2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args {
60 struct btrfs_root *root;
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
73 static struct kmem_cache *btrfs_inode_cachep;
74 static struct kmem_cache *btrfs_delalloc_work_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_transaction_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
81 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
91 static int btrfs_setsize(struct inode *inode, loff_t newsize);
92 static int btrfs_truncate(struct inode *inode);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
94 static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
99 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
100 struct inode *inode, struct inode *dir,
101 const struct qstr *qstr)
105 err = btrfs_init_acl(trans, inode, dir);
107 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
112 * this does all the hard work for inserting an inline extent into
113 * the btree. The caller should have done a btrfs_drop_extents so that
114 * no overlapping inline items exist in the btree
116 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
117 struct btrfs_root *root, struct inode *inode,
118 u64 start, size_t size, size_t compressed_size,
120 struct page **compressed_pages)
122 struct btrfs_key key;
123 struct btrfs_path *path;
124 struct extent_buffer *leaf;
125 struct page *page = NULL;
128 struct btrfs_file_extent_item *ei;
131 size_t cur_size = size;
133 unsigned long offset;
135 if (compressed_size && compressed_pages)
136 cur_size = compressed_size;
138 path = btrfs_alloc_path();
142 path->leave_spinning = 1;
144 key.objectid = btrfs_ino(inode);
146 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
147 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149 inode_add_bytes(inode, size);
150 ret = btrfs_insert_empty_item(trans, root, path, &key,
156 leaf = path->nodes[0];
157 ei = btrfs_item_ptr(leaf, path->slots[0],
158 struct btrfs_file_extent_item);
159 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
160 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
161 btrfs_set_file_extent_encryption(leaf, ei, 0);
162 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
163 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
164 ptr = btrfs_file_extent_inline_start(ei);
166 if (compress_type != BTRFS_COMPRESS_NONE) {
169 while (compressed_size > 0) {
170 cpage = compressed_pages[i];
171 cur_size = min_t(unsigned long, compressed_size,
174 kaddr = kmap_atomic(cpage);
175 write_extent_buffer(leaf, kaddr, ptr, cur_size);
176 kunmap_atomic(kaddr);
180 compressed_size -= cur_size;
182 btrfs_set_file_extent_compression(leaf, ei,
185 page = find_get_page(inode->i_mapping,
186 start >> PAGE_CACHE_SHIFT);
187 btrfs_set_file_extent_compression(leaf, ei, 0);
188 kaddr = kmap_atomic(page);
189 offset = start & (PAGE_CACHE_SIZE - 1);
190 write_extent_buffer(leaf, kaddr + offset, ptr, size);
191 kunmap_atomic(kaddr);
192 page_cache_release(page);
194 btrfs_mark_buffer_dirty(leaf);
195 btrfs_free_path(path);
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
206 BTRFS_I(inode)->disk_i_size = inode->i_size;
207 ret = btrfs_update_inode(trans, root, inode);
211 btrfs_free_path(path);
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
221 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
222 struct btrfs_root *root,
223 struct inode *inode, u64 start, u64 end,
224 size_t compressed_size, int compress_type,
225 struct page **compressed_pages)
227 u64 isize = i_size_read(inode);
228 u64 actual_end = min(end + 1, isize);
229 u64 inline_len = actual_end - start;
230 u64 aligned_end = (end + root->sectorsize - 1) &
231 ~((u64)root->sectorsize - 1);
232 u64 data_len = inline_len;
236 data_len = compressed_size;
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242 (actual_end & (root->sectorsize - 1)) == 0) ||
244 data_len > root->fs_info->max_inline) {
248 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compress_type, compressed_pages);
257 if (ret && ret != -ENOSPC) {
258 btrfs_abort_transaction(trans, root, ret);
260 } else if (ret == -ENOSPC) {
264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
269 struct async_extent {
274 unsigned long nr_pages;
276 struct list_head list;
281 struct btrfs_root *root;
282 struct page *locked_page;
285 struct list_head extents;
286 struct btrfs_work work;
289 static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
293 unsigned long nr_pages,
296 struct async_extent *async_extent;
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
299 BUG_ON(!async_extent); /* -ENOMEM */
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
305 async_extent->compress_type = compress_type;
306 list_add_tail(&async_extent->list, &cow->extents);
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
324 * are written in the same order that the flusher thread sent them
327 static noinline int compress_file_range(struct inode *inode,
328 struct page *locked_page,
330 struct async_cow *async_cow,
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct btrfs_trans_handle *trans;
336 u64 blocksize = root->sectorsize;
338 u64 isize = i_size_read(inode);
340 struct page **pages = NULL;
341 unsigned long nr_pages;
342 unsigned long nr_pages_ret = 0;
343 unsigned long total_compressed = 0;
344 unsigned long total_in = 0;
345 unsigned long max_compressed = 128 * 1024;
346 unsigned long max_uncompressed = 128 * 1024;
349 int compress_type = root->fs_info->compress_type;
351 /* if this is a small write inside eof, kick off a defrag */
352 if ((end - start + 1) < 16 * 1024 &&
353 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
354 btrfs_add_inode_defrag(NULL, inode);
356 actual_end = min_t(u64, isize, end + 1);
359 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
360 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
363 * we don't want to send crud past the end of i_size through
364 * compression, that's just a waste of CPU time. So, if the
365 * end of the file is before the start of our current
366 * requested range of bytes, we bail out to the uncompressed
367 * cleanup code that can deal with all of this.
369 * It isn't really the fastest way to fix things, but this is a
370 * very uncommon corner.
372 if (actual_end <= start)
373 goto cleanup_and_bail_uncompressed;
375 total_compressed = actual_end - start;
377 /* we want to make sure that amount of ram required to uncompress
378 * an extent is reasonable, so we limit the total size in ram
379 * of a compressed extent to 128k. This is a crucial number
380 * because it also controls how easily we can spread reads across
381 * cpus for decompression.
383 * We also want to make sure the amount of IO required to do
384 * a random read is reasonably small, so we limit the size of
385 * a compressed extent to 128k.
387 total_compressed = min(total_compressed, max_uncompressed);
388 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
389 num_bytes = max(blocksize, num_bytes);
394 * we do compression for mount -o compress and when the
395 * inode has not been flagged as nocompress. This flag can
396 * change at any time if we discover bad compression ratios.
398 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
399 (btrfs_test_opt(root, COMPRESS) ||
400 (BTRFS_I(inode)->force_compress) ||
401 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
403 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
405 /* just bail out to the uncompressed code */
409 if (BTRFS_I(inode)->force_compress)
410 compress_type = BTRFS_I(inode)->force_compress;
412 ret = btrfs_compress_pages(compress_type,
413 inode->i_mapping, start,
414 total_compressed, pages,
415 nr_pages, &nr_pages_ret,
421 unsigned long offset = total_compressed &
422 (PAGE_CACHE_SIZE - 1);
423 struct page *page = pages[nr_pages_ret - 1];
426 /* zero the tail end of the last page, we might be
427 * sending it down to disk
430 kaddr = kmap_atomic(page);
431 memset(kaddr + offset, 0,
432 PAGE_CACHE_SIZE - offset);
433 kunmap_atomic(kaddr);
440 trans = btrfs_join_transaction(root);
442 ret = PTR_ERR(trans);
444 goto cleanup_and_out;
446 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
448 /* lets try to make an inline extent */
449 if (ret || total_in < (actual_end - start)) {
450 /* we didn't compress the entire range, try
451 * to make an uncompressed inline extent.
453 ret = cow_file_range_inline(trans, root, inode,
454 start, end, 0, 0, NULL);
456 /* try making a compressed inline extent */
457 ret = cow_file_range_inline(trans, root, inode,
460 compress_type, pages);
464 * inline extent creation worked or returned error,
465 * we don't need to create any more async work items.
466 * Unlock and free up our temp pages.
468 extent_clear_unlock_delalloc(inode,
469 &BTRFS_I(inode)->io_tree,
471 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
472 EXTENT_CLEAR_DELALLOC |
473 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
475 btrfs_end_transaction(trans, root);
478 btrfs_end_transaction(trans, root);
483 * we aren't doing an inline extent round the compressed size
484 * up to a block size boundary so the allocator does sane
487 total_compressed = (total_compressed + blocksize - 1) &
491 * one last check to make sure the compression is really a
492 * win, compare the page count read with the blocks on disk
494 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
495 ~(PAGE_CACHE_SIZE - 1);
496 if (total_compressed >= total_in) {
499 num_bytes = total_in;
502 if (!will_compress && pages) {
504 * the compression code ran but failed to make things smaller,
505 * free any pages it allocated and our page pointer array
507 for (i = 0; i < nr_pages_ret; i++) {
508 WARN_ON(pages[i]->mapping);
509 page_cache_release(pages[i]);
513 total_compressed = 0;
516 /* flag the file so we don't compress in the future */
517 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
518 !(BTRFS_I(inode)->force_compress)) {
519 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
525 /* the async work queues will take care of doing actual
526 * allocation on disk for these compressed pages,
527 * and will submit them to the elevator.
529 add_async_extent(async_cow, start, num_bytes,
530 total_compressed, pages, nr_pages_ret,
533 if (start + num_bytes < end) {
540 cleanup_and_bail_uncompressed:
542 * No compression, but we still need to write the pages in
543 * the file we've been given so far. redirty the locked
544 * page if it corresponds to our extent and set things up
545 * for the async work queue to run cow_file_range to do
546 * the normal delalloc dance
548 if (page_offset(locked_page) >= start &&
549 page_offset(locked_page) <= end) {
550 __set_page_dirty_nobuffers(locked_page);
551 /* unlocked later on in the async handlers */
553 add_async_extent(async_cow, start, end - start + 1,
554 0, NULL, 0, BTRFS_COMPRESS_NONE);
562 for (i = 0; i < nr_pages_ret; i++) {
563 WARN_ON(pages[i]->mapping);
564 page_cache_release(pages[i]);
571 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
573 EXTENT_CLEAR_UNLOCK_PAGE |
575 EXTENT_CLEAR_DELALLOC |
576 EXTENT_SET_WRITEBACK |
577 EXTENT_END_WRITEBACK);
578 if (!trans || IS_ERR(trans))
579 btrfs_error(root->fs_info, ret, "Failed to join transaction");
581 btrfs_abort_transaction(trans, root, ret);
586 * phase two of compressed writeback. This is the ordered portion
587 * of the code, which only gets called in the order the work was
588 * queued. We walk all the async extents created by compress_file_range
589 * and send them down to the disk.
591 static noinline int submit_compressed_extents(struct inode *inode,
592 struct async_cow *async_cow)
594 struct async_extent *async_extent;
596 struct btrfs_trans_handle *trans;
597 struct btrfs_key ins;
598 struct extent_map *em;
599 struct btrfs_root *root = BTRFS_I(inode)->root;
600 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
601 struct extent_io_tree *io_tree;
604 if (list_empty(&async_cow->extents))
608 while (!list_empty(&async_cow->extents)) {
609 async_extent = list_entry(async_cow->extents.next,
610 struct async_extent, list);
611 list_del(&async_extent->list);
613 io_tree = &BTRFS_I(inode)->io_tree;
616 /* did the compression code fall back to uncompressed IO? */
617 if (!async_extent->pages) {
618 int page_started = 0;
619 unsigned long nr_written = 0;
621 lock_extent(io_tree, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1);
625 /* allocate blocks */
626 ret = cow_file_range(inode, async_cow->locked_page,
628 async_extent->start +
629 async_extent->ram_size - 1,
630 &page_started, &nr_written, 0);
635 * if page_started, cow_file_range inserted an
636 * inline extent and took care of all the unlocking
637 * and IO for us. Otherwise, we need to submit
638 * all those pages down to the drive.
640 if (!page_started && !ret)
641 extent_write_locked_range(io_tree,
642 inode, async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1,
652 lock_extent(io_tree, async_extent->start,
653 async_extent->start + async_extent->ram_size - 1);
655 trans = btrfs_join_transaction(root);
657 ret = PTR_ERR(trans);
659 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
660 ret = btrfs_reserve_extent(trans, root,
661 async_extent->compressed_size,
662 async_extent->compressed_size,
663 0, alloc_hint, &ins, 1);
664 if (ret && ret != -ENOSPC)
665 btrfs_abort_transaction(trans, root, ret);
666 btrfs_end_transaction(trans, root);
671 for (i = 0; i < async_extent->nr_pages; i++) {
672 WARN_ON(async_extent->pages[i]->mapping);
673 page_cache_release(async_extent->pages[i]);
675 kfree(async_extent->pages);
676 async_extent->nr_pages = 0;
677 async_extent->pages = NULL;
678 unlock_extent(io_tree, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1);
683 goto out_free; /* JDM: Requeue? */
687 * here we're doing allocation and writeback of the
690 btrfs_drop_extent_cache(inode, async_extent->start,
691 async_extent->start +
692 async_extent->ram_size - 1, 0);
694 em = alloc_extent_map();
695 BUG_ON(!em); /* -ENOMEM */
696 em->start = async_extent->start;
697 em->len = async_extent->ram_size;
698 em->orig_start = em->start;
700 em->block_start = ins.objectid;
701 em->block_len = ins.offset;
702 em->bdev = root->fs_info->fs_devices->latest_bdev;
703 em->compress_type = async_extent->compress_type;
704 set_bit(EXTENT_FLAG_PINNED, &em->flags);
705 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
708 write_lock(&em_tree->lock);
709 ret = add_extent_mapping(em_tree, em);
710 write_unlock(&em_tree->lock);
711 if (ret != -EEXIST) {
715 btrfs_drop_extent_cache(inode, async_extent->start,
716 async_extent->start +
717 async_extent->ram_size - 1, 0);
720 ret = btrfs_add_ordered_extent_compress(inode,
723 async_extent->ram_size,
725 BTRFS_ORDERED_COMPRESSED,
726 async_extent->compress_type);
727 BUG_ON(ret); /* -ENOMEM */
730 * clear dirty, set writeback and unlock the pages.
732 extent_clear_unlock_delalloc(inode,
733 &BTRFS_I(inode)->io_tree,
735 async_extent->start +
736 async_extent->ram_size - 1,
737 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
738 EXTENT_CLEAR_UNLOCK |
739 EXTENT_CLEAR_DELALLOC |
740 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
742 ret = btrfs_submit_compressed_write(inode,
744 async_extent->ram_size,
746 ins.offset, async_extent->pages,
747 async_extent->nr_pages);
749 BUG_ON(ret); /* -ENOMEM */
750 alloc_hint = ins.objectid + ins.offset;
762 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
766 struct extent_map *em;
769 read_lock(&em_tree->lock);
770 em = search_extent_mapping(em_tree, start, num_bytes);
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
779 em = search_extent_mapping(em_tree, 0, 0);
780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 alloc_hint = em->block_start;
785 alloc_hint = em->block_start;
789 read_unlock(&em_tree->lock);
795 * when extent_io.c finds a delayed allocation range in the file,
796 * the call backs end up in this code. The basic idea is to
797 * allocate extents on disk for the range, and create ordered data structs
798 * in ram to track those extents.
800 * locked_page is the page that writepage had locked already. We use
801 * it to make sure we don't do extra locks or unlocks.
803 * *page_started is set to one if we unlock locked_page and do everything
804 * required to start IO on it. It may be clean and already done with
807 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
809 struct btrfs_root *root,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
817 unsigned long ram_size;
820 u64 blocksize = root->sectorsize;
821 struct btrfs_key ins;
822 struct extent_map *em;
823 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
826 BUG_ON(btrfs_is_free_space_inode(inode));
828 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
829 num_bytes = max(blocksize, num_bytes);
830 disk_num_bytes = num_bytes;
832 /* if this is a small write inside eof, kick off defrag */
833 if (num_bytes < 64 * 1024 &&
834 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
835 btrfs_add_inode_defrag(trans, inode);
838 /* lets try to make an inline extent */
839 ret = cow_file_range_inline(trans, root, inode,
840 start, end, 0, 0, NULL);
842 extent_clear_unlock_delalloc(inode,
843 &BTRFS_I(inode)->io_tree,
845 EXTENT_CLEAR_UNLOCK_PAGE |
846 EXTENT_CLEAR_UNLOCK |
847 EXTENT_CLEAR_DELALLOC |
849 EXTENT_SET_WRITEBACK |
850 EXTENT_END_WRITEBACK);
852 *nr_written = *nr_written +
853 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
856 } else if (ret < 0) {
857 btrfs_abort_transaction(trans, root, ret);
862 BUG_ON(disk_num_bytes >
863 btrfs_super_total_bytes(root->fs_info->super_copy));
865 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
866 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
868 while (disk_num_bytes > 0) {
871 cur_alloc_size = disk_num_bytes;
872 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
873 root->sectorsize, 0, alloc_hint,
876 btrfs_abort_transaction(trans, root, ret);
880 em = alloc_extent_map();
881 BUG_ON(!em); /* -ENOMEM */
883 em->orig_start = em->start;
884 ram_size = ins.offset;
885 em->len = ins.offset;
887 em->block_start = ins.objectid;
888 em->block_len = ins.offset;
889 em->bdev = root->fs_info->fs_devices->latest_bdev;
890 set_bit(EXTENT_FLAG_PINNED, &em->flags);
893 write_lock(&em_tree->lock);
894 ret = add_extent_mapping(em_tree, em);
895 write_unlock(&em_tree->lock);
896 if (ret != -EEXIST) {
900 btrfs_drop_extent_cache(inode, start,
901 start + ram_size - 1, 0);
904 cur_alloc_size = ins.offset;
905 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
906 ram_size, cur_alloc_size, 0);
907 BUG_ON(ret); /* -ENOMEM */
909 if (root->root_key.objectid ==
910 BTRFS_DATA_RELOC_TREE_OBJECTID) {
911 ret = btrfs_reloc_clone_csums(inode, start,
914 btrfs_abort_transaction(trans, root, ret);
919 if (disk_num_bytes < cur_alloc_size)
922 /* we're not doing compressed IO, don't unlock the first
923 * page (which the caller expects to stay locked), don't
924 * clear any dirty bits and don't set any writeback bits
926 * Do set the Private2 bit so we know this page was properly
927 * setup for writepage
929 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
930 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
933 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
934 start, start + ram_size - 1,
936 disk_num_bytes -= cur_alloc_size;
937 num_bytes -= cur_alloc_size;
938 alloc_hint = ins.objectid + ins.offset;
939 start += cur_alloc_size;
945 extent_clear_unlock_delalloc(inode,
946 &BTRFS_I(inode)->io_tree,
947 start, end, locked_page,
948 EXTENT_CLEAR_UNLOCK_PAGE |
949 EXTENT_CLEAR_UNLOCK |
950 EXTENT_CLEAR_DELALLOC |
952 EXTENT_SET_WRITEBACK |
953 EXTENT_END_WRITEBACK);
958 static noinline int cow_file_range(struct inode *inode,
959 struct page *locked_page,
960 u64 start, u64 end, int *page_started,
961 unsigned long *nr_written,
964 struct btrfs_trans_handle *trans;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
968 trans = btrfs_join_transaction(root);
970 extent_clear_unlock_delalloc(inode,
971 &BTRFS_I(inode)->io_tree,
972 start, end, locked_page,
973 EXTENT_CLEAR_UNLOCK_PAGE |
974 EXTENT_CLEAR_UNLOCK |
975 EXTENT_CLEAR_DELALLOC |
977 EXTENT_SET_WRITEBACK |
978 EXTENT_END_WRITEBACK);
979 return PTR_ERR(trans);
981 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
983 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
984 page_started, nr_written, unlock);
986 btrfs_end_transaction(trans, root);
992 * work queue call back to started compression on a file and pages
994 static noinline void async_cow_start(struct btrfs_work *work)
996 struct async_cow *async_cow;
998 async_cow = container_of(work, struct async_cow, work);
1000 compress_file_range(async_cow->inode, async_cow->locked_page,
1001 async_cow->start, async_cow->end, async_cow,
1003 if (num_added == 0) {
1004 btrfs_add_delayed_iput(async_cow->inode);
1005 async_cow->inode = NULL;
1010 * work queue call back to submit previously compressed pages
1012 static noinline void async_cow_submit(struct btrfs_work *work)
1014 struct async_cow *async_cow;
1015 struct btrfs_root *root;
1016 unsigned long nr_pages;
1018 async_cow = container_of(work, struct async_cow, work);
1020 root = async_cow->root;
1021 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1024 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1026 waitqueue_active(&root->fs_info->async_submit_wait))
1027 wake_up(&root->fs_info->async_submit_wait);
1029 if (async_cow->inode)
1030 submit_compressed_extents(async_cow->inode, async_cow);
1033 static noinline void async_cow_free(struct btrfs_work *work)
1035 struct async_cow *async_cow;
1036 async_cow = container_of(work, struct async_cow, work);
1037 if (async_cow->inode)
1038 btrfs_add_delayed_iput(async_cow->inode);
1042 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1043 u64 start, u64 end, int *page_started,
1044 unsigned long *nr_written)
1046 struct async_cow *async_cow;
1047 struct btrfs_root *root = BTRFS_I(inode)->root;
1048 unsigned long nr_pages;
1050 int limit = 10 * 1024 * 1024;
1052 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1053 1, 0, NULL, GFP_NOFS);
1054 while (start < end) {
1055 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1056 BUG_ON(!async_cow); /* -ENOMEM */
1057 async_cow->inode = igrab(inode);
1058 async_cow->root = root;
1059 async_cow->locked_page = locked_page;
1060 async_cow->start = start;
1062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1065 cur_end = min(end, start + 512 * 1024 - 1);
1067 async_cow->end = cur_end;
1068 INIT_LIST_HEAD(&async_cow->extents);
1070 async_cow->work.func = async_cow_start;
1071 async_cow->work.ordered_func = async_cow_submit;
1072 async_cow->work.ordered_free = async_cow_free;
1073 async_cow->work.flags = 0;
1075 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1077 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1079 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1082 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1083 wait_event(root->fs_info->async_submit_wait,
1084 (atomic_read(&root->fs_info->async_delalloc_pages) <
1088 while (atomic_read(&root->fs_info->async_submit_draining) &&
1089 atomic_read(&root->fs_info->async_delalloc_pages)) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1095 *nr_written += nr_pages;
1096 start = cur_end + 1;
1102 static noinline int csum_exist_in_range(struct btrfs_root *root,
1103 u64 bytenr, u64 num_bytes)
1106 struct btrfs_ordered_sum *sums;
1109 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1110 bytenr + num_bytes - 1, &list, 0);
1111 if (ret == 0 && list_empty(&list))
1114 while (!list_empty(&list)) {
1115 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1116 list_del(&sums->list);
1123 * when nowcow writeback call back. This checks for snapshots or COW copies
1124 * of the extents that exist in the file, and COWs the file as required.
