2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
65 struct btrfs_iget_args {
66 struct btrfs_key *location;
67 struct btrfs_root *root;
70 struct btrfs_dio_data {
71 u64 outstanding_extents;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 u64 len, u64 orig_start,
114 u64 block_start, u64 block_len,
115 u64 orig_block_len, u64 ram_bytes,
118 static int btrfs_dirty_inode(struct inode *inode);
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121 void btrfs_test_inode_set_ops(struct inode *inode)
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
133 err = btrfs_init_acl(trans, inode, dir);
135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
144 static int insert_inline_extent(struct btrfs_trans_handle *trans,
145 struct btrfs_path *path, int extent_inserted,
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
149 struct page **compressed_pages)
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
155 struct btrfs_file_extent_item *ei;
158 size_t cur_size = size;
159 unsigned long offset;
161 if (compressed_size && compressed_pages)
162 cur_size = compressed_size;
164 inode_add_bytes(inode, size);
166 if (!extent_inserted) {
167 struct btrfs_key key;
170 key.objectid = btrfs_ino(inode);
172 key.type = BTRFS_EXTENT_DATA_KEY;
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
193 if (compress_type != BTRFS_COMPRESS_NONE) {
196 while (compressed_size > 0) {
197 cpage = compressed_pages[i];
198 cur_size = min_t(unsigned long, compressed_size,
201 kaddr = kmap_atomic(cpage);
202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
203 kunmap_atomic(kaddr);
207 compressed_size -= cur_size;
209 btrfs_set_file_extent_compression(leaf, ei,
212 page = find_get_page(inode->i_mapping,
213 start >> PAGE_SHIFT);
214 btrfs_set_file_extent_compression(leaf, ei, 0);
215 kaddr = kmap_atomic(page);
216 offset = start & (PAGE_SIZE - 1);
217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
218 kunmap_atomic(kaddr);
221 btrfs_mark_buffer_dirty(leaf);
222 btrfs_release_path(path);
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
233 BTRFS_I(inode)->disk_i_size = inode->i_size;
234 ret = btrfs_update_inode(trans, root, inode);
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
247 static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
251 struct page **compressed_pages)
253 struct btrfs_trans_handle *trans;
254 u64 isize = i_size_read(inode);
255 u64 actual_end = min(end + 1, isize);
256 u64 inline_len = actual_end - start;
257 u64 aligned_end = ALIGN(end, root->sectorsize);
258 u64 data_len = inline_len;
260 struct btrfs_path *path;
261 int extent_inserted = 0;
262 u32 extent_item_size;
265 data_len = compressed_size;
268 actual_end > root->sectorsize ||
269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
271 (actual_end & (root->sectorsize - 1)) == 0) ||
273 data_len > root->fs_info->max_inline) {
277 path = btrfs_alloc_path();
281 trans = btrfs_join_transaction(root);
283 btrfs_free_path(path);
284 return PTR_ERR(trans);
286 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
288 if (compressed_size && compressed_pages)
289 extent_item_size = btrfs_file_extent_calc_inline_size(
292 extent_item_size = btrfs_file_extent_calc_inline_size(
295 ret = __btrfs_drop_extents(trans, root, inode, path,
296 start, aligned_end, NULL,
297 1, 1, extent_item_size, &extent_inserted);
299 btrfs_abort_transaction(trans, ret);
303 if (isize > actual_end)
304 inline_len = min_t(u64, isize, actual_end);
305 ret = insert_inline_extent(trans, path, extent_inserted,
307 inline_len, compressed_size,
308 compress_type, compressed_pages);
309 if (ret && ret != -ENOSPC) {
310 btrfs_abort_transaction(trans, ret);
312 } else if (ret == -ENOSPC) {
317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
318 btrfs_delalloc_release_metadata(inode, end + 1 - start);
319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
328 btrfs_free_path(path);
329 btrfs_end_transaction(trans, root);
333 struct async_extent {
338 unsigned long nr_pages;
340 struct list_head list;
345 struct btrfs_root *root;
346 struct page *locked_page;
349 struct list_head extents;
350 struct btrfs_work work;
353 static noinline int add_async_extent(struct async_cow *cow,
354 u64 start, u64 ram_size,
357 unsigned long nr_pages,
360 struct async_extent *async_extent;
362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
363 BUG_ON(!async_extent); /* -ENOMEM */
364 async_extent->start = start;
365 async_extent->ram_size = ram_size;
366 async_extent->compressed_size = compressed_size;
367 async_extent->pages = pages;
368 async_extent->nr_pages = nr_pages;
369 async_extent->compress_type = compress_type;
370 list_add_tail(&async_extent->list, &cow->extents);
374 static inline int inode_need_compress(struct inode *inode)
376 struct btrfs_root *root = BTRFS_I(inode)->root;
379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
381 /* bad compression ratios */
382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
384 if (btrfs_test_opt(root->fs_info, COMPRESS) ||
385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 BTRFS_I(inode)->force_compress)
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
405 * are written in the same order that the flusher thread sent them
408 static noinline void compress_file_range(struct inode *inode,
409 struct page *locked_page,
411 struct async_cow *async_cow,
414 struct btrfs_root *root = BTRFS_I(inode)->root;
416 u64 blocksize = root->sectorsize;
418 u64 isize = i_size_read(inode);
420 struct page **pages = NULL;
421 unsigned long nr_pages;
422 unsigned long nr_pages_ret = 0;
423 unsigned long total_compressed = 0;
424 unsigned long total_in = 0;
425 unsigned long max_compressed = SZ_128K;
426 unsigned long max_uncompressed = SZ_128K;
429 int compress_type = root->fs_info->compress_type;
432 /* if this is a small write inside eof, kick off a defrag */
433 if ((end - start + 1) < SZ_16K &&
434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
435 btrfs_add_inode_defrag(NULL, inode);
437 actual_end = min_t(u64, isize, end + 1);
440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
444 * we don't want to send crud past the end of i_size through
445 * compression, that's just a waste of CPU time. So, if the
446 * end of the file is before the start of our current
447 * requested range of bytes, we bail out to the uncompressed
448 * cleanup code that can deal with all of this.
450 * It isn't really the fastest way to fix things, but this is a
451 * very uncommon corner.
453 if (actual_end <= start)
454 goto cleanup_and_bail_uncompressed;
456 total_compressed = actual_end - start;
459 * skip compression for a small file range(<=blocksize) that
460 * isn't an inline extent, since it doesn't save disk space at all.
462 if (total_compressed <= blocksize &&
463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 goto cleanup_and_bail_uncompressed;
466 /* we want to make sure that amount of ram required to uncompress
467 * an extent is reasonable, so we limit the total size in ram
468 * of a compressed extent to 128k. This is a crucial number
469 * because it also controls how easily we can spread reads across
470 * cpus for decompression.
472 * We also want to make sure the amount of IO required to do
473 * a random read is reasonably small, so we limit the size of
474 * a compressed extent to 128k.
476 total_compressed = min(total_compressed, max_uncompressed);
477 num_bytes = ALIGN(end - start + 1, blocksize);
478 num_bytes = max(blocksize, num_bytes);
483 * we do compression for mount -o compress and when the
484 * inode has not been flagged as nocompress. This flag can
485 * change at any time if we discover bad compression ratios.
487 if (inode_need_compress(inode)) {
489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
491 /* just bail out to the uncompressed code */
495 if (BTRFS_I(inode)->force_compress)
496 compress_type = BTRFS_I(inode)->force_compress;
499 * we need to call clear_page_dirty_for_io on each
500 * page in the range. Otherwise applications with the file
501 * mmap'd can wander in and change the page contents while
502 * we are compressing them.
504 * If the compression fails for any reason, we set the pages
505 * dirty again later on.
507 extent_range_clear_dirty_for_io(inode, start, end);
509 ret = btrfs_compress_pages(compress_type,
510 inode->i_mapping, start,
511 total_compressed, pages,
512 nr_pages, &nr_pages_ret,
518 unsigned long offset = total_compressed &
520 struct page *page = pages[nr_pages_ret - 1];
523 /* zero the tail end of the last page, we might be
524 * sending it down to disk
527 kaddr = kmap_atomic(page);
528 memset(kaddr + offset, 0,
530 kunmap_atomic(kaddr);
537 /* lets try to make an inline extent */
538 if (ret || total_in < (actual_end - start)) {
539 /* we didn't compress the entire range, try
540 * to make an uncompressed inline extent.
542 ret = cow_file_range_inline(root, inode, start, end,
545 /* try making a compressed inline extent */
546 ret = cow_file_range_inline(root, inode, start, end,
548 compress_type, pages);
551 unsigned long clear_flags = EXTENT_DELALLOC |
553 unsigned long page_error_op;
555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
559 * inline extent creation worked or returned error,
560 * we don't need to create any more async work items.
561 * Unlock and free up our temp pages.
563 extent_clear_unlock_delalloc(inode, start, end, NULL,
564 clear_flags, PAGE_UNLOCK |
575 * we aren't doing an inline extent round the compressed size
576 * up to a block size boundary so the allocator does sane
579 total_compressed = ALIGN(total_compressed, blocksize);
582 * one last check to make sure the compression is really a
583 * win, compare the page count read with the blocks on disk
585 total_in = ALIGN(total_in, PAGE_SIZE);
586 if (total_compressed >= total_in) {
589 num_bytes = total_in;
593 * The async work queues will take care of doing actual
594 * allocation on disk for these compressed pages, and
595 * will submit them to the elevator.
597 add_async_extent(async_cow, start, num_bytes,
598 total_compressed, pages, nr_pages_ret,
601 if (start + num_bytes < end) {
612 * the compression code ran but failed to make things smaller,
613 * free any pages it allocated and our page pointer array
615 for (i = 0; i < nr_pages_ret; i++) {
616 WARN_ON(pages[i]->mapping);
621 total_compressed = 0;
624 /* flag the file so we don't compress in the future */
625 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
626 !(BTRFS_I(inode)->force_compress)) {
627 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
630 cleanup_and_bail_uncompressed:
632 * No compression, but we still need to write the pages in the file
633 * we've been given so far. redirty the locked page if it corresponds
634 * to our extent and set things up for the async work queue to run
635 * cow_file_range to do the normal delalloc dance.
