err);
8107 static void btrfs_endio_direct_read(struct bio *bio)
8109 struct btrfs_dio_private *dip = bio->bi_private;
8110 struct inode *inode = dip->inode;
8111 struct bio *dio_bio;
8112 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8113 int err = bio->bi_error;
8115 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8116 err = btrfs_subio_endio_read(inode, io_bio, err);
8118 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8119 dip->logical_offset + dip->bytes - 1);
8120 dio_bio = dip->dio_bio;
8124 dio_bio->bi_error = bio->bi_error;
8125 dio_end_io(dio_bio, bio->bi_error);
8128 io_bio->end_io(io_bio, err);
8132 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8138 struct btrfs_ordered_extent *ordered = NULL;
8139 u64 ordered_offset = offset;
8140 u64 ordered_bytes = bytes;
8144 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8151 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8152 finish_ordered_fn, NULL, NULL);
8153 btrfs_queue_work(fs_info->endio_write_workers, &ordered->work);
8156 * our bio might span multiple ordered extents. If we haven't
8157 * completed the accounting for the whole dio, go back and try again
8159 if (ordered_offset < offset + bytes) {
8160 ordered_bytes = offset + bytes - ordered_offset;
8166 static void btrfs_endio_direct_write(struct bio *bio)
8168 struct btrfs_dio_private *dip = bio->bi_private;
8169 struct bio *dio_bio = dip->dio_bio;
8171 btrfs_endio_direct_write_update_ordered(dip->inode,
8172 dip->logical_offset,
8178 dio_bio->bi_error = bio->bi_error;
8179 dio_end_io(dio_bio, bio->bi_error);
8183 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8184 struct bio *bio, int mirror_num,
8185 unsigned long bio_flags, u64 offset)
8188 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8189 BUG_ON(ret); /* -ENOMEM */
8193 static void btrfs_end_dio_bio(struct bio *bio)
8195 struct btrfs_dio_private *dip = bio->bi_private;
8196 int err = bio->bi_error;
8199 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8200 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8201 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8203 (unsigned long long)bio->bi_iter.bi_sector,
8204 bio->bi_iter.bi_size, err);
8206 if (dip->subio_endio)
8207 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8213 * before atomic variable goto zero, we must make sure
8214 * dip->errors is perceived to be set.
8216 smp_mb__before_atomic();
8219 /* if there are more bios still pending for this dio, just exit */
8220 if (!atomic_dec_and_test(&dip->pending_bios))
8224 bio_io_error(dip->orig_bio);
8226 dip->dio_bio->bi_error = 0;
8227 bio_endio(dip->orig_bio);
8233 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8234 u64 first_sector, gfp_t gfp_flags)
8237 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8239 bio_associate_current(bio);
8243 static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8244 struct btrfs_dio_private *dip,
8248 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8249 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8253 * We load all the csum data we need when we submit
8254 * the first bio to reduce the csum tree search and
8257 if (dip->logical_offset == file_offset) {
8258 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8264 if (bio == dip->orig_bio)
8267 file_offset -= dip->logical_offset;
8268 file_offset >>= inode->i_sb->s_blocksize_bits;
8269 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8274 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8275 u64 file_offset, int skip_sum,
8278 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8279 struct btrfs_dio_private *dip = bio->bi_private;
8280 bool write = bio_op(bio) == REQ_OP_WRITE;
8284 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8289 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8297 if (write && async_submit) {
8298 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8300 __btrfs_submit_bio_start_direct_io,
8301 __btrfs_submit_bio_done);
8305 * If we aren't doing async submit, calculate the csum of the
8308 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8312 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8318 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8324 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8327 struct inode *inode = dip->inode;
8328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8329 struct btrfs_root *root = BTRFS_I(inode)->root;
8331 struct bio *orig_bio = dip->orig_bio;
8332 struct bio_vec *bvec;
8333 u64 start_sector = orig_bio->bi_iter.bi_sector;
8334 u64 file_offset = dip->logical_offset;
8337 u32 blocksize = fs_info->sectorsize;
8338 int async_submit = 0;
8343 map_length = orig_bio->bi_iter.bi_size;
8344 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8345 &map_length, NULL, 0);
8349 if (map_length >= orig_bio->bi_iter.bi_size) {
8351 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8355 /* async crcs make it difficult to collect full stripe writes. */
8356 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8361 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8365 bio->bi_opf = orig_bio->bi_opf;
8366 bio->bi_private = dip;
8367 bio->bi_end_io = btrfs_end_dio_bio;
8368 btrfs_io_bio(bio)->logical = file_offset;
8369 atomic_inc(&dip->pending_bios);
8371 bio_for_each_segment_all(bvec, orig_bio, j) {
8372 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8375 if (unlikely(map_length < submit_len + blocksize ||
8376 bio_add_page(bio, bvec->bv_page, blocksize,
8377 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8379 * inc the count before we submit the bio so
8380 * we know the end IO handler won't happen before
8381 * we inc the count. Otherwise, the dip might get freed
8382 * before we're done setting it up
8384 atomic_inc(&dip->pending_bios);
8385 ret = __btrfs_submit_dio_bio(bio, inode,
8386 file_offset, skip_sum,
8390 atomic_dec(&dip->pending_bios);
8394 start_sector += submit_len >> 9;
8395 file_offset += submit_len;
8399 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8400 start_sector, GFP_NOFS);
8403 bio->bi_opf = orig_bio->bi_opf;
8404 bio->bi_private = dip;
8405 bio->bi_end_io = btrfs_end_dio_bio;
8406 btrfs_io_bio(bio)->logical = file_offset;
8408 map_length = orig_bio->bi_iter.bi_size;
8409 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8411 &map_length, NULL, 0);
8419 submit_len += blocksize;
8428 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8437 * before atomic variable goto zero, we must
8438 * make sure dip->errors is perceived to be set.
8440 smp_mb__before_atomic();
8441 if (atomic_dec_and_test(&dip->pending_bios))
8442 bio_io_error(dip->orig_bio);
8444 /* bio_end_io() will handle error, so we needn't return it */
8448 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8451 struct btrfs_dio_private *dip = NULL;
8452 struct bio *io_bio = NULL;
8453 struct btrfs_io_bio *btrfs_bio;
8455 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8460 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8466 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8472 dip->private = dio_bio->bi_private;
8474 dip->logical_offset = file_offset;
8475 dip->bytes = dio_bio->bi_iter.bi_size;
8476 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8477 io_bio->bi_private = dip;
8478 dip->orig_bio = io_bio;
8479 dip->dio_bio = dio_bio;
8480 atomic_set(&dip->pending_bios, 0);
8481 btrfs_bio = btrfs_io_bio(io_bio);
8482 btrfs_bio->logical = file_offset;
8485 io_bio->bi_end_io = btrfs_endio_direct_write;
8487 io_bio->bi_end_io = btrfs_endio_direct_read;
8488 dip->subio_endio = btrfs_subio_endio_read;
8492 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8493 * even if we fail to submit a bio, because in such case we do the
8494 * corresponding error handling below and it must not be done a second
8495 * time by btrfs_direct_IO().
8498 struct btrfs_dio_data *dio_data = current->journal_info;
8500 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8502 dio_data->unsubmitted_oe_range_start =
8503 dio_data->unsubmitted_oe_range_end;
8506 ret = btrfs_submit_direct_hook(dip, skip_sum);
8510 if (btrfs_bio->end_io)
8511 btrfs_bio->end_io(btrfs_bio, ret);
8515 * If we arrived here it means either we failed to submit the dip
8516 * or we either failed to clone the dio_bio or failed to allocate the
8517 * dip. If we cloned the dio_bio and allocated the dip, we can just
8518 * call bio_endio against our io_bio so that we get proper resource
8519 * cleanup if we fail to submit the dip, otherwise, we must do the
8520 * same as btrfs_endio_direct_[write|read] because we can't call these
8521 * callbacks - they require an allocated dip and a clone of dio_bio.