1126 * If no cow copies or snapshots exist, we write directly to the existing
1129 static noinline int run_delalloc_nocow(struct inode *inode,
1130 struct page *locked_page,
1131 u64 start, u64 end, int *page_started, int force,
1132 unsigned long *nr_written)
1134 struct btrfs_root *root = BTRFS_I(inode)->root;
1135 struct btrfs_trans_handle *trans;
1136 struct extent_buffer *leaf;
1137 struct btrfs_path *path;
1138 struct btrfs_file_extent_item *fi;
1139 struct btrfs_key found_key;
1152 u64 ino = btrfs_ino(inode);
1154 path = btrfs_alloc_path();
1156 extent_clear_unlock_delalloc(inode,
1157 &BTRFS_I(inode)->io_tree,
1158 start, end, locked_page,
1159 EXTENT_CLEAR_UNLOCK_PAGE |
1160 EXTENT_CLEAR_UNLOCK |
1161 EXTENT_CLEAR_DELALLOC |
1162 EXTENT_CLEAR_DIRTY |
1163 EXTENT_SET_WRITEBACK |
1164 EXTENT_END_WRITEBACK);
1168 nolock = btrfs_is_free_space_inode(inode);
1171 trans = btrfs_join_transaction_nolock(root);
1173 trans = btrfs_join_transaction(root);
1175 if (IS_ERR(trans)) {
1176 extent_clear_unlock_delalloc(inode,
1177 &BTRFS_I(inode)->io_tree,
1178 start, end, locked_page,
1179 EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK |
1181 EXTENT_CLEAR_DELALLOC |
1182 EXTENT_CLEAR_DIRTY |
1183 EXTENT_SET_WRITEBACK |
1184 EXTENT_END_WRITEBACK);
1185 btrfs_free_path(path);
1186 return PTR_ERR(trans);
1189 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1191 cow_start = (u64)-1;
1194 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1197 btrfs_abort_transaction(trans, root, ret);
1200 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1201 leaf = path->nodes[0];
1202 btrfs_item_key_to_cpu(leaf, &found_key,
1203 path->slots[0] - 1);
1204 if (found_key.objectid == ino &&
1205 found_key.type == BTRFS_EXTENT_DATA_KEY)
1210 leaf = path->nodes[0];
1211 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1212 ret = btrfs_next_leaf(root, path);
1214 btrfs_abort_transaction(trans, root, ret);
1219 leaf = path->nodes[0];
1225 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1227 if (found_key.objectid > ino ||
1228 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1229 found_key.offset > end)
1232 if (found_key.offset > cur_offset) {
1233 extent_end = found_key.offset;
1238 fi = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_file_extent_item);
1240 extent_type = btrfs_file_extent_type(leaf, fi);
1242 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1243 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1244 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1245 extent_offset = btrfs_file_extent_offset(leaf, fi);
1246 extent_end = found_key.offset +
1247 btrfs_file_extent_num_bytes(leaf, fi);
1248 if (extent_end <= start) {
1252 if (disk_bytenr == 0)
1254 if (btrfs_file_extent_compression(leaf, fi) ||
1255 btrfs_file_extent_encryption(leaf, fi) ||
1256 btrfs_file_extent_other_encoding(leaf, fi))
1258 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1260 if (btrfs_extent_readonly(root, disk_bytenr))
1262 if (btrfs_cross_ref_exist(trans, root, ino,
1264 extent_offset, disk_bytenr))
1266 disk_bytenr += extent_offset;
1267 disk_bytenr += cur_offset - found_key.offset;
1268 num_bytes = min(end + 1, extent_end) - cur_offset;
1270 * force cow if csum exists in the range.
1271 * this ensure that csum for a given extent are
1272 * either valid or do not exist.
1274 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1277 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1278 extent_end = found_key.offset +
1279 btrfs_file_extent_inline_len(leaf, fi);
1280 extent_end = ALIGN(extent_end, root->sectorsize);
1285 if (extent_end <= start) {
1290 if (cow_start == (u64)-1)
1291 cow_start = cur_offset;
1292 cur_offset = extent_end;
1293 if (cur_offset > end)
1299 btrfs_release_path(path);
1300 if (cow_start != (u64)-1) {
1301 ret = __cow_file_range(trans, inode, root, locked_page,
1302 cow_start, found_key.offset - 1,
1303 page_started, nr_written, 1);
1305 btrfs_abort_transaction(trans, root, ret);
1308 cow_start = (u64)-1;
1311 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1312 struct extent_map *em;
1313 struct extent_map_tree *em_tree;
1314 em_tree = &BTRFS_I(inode)->extent_tree;
1315 em = alloc_extent_map();
1316 BUG_ON(!em); /* -ENOMEM */
1317 em->start = cur_offset;
1318 em->orig_start = em->start;
1319 em->len = num_bytes;
1320 em->block_len = num_bytes;
1321 em->block_start = disk_bytenr;
1322 em->bdev = root->fs_info->fs_devices->latest_bdev;
1323 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1324 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1326 write_lock(&em_tree->lock);
1327 ret = add_extent_mapping(em_tree, em);
1328 write_unlock(&em_tree->lock);
1329 if (ret != -EEXIST) {
1330 free_extent_map(em);
1333 btrfs_drop_extent_cache(inode, em->start,
1334 em->start + em->len - 1, 0);
1336 type = BTRFS_ORDERED_PREALLOC;
1338 type = BTRFS_ORDERED_NOCOW;
1341 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1342 num_bytes, num_bytes, type);
1343 BUG_ON(ret); /* -ENOMEM */
1345 if (root->root_key.objectid ==
1346 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1347 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1350 btrfs_abort_transaction(trans, root, ret);
1355 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1356 cur_offset, cur_offset + num_bytes - 1,
1357 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1358 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1359 EXTENT_SET_PRIVATE2);
1360 cur_offset = extent_end;
1361 if (cur_offset > end)
1364 btrfs_release_path(path);
1366 if (cur_offset <= end && cow_start == (u64)-1) {
1367 cow_start = cur_offset;
1371 if (cow_start != (u64)-1) {
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1374 page_started, nr_written, 1);
1376 btrfs_abort_transaction(trans, root, ret);
1382 err = btrfs_end_transaction(trans, root);
1386 if (ret && cur_offset < end)
1387 extent_clear_unlock_delalloc(inode,
1388 &BTRFS_I(inode)->io_tree,
1389 cur_offset, end, locked_page,
1390 EXTENT_CLEAR_UNLOCK_PAGE |
1391 EXTENT_CLEAR_UNLOCK |
1392 EXTENT_CLEAR_DELALLOC |
1393 EXTENT_CLEAR_DIRTY |
1394 EXTENT_SET_WRITEBACK |
1395 EXTENT_END_WRITEBACK);
1397 btrfs_free_path(path);
1402 * extent_io.c call back to do delayed allocation processing
1404 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1405 u64 start, u64 end, int *page_started,
1406 unsigned long *nr_written)
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
1411 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1412 ret = run_delalloc_nocow(inode, locked_page, start, end,
1413 page_started, 1, nr_written);
1414 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1415 ret = run_delalloc_nocow(inode, locked_page, start, end,
1416 page_started, 0, nr_written);
1417 } else if (!btrfs_test_opt(root, COMPRESS) &&
1418 !(BTRFS_I(inode)->force_compress) &&
1419 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1420 ret = cow_file_range(inode, locked_page, start, end,
1421 page_started, nr_written, 1);
1423 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 &BTRFS_I(inode)->runtime_flags);
1425 ret = cow_file_range_async(inode, locked_page, start, end,
1426 page_started, nr_written);
1431 static void btrfs_split_extent_hook(struct inode *inode,
1432 struct extent_state *orig, u64 split)
1434 /* not delalloc, ignore it */
1435 if (!(orig->state & EXTENT_DELALLOC))
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents++;
1440 spin_unlock(&BTRFS_I(inode)->lock);
1444 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1445 * extents so we can keep track of new extents that are just merged onto old
1446 * extents, such as when we are doing sequential writes, so we can properly
1447 * account for the metadata space we'll need.
1449 static void btrfs_merge_extent_hook(struct inode *inode,
1450 struct extent_state *new,
1451 struct extent_state *other)
1453 /* not delalloc, ignore it */
1454 if (!(other->state & EXTENT_DELALLOC))
1457 spin_lock(&BTRFS_I(inode)->lock);
1458 BTRFS_I(inode)->outstanding_extents--;
1459 spin_unlock(&BTRFS_I(inode)->lock);
1463 * extent_io.c set_bit_hook, used to track delayed allocation
1464 * bytes in this file, and to maintain the list of inodes that
1465 * have pending delalloc work to be done.
1467 static void btrfs_set_bit_hook(struct inode *inode,
1468 struct extent_state *state, int *bits)
1472 * set_bit and clear bit hooks normally require _irqsave/restore
1473 * but in this case, we are only testing for the DELALLOC
1474 * bit, which is only set or cleared with irqs on
1476 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1477 struct btrfs_root *root = BTRFS_I(inode)->root;
1478 u64 len = state->end + 1 - state->start;
1479 bool do_list = !btrfs_is_free_space_inode(inode);
1481 if (*bits & EXTENT_FIRST_DELALLOC) {
1482 *bits &= ~EXTENT_FIRST_DELALLOC;
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents++;
1486 spin_unlock(&BTRFS_I(inode)->lock);
1489 spin_lock(&root->fs_info->delalloc_lock);
1490 BTRFS_I(inode)->delalloc_bytes += len;
1491 root->fs_info->delalloc_bytes += len;
1492 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1493 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1494 &root->fs_info->delalloc_inodes);
1496 spin_unlock(&root->fs_info->delalloc_lock);
1501 * extent_io.c clear_bit_hook, see set_bit_hook for why
1503 static void btrfs_clear_bit_hook(struct inode *inode,
1504 struct extent_state *state, int *bits)
1507 * set_bit and clear bit hooks normally require _irqsave/restore
1508 * but in this case, we are only testing for the DELALLOC
1509 * bit, which is only set or cleared with irqs on
1511 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1512 struct btrfs_root *root = BTRFS_I(inode)->root;
1513 u64 len = state->end + 1 - state->start;
1514 bool do_list = !btrfs_is_free_space_inode(inode);
1516 if (*bits & EXTENT_FIRST_DELALLOC) {
1517 *bits &= ~EXTENT_FIRST_DELALLOC;
1518 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1519 spin_lock(&BTRFS_I(inode)->lock);
1520 BTRFS_I(inode)->outstanding_extents--;
1521 spin_unlock(&BTRFS_I(inode)->lock);
1524 if (*bits & EXTENT_DO_ACCOUNTING)
1525 btrfs_delalloc_release_metadata(inode, len);
1527 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1529 btrfs_free_reserved_data_space(inode, len);
1531 spin_lock(&root->fs_info->delalloc_lock);
1532 root->fs_info->delalloc_bytes -= len;
1533 BTRFS_I(inode)->delalloc_bytes -= len;
1535 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1536 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1537 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1539 spin_unlock(&root->fs_info->delalloc_lock);
1544 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1545 * we don't create bios that span stripes or chunks
1547 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1548 size_t size, struct bio *bio,
1549 unsigned long bio_flags)
1551 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1552 u64 logical = (u64)bio->bi_sector << 9;
1557 if (bio_flags & EXTENT_BIO_COMPRESSED)
1560 length = bio->bi_size;
1561 map_length = length;
1562 ret = btrfs_map_block(root->fs_info, READ, logical,
1563 &map_length, NULL, 0);
1564 /* Will always return 0 with map_multi == NULL */
1566 if (map_length < length + size)
1572 * in order to insert checksums into the metadata in large chunks,
1573 * we wait until bio submission time. All the pages in the bio are
1574 * checksummed and sums are attached onto the ordered extent record.
1576 * At IO completion time the cums attached on the ordered extent record
1577 * are inserted into the btree
1579 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1580 struct bio *bio, int mirror_num,
1581 unsigned long bio_flags,
1584 struct btrfs_root *root = BTRFS_I(inode)->root;
1587 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1588 BUG_ON(ret); /* -ENOMEM */
1593 * in order to insert checksums into the metadata in large chunks,
1594 * we wait until bio submission time. All the pages in the bio are
1595 * checksummed and sums are attached onto the ordered extent record.
1597 * At IO completion time the cums attached on the ordered extent record
1598 * are inserted into the btree
1600 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1601 int mirror_num, unsigned long bio_flags,
1604 struct btrfs_root *root = BTRFS_I(inode)->root;
1607 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1609 bio_endio(bio, ret);
1614 * extent_io.c submission hook. This does the right thing for csum calculation
1615 * on write, or reading the csums from the tree before a read
1617 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1618 int mirror_num, unsigned long bio_flags,
1621 struct btrfs_root *root = BTRFS_I(inode)->root;
1625 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1627 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1629 if (btrfs_is_free_space_inode(inode))
1632 if (!(rw & REQ_WRITE)) {
1633 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1637 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1638 ret = btrfs_submit_compressed_read(inode, bio,
1642 } else if (!skip_sum) {
1643 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1648 } else if (async && !skip_sum) {
1649 /* csum items have already been cloned */
1650 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1652 /* we're doing a write, do the async checksumming */
1653 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1654 inode, rw, bio, mirror_num,
1655 bio_flags, bio_offset,
1656 __btrfs_submit_bio_start,
1657 __btrfs_submit_bio_done);
1659 } else if (!skip_sum) {
1660 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1666 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1670 bio_endio(bio, ret);
1675 * given a list of ordered sums record them in the inode. This happens
1676 * at IO completion time based on sums calculated at bio submission time.
1678 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1679 struct inode *inode, u64 file_offset,
1680 struct list_head *list)
1682 struct btrfs_ordered_sum *sum;
1684 list_for_each_entry(sum, list, list) {
1685 btrfs_csum_file_blocks(trans,
1686 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1691 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1692 struct extent_state **cached_state)
1694 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1695 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1696 cached_state, GFP_NOFS);
1699 /* see btrfs_writepage_start_hook for details on why this is required */
1700 struct btrfs_writepage_fixup {
1702 struct btrfs_work work;
1705 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1707 struct btrfs_writepage_fixup *fixup;
1708 struct btrfs_ordered_extent *ordered;
1709 struct extent_state *cached_state = NULL;
1711 struct inode *inode;
1716 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1720 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1721 ClearPageChecked(page);
1725 inode = page->mapping->host;
1726 page_start = page_offset(page);
1727 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1729 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1732 /* already ordered? We're done */
1733 if (PagePrivate2(page))
1736 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1738 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1739 page_end, &cached_state, GFP_NOFS);
1741 btrfs_start_ordered_extent(inode, ordered, 1);
1742 btrfs_put_ordered_extent(ordered);
1746 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1748 mapping_set_error(page->mapping, ret);
1749 end_extent_writepage(page, ret, page_start, page_end);
1750 ClearPageChecked(page);
1754 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1755 ClearPageChecked(page);
1756 set_page_dirty(page);
1758 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1759 &cached_state, GFP_NOFS);
1762 page_cache_release(page);
1767 * There are a few paths in the higher layers of the kernel that directly
1768 * set the page dirty bit without asking the filesystem if it is a
1769 * good idea. This causes problems because we want to make sure COW
1770 * properly happens and the data=ordered rules are followed.
1772 * In our case any range that doesn't have the ORDERED bit set
1773 * hasn't been properly setup for IO. We kick off an async process
1774 * to fix it up. The async helper will wait for ordered extents, set
1775 * the delalloc bit and make it safe to write the page.
1777 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1779 struct inode *inode = page->mapping->host;
1780 struct btrfs_writepage_fixup *fixup;
1781 struct btrfs_root *root = BTRFS_I(inode)->root;
1783 /* this page is properly in the ordered list */
1784 if (TestClearPagePrivate2(page))
1787 if (PageChecked(page))
1790 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1794 SetPageChecked(page);
1795 page_cache_get(page);
1796 fixup->work.func = btrfs_writepage_fixup_worker;
1798 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1802 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1803 struct inode *inode, u64 file_pos,
1804 u64 disk_bytenr, u64 disk_num_bytes,
1805 u64 num_bytes, u64 ram_bytes,
1806 u8 compression, u8 encryption,
1807 u16 other_encoding, int extent_type)
1809 struct btrfs_root *root = BTRFS_I(inode)->root;
1810 struct btrfs_file_extent_item *fi;
1811 struct btrfs_path *path;
1812 struct extent_buffer *leaf;
1813 struct btrfs_key ins;
1816 path = btrfs_alloc_path();
1820 path->leave_spinning = 1;
1823 * we may be replacing one extent in the tree with another.
1824 * The new extent is pinned in the extent map, and we don't want
1825 * to drop it from the cache until it is completely in the btree.
1827 * So, tell btrfs_drop_extents to leave this extent in the cache.
1828 * the caller is expected to unpin it and allow it to be merged
1831 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1832 file_pos + num_bytes, 0);
1836 ins.objectid = btrfs_ino(inode);
1837 ins.offset = file_pos;
1838 ins.type = BTRFS_EXTENT_DATA_KEY;
1839 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1842 leaf = path->nodes[0];
1843 fi = btrfs_item_ptr(leaf, path->slots[0],
1844 struct btrfs_file_extent_item);
1845 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1846 btrfs_set_file_extent_type(leaf, fi, extent_type);
1847 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1848 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1849 btrfs_set_file_extent_offset(leaf, fi, 0);
1850 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1851 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1852 btrfs_set_file_extent_compression(leaf, fi, compression);
1853 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1854 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1856 btrfs_mark_buffer_dirty(leaf);
1857 btrfs_release_path(path);
1859 inode_add_bytes(inode, num_bytes);
1861 ins.objectid = disk_bytenr;
1862 ins.offset = disk_num_bytes;
1863 ins.type = BTRFS_EXTENT_ITEM_KEY;
1864 ret = btrfs_alloc_reserved_file_extent(trans, root,
1865 root->root_key.objectid,
1866 btrfs_ino(inode), file_pos, &ins);
1868 btrfs_free_path(path);
1874 * helper function for btrfs_finish_ordered_io, this
1875 * just reads in some of the csum leaves to prime them into ram
1876 * before we start the transaction. It limits the amount of btree
1877 * reads required while inside the transaction.
1879 /* as ordered data IO finishes, this gets called so we can finish
1880 * an ordered extent if the range of bytes in the file it covers are
1883 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1885 struct inode *inode = ordered_extent->inode;
1886 struct btrfs_root *root = BTRFS_I(inode)->root;
1887 struct btrfs_trans_handle *trans = NULL;
1888 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1889 struct extent_state *cached_state = NULL;
1890 int compress_type = 0;
1894 nolock = btrfs_is_free_space_inode(inode);
1896 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1901 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1902 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1903 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1906 trans = btrfs_join_transaction_nolock(root);
1908 trans = btrfs_join_transaction(root);
1909 if (IS_ERR(trans)) {
1910 ret = PTR_ERR(trans);
1914 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1915 ret = btrfs_update_inode_fallback(trans, root, inode);
1916 if (ret) /* -ENOMEM or corruption */
1917 btrfs_abort_transaction(trans, root, ret);
1922 lock_extent_bits(io_tree, ordered_extent->file_offset,
1923 ordered_extent->file_offset + ordered_extent->len - 1,
1927 trans = btrfs_join_transaction_nolock(root);
1929 trans = btrfs_join_transaction(root);
1930 if (IS_ERR(trans)) {
1931 ret = PTR_ERR(trans);
1935 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1937 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1938 compress_type = ordered_extent->compress_type;
1939 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1940 BUG_ON(compress_type);
1941 ret = btrfs_mark_extent_written(trans, inode,
1942 ordered_extent->file_offset,
1943 ordered_extent->file_offset +
1944 ordered_extent->len);
1946 BUG_ON(root == root->fs_info->tree_root);
1947 ret = insert_reserved_file_extent(trans, inode,
1948 ordered_extent->file_offset,
1949 ordered_extent->start,
1950 ordered_extent->disk_len,
1951 ordered_extent->len,
1952 ordered_extent->len,
1953 compress_type, 0, 0,
1954 BTRFS_FILE_EXTENT_REG);
1956 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1957 ordered_extent->file_offset, ordered_extent->len,
1960 btrfs_abort_transaction(trans, root, ret);
1964 add_pending_csums(trans, inode, ordered_extent->file_offset,
1965 &ordered_extent->list);
1967 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1968 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1969 ret = btrfs_update_inode_fallback(trans, root, inode);
1970 if (ret) { /* -ENOMEM or corruption */
1971 btrfs_abort_transaction(trans, root, ret);
1975 btrfs_set_inode_last_trans(trans, inode);
1979 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1980 ordered_extent->file_offset +
1981 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1983 if (root != root->fs_info->tree_root)
1984 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1986 btrfs_end_transaction(trans, root);
1989 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1990 ordered_extent->file_offset +
1991 ordered_extent->len - 1, NULL, GFP_NOFS);
1994 * This needs to be done to make sure anybody waiting knows we are done
1995 * updating everything for this ordered extent.