637 if (page_offset(locked_page) >= start &&
638 page_offset(locked_page) <= end)
639 __set_page_dirty_nobuffers(locked_page);
640 /* unlocked later on in the async handlers */
643 extent_range_redirty_for_io(inode, start, end);
644 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
645 BTRFS_COMPRESS_NONE);
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
658 static void free_async_extent_pages(struct async_extent *async_extent)
662 if (!async_extent->pages)
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
667 put_page(async_extent->pages[i]);
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
680 static noinline void submit_compressed_extents(struct inode *inode,
681 struct async_cow *async_cow)
683 struct async_extent *async_extent;
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
693 while (!list_empty(&async_cow->extents)) {
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
698 io_tree = &BTRFS_I(inode)->io_tree;
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
706 lock_extent(io_tree, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1);
710 /* allocate blocks */
711 ret = cow_file_range(inode, async_cow->locked_page,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 async_extent->start +
716 async_extent->ram_size - 1,
717 &page_started, &nr_written, 0,
723 * if page_started, cow_file_range inserted an
724 * inline extent and took care of all the unlocking
725 * and IO for us. Otherwise, we need to submit
726 * all those pages down to the drive.
728 if (!page_started && !ret)
729 extent_write_locked_range(io_tree,
730 inode, async_extent->start,
731 async_extent->start +
732 async_extent->ram_size - 1,
736 unlock_page(async_cow->locked_page);
742 lock_extent(io_tree, async_extent->start,
743 async_extent->start + async_extent->ram_size - 1);
745 ret = btrfs_reserve_extent(root,
746 async_extent->compressed_size,
747 async_extent->compressed_size,
748 0, alloc_hint, &ins, 1, 1);
750 free_async_extent_pages(async_extent);
752 if (ret == -ENOSPC) {
753 unlock_extent(io_tree, async_extent->start,
754 async_extent->start +
755 async_extent->ram_size - 1);
758 * we need to redirty the pages if we decide to
759 * fallback to uncompressed IO, otherwise we
760 * will not submit these pages down to lower
763 extent_range_redirty_for_io(inode,
765 async_extent->start +
766 async_extent->ram_size - 1);
773 * here we're doing allocation and writeback of the
776 btrfs_drop_extent_cache(inode, async_extent->start,
777 async_extent->start +
778 async_extent->ram_size - 1, 0);
780 em = alloc_extent_map();
783 goto out_free_reserve;
785 em->start = async_extent->start;
786 em->len = async_extent->ram_size;
787 em->orig_start = em->start;
788 em->mod_start = em->start;
789 em->mod_len = em->len;
791 em->block_start = ins.objectid;
792 em->block_len = ins.offset;
793 em->orig_block_len = ins.offset;
794 em->ram_bytes = async_extent->ram_size;
795 em->bdev = root->fs_info->fs_devices->latest_bdev;
796 em->compress_type = async_extent->compress_type;
797 set_bit(EXTENT_FLAG_PINNED, &em->flags);
798 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
802 write_lock(&em_tree->lock);
803 ret = add_extent_mapping(em_tree, em, 1);
804 write_unlock(&em_tree->lock);
805 if (ret != -EEXIST) {
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
815 goto out_free_reserve;
817 ret = btrfs_add_ordered_extent_compress(inode,
820 async_extent->ram_size,
822 BTRFS_ORDERED_COMPRESSED,
823 async_extent->compress_type);
825 btrfs_drop_extent_cache(inode, async_extent->start,
826 async_extent->start +
827 async_extent->ram_size - 1, 0);
828 goto out_free_reserve;
830 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
833 * clear dirty, set writeback and unlock the pages.
835 extent_clear_unlock_delalloc(inode, async_extent->start,
836 async_extent->start +
837 async_extent->ram_size - 1,
838 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
839 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
841 ret = btrfs_submit_compressed_write(inode,
843 async_extent->ram_size,
845 ins.offset, async_extent->pages,
846 async_extent->nr_pages);
848 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
849 struct page *p = async_extent->pages[0];
850 const u64 start = async_extent->start;
851 const u64 end = start + async_extent->ram_size - 1;
853 p->mapping = inode->i_mapping;
854 tree->ops->writepage_end_io_hook(p, start, end,
857 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
860 free_async_extent_pages(async_extent);
862 alloc_hint = ins.objectid + ins.offset;
868 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
869 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
871 extent_clear_unlock_delalloc(inode, async_extent->start,
872 async_extent->start +
873 async_extent->ram_size - 1,
874 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
875 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
876 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
877 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
879 free_async_extent_pages(async_extent);
884 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
887 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
888 struct extent_map *em;
891 read_lock(&em_tree->lock);
892 em = search_extent_mapping(em_tree, start, num_bytes);
895 * if block start isn't an actual block number then find the
896 * first block in this inode and use that as a hint. If that
897 * block is also bogus then just don't worry about it.
899 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
901 em = search_extent_mapping(em_tree, 0, 0);
902 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
903 alloc_hint = em->block_start;
907 alloc_hint = em->block_start;
911 read_unlock(&em_tree->lock);
917 * when extent_io.c finds a delayed allocation range in the file,
918 * the call backs end up in this code. The basic idea is to
919 * allocate extents on disk for the range, and create ordered data structs
920 * in ram to track those extents.
922 * locked_page is the page that writepage had locked already. We use
923 * it to make sure we don't do extra locks or unlocks.
925 * *page_started is set to one if we unlock locked_page and do everything
926 * required to start IO on it. It may be clean and already done with
929 static noinline int cow_file_range(struct inode *inode,
930 struct page *locked_page,
931 u64 start, u64 end, u64 delalloc_end,
932 int *page_started, unsigned long *nr_written,
933 int unlock, struct btrfs_dedupe_hash *hash)
935 struct btrfs_root *root = BTRFS_I(inode)->root;
938 unsigned long ram_size;
941 u64 blocksize = root->sectorsize;
942 struct btrfs_key ins;
943 struct extent_map *em;
944 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
947 if (btrfs_is_free_space_inode(inode)) {
953 num_bytes = ALIGN(end - start + 1, blocksize);
954 num_bytes = max(blocksize, num_bytes);
955 disk_num_bytes = num_bytes;
957 /* if this is a small write inside eof, kick off defrag */
958 if (num_bytes < SZ_64K &&
959 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
960 btrfs_add_inode_defrag(NULL, inode);
963 /* lets try to make an inline extent */
964 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
967 extent_clear_unlock_delalloc(inode, start, end, NULL,
968 EXTENT_LOCKED | EXTENT_DELALLOC |
969 EXTENT_DEFRAG, PAGE_UNLOCK |
970 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
973 *nr_written = *nr_written +
974 (end - start + PAGE_SIZE) / PAGE_SIZE;
977 } else if (ret < 0) {
982 BUG_ON(disk_num_bytes >
983 btrfs_super_total_bytes(root->fs_info->super_copy));
985 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
986 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
988 while (disk_num_bytes > 0) {
991 cur_alloc_size = disk_num_bytes;
992 ret = btrfs_reserve_extent(root, cur_alloc_size,
993 root->sectorsize, 0, alloc_hint,
998 em = alloc_extent_map();
1004 em->orig_start = em->start;
1005 ram_size = ins.offset;
1006 em->len = ins.offset;
1007 em->mod_start = em->start;
1008 em->mod_len = em->len;
1010 em->block_start = ins.objectid;
1011 em->block_len = ins.offset;
1012 em->orig_block_len = ins.offset;
1013 em->ram_bytes = ram_size;
1014 em->bdev = root->fs_info->fs_devices->latest_bdev;
1015 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1016 em->generation = -1;
1019 write_lock(&em_tree->lock);
1020 ret = add_extent_mapping(em_tree, em, 1);
1021 write_unlock(&em_tree->lock);
1022 if (ret != -EEXIST) {
1023 free_extent_map(em);
1026 btrfs_drop_extent_cache(inode, start,
1027 start + ram_size - 1, 0);
1032 cur_alloc_size = ins.offset;
1033 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1034 ram_size, cur_alloc_size, 0);
1036 goto out_drop_extent_cache;
1038 if (root->root_key.objectid ==
1039 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1040 ret = btrfs_reloc_clone_csums(inode, start,
1043 goto out_drop_extent_cache;
1046 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1048 if (disk_num_bytes < cur_alloc_size)
1051 /* we're not doing compressed IO, don't unlock the first
1052 * page (which the caller expects to stay locked), don't
1053 * clear any dirty bits and don't set any writeback bits
1055 * Do set the Private2 bit so we know this page was properly
1056 * setup for writepage
1058 op = unlock ? PAGE_UNLOCK : 0;
1059 op |= PAGE_SET_PRIVATE2;
1061 extent_clear_unlock_delalloc(inode, start,
1062 start + ram_size - 1, locked_page,
1063 EXTENT_LOCKED | EXTENT_DELALLOC,
1065 disk_num_bytes -= cur_alloc_size;
1066 num_bytes -= cur_alloc_size;
1067 alloc_hint = ins.objectid + ins.offset;
1068 start += cur_alloc_size;
1073 out_drop_extent_cache:
1074 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1076 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1077 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1079 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1080 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1081 EXTENT_DELALLOC | EXTENT_DEFRAG,
1082 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1083 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1088 * work queue call back to started compression on a file and pages
1090 static noinline void async_cow_start(struct btrfs_work *work)
1092 struct async_cow *async_cow;
1094 async_cow = container_of(work, struct async_cow, work);
1096 compress_file_range(async_cow->inode, async_cow->locked_page,
1097 async_cow->start, async_cow->end, async_cow,
1099 if (num_added == 0) {
1100 btrfs_add_delayed_iput(async_cow->inode);
1101 async_cow->inode = NULL;
1106 * work queue call back to submit previously compressed pages
1108 static noinline void async_cow_submit(struct btrfs_work *work)
1110 struct async_cow *async_cow;
1111 struct btrfs_root *root;
1112 unsigned long nr_pages;
1114 async_cow = container_of(work, struct async_cow, work);
1116 root = async_cow->root;
1117 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1121 * atomic_sub_return implies a barrier for waitqueue_active
1123 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1125 waitqueue_active(&root->fs_info->async_submit_wait))
1126 wake_up(&root->fs_info->async_submit_wait);
1128 if (async_cow->inode)
1129 submit_compressed_extents(async_cow->inode, async_cow);
1132 static noinline void async_cow_free(struct btrfs_work *work)
1134 struct async_cow *async_cow;
1135 async_cow = container_of(work, struct async_cow, work);
1136 if (async_cow->inode)
1137 btrfs_add_delayed_iput(async_cow->inode);
1141 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1142 u64 start, u64 end, int *page_started,
1143 unsigned long *nr_written)
1145 struct async_cow *async_cow;
1146 struct btrfs_root *root = BTRFS_I(inode)->root;
1147 unsigned long nr_pages;
1149 int limit = 10 * SZ_1M;
1151 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1152 1, 0, NULL, GFP_NOFS);
1153 while (start < end) {
1154 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1155 BUG_ON(!async_cow); /* -ENOMEM */
1156 async_cow->inode = igrab(inode);
1157 async_cow->root = root;
1158 async_cow->locked_page = locked_page;
1159 async_cow->start = start;
1161 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1162 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
1165 cur_end = min(end, start + SZ_512K - 1);
1167 async_cow->end = cur_end;
1168 INIT_LIST_HEAD(&async_cow->extents);
1170 btrfs_init_work(&async_cow->work,
1171 btrfs_delalloc_helper,
1172 async_cow_start, async_cow_submit,
1175 nr_pages = (cur_end - start + PAGE_SIZE) >>
1177 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1179 btrfs_queue_work(root->fs_info->delalloc_workers,
1182 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1183 wait_event(root->fs_info->async_submit_wait,
1184 (atomic_read(&root->fs_info->async_delalloc_pages) <
1188 while (atomic_read(&root->fs_info->async_submit_draining) &&
1189 atomic_read(&root->fs_info->async_delalloc_pages)) {
1190 wait_event(root->fs_info->async_submit_wait,
1191 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1195 *nr_written += nr_pages;
1196 start = cur_end + 1;
1202 static noinline int csum_exist_in_range(struct btrfs_root *root,
1203 u64 bytenr, u64 num_bytes)
1206 struct btrfs_ordered_sum *sums;
1209 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1210 bytenr + num_bytes - 1, &list, 0);
1211 if (ret == 0 && list_empty(&list))
1214 while (!list_empty(&list)) {
1215 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1216 list_del(&sums->list);
1223 * when nowcow writeback call back. This checks for snapshots or COW copies
1224 * of the extents that exist in the file, and COWs the file as required.