8523 if (io_bio && dip) {
8524 io_bio->bi_error = -EIO;
8527 * The end io callbacks free our dip, do the final put on io_bio
8528 * and all the cleanup and final put for dio_bio (through
8535 btrfs_endio_direct_write_update_ordered(inode,
8537 dio_bio->bi_iter.bi_size,
8540 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8541 file_offset + dio_bio->bi_iter.bi_size - 1);
8543 dio_bio->bi_error = -EIO;
8545 * Releases and cleans up our dio_bio, no need to bio_put()
8546 * nor bio_endio()/bio_io_error() against dio_bio.
8548 dio_end_io(dio_bio, ret);
8555 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8557 const struct iov_iter *iter, loff_t offset)
8561 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8562 ssize_t retval = -EINVAL;
8564 if (offset & blocksize_mask)
8567 if (iov_iter_alignment(iter) & blocksize_mask)
8570 /* If this is a write we don't need to check anymore */
8571 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8574 * Check to make sure we don't have duplicate iov_base's in this
8575 * iovec, if so return EINVAL, otherwise we'll get csum errors
8576 * when reading back.
8578 for (seg = 0; seg < iter->nr_segs; seg++) {
8579 for (i = seg + 1; i < iter->nr_segs; i++) {
8580 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8589 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8591 struct file *file = iocb->ki_filp;
8592 struct inode *inode = file->f_mapping->host;
8593 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8594 struct btrfs_dio_data dio_data = { 0 };
8595 loff_t offset = iocb->ki_pos;
8599 bool relock = false;
8602 if (check_direct_IO(fs_info, iocb, iter, offset))
8605 inode_dio_begin(inode);
8606 smp_mb__after_atomic();
8609 * The generic stuff only does filemap_write_and_wait_range, which
8610 * isn't enough if we've written compressed pages to this area, so
8611 * we need to flush the dirty pages again to make absolutely sure
8612 * that any outstanding dirty pages are on disk.
8614 count = iov_iter_count(iter);
8615 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8616 &BTRFS_I(inode)->runtime_flags))
8617 filemap_fdatawrite_range(inode->i_mapping, offset,
8618 offset + count - 1);
8620 if (iov_iter_rw(iter) == WRITE) {
8622 * If the write DIO is beyond the EOF, we need update
8623 * the isize, but it is protected by i_mutex. So we can
8624 * not unlock the i_mutex at this case.
8626 if (offset + count <= inode->i_size) {
8627 dio_data.overwrite = 1;
8628 inode_unlock(inode);
8631 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8634 dio_data.outstanding_extents = count_max_extents(count);
8637 * We need to know how many extents we reserved so that we can
8638 * do the accounting properly if we go over the number we
8639 * originally calculated. Abuse current->journal_info for this.
8641 dio_data.reserve = round_up(count,
8642 fs_info->sectorsize);
8643 dio_data.unsubmitted_oe_range_start = (u64)offset;
8644 dio_data.unsubmitted_oe_range_end = (u64)offset;
8645 current->journal_info = &dio_data;
8646 down_read(&BTRFS_I(inode)->dio_sem);
8647 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8648 &BTRFS_I(inode)->runtime_flags)) {
8649 inode_dio_end(inode);
8650 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8654 ret = __blockdev_direct_IO(iocb, inode,
8655 fs_info->fs_devices->latest_bdev,
8656 iter, btrfs_get_blocks_direct, NULL,
8657 btrfs_submit_direct, flags);
8658 if (iov_iter_rw(iter) == WRITE) {
8659 up_read(&BTRFS_I(inode)->dio_sem);
8660 current->journal_info = NULL;
8661 if (ret < 0 && ret != -EIOCBQUEUED) {
8662 if (dio_data.reserve)
8663 btrfs_delalloc_release_space(inode, offset,
8666 * On error we might have left some ordered extents
8667 * without submitting corresponding bios for them, so
8668 * cleanup them up to avoid other tasks getting them
8669 * and waiting for them to complete forever.
8671 if (dio_data.unsubmitted_oe_range_start <
8672 dio_data.unsubmitted_oe_range_end)
8673 btrfs_endio_direct_write_update_ordered(inode,
8674 dio_data.unsubmitted_oe_range_start,
8675 dio_data.unsubmitted_oe_range_end -
8676 dio_data.unsubmitted_oe_range_start,
8678 } else if (ret >= 0 && (size_t)ret < count)
8679 btrfs_delalloc_release_space(inode, offset,
8680 count - (size_t)ret);
8684 inode_dio_end(inode);
8691 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8693 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8694 __u64 start, __u64 len)
8698 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8702 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8705 int btrfs_readpage(struct file *file, struct page *page)
8707 struct extent_io_tree *tree;
8708 tree = &BTRFS_I(page->mapping->host)->io_tree;
8709 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8712 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8714 struct extent_io_tree *tree;
8715 struct inode *inode = page->mapping->host;
8718 if (current->flags & PF_MEMALLOC) {
8719 redirty_page_for_writepage(wbc, page);
8725 * If we are under memory pressure we will call this directly from the
8726 * VM, we need to make sure we have the inode referenced for the ordered
8727 * extent. If not just return like we didn't do anything.
8729 if (!igrab(inode)) {
8730 redirty_page_for_writepage(wbc, page);
8731 return AOP_WRITEPAGE_ACTIVATE;
8733 tree = &BTRFS_I(page->mapping->host)->io_tree;
8734 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8735 btrfs_add_delayed_iput(inode);
8739 static int btrfs_writepages(struct address_space *mapping,
8740 struct writeback_control *wbc)
8742 struct extent_io_tree *tree;
8744 tree = &BTRFS_I(mapping->host)->io_tree;
8745 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8749 btrfs_readpages(struct file *file, struct address_space *mapping,
8750 struct list_head *pages, unsigned nr_pages)
8752 struct extent_io_tree *tree;
8753 tree = &BTRFS_I(mapping->host)->io_tree;
8754 return extent_readpages(tree, mapping, pages, nr_pages,
8757 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8759 struct extent_io_tree *tree;
8760 struct extent_map_tree *map;
8763 tree = &BTRFS_I(page->mapping->host)->io_tree;
8764 map = &BTRFS_I(page->mapping->host)->extent_tree;
8765 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8767 ClearPagePrivate(page);
8768 set_page_private(page, 0);
8774 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8776 if (PageWriteback(page) || PageDirty(page))
8778 return __btrfs_releasepage(page, gfp_flags);
8781 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8782 unsigned int length)
8784 struct inode *inode = page->mapping->host;
8785 struct extent_io_tree *tree;
8786 struct btrfs_ordered_extent *ordered;
8787 struct extent_state *cached_state = NULL;
8788 u64 page_start = page_offset(page);
8789 u64 page_end = page_start + PAGE_SIZE - 1;
8792 int inode_evicting = inode->i_state & I_FREEING;
8795 * we have the page locked, so new writeback can't start,
8796 * and the dirty bit won't be cleared while we are here.