1997 btrfs_remove_ordered_extent(inode, ordered_extent);
2000 btrfs_put_ordered_extent(ordered_extent);
2001 /* once for the tree */
2002 btrfs_put_ordered_extent(ordered_extent);
2007 static void finish_ordered_fn(struct btrfs_work *work)
2009 struct btrfs_ordered_extent *ordered_extent;
2010 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2011 btrfs_finish_ordered_io(ordered_extent);
2014 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2015 struct extent_state *state, int uptodate)
2017 struct inode *inode = page->mapping->host;
2018 struct btrfs_root *root = BTRFS_I(inode)->root;
2019 struct btrfs_ordered_extent *ordered_extent = NULL;
2020 struct btrfs_workers *workers;
2022 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2024 ClearPagePrivate2(page);
2025 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2026 end - start + 1, uptodate))
2029 ordered_extent->work.func = finish_ordered_fn;
2030 ordered_extent->work.flags = 0;
2032 if (btrfs_is_free_space_inode(inode))
2033 workers = &root->fs_info->endio_freespace_worker;
2035 workers = &root->fs_info->endio_write_workers;
2036 btrfs_queue_worker(workers, &ordered_extent->work);
2042 * when reads are done, we need to check csums to verify the data is correct
2043 * if there's a match, we allow the bio to finish. If not, the code in
2044 * extent_io.c will try to find good copies for us.
2046 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2047 struct extent_state *state, int mirror)
2049 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2050 struct inode *inode = page->mapping->host;
2051 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2053 u64 private = ~(u32)0;
2055 struct btrfs_root *root = BTRFS_I(inode)->root;
2058 if (PageChecked(page)) {
2059 ClearPageChecked(page);
2063 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2066 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2067 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2068 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2073 if (state && state->start == start) {
2074 private = state->private;
2077 ret = get_state_private(io_tree, start, &private);
2079 kaddr = kmap_atomic(page);
2083 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2084 btrfs_csum_final(csum, (char *)&csum);
2085 if (csum != private)
2088 kunmap_atomic(kaddr);
2093 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2095 (unsigned long long)btrfs_ino(page->mapping->host),
2096 (unsigned long long)start, csum,
2097 (unsigned long long)private);
2098 memset(kaddr + offset, 1, end - start + 1);
2099 flush_dcache_page(page);
2100 kunmap_atomic(kaddr);
2106 struct delayed_iput {
2107 struct list_head list;
2108 struct inode *inode;
2111 /* JDM: If this is fs-wide, why can't we add a pointer to
2112 * btrfs_inode instead and avoid the allocation? */
2113 void btrfs_add_delayed_iput(struct inode *inode)
2115 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2116 struct delayed_iput *delayed;
2118 if (atomic_add_unless(&inode->i_count, -1, 1))
2121 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2122 delayed->inode = inode;
2124 spin_lock(&fs_info->delayed_iput_lock);
2125 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2126 spin_unlock(&fs_info->delayed_iput_lock);
2129 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2132 struct btrfs_fs_info *fs_info = root->fs_info;
2133 struct delayed_iput *delayed;
2136 spin_lock(&fs_info->delayed_iput_lock);
2137 empty = list_empty(&fs_info->delayed_iputs);
2138 spin_unlock(&fs_info->delayed_iput_lock);
2142 spin_lock(&fs_info->delayed_iput_lock);
2143 list_splice_init(&fs_info->delayed_iputs, &list);
2144 spin_unlock(&fs_info->delayed_iput_lock);
2146 while (!list_empty(&list)) {
2147 delayed = list_entry(list.next, struct delayed_iput, list);
2148 list_del(&delayed->list);
2149 iput(delayed->inode);
2154 enum btrfs_orphan_cleanup_state {
2155 ORPHAN_CLEANUP_STARTED = 1,
2156 ORPHAN_CLEANUP_DONE = 2,
2160 * This is called in transaction commit time. If there are no orphan
2161 * files in the subvolume, it removes orphan item and frees block_rsv
2164 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root)
2167 struct btrfs_block_rsv *block_rsv;
2170 if (atomic_read(&root->orphan_inodes) ||
2171 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2174 spin_lock(&root->orphan_lock);
2175 if (atomic_read(&root->orphan_inodes)) {
2176 spin_unlock(&root->orphan_lock);
2180 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2181 spin_unlock(&root->orphan_lock);
2185 block_rsv = root->orphan_block_rsv;
2186 root->orphan_block_rsv = NULL;
2187 spin_unlock(&root->orphan_lock);
2189 if (root->orphan_item_inserted &&
2190 btrfs_root_refs(&root->root_item) > 0) {
2191 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2192 root->root_key.objectid);
2194 root->orphan_item_inserted = 0;
2198 WARN_ON(block_rsv->size > 0);
2199 btrfs_free_block_rsv(root, block_rsv);
2204 * This creates an orphan entry for the given inode in case something goes
2205 * wrong in the middle of an unlink/truncate.
2207 * NOTE: caller of this function should reserve 5 units of metadata for
2210 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2212 struct btrfs_root *root = BTRFS_I(inode)->root;
2213 struct btrfs_block_rsv *block_rsv = NULL;
2218 if (!root->orphan_block_rsv) {
2219 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2224 spin_lock(&root->orphan_lock);
2225 if (!root->orphan_block_rsv) {
2226 root->orphan_block_rsv = block_rsv;
2227 } else if (block_rsv) {
2228 btrfs_free_block_rsv(root, block_rsv);
2232 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2233 &BTRFS_I(inode)->runtime_flags)) {
2236 * For proper ENOSPC handling, we should do orphan
2237 * cleanup when mounting. But this introduces backward
2238 * compatibility issue.
2240 if (!xchg(&root->orphan_item_inserted, 1))
2246 atomic_inc(&root->orphan_inodes);
2249 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2250 &BTRFS_I(inode)->runtime_flags))
2252 spin_unlock(&root->orphan_lock);
2254 /* grab metadata reservation from transaction handle */
2256 ret = btrfs_orphan_reserve_metadata(trans, inode);
2257 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2260 /* insert an orphan item to track this unlinked/truncated file */
2262 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2263 if (ret && ret != -EEXIST) {
2264 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2265 &BTRFS_I(inode)->runtime_flags);
2266 btrfs_abort_transaction(trans, root, ret);
2272 /* insert an orphan item to track subvolume contains orphan files */
2274 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2275 root->root_key.objectid);
2276 if (ret && ret != -EEXIST) {
2277 btrfs_abort_transaction(trans, root, ret);
2285 * We have done the truncate/delete so we can go ahead and remove the orphan
2286 * item for this particular inode.
2288 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2290 struct btrfs_root *root = BTRFS_I(inode)->root;
2291 int delete_item = 0;
2292 int release_rsv = 0;
2295 spin_lock(&root->orphan_lock);
2296 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2297 &BTRFS_I(inode)->runtime_flags))
2300 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2301 &BTRFS_I(inode)->runtime_flags))
2303 spin_unlock(&root->orphan_lock);
2305 if (trans && delete_item) {
2306 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2307 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2311 btrfs_orphan_release_metadata(inode);
2312 atomic_dec(&root->orphan_inodes);
2319 * this cleans up any orphans that may be left on the list from the last use
2322 int btrfs_orphan_cleanup(struct btrfs_root *root)
2324 struct btrfs_path *path;
2325 struct extent_buffer *leaf;
2326 struct btrfs_key key, found_key;
2327 struct btrfs_trans_handle *trans;
2328 struct inode *inode;
2329 u64 last_objectid = 0;
2330 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2332 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2335 path = btrfs_alloc_path();
2342 key.objectid = BTRFS_ORPHAN_OBJECTID;
2343 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2344 key.offset = (u64)-1;
2347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2352 * if ret == 0 means we found what we were searching for, which
2353 * is weird, but possible, so only screw with path if we didn't
2354 * find the key and see if we have stuff that matches
2358 if (path->slots[0] == 0)
2363 /* pull out the item */
2364 leaf = path->nodes[0];
2365 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2367 /* make sure the item matches what we want */
2368 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2370 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2373 /* release the path since we're done with it */
2374 btrfs_release_path(path);
2377 * this is where we are basically btrfs_lookup, without the
2378 * crossing root thing. we store the inode number in the
2379 * offset of the orphan item.
2382 if (found_key.offset == last_objectid) {
2383 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2384 "stopping orphan cleanup\n");
2389 last_objectid = found_key.offset;
2391 found_key.objectid = found_key.offset;
2392 found_key.type = BTRFS_INODE_ITEM_KEY;
2393 found_key.offset = 0;
2394 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2395 ret = PTR_RET(inode);
2396 if (ret && ret != -ESTALE)
2399 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2400 struct btrfs_root *dead_root;
2401 struct btrfs_fs_info *fs_info = root->fs_info;
2402 int is_dead_root = 0;
2405 * this is an orphan in the tree root. Currently these
2406 * could come from 2 sources:
2407 * a) a snapshot deletion in progress
2408 * b) a free space cache inode
2409 * We need to distinguish those two, as the snapshot
2410 * orphan must not get deleted.
2411 * find_dead_roots already ran before us, so if this
2412 * is a snapshot deletion, we should find the root
2413 * in the dead_roots list
2415 spin_lock(&fs_info->trans_lock);
2416 list_for_each_entry(dead_root, &fs_info->dead_roots,
2418 if (dead_root->root_key.objectid ==
2419 found_key.objectid) {
2424 spin_unlock(&fs_info->trans_lock);
2426 /* prevent this orphan from being found again */
2427 key.offset = found_key.objectid - 1;
2432 * Inode is already gone but the orphan item is still there,
2433 * kill the orphan item.
2435 if (ret == -ESTALE) {
2436 trans = btrfs_start_transaction(root, 1);
2437 if (IS_ERR(trans)) {
2438 ret = PTR_ERR(trans);
2441 printk(KERN_ERR "auto deleting %Lu\n",
2442 found_key.objectid);
2443 ret = btrfs_del_orphan_item(trans, root,
2444 found_key.objectid);
2445 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2446 btrfs_end_transaction(trans, root);
2451 * add this inode to the orphan list so btrfs_orphan_del does
2452 * the proper thing when we hit it
2454 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2455 &BTRFS_I(inode)->runtime_flags);
2457 /* if we have links, this was a truncate, lets do that */
2458 if (inode->i_nlink) {
2459 if (!S_ISREG(inode->i_mode)) {
2465 ret = btrfs_truncate(inode);
2470 /* this will do delete_inode and everything for us */
2475 /* release the path since we're done with it */
2476 btrfs_release_path(path);
2478 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2480 if (root->orphan_block_rsv)
2481 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2484 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2485 trans = btrfs_join_transaction(root);
2487 btrfs_end_transaction(trans, root);
2491 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2493 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2497 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2498 btrfs_free_path(path);
2503 * very simple check to peek ahead in the leaf looking for xattrs. If we
2504 * don't find any xattrs, we know there can't be any acls.
2506 * slot is the slot the inode is in, objectid is the objectid of the inode
2508 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2509 int slot, u64 objectid)
2511 u32 nritems = btrfs_header_nritems(leaf);
2512 struct btrfs_key found_key;
2516 while (slot < nritems) {
2517 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2519 /* we found a different objectid, there must not be acls */
2520 if (found_key.objectid != objectid)
2523 /* we found an xattr, assume we've got an acl */
2524 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2528 * we found a key greater than an xattr key, there can't
2529 * be any acls later on
2531 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2538 * it goes inode, inode backrefs, xattrs, extents,
2539 * so if there are a ton of hard links to an inode there can
2540 * be a lot of backrefs. Don't waste time searching too hard,
2541 * this is just an optimization
2546 /* we hit the end of the leaf before we found an xattr or
2547 * something larger than an xattr. We have to assume the inode
2554 * read an inode from the btree into the in-memory inode
2556 static void btrfs_read_locked_inode(struct inode *inode)
2558 struct btrfs_path *path;
2559 struct extent_buffer *leaf;
2560 struct btrfs_inode_item *inode_item;
2561 struct btrfs_timespec *tspec;
2562 struct btrfs_root *root = BTRFS_I(inode)->root;
2563 struct btrfs_key location;
2567 bool filled = false;
2569 ret = btrfs_fill_inode(inode, &rdev);
2573 path = btrfs_alloc_path();
2577 path->leave_spinning = 1;
2578 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2580 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2584 leaf = path->nodes[0];
2589 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2590 struct btrfs_inode_item);
2591 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2592 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2593 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2594 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
2595 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2597 tspec = btrfs_inode_atime(inode_item);
2598 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2599 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2601 tspec = btrfs_inode_mtime(inode_item);
2602 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2603 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2605 tspec = btrfs_inode_ctime(inode_item);
2606 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2607 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2609 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2610 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2611 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2614 * If we were modified in the current generation and evicted from memory
2615 * and then re-read we need to do a full sync since we don't have any
2616 * idea about which extents were modified before we were evicted from
2619 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2620 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2621 &BTRFS_I(inode)->runtime_flags);
2623 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2624 inode->i_generation = BTRFS_I(inode)->generation;
2626 rdev = btrfs_inode_rdev(leaf, inode_item);
2628 BTRFS_I(inode)->index_cnt = (u64)-1;
2629 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2632 * try to precache a NULL acl entry for files that don't have
2633 * any xattrs or acls
2635 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2638 cache_no_acl(inode);
2640 btrfs_free_path(path);
2642 switch (inode->i_mode & S_IFMT) {
2644 inode->i_mapping->a_ops = &btrfs_aops;
2645 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2646 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2647 inode->i_fop = &btrfs_file_operations;
2648 inode->i_op = &btrfs_file_inode_operations;
2651 inode->i_fop = &btrfs_dir_file_operations;
2652 if (root == root->fs_info->tree_root)
2653 inode->i_op = &btrfs_dir_ro_inode_operations;
2655 inode->i_op = &btrfs_dir_inode_operations;
2658 inode->i_op = &btrfs_symlink_inode_operations;
2659 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2660 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2663 inode->i_op = &btrfs_special_inode_operations;
2664 init_special_inode(inode, inode->i_mode, rdev);
2668 btrfs_update_iflags(inode);
2672 btrfs_free_path(path);
2673 make_bad_inode(inode);
2677 * given a leaf and an inode, copy the inode fields into the leaf
2679 static void fill_inode_item(struct btrfs_trans_handle *trans,
2680 struct extent_buffer *leaf,
2681 struct btrfs_inode_item *item,
2682 struct inode *inode)
2684 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2685 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
2686 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2687 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2688 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2690 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2691 inode->i_atime.tv_sec);
2692 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2693 inode->i_atime.tv_nsec);
2695 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2696 inode->i_mtime.tv_sec);
2697 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2698 inode->i_mtime.tv_nsec);
2700 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2701 inode->i_ctime.tv_sec);
2702 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2703 inode->i_ctime.tv_nsec);
2705 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2706 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2707 btrfs_set_inode_sequence(leaf, item, inode->i_version);
2708 btrfs_set_inode_transid(leaf, item, trans->transid);
2709 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2710 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2711 btrfs_set_inode_block_group(leaf, item, 0);
2715 * copy everything in the in-memory inode into the btree.
2717 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2718 struct btrfs_root *root, struct inode *inode)
2720 struct btrfs_inode_item *inode_item;
2721 struct btrfs_path *path;
2722 struct extent_buffer *leaf;
2725 path = btrfs_alloc_path();
2729 path->leave_spinning = 1;
2730 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2738 btrfs_unlock_up_safe(path, 1);
2739 leaf = path->nodes[0];
2740 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2741 struct btrfs_inode_item);
2743 fill_inode_item(trans, leaf, inode_item, inode);
2744 btrfs_mark_buffer_dirty(leaf);
2745 btrfs_set_inode_last_trans(trans, inode);
2748 btrfs_free_path(path);
2753 * copy everything in the in-memory inode into the btree.
2755 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2756 struct btrfs_root *root, struct inode *inode)
2761 * If the inode is a free space inode, we can deadlock during commit
2762 * if we put it into the delayed code.
2764 * The data relocation inode should also be directly updated
2767 if (!btrfs_is_free_space_inode(inode)
2768 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2769 btrfs_update_root_times(trans, root);
2771 ret = btrfs_delayed_update_inode(trans, root, inode);
2773 btrfs_set_inode_last_trans(trans, inode);
2777 return btrfs_update_inode_item(trans, root, inode);
2780 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2781 struct btrfs_root *root,
2782 struct inode *inode)
2786 ret = btrfs_update_inode(trans, root, inode);
2788 return btrfs_update_inode_item(trans, root, inode);
2793 * unlink helper that gets used here in inode.c and in the tree logging
2794 * recovery code. It remove a link in a directory with a given name, and
2795 * also drops the back refs in the inode to the directory
2797 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2798 struct btrfs_root *root,
2799 struct inode *dir, struct inode *inode,
2800 const char *name, int name_len)
2802 struct btrfs_path *path;
2804 struct extent_buffer *leaf;
2805 struct btrfs_dir_item *di;
2806 struct btrfs_key key;
2808 u64 ino = btrfs_ino(inode);
2809 u64 dir_ino = btrfs_ino(dir);
2811 path = btrfs_alloc_path();
2817 path->leave_spinning = 1;
2818 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2819 name, name_len, -1);
2828 leaf = path->nodes[0];
2829 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2830 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2833 btrfs_release_path(path);
2835 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2838 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2839 "inode %llu parent %llu\n", name_len, name,
2840 (unsigned long long)ino, (unsigned long long)dir_ino);
2841 btrfs_abort_transaction(trans, root, ret);
2845 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2847 btrfs_abort_transaction(trans, root, ret);
2851 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2853 if (ret != 0 && ret != -ENOENT) {
2854 btrfs_abort_transaction(trans, root, ret);
2858 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2863 btrfs_free_path(path);
2867 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2868 inode_inc_iversion(inode);
2869 inode_inc_iversion(dir);
2870 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2871 ret = btrfs_update_inode(trans, root, dir);
2876 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2877 struct btrfs_root *root,
2878 struct inode *dir, struct inode *inode,
2879 const char *name, int name_len)
2882 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2884 btrfs_drop_nlink(inode);
2885 ret = btrfs_update_inode(trans, root, inode);
2891 /* helper to check if there is any shared block in the path */
2892 static int check_path_shared(struct btrfs_root *root,
2893 struct btrfs_path *path)
2895 struct extent_buffer *eb;
2899 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2902 if (!path->nodes[level])
2904 eb = path->nodes[level];
2905 if (!btrfs_block_can_be_shared(root, eb))
2907 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2916 * helper to start transaction for unlink and rmdir.
2918 * unlink and rmdir are special in btrfs, they do not always free space.
2919 * so in enospc case, we should make sure they will free space before
2920 * allowing them to use the global metadata reservation.