1226 * If no cow copies or snapshots exist, we write directly to the existing
1229 static noinline int run_delalloc_nocow(struct inode *inode,
1230 struct page *locked_page,
1231 u64 start, u64 end, int *page_started, int force,
1232 unsigned long *nr_written)
1234 struct btrfs_root *root = BTRFS_I(inode)->root;
1235 struct btrfs_trans_handle *trans;
1236 struct extent_buffer *leaf;
1237 struct btrfs_path *path;
1238 struct btrfs_file_extent_item *fi;
1239 struct btrfs_key found_key;
1254 u64 ino = btrfs_ino(inode);
1256 path = btrfs_alloc_path();
1258 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1259 EXTENT_LOCKED | EXTENT_DELALLOC |
1260 EXTENT_DO_ACCOUNTING |
1261 EXTENT_DEFRAG, PAGE_UNLOCK |
1263 PAGE_SET_WRITEBACK |
1264 PAGE_END_WRITEBACK);
1268 nolock = btrfs_is_free_space_inode(inode);
1271 trans = btrfs_join_transaction_nolock(root);
1273 trans = btrfs_join_transaction(root);
1275 if (IS_ERR(trans)) {
1276 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1277 EXTENT_LOCKED | EXTENT_DELALLOC |
1278 EXTENT_DO_ACCOUNTING |
1279 EXTENT_DEFRAG, PAGE_UNLOCK |
1281 PAGE_SET_WRITEBACK |
1282 PAGE_END_WRITEBACK);
1283 btrfs_free_path(path);
1284 return PTR_ERR(trans);
1287 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1289 cow_start = (u64)-1;
1292 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1296 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &found_key,
1299 path->slots[0] - 1);
1300 if (found_key.objectid == ino &&
1301 found_key.type == BTRFS_EXTENT_DATA_KEY)
1306 leaf = path->nodes[0];
1307 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1308 ret = btrfs_next_leaf(root, path);
1313 leaf = path->nodes[0];
1319 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1321 if (found_key.objectid > ino)
1323 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1324 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1328 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1329 found_key.offset > end)
1332 if (found_key.offset > cur_offset) {
1333 extent_end = found_key.offset;
1338 fi = btrfs_item_ptr(leaf, path->slots[0],
1339 struct btrfs_file_extent_item);
1340 extent_type = btrfs_file_extent_type(leaf, fi);
1342 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1343 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1344 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1345 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1346 extent_offset = btrfs_file_extent_offset(leaf, fi);
1347 extent_end = found_key.offset +
1348 btrfs_file_extent_num_bytes(leaf, fi);
1350 btrfs_file_extent_disk_num_bytes(leaf, fi);
1351 if (extent_end <= start) {
1355 if (disk_bytenr == 0)
1357 if (btrfs_file_extent_compression(leaf, fi) ||
1358 btrfs_file_extent_encryption(leaf, fi) ||
1359 btrfs_file_extent_other_encoding(leaf, fi))
1361 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1363 if (btrfs_extent_readonly(root, disk_bytenr))
1365 if (btrfs_cross_ref_exist(trans, root, ino,
1367 extent_offset, disk_bytenr))
1369 disk_bytenr += extent_offset;
1370 disk_bytenr += cur_offset - found_key.offset;
1371 num_bytes = min(end + 1, extent_end) - cur_offset;
1373 * if there are pending snapshots for this root,
1374 * we fall into common COW way.
1377 err = btrfs_start_write_no_snapshoting(root);
1382 * force cow if csum exists in the range.
1383 * this ensure that csum for a given extent are
1384 * either valid or do not exist.
1386 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1388 if (!btrfs_inc_nocow_writers(root->fs_info,
1392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1393 extent_end = found_key.offset +
1394 btrfs_file_extent_inline_len(leaf,
1395 path->slots[0], fi);
1396 extent_end = ALIGN(extent_end, root->sectorsize);
1401 if (extent_end <= start) {
1403 if (!nolock && nocow)
1404 btrfs_end_write_no_snapshoting(root);
1406 btrfs_dec_nocow_writers(root->fs_info,
1411 if (cow_start == (u64)-1)
1412 cow_start = cur_offset;
1413 cur_offset = extent_end;
1414 if (cur_offset > end)
1420 btrfs_release_path(path);
1421 if (cow_start != (u64)-1) {
1422 ret = cow_file_range(inode, locked_page,
1423 cow_start, found_key.offset - 1,
1424 end, page_started, nr_written, 1,
1427 if (!nolock && nocow)
1428 btrfs_end_write_no_snapshoting(root);
1430 btrfs_dec_nocow_writers(root->fs_info,
1434 cow_start = (u64)-1;
1437 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1438 struct extent_map *em;
1439 struct extent_map_tree *em_tree;
1440 em_tree = &BTRFS_I(inode)->extent_tree;
1441 em = alloc_extent_map();
1442 BUG_ON(!em); /* -ENOMEM */
1443 em->start = cur_offset;
1444 em->orig_start = found_key.offset - extent_offset;
1445 em->len = num_bytes;
1446 em->block_len = num_bytes;
1447 em->block_start = disk_bytenr;
1448 em->orig_block_len = disk_num_bytes;
1449 em->ram_bytes = ram_bytes;
1450 em->bdev = root->fs_info->fs_devices->latest_bdev;
1451 em->mod_start = em->start;
1452 em->mod_len = em->len;
1453 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1454 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1455 em->generation = -1;
1457 write_lock(&em_tree->lock);
1458 ret = add_extent_mapping(em_tree, em, 1);
1459 write_unlock(&em_tree->lock);
1460 if (ret != -EEXIST) {
1461 free_extent_map(em);
1464 btrfs_drop_extent_cache(inode, em->start,
1465 em->start + em->len - 1, 0);
1467 type = BTRFS_ORDERED_PREALLOC;
1469 type = BTRFS_ORDERED_NOCOW;
1472 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1473 num_bytes, num_bytes, type);
1475 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1476 BUG_ON(ret); /* -ENOMEM */
1478 if (root->root_key.objectid ==
1479 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1480 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1483 if (!nolock && nocow)
1484 btrfs_end_write_no_snapshoting(root);
1489 extent_clear_unlock_delalloc(inode, cur_offset,
1490 cur_offset + num_bytes - 1,
1491 locked_page, EXTENT_LOCKED |
1492 EXTENT_DELALLOC, PAGE_UNLOCK |
1494 if (!nolock && nocow)
1495 btrfs_end_write_no_snapshoting(root);
1496 cur_offset = extent_end;
1497 if (cur_offset > end)
1500 btrfs_release_path(path);
1502 if (cur_offset <= end && cow_start == (u64)-1) {
1503 cow_start = cur_offset;
1507 if (cow_start != (u64)-1) {
1508 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1509 page_started, nr_written, 1, NULL);
1515 err = btrfs_end_transaction(trans, root);
1519 if (ret && cur_offset < end)
1520 extent_clear_unlock_delalloc(inode, cur_offset, end,
1521 locked_page, EXTENT_LOCKED |
1522 EXTENT_DELALLOC | EXTENT_DEFRAG |
1523 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1525 PAGE_SET_WRITEBACK |
1526 PAGE_END_WRITEBACK);
1527 btrfs_free_path(path);
1531 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1534 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1535 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1539 * @defrag_bytes is a hint value, no spinlock held here,
1540 * if is not zero, it means the file is defragging.
1541 * Force cow if given extent needs to be defragged.
1543 if (BTRFS_I(inode)->defrag_bytes &&
1544 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1545 EXTENT_DEFRAG, 0, NULL))
1552 * extent_io.c call back to do delayed allocation processing
1554 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1555 u64 start, u64 end, int *page_started,
1556 unsigned long *nr_written)
1559 int force_cow = need_force_cow(inode, start, end);
1561 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1562 ret = run_delalloc_nocow(inode, locked_page, start, end,
1563 page_started, 1, nr_written);
1564 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1565 ret = run_delalloc_nocow(inode, locked_page, start, end,
1566 page_started, 0, nr_written);
1567 } else if (!inode_need_compress(inode)) {
1568 ret = cow_file_range(inode, locked_page, start, end, end,
1569 page_started, nr_written, 1, NULL);
1571 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1572 &BTRFS_I(inode)->runtime_flags);
1573 ret = cow_file_range_async(inode, locked_page, start, end,
1574 page_started, nr_written);
1579 static void btrfs_split_extent_hook(struct inode *inode,
1580 struct extent_state *orig, u64 split)
1584 /* not delalloc, ignore it */
1585 if (!(orig->state & EXTENT_DELALLOC))
1588 size = orig->end - orig->start + 1;
1589 if (size > BTRFS_MAX_EXTENT_SIZE) {
1594 * See the explanation in btrfs_merge_extent_hook, the same
1595 * applies here, just in reverse.
1597 new_size = orig->end - split + 1;
1598 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1599 BTRFS_MAX_EXTENT_SIZE);
1600 new_size = split - orig->start;
1601 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1602 BTRFS_MAX_EXTENT_SIZE);
1603 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1604 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1608 spin_lock(&BTRFS_I(inode)->lock);
1609 BTRFS_I(inode)->outstanding_extents++;
1610 spin_unlock(&BTRFS_I(inode)->lock);
1614 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1615 * extents so we can keep track of new extents that are just merged onto old
1616 * extents, such as when we are doing sequential writes, so we can properly
1617 * account for the metadata space we'll need.