8798 * Wait for IO on this page so that we can safely clear
8799 * the PagePrivate2 bit and do ordered accounting
8801 wait_on_page_writeback(page);
8803 tree = &BTRFS_I(inode)->io_tree;
8805 btrfs_releasepage(page, GFP_NOFS);
8809 if (!inode_evicting)
8810 lock_extent_bits(tree, page_start, page_end, &cached_state);
8813 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8814 page_end - start + 1);
8816 end = min(page_end, ordered->file_offset + ordered->len - 1);
8818 * IO on this page will never be started, so we need
8819 * to account for any ordered extents now
8821 if (!inode_evicting)
8822 clear_extent_bit(tree, start, end,
8823 EXTENT_DIRTY | EXTENT_DELALLOC |
8824 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8825 EXTENT_DEFRAG, 1, 0, &cached_state,
8828 * whoever cleared the private bit is responsible
8829 * for the finish_ordered_io
8831 if (TestClearPagePrivate2(page)) {
8832 struct btrfs_ordered_inode_tree *tree;
8835 tree = &BTRFS_I(inode)->ordered_tree;
8837 spin_lock_irq(&tree->lock);
8838 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8839 new_len = start - ordered->file_offset;
8840 if (new_len < ordered->truncated_len)
8841 ordered->truncated_len = new_len;
8842 spin_unlock_irq(&tree->lock);
8844 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8846 end - start + 1, 1))
8847 btrfs_finish_ordered_io(ordered);
8849 btrfs_put_ordered_extent(ordered);
8850 if (!inode_evicting) {
8851 cached_state = NULL;
8852 lock_extent_bits(tree, start, end,
8857 if (start < page_end)
8862 * Qgroup reserved space handler
8863 * Page here will be either
8864 * 1) Already written to disk
8865 * In this case, its reserved space is released from data rsv map
8866 * and will be freed by delayed_ref handler finally.
8867 * So even we call qgroup_free_data(), it won't decrease reserved
8869 * 2) Not written to disk
8870 * This means the reserved space should be freed here. However,
8871 * if a truncate invalidates the page (by clearing PageDirty)
8872 * and the page is accounted for while allocating extent
8873 * in btrfs_check_data_free_space() we let delayed_ref to
8874 * free the entire extent.
8876 if (PageDirty(page))
8877 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8878 if (!inode_evicting) {
8879 clear_extent_bit(tree, page_start, page_end,
8880 EXTENT_LOCKED | EXTENT_DIRTY |
8881 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8882 EXTENT_DEFRAG, 1, 1,
8883 &cached_state, GFP_NOFS);
8885 __btrfs_releasepage(page, GFP_NOFS);
8888 ClearPageChecked(page);
8889 if (PagePrivate(page)) {
8890 ClearPagePrivate(page);
8891 set_page_private(page, 0);
8897 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8898 * called from a page fault handler when a page is first dirtied. Hence we must
8899 * be careful to check for EOF conditions here. We set the page up correctly
8900 * for a written page which means we get ENOSPC checking when writing into
8901 * holes and correct delalloc and unwritten extent mapping on filesystems that
8902 * support these features.
8904 * We are not allowed to take the i_mutex here so we have to play games to
8905 * protect against truncate races as the page could now be beyond EOF. Because
8906 * vmtruncate() writes the inode size before removing pages, once we have the
8907 * page lock we can determine safely if the page is beyond EOF. If it is not
8908 * beyond EOF, then the page is guaranteed safe against truncation until we
8911 int btrfs_page_mkwrite(struct vm_fault *vmf)
8913 struct page *page = vmf->page;
8914 struct inode *inode = file_inode(vmf->vma->vm_file);
8915 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8916 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8917 struct btrfs_ordered_extent *ordered;
8918 struct extent_state *cached_state = NULL;
8920 unsigned long zero_start;
8929 reserved_space = PAGE_SIZE;
8931 sb_start_pagefault(inode->i_sb);
8932 page_start = page_offset(page);
8933 page_end = page_start + PAGE_SIZE - 1;
8937 * Reserving delalloc space after obtaining the page lock can lead to
8938 * deadlock. For example, if a dirty page is locked by this function
8939 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8940 * dirty page write out, then the btrfs_writepage() function could
8941 * end up waiting indefinitely to get a lock on the page currently
8942 * being processed by btrfs_page_mkwrite() function.
8944 ret = btrfs_delalloc_reserve_space(inode, page_start,
8947 ret = file_update_time(vmf->vma->vm_file);
8953 else /* -ENOSPC, -EIO, etc */
8954 ret = VM_FAULT_SIGBUS;
8960 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8963 size = i_size_read(inode);
8965 if ((page->mapping != inode->i_mapping) ||
8966 (page_start >= size)) {
8967 /* page got truncated out from underneath us */
8970 wait_on_page_writeback(page);
8972 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8973 set_page_extent_mapped(page);
8976 * we can't set the delalloc bits if there are pending ordered
8977 * extents. Drop our locks and wait for them to finish
8979 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8982 unlock_extent_cached(io_tree, page_start, page_end,
8983 &cached_state, GFP_NOFS);
8985 btrfs_start_ordered_extent(inode, ordered, 1);
8986 btrfs_put_ordered_extent(ordered);
8990 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8991 reserved_space = round_up(size - page_start,
8992 fs_info->sectorsize);
8993 if (reserved_space < PAGE_SIZE) {
8994 end = page_start + reserved_space - 1;
8995 spin_lock(&BTRFS_I(inode)->lock);
8996 BTRFS_I(inode)->outstanding_extents++;
8997 spin_unlock(&BTRFS_I(inode)->lock);
8998 btrfs_delalloc_release_space(inode, page_start,
8999 PAGE_SIZE - reserved_space);
9004 * page_mkwrite gets called when the page is firstly dirtied after it's
9005 * faulted in, but write(2) could also dirty a page and set delalloc
9006 * bits, thus in this case for space account reason, we still need to
9007 * clear any delalloc bits within this page range since we have to
9008 * reserve data&meta space before lock_page() (see above comments).
9010 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9011 EXTENT_DIRTY | EXTENT_DELALLOC |
9012 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9013 0, 0, &cached_state, GFP_NOFS);
9015 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9018 unlock_extent_cached(io_tree, page_start, page_end,
9019 &cached_state, GFP_NOFS);
9020 ret = VM_FAULT_SIGBUS;
9025 /* page is wholly or partially inside EOF */
9026 if (page_start + PAGE_SIZE > size)
9027 zero_start = size & ~PAGE_MASK;
9029 zero_start = PAGE_SIZE;
9031 if (zero_start != PAGE_SIZE) {
9033 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9034 flush_dcache_page(page);
9037 ClearPageChecked(page);
9038 set_page_dirty(page);
9039 SetPageUptodate(page);
9041 BTRFS_I(inode)->last_trans = fs_info->generation;
9042 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9043 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9045 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9049 sb_end_pagefault(inode->i_sb);
9050 return VM_FAULT_LOCKED;
9054 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9056 sb_end_pagefault(inode->i_sb);
9060 static int btrfs_truncate(struct inode *inode)
9062 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9063 struct btrfs_root *root = BTRFS_I(inode)->root;
9064 struct btrfs_block_rsv *rsv;
9067 struct btrfs_trans_handle *trans;
9068 u64 mask = fs_info->sectorsize - 1;
9069 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9071 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9077 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9078 * 3 things going on here
9080 * 1) We need to reserve space for our orphan item and the space to
9081 * delete our orphan item. Lord knows we don't want to have a dangling
9082 * orphan item because we didn't reserve space to remove it.
9084 * 2) We need to reserve space to update our inode.
9086 * 3) We need to have something to cache all the space that is going to
9087 * be free'd up by the truncate operation, but also have some slack
9088 * space reserved in case it uses space during the truncate (thank you
9089 * very much snapshotting).
9091 * And we need these to all be separate. The fact is we can use a lot of
9092 * space doing the truncate, and we have no earthly idea how much space
9093 * we will use, so we need the truncate reservation to be separate so it
9094 * doesn't end up using space reserved for updating the inode or
9095 * removing the orphan item. We also need to be able to stop the
9096 * transaction and start a new one, which means we need to be able to
9097 * update the inode several times, and we have no idea of knowing how
9098 * many times that will be, so we can't just reserve 1 item for the
9099 * entirety of the operation, so that has to be done separately as well.
9100 * Then there is the orphan item, which does indeed need to be held on
9101 * to for the whole operation, and we need nobody to touch this reserved
9102 * space except the orphan code.
9104 * So that leaves us with
9106 * 1) root->orphan_block_rsv - for the orphan deletion.
9107 * 2) rsv - for the truncate reservation, which we will steal from the
9108 * transaction reservation.