2922 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2923 struct dentry *dentry)
2925 struct btrfs_trans_handle *trans;
2926 struct btrfs_root *root = BTRFS_I(dir)->root;
2927 struct btrfs_path *path;
2928 struct btrfs_dir_item *di;
2929 struct inode *inode = dentry->d_inode;
2934 u64 ino = btrfs_ino(inode);
2935 u64 dir_ino = btrfs_ino(dir);
2938 * 1 for the possible orphan item
2939 * 1 for the dir item
2940 * 1 for the dir index
2941 * 1 for the inode ref
2942 * 1 for the inode ref in the tree log
2943 * 2 for the dir entries in the log
2946 trans = btrfs_start_transaction(root, 8);
2947 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2950 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2951 return ERR_PTR(-ENOSPC);
2953 /* check if there is someone else holds reference */
2954 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2955 return ERR_PTR(-ENOSPC);
2957 if (atomic_read(&inode->i_count) > 2)
2958 return ERR_PTR(-ENOSPC);
2960 if (xchg(&root->fs_info->enospc_unlink, 1))
2961 return ERR_PTR(-ENOSPC);
2963 path = btrfs_alloc_path();
2965 root->fs_info->enospc_unlink = 0;
2966 return ERR_PTR(-ENOMEM);
2969 /* 1 for the orphan item */
2970 trans = btrfs_start_transaction(root, 1);
2971 if (IS_ERR(trans)) {
2972 btrfs_free_path(path);
2973 root->fs_info->enospc_unlink = 0;
2977 path->skip_locking = 1;
2978 path->search_commit_root = 1;
2980 ret = btrfs_lookup_inode(trans, root, path,
2981 &BTRFS_I(dir)->location, 0);
2987 if (check_path_shared(root, path))
2992 btrfs_release_path(path);
2994 ret = btrfs_lookup_inode(trans, root, path,
2995 &BTRFS_I(inode)->location, 0);
3001 if (check_path_shared(root, path))
3006 btrfs_release_path(path);
3008 if (ret == 0 && S_ISREG(inode->i_mode)) {
3009 ret = btrfs_lookup_file_extent(trans, root, path,
3015 BUG_ON(ret == 0); /* Corruption */
3016 if (check_path_shared(root, path))
3018 btrfs_release_path(path);
3026 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3027 dentry->d_name.name, dentry->d_name.len, 0);
3033 if (check_path_shared(root, path))
3039 btrfs_release_path(path);
3041 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3042 dentry->d_name.len, ino, dir_ino, 0,
3049 if (check_path_shared(root, path))
3052 btrfs_release_path(path);
3055 * This is a commit root search, if we can lookup inode item and other
3056 * relative items in the commit root, it means the transaction of
3057 * dir/file creation has been committed, and the dir index item that we
3058 * delay to insert has also been inserted into the commit root. So
3059 * we needn't worry about the delayed insertion of the dir index item
3062 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3063 dentry->d_name.name, dentry->d_name.len, 0);
3068 BUG_ON(ret == -ENOENT);
3069 if (check_path_shared(root, path))
3074 btrfs_free_path(path);
3075 /* Migrate the orphan reservation over */
3077 err = btrfs_block_rsv_migrate(trans->block_rsv,
3078 &root->fs_info->global_block_rsv,
3079 trans->bytes_reserved);
3082 btrfs_end_transaction(trans, root);
3083 root->fs_info->enospc_unlink = 0;
3084 return ERR_PTR(err);
3087 trans->block_rsv = &root->fs_info->global_block_rsv;
3091 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3092 struct btrfs_root *root)
3094 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3095 btrfs_block_rsv_release(root, trans->block_rsv,
3096 trans->bytes_reserved);
3097 trans->block_rsv = &root->fs_info->trans_block_rsv;
3098 BUG_ON(!root->fs_info->enospc_unlink);
3099 root->fs_info->enospc_unlink = 0;
3101 btrfs_end_transaction(trans, root);
3104 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3106 struct btrfs_root *root = BTRFS_I(dir)->root;
3107 struct btrfs_trans_handle *trans;
3108 struct inode *inode = dentry->d_inode;
3111 trans = __unlink_start_trans(dir, dentry);
3113 return PTR_ERR(trans);
3115 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3117 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3118 dentry->d_name.name, dentry->d_name.len);
3122 if (inode->i_nlink == 0) {
3123 ret = btrfs_orphan_add(trans, inode);
3129 __unlink_end_trans(trans, root);
3130 btrfs_btree_balance_dirty(root);
3134 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3135 struct btrfs_root *root,
3136 struct inode *dir, u64 objectid,
3137 const char *name, int name_len)
3139 struct btrfs_path *path;
3140 struct extent_buffer *leaf;
3141 struct btrfs_dir_item *di;
3142 struct btrfs_key key;
3145 u64 dir_ino = btrfs_ino(dir);
3147 path = btrfs_alloc_path();
3151 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3152 name, name_len, -1);
3153 if (IS_ERR_OR_NULL(di)) {
3161 leaf = path->nodes[0];
3162 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3163 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3164 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3166 btrfs_abort_transaction(trans, root, ret);
3169 btrfs_release_path(path);
3171 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3172 objectid, root->root_key.objectid,
3173 dir_ino, &index, name, name_len);
3175 if (ret != -ENOENT) {
3176 btrfs_abort_transaction(trans, root, ret);
3179 di = btrfs_search_dir_index_item(root, path, dir_ino,
3181 if (IS_ERR_OR_NULL(di)) {
3186 btrfs_abort_transaction(trans, root, ret);
3190 leaf = path->nodes[0];
3191 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3192 btrfs_release_path(path);
3195 btrfs_release_path(path);
3197 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3199 btrfs_abort_transaction(trans, root, ret);
3203 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3204 inode_inc_iversion(dir);
3205 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3206 ret = btrfs_update_inode_fallback(trans, root, dir);
3208 btrfs_abort_transaction(trans, root, ret);
3210 btrfs_free_path(path);
3214 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3216 struct inode *inode = dentry->d_inode;
3218 struct btrfs_root *root = BTRFS_I(dir)->root;
3219 struct btrfs_trans_handle *trans;
3221 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3223 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3226 trans = __unlink_start_trans(dir, dentry);
3228 return PTR_ERR(trans);
3230 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3231 err = btrfs_unlink_subvol(trans, root, dir,
3232 BTRFS_I(inode)->location.objectid,
3233 dentry->d_name.name,
3234 dentry->d_name.len);
3238 err = btrfs_orphan_add(trans, inode);
3242 /* now the directory is empty */
3243 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3244 dentry->d_name.name, dentry->d_name.len);
3246 btrfs_i_size_write(inode, 0);
3248 __unlink_end_trans(trans, root);
3249 btrfs_btree_balance_dirty(root);
3255 * this can truncate away extent items, csum items and directory items.
3256 * It starts at a high offset and removes keys until it can't find
3257 * any higher than new_size
3259 * csum items that cross the new i_size are truncated to the new size
3262 * min_type is the minimum key type to truncate down to. If set to 0, this
3263 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3265 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3266 struct btrfs_root *root,
3267 struct inode *inode,
3268 u64 new_size, u32 min_type)
3270 struct btrfs_path *path;
3271 struct extent_buffer *leaf;
3272 struct btrfs_file_extent_item *fi;
3273 struct btrfs_key key;
3274 struct btrfs_key found_key;
3275 u64 extent_start = 0;
3276 u64 extent_num_bytes = 0;
3277 u64 extent_offset = 0;
3279 u64 mask = root->sectorsize - 1;
3280 u32 found_type = (u8)-1;
3283 int pending_del_nr = 0;
3284 int pending_del_slot = 0;
3285 int extent_type = -1;
3288 u64 ino = btrfs_ino(inode);
3290 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3292 path = btrfs_alloc_path();
3298 * We want to drop from the next block forward in case this new size is
3299 * not block aligned since we will be keeping the last block of the
3300 * extent just the way it is.
3302 if (root->ref_cows || root == root->fs_info->tree_root)
3303 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
3306 * This function is also used to drop the items in the log tree before
3307 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3308 * it is used to drop the loged items. So we shouldn't kill the delayed
3311 if (min_type == 0 && root == BTRFS_I(inode)->root)
3312 btrfs_kill_delayed_inode_items(inode);
3315 key.offset = (u64)-1;
3319 path->leave_spinning = 1;
3320 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3327 /* there are no items in the tree for us to truncate, we're
3330 if (path->slots[0] == 0)
3337 leaf = path->nodes[0];
3338 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3339 found_type = btrfs_key_type(&found_key);
3341 if (found_key.objectid != ino)
3344 if (found_type < min_type)
3347 item_end = found_key.offset;
3348 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3349 fi = btrfs_item_ptr(leaf, path->slots[0],
3350 struct btrfs_file_extent_item);
3351 extent_type = btrfs_file_extent_type(leaf, fi);
3352 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3354 btrfs_file_extent_num_bytes(leaf, fi);
3355 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3356 item_end += btrfs_file_extent_inline_len(leaf,
3361 if (found_type > min_type) {
3364 if (item_end < new_size)
3366 if (found_key.offset >= new_size)
3372 /* FIXME, shrink the extent if the ref count is only 1 */
3373 if (found_type != BTRFS_EXTENT_DATA_KEY)
3376 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3378 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3380 u64 orig_num_bytes =
3381 btrfs_file_extent_num_bytes(leaf, fi);
3382 extent_num_bytes = new_size -
3383 found_key.offset + root->sectorsize - 1;
3384 extent_num_bytes = extent_num_bytes &
3385 ~((u64)root->sectorsize - 1);
3386 btrfs_set_file_extent_num_bytes(leaf, fi,
3388 num_dec = (orig_num_bytes -
3390 if (root->ref_cows && extent_start != 0)
3391 inode_sub_bytes(inode, num_dec);
3392 btrfs_mark_buffer_dirty(leaf);
3395 btrfs_file_extent_disk_num_bytes(leaf,
3397 extent_offset = found_key.offset -
3398 btrfs_file_extent_offset(leaf, fi);
3400 /* FIXME blocksize != 4096 */
3401 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3402 if (extent_start != 0) {
3405 inode_sub_bytes(inode, num_dec);
3408 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3410 * we can't truncate inline items that have had
3414 btrfs_file_extent_compression(leaf, fi) == 0 &&
3415 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3416 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3417 u32 size = new_size - found_key.offset;
3419 if (root->ref_cows) {
3420 inode_sub_bytes(inode, item_end + 1 -
3424 btrfs_file_extent_calc_inline_size(size);
3425 btrfs_truncate_item(trans, root, path,
3427 } else if (root->ref_cows) {
3428 inode_sub_bytes(inode, item_end + 1 -
3434 if (!pending_del_nr) {
3435 /* no pending yet, add ourselves */
3436 pending_del_slot = path->slots[0];
3438 } else if (pending_del_nr &&
3439 path->slots[0] + 1 == pending_del_slot) {
3440 /* hop on the pending chunk */
3442 pending_del_slot = path->slots[0];
3449 if (found_extent && (root->ref_cows ||
3450 root == root->fs_info->tree_root)) {
3451 btrfs_set_path_blocking(path);
3452 ret = btrfs_free_extent(trans, root, extent_start,
3453 extent_num_bytes, 0,
3454 btrfs_header_owner(leaf),
3455 ino, extent_offset, 0);
3459 if (found_type == BTRFS_INODE_ITEM_KEY)
3462 if (path->slots[0] == 0 ||
3463 path->slots[0] != pending_del_slot) {
3464 if (pending_del_nr) {
3465 ret = btrfs_del_items(trans, root, path,
3469 btrfs_abort_transaction(trans,
3475 btrfs_release_path(path);
3482 if (pending_del_nr) {
3483 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3486 btrfs_abort_transaction(trans, root, ret);
3489 btrfs_free_path(path);
3494 * btrfs_truncate_page - read, zero a chunk and write a page
3495 * @inode - inode that we're zeroing
3496 * @from - the offset to start zeroing
3497 * @len - the length to zero, 0 to zero the entire range respective to the
3499 * @front - zero up to the offset instead of from the offset on
3501 * This will find the page for the "from" offset and cow the page and zero the
3502 * part we want to zero. This is used with truncate and hole punching.
3504 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3507 struct address_space *mapping = inode->i_mapping;
3508 struct btrfs_root *root = BTRFS_I(inode)->root;
3509 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3510 struct btrfs_ordered_extent *ordered;
3511 struct extent_state *cached_state = NULL;
3513 u32 blocksize = root->sectorsize;
3514 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3515 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3517 gfp_t mask = btrfs_alloc_write_mask(mapping);
3522 if ((offset & (blocksize - 1)) == 0 &&
3523 (!len || ((len & (blocksize - 1)) == 0)))
3525 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3530 page = find_or_create_page(mapping, index, mask);
3532 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3537 page_start = page_offset(page);
3538 page_end = page_start + PAGE_CACHE_SIZE - 1;
3540 if (!PageUptodate(page)) {
3541 ret = btrfs_readpage(NULL, page);
3543 if (page->mapping != mapping) {
3545 page_cache_release(page);
3548 if (!PageUptodate(page)) {
3553 wait_on_page_writeback(page);
3555 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3556 set_page_extent_mapped(page);
3558 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3560 unlock_extent_cached(io_tree, page_start, page_end,
3561 &cached_state, GFP_NOFS);
3563 page_cache_release(page);
3564 btrfs_start_ordered_extent(inode, ordered, 1);
3565 btrfs_put_ordered_extent(ordered);
3569 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3570 EXTENT_DIRTY | EXTENT_DELALLOC |
3571 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
3572 0, 0, &cached_state, GFP_NOFS);
3574 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3577 unlock_extent_cached(io_tree, page_start, page_end,
3578 &cached_state, GFP_NOFS);
3582 if (offset != PAGE_CACHE_SIZE) {
3584 len = PAGE_CACHE_SIZE - offset;
3587 memset(kaddr, 0, offset);
3589 memset(kaddr + offset, 0, len);
3590 flush_dcache_page(page);
3593 ClearPageChecked(page);
3594 set_page_dirty(page);
3595 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3600 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3602 page_cache_release(page);
3608 * This function puts in dummy file extents for the area we're creating a hole
3609 * for. So if we are truncating this file to a larger size we need to insert
3610 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3611 * the range between oldsize and size
3613 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3615 struct btrfs_trans_handle *trans;
3616 struct btrfs_root *root = BTRFS_I(inode)->root;
3617 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3618 struct extent_map *em = NULL;
3619 struct extent_state *cached_state = NULL;
3620 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3621 u64 mask = root->sectorsize - 1;
3622 u64 hole_start = (oldsize + mask) & ~mask;
3623 u64 block_end = (size + mask) & ~mask;
3629 if (size <= hole_start)
3633 struct btrfs_ordered_extent *ordered;
3634 btrfs_wait_ordered_range(inode, hole_start,
3635 block_end - hole_start);
3636 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3638 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3641 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3642 &cached_state, GFP_NOFS);
3643 btrfs_put_ordered_extent(ordered);
3646 cur_offset = hole_start;
3648 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3649 block_end - cur_offset, 0);
3654 last_byte = min(extent_map_end(em), block_end);
3655 last_byte = (last_byte + mask) & ~mask;
3656 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3657 struct extent_map *hole_em;
3658 hole_size = last_byte - cur_offset;
3660 trans = btrfs_start_transaction(root, 3);
3661 if (IS_ERR(trans)) {
3662 err = PTR_ERR(trans);
3666 err = btrfs_drop_extents(trans, root, inode,
3668 cur_offset + hole_size, 1);
3670 btrfs_abort_transaction(trans, root, err);
3671 btrfs_end_transaction(trans, root);
3675 err = btrfs_insert_file_extent(trans, root,
3676 btrfs_ino(inode), cur_offset, 0,
3677 0, hole_size, 0, hole_size,
3680 btrfs_abort_transaction(trans, root, err);
3681 btrfs_end_transaction(trans, root);
3685 btrfs_drop_extent_cache(inode, cur_offset,
3686 cur_offset + hole_size - 1, 0);
3687 hole_em = alloc_extent_map();
3689 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3690 &BTRFS_I(inode)->runtime_flags);
3693 hole_em->start = cur_offset;
3694 hole_em->len = hole_size;
3695 hole_em->orig_start = cur_offset;
3697 hole_em->block_start = EXTENT_MAP_HOLE;
3698 hole_em->block_len = 0;
3699 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3700 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3701 hole_em->generation = trans->transid;
3704 write_lock(&em_tree->lock);
3705 err = add_extent_mapping(em_tree, hole_em);
3707 list_move(&hole_em->list,
3708 &em_tree->modified_extents);
3709 write_unlock(&em_tree->lock);
3712 btrfs_drop_extent_cache(inode, cur_offset,
3716 free_extent_map(hole_em);
3718 btrfs_update_inode(trans, root, inode);
3719 btrfs_end_transaction(trans, root);
3721 free_extent_map(em);
3723 cur_offset = last_byte;
3724 if (cur_offset >= block_end)
3728 free_extent_map(em);
3729 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3734 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3736 struct btrfs_root *root = BTRFS_I(inode)->root;
3737 struct btrfs_trans_handle *trans;
3738 loff_t oldsize = i_size_read(inode);
3741 if (newsize == oldsize)
3744 if (newsize > oldsize) {
3745 truncate_pagecache(inode, oldsize, newsize);
3746 ret = btrfs_cont_expand(inode, oldsize, newsize);
3750 trans = btrfs_start_transaction(root, 1);
3752 return PTR_ERR(trans);
3754 i_size_write(inode, newsize);
3755 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3756 ret = btrfs_update_inode(trans, root, inode);
3757 btrfs_end_transaction(trans, root);
3761 * We're truncating a file that used to have good data down to
3762 * zero. Make sure it gets into the ordered flush list so that
3763 * any new writes get down to disk quickly.
3766 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3767 &BTRFS_I(inode)->runtime_flags);
3769 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3770 truncate_setsize(inode, newsize);
3771 ret = btrfs_truncate(inode);
3777 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3779 struct inode *inode = dentry->d_inode;
3780 struct btrfs_root *root = BTRFS_I(inode)->root;
3783 if (btrfs_root_readonly(root))
3786 err = inode_change_ok(inode, attr);
3790 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3791 err = btrfs_setsize(inode, attr->ia_size);
3796 if (attr->ia_valid) {
3797 setattr_copy(inode, attr);
3798 inode_inc_iversion(inode);
3799 err = btrfs_dirty_inode(inode);
3801 if (!err && attr->ia_valid & ATTR_MODE)
3802 err = btrfs_acl_chmod(inode);
3808 void btrfs_evict_inode(struct inode *inode)
3810 struct btrfs_trans_handle *trans;
3811 struct btrfs_root *root = BTRFS_I(inode)->root;
3812 struct btrfs_block_rsv *rsv, *global_rsv;
3813 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3816 trace_btrfs_inode_evict(inode);
3818 truncate_inode_pages(&inode->i_data, 0);
3819 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3820 btrfs_is_free_space_inode(inode)))
3823 if (is_bad_inode(inode)) {
3824 btrfs_orphan_del(NULL, inode);
3827 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3828 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3830 if (root->fs_info->log_root_recovering) {
3831 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3832 &BTRFS_I(inode)->runtime_flags));
3836 if (inode->i_nlink > 0) {
3837 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3841 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3843 btrfs_orphan_del(NULL, inode);
3846 rsv->size = min_size;
3848 global_rsv = &root->fs_info->global_block_rsv;
3850 btrfs_i_size_write(inode, 0);
3853 * This is a bit simpler than btrfs_truncate since we've already
3854 * reserved our space for our orphan item in the unlink, so we just
3855 * need to reserve some slack space in case we add bytes and update
3856 * inode item when doing the truncate.
3859 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3860 BTRFS_RESERVE_FLUSH_LIMIT);
3863 * Try and steal from the global reserve since we will
3864 * likely not use this space anyway, we want to try as
3865 * hard as possible to get this to work.
3868 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3871 printk(KERN_WARNING "Could not get space for a "
3872 "delete, will truncate on mount %d\n", ret);
3873 btrfs_orphan_del(NULL, inode);
3874 btrfs_free_block_rsv(root, rsv);
3878 trans = btrfs_start_transaction_lflush(root, 1);
3879 if (IS_ERR(trans)) {
3880 btrfs_orphan_del(NULL, inode);
3881 btrfs_free_block_rsv(root, rsv);
3885 trans->block_rsv = rsv;
3887 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3891 trans->block_rsv = &root->fs_info->trans_block_rsv;
3892 ret = btrfs_update_inode(trans, root, inode);
3895 btrfs_end_transaction(trans, root);
3897 btrfs_btree_balance_dirty(root);
3900 btrfs_free_block_rsv(root, rsv);
3903 trans->block_rsv = root->orphan_block_rsv;
3904 ret = btrfs_orphan_del(trans, inode);
3908 trans->block_rsv = &root->fs_info->trans_block_rsv;
3909 if (!(root == root->fs_info->tree_root ||
3910 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3911 btrfs_return_ino(root, btrfs_ino(inode));
3913 btrfs_end_transaction(trans, root);
3914 btrfs_btree_balance_dirty(root);
3921 * this returns the key found in the dir entry in the location pointer.
3922 * If no dir entries were found, location->objectid is 0.
3924 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3925 struct btrfs_key *location)
3927 const char *name = dentry->d_name.name;
3928 int namelen = dentry->d_name.len;
3929 struct btrfs_dir_item *di;
3930 struct btrfs_path *path;
3931 struct btrfs_root *root = BTRFS_I(dir)->root;
3934 path = btrfs_alloc_path();
3938 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3943 if (IS_ERR_OR_NULL(di))
3946 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3948 btrfs_free_path(path);
3951 location->objectid = 0;
3956 * when we hit a tree root in a directory, the btrfs part of the inode
3957 * needs to be changed to reflect the root directory of the tree root. This
3958 * is kind of like crossing a mount point.
3960 static int fixup_tree_root_location(struct btrfs_root *root,
3962 struct dentry *dentry,
3963 struct btrfs_key *location,
3964 struct btrfs_root **sub_root)
3966 struct btrfs_path *path;
3967 struct btrfs_root *new_root;
3968 struct btrfs_root_ref *ref;
3969 struct extent_buffer *leaf;
3973 path = btrfs_alloc_path();
3980 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3981 BTRFS_I(dir)->root->root_key.objectid,
3982 location->objectid);
3989 leaf = path->nodes[0];
3990 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3991 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3992 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3995 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3996 (unsigned long)(ref + 1),
3997 dentry->d_name.len);
4001 btrfs_release_path(path);
4003 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4004 if (IS_ERR(new_root)) {
4005 err = PTR_ERR(new_root);
4009 if (btrfs_root_refs(&new_root->root_item) == 0) {
4014 *sub_root = new_root;
4015 location->objectid = btrfs_root_dirid(&new_root->root_item);
4016 location->type = BTRFS_INODE_ITEM_KEY;
4017 location->offset = 0;
4020 btrfs_free_path(path);
4024 static void inode_tree_add(struct inode *inode)
4026 struct btrfs_root *root = BTRFS_I(inode)->root;
4027 struct btrfs_inode *entry;
4029 struct rb_node *parent;
4030 u64 ino = btrfs_ino(inode);
4032 p = &root->inode_tree.rb_node;
4035 if (inode_unhashed(inode))
4038 spin_lock(&root->inode_lock);
4041 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4043 if (ino < btrfs_ino(&entry->vfs_inode))
4044 p = &parent->rb_left;
4045 else if (ino > btrfs_ino(&entry->vfs_inode))
4046 p = &parent->rb_right;
4048 WARN_ON(!(entry->vfs_inode.i_state &
4049 (I_WILL_FREE | I_FREEING)));
4050 rb_erase(parent, &root->inode_tree);
4051 RB_CLEAR_NODE(parent);
4052 spin_unlock(&root->inode_lock);
4056 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4057 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4058 spin_unlock(&root->inode_lock);
4061 static void inode_tree_del(struct inode *inode)
4063 struct btrfs_root *root = BTRFS_I(inode)->root;
4066 spin_lock(&root->inode_lock);
4067 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4068 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4069 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4070 empty = RB_EMPTY_ROOT(&root->inode_tree);
4072 spin_unlock(&root->inode_lock);
4075 * Free space cache has inodes in the tree root, but the tree root has a
4076 * root_refs of 0, so this could end up dropping the tree root as a
4077 * snapshot, so we need the extra !root->fs_info->tree_root check to
4078 * make sure we don't drop it.