1619 static void btrfs_merge_extent_hook(struct inode *inode,
1620 struct extent_state *new,
1621 struct extent_state *other)
1623 u64 new_size, old_size;
1626 /* not delalloc, ignore it */
1627 if (!(other->state & EXTENT_DELALLOC))
1630 if (new->start > other->start)
1631 new_size = new->end - other->start + 1;
1633 new_size = other->end - new->start + 1;
1635 /* we're not bigger than the max, unreserve the space and go */
1636 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1637 spin_lock(&BTRFS_I(inode)->lock);
1638 BTRFS_I(inode)->outstanding_extents--;
1639 spin_unlock(&BTRFS_I(inode)->lock);
1644 * We have to add up either side to figure out how many extents were
1645 * accounted for before we merged into one big extent. If the number of
1646 * extents we accounted for is <= the amount we need for the new range
1647 * then we can return, otherwise drop. Think of it like this
1651 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1652 * need 2 outstanding extents, on one side we have 1 and the other side
1653 * we have 1 so they are == and we can return. But in this case
1655 * [MAX_SIZE+4k][MAX_SIZE+4k]
1657 * Each range on their own accounts for 2 extents, but merged together
1658 * they are only 3 extents worth of accounting, so we need to drop in
1661 old_size = other->end - other->start + 1;
1662 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1663 BTRFS_MAX_EXTENT_SIZE);
1664 old_size = new->end - new->start + 1;
1665 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1666 BTRFS_MAX_EXTENT_SIZE);
1668 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1669 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1672 spin_lock(&BTRFS_I(inode)->lock);
1673 BTRFS_I(inode)->outstanding_extents--;
1674 spin_unlock(&BTRFS_I(inode)->lock);
1677 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1678 struct inode *inode)
1680 spin_lock(&root->delalloc_lock);
1681 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1682 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1683 &root->delalloc_inodes);
1684 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 &BTRFS_I(inode)->runtime_flags);
1686 root->nr_delalloc_inodes++;
1687 if (root->nr_delalloc_inodes == 1) {
1688 spin_lock(&root->fs_info->delalloc_root_lock);
1689 BUG_ON(!list_empty(&root->delalloc_root));
1690 list_add_tail(&root->delalloc_root,
1691 &root->fs_info->delalloc_roots);
1692 spin_unlock(&root->fs_info->delalloc_root_lock);
1695 spin_unlock(&root->delalloc_lock);
1698 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1699 struct inode *inode)
1701 spin_lock(&root->delalloc_lock);
1702 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1703 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1704 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1705 &BTRFS_I(inode)->runtime_flags);
1706 root->nr_delalloc_inodes--;
1707 if (!root->nr_delalloc_inodes) {
1708 spin_lock(&root->fs_info->delalloc_root_lock);
1709 BUG_ON(list_empty(&root->delalloc_root));
1710 list_del_init(&root->delalloc_root);
1711 spin_unlock(&root->fs_info->delalloc_root_lock);
1714 spin_unlock(&root->delalloc_lock);
1718 * extent_io.c set_bit_hook, used to track delayed allocation
1719 * bytes in this file, and to maintain the list of inodes that
1720 * have pending delalloc work to be done.
1722 static void btrfs_set_bit_hook(struct inode *inode,
1723 struct extent_state *state, unsigned *bits)
1726 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1729 * set_bit and clear bit hooks normally require _irqsave/restore
1730 * but in this case, we are only testing for the DELALLOC
1731 * bit, which is only set or cleared with irqs on
1733 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1734 struct btrfs_root *root = BTRFS_I(inode)->root;
1735 u64 len = state->end + 1 - state->start;
1736 bool do_list = !btrfs_is_free_space_inode(inode);
1738 if (*bits & EXTENT_FIRST_DELALLOC) {
1739 *bits &= ~EXTENT_FIRST_DELALLOC;
1741 spin_lock(&BTRFS_I(inode)->lock);
1742 BTRFS_I(inode)->outstanding_extents++;
1743 spin_unlock(&BTRFS_I(inode)->lock);
1746 /* For sanity tests */
1747 if (btrfs_is_testing(root->fs_info))
1750 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1751 root->fs_info->delalloc_batch);
1752 spin_lock(&BTRFS_I(inode)->lock);
1753 BTRFS_I(inode)->delalloc_bytes += len;
1754 if (*bits & EXTENT_DEFRAG)
1755 BTRFS_I(inode)->defrag_bytes += len;
1756 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1757 &BTRFS_I(inode)->runtime_flags))
1758 btrfs_add_delalloc_inodes(root, inode);
1759 spin_unlock(&BTRFS_I(inode)->lock);
1764 * extent_io.c clear_bit_hook, see set_bit_hook for why
1766 static void btrfs_clear_bit_hook(struct inode *inode,
1767 struct extent_state *state,
1770 u64 len = state->end + 1 - state->start;
1771 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1772 BTRFS_MAX_EXTENT_SIZE);
1774 spin_lock(&BTRFS_I(inode)->lock);
1775 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1776 BTRFS_I(inode)->defrag_bytes -= len;
1777 spin_unlock(&BTRFS_I(inode)->lock);
1780 * set_bit and clear bit hooks normally require _irqsave/restore
1781 * but in this case, we are only testing for the DELALLOC
1782 * bit, which is only set or cleared with irqs on
1784 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1785 struct btrfs_root *root = BTRFS_I(inode)->root;
1786 bool do_list = !btrfs_is_free_space_inode(inode);
1788 if (*bits & EXTENT_FIRST_DELALLOC) {
1789 *bits &= ~EXTENT_FIRST_DELALLOC;
1790 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1791 spin_lock(&BTRFS_I(inode)->lock);
1792 BTRFS_I(inode)->outstanding_extents -= num_extents;
1793 spin_unlock(&BTRFS_I(inode)->lock);
1797 * We don't reserve metadata space for space cache inodes so we
1798 * don't need to call dellalloc_release_metadata if there is an
1801 if (*bits & EXTENT_DO_ACCOUNTING &&
1802 root != root->fs_info->tree_root)
1803 btrfs_delalloc_release_metadata(inode, len);
1805 /* For sanity tests. */
1806 if (btrfs_is_testing(root->fs_info))
1809 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1810 && do_list && !(state->state & EXTENT_NORESERVE))
1811 btrfs_free_reserved_data_space_noquota(inode,
1814 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1815 root->fs_info->delalloc_batch);
1816 spin_lock(&BTRFS_I(inode)->lock);
1817 BTRFS_I(inode)->delalloc_bytes -= len;
1818 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1819 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1820 &BTRFS_I(inode)->runtime_flags))
1821 btrfs_del_delalloc_inode(root, inode);
1822 spin_unlock(&BTRFS_I(inode)->lock);
1827 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1828 * we don't create bios that span stripes or chunks
1830 * return 1 if page cannot be merged to bio
1831 * return 0 if page can be merged to bio
1832 * return error otherwise
1834 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1835 size_t size, struct bio *bio,
1836 unsigned long bio_flags)
1838 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1839 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1844 if (bio_flags & EXTENT_BIO_COMPRESSED)
1847 length = bio->bi_iter.bi_size;
1848 map_length = length;
1849 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
1850 &map_length, NULL, 0);
1853 if (map_length < length + size)
1859 * in order to insert checksums into the metadata in large chunks,
1860 * we wait until bio submission time. All the pages in the bio are
1861 * checksummed and sums are attached onto the ordered extent record.
1863 * At IO completion time the cums attached on the ordered extent record
1864 * are inserted into the btree
1866 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1867 int mirror_num, unsigned long bio_flags,
1870 struct btrfs_root *root = BTRFS_I(inode)->root;
1873 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1874 BUG_ON(ret); /* -ENOMEM */
1879 * in order to insert checksums into the metadata in large chunks,
1880 * we wait until bio submission time. All the pages in the bio are
1881 * checksummed and sums are attached onto the ordered extent record.
1883 * At IO completion time the cums attached on the ordered extent record
1884 * are inserted into the btree
1886 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1887 int mirror_num, unsigned long bio_flags,
1890 struct btrfs_root *root = BTRFS_I(inode)->root;
1893 ret = btrfs_map_bio(root, bio, mirror_num, 1);
1895 bio->bi_error = ret;
1902 * extent_io.c submission hook. This does the right thing for csum calculation
1903 * on write, or reading the csums from the tree before a read
1905 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1906 int mirror_num, unsigned long bio_flags,
1909 struct btrfs_root *root = BTRFS_I(inode)->root;
1910 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1913 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1915 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1917 if (btrfs_is_free_space_inode(inode))
1918 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1920 if (bio_op(bio) != REQ_OP_WRITE) {
1921 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1925 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1926 ret = btrfs_submit_compressed_read(inode, bio,
1930 } else if (!skip_sum) {
1931 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1936 } else if (async && !skip_sum) {
1937 /* csum items have already been cloned */
1938 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1940 /* we're doing a write, do the async checksumming */
1941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1942 inode, bio, mirror_num,
1943 bio_flags, bio_offset,
1944 __btrfs_submit_bio_start,
1945 __btrfs_submit_bio_done);
1947 } else if (!skip_sum) {
1948 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1954 ret = btrfs_map_bio(root, bio, mirror_num, 0);
1958 bio->bi_error = ret;
1965 * given a list of ordered sums record them in the inode. This happens
1966 * at IO completion time based on sums calculated at bio submission time.
1968 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1969 struct inode *inode, u64 file_offset,
1970 struct list_head *list)
1972 struct btrfs_ordered_sum *sum;
1974 list_for_each_entry(sum, list, list) {
1975 trans->adding_csums = 1;
1976 btrfs_csum_file_blocks(trans,
1977 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1978 trans->adding_csums = 0;
1983 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1984 struct extent_state **cached_state)
1986 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1987 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1991 /* see btrfs_writepage_start_hook for details on why this is required */
1992 struct btrfs_writepage_fixup {
1994 struct btrfs_work work;
1997 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1999 struct btrfs_writepage_fixup *fixup;
2000 struct btrfs_ordered_extent *ordered;
2001 struct extent_state *cached_state = NULL;
2003 struct inode *inode;
2008 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2012 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2013 ClearPageChecked(page);
2017 inode = page->mapping->host;
2018 page_start = page_offset(page);
2019 page_end = page_offset(page) + PAGE_SIZE - 1;
2021 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2024 /* already ordered? We're done */
2025 if (PagePrivate2(page))
2028 ordered = btrfs_lookup_ordered_range(inode, page_start,
2031 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2032 page_end, &cached_state, GFP_NOFS);
2034 btrfs_start_ordered_extent(inode, ordered, 1);
2035 btrfs_put_ordered_extent(ordered);
2039 ret = btrfs_delalloc_reserve_space(inode, page_start,
2042 mapping_set_error(page->mapping, ret);
2043 end_extent_writepage(page, ret, page_start, page_end);
2044 ClearPageChecked(page);
2048 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2049 ClearPageChecked(page);
2050 set_page_dirty(page);
2052 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2053 &cached_state, GFP_NOFS);
2061 * There are a few paths in the higher layers of the kernel that directly
2062 * set the page dirty bit without asking the filesystem if it is a
2063 * good idea. This causes problems because we want to make sure COW
2064 * properly happens and the data=ordered rules are followed.