9109 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9110 * updating the inode.
9112 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9115 rsv->size = min_size;
9119 * 1 for the truncate slack space
9120 * 1 for updating the inode.
9122 trans = btrfs_start_transaction(root, 2);
9123 if (IS_ERR(trans)) {
9124 err = PTR_ERR(trans);
9128 /* Migrate the slack space for the truncate to our reserve */
9129 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9134 * So if we truncate and then write and fsync we normally would just
9135 * write the extents that changed, which is a problem if we need to
9136 * first truncate that entire inode. So set this flag so we write out
9137 * all of the extents in the inode to the sync log so we're completely
9140 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9141 trans->block_rsv = rsv;
9144 ret = btrfs_truncate_inode_items(trans, root, inode,
9146 BTRFS_EXTENT_DATA_KEY);
9147 if (ret != -ENOSPC && ret != -EAGAIN) {
9152 trans->block_rsv = &fs_info->trans_block_rsv;
9153 ret = btrfs_update_inode(trans, root, inode);
9159 btrfs_end_transaction(trans);
9160 btrfs_btree_balance_dirty(fs_info);
9162 trans = btrfs_start_transaction(root, 2);
9163 if (IS_ERR(trans)) {
9164 ret = err = PTR_ERR(trans);
9169 btrfs_block_rsv_release(fs_info, rsv, -1);
9170 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9172 BUG_ON(ret); /* shouldn't happen */
9173 trans->block_rsv = rsv;
9176 if (ret == 0 && inode->i_nlink > 0) {
9177 trans->block_rsv = root->orphan_block_rsv;
9178 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9184 trans->block_rsv = &fs_info->trans_block_rsv;
9185 ret = btrfs_update_inode(trans, root, inode);
9189 ret = btrfs_end_transaction(trans);
9190 btrfs_btree_balance_dirty(fs_info);
9193 btrfs_free_block_rsv(fs_info, rsv);
9202 * create a new subvolume directory/inode (helper for the ioctl).
9204 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9205 struct btrfs_root *new_root,
9206 struct btrfs_root *parent_root,
9209 struct inode *inode;
9213 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9214 new_dirid, new_dirid,
9215 S_IFDIR | (~current_umask() & S_IRWXUGO),
9218 return PTR_ERR(inode);
9219 inode->i_op = &btrfs_dir_inode_operations;
9220 inode->i_fop = &btrfs_dir_file_operations;
9222 set_nlink(inode, 1);
9223 btrfs_i_size_write(BTRFS_I(inode), 0);
9224 unlock_new_inode(inode);
9226 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9228 btrfs_err(new_root->fs_info,
9229 "error inheriting subvolume %llu properties: %d",
9230 new_root->root_key.objectid, err);
9232 err = btrfs_update_inode(trans, new_root, inode);
9238 struct inode *btrfs_alloc_inode(struct super_block *sb)
9240 struct btrfs_inode *ei;
9241 struct inode *inode;
9243 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9250 ei->last_sub_trans = 0;
9251 ei->logged_trans = 0;
9252 ei->delalloc_bytes = 0;
9253 ei->defrag_bytes = 0;
9254 ei->disk_i_size = 0;
9257 ei->index_cnt = (u64)-1;
9259 ei->last_unlink_trans = 0;
9260 ei->last_log_commit = 0;
9261 ei->delayed_iput_count = 0;
9263 spin_lock_init(&ei->lock);
9264 ei->outstanding_extents = 0;
9265 ei->reserved_extents = 0;
9267 ei->runtime_flags = 0;
9268 ei->force_compress = BTRFS_COMPRESS_NONE;
9270 ei->delayed_node = NULL;
9272 ei->i_otime.tv_sec = 0;
9273 ei->i_otime.tv_nsec = 0;
9275 inode = &ei->vfs_inode;
9276 extent_map_tree_init(&ei->extent_tree);
9277 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9278 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9279 ei->io_tree.track_uptodate = 1;
9280 ei->io_failure_tree.track_uptodate = 1;
9281 atomic_set(&ei->sync_writers, 0);
9282 mutex_init(&ei->log_mutex);
9283 mutex_init(&ei->delalloc_mutex);
9284 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9285 INIT_LIST_HEAD(&ei->delalloc_inodes);
9286 INIT_LIST_HEAD(&ei->delayed_iput);
9287 RB_CLEAR_NODE(&ei->rb_node);
9288 init_rwsem(&ei->dio_sem);
9293 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9294 void btrfs_test_destroy_inode(struct inode *inode)
9296 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9297 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9301 static void btrfs_i_callback(struct rcu_head *head)
9303 struct inode *inode = container_of(head, struct inode, i_rcu);
9304 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9307 void btrfs_destroy_inode(struct inode *inode)
9309 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9310 struct btrfs_ordered_extent *ordered;
9311 struct btrfs_root *root = BTRFS_I(inode)->root;
9313 WARN_ON(!hlist_empty(&inode->i_dentry));
9314 WARN_ON(inode->i_data.nrpages);
9315 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9316 WARN_ON(BTRFS_I(inode)->reserved_extents);
9317 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9318 WARN_ON(BTRFS_I(inode)->csum_bytes);
9319 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9322 * This can happen where we create an inode, but somebody else also
9323 * created the same inode and we need to destroy the one we already
9329 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9330 &BTRFS_I(inode)->runtime_flags)) {
9331 btrfs_info(fs_info, "inode %llu still on the orphan list",
9332 btrfs_ino(BTRFS_I(inode)));
9333 atomic_dec(&root->orphan_inodes);
9337 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9342 "found ordered extent %llu %llu on inode cleanup",
9343 ordered->file_offset, ordered->len);
9344 btrfs_remove_ordered_extent(inode, ordered);
9345 btrfs_put_ordered_extent(ordered);
9346 btrfs_put_ordered_extent(ordered);
9349 btrfs_qgroup_check_reserved_leak(inode);
9350 inode_tree_del(inode);
9351 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9353 call_rcu(&inode->i_rcu, btrfs_i_callback);
9356 int btrfs_drop_inode(struct inode *inode)
9358 struct btrfs_root *root = BTRFS_I(inode)->root;
9363 /* the snap/subvol tree is on deleting */
9364 if (btrfs_root_refs(&root->root_item) == 0)
9367 return generic_drop_inode(inode);
9370 static void init_once(void *foo)
9372 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9374 inode_init_once(&ei->vfs_inode);
9377 void btrfs_destroy_cachep(void)
9380 * Make sure all delayed rcu free inodes are flushed before we
9384 kmem_cache_destroy(btrfs_inode_cachep);
9385 kmem_cache_destroy(btrfs_trans_handle_cachep);
9386 kmem_cache_destroy(btrfs_transaction_cachep);
9387 kmem_cache_destroy(btrfs_path_cachep);
9388 kmem_cache_destroy(btrfs_free_space_cachep);
9391 int btrfs_init_cachep(void)
9393 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9394 sizeof(struct btrfs_inode), 0,
9395 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9397 if (!btrfs_inode_cachep)
9400 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9401 sizeof(struct btrfs_trans_handle), 0,
9402 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9403 if (!btrfs_trans_handle_cachep)
9406 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9407 sizeof(struct btrfs_transaction), 0,
9408 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9409 if (!btrfs_transaction_cachep)
9412 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9413 sizeof(struct btrfs_path), 0,
9414 SLAB_MEM_SPREAD, NULL);
9415 if (!btrfs_path_cachep)
9418 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9419 sizeof(struct btrfs_free_space), 0,
9420 SLAB_MEM_SPREAD, NULL);
9421 if (!btrfs_free_space_cachep)
9426 btrfs_destroy_cachep();
9430 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9431 u32 request_mask, unsigned int flags)
9434 struct inode *inode = d_inode(path->dentry);
9435 u32 blocksize = inode->i_sb->s_blocksize;
9437 generic_fillattr(inode, stat);
9438 stat->dev = BTRFS_I(inode)->root->anon_dev;
9440 spin_lock(&BTRFS_I(inode)->lock);
9441 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9442 spin_unlock(&BTRFS_I(inode)->lock);
9443 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9444 ALIGN(delalloc_bytes, blocksize)) >> 9;
9448 static int btrfs_rename_exchange(struct inode *old_dir,
9449 struct dentry *old_dentry,
9450 struct inode *new_dir,
9451 struct dentry *new_dentry)
9453 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9454 struct btrfs_trans_handle *trans;
9455 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9456 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9457 struct inode *new_inode = new_dentry->d_inode;
9458 struct inode *old_inode = old_dentry->d_inode;
9459 struct timespec ctime = current_time(old_inode);
9460 struct dentry *parent;
9461 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9462 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9467 bool root_log_pinned = false;
9468 bool dest_log_pinned = false;
9470 /* we only allow rename subvolume link between subvolumes */
9471 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9474 /* close the race window with snapshot create/destroy ioctl */
9475 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9476 down_read(&fs_info->subvol_sem);
9477 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9478 down_read(&fs_info->subvol_sem);
9481 * We want to reserve the absolute worst case amount of items. So if
9482 * both inodes are subvols and we need to unlink them then that would
9483 * require 4 item modifications, but if they are both normal inodes it
9484 * would require 5 item modifications, so we'll assume their normal
9485 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9486 * should cover the worst case number of items we'll modify.