4080 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4081 root != root->fs_info->tree_root) {
4082 synchronize_srcu(&root->fs_info->subvol_srcu);
4083 spin_lock(&root->inode_lock);
4084 empty = RB_EMPTY_ROOT(&root->inode_tree);
4085 spin_unlock(&root->inode_lock);
4087 btrfs_add_dead_root(root);
4091 void btrfs_invalidate_inodes(struct btrfs_root *root)
4093 struct rb_node *node;
4094 struct rb_node *prev;
4095 struct btrfs_inode *entry;
4096 struct inode *inode;
4099 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4101 spin_lock(&root->inode_lock);
4103 node = root->inode_tree.rb_node;
4107 entry = rb_entry(node, struct btrfs_inode, rb_node);
4109 if (objectid < btrfs_ino(&entry->vfs_inode))
4110 node = node->rb_left;
4111 else if (objectid > btrfs_ino(&entry->vfs_inode))
4112 node = node->rb_right;
4118 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4119 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4123 prev = rb_next(prev);
4127 entry = rb_entry(node, struct btrfs_inode, rb_node);
4128 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4129 inode = igrab(&entry->vfs_inode);
4131 spin_unlock(&root->inode_lock);
4132 if (atomic_read(&inode->i_count) > 1)
4133 d_prune_aliases(inode);
4135 * btrfs_drop_inode will have it removed from
4136 * the inode cache when its usage count
4141 spin_lock(&root->inode_lock);
4145 if (cond_resched_lock(&root->inode_lock))
4148 node = rb_next(node);
4150 spin_unlock(&root->inode_lock);
4153 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4155 struct btrfs_iget_args *args = p;
4156 inode->i_ino = args->ino;
4157 BTRFS_I(inode)->root = args->root;
4161 static int btrfs_find_actor(struct inode *inode, void *opaque)
4163 struct btrfs_iget_args *args = opaque;
4164 return args->ino == btrfs_ino(inode) &&
4165 args->root == BTRFS_I(inode)->root;
4168 static struct inode *btrfs_iget_locked(struct super_block *s,
4170 struct btrfs_root *root)
4172 struct inode *inode;
4173 struct btrfs_iget_args args;
4174 args.ino = objectid;
4177 inode = iget5_locked(s, objectid, btrfs_find_actor,
4178 btrfs_init_locked_inode,
4183 /* Get an inode object given its location and corresponding root.
4184 * Returns in *is_new if the inode was read from disk
4186 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4187 struct btrfs_root *root, int *new)
4189 struct inode *inode;
4191 inode = btrfs_iget_locked(s, location->objectid, root);
4193 return ERR_PTR(-ENOMEM);
4195 if (inode->i_state & I_NEW) {
4196 BTRFS_I(inode)->root = root;
4197 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4198 btrfs_read_locked_inode(inode);
4199 if (!is_bad_inode(inode)) {
4200 inode_tree_add(inode);
4201 unlock_new_inode(inode);
4205 unlock_new_inode(inode);
4207 inode = ERR_PTR(-ESTALE);
4214 static struct inode *new_simple_dir(struct super_block *s,
4215 struct btrfs_key *key,
4216 struct btrfs_root *root)
4218 struct inode *inode = new_inode(s);
4221 return ERR_PTR(-ENOMEM);
4223 BTRFS_I(inode)->root = root;
4224 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4225 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4227 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4228 inode->i_op = &btrfs_dir_ro_inode_operations;
4229 inode->i_fop = &simple_dir_operations;
4230 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4231 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4236 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4238 struct inode *inode;
4239 struct btrfs_root *root = BTRFS_I(dir)->root;
4240 struct btrfs_root *sub_root = root;
4241 struct btrfs_key location;
4245 if (dentry->d_name.len > BTRFS_NAME_LEN)
4246 return ERR_PTR(-ENAMETOOLONG);
4248 if (unlikely(d_need_lookup(dentry))) {
4249 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4250 kfree(dentry->d_fsdata);
4251 dentry->d_fsdata = NULL;
4252 /* This thing is hashed, drop it for now */
4255 ret = btrfs_inode_by_name(dir, dentry, &location);
4259 return ERR_PTR(ret);
4261 if (location.objectid == 0)
4264 if (location.type == BTRFS_INODE_ITEM_KEY) {
4265 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4269 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4271 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4272 ret = fixup_tree_root_location(root, dir, dentry,
4273 &location, &sub_root);
4276 inode = ERR_PTR(ret);
4278 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4280 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4282 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4284 if (!IS_ERR(inode) && root != sub_root) {
4285 down_read(&root->fs_info->cleanup_work_sem);
4286 if (!(inode->i_sb->s_flags & MS_RDONLY))
4287 ret = btrfs_orphan_cleanup(sub_root);
4288 up_read(&root->fs_info->cleanup_work_sem);
4290 inode = ERR_PTR(ret);
4296 static int btrfs_dentry_delete(const struct dentry *dentry)
4298 struct btrfs_root *root;
4299 struct inode *inode = dentry->d_inode;
4301 if (!inode && !IS_ROOT(dentry))
4302 inode = dentry->d_parent->d_inode;
4305 root = BTRFS_I(inode)->root;
4306 if (btrfs_root_refs(&root->root_item) == 0)
4309 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4315 static void btrfs_dentry_release(struct dentry *dentry)
4317 if (dentry->d_fsdata)
4318 kfree(dentry->d_fsdata);
4321 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4326 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4327 if (unlikely(d_need_lookup(dentry))) {
4328 spin_lock(&dentry->d_lock);
4329 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4330 spin_unlock(&dentry->d_lock);
4335 unsigned char btrfs_filetype_table[] = {
4336 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4339 static int btrfs_real_readdir(struct file *filp, void *dirent,
4342 struct inode *inode = filp->f_dentry->d_inode;
4343 struct btrfs_root *root = BTRFS_I(inode)->root;
4344 struct btrfs_item *item;
4345 struct btrfs_dir_item *di;
4346 struct btrfs_key key;
4347 struct btrfs_key found_key;
4348 struct btrfs_path *path;
4349 struct list_head ins_list;
4350 struct list_head del_list;
4352 struct extent_buffer *leaf;
4354 unsigned char d_type;
4359 int key_type = BTRFS_DIR_INDEX_KEY;
4363 int is_curr = 0; /* filp->f_pos points to the current index? */
4365 /* FIXME, use a real flag for deciding about the key type */
4366 if (root->fs_info->tree_root == root)
4367 key_type = BTRFS_DIR_ITEM_KEY;
4369 /* special case for "." */
4370 if (filp->f_pos == 0) {
4371 over = filldir(dirent, ".", 1,
4372 filp->f_pos, btrfs_ino(inode), DT_DIR);
4377 /* special case for .., just use the back ref */
4378 if (filp->f_pos == 1) {
4379 u64 pino = parent_ino(filp->f_path.dentry);
4380 over = filldir(dirent, "..", 2,
4381 filp->f_pos, pino, DT_DIR);
4386 path = btrfs_alloc_path();
4392 if (key_type == BTRFS_DIR_INDEX_KEY) {
4393 INIT_LIST_HEAD(&ins_list);
4394 INIT_LIST_HEAD(&del_list);
4395 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4398 btrfs_set_key_type(&key, key_type);
4399 key.offset = filp->f_pos;
4400 key.objectid = btrfs_ino(inode);
4402 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4407 leaf = path->nodes[0];
4408 slot = path->slots[0];
4409 if (slot >= btrfs_header_nritems(leaf)) {
4410 ret = btrfs_next_leaf(root, path);
4418 item = btrfs_item_nr(leaf, slot);
4419 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4421 if (found_key.objectid != key.objectid)
4423 if (btrfs_key_type(&found_key) != key_type)
4425 if (found_key.offset < filp->f_pos)
4427 if (key_type == BTRFS_DIR_INDEX_KEY &&
4428 btrfs_should_delete_dir_index(&del_list,
4432 filp->f_pos = found_key.offset;
4435 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4437 di_total = btrfs_item_size(leaf, item);
4439 while (di_cur < di_total) {
4440 struct btrfs_key location;
4442 if (verify_dir_item(root, leaf, di))
4445 name_len = btrfs_dir_name_len(leaf, di);
4446 if (name_len <= sizeof(tmp_name)) {
4447 name_ptr = tmp_name;
4449 name_ptr = kmalloc(name_len, GFP_NOFS);
4455 read_extent_buffer(leaf, name_ptr,
4456 (unsigned long)(di + 1), name_len);
4458 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4459 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4462 /* is this a reference to our own snapshot? If so
4465 * In contrast to old kernels, we insert the snapshot's
4466 * dir item and dir index after it has been created, so
4467 * we won't find a reference to our own snapshot. We
4468 * still keep the following code for backward
4471 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4472 location.objectid == root->root_key.objectid) {
4476 over = filldir(dirent, name_ptr, name_len,
4477 found_key.offset, location.objectid,
4481 if (name_ptr != tmp_name)
4486 di_len = btrfs_dir_name_len(leaf, di) +
4487 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4489 di = (struct btrfs_dir_item *)((char *)di + di_len);
4495 if (key_type == BTRFS_DIR_INDEX_KEY) {
4498 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4504 /* Reached end of directory/root. Bump pos past the last item. */
4505 if (key_type == BTRFS_DIR_INDEX_KEY)
4507 * 32-bit glibc will use getdents64, but then strtol -
4508 * so the last number we can serve is this.
4510 filp->f_pos = 0x7fffffff;
4516 if (key_type == BTRFS_DIR_INDEX_KEY)
4517 btrfs_put_delayed_items(&ins_list, &del_list);
4518 btrfs_free_path(path);
4522 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4524 struct btrfs_root *root = BTRFS_I(inode)->root;
4525 struct btrfs_trans_handle *trans;
4527 bool nolock = false;
4529 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4532 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4535 if (wbc->sync_mode == WB_SYNC_ALL) {
4537 trans = btrfs_join_transaction_nolock(root);
4539 trans = btrfs_join_transaction(root);
4541 return PTR_ERR(trans);
4542 ret = btrfs_commit_transaction(trans, root);
4548 * This is somewhat expensive, updating the tree every time the
4549 * inode changes. But, it is most likely to find the inode in cache.
4550 * FIXME, needs more benchmarking...there are no reasons other than performance
4551 * to keep or drop this code.
4553 int btrfs_dirty_inode(struct inode *inode)
4555 struct btrfs_root *root = BTRFS_I(inode)->root;
4556 struct btrfs_trans_handle *trans;
4559 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4562 trans = btrfs_join_transaction(root);
4564 return PTR_ERR(trans);
4566 ret = btrfs_update_inode(trans, root, inode);
4567 if (ret && ret == -ENOSPC) {
4568 /* whoops, lets try again with the full transaction */
4569 btrfs_end_transaction(trans, root);
4570 trans = btrfs_start_transaction(root, 1);
4572 return PTR_ERR(trans);
4574 ret = btrfs_update_inode(trans, root, inode);
4576 btrfs_end_transaction(trans, root);
4577 if (BTRFS_I(inode)->delayed_node)
4578 btrfs_balance_delayed_items(root);
4584 * This is a copy of file_update_time. We need this so we can return error on
4585 * ENOSPC for updating the inode in the case of file write and mmap writes.
4587 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4590 struct btrfs_root *root = BTRFS_I(inode)->root;
4592 if (btrfs_root_readonly(root))
4595 if (flags & S_VERSION)
4596 inode_inc_iversion(inode);
4597 if (flags & S_CTIME)
4598 inode->i_ctime = *now;
4599 if (flags & S_MTIME)
4600 inode->i_mtime = *now;
4601 if (flags & S_ATIME)
4602 inode->i_atime = *now;
4603 return btrfs_dirty_inode(inode);
4607 * find the highest existing sequence number in a directory
4608 * and then set the in-memory index_cnt variable to reflect
4609 * free sequence numbers
4611 static int btrfs_set_inode_index_count(struct inode *inode)
4613 struct btrfs_root *root = BTRFS_I(inode)->root;
4614 struct btrfs_key key, found_key;
4615 struct btrfs_path *path;
4616 struct extent_buffer *leaf;
4619 key.objectid = btrfs_ino(inode);
4620 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4621 key.offset = (u64)-1;
4623 path = btrfs_alloc_path();
4627 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4630 /* FIXME: we should be able to handle this */
4636 * MAGIC NUMBER EXPLANATION:
4637 * since we search a directory based on f_pos we have to start at 2
4638 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4639 * else has to start at 2
4641 if (path->slots[0] == 0) {
4642 BTRFS_I(inode)->index_cnt = 2;
4648 leaf = path->nodes[0];
4649 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4651 if (found_key.objectid != btrfs_ino(inode) ||
4652 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4653 BTRFS_I(inode)->index_cnt = 2;
4657 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4659 btrfs_free_path(path);
4664 * helper to find a free sequence number in a given directory. This current
4665 * code is very simple, later versions will do smarter things in the btree
4667 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4671 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4672 ret = btrfs_inode_delayed_dir_index_count(dir);
4674 ret = btrfs_set_inode_index_count(dir);
4680 *index = BTRFS_I(dir)->index_cnt;
4681 BTRFS_I(dir)->index_cnt++;
4686 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4687 struct btrfs_root *root,
4689 const char *name, int name_len,
4690 u64 ref_objectid, u64 objectid,
4691 umode_t mode, u64 *index)
4693 struct inode *inode;
4694 struct btrfs_inode_item *inode_item;
4695 struct btrfs_key *location;
4696 struct btrfs_path *path;
4697 struct btrfs_inode_ref *ref;
4698 struct btrfs_key key[2];
4704 path = btrfs_alloc_path();
4706 return ERR_PTR(-ENOMEM);
4708 inode = new_inode(root->fs_info->sb);
4710 btrfs_free_path(path);
4711 return ERR_PTR(-ENOMEM);
4715 * we have to initialize this early, so we can reclaim the inode
4716 * number if we fail afterwards in this function.
4718 inode->i_ino = objectid;
4721 trace_btrfs_inode_request(dir);
4723 ret = btrfs_set_inode_index(dir, index);
4725 btrfs_free_path(path);
4727 return ERR_PTR(ret);
4731 * index_cnt is ignored for everything but a dir,
4732 * btrfs_get_inode_index_count has an explanation for the magic
4735 BTRFS_I(inode)->index_cnt = 2;
4736 BTRFS_I(inode)->root = root;
4737 BTRFS_I(inode)->generation = trans->transid;
4738 inode->i_generation = BTRFS_I(inode)->generation;
4741 * We could have gotten an inode number from somebody who was fsynced
4742 * and then removed in this same transaction, so let's just set full
4743 * sync since it will be a full sync anyway and this will blow away the
4744 * old info in the log.
4746 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4753 key[0].objectid = objectid;
4754 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4758 * Start new inodes with an inode_ref. This is slightly more
4759 * efficient for small numbers of hard links since they will
4760 * be packed into one item. Extended refs will kick in if we
4761 * add more hard links than can fit in the ref item.
4763 key[1].objectid = objectid;
4764 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4765 key[1].offset = ref_objectid;
4767 sizes[0] = sizeof(struct btrfs_inode_item);
4768 sizes[1] = name_len + sizeof(*ref);
4770 path->leave_spinning = 1;
4771 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4775 inode_init_owner(inode, dir, mode);
4776 inode_set_bytes(inode, 0);
4777 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4778 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4779 struct btrfs_inode_item);
4780 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4781 sizeof(*inode_item));
4782 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4784 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4785 struct btrfs_inode_ref);
4786 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4787 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4788 ptr = (unsigned long)(ref + 1);
4789 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4791 btrfs_mark_buffer_dirty(path->nodes[0]);
4792 btrfs_free_path(path);
4794 location = &BTRFS_I(inode)->location;
4795 location->objectid = objectid;
4796 location->offset = 0;
4797 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4799 btrfs_inherit_iflags(inode, dir);
4801 if (S_ISREG(mode)) {
4802 if (btrfs_test_opt(root, NODATASUM))
4803 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4804 if (btrfs_test_opt(root, NODATACOW) ||
4805 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4806 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4809 insert_inode_hash(inode);
4810 inode_tree_add(inode);
4812 trace_btrfs_inode_new(inode);
4813 btrfs_set_inode_last_trans(trans, inode);
4815 btrfs_update_root_times(trans, root);
4820 BTRFS_I(dir)->index_cnt--;
4821 btrfs_free_path(path);
4823 return ERR_PTR(ret);
4826 static inline u8 btrfs_inode_type(struct inode *inode)
4828 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4832 * utility function to add 'inode' into 'parent_inode' with
4833 * a give name and a given sequence number.
4834 * if 'add_backref' is true, also insert a backref from the
4835 * inode to the parent directory.
4837 int btrfs_add_link(struct btrfs_trans_handle *trans,
4838 struct inode *parent_inode, struct inode *inode,
4839 const char *name, int name_len, int add_backref, u64 index)
4842 struct btrfs_key key;
4843 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4844 u64 ino = btrfs_ino(inode);
4845 u64 parent_ino = btrfs_ino(parent_inode);
4847 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4848 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4851 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4855 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4856 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4857 key.objectid, root->root_key.objectid,
4858 parent_ino, index, name, name_len);
4859 } else if (add_backref) {
4860 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4864 /* Nothing to clean up yet */
4868 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4870 btrfs_inode_type(inode), index);
4874 btrfs_abort_transaction(trans, root, ret);
4878 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4880 inode_inc_iversion(parent_inode);
4881 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4882 ret = btrfs_update_inode(trans, root, parent_inode);
4884 btrfs_abort_transaction(trans, root, ret);
4888 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4891 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4892 key.objectid, root->root_key.objectid,
4893 parent_ino, &local_index, name, name_len);
4895 } else if (add_backref) {
4899 err = btrfs_del_inode_ref(trans, root, name, name_len,
4900 ino, parent_ino, &local_index);
4905 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4906 struct inode *dir, struct dentry *dentry,
4907 struct inode *inode, int backref, u64 index)
4909 int err = btrfs_add_link(trans, dir, inode,
4910 dentry->d_name.name, dentry->d_name.len,
4917 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4918 umode_t mode, dev_t rdev)
4920 struct btrfs_trans_handle *trans;
4921 struct btrfs_root *root = BTRFS_I(dir)->root;
4922 struct inode *inode = NULL;
4928 if (!new_valid_dev(rdev))
4932 * 2 for inode item and ref
4934 * 1 for xattr if selinux is on
4936 trans = btrfs_start_transaction(root, 5);
4938 return PTR_ERR(trans);
4940 err = btrfs_find_free_ino(root, &objectid);
4944 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4945 dentry->d_name.len, btrfs_ino(dir), objectid,
4947 if (IS_ERR(inode)) {
4948 err = PTR_ERR(inode);
4952 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4958 err = btrfs_update_inode(trans, root, inode);
4965 * If the active LSM wants to access the inode during
4966 * d_instantiate it needs these. Smack checks to see
4967 * if the filesystem supports xattrs by looking at the
4971 inode->i_op = &btrfs_special_inode_operations;
4972 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4976 init_special_inode(inode, inode->i_mode, rdev);
4977 btrfs_update_inode(trans, root, inode);
4978 d_instantiate(dentry, inode);
4981 btrfs_end_transaction(trans, root);
4982 btrfs_btree_balance_dirty(root);
4984 inode_dec_link_count(inode);
4990 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4991 umode_t mode, bool excl)
4993 struct btrfs_trans_handle *trans;
4994 struct btrfs_root *root = BTRFS_I(dir)->root;
4995 struct inode *inode = NULL;
4996 int drop_inode_on_err = 0;
5002 * 2 for inode item and ref
5004 * 1 for xattr if selinux is on
5006 trans = btrfs_start_transaction(root, 5);
5008 return PTR_ERR(trans);
5010 err = btrfs_find_free_ino(root, &objectid);
5014 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5015 dentry->d_name.len, btrfs_ino(dir), objectid,
5017 if (IS_ERR(inode)) {
5018 err = PTR_ERR(inode);
5021 drop_inode_on_err = 1;
5023 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5028 * If the active LSM wants to access the inode during
5029 * d_instantiate it needs these. Smack checks to see
5030 * if the filesystem supports xattrs by looking at the
5033 inode->i_fop = &btrfs_file_operations;
5034 inode->i_op = &btrfs_file_inode_operations;
5036 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5040 inode->i_mapping->a_ops = &btrfs_aops;
5041 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5042 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5043 d_instantiate(dentry, inode);
5046 btrfs_end_transaction(trans, root);
5047 if (err && drop_inode_on_err) {
5048 inode_dec_link_count(inode);
5051 btrfs_btree_balance_dirty(root);
5055 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5056 struct dentry *dentry)
5058 struct btrfs_trans_handle *trans;
5059 struct btrfs_root *root = BTRFS_I(dir)->root;
5060 struct inode *inode = old_dentry->d_inode;
5065 /* do not allow sys_link's with other subvols of the same device */
5066 if (root->objectid != BTRFS_I(inode)->root->objectid)
5069 if (inode->i_nlink >= BTRFS_LINK_MAX)
5072 err = btrfs_set_inode_index(dir, &index);
5077 * 2 items for inode and inode ref
5078 * 2 items for dir items
5079 * 1 item for parent inode
5081 trans = btrfs_start_transaction(root, 5);
5082 if (IS_ERR(trans)) {
5083 err = PTR_ERR(trans);
5087 btrfs_inc_nlink(inode);
5088 inode_inc_iversion(inode);
5089 inode->i_ctime = CURRENT_TIME;
5091 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5093 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5098 struct dentry *parent = dentry->d_parent;
5099 err = btrfs_update_inode(trans, root, inode);
5102 d_instantiate(dentry, inode);
5103 btrfs_log_new_name(trans, inode, NULL, parent);
5106 btrfs_end_transaction(trans, root);
5109 inode_dec_link_count(inode);
5112 btrfs_btree_balance_dirty(root);
5116 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5118 struct inode *inode = NULL;
5119 struct btrfs_trans_handle *trans;
5120 struct btrfs_root *root = BTRFS_I(dir)->root;
5122 int drop_on_err = 0;
5127 * 2 items for inode and ref
5128 * 2 items for dir items
5129 * 1 for xattr if selinux is on
5131 trans = btrfs_start_transaction(root, 5);
5133 return PTR_ERR(trans);
5135 err = btrfs_find_free_ino(root, &objectid);
5139 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5140 dentry->d_name.len, btrfs_ino(dir), objectid,
5141 S_IFDIR | mode, &index);
5142 if (IS_ERR(inode)) {
5143 err = PTR_ERR(inode);
5149 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5153 inode->i_op = &btrfs_dir_inode_operations;
5154 inode->i_fop = &btrfs_dir_file_operations;
5156 btrfs_i_size_write(inode, 0);
5157 err = btrfs_update_inode(trans, root, inode);
5161 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5162 dentry->d_name.len, 0, index);
5166 d_instantiate(dentry, inode);
5170 btrfs_end_transaction(trans, root);
5173 btrfs_btree_balance_dirty(root);
5177 /* helper for btfs_get_extent. Given an existing extent in the tree,
5178 * and an extent that you want to insert, deal with overlap and insert
5179 * the new extent into the tree.