2066 * In our case any range that doesn't have the ORDERED bit set
2067 * hasn't been properly setup for IO. We kick off an async process
2068 * to fix it up. The async helper will wait for ordered extents, set
2069 * the delalloc bit and make it safe to write the page.
2071 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2073 struct inode *inode = page->mapping->host;
2074 struct btrfs_writepage_fixup *fixup;
2075 struct btrfs_root *root = BTRFS_I(inode)->root;
2077 /* this page is properly in the ordered list */
2078 if (TestClearPagePrivate2(page))
2081 if (PageChecked(page))
2084 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2088 SetPageChecked(page);
2090 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2091 btrfs_writepage_fixup_worker, NULL, NULL);
2093 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2097 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2098 struct inode *inode, u64 file_pos,
2099 u64 disk_bytenr, u64 disk_num_bytes,
2100 u64 num_bytes, u64 ram_bytes,
2101 u8 compression, u8 encryption,
2102 u16 other_encoding, int extent_type)
2104 struct btrfs_root *root = BTRFS_I(inode)->root;
2105 struct btrfs_file_extent_item *fi;
2106 struct btrfs_path *path;
2107 struct extent_buffer *leaf;
2108 struct btrfs_key ins;
2109 int extent_inserted = 0;
2112 path = btrfs_alloc_path();
2117 * we may be replacing one extent in the tree with another.
2118 * The new extent is pinned in the extent map, and we don't want
2119 * to drop it from the cache until it is completely in the btree.
2121 * So, tell btrfs_drop_extents to leave this extent in the cache.
2122 * the caller is expected to unpin it and allow it to be merged
2125 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2126 file_pos + num_bytes, NULL, 0,
2127 1, sizeof(*fi), &extent_inserted);
2131 if (!extent_inserted) {
2132 ins.objectid = btrfs_ino(inode);
2133 ins.offset = file_pos;
2134 ins.type = BTRFS_EXTENT_DATA_KEY;
2136 path->leave_spinning = 1;
2137 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2142 leaf = path->nodes[0];
2143 fi = btrfs_item_ptr(leaf, path->slots[0],
2144 struct btrfs_file_extent_item);
2145 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2146 btrfs_set_file_extent_type(leaf, fi, extent_type);
2147 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2148 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2149 btrfs_set_file_extent_offset(leaf, fi, 0);
2150 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2151 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2152 btrfs_set_file_extent_compression(leaf, fi, compression);
2153 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2154 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2156 btrfs_mark_buffer_dirty(leaf);
2157 btrfs_release_path(path);
2159 inode_add_bytes(inode, num_bytes);
2161 ins.objectid = disk_bytenr;
2162 ins.offset = disk_num_bytes;
2163 ins.type = BTRFS_EXTENT_ITEM_KEY;
2164 ret = btrfs_alloc_reserved_file_extent(trans, root,
2165 root->root_key.objectid,
2166 btrfs_ino(inode), file_pos,
2169 * Release the reserved range from inode dirty range map, as it is
2170 * already moved into delayed_ref_head
2172 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2174 btrfs_free_path(path);
2179 /* snapshot-aware defrag */
2180 struct sa_defrag_extent_backref {
2181 struct rb_node node;
2182 struct old_sa_defrag_extent *old;
2191 struct old_sa_defrag_extent {
2192 struct list_head list;
2193 struct new_sa_defrag_extent *new;
2202 struct new_sa_defrag_extent {
2203 struct rb_root root;
2204 struct list_head head;
2205 struct btrfs_path *path;
2206 struct inode *inode;
2214 static int backref_comp(struct sa_defrag_extent_backref *b1,
2215 struct sa_defrag_extent_backref *b2)
2217 if (b1->root_id < b2->root_id)
2219 else if (b1->root_id > b2->root_id)
2222 if (b1->inum < b2->inum)
2224 else if (b1->inum > b2->inum)
2227 if (b1->file_pos < b2->file_pos)
2229 else if (b1->file_pos > b2->file_pos)
2233 * [------------------------------] ===> (a range of space)
2234 * |<--->| |<---->| =============> (fs/file tree A)
2235 * |<---------------------------->| ===> (fs/file tree B)
2237 * A range of space can refer to two file extents in one tree while
2238 * refer to only one file extent in another tree.
2240 * So we may process a disk offset more than one time(two extents in A)
2241 * and locate at the same extent(one extent in B), then insert two same
2242 * backrefs(both refer to the extent in B).
2247 static void backref_insert(struct rb_root *root,
2248 struct sa_defrag_extent_backref *backref)
2250 struct rb_node **p = &root->rb_node;
2251 struct rb_node *parent = NULL;
2252 struct sa_defrag_extent_backref *entry;
2257 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2259 ret = backref_comp(backref, entry);
2263 p = &(*p)->rb_right;
2266 rb_link_node(&backref->node, parent, p);
2267 rb_insert_color(&backref->node, root);
2271 * Note the backref might has changed, and in this case we just return 0.
2273 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2276 struct btrfs_file_extent_item *extent;
2277 struct btrfs_fs_info *fs_info;
2278 struct old_sa_defrag_extent *old = ctx;
2279 struct new_sa_defrag_extent *new = old->new;
2280 struct btrfs_path *path = new->path;
2281 struct btrfs_key key;
2282 struct btrfs_root *root;
2283 struct sa_defrag_extent_backref *backref;
2284 struct extent_buffer *leaf;
2285 struct inode *inode = new->inode;
2291 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2292 inum == btrfs_ino(inode))
2295 key.objectid = root_id;
2296 key.type = BTRFS_ROOT_ITEM_KEY;
2297 key.offset = (u64)-1;
2299 fs_info = BTRFS_I(inode)->root->fs_info;
2300 root = btrfs_read_fs_root_no_name(fs_info, &key);
2302 if (PTR_ERR(root) == -ENOENT)
2305 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2306 inum, offset, root_id);
2307 return PTR_ERR(root);
2310 key.objectid = inum;
2311 key.type = BTRFS_EXTENT_DATA_KEY;
2312 if (offset > (u64)-1 << 32)
2315 key.offset = offset;
2317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2318 if (WARN_ON(ret < 0))
2325 leaf = path->nodes[0];
2326 slot = path->slots[0];
2328 if (slot >= btrfs_header_nritems(leaf)) {
2329 ret = btrfs_next_leaf(root, path);
2332 } else if (ret > 0) {
2341 btrfs_item_key_to_cpu(leaf, &key, slot);
2343 if (key.objectid > inum)
2346 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2349 extent = btrfs_item_ptr(leaf, slot,
2350 struct btrfs_file_extent_item);
2352 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2356 * 'offset' refers to the exact key.offset,
2357 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2358 * (key.offset - extent_offset).
2360 if (key.offset != offset)
2363 extent_offset = btrfs_file_extent_offset(leaf, extent);
2364 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2366 if (extent_offset >= old->extent_offset + old->offset +
2367 old->len || extent_offset + num_bytes <=
2368 old->extent_offset + old->offset)
2373 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2379 backref->root_id = root_id;
2380 backref->inum = inum;
2381 backref->file_pos = offset;
2382 backref->num_bytes = num_bytes;
2383 backref->extent_offset = extent_offset;
2384 backref->generation = btrfs_file_extent_generation(leaf, extent);
2386 backref_insert(&new->root, backref);
2389 btrfs_release_path(path);
2394 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2395 struct new_sa_defrag_extent *new)
2397 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2398 struct old_sa_defrag_extent *old, *tmp;
2403 list_for_each_entry_safe(old, tmp, &new->head, list) {
2404 ret = iterate_inodes_from_logical(old->bytenr +
2405 old->extent_offset, fs_info,
2406 path, record_one_backref,
2408 if (ret < 0 && ret != -ENOENT)
2411 /* no backref to be processed for this extent */
2413 list_del(&old->list);
2418 if (list_empty(&new->head))
2424 static int relink_is_mergable(struct extent_buffer *leaf,
2425 struct btrfs_file_extent_item *fi,
2426 struct new_sa_defrag_extent *new)
2428 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2431 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2434 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2437 if (btrfs_file_extent_encryption(leaf, fi) ||
2438 btrfs_file_extent_other_encoding(leaf, fi))
2445 * Note the backref might has changed, and in this case we just return 0.