9488 trans = btrfs_start_transaction(root, 12);
9489 if (IS_ERR(trans)) {
9490 ret = PTR_ERR(trans);
9495 * We need to find a free sequence number both in the source and
9496 * in the destination directory for the exchange.
9498 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9501 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9505 BTRFS_I(old_inode)->dir_index = 0ULL;
9506 BTRFS_I(new_inode)->dir_index = 0ULL;
9508 /* Reference for the source. */
9509 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9510 /* force full log commit if subvolume involved. */
9511 btrfs_set_log_full_commit(fs_info, trans);
9513 btrfs_pin_log_trans(root);
9514 root_log_pinned = true;
9515 ret = btrfs_insert_inode_ref(trans, dest,
9516 new_dentry->d_name.name,
9517 new_dentry->d_name.len,
9519 btrfs_ino(BTRFS_I(new_dir)),
9525 /* And now for the dest. */
9526 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9527 /* force full log commit if subvolume involved. */
9528 btrfs_set_log_full_commit(fs_info, trans);
9530 btrfs_pin_log_trans(dest);
9531 dest_log_pinned = true;
9532 ret = btrfs_insert_inode_ref(trans, root,
9533 old_dentry->d_name.name,
9534 old_dentry->d_name.len,
9536 btrfs_ino(BTRFS_I(old_dir)),
9542 /* Update inode version and ctime/mtime. */
9543 inode_inc_iversion(old_dir);
9544 inode_inc_iversion(new_dir);
9545 inode_inc_iversion(old_inode);
9546 inode_inc_iversion(new_inode);
9547 old_dir->i_ctime = old_dir->i_mtime = ctime;
9548 new_dir->i_ctime = new_dir->i_mtime = ctime;
9549 old_inode->i_ctime = ctime;
9550 new_inode->i_ctime = ctime;
9552 if (old_dentry->d_parent != new_dentry->d_parent) {
9553 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9554 BTRFS_I(old_inode), 1);
9555 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9556 BTRFS_I(new_inode), 1);
9559 /* src is a subvolume */
9560 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9561 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9562 ret = btrfs_unlink_subvol(trans, root, old_dir,
9564 old_dentry->d_name.name,
9565 old_dentry->d_name.len);
9566 } else { /* src is an inode */
9567 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9568 BTRFS_I(old_dentry->d_inode),
9569 old_dentry->d_name.name,
9570 old_dentry->d_name.len);
9572 ret = btrfs_update_inode(trans, root, old_inode);
9575 btrfs_abort_transaction(trans, ret);
9579 /* dest is a subvolume */
9580 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9581 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9582 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9584 new_dentry->d_name.name,
9585 new_dentry->d_name.len);
9586 } else { /* dest is an inode */
9587 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9588 BTRFS_I(new_dentry->d_inode),
9589 new_dentry->d_name.name,
9590 new_dentry->d_name.len);
9592 ret = btrfs_update_inode(trans, dest, new_inode);
9595 btrfs_abort_transaction(trans, ret);
9599 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9600 new_dentry->d_name.name,
9601 new_dentry->d_name.len, 0, old_idx);
9603 btrfs_abort_transaction(trans, ret);
9607 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9608 old_dentry->d_name.name,
9609 old_dentry->d_name.len, 0, new_idx);
9611 btrfs_abort_transaction(trans, ret);
9615 if (old_inode->i_nlink == 1)
9616 BTRFS_I(old_inode)->dir_index = old_idx;
9617 if (new_inode->i_nlink == 1)
9618 BTRFS_I(new_inode)->dir_index = new_idx;
9620 if (root_log_pinned) {
9621 parent = new_dentry->d_parent;
9622 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9624 btrfs_end_log_trans(root);
9625 root_log_pinned = false;
9627 if (dest_log_pinned) {
9628 parent = old_dentry->d_parent;
9629 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9631 btrfs_end_log_trans(dest);
9632 dest_log_pinned = false;
9636 * If we have pinned a log and an error happened, we unpin tasks
9637 * trying to sync the log and force them to fallback to a transaction
9638 * commit if the log currently contains any of the inodes involved in
9639 * this rename operation (to ensure we do not persist a log with an
9640 * inconsistent state for any of these inodes or leading to any
9641 * inconsistencies when replayed). If the transaction was aborted, the
9642 * abortion reason is propagated to userspace when attempting to commit
9643 * the transaction. If the log does not contain any of these inodes, we
9644 * allow the tasks to sync it.
9646 if (ret && (root_log_pinned || dest_log_pinned)) {
9647 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9648 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9649 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9651 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9652 btrfs_set_log_full_commit(fs_info, trans);
9654 if (root_log_pinned) {
9655 btrfs_end_log_trans(root);
9656 root_log_pinned = false;
9658 if (dest_log_pinned) {
9659 btrfs_end_log_trans(dest);
9660 dest_log_pinned = false;
9663 ret = btrfs_end_transaction(trans);
9665 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9666 up_read(&fs_info->subvol_sem);
9667 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9668 up_read(&fs_info->subvol_sem);
9673 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9674 struct btrfs_root *root,
9676 struct dentry *dentry)
9679 struct inode *inode;
9683 ret = btrfs_find_free_ino(root, &objectid);
9687 inode = btrfs_new_inode(trans, root, dir,
9688 dentry->d_name.name,
9690 btrfs_ino(BTRFS_I(dir)),
9692 S_IFCHR | WHITEOUT_MODE,
9695 if (IS_ERR(inode)) {
9696 ret = PTR_ERR(inode);
9700 inode->i_op = &btrfs_special_inode_operations;
9701 init_special_inode(inode, inode->i_mode,
9704 ret = btrfs_init_inode_security(trans, inode, dir,
9709 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9710 BTRFS_I(inode), 0, index);
9714 ret = btrfs_update_inode(trans, root, inode);
9716 unlock_new_inode(inode);
9718 inode_dec_link_count(inode);
9724 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9725 struct inode *new_dir, struct dentry *new_dentry,
9728 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9729 struct btrfs_trans_handle *trans;
9730 unsigned int trans_num_items;
9731 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9732 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9733 struct inode *new_inode = d_inode(new_dentry);
9734 struct inode *old_inode = d_inode(old_dentry);
9738 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9739 bool log_pinned = false;
9741 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9744 /* we only allow rename subvolume link between subvolumes */
9745 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9748 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9749 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9752 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9753 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9757 /* check for collisions, even if the name isn't there */
9758 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9759 new_dentry->d_name.name,
9760 new_dentry->d_name.len);
9763 if (ret == -EEXIST) {
9765 * eexist without a new_inode */
9766 if (WARN_ON(!new_inode)) {
9770 /* maybe -EOVERFLOW */
9777 * we're using rename to replace one file with another. Start IO on it
9778 * now so we don't add too much work to the end of the transaction
9780 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9781 filemap_flush(old_inode->i_mapping);
9783 /* close the racy window with snapshot create/destroy ioctl */
9784 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9785 down_read(&fs_info->subvol_sem);
9787 * We want to reserve the absolute worst case amount of items. So if
9788 * both inodes are subvols and we need to unlink them then that would
9789 * require 4 item modifications, but if they are both normal inodes it
9790 * would require 5 item modifications, so we'll assume they are normal
9791 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9792 * should cover the worst case number of items we'll modify.