5181 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5182 struct extent_map *existing,
5183 struct extent_map *em,
5184 u64 map_start, u64 map_len)
5188 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5189 start_diff = map_start - em->start;
5190 em->start = map_start;
5192 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5193 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5194 em->block_start += start_diff;
5195 em->block_len -= start_diff;
5197 return add_extent_mapping(em_tree, em);
5200 static noinline int uncompress_inline(struct btrfs_path *path,
5201 struct inode *inode, struct page *page,
5202 size_t pg_offset, u64 extent_offset,
5203 struct btrfs_file_extent_item *item)
5206 struct extent_buffer *leaf = path->nodes[0];
5209 unsigned long inline_size;
5213 WARN_ON(pg_offset != 0);
5214 compress_type = btrfs_file_extent_compression(leaf, item);
5215 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5216 inline_size = btrfs_file_extent_inline_item_len(leaf,
5217 btrfs_item_nr(leaf, path->slots[0]));
5218 tmp = kmalloc(inline_size, GFP_NOFS);
5221 ptr = btrfs_file_extent_inline_start(item);
5223 read_extent_buffer(leaf, tmp, ptr, inline_size);
5225 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5226 ret = btrfs_decompress(compress_type, tmp, page,
5227 extent_offset, inline_size, max_size);
5229 char *kaddr = kmap_atomic(page);
5230 unsigned long copy_size = min_t(u64,
5231 PAGE_CACHE_SIZE - pg_offset,
5232 max_size - extent_offset);
5233 memset(kaddr + pg_offset, 0, copy_size);
5234 kunmap_atomic(kaddr);
5241 * a bit scary, this does extent mapping from logical file offset to the disk.
5242 * the ugly parts come from merging extents from the disk with the in-ram
5243 * representation. This gets more complex because of the data=ordered code,
5244 * where the in-ram extents might be locked pending data=ordered completion.
5246 * This also copies inline extents directly into the page.
5249 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5250 size_t pg_offset, u64 start, u64 len,
5256 u64 extent_start = 0;
5258 u64 objectid = btrfs_ino(inode);
5260 struct btrfs_path *path = NULL;
5261 struct btrfs_root *root = BTRFS_I(inode)->root;
5262 struct btrfs_file_extent_item *item;
5263 struct extent_buffer *leaf;
5264 struct btrfs_key found_key;
5265 struct extent_map *em = NULL;
5266 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5267 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5268 struct btrfs_trans_handle *trans = NULL;
5272 read_lock(&em_tree->lock);
5273 em = lookup_extent_mapping(em_tree, start, len);
5275 em->bdev = root->fs_info->fs_devices->latest_bdev;
5276 read_unlock(&em_tree->lock);
5279 if (em->start > start || em->start + em->len <= start)
5280 free_extent_map(em);
5281 else if (em->block_start == EXTENT_MAP_INLINE && page)
5282 free_extent_map(em);
5286 em = alloc_extent_map();
5291 em->bdev = root->fs_info->fs_devices->latest_bdev;
5292 em->start = EXTENT_MAP_HOLE;
5293 em->orig_start = EXTENT_MAP_HOLE;
5295 em->block_len = (u64)-1;
5298 path = btrfs_alloc_path();
5304 * Chances are we'll be called again, so go ahead and do
5310 ret = btrfs_lookup_file_extent(trans, root, path,
5311 objectid, start, trans != NULL);
5318 if (path->slots[0] == 0)
5323 leaf = path->nodes[0];
5324 item = btrfs_item_ptr(leaf, path->slots[0],
5325 struct btrfs_file_extent_item);
5326 /* are we inside the extent that was found? */
5327 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5328 found_type = btrfs_key_type(&found_key);
5329 if (found_key.objectid != objectid ||
5330 found_type != BTRFS_EXTENT_DATA_KEY) {
5334 found_type = btrfs_file_extent_type(leaf, item);
5335 extent_start = found_key.offset;
5336 compress_type = btrfs_file_extent_compression(leaf, item);
5337 if (found_type == BTRFS_FILE_EXTENT_REG ||
5338 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5339 extent_end = extent_start +
5340 btrfs_file_extent_num_bytes(leaf, item);
5341 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5343 size = btrfs_file_extent_inline_len(leaf, item);
5344 extent_end = (extent_start + size + root->sectorsize - 1) &
5345 ~((u64)root->sectorsize - 1);
5348 if (start >= extent_end) {
5350 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5351 ret = btrfs_next_leaf(root, path);
5358 leaf = path->nodes[0];
5360 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5361 if (found_key.objectid != objectid ||
5362 found_key.type != BTRFS_EXTENT_DATA_KEY)
5364 if (start + len <= found_key.offset)
5367 em->len = found_key.offset - start;
5371 if (found_type == BTRFS_FILE_EXTENT_REG ||
5372 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5373 em->start = extent_start;
5374 em->len = extent_end - extent_start;
5375 em->orig_start = extent_start -
5376 btrfs_file_extent_offset(leaf, item);
5377 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5379 em->block_start = EXTENT_MAP_HOLE;
5382 if (compress_type != BTRFS_COMPRESS_NONE) {
5383 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5384 em->compress_type = compress_type;
5385 em->block_start = bytenr;
5386 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5389 bytenr += btrfs_file_extent_offset(leaf, item);
5390 em->block_start = bytenr;
5391 em->block_len = em->len;
5392 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5393 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5396 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5400 size_t extent_offset;
5403 em->block_start = EXTENT_MAP_INLINE;
5404 if (!page || create) {
5405 em->start = extent_start;
5406 em->len = extent_end - extent_start;
5410 size = btrfs_file_extent_inline_len(leaf, item);
5411 extent_offset = page_offset(page) + pg_offset - extent_start;
5412 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5413 size - extent_offset);
5414 em->start = extent_start + extent_offset;
5415 em->len = (copy_size + root->sectorsize - 1) &
5416 ~((u64)root->sectorsize - 1);
5417 em->orig_start = EXTENT_MAP_INLINE;
5418 if (compress_type) {
5419 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5420 em->compress_type = compress_type;
5422 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5423 if (create == 0 && !PageUptodate(page)) {
5424 if (btrfs_file_extent_compression(leaf, item) !=
5425 BTRFS_COMPRESS_NONE) {
5426 ret = uncompress_inline(path, inode, page,
5428 extent_offset, item);
5429 BUG_ON(ret); /* -ENOMEM */
5432 read_extent_buffer(leaf, map + pg_offset, ptr,
5434 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5435 memset(map + pg_offset + copy_size, 0,
5436 PAGE_CACHE_SIZE - pg_offset -
5441 flush_dcache_page(page);
5442 } else if (create && PageUptodate(page)) {
5446 free_extent_map(em);
5449 btrfs_release_path(path);
5450 trans = btrfs_join_transaction(root);
5453 return ERR_CAST(trans);
5457 write_extent_buffer(leaf, map + pg_offset, ptr,
5460 btrfs_mark_buffer_dirty(leaf);
5462 set_extent_uptodate(io_tree, em->start,
5463 extent_map_end(em) - 1, NULL, GFP_NOFS);
5466 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
5472 em->block_start = EXTENT_MAP_HOLE;
5473 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5475 btrfs_release_path(path);
5476 if (em->start > start || extent_map_end(em) <= start) {
5477 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5478 "[%llu %llu]\n", (unsigned long long)em->start,
5479 (unsigned long long)em->len,
5480 (unsigned long long)start,
5481 (unsigned long long)len);
5487 write_lock(&em_tree->lock);
5488 ret = add_extent_mapping(em_tree, em);
5489 /* it is possible that someone inserted the extent into the tree
5490 * while we had the lock dropped. It is also possible that
5491 * an overlapping map exists in the tree
5493 if (ret == -EEXIST) {
5494 struct extent_map *existing;
5498 existing = lookup_extent_mapping(em_tree, start, len);
5499 if (existing && (existing->start > start ||
5500 existing->start + existing->len <= start)) {
5501 free_extent_map(existing);
5505 existing = lookup_extent_mapping(em_tree, em->start,
5508 err = merge_extent_mapping(em_tree, existing,
5511 free_extent_map(existing);
5513 free_extent_map(em);
5518 free_extent_map(em);
5522 free_extent_map(em);
5527 write_unlock(&em_tree->lock);
5531 trace_btrfs_get_extent(root, em);
5534 btrfs_free_path(path);
5536 ret = btrfs_end_transaction(trans, root);
5541 free_extent_map(em);
5542 return ERR_PTR(err);
5544 BUG_ON(!em); /* Error is always set */
5548 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5549 size_t pg_offset, u64 start, u64 len,
5552 struct extent_map *em;
5553 struct extent_map *hole_em = NULL;
5554 u64 range_start = start;
5560 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5565 * if our em maps to a hole, there might
5566 * actually be delalloc bytes behind it
5568 if (em->block_start != EXTENT_MAP_HOLE)
5574 /* check to see if we've wrapped (len == -1 or similar) */
5583 /* ok, we didn't find anything, lets look for delalloc */
5584 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5585 end, len, EXTENT_DELALLOC, 1);
5586 found_end = range_start + found;
5587 if (found_end < range_start)
5588 found_end = (u64)-1;
5591 * we didn't find anything useful, return
5592 * the original results from get_extent()
5594 if (range_start > end || found_end <= start) {
5600 /* adjust the range_start to make sure it doesn't
5601 * go backwards from the start they passed in
5603 range_start = max(start,range_start);
5604 found = found_end - range_start;
5607 u64 hole_start = start;
5610 em = alloc_extent_map();
5616 * when btrfs_get_extent can't find anything it
5617 * returns one huge hole
5619 * make sure what it found really fits our range, and
5620 * adjust to make sure it is based on the start from
5624 u64 calc_end = extent_map_end(hole_em);
5626 if (calc_end <= start || (hole_em->start > end)) {
5627 free_extent_map(hole_em);
5630 hole_start = max(hole_em->start, start);
5631 hole_len = calc_end - hole_start;
5635 if (hole_em && range_start > hole_start) {
5636 /* our hole starts before our delalloc, so we
5637 * have to return just the parts of the hole
5638 * that go until the delalloc starts
5640 em->len = min(hole_len,
5641 range_start - hole_start);
5642 em->start = hole_start;
5643 em->orig_start = hole_start;
5645 * don't adjust block start at all,
5646 * it is fixed at EXTENT_MAP_HOLE
5648 em->block_start = hole_em->block_start;
5649 em->block_len = hole_len;
5651 em->start = range_start;
5653 em->orig_start = range_start;
5654 em->block_start = EXTENT_MAP_DELALLOC;
5655 em->block_len = found;
5657 } else if (hole_em) {
5662 free_extent_map(hole_em);
5664 free_extent_map(em);
5665 return ERR_PTR(err);
5670 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5671 struct extent_map *em,
5674 struct btrfs_root *root = BTRFS_I(inode)->root;
5675 struct btrfs_trans_handle *trans;
5676 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5677 struct btrfs_key ins;
5680 bool insert = false;
5683 * Ok if the extent map we looked up is a hole and is for the exact
5684 * range we want, there is no reason to allocate a new one, however if
5685 * it is not right then we need to free this one and drop the cache for
5688 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5690 free_extent_map(em);
5693 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5696 trans = btrfs_join_transaction(root);
5698 return ERR_CAST(trans);
5700 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5702 alloc_hint = get_extent_allocation_hint(inode, start, len);
5703 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5704 alloc_hint, &ins, 1);
5711 em = alloc_extent_map();
5713 em = ERR_PTR(-ENOMEM);
5719 em->orig_start = em->start;
5720 em->len = ins.offset;
5722 em->block_start = ins.objectid;
5723 em->block_len = ins.offset;
5724 em->bdev = root->fs_info->fs_devices->latest_bdev;
5727 * We need to do this because if we're using the original em we searched
5728 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5731 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5734 write_lock(&em_tree->lock);
5735 ret = add_extent_mapping(em_tree, em);
5736 write_unlock(&em_tree->lock);
5739 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5742 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5743 ins.offset, ins.offset, 0);
5745 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5749 btrfs_end_transaction(trans, root);
5754 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5755 * block must be cow'd
5757 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5758 struct inode *inode, u64 offset, u64 len)
5760 struct btrfs_path *path;
5762 struct extent_buffer *leaf;
5763 struct btrfs_root *root = BTRFS_I(inode)->root;
5764 struct btrfs_file_extent_item *fi;
5765 struct btrfs_key key;
5773 path = btrfs_alloc_path();
5777 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5782 slot = path->slots[0];
5785 /* can't find the item, must cow */
5792 leaf = path->nodes[0];
5793 btrfs_item_key_to_cpu(leaf, &key, slot);
5794 if (key.objectid != btrfs_ino(inode) ||
5795 key.type != BTRFS_EXTENT_DATA_KEY) {
5796 /* not our file or wrong item type, must cow */
5800 if (key.offset > offset) {
5801 /* Wrong offset, must cow */
5805 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5806 found_type = btrfs_file_extent_type(leaf, fi);
5807 if (found_type != BTRFS_FILE_EXTENT_REG &&
5808 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5809 /* not a regular extent, must cow */
5812 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5813 backref_offset = btrfs_file_extent_offset(leaf, fi);
5815 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5816 if (extent_end < offset + len) {
5817 /* extent doesn't include our full range, must cow */
5821 if (btrfs_extent_readonly(root, disk_bytenr))
5825 * look for other files referencing this extent, if we
5826 * find any we must cow
5828 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5829 key.offset - backref_offset, disk_bytenr))
5833 * adjust disk_bytenr and num_bytes to cover just the bytes
5834 * in this extent we are about to write. If there
5835 * are any csums in that range we have to cow in order
5836 * to keep the csums correct
5838 disk_bytenr += backref_offset;
5839 disk_bytenr += offset - key.offset;
5840 num_bytes = min(offset + len, extent_end) - offset;
5841 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5844 * all of the above have passed, it is safe to overwrite this extent
5849 btrfs_free_path(path);
5853 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5854 struct extent_state **cached_state, int writing)
5856 struct btrfs_ordered_extent *ordered;
5860 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5863 * We're concerned with the entire range that we're going to be
5864 * doing DIO to, so we need to make sure theres no ordered
5865 * extents in this range.
5867 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5868 lockend - lockstart + 1);
5871 * We need to make sure there are no buffered pages in this
5872 * range either, we could have raced between the invalidate in
5873 * generic_file_direct_write and locking the extent. The
5874 * invalidate needs to happen so that reads after a write do not
5877 if (!ordered && (!writing ||
5878 !test_range_bit(&BTRFS_I(inode)->io_tree,
5879 lockstart, lockend, EXTENT_UPTODATE, 0,
5883 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5884 cached_state, GFP_NOFS);
5887 btrfs_start_ordered_extent(inode, ordered, 1);
5888 btrfs_put_ordered_extent(ordered);
5890 /* Screw you mmap */
5891 ret = filemap_write_and_wait_range(inode->i_mapping,
5898 * If we found a page that couldn't be invalidated just
5899 * fall back to buffered.
5901 ret = invalidate_inode_pages2_range(inode->i_mapping,
5902 lockstart >> PAGE_CACHE_SHIFT,
5903 lockend >> PAGE_CACHE_SHIFT);
5914 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5915 u64 len, u64 orig_start,
5916 u64 block_start, u64 block_len,
5919 struct extent_map_tree *em_tree;
5920 struct extent_map *em;
5921 struct btrfs_root *root = BTRFS_I(inode)->root;
5924 em_tree = &BTRFS_I(inode)->extent_tree;
5925 em = alloc_extent_map();
5927 return ERR_PTR(-ENOMEM);
5930 em->orig_start = orig_start;
5932 em->block_len = block_len;
5933 em->block_start = block_start;
5934 em->bdev = root->fs_info->fs_devices->latest_bdev;
5935 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5936 if (type == BTRFS_ORDERED_PREALLOC)
5937 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5940 btrfs_drop_extent_cache(inode, em->start,
5941 em->start + em->len - 1, 0);
5942 write_lock(&em_tree->lock);
5943 ret = add_extent_mapping(em_tree, em);
5944 write_unlock(&em_tree->lock);
5945 } while (ret == -EEXIST);
5948 free_extent_map(em);
5949 return ERR_PTR(ret);
5956 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5957 struct buffer_head *bh_result, int create)
5959 struct extent_map *em;
5960 struct btrfs_root *root = BTRFS_I(inode)->root;
5961 struct extent_state *cached_state = NULL;
5962 u64 start = iblock << inode->i_blkbits;
5963 u64 lockstart, lockend;
5964 u64 len = bh_result->b_size;
5965 struct btrfs_trans_handle *trans;
5966 int unlock_bits = EXTENT_LOCKED;
5970 ret = btrfs_delalloc_reserve_space(inode, len);
5973 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5975 len = min_t(u64, len, root->sectorsize);
5979 lockend = start + len - 1;
5982 * If this errors out it's because we couldn't invalidate pagecache for
5983 * this range and we need to fallback to buffered.
5985 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5989 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5990 lockend, EXTENT_DELALLOC, NULL,
5991 &cached_state, GFP_NOFS);
5996 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6003 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6004 * io. INLINE is special, and we could probably kludge it in here, but
6005 * it's still buffered so for safety lets just fall back to the generic
6008 * For COMPRESSED we _have_ to read the entire extent in so we can
6009 * decompress it, so there will be buffering required no matter what we
6010 * do, so go ahead and fallback to buffered.
6012 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6013 * to buffered IO. Don't blame me, this is the price we pay for using
6016 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6017 em->block_start == EXTENT_MAP_INLINE) {
6018 free_extent_map(em);
6023 /* Just a good old fashioned hole, return */
6024 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6025 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6026 free_extent_map(em);
6032 * We don't allocate a new extent in the following cases
6034 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6036 * 2) The extent is marked as PREALLOC. We're good to go here and can
6037 * just use the extent.
6041 len = min(len, em->len - (start - em->start));
6042 lockstart = start + len;
6046 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6047 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6048 em->block_start != EXTENT_MAP_HOLE)) {
6053 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6054 type = BTRFS_ORDERED_PREALLOC;
6056 type = BTRFS_ORDERED_NOCOW;
6057 len = min(len, em->len - (start - em->start));
6058 block_start = em->block_start + (start - em->start);
6061 * we're not going to log anything, but we do need
6062 * to make sure the current transaction stays open
6063 * while we look for nocow cross refs
6065 trans = btrfs_join_transaction(root);
6069 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6070 u64 orig_start = em->start;
6072 if (type == BTRFS_ORDERED_PREALLOC) {
6073 free_extent_map(em);
6074 em = create_pinned_em(inode, start, len,
6076 block_start, len, type);
6078 btrfs_end_transaction(trans, root);
6083 ret = btrfs_add_ordered_extent_dio(inode, start,
6084 block_start, len, len, type);
6085 btrfs_end_transaction(trans, root);
6087 free_extent_map(em);
6092 btrfs_end_transaction(trans, root);
6096 * this will cow the extent, reset the len in case we changed
6099 len = bh_result->b_size;
6100 em = btrfs_new_extent_direct(inode, em, start, len);
6105 len = min(len, em->len - (start - em->start));
6107 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6109 bh_result->b_size = len;
6110 bh_result->b_bdev = em->bdev;
6111 set_buffer_mapped(bh_result);
6113 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6114 set_buffer_new(bh_result);
6117 * Need to update the i_size under the extent lock so buffered
6118 * readers will get the updated i_size when we unlock.
6120 if (start + len > i_size_read(inode))
6121 i_size_write(inode, start + len);
6125 * In the case of write we need to clear and unlock the entire range,
6126 * in the case of read we need to unlock only the end area that we
6127 * aren't using if there is any left over space.