2447 static noinline int relink_extent_backref(struct btrfs_path *path,
2448 struct sa_defrag_extent_backref *prev,
2449 struct sa_defrag_extent_backref *backref)
2451 struct btrfs_file_extent_item *extent;
2452 struct btrfs_file_extent_item *item;
2453 struct btrfs_ordered_extent *ordered;
2454 struct btrfs_trans_handle *trans;
2455 struct btrfs_fs_info *fs_info;
2456 struct btrfs_root *root;
2457 struct btrfs_key key;
2458 struct extent_buffer *leaf;
2459 struct old_sa_defrag_extent *old = backref->old;
2460 struct new_sa_defrag_extent *new = old->new;
2461 struct inode *src_inode = new->inode;
2462 struct inode *inode;
2463 struct extent_state *cached = NULL;
2472 if (prev && prev->root_id == backref->root_id &&
2473 prev->inum == backref->inum &&
2474 prev->file_pos + prev->num_bytes == backref->file_pos)
2477 /* step 1: get root */
2478 key.objectid = backref->root_id;
2479 key.type = BTRFS_ROOT_ITEM_KEY;
2480 key.offset = (u64)-1;
2482 fs_info = BTRFS_I(src_inode)->root->fs_info;
2483 index = srcu_read_lock(&fs_info->subvol_srcu);
2485 root = btrfs_read_fs_root_no_name(fs_info, &key);
2487 srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 if (PTR_ERR(root) == -ENOENT)
2490 return PTR_ERR(root);
2493 if (btrfs_root_readonly(root)) {
2494 srcu_read_unlock(&fs_info->subvol_srcu, index);
2498 /* step 2: get inode */
2499 key.objectid = backref->inum;
2500 key.type = BTRFS_INODE_ITEM_KEY;
2503 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2504 if (IS_ERR(inode)) {
2505 srcu_read_unlock(&fs_info->subvol_srcu, index);
2509 srcu_read_unlock(&fs_info->subvol_srcu, index);
2511 /* step 3: relink backref */
2512 lock_start = backref->file_pos;
2513 lock_end = backref->file_pos + backref->num_bytes - 1;
2514 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2517 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2519 btrfs_put_ordered_extent(ordered);
2523 trans = btrfs_join_transaction(root);
2524 if (IS_ERR(trans)) {
2525 ret = PTR_ERR(trans);
2529 key.objectid = backref->inum;
2530 key.type = BTRFS_EXTENT_DATA_KEY;
2531 key.offset = backref->file_pos;
2533 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2536 } else if (ret > 0) {
2541 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2542 struct btrfs_file_extent_item);
2544 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2545 backref->generation)
2548 btrfs_release_path(path);
2550 start = backref->file_pos;
2551 if (backref->extent_offset < old->extent_offset + old->offset)
2552 start += old->extent_offset + old->offset -
2553 backref->extent_offset;
2555 len = min(backref->extent_offset + backref->num_bytes,
2556 old->extent_offset + old->offset + old->len);
2557 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2559 ret = btrfs_drop_extents(trans, root, inode, start,
2564 key.objectid = btrfs_ino(inode);
2565 key.type = BTRFS_EXTENT_DATA_KEY;
2568 path->leave_spinning = 1;
2570 struct btrfs_file_extent_item *fi;
2572 struct btrfs_key found_key;
2574 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2579 leaf = path->nodes[0];
2580 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2582 fi = btrfs_item_ptr(leaf, path->slots[0],
2583 struct btrfs_file_extent_item);
2584 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2586 if (extent_len + found_key.offset == start &&
2587 relink_is_mergable(leaf, fi, new)) {
2588 btrfs_set_file_extent_num_bytes(leaf, fi,
2590 btrfs_mark_buffer_dirty(leaf);
2591 inode_add_bytes(inode, len);
2597 btrfs_release_path(path);
2602 ret = btrfs_insert_empty_item(trans, root, path, &key,
2605 btrfs_abort_transaction(trans, ret);
2609 leaf = path->nodes[0];
2610 item = btrfs_item_ptr(leaf, path->slots[0],
2611 struct btrfs_file_extent_item);
2612 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2613 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2614 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2615 btrfs_set_file_extent_num_bytes(leaf, item, len);
2616 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2617 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2618 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2619 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2620 btrfs_set_file_extent_encryption(leaf, item, 0);
2621 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2623 btrfs_mark_buffer_dirty(leaf);
2624 inode_add_bytes(inode, len);
2625 btrfs_release_path(path);
2627 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2629 backref->root_id, backref->inum,
2630 new->file_pos); /* start - extent_offset */
2632 btrfs_abort_transaction(trans, ret);
2638 btrfs_release_path(path);
2639 path->leave_spinning = 0;
2640 btrfs_end_transaction(trans, root);
2642 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2648 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2650 struct old_sa_defrag_extent *old, *tmp;
2655 list_for_each_entry_safe(old, tmp, &new->head, list) {
2661 static void relink_file_extents(struct new_sa_defrag_extent *new)
2663 struct btrfs_path *path;
2664 struct sa_defrag_extent_backref *backref;
2665 struct sa_defrag_extent_backref *prev = NULL;
2666 struct inode *inode;
2667 struct btrfs_root *root;
2668 struct rb_node *node;
2672 root = BTRFS_I(inode)->root;
2674 path = btrfs_alloc_path();
2678 if (!record_extent_backrefs(path, new)) {
2679 btrfs_free_path(path);
2682 btrfs_release_path(path);
2685 node = rb_first(&new->root);
2688 rb_erase(node, &new->root);
2690 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2692 ret = relink_extent_backref(path, prev, backref);
2705 btrfs_free_path(path);
2707 free_sa_defrag_extent(new);
2709 atomic_dec(&root->fs_info->defrag_running);
2710 wake_up(&root->fs_info->transaction_wait);
2713 static struct new_sa_defrag_extent *
2714 record_old_file_extents(struct inode *inode,
2715 struct btrfs_ordered_extent *ordered)
2717 struct btrfs_root *root = BTRFS_I(inode)->root;
2718 struct btrfs_path *path;
2719 struct btrfs_key key;
2720 struct old_sa_defrag_extent *old;
2721 struct new_sa_defrag_extent *new;
2724 new = kmalloc(sizeof(*new), GFP_NOFS);
2729 new->file_pos = ordered->file_offset;
2730 new->len = ordered->len;
2731 new->bytenr = ordered->start;
2732 new->disk_len = ordered->disk_len;
2733 new->compress_type = ordered->compress_type;
2734 new->root = RB_ROOT;
2735 INIT_LIST_HEAD(&new->head);
2737 path = btrfs_alloc_path();
2741 key.objectid = btrfs_ino(inode);
2742 key.type = BTRFS_EXTENT_DATA_KEY;
2743 key.offset = new->file_pos;
2745 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2748 if (ret > 0 && path->slots[0] > 0)
2751 /* find out all the old extents for the file range */
2753 struct btrfs_file_extent_item *extent;
2754 struct extent_buffer *l;
2763 slot = path->slots[0];
2765 if (slot >= btrfs_header_nritems(l)) {
2766 ret = btrfs_next_leaf(root, path);
2774 btrfs_item_key_to_cpu(l, &key, slot);
2776 if (key.objectid != btrfs_ino(inode))
2778 if (key.type != BTRFS_EXTENT_DATA_KEY)
2780 if (key.offset >= new->file_pos + new->len)
2783 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2785 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2786 if (key.offset + num_bytes < new->file_pos)
2789 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2793 extent_offset = btrfs_file_extent_offset(l, extent);
2795 old = kmalloc(sizeof(*old), GFP_NOFS);
2799 offset = max(new->file_pos, key.offset);
2800 end = min(new->file_pos + new->len, key.offset + num_bytes);
2802 old->bytenr = disk_bytenr;
2803 old->extent_offset = extent_offset;
2804 old->offset = offset - key.offset;
2805 old->len = end - offset;
2808 list_add_tail(&old->list, &new->head);
2814 btrfs_free_path(path);
2815 atomic_inc(&root->fs_info->defrag_running);
2820 btrfs_free_path(path);
2822 free_sa_defrag_extent(new);
2826 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2829 struct btrfs_block_group_cache *cache;
2831 cache = btrfs_lookup_block_group(root->fs_info, start);
2834 spin_lock(&cache->lock);
2835 cache->delalloc_bytes -= len;
2836 spin_unlock(&cache->lock);
2838 btrfs_put_block_group(cache);
2841 /* as ordered data IO finishes, this gets called so we can finish
2842 * an ordered extent if the range of bytes in the file it covers are
2845 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2847 struct inode *inode = ordered_extent->inode;
2848 struct btrfs_root *root = BTRFS_I(inode)->root;
2849 struct btrfs_trans_handle *trans = NULL;
2850 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2851 struct extent_state *cached_state = NULL;
2852 struct new_sa_defrag_extent *new = NULL;
2853 int compress_type = 0;
2855 u64 logical_len = ordered_extent->len;
2857 bool truncated = false;
2859 nolock = btrfs_is_free_space_inode(inode);
2861 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2866 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2867 ordered_extent->file_offset +
2868 ordered_extent->len - 1);
2870 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2872 logical_len = ordered_extent->truncated_len;
2873 /* Truncated the entire extent, don't bother adding */
2878 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2879 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2882 * For mwrite(mmap + memset to write) case, we still reserve
2883 * space for NOCOW range.
2884 * As NOCOW won't cause a new delayed ref, just free the space
2886 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2887 ordered_extent->len);
2888 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2890 trans = btrfs_join_transaction_nolock(root);
2892 trans = btrfs_join_transaction(root);
2893 if (IS_ERR(trans)) {
2894 ret = PTR_ERR(trans);
2898 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2899 ret = btrfs_update_inode_fallback(trans, root, inode);
2900 if (ret) /* -ENOMEM or corruption */
2901 btrfs_abort_transaction(trans, ret);
2905 lock_extent_bits(io_tree, ordered_extent->file_offset,
2906 ordered_extent->file_offset + ordered_extent->len - 1,
2909 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2910 ordered_extent->file_offset + ordered_extent->len - 1,
2911 EXTENT_DEFRAG, 1, cached_state);
2913 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2914 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2915 /* the inode is shared */
2916 new = record_old_file_extents(inode, ordered_extent);
2918 clear_extent_bit(io_tree, ordered_extent->file_offset,
2919 ordered_extent->file_offset + ordered_extent->len - 1,
2920 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2924 trans = btrfs_join_transaction_nolock(root);
2926 trans = btrfs_join_transaction(root);
2927 if (IS_ERR(trans)) {
2928 ret = PTR_ERR(trans);
2933 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2935 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2936 compress_type = ordered_extent->compress_type;
2937 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2938 BUG_ON(compress_type);
2939 ret = btrfs_mark_extent_written(trans, inode,
2940 ordered_extent->file_offset,
2941 ordered_extent->file_offset +
2944 BUG_ON(root == root->fs_info->tree_root);
2945 ret = insert_reserved_file_extent(trans, inode,
2946 ordered_extent->file_offset,
2947 ordered_extent->start,
2948 ordered_extent->disk_len,
2949 logical_len, logical_len,
2950 compress_type, 0, 0,
2951 BTRFS_FILE_EXTENT_REG);
2953 btrfs_release_delalloc_bytes(root,
2954 ordered_extent->start,
2955 ordered_extent->disk_len);
2957 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2958 ordered_extent->file_offset, ordered_extent->len,
2961 btrfs_abort_transaction(trans, ret);
2965 add_pending_csums(trans, inode, ordered_extent->file_offset,
2966 &ordered_extent->list);
2968 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2969 ret = btrfs_update_inode_fallback(trans, root, inode);
2970 if (ret) { /* -ENOMEM or corruption */
2971 btrfs_abort_transaction(trans, ret);
2976 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2977 ordered_extent->file_offset +
2978 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2980 if (root != root->fs_info->tree_root)
2981 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2983 btrfs_end_transaction(trans, root);
2985 if (ret || truncated) {
2989 start = ordered_extent->file_offset + logical_len;
2991 start = ordered_extent->file_offset;
2992 end = ordered_extent->file_offset + ordered_extent->len - 1;
2993 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2995 /* Drop the cache for the part of the extent we didn't write. */
2996 btrfs_drop_extent_cache(inode, start, end, 0);
2999 * If the ordered extent had an IOERR or something else went
3000 * wrong we need to return the space for this ordered extent
3001 * back to the allocator. We only free the extent in the
3002 * truncated case if we didn't write out the extent at all.