9793 * If our rename has the whiteout flag, we need more 5 units for the
9794 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9795 * when selinux is enabled).
9797 trans_num_items = 11;
9798 if (flags & RENAME_WHITEOUT)
9799 trans_num_items += 5;
9800 trans = btrfs_start_transaction(root, trans_num_items);
9801 if (IS_ERR(trans)) {
9802 ret = PTR_ERR(trans);
9807 btrfs_record_root_in_trans(trans, dest);
9809 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9813 BTRFS_I(old_inode)->dir_index = 0ULL;
9814 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9815 /* force full log commit if subvolume involved. */
9816 btrfs_set_log_full_commit(fs_info, trans);
9818 btrfs_pin_log_trans(root);
9820 ret = btrfs_insert_inode_ref(trans, dest,
9821 new_dentry->d_name.name,
9822 new_dentry->d_name.len,
9824 btrfs_ino(BTRFS_I(new_dir)), index);
9829 inode_inc_iversion(old_dir);
9830 inode_inc_iversion(new_dir);
9831 inode_inc_iversion(old_inode);
9832 old_dir->i_ctime = old_dir->i_mtime =
9833 new_dir->i_ctime = new_dir->i_mtime =
9834 old_inode->i_ctime = current_time(old_dir);
9836 if (old_dentry->d_parent != new_dentry->d_parent)
9837 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9838 BTRFS_I(old_inode), 1);
9840 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9841 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9842 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9843 old_dentry->d_name.name,
9844 old_dentry->d_name.len);
9846 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9847 BTRFS_I(d_inode(old_dentry)),
9848 old_dentry->d_name.name,
9849 old_dentry->d_name.len);
9851 ret = btrfs_update_inode(trans, root, old_inode);
9854 btrfs_abort_transaction(trans, ret);
9859 inode_inc_iversion(new_inode);
9860 new_inode->i_ctime = current_time(new_inode);
9861 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9862 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9863 root_objectid = BTRFS_I(new_inode)->location.objectid;
9864 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9866 new_dentry->d_name.name,
9867 new_dentry->d_name.len);
9868 BUG_ON(new_inode->i_nlink == 0);
9870 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9871 BTRFS_I(d_inode(new_dentry)),
9872 new_dentry->d_name.name,
9873 new_dentry->d_name.len);
9875 if (!ret && new_inode->i_nlink == 0)
9876 ret = btrfs_orphan_add(trans,
9877 BTRFS_I(d_inode(new_dentry)));
9879 btrfs_abort_transaction(trans, ret);
9884 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9885 new_dentry->d_name.name,
9886 new_dentry->d_name.len, 0, index);
9888 btrfs_abort_transaction(trans, ret);
9892 if (old_inode->i_nlink == 1)
9893 BTRFS_I(old_inode)->dir_index = index;
9896 struct dentry *parent = new_dentry->d_parent;
9898 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9900 btrfs_end_log_trans(root);
9904 if (flags & RENAME_WHITEOUT) {
9905 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9909 btrfs_abort_transaction(trans, ret);
9915 * If we have pinned the log and an error happened, we unpin tasks
9916 * trying to sync the log and force them to fallback to a transaction
9917 * commit if the log currently contains any of the inodes involved in
9918 * this rename operation (to ensure we do not persist a log with an
9919 * inconsistent state for any of these inodes or leading to any
9920 * inconsistencies when replayed). If the transaction was aborted, the
9921 * abortion reason is propagated to userspace when attempting to commit
9922 * the transaction. If the log does not contain any of these inodes, we
9923 * allow the tasks to sync it.
9925 if (ret && log_pinned) {
9926 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9927 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9928 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9930 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9931 btrfs_set_log_full_commit(fs_info, trans);
9933 btrfs_end_log_trans(root);
9936 btrfs_end_transaction(trans);
9938 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9939 up_read(&fs_info->subvol_sem);
9944 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9945 struct inode *new_dir, struct dentry *new_dentry,
9948 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9951 if (flags & RENAME_EXCHANGE)
9952 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9955 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9958 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9960 struct btrfs_delalloc_work *delalloc_work;
9961 struct inode *inode;
9963 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9965 inode = delalloc_work->inode;
9966 filemap_flush(inode->i_mapping);
9967 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9968 &BTRFS_I(inode)->runtime_flags))
9969 filemap_flush(inode->i_mapping);
9971 if (delalloc_work->delay_iput)
9972 btrfs_add_delayed_iput(inode);
9975 complete(&delalloc_work->completion);
9978 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9981 struct btrfs_delalloc_work *work;
9983 work = kmalloc(sizeof(*work), GFP_NOFS);
9987 init_completion(&work->completion);
9988 INIT_LIST_HEAD(&work->list);
9989 work->inode = inode;
9990 work->delay_iput = delay_iput;
9991 WARN_ON_ONCE(!inode);
9992 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9993 btrfs_run_delalloc_work, NULL, NULL);
9998 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10000 wait_for_completion(&work->completion);
10005 * some fairly slow code that needs optimization. This walks the list
10006 * of all the inodes with pending delalloc and forces them to disk.