6129 if (lockstart < lockend) {
6130 if (create && len < lockend - lockstart) {
6131 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6132 lockstart + len - 1,
6133 unlock_bits | EXTENT_DEFRAG, 1, 0,
6134 &cached_state, GFP_NOFS);
6136 * Beside unlock, we also need to cleanup reserved space
6137 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6139 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6140 lockstart + len, lockend,
6141 unlock_bits | EXTENT_DO_ACCOUNTING |
6142 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
6144 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6145 lockend, unlock_bits, 1, 0,
6146 &cached_state, GFP_NOFS);
6149 free_extent_state(cached_state);
6152 free_extent_map(em);
6158 unlock_bits |= EXTENT_DO_ACCOUNTING;
6160 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6161 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6165 struct btrfs_dio_private {
6166 struct inode *inode;
6172 /* number of bios pending for this dio */
6173 atomic_t pending_bios;
6178 struct bio *orig_bio;
6181 static void btrfs_endio_direct_read(struct bio *bio, int err)
6183 struct btrfs_dio_private *dip = bio->bi_private;
6184 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6185 struct bio_vec *bvec = bio->bi_io_vec;
6186 struct inode *inode = dip->inode;
6187 struct btrfs_root *root = BTRFS_I(inode)->root;
6190 start = dip->logical_offset;
6192 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6193 struct page *page = bvec->bv_page;
6196 u64 private = ~(u32)0;
6197 unsigned long flags;
6199 if (get_state_private(&BTRFS_I(inode)->io_tree,
6202 local_irq_save(flags);
6203 kaddr = kmap_atomic(page);
6204 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6205 csum, bvec->bv_len);
6206 btrfs_csum_final(csum, (char *)&csum);
6207 kunmap_atomic(kaddr);
6208 local_irq_restore(flags);
6210 flush_dcache_page(bvec->bv_page);
6211 if (csum != private) {
6213 printk(KERN_ERR "btrfs csum failed ino %llu off"
6214 " %llu csum %u private %u\n",
6215 (unsigned long long)btrfs_ino(inode),
6216 (unsigned long long)start,
6217 csum, (unsigned)private);
6222 start += bvec->bv_len;
6224 } while (bvec <= bvec_end);
6226 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6227 dip->logical_offset + dip->bytes - 1);
6228 bio->bi_private = dip->private;
6232 /* If we had a csum failure make sure to clear the uptodate flag */
6234 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6235 dio_end_io(bio, err);
6238 static void btrfs_endio_direct_write(struct bio *bio, int err)
6240 struct btrfs_dio_private *dip = bio->bi_private;
6241 struct inode *inode = dip->inode;
6242 struct btrfs_root *root = BTRFS_I(inode)->root;
6243 struct btrfs_ordered_extent *ordered = NULL;
6244 u64 ordered_offset = dip->logical_offset;
6245 u64 ordered_bytes = dip->bytes;
6251 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6253 ordered_bytes, !err);
6257 ordered->work.func = finish_ordered_fn;
6258 ordered->work.flags = 0;
6259 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6263 * our bio might span multiple ordered extents. If we haven't
6264 * completed the accounting for the whole dio, go back and try again
6266 if (ordered_offset < dip->logical_offset + dip->bytes) {
6267 ordered_bytes = dip->logical_offset + dip->bytes -
6273 bio->bi_private = dip->private;
6277 /* If we had an error make sure to clear the uptodate flag */
6279 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6280 dio_end_io(bio, err);
6283 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6284 struct bio *bio, int mirror_num,
6285 unsigned long bio_flags, u64 offset)
6288 struct btrfs_root *root = BTRFS_I(inode)->root;
6289 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6290 BUG_ON(ret); /* -ENOMEM */
6294 static void btrfs_end_dio_bio(struct bio *bio, int err)
6296 struct btrfs_dio_private *dip = bio->bi_private;
6299 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6300 "sector %#Lx len %u err no %d\n",
6301 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6302 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6306 * before atomic variable goto zero, we must make sure
6307 * dip->errors is perceived to be set.
6309 smp_mb__before_atomic_dec();
6312 /* if there are more bios still pending for this dio, just exit */
6313 if (!atomic_dec_and_test(&dip->pending_bios))
6317 bio_io_error(dip->orig_bio);
6319 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6320 bio_endio(dip->orig_bio, 0);
6326 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6327 u64 first_sector, gfp_t gfp_flags)
6329 int nr_vecs = bio_get_nr_vecs(bdev);
6330 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6333 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6334 int rw, u64 file_offset, int skip_sum,
6337 int write = rw & REQ_WRITE;
6338 struct btrfs_root *root = BTRFS_I(inode)->root;
6342 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6347 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6355 if (write && async_submit) {
6356 ret = btrfs_wq_submit_bio(root->fs_info,
6357 inode, rw, bio, 0, 0,
6359 __btrfs_submit_bio_start_direct_io,
6360 __btrfs_submit_bio_done);
6364 * If we aren't doing async submit, calculate the csum of the
6367 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6370 } else if (!skip_sum) {
6371 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6377 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6383 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6386 struct inode *inode = dip->inode;
6387 struct btrfs_root *root = BTRFS_I(inode)->root;
6389 struct bio *orig_bio = dip->orig_bio;
6390 struct bio_vec *bvec = orig_bio->bi_io_vec;
6391 u64 start_sector = orig_bio->bi_sector;
6392 u64 file_offset = dip->logical_offset;
6397 int async_submit = 0;
6399 map_length = orig_bio->bi_size;
6400 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
6401 &map_length, NULL, 0);
6407 if (map_length >= orig_bio->bi_size) {
6413 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6416 bio->bi_private = dip;
6417 bio->bi_end_io = btrfs_end_dio_bio;
6418 atomic_inc(&dip->pending_bios);
6420 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6421 if (unlikely(map_length < submit_len + bvec->bv_len ||
6422 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6423 bvec->bv_offset) < bvec->bv_len)) {
6425 * inc the count before we submit the bio so
6426 * we know the end IO handler won't happen before
6427 * we inc the count. Otherwise, the dip might get freed
6428 * before we're done setting it up
6430 atomic_inc(&dip->pending_bios);
6431 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6432 file_offset, skip_sum,
6436 atomic_dec(&dip->pending_bios);
6440 start_sector += submit_len >> 9;
6441 file_offset += submit_len;
6446 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6447 start_sector, GFP_NOFS);
6450 bio->bi_private = dip;
6451 bio->bi_end_io = btrfs_end_dio_bio;
6453 map_length = orig_bio->bi_size;
6454 ret = btrfs_map_block(root->fs_info, READ,
6456 &map_length, NULL, 0);
6462 submit_len += bvec->bv_len;
6469 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6478 * before atomic variable goto zero, we must
6479 * make sure dip->errors is perceived to be set.
6481 smp_mb__before_atomic_dec();
6482 if (atomic_dec_and_test(&dip->pending_bios))
6483 bio_io_error(dip->orig_bio);
6485 /* bio_end_io() will handle error, so we needn't return it */
6489 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6492 struct btrfs_root *root = BTRFS_I(inode)->root;
6493 struct btrfs_dio_private *dip;
6494 struct bio_vec *bvec = bio->bi_io_vec;
6496 int write = rw & REQ_WRITE;
6499 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6501 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6507 dip->private = bio->bi_private;
6509 dip->logical_offset = file_offset;
6513 dip->bytes += bvec->bv_len;
6515 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6517 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6518 bio->bi_private = dip;
6520 dip->orig_bio = bio;
6521 atomic_set(&dip->pending_bios, 0);
6524 bio->bi_end_io = btrfs_endio_direct_write;
6526 bio->bi_end_io = btrfs_endio_direct_read;
6528 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6533 * If this is a write, we need to clean up the reserved space and kill
6534 * the ordered extent.
6537 struct btrfs_ordered_extent *ordered;
6538 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6539 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6540 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6541 btrfs_free_reserved_extent(root, ordered->start,
6543 btrfs_put_ordered_extent(ordered);
6544 btrfs_put_ordered_extent(ordered);
6546 bio_endio(bio, ret);
6549 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6550 const struct iovec *iov, loff_t offset,
6551 unsigned long nr_segs)
6557 unsigned blocksize_mask = root->sectorsize - 1;
6558 ssize_t retval = -EINVAL;
6559 loff_t end = offset;
6561 if (offset & blocksize_mask)
6564 /* Check the memory alignment. Blocks cannot straddle pages */
6565 for (seg = 0; seg < nr_segs; seg++) {
6566 addr = (unsigned long)iov[seg].iov_base;
6567 size = iov[seg].iov_len;
6569 if ((addr & blocksize_mask) || (size & blocksize_mask))
6572 /* If this is a write we don't need to check anymore */
6577 * Check to make sure we don't have duplicate iov_base's in this
6578 * iovec, if so return EINVAL, otherwise we'll get csum errors
6579 * when reading back.
6581 for (i = seg + 1; i < nr_segs; i++) {
6582 if (iov[seg].iov_base == iov[i].iov_base)
6591 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6592 const struct iovec *iov, loff_t offset,
6593 unsigned long nr_segs)
6595 struct file *file = iocb->ki_filp;
6596 struct inode *inode = file->f_mapping->host;
6598 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6602 return __blockdev_direct_IO(rw, iocb, inode,
6603 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6604 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6605 btrfs_submit_direct, 0);
6608 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6610 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6611 __u64 start, __u64 len)
6615 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6619 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6622 int btrfs_readpage(struct file *file, struct page *page)
6624 struct extent_io_tree *tree;
6625 tree = &BTRFS_I(page->mapping->host)->io_tree;
6626 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6629 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6631 struct extent_io_tree *tree;
6634 if (current->flags & PF_MEMALLOC) {
6635 redirty_page_for_writepage(wbc, page);
6639 tree = &BTRFS_I(page->mapping->host)->io_tree;
6640 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6643 int btrfs_writepages(struct address_space *mapping,
6644 struct writeback_control *wbc)
6646 struct extent_io_tree *tree;
6648 tree = &BTRFS_I(mapping->host)->io_tree;
6649 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6653 btrfs_readpages(struct file *file, struct address_space *mapping,
6654 struct list_head *pages, unsigned nr_pages)
6656 struct extent_io_tree *tree;
6657 tree = &BTRFS_I(mapping->host)->io_tree;
6658 return extent_readpages(tree, mapping, pages, nr_pages,
6661 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6663 struct extent_io_tree *tree;
6664 struct extent_map_tree *map;
6667 tree = &BTRFS_I(page->mapping->host)->io_tree;
6668 map = &BTRFS_I(page->mapping->host)->extent_tree;
6669 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6671 ClearPagePrivate(page);
6672 set_page_private(page, 0);
6673 page_cache_release(page);
6678 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6680 if (PageWriteback(page) || PageDirty(page))
6682 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6685 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6687 struct inode *inode = page->mapping->host;
6688 struct extent_io_tree *tree;
6689 struct btrfs_ordered_extent *ordered;
6690 struct extent_state *cached_state = NULL;
6691 u64 page_start = page_offset(page);
6692 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6695 * we have the page locked, so new writeback can't start,
6696 * and the dirty bit won't be cleared while we are here.
6698 * Wait for IO on this page so that we can safely clear
6699 * the PagePrivate2 bit and do ordered accounting
6701 wait_on_page_writeback(page);
6703 tree = &BTRFS_I(inode)->io_tree;
6705 btrfs_releasepage(page, GFP_NOFS);
6708 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6709 ordered = btrfs_lookup_ordered_extent(inode,
6713 * IO on this page will never be started, so we need
6714 * to account for any ordered extents now
6716 clear_extent_bit(tree, page_start, page_end,
6717 EXTENT_DIRTY | EXTENT_DELALLOC |
6718 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6719 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
6721 * whoever cleared the private bit is responsible
6722 * for the finish_ordered_io
6724 if (TestClearPagePrivate2(page) &&
6725 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6726 PAGE_CACHE_SIZE, 1)) {
6727 btrfs_finish_ordered_io(ordered);
6729 btrfs_put_ordered_extent(ordered);
6730 cached_state = NULL;
6731 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6733 clear_extent_bit(tree, page_start, page_end,
6734 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6735 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6736 &cached_state, GFP_NOFS);
6737 __btrfs_releasepage(page, GFP_NOFS);
6739 ClearPageChecked(page);
6740 if (PagePrivate(page)) {
6741 ClearPagePrivate(page);
6742 set_page_private(page, 0);
6743 page_cache_release(page);
6748 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6749 * called from a page fault handler when a page is first dirtied. Hence we must
6750 * be careful to check for EOF conditions here. We set the page up correctly
6751 * for a written page which means we get ENOSPC checking when writing into
6752 * holes and correct delalloc and unwritten extent mapping on filesystems that
6753 * support these features.
6755 * We are not allowed to take the i_mutex here so we have to play games to
6756 * protect against truncate races as the page could now be beyond EOF. Because
6757 * vmtruncate() writes the inode size before removing pages, once we have the
6758 * page lock we can determine safely if the page is beyond EOF. If it is not
6759 * beyond EOF, then the page is guaranteed safe against truncation until we
6762 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6764 struct page *page = vmf->page;
6765 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6766 struct btrfs_root *root = BTRFS_I(inode)->root;
6767 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6768 struct btrfs_ordered_extent *ordered;
6769 struct extent_state *cached_state = NULL;
6771 unsigned long zero_start;
6778 sb_start_pagefault(inode->i_sb);
6779 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6781 ret = file_update_time(vma->vm_file);
6787 else /* -ENOSPC, -EIO, etc */
6788 ret = VM_FAULT_SIGBUS;
6794 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6797 size = i_size_read(inode);
6798 page_start = page_offset(page);
6799 page_end = page_start + PAGE_CACHE_SIZE - 1;
6801 if ((page->mapping != inode->i_mapping) ||
6802 (page_start >= size)) {
6803 /* page got truncated out from underneath us */
6806 wait_on_page_writeback(page);
6808 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6809 set_page_extent_mapped(page);
6812 * we can't set the delalloc bits if there are pending ordered
6813 * extents. Drop our locks and wait for them to finish
6815 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6817 unlock_extent_cached(io_tree, page_start, page_end,
6818 &cached_state, GFP_NOFS);
6820 btrfs_start_ordered_extent(inode, ordered, 1);
6821 btrfs_put_ordered_extent(ordered);
6826 * XXX - page_mkwrite gets called every time the page is dirtied, even
6827 * if it was already dirty, so for space accounting reasons we need to
6828 * clear any delalloc bits for the range we are fixing to save. There
6829 * is probably a better way to do this, but for now keep consistent with
6830 * prepare_pages in the normal write path.
6832 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6833 EXTENT_DIRTY | EXTENT_DELALLOC |
6834 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
6835 0, 0, &cached_state, GFP_NOFS);
6837 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6840 unlock_extent_cached(io_tree, page_start, page_end,
6841 &cached_state, GFP_NOFS);
6842 ret = VM_FAULT_SIGBUS;
6847 /* page is wholly or partially inside EOF */
6848 if (page_start + PAGE_CACHE_SIZE > size)
6849 zero_start = size & ~PAGE_CACHE_MASK;
6851 zero_start = PAGE_CACHE_SIZE;
6853 if (zero_start != PAGE_CACHE_SIZE) {
6855 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6856 flush_dcache_page(page);
6859 ClearPageChecked(page);
6860 set_page_dirty(page);
6861 SetPageUptodate(page);
6863 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6864 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6865 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
6867 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6871 sb_end_pagefault(inode->i_sb);
6872 return VM_FAULT_LOCKED;
6876 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6878 sb_end_pagefault(inode->i_sb);
6882 static int btrfs_truncate(struct inode *inode)
6884 struct btrfs_root *root = BTRFS_I(inode)->root;
6885 struct btrfs_block_rsv *rsv;
6888 struct btrfs_trans_handle *trans;
6889 u64 mask = root->sectorsize - 1;
6890 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6892 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
6896 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6897 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6900 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6901 * 3 things going on here
6903 * 1) We need to reserve space for our orphan item and the space to
6904 * delete our orphan item. Lord knows we don't want to have a dangling
6905 * orphan item because we didn't reserve space to remove it.
6907 * 2) We need to reserve space to update our inode.
6909 * 3) We need to have something to cache all the space that is going to
6910 * be free'd up by the truncate operation, but also have some slack
6911 * space reserved in case it uses space during the truncate (thank you
6912 * very much snapshotting).
6914 * And we need these to all be seperate. The fact is we can use alot of
6915 * space doing the truncate, and we have no earthly idea how much space
6916 * we will use, so we need the truncate reservation to be seperate so it
6917 * doesn't end up using space reserved for updating the inode or
6918 * removing the orphan item. We also need to be able to stop the
6919 * transaction and start a new one, which means we need to be able to
6920 * update the inode several times, and we have no idea of knowing how
6921 * many times that will be, so we can't just reserve 1 item for the
6922 * entirety of the opration, so that has to be done seperately as well.
6923 * Then there is the orphan item, which does indeed need to be held on
6924 * to for the whole operation, and we need nobody to touch this reserved
6925 * space except the orphan code.
6927 * So that leaves us with
6929 * 1) root->orphan_block_rsv - for the orphan deletion.
6930 * 2) rsv - for the truncate reservation, which we will steal from the
6931 * transaction reservation.
6932 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6933 * updating the inode.
6935 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
6938 rsv->size = min_size;
6942 * 1 for the truncate slack space
6943 * 1 for the orphan item we're going to add
6944 * 1 for the orphan item deletion
6945 * 1 for updating the inode.
6947 trans = btrfs_start_transaction(root, 4);
6948 if (IS_ERR(trans)) {
6949 err = PTR_ERR(trans);
6953 /* Migrate the slack space for the truncate to our reserve */
6954 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6958 ret = btrfs_orphan_add(trans, inode);
6960 btrfs_end_transaction(trans, root);
6965 * setattr is responsible for setting the ordered_data_close flag,
6966 * but that is only tested during the last file release. That
6967 * could happen well after the next commit, leaving a great big
6968 * window where new writes may get lost if someone chooses to write
6969 * to this file after truncating to zero
6971 * The inode doesn't have any dirty data here, and so if we commit
6972 * this is a noop. If someone immediately starts writing to the inode
6973 * it is very likely we'll catch some of their writes in this
6974 * transaction, and the commit will find this file on the ordered
6975 * data list with good things to send down.
6977 * This is a best effort solution, there is still a window where
6978 * using truncate to replace the contents of the file will
6979 * end up with a zero length file after a crash.
6981 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6982 &BTRFS_I(inode)->runtime_flags))
6983 btrfs_add_ordered_operation(trans, root, inode);
6986 * So if we truncate and then write and fsync we normally would just
6987 * write the extents that changed, which is a problem if we need to
6988 * first truncate that entire inode. So set this flag so we write out
6989 * all of the extents in the inode to the sync log so we're completely
6992 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6993 trans->block_rsv = rsv;
6996 ret = btrfs_truncate_inode_items(trans, root, inode,
6998 BTRFS_EXTENT_DATA_KEY);
6999 if (ret != -ENOSPC) {
7004 trans->block_rsv = &root->fs_info->trans_block_rsv;
7005 ret = btrfs_update_inode(trans, root, inode);
7011 btrfs_end_transaction(trans, root);
7012 btrfs_btree_balance_dirty(root);
7014 trans = btrfs_start_transaction(root, 2);
7015 if (IS_ERR(trans)) {
7016 ret = err = PTR_ERR(trans);
7021 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7023 BUG_ON(ret); /* shouldn't happen */
7024 trans->block_rsv = rsv;
7027 if (ret == 0 && inode->i_nlink > 0) {
7028 trans->block_rsv = root->orphan_block_rsv;
7029 ret = btrfs_orphan_del(trans, inode);
7032 } else if (ret && inode->i_nlink > 0) {
7034 * Failed to do the truncate, remove us from the in memory
7037 ret = btrfs_orphan_del(NULL, inode);
7041 trans->block_rsv = &root->fs_info->trans_block_rsv;
7042 ret = btrfs_update_inode(trans, root, inode);
7046 ret = btrfs_end_transaction(trans, root);
7047 btrfs_btree_balance_dirty(root);
7051 btrfs_free_block_rsv(root, rsv);
7060 * create a new subvolume directory/inode (helper for the ioctl).