3004 if ((ret || !logical_len) &&
3005 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3006 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3007 btrfs_free_reserved_extent(root, ordered_extent->start,
3008 ordered_extent->disk_len, 1);
3013 * This needs to be done to make sure anybody waiting knows we are done
3014 * updating everything for this ordered extent.
3016 btrfs_remove_ordered_extent(inode, ordered_extent);
3018 /* for snapshot-aware defrag */
3021 free_sa_defrag_extent(new);
3022 atomic_dec(&root->fs_info->defrag_running);
3024 relink_file_extents(new);
3029 btrfs_put_ordered_extent(ordered_extent);
3030 /* once for the tree */
3031 btrfs_put_ordered_extent(ordered_extent);
3036 static void finish_ordered_fn(struct btrfs_work *work)
3038 struct btrfs_ordered_extent *ordered_extent;
3039 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3040 btrfs_finish_ordered_io(ordered_extent);
3043 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3044 struct extent_state *state, int uptodate)
3046 struct inode *inode = page->mapping->host;
3047 struct btrfs_root *root = BTRFS_I(inode)->root;
3048 struct btrfs_ordered_extent *ordered_extent = NULL;
3049 struct btrfs_workqueue *wq;
3050 btrfs_work_func_t func;
3052 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3054 ClearPagePrivate2(page);
3055 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3056 end - start + 1, uptodate))
3059 if (btrfs_is_free_space_inode(inode)) {
3060 wq = root->fs_info->endio_freespace_worker;
3061 func = btrfs_freespace_write_helper;
3063 wq = root->fs_info->endio_write_workers;
3064 func = btrfs_endio_write_helper;
3067 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3069 btrfs_queue_work(wq, &ordered_extent->work);
3074 static int __readpage_endio_check(struct inode *inode,
3075 struct btrfs_io_bio *io_bio,
3076 int icsum, struct page *page,
3077 int pgoff, u64 start, size_t len)
3083 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3085 kaddr = kmap_atomic(page);
3086 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3087 btrfs_csum_final(csum, (char *)&csum);
3088 if (csum != csum_expected)
3091 kunmap_atomic(kaddr);
3094 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3095 "csum failed ino %llu off %llu csum %u expected csum %u",
3096 btrfs_ino(inode), start, csum, csum_expected);
3097 memset(kaddr + pgoff, 1, len);
3098 flush_dcache_page(page);
3099 kunmap_atomic(kaddr);
3100 if (csum_expected == 0)
3106 * when reads are done, we need to check csums to verify the data is correct
3107 * if there's a match, we allow the bio to finish. If not, the code in
3108 * extent_io.c will try to find good copies for us.
3110 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3111 u64 phy_offset, struct page *page,
3112 u64 start, u64 end, int mirror)
3114 size_t offset = start - page_offset(page);
3115 struct inode *inode = page->mapping->host;
3116 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3117 struct btrfs_root *root = BTRFS_I(inode)->root;
3119 if (PageChecked(page)) {
3120 ClearPageChecked(page);
3124 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3127 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3128 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3129 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3133 phy_offset >>= inode->i_sb->s_blocksize_bits;
3134 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3135 start, (size_t)(end - start + 1));
3138 void btrfs_add_delayed_iput(struct inode *inode)
3140 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3141 struct btrfs_inode *binode = BTRFS_I(inode);
3143 if (atomic_add_unless(&inode->i_count, -1, 1))
3146 spin_lock(&fs_info->delayed_iput_lock);
3147 if (binode->delayed_iput_count == 0) {
3148 ASSERT(list_empty(&binode->delayed_iput));
3149 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3151 binode->delayed_iput_count++;
3153 spin_unlock(&fs_info->delayed_iput_lock);
3156 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3158 struct btrfs_fs_info *fs_info = root->fs_info;
3160 spin_lock(&fs_info->delayed_iput_lock);
3161 while (!list_empty(&fs_info->delayed_iputs)) {
3162 struct btrfs_inode *inode;
3164 inode = list_first_entry(&fs_info->delayed_iputs,
3165 struct btrfs_inode, delayed_iput);
3166 if (inode->delayed_iput_count) {
3167 inode->delayed_iput_count--;
3168 list_move_tail(&inode->delayed_iput,
3169 &fs_info->delayed_iputs);
3171 list_del_init(&inode->delayed_iput);
3173 spin_unlock(&fs_info->delayed_iput_lock);
3174 iput(&inode->vfs_inode);
3175 spin_lock(&fs_info->delayed_iput_lock);
3177 spin_unlock(&fs_info->delayed_iput_lock);
3181 * This is called in transaction commit time. If there are no orphan
3182 * files in the subvolume, it removes orphan item and frees block_rsv
3185 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3186 struct btrfs_root *root)
3188 struct btrfs_block_rsv *block_rsv;
3191 if (atomic_read(&root->orphan_inodes) ||
3192 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3195 spin_lock(&root->orphan_lock);
3196 if (atomic_read(&root->orphan_inodes)) {
3197 spin_unlock(&root->orphan_lock);
3201 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3202 spin_unlock(&root->orphan_lock);
3206 block_rsv = root->orphan_block_rsv;
3207 root->orphan_block_rsv = NULL;
3208 spin_unlock(&root->orphan_lock);
3210 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3211 btrfs_root_refs(&root->root_item) > 0) {
3212 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3213 root->root_key.objectid);
3215 btrfs_abort_transaction(trans, ret);
3217 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3222 WARN_ON(block_rsv->size > 0);
3223 btrfs_free_block_rsv(root, block_rsv);
3228 * This creates an orphan entry for the given inode in case something goes
3229 * wrong in the middle of an unlink/truncate.
3231 * NOTE: caller of this function should reserve 5 units of metadata for
3234 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3236 struct btrfs_root *root = BTRFS_I(inode)->root;
3237 struct btrfs_block_rsv *block_rsv = NULL;
3242 if (!root->orphan_block_rsv) {
3243 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3248 spin_lock(&root->orphan_lock);
3249 if (!root->orphan_block_rsv) {
3250 root->orphan_block_rsv = block_rsv;
3251 } else if (block_rsv) {
3252 btrfs_free_block_rsv(root, block_rsv);
3256 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3257 &BTRFS_I(inode)->runtime_flags)) {
3260 * For proper ENOSPC handling, we should do orphan
3261 * cleanup when mounting. But this introduces backward
3262 * compatibility issue.
3264 if (!xchg(&root->orphan_item_inserted, 1))
3270 atomic_inc(&root->orphan_inodes);
3273 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3274 &BTRFS_I(inode)->runtime_flags))
3276 spin_unlock(&root->orphan_lock);
3278 /* grab metadata reservation from transaction handle */
3280 ret = btrfs_orphan_reserve_metadata(trans, inode);
3283 atomic_dec(&root->orphan_inodes);
3284 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3285 &BTRFS_I(inode)->runtime_flags);
3287 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3288 &BTRFS_I(inode)->runtime_flags);
3293 /* insert an orphan item to track this unlinked/truncated file */
3295 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3297 atomic_dec(&root->orphan_inodes);
3299 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3300 &BTRFS_I(inode)->runtime_flags);
3301 btrfs_orphan_release_metadata(inode);
3303 if (ret != -EEXIST) {
3304 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3305 &BTRFS_I(inode)->runtime_flags);
3306 btrfs_abort_transaction(trans, ret);
3313 /* insert an orphan item to track subvolume contains orphan files */
3315 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3316 root->root_key.objectid);
3317 if (ret && ret != -EEXIST) {
3318 btrfs_abort_transaction(trans, ret);
3326 * We have done the truncate/delete so we can go ahead and remove the orphan
3327 * item for this particular inode.
3329 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3330 struct inode *inode)
3332 struct btrfs_root *root = BTRFS_I(inode)->root;
3333 int delete_item = 0;
3334 int release_rsv = 0;
3337 spin_lock(&root->orphan_lock);
3338 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3339 &BTRFS_I(inode)->runtime_flags))
3342 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3343 &BTRFS_I(inode)->runtime_flags))
3345 spin_unlock(&root->orphan_lock);
3348 atomic_dec(&root->orphan_inodes);
3350 ret = btrfs_del_orphan_item(trans, root,
3355 btrfs_orphan_release_metadata(inode);
3361 * this cleans up any orphans that may be left on the list from the last use
3364 int btrfs_orphan_cleanup(struct btrfs_root *root)
3366 struct btrfs_path *path;
3367 struct extent_buffer *leaf;
3368 struct btrfs_key key, found_key;
3369 struct btrfs_trans_handle *trans;
3370 struct inode *inode;
3371 u64 last_objectid = 0;
3372 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3374 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3377 path = btrfs_alloc_path();
3382 path->reada = READA_BACK;
3384 key.objectid = BTRFS_ORPHAN_OBJECTID;
3385 key.type = BTRFS_ORPHAN_ITEM_KEY;
3386 key.offset = (u64)-1;
3389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3394 * if ret == 0 means we found what we were searching for, which
3395 * is weird, but possible, so only screw with path if we didn't
3396 * find the key and see if we have stuff that matches
3400 if (path->slots[0] == 0)
3405 /* pull out the item */
3406 leaf = path->nodes[0];
3407 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3409 /* make sure the item matches what we want */
3410 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3412 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3415 /* release the path since we're done with it */
3416 btrfs_release_path(path);
3419 * this is where we are basically btrfs_lookup, without the
3420 * crossing root thing. we store the inode number in the
3421 * offset of the orphan item.
3424 if (found_key.offset == last_objectid) {
3425 btrfs_err(root->fs_info,
3426 "Error removing orphan entry, stopping orphan cleanup");
3431 last_objectid = found_key.offset;
3433 found_key.objectid = found_key.offset;
3434 found_key.type = BTRFS_INODE_ITEM_KEY;
3435 found_key.offset = 0;
3436 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3437 ret = PTR_ERR_OR_ZERO(inode);
3438 if (ret && ret != -ESTALE)
3441 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3442 struct btrfs_root *dead_root;
3443 struct btrfs_fs_info *fs_info = root->fs_info;
3444 int is_dead_root = 0;
3447 * this is an orphan in the tree root. Currently these
3448 * could come from 2 sources:
3449 * a) a snapshot deletion in progress
3450 * b) a free space cache inode
3451 * We need to distinguish those two, as the snapshot
3452 * orphan must not get deleted.
3453 * find_dead_roots already ran before us, so if this
3454 * is a snapshot deletion, we should find the root
3455 * in the dead_roots list
3457 spin_lock(&fs_info->trans_lock);
3458 list_for_each_entry(dead_root, &fs_info->dead_roots,
3460 if (dead_root->root_key.objectid ==
3461 found_key.objectid) {
3466 spin_unlock(&fs_info->trans_lock);
3468 /* prevent this orphan from being found again */
3469 key.offset = found_key.objectid - 1;
3474 * Inode is already gone but the orphan item is still there,
3475 * kill the orphan item.