10008 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10011 struct btrfs_inode *binode;
10012 struct inode *inode;
10013 struct btrfs_delalloc_work *work, *next;
10014 struct list_head works;
10015 struct list_head splice;
10018 INIT_LIST_HEAD(&works);
10019 INIT_LIST_HEAD(&splice);
10021 mutex_lock(&root->delalloc_mutex);
10022 spin_lock(&root->delalloc_lock);
10023 list_splice_init(&root->delalloc_inodes, &splice);
10024 while (!list_empty(&splice)) {
10025 binode = list_entry(splice.next, struct btrfs_inode,
10028 list_move_tail(&binode->delalloc_inodes,
10029 &root->delalloc_inodes);
10030 inode = igrab(&binode->vfs_inode);
10032 cond_resched_lock(&root->delalloc_lock);
10035 spin_unlock(&root->delalloc_lock);
10037 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10040 btrfs_add_delayed_iput(inode);
10046 list_add_tail(&work->list, &works);
10047 btrfs_queue_work(root->fs_info->flush_workers,
10050 if (nr != -1 && ret >= nr)
10053 spin_lock(&root->delalloc_lock);
10055 spin_unlock(&root->delalloc_lock);
10058 list_for_each_entry_safe(work, next, &works, list) {
10059 list_del_init(&work->list);
10060 btrfs_wait_and_free_delalloc_work(work);
10063 if (!list_empty_careful(&splice)) {
10064 spin_lock(&root->delalloc_lock);
10065 list_splice_tail(&splice, &root->delalloc_inodes);
10066 spin_unlock(&root->delalloc_lock);
10068 mutex_unlock(&root->delalloc_mutex);
10072 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10074 struct btrfs_fs_info *fs_info = root->fs_info;
10077 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10080 ret = __start_delalloc_inodes(root, delay_iput, -1);
10084 * the filemap_flush will queue IO into the worker threads, but
10085 * we have to make sure the IO is actually started and that
10086 * ordered extents get created before we return
10088 atomic_inc(&fs_info->async_submit_draining);
10089 while (atomic_read(&fs_info->nr_async_submits) ||
10090 atomic_read(&fs_info->async_delalloc_pages)) {
10091 wait_event(fs_info->async_submit_wait,
10092 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10093 atomic_read(&fs_info->async_delalloc_pages) == 0));
10095 atomic_dec(&fs_info->async_submit_draining);
10099 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10102 struct btrfs_root *root;
10103 struct list_head splice;
10106 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10109 INIT_LIST_HEAD(&splice);
10111 mutex_lock(&fs_info->delalloc_root_mutex);
10112 spin_lock(&fs_info->delalloc_root_lock);
10113 list_splice_init(&fs_info->delalloc_roots, &splice);
10114 while (!list_empty(&splice) && nr) {
10115 root = list_first_entry(&splice, struct btrfs_root,
10117 root = btrfs_grab_fs_root(root);
10119 list_move_tail(&root->delalloc_root,
10120 &fs_info->delalloc_roots);
10121 spin_unlock(&fs_info->delalloc_root_lock);
10123 ret = __start_delalloc_inodes(root, delay_iput, nr);
10124 btrfs_put_fs_root(root);
10132 spin_lock(&fs_info->delalloc_root_lock);
10134 spin_unlock(&fs_info->delalloc_root_lock);
10137 atomic_inc(&fs_info->async_submit_draining);
10138 while (atomic_read(&fs_info->nr_async_submits) ||
10139 atomic_read(&fs_info->async_delalloc_pages)) {
10140 wait_event(fs_info->async_submit_wait,
10141 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10142 atomic_read(&fs_info->async_delalloc_pages) == 0));
10144 atomic_dec(&fs_info->async_submit_draining);
10146 if (!list_empty_careful(&splice)) {
10147 spin_lock(&fs_info->delalloc_root_lock);
10148 list_splice_tail(&splice, &fs_info->delalloc_roots);
10149 spin_unlock(&fs_info->delalloc_root_lock);
10151 mutex_unlock(&fs_info->delalloc_root_mutex);
10155 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10156 const char *symname)
10158 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10159 struct btrfs_trans_handle *trans;
10160 struct btrfs_root *root = BTRFS_I(dir)->root;
10161 struct btrfs_path *path;
10162 struct btrfs_key key;
10163 struct inode *inode = NULL;
10165 int drop_inode = 0;
10171 struct btrfs_file_extent_item *ei;
10172 struct extent_buffer *leaf;
10174 name_len = strlen(symname);
10175 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10176 return -ENAMETOOLONG;
10179 * 2 items for inode item and ref
10180 * 2 items for dir items
10181 * 1 item for updating parent inode item
10182 * 1 item for the inline extent item
10183 * 1 item for xattr if selinux is on
10185 trans = btrfs_start_transaction(root, 7);
10187 return PTR_ERR(trans);
10189 err = btrfs_find_free_ino(root, &objectid);
10193 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10194 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10195 objectid, S_IFLNK|S_IRWXUGO, &index);
10196 if (IS_ERR(inode)) {
10197 err = PTR_ERR(inode);
10202 * If the active LSM wants to access the inode during
10203 * d_instantiate it needs these. Smack checks to see
10204 * if the filesystem supports xattrs by looking at the
10207 inode->i_fop = &btrfs_file_operations;
10208 inode->i_op = &btrfs_file_inode_operations;
10209 inode->i_mapping->a_ops = &btrfs_aops;
10210 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10212 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10214 goto out_unlock_inode;
10216 path = btrfs_alloc_path();
10219 goto out_unlock_inode;
10221 key.objectid = btrfs_ino(BTRFS_I(inode));
10223 key.type = BTRFS_EXTENT_DATA_KEY;
10224 datasize = btrfs_file_extent_calc_inline_size(name_len);
10225 err = btrfs_insert_empty_item(trans, root, path, &key,
10228 btrfs_free_path(path);
10229 goto out_unlock_inode;
10231 leaf = path->nodes[0];
10232 ei = btrfs_item_ptr(leaf, path->slots[0],
10233 struct btrfs_file_extent_item);
10234 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10235 btrfs_set_file_extent_type(leaf, ei,
10236 BTRFS_FILE_EXTENT_INLINE);
10237 btrfs_set_file_extent_encryption(leaf, ei, 0);
10238 btrfs_set_file_extent_compression(leaf, ei, 0);
10239 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10240 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10242 ptr = btrfs_file_extent_inline_start(ei);
10243 write_extent_buffer(leaf, symname, ptr, name_len);
10244 btrfs_mark_buffer_dirty(leaf);
10245 btrfs_free_path(path);
10247 inode->i_op = &btrfs_symlink_inode_operations;
10248 inode_nohighmem(inode);
10249 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10250 inode_set_bytes(inode, name_len);
10251 btrfs_i_size_write(BTRFS_I(inode), name_len);
10252 err = btrfs_update_inode(trans, root, inode);
10254 * Last step, add directory indexes for our symlink inode. This is the
10255 * last step to avoid extra cleanup of these indexes if an error happens
10259 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10260 BTRFS_I(inode), 0, index);
10263 goto out_unlock_inode;
10266 unlock_new_inode(inode);
10267 d_instantiate(dentry, inode);
10270 btrfs_end_transaction(trans);
10272 inode_dec_link_count(inode);
10275 btrfs_btree_balance_dirty(fs_info);
10280 unlock_new_inode(inode);
10284 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10285 u64 start, u64 num_bytes, u64 min_size,
10286 loff_t actual_len, u64 *alloc_hint,
10287 struct btrfs_trans_handle *trans)
10289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10290 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10291 struct extent_map *em;
10292 struct btrfs_root *root = BTRFS_I(inode)->root;
10293 struct btrfs_key ins;
10294 u64 cur_offset = start;
10297 u64 last_alloc = (u64)-1;
10299 bool own_trans = true;
10300 u64 end = start + num_bytes - 1;
10304 while (num_bytes > 0) {
10306 trans = btrfs_start_transaction(root, 3);
10307 if (IS_ERR(trans)) {
10308 ret = PTR_ERR(trans);
10313 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10314 cur_bytes = max(cur_bytes, min_size);
10316 * If we are severely fragmented we could end up with really
10317 * small allocations, so if the allocator is returning small
10318 * chunks lets make its job easier by only searching for those
10321 cur_bytes = min(cur_bytes, last_alloc);
10322 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10323 min_size, 0, *alloc_hint, &ins, 1, 0);
10326 btrfs_end_transaction(trans);
10329 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10331 last_alloc = ins.offset;
10332 ret = insert_reserved_file_extent(trans, inode,
10333 cur_offset, ins.objectid,
10334 ins.offset, ins.offset,
10335 ins.offset, 0, 0, 0,
10336 BTRFS_FILE_EXTENT_PREALLOC);
10338 btrfs_free_reserved_extent(fs_info, ins.objectid,
10340 btrfs_abort_transaction(trans, ret);