7062 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7063 struct btrfs_root *new_root, u64 new_dirid)
7065 struct inode *inode;
7069 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7070 new_dirid, new_dirid,
7071 S_IFDIR | (~current_umask() & S_IRWXUGO),
7074 return PTR_ERR(inode);
7075 inode->i_op = &btrfs_dir_inode_operations;
7076 inode->i_fop = &btrfs_dir_file_operations;
7078 set_nlink(inode, 1);
7079 btrfs_i_size_write(inode, 0);
7081 err = btrfs_update_inode(trans, new_root, inode);
7087 struct inode *btrfs_alloc_inode(struct super_block *sb)
7089 struct btrfs_inode *ei;
7090 struct inode *inode;
7092 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7099 ei->last_sub_trans = 0;
7100 ei->logged_trans = 0;
7101 ei->delalloc_bytes = 0;
7102 ei->disk_i_size = 0;
7105 ei->index_cnt = (u64)-1;
7106 ei->last_unlink_trans = 0;
7107 ei->last_log_commit = 0;
7109 spin_lock_init(&ei->lock);
7110 ei->outstanding_extents = 0;
7111 ei->reserved_extents = 0;
7113 ei->runtime_flags = 0;
7114 ei->force_compress = BTRFS_COMPRESS_NONE;
7116 ei->delayed_node = NULL;
7118 inode = &ei->vfs_inode;
7119 extent_map_tree_init(&ei->extent_tree);
7120 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7121 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7122 ei->io_tree.track_uptodate = 1;
7123 ei->io_failure_tree.track_uptodate = 1;
7124 atomic_set(&ei->sync_writers, 0);
7125 mutex_init(&ei->log_mutex);
7126 mutex_init(&ei->delalloc_mutex);
7127 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7128 INIT_LIST_HEAD(&ei->delalloc_inodes);
7129 INIT_LIST_HEAD(&ei->ordered_operations);
7130 RB_CLEAR_NODE(&ei->rb_node);
7135 static void btrfs_i_callback(struct rcu_head *head)
7137 struct inode *inode = container_of(head, struct inode, i_rcu);
7138 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7141 void btrfs_destroy_inode(struct inode *inode)
7143 struct btrfs_ordered_extent *ordered;
7144 struct btrfs_root *root = BTRFS_I(inode)->root;
7146 WARN_ON(!hlist_empty(&inode->i_dentry));
7147 WARN_ON(inode->i_data.nrpages);
7148 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7149 WARN_ON(BTRFS_I(inode)->reserved_extents);
7150 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7151 WARN_ON(BTRFS_I(inode)->csum_bytes);
7154 * This can happen where we create an inode, but somebody else also
7155 * created the same inode and we need to destroy the one we already
7162 * Make sure we're properly removed from the ordered operation
7166 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7167 spin_lock(&root->fs_info->ordered_extent_lock);
7168 list_del_init(&BTRFS_I(inode)->ordered_operations);
7169 spin_unlock(&root->fs_info->ordered_extent_lock);
7172 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7173 &BTRFS_I(inode)->runtime_flags)) {
7174 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7175 (unsigned long long)btrfs_ino(inode));
7176 atomic_dec(&root->orphan_inodes);
7180 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7184 printk(KERN_ERR "btrfs found ordered "
7185 "extent %llu %llu on inode cleanup\n",
7186 (unsigned long long)ordered->file_offset,
7187 (unsigned long long)ordered->len);
7188 btrfs_remove_ordered_extent(inode, ordered);
7189 btrfs_put_ordered_extent(ordered);
7190 btrfs_put_ordered_extent(ordered);
7193 inode_tree_del(inode);
7194 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7196 btrfs_remove_delayed_node(inode);
7197 call_rcu(&inode->i_rcu, btrfs_i_callback);
7200 int btrfs_drop_inode(struct inode *inode)
7202 struct btrfs_root *root = BTRFS_I(inode)->root;
7204 if (btrfs_root_refs(&root->root_item) == 0 &&
7205 !btrfs_is_free_space_inode(inode))
7208 return generic_drop_inode(inode);
7211 static void init_once(void *foo)
7213 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7215 inode_init_once(&ei->vfs_inode);
7218 void btrfs_destroy_cachep(void)
7221 * Make sure all delayed rcu free inodes are flushed before we
7225 if (btrfs_inode_cachep)
7226 kmem_cache_destroy(btrfs_inode_cachep);
7227 if (btrfs_trans_handle_cachep)
7228 kmem_cache_destroy(btrfs_trans_handle_cachep);
7229 if (btrfs_transaction_cachep)
7230 kmem_cache_destroy(btrfs_transaction_cachep);
7231 if (btrfs_path_cachep)
7232 kmem_cache_destroy(btrfs_path_cachep);
7233 if (btrfs_free_space_cachep)
7234 kmem_cache_destroy(btrfs_free_space_cachep);
7235 if (btrfs_delalloc_work_cachep)
7236 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7239 int btrfs_init_cachep(void)
7241 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7242 sizeof(struct btrfs_inode), 0,
7243 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7244 if (!btrfs_inode_cachep)
7247 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7248 sizeof(struct btrfs_trans_handle), 0,
7249 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7250 if (!btrfs_trans_handle_cachep)
7253 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7254 sizeof(struct btrfs_transaction), 0,
7255 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7256 if (!btrfs_transaction_cachep)
7259 btrfs_path_cachep = kmem_cache_create("btrfs_path",
7260 sizeof(struct btrfs_path), 0,
7261 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7262 if (!btrfs_path_cachep)
7265 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7266 sizeof(struct btrfs_free_space), 0,
7267 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7268 if (!btrfs_free_space_cachep)
7271 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7272 sizeof(struct btrfs_delalloc_work), 0,
7273 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7275 if (!btrfs_delalloc_work_cachep)
7280 btrfs_destroy_cachep();
7284 static int btrfs_getattr(struct vfsmount *mnt,
7285 struct dentry *dentry, struct kstat *stat)
7287 struct inode *inode = dentry->d_inode;
7288 u32 blocksize = inode->i_sb->s_blocksize;
7290 generic_fillattr(inode, stat);
7291 stat->dev = BTRFS_I(inode)->root->anon_dev;
7292 stat->blksize = PAGE_CACHE_SIZE;
7293 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7294 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7299 * If a file is moved, it will inherit the cow and compression flags of the new
7302 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7304 struct btrfs_inode *b_dir = BTRFS_I(dir);
7305 struct btrfs_inode *b_inode = BTRFS_I(inode);
7307 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7308 b_inode->flags |= BTRFS_INODE_NODATACOW;
7310 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7312 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7313 b_inode->flags |= BTRFS_INODE_COMPRESS;
7314 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7316 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7317 BTRFS_INODE_NOCOMPRESS);
7321 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7322 struct inode *new_dir, struct dentry *new_dentry)
7324 struct btrfs_trans_handle *trans;
7325 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7326 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7327 struct inode *new_inode = new_dentry->d_inode;
7328 struct inode *old_inode = old_dentry->d_inode;
7329 struct timespec ctime = CURRENT_TIME;
7333 u64 old_ino = btrfs_ino(old_inode);
7335 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7338 /* we only allow rename subvolume link between subvolumes */
7339 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7342 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7343 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7346 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7347 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7350 * we're using rename to replace one file with another.
7351 * and the replacement file is large. Start IO on it now so
7352 * we don't add too much work to the end of the transaction
7354 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7355 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7356 filemap_flush(old_inode->i_mapping);
7358 /* close the racy window with snapshot create/destroy ioctl */
7359 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7360 down_read(&root->fs_info->subvol_sem);
7362 * We want to reserve the absolute worst case amount of items. So if
7363 * both inodes are subvols and we need to unlink them then that would
7364 * require 4 item modifications, but if they are both normal inodes it
7365 * would require 5 item modifications, so we'll assume their normal
7366 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7367 * should cover the worst case number of items we'll modify.
7369 trans = btrfs_start_transaction(root, 20);
7370 if (IS_ERR(trans)) {
7371 ret = PTR_ERR(trans);
7376 btrfs_record_root_in_trans(trans, dest);
7378 ret = btrfs_set_inode_index(new_dir, &index);
7382 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7383 /* force full log commit if subvolume involved. */
7384 root->fs_info->last_trans_log_full_commit = trans->transid;
7386 ret = btrfs_insert_inode_ref(trans, dest,
7387 new_dentry->d_name.name,
7388 new_dentry->d_name.len,
7390 btrfs_ino(new_dir), index);
7394 * this is an ugly little race, but the rename is required
7395 * to make sure that if we crash, the inode is either at the
7396 * old name or the new one. pinning the log transaction lets
7397 * us make sure we don't allow a log commit to come in after
7398 * we unlink the name but before we add the new name back in.
7400 btrfs_pin_log_trans(root);
7403 * make sure the inode gets flushed if it is replacing
7406 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7407 btrfs_add_ordered_operation(trans, root, old_inode);
7409 inode_inc_iversion(old_dir);
7410 inode_inc_iversion(new_dir);
7411 inode_inc_iversion(old_inode);
7412 old_dir->i_ctime = old_dir->i_mtime = ctime;
7413 new_dir->i_ctime = new_dir->i_mtime = ctime;
7414 old_inode->i_ctime = ctime;
7416 if (old_dentry->d_parent != new_dentry->d_parent)
7417 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7419 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7420 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7421 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7422 old_dentry->d_name.name,
7423 old_dentry->d_name.len);
7425 ret = __btrfs_unlink_inode(trans, root, old_dir,
7426 old_dentry->d_inode,
7427 old_dentry->d_name.name,
7428 old_dentry->d_name.len);
7430 ret = btrfs_update_inode(trans, root, old_inode);
7433 btrfs_abort_transaction(trans, root, ret);
7438 inode_inc_iversion(new_inode);
7439 new_inode->i_ctime = CURRENT_TIME;
7440 if (unlikely(btrfs_ino(new_inode) ==
7441 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7442 root_objectid = BTRFS_I(new_inode)->location.objectid;
7443 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7445 new_dentry->d_name.name,
7446 new_dentry->d_name.len);
7447 BUG_ON(new_inode->i_nlink == 0);
7449 ret = btrfs_unlink_inode(trans, dest, new_dir,
7450 new_dentry->d_inode,
7451 new_dentry->d_name.name,
7452 new_dentry->d_name.len);
7454 if (!ret && new_inode->i_nlink == 0) {
7455 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7459 btrfs_abort_transaction(trans, root, ret);
7464 fixup_inode_flags(new_dir, old_inode);
7466 ret = btrfs_add_link(trans, new_dir, old_inode,
7467 new_dentry->d_name.name,
7468 new_dentry->d_name.len, 0, index);
7470 btrfs_abort_transaction(trans, root, ret);
7474 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7475 struct dentry *parent = new_dentry->d_parent;
7476 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7477 btrfs_end_log_trans(root);
7480 btrfs_end_transaction(trans, root);
7482 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7483 up_read(&root->fs_info->subvol_sem);
7488 static void btrfs_run_delalloc_work(struct btrfs_work *work)
7490 struct btrfs_delalloc_work *delalloc_work;
7492 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7494 if (delalloc_work->wait)
7495 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7497 filemap_flush(delalloc_work->inode->i_mapping);
7499 if (delalloc_work->delay_iput)
7500 btrfs_add_delayed_iput(delalloc_work->inode);
7502 iput(delalloc_work->inode);
7503 complete(&delalloc_work->completion);
7506 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7507 int wait, int delay_iput)
7509 struct btrfs_delalloc_work *work;
7511 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7515 init_completion(&work->completion);
7516 INIT_LIST_HEAD(&work->list);
7517 work->inode = inode;
7519 work->delay_iput = delay_iput;
7520 work->work.func = btrfs_run_delalloc_work;
7525 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7527 wait_for_completion(&work->completion);
7528 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7532 * some fairly slow code that needs optimization. This walks the list
7533 * of all the inodes with pending delalloc and forces them to disk.
7535 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7537 struct list_head *head = &root->fs_info->delalloc_inodes;
7538 struct btrfs_inode *binode;
7539 struct inode *inode;
7540 struct btrfs_delalloc_work *work, *next;
7541 struct list_head works;
7544 if (root->fs_info->sb->s_flags & MS_RDONLY)
7547 INIT_LIST_HEAD(&works);
7549 spin_lock(&root->fs_info->delalloc_lock);
7550 while (!list_empty(head)) {
7551 binode = list_entry(head->next, struct btrfs_inode,
7553 inode = igrab(&binode->vfs_inode);
7555 list_del_init(&binode->delalloc_inodes);
7556 spin_unlock(&root->fs_info->delalloc_lock);
7558 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7563 list_add_tail(&work->list, &works);
7564 btrfs_queue_worker(&root->fs_info->flush_workers,
7568 spin_lock(&root->fs_info->delalloc_lock);
7570 spin_unlock(&root->fs_info->delalloc_lock);
7572 /* the filemap_flush will queue IO into the worker threads, but
7573 * we have to make sure the IO is actually started and that
7574 * ordered extents get created before we return
7576 atomic_inc(&root->fs_info->async_submit_draining);
7577 while (atomic_read(&root->fs_info->nr_async_submits) ||
7578 atomic_read(&root->fs_info->async_delalloc_pages)) {
7579 wait_event(root->fs_info->async_submit_wait,
7580 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7581 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7583 atomic_dec(&root->fs_info->async_submit_draining);
7585 list_for_each_entry_safe(work, next, &works, list) {
7586 list_del_init(&work->list);
7587 btrfs_wait_and_free_delalloc_work(work);
7592 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7593 const char *symname)
7595 struct btrfs_trans_handle *trans;
7596 struct btrfs_root *root = BTRFS_I(dir)->root;
7597 struct btrfs_path *path;
7598 struct btrfs_key key;
7599 struct inode *inode = NULL;
7607 struct btrfs_file_extent_item *ei;
7608 struct extent_buffer *leaf;
7610 name_len = strlen(symname) + 1;
7611 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7612 return -ENAMETOOLONG;
7615 * 2 items for inode item and ref
7616 * 2 items for dir items
7617 * 1 item for xattr if selinux is on
7619 trans = btrfs_start_transaction(root, 5);
7621 return PTR_ERR(trans);
7623 err = btrfs_find_free_ino(root, &objectid);
7627 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7628 dentry->d_name.len, btrfs_ino(dir), objectid,
7629 S_IFLNK|S_IRWXUGO, &index);
7630 if (IS_ERR(inode)) {
7631 err = PTR_ERR(inode);
7635 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7642 * If the active LSM wants to access the inode during
7643 * d_instantiate it needs these. Smack checks to see
7644 * if the filesystem supports xattrs by looking at the
7647 inode->i_fop = &btrfs_file_operations;
7648 inode->i_op = &btrfs_file_inode_operations;
7650 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7654 inode->i_mapping->a_ops = &btrfs_aops;
7655 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7656 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7661 path = btrfs_alloc_path();
7667 key.objectid = btrfs_ino(inode);
7669 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7670 datasize = btrfs_file_extent_calc_inline_size(name_len);
7671 err = btrfs_insert_empty_item(trans, root, path, &key,
7675 btrfs_free_path(path);
7678 leaf = path->nodes[0];
7679 ei = btrfs_item_ptr(leaf, path->slots[0],
7680 struct btrfs_file_extent_item);
7681 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7682 btrfs_set_file_extent_type(leaf, ei,
7683 BTRFS_FILE_EXTENT_INLINE);
7684 btrfs_set_file_extent_encryption(leaf, ei, 0);
7685 btrfs_set_file_extent_compression(leaf, ei, 0);
7686 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7687 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7689 ptr = btrfs_file_extent_inline_start(ei);
7690 write_extent_buffer(leaf, symname, ptr, name_len);
7691 btrfs_mark_buffer_dirty(leaf);
7692 btrfs_free_path(path);
7694 inode->i_op = &btrfs_symlink_inode_operations;
7695 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7696 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7697 inode_set_bytes(inode, name_len);
7698 btrfs_i_size_write(inode, name_len - 1);
7699 err = btrfs_update_inode(trans, root, inode);
7705 d_instantiate(dentry, inode);
7706 btrfs_end_transaction(trans, root);
7708 inode_dec_link_count(inode);
7711 btrfs_btree_balance_dirty(root);
7715 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7716 u64 start, u64 num_bytes, u64 min_size,
7717 loff_t actual_len, u64 *alloc_hint,
7718 struct btrfs_trans_handle *trans)
7720 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7721 struct extent_map *em;
7722 struct btrfs_root *root = BTRFS_I(inode)->root;
7723 struct btrfs_key ins;
7724 u64 cur_offset = start;
7727 bool own_trans = true;
7731 while (num_bytes > 0) {
7733 trans = btrfs_start_transaction(root, 3);
7734 if (IS_ERR(trans)) {
7735 ret = PTR_ERR(trans);
7740 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7741 0, *alloc_hint, &ins, 1);
7744 btrfs_end_transaction(trans, root);
7748 ret = insert_reserved_file_extent(trans, inode,
7749 cur_offset, ins.objectid,
7750 ins.offset, ins.offset,
7751 ins.offset, 0, 0, 0,
7752 BTRFS_FILE_EXTENT_PREALLOC);
7754 btrfs_abort_transaction(trans, root, ret);
7756 btrfs_end_transaction(trans, root);
7759 btrfs_drop_extent_cache(inode, cur_offset,
7760 cur_offset + ins.offset -1, 0);
7762 em = alloc_extent_map();
7764 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7765 &BTRFS_I(inode)->runtime_flags);
7769 em->start = cur_offset;
7770 em->orig_start = cur_offset;
7771 em->len = ins.offset;
7772 em->block_start = ins.objectid;
7773 em->block_len = ins.offset;
7774 em->bdev = root->fs_info->fs_devices->latest_bdev;
7775 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7776 em->generation = trans->transid;
7779 write_lock(&em_tree->lock);
7780 ret = add_extent_mapping(em_tree, em);
7782 list_move(&em->list,
7783 &em_tree->modified_extents);
7784 write_unlock(&em_tree->lock);
7787 btrfs_drop_extent_cache(inode, cur_offset,
7788 cur_offset + ins.offset - 1,
7791 free_extent_map(em);
7793 num_bytes -= ins.offset;
7794 cur_offset += ins.offset;
7795 *alloc_hint = ins.objectid + ins.offset;
7797 inode_inc_iversion(inode);
7798 inode->i_ctime = CURRENT_TIME;
7799 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7800 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7801 (actual_len > inode->i_size) &&
7802 (cur_offset > inode->i_size)) {
7803 if (cur_offset > actual_len)
7804 i_size = actual_len;
7806 i_size = cur_offset;
7807 i_size_write(inode, i_size);
7808 btrfs_ordered_update_i_size(inode, i_size, NULL);
7811 ret = btrfs_update_inode(trans, root, inode);
7814 btrfs_abort_transaction(trans, root, ret);
7816 btrfs_end_transaction(trans, root);
7821 btrfs_end_transaction(trans, root);
7826 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7827 u64 start, u64 num_bytes, u64 min_size,
7828 loff_t actual_len, u64 *alloc_hint)
7830 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7831 min_size, actual_len, alloc_hint,
7835 int btrfs_prealloc_file_range_trans(struct inode *inode,
7836 struct btrfs_trans_handle *trans, int mode,
7837 u64 start, u64 num_bytes, u64 min_size,
7838 loff_t actual_len, u64 *alloc_hint)
7840 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7841 min_size, actual_len, alloc_hint, trans);
7844 static int btrfs_set_page_dirty(struct page *page)
7846 return __set_page_dirty_nobuffers(page);
7849 static int btrfs_permission(struct inode *inode, int mask)
7851 struct btrfs_root *root = BTRFS_I(inode)->root;
7852 umode_t mode = inode->i_mode;
7854 if (mask & MAY_WRITE &&
7855 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7856 if (btrfs_root_readonly(root))
7858 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7861 return generic_permission(inode, mask);
7864 static const struct inode_operations btrfs_dir_inode_operations = {
7865 .getattr = btrfs_getattr,
7866 .lookup = btrfs_lookup,
7867 .create = btrfs_create,
7868 .unlink = btrfs_unlink,
7870 .mkdir = btrfs_mkdir,
7871 .rmdir = btrfs_rmdir,
7872 .rename = btrfs_rename,
7873 .symlink = btrfs_symlink,
7874 .setattr = btrfs_setattr,
7875 .mknod = btrfs_mknod,
7876 .setxattr = btrfs_setxattr,
7877 .getxattr = btrfs_getxattr,
7878 .listxattr = btrfs_listxattr,
7879 .removexattr = btrfs_removexattr,
7880 .permission = btrfs_permission,
7881 .get_acl = btrfs_get_acl,
7883 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7884 .lookup = btrfs_lookup,
7885 .permission = btrfs_permission,
7886 .get_acl = btrfs_get_acl,
7889 static const struct file_operations btrfs_dir_file_operations = {
7890 .llseek = generic_file_llseek,
7891 .read = generic_read_dir,
7892 .readdir = btrfs_real_readdir,
7893 .unlocked_ioctl = btrfs_ioctl,
7894 #ifdef CONFIG_COMPAT
7895 .compat_ioctl = btrfs_ioctl,
7897 .release = btrfs_release_file,
7898 .fsync = btrfs_sync_file,
7901 static struct extent_io_ops btrfs_extent_io_ops = {
7902 .fill_delalloc = run_delalloc_range,
7903 .submit_bio_hook = btrfs_submit_bio_hook,
7904 .merge_bio_hook = btrfs_merge_bio_hook,
7905 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7906 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7907 .writepage_start_hook = btrfs_writepage_start_hook,
7908 .set_bit_hook = btrfs_set_bit_hook,
7909 .clear_bit_hook = btrfs_clear_bit_hook,
7910 .merge_extent_hook = btrfs_merge_extent_hook,
7911 .split_extent_hook = btrfs_split_extent_hook,
7915 * btrfs doesn't support the bmap operation because swapfiles
7916 * use bmap to make a mapping of extents in the file. They assume
7917 * these extents won't change over the life of the file and they
7918 * use the bmap result to do IO directly to the drive.
7920 * the btrfs bmap call would return logical addresses that aren't
7921 * suitable for IO and they also will change frequently as COW
7922 * operations happen. So, swapfile + btrfs == corruption.
7924 * For now we're avoiding this by dropping bmap.
7926 static const struct address_space_operations btrfs_aops = {
7927 .readpage = btrfs_readpage,
7928 .writepage = btrfs_writepage,
7929 .writepages = btrfs_writepages,
7930 .readpages = btrfs_readpages,
7931 .direct_IO = btrfs_direct_IO,
7932 .invalidatepage = btrfs_invalidatepage,
7933 .releasepage = btrfs_releasepage,
7934 .set_page_dirty = btrfs_set_page_dirty,
7935 .error_remove_page = generic_error_remove_page,
7938 static const struct address_space_operations btrfs_symlink_aops = {
7939 .readpage = btrfs_readpage,
7940 .writepage = btrfs_writepage,
7941 .invalidatepage = btrfs_invalidatepage,
7942 .releasepage = btrfs_releasepage,
7945 static const struct inode_operations btrfs_file_inode_operations = {
7946 .getattr = btrfs_getattr,
7947 .setattr = btrfs_setattr,
7948 .setxattr = btrfs_setxattr,
7949 .getxattr = btrfs_getxattr,
7950 .listxattr = btrfs_listxattr,
7951 .removexattr = btrfs_removexattr,
7952 .permission = btrfs_permission,
7953 .fiemap = btrfs_fiemap,
7954 .get_acl = btrfs_get_acl,
7955 .update_time = btrfs_update_time,
7957 static const struct inode_operations btrfs_special_inode_operations = {
7958 .getattr = btrfs_getattr,
7959 .setattr = btrfs_setattr,
7960 .permission = btrfs_permission,
7961 .setxattr = btrfs_setxattr,
7962 .getxattr = btrfs_getxattr,
7963 .listxattr = btrfs_listxattr,
7964 .removexattr = btrfs_removexattr,
7965 .get_acl = btrfs_get_acl,
7966 .update_time = btrfs_update_time,
7968 static const struct inode_operations btrfs_symlink_inode_operations = {
7969 .readlink = generic_readlink,
7970 .follow_link = page_follow_link_light,
7971 .put_link = page_put_link,
7972 .getattr = btrfs_getattr,
7973 .setattr = btrfs_setattr,
7974 .permission = btrfs_permission,
7975 .setxattr = btrfs_setxattr,
7976 .getxattr = btrfs_getxattr,
7977 .listxattr = btrfs_listxattr,
7978 .removexattr = btrfs_removexattr,
7979 .get_acl = btrfs_get_acl,
7980 .update_time = btrfs_update_time,
7983 const struct dentry_operations btrfs_dentry_operations = {
7984 .d_delete = btrfs_dentry_delete,
7985 .d_release = btrfs_dentry_release,