10342 btrfs_end_transaction(trans);
10346 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10347 cur_offset + ins.offset -1, 0);
10349 em = alloc_extent_map();
10351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10352 &BTRFS_I(inode)->runtime_flags);
10356 em->start = cur_offset;
10357 em->orig_start = cur_offset;
10358 em->len = ins.offset;
10359 em->block_start = ins.objectid;
10360 em->block_len = ins.offset;
10361 em->orig_block_len = ins.offset;
10362 em->ram_bytes = ins.offset;
10363 em->bdev = fs_info->fs_devices->latest_bdev;
10364 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10365 em->generation = trans->transid;
10368 write_lock(&em_tree->lock);
10369 ret = add_extent_mapping(em_tree, em, 1);
10370 write_unlock(&em_tree->lock);
10371 if (ret != -EEXIST)
10373 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10374 cur_offset + ins.offset - 1,
10377 free_extent_map(em);
10379 num_bytes -= ins.offset;
10380 cur_offset += ins.offset;
10381 *alloc_hint = ins.objectid + ins.offset;
10383 inode_inc_iversion(inode);
10384 inode->i_ctime = current_time(inode);
10385 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10386 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10387 (actual_len > inode->i_size) &&
10388 (cur_offset > inode->i_size)) {
10389 if (cur_offset > actual_len)
10390 i_size = actual_len;
10392 i_size = cur_offset;
10393 i_size_write(inode, i_size);
10394 btrfs_ordered_update_i_size(inode, i_size, NULL);
10397 ret = btrfs_update_inode(trans, root, inode);
10400 btrfs_abort_transaction(trans, ret);
10402 btrfs_end_transaction(trans);
10407 btrfs_end_transaction(trans);
10409 if (cur_offset < end)
10410 btrfs_free_reserved_data_space(inode, cur_offset,
10411 end - cur_offset + 1);
10415 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10416 u64 start, u64 num_bytes, u64 min_size,
10417 loff_t actual_len, u64 *alloc_hint)
10419 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10420 min_size, actual_len, alloc_hint,
10424 int btrfs_prealloc_file_range_trans(struct inode *inode,
10425 struct btrfs_trans_handle *trans, int mode,
10426 u64 start, u64 num_bytes, u64 min_size,
10427 loff_t actual_len, u64 *alloc_hint)
10429 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10430 min_size, actual_len, alloc_hint, trans);
10433 static int btrfs_set_page_dirty(struct page *page)
10435 return __set_page_dirty_nobuffers(page);
10438 static int btrfs_permission(struct inode *inode, int mask)
10440 struct btrfs_root *root = BTRFS_I(inode)->root;
10441 umode_t mode = inode->i_mode;
10443 if (mask & MAY_WRITE &&
10444 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10445 if (btrfs_root_readonly(root))
10447 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10450 return generic_permission(inode, mask);
10453 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10455 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10456 struct btrfs_trans_handle *trans;
10457 struct btrfs_root *root = BTRFS_I(dir)->root;
10458 struct inode *inode = NULL;
10464 * 5 units required for adding orphan entry
10466 trans = btrfs_start_transaction(root, 5);
10468 return PTR_ERR(trans);
10470 ret = btrfs_find_free_ino(root, &objectid);
10474 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10475 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10476 if (IS_ERR(inode)) {
10477 ret = PTR_ERR(inode);
10482 inode->i_fop = &btrfs_file_operations;
10483 inode->i_op = &btrfs_file_inode_operations;
10485 inode->i_mapping->a_ops = &btrfs_aops;
10486 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10488 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10492 ret = btrfs_update_inode(trans, root, inode);
10495 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10500 * We set number of links to 0 in btrfs_new_inode(), and here we set
10501 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10504 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10506 set_nlink(inode, 1);
10507 unlock_new_inode(inode);
10508 d_tmpfile(dentry, inode);
10509 mark_inode_dirty(inode);
10512 btrfs_end_transaction(trans);
10515 btrfs_balance_delayed_items(fs_info);
10516 btrfs_btree_balance_dirty(fs_info);
10520 unlock_new_inode(inode);
10525 __attribute__((const))
10526 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10531 static const struct inode_operations btrfs_dir_inode_operations = {
10532 .getattr = btrfs_getattr,
10533 .lookup = btrfs_lookup,
10534 .create = btrfs_create,
10535 .unlink = btrfs_unlink,
10536 .link = btrfs_link,
10537 .mkdir = btrfs_mkdir,
10538 .rmdir = btrfs_rmdir,
10539 .rename = btrfs_rename2,
10540 .symlink = btrfs_symlink,
10541 .setattr = btrfs_setattr,
10542 .mknod = btrfs_mknod,
10543 .listxattr = btrfs_listxattr,
10544 .permission = btrfs_permission,
10545 .get_acl = btrfs_get_acl,
10546 .set_acl = btrfs_set_acl,
10547 .update_time = btrfs_update_time,
10548 .tmpfile = btrfs_tmpfile,
10550 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10551 .lookup = btrfs_lookup,
10552 .permission = btrfs_permission,
10553 .update_time = btrfs_update_time,
10556 static const struct file_operations btrfs_dir_file_operations = {
10557 .llseek = generic_file_llseek,
10558 .read = generic_read_dir,
10559 .iterate_shared = btrfs_real_readdir,
10560 .unlocked_ioctl = btrfs_ioctl,
10561 #ifdef CONFIG_COMPAT
10562 .compat_ioctl = btrfs_compat_ioctl,
10564 .release = btrfs_release_file,
10565 .fsync = btrfs_sync_file,
10568 static const struct extent_io_ops btrfs_extent_io_ops = {
10569 /* mandatory callbacks */
10570 .submit_bio_hook = btrfs_submit_bio_hook,
10571 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10572 .merge_bio_hook = btrfs_merge_bio_hook,
10573 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10575 /* optional callbacks */
10576 .fill_delalloc = run_delalloc_range,
10577 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10578 .writepage_start_hook = btrfs_writepage_start_hook,
10579 .set_bit_hook = btrfs_set_bit_hook,
10580 .clear_bit_hook = btrfs_clear_bit_hook,
10581 .merge_extent_hook = btrfs_merge_extent_hook,
10582 .split_extent_hook = btrfs_split_extent_hook,
10586 * btrfs doesn't support the bmap operation because swapfiles
10587 * use bmap to make a mapping of extents in the file. They assume
10588 * these extents won't change over the life of the file and they
10589 * use the bmap result to do IO directly to the drive.
10591 * the btrfs bmap call would return logical addresses that aren't
10592 * suitable for IO and they also will change frequently as COW
10593 * operations happen. So, swapfile + btrfs == corruption.
10595 * For now we're avoiding this by dropping bmap.
10597 static const struct address_space_operations btrfs_aops = {
10598 .readpage = btrfs_readpage,
10599 .writepage = btrfs_writepage,
10600 .writepages = btrfs_writepages,
10601 .readpages = btrfs_readpages,
10602 .direct_IO = btrfs_direct_IO,
10603 .invalidatepage = btrfs_invalidatepage,
10604 .releasepage = btrfs_releasepage,
10605 .set_page_dirty = btrfs_set_page_dirty,
10606 .error_remove_page = generic_error_remove_page,
10609 static const struct address_space_operations btrfs_symlink_aops = {
10610 .readpage = btrfs_readpage,
10611 .writepage = btrfs_writepage,
10612 .invalidatepage = btrfs_invalidatepage,
10613 .releasepage = btrfs_releasepage,
10616 static const struct inode_operations btrfs_file_inode_operations = {
10617 .getattr = btrfs_getattr,
10618 .setattr = btrfs_setattr,
10619 .listxattr = btrfs_listxattr,
10620 .permission = btrfs_permission,
10621 .fiemap = btrfs_fiemap,
10622 .get_acl = btrfs_get_acl,
10623 .set_acl = btrfs_set_acl,
10624 .update_time = btrfs_update_time,
10626 static const struct inode_operations btrfs_special_inode_operations = {
10627 .getattr = btrfs_getattr,
10628 .setattr = btrfs_setattr,
10629 .permission = btrfs_permission,
10630 .listxattr = btrfs_listxattr,
10631 .get_acl = btrfs_get_acl,
10632 .set_acl = btrfs_set_acl,
10633 .update_time = btrfs_update_time,
10635 static const struct inode_operations btrfs_symlink_inode_operations = {
10636 .get_link = page_get_link,
10637 .getattr = btrfs_getattr,
10638 .setattr = btrfs_setattr,
10639 .permission = btrfs_permission,
10640 .listxattr = btrfs_listxattr,
10641 .update_time = btrfs_update_time,
10644 const struct dentry_operations btrfs_dentry_operations = {
10645 .d_delete = btrfs_dentry_delete,
10646 .d_release = btrfs_dentry_release,