3477 if (ret == -ESTALE) {
3478 trans = btrfs_start_transaction(root, 1);
3479 if (IS_ERR(trans)) {
3480 ret = PTR_ERR(trans);
3483 btrfs_debug(root->fs_info, "auto deleting %Lu",
3484 found_key.objectid);
3485 ret = btrfs_del_orphan_item(trans, root,
3486 found_key.objectid);
3487 btrfs_end_transaction(trans, root);
3494 * add this inode to the orphan list so btrfs_orphan_del does
3495 * the proper thing when we hit it
3497 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3498 &BTRFS_I(inode)->runtime_flags);
3499 atomic_inc(&root->orphan_inodes);
3501 /* if we have links, this was a truncate, lets do that */
3502 if (inode->i_nlink) {
3503 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3509 /* 1 for the orphan item deletion. */
3510 trans = btrfs_start_transaction(root, 1);
3511 if (IS_ERR(trans)) {
3513 ret = PTR_ERR(trans);
3516 ret = btrfs_orphan_add(trans, inode);
3517 btrfs_end_transaction(trans, root);
3523 ret = btrfs_truncate(inode);
3525 btrfs_orphan_del(NULL, inode);
3530 /* this will do delete_inode and everything for us */
3535 /* release the path since we're done with it */
3536 btrfs_release_path(path);
3538 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3540 if (root->orphan_block_rsv)
3541 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3544 if (root->orphan_block_rsv ||
3545 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3546 trans = btrfs_join_transaction(root);
3548 btrfs_end_transaction(trans, root);
3552 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3554 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3558 btrfs_err(root->fs_info,
3559 "could not do orphan cleanup %d", ret);
3560 btrfs_free_path(path);
3565 * very simple check to peek ahead in the leaf looking for xattrs. If we
3566 * don't find any xattrs, we know there can't be any acls.
3568 * slot is the slot the inode is in, objectid is the objectid of the inode
3570 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3571 int slot, u64 objectid,
3572 int *first_xattr_slot)
3574 u32 nritems = btrfs_header_nritems(leaf);
3575 struct btrfs_key found_key;
3576 static u64 xattr_access = 0;
3577 static u64 xattr_default = 0;
3580 if (!xattr_access) {
3581 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3582 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3583 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3584 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3588 *first_xattr_slot = -1;
3589 while (slot < nritems) {
3590 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3592 /* we found a different objectid, there must not be acls */
3593 if (found_key.objectid != objectid)
3596 /* we found an xattr, assume we've got an acl */
3597 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3598 if (*first_xattr_slot == -1)
3599 *first_xattr_slot = slot;
3600 if (found_key.offset == xattr_access ||
3601 found_key.offset == xattr_default)
3606 * we found a key greater than an xattr key, there can't
3607 * be any acls later on
3609 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3616 * it goes inode, inode backrefs, xattrs, extents,
3617 * so if there are a ton of hard links to an inode there can
3618 * be a lot of backrefs. Don't waste time searching too hard,
3619 * this is just an optimization
3624 /* we hit the end of the leaf before we found an xattr or
3625 * something larger than an xattr. We have to assume the inode
3628 if (*first_xattr_slot == -1)
3629 *first_xattr_slot = slot;
3634 * read an inode from the btree into the in-memory inode
3636 static void btrfs_read_locked_inode(struct inode *inode)
3638 struct btrfs_path *path;
3639 struct extent_buffer *leaf;
3640 struct btrfs_inode_item *inode_item;
3641 struct btrfs_root *root = BTRFS_I(inode)->root;
3642 struct btrfs_key location;
3647 bool filled = false;
3648 int first_xattr_slot;
3650 ret = btrfs_fill_inode(inode, &rdev);
3654 path = btrfs_alloc_path();
3658 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3660 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3664 leaf = path->nodes[0];
3669 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3670 struct btrfs_inode_item);
3671 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3672 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3673 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3674 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3675 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3677 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3678 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3680 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3681 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3683 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3684 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3686 BTRFS_I(inode)->i_otime.tv_sec =
3687 btrfs_timespec_sec(leaf, &inode_item->otime);
3688 BTRFS_I(inode)->i_otime.tv_nsec =
3689 btrfs_timespec_nsec(leaf, &inode_item->otime);
3691 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3692 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3693 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3695 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3696 inode->i_generation = BTRFS_I(inode)->generation;
3698 rdev = btrfs_inode_rdev(leaf, inode_item);
3700 BTRFS_I(inode)->index_cnt = (u64)-1;
3701 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3705 * If we were modified in the current generation and evicted from memory
3706 * and then re-read we need to do a full sync since we don't have any
3707 * idea about which extents were modified before we were evicted from
3710 * This is required for both inode re-read from disk and delayed inode
3711 * in delayed_nodes_tree.
3713 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3714 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3715 &BTRFS_I(inode)->runtime_flags);
3718 * We don't persist the id of the transaction where an unlink operation
3719 * against the inode was last made. So here we assume the inode might
3720 * have been evicted, and therefore the exact value of last_unlink_trans
3721 * lost, and set it to last_trans to avoid metadata inconsistencies
3722 * between the inode and its parent if the inode is fsync'ed and the log
3723 * replayed. For example, in the scenario:
3726 * ln mydir/foo mydir/bar
3729 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3730 * xfs_io -c fsync mydir/foo
3732 * mount fs, triggers fsync log replay
3734 * We must make sure that when we fsync our inode foo we also log its
3735 * parent inode, otherwise after log replay the parent still has the
3736 * dentry with the "bar" name but our inode foo has a link count of 1
3737 * and doesn't have an inode ref with the name "bar" anymore.
3739 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3740 * but it guarantees correctness at the expense of occasional full
3741 * transaction commits on fsync if our inode is a directory, or if our
3742 * inode is not a directory, logging its parent unnecessarily.
3744 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3747 if (inode->i_nlink != 1 ||
3748 path->slots[0] >= btrfs_header_nritems(leaf))
3751 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3752 if (location.objectid != btrfs_ino(inode))
3755 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3756 if (location.type == BTRFS_INODE_REF_KEY) {
3757 struct btrfs_inode_ref *ref;
3759 ref = (struct btrfs_inode_ref *)ptr;
3760 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3761 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3762 struct btrfs_inode_extref *extref;
3764 extref = (struct btrfs_inode_extref *)ptr;
3765 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3770 * try to precache a NULL acl entry for files that don't have
3771 * any xattrs or acls
3773 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3774 btrfs_ino(inode), &first_xattr_slot);
3775 if (first_xattr_slot != -1) {
3776 path->slots[0] = first_xattr_slot;
3777 ret = btrfs_load_inode_props(inode, path);
3779 btrfs_err(root->fs_info,
3780 "error loading props for ino %llu (root %llu): %d",
3782 root->root_key.objectid, ret);
3784 btrfs_free_path(path);
3787 cache_no_acl(inode);
3789 switch (inode->i_mode & S_IFMT) {
3791 inode->i_mapping->a_ops = &btrfs_aops;
3792 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3793 inode->i_fop = &btrfs_file_operations;
3794 inode->i_op = &btrfs_file_inode_operations;
3797 inode->i_fop = &btrfs_dir_file_operations;
3798 if (root == root->fs_info->tree_root)
3799 inode->i_op = &btrfs_dir_ro_inode_operations;
3801 inode->i_op = &btrfs_dir_inode_operations;
3804 inode->i_op = &btrfs_symlink_inode_operations;
3805 inode_nohighmem(inode);
3806 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3809 inode->i_op = &btrfs_special_inode_operations;
3810 init_special_inode(inode, inode->i_mode, rdev);
3814 btrfs_update_iflags(inode);
3818 btrfs_free_path(path);
3819 make_bad_inode(inode);
3823 * given a leaf and an inode, copy the inode fields into the leaf
3825 static void fill_inode_item(struct btrfs_trans_handle *trans,
3826 struct extent_buffer *leaf,
3827 struct btrfs_inode_item *item,
3828 struct inode *inode)
3830 struct btrfs_map_token token;
3832 btrfs_init_map_token(&token);
3834 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3835 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3836 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3838 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3839 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3841 btrfs_set_token_timespec_sec(leaf, &item->atime,
3842 inode->i_atime.tv_sec, &token);
3843 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3844 inode->i_atime.tv_nsec, &token);
3846 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3847 inode->i_mtime.tv_sec, &token);
3848 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3849 inode->i_mtime.tv_nsec, &token);
3851 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3852 inode->i_ctime.tv_sec, &token);
3853 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3854 inode->i_ctime.tv_nsec, &token);
3856 btrfs_set_token_timespec_sec(leaf, &item->otime,
3857 BTRFS_I(inode)->i_otime.tv_sec, &token);
3858 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3859 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3861 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3863 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3865 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3866 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3867 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3868 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3869 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3873 * copy everything in the in-memory inode into the btree.
3875 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3876 struct btrfs_root *root, struct inode *inode)
3878 struct btrfs_inode_item *inode_item;
3879 struct btrfs_path *path;
3880 struct extent_buffer *leaf;
3883 path = btrfs_alloc_path();
3887 path->leave_spinning = 1;
3888 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3896 leaf = path->nodes[0];
3897 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3898 struct btrfs_inode_item);
3900 fill_inode_item(trans, leaf, inode_item, inode);
3901 btrfs_mark_buffer_dirty(leaf);
3902 btrfs_set_inode_last_trans(trans, inode);
3905 btrfs_free_path(path);
3910 * copy everything in the in-memory inode into the btree.
3912 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3913 struct btrfs_root *root, struct inode *inode)
3918 * If the inode is a free space inode, we can deadlock during commit
3919 * if we put it into the delayed code.
3921 * The data relocation inode should also be directly updated
3924 if (!btrfs_is_free_space_inode(inode)
3925 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3926 && !root->fs_info->log_root_recovering) {
3927 btrfs_update_root_times(trans, root);
3929 ret = btrfs_delayed_update_inode(trans, root, inode);
3931 btrfs_set_inode_last_trans(trans, inode);
3935 return btrfs_update_inode_item(trans, root, inode);
3938 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3939 struct btrfs_root *root,
3940 struct inode *inode)
3944 ret = btrfs_update_inode(trans, root, inode);
3946 return btrfs_update_inode_item(trans, root, inode);
3951 * unlink helper that gets used here in inode.c and in the tree logging
3952 * recovery code. It remove a link in a directory with a given name, and
3953 * also drops the back refs in the inode to the directory
3955 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3956 struct btrfs_root *root,
3957 struct inode *dir, struct inode *inode,
3958 const char *name, int name_len)
3960 struct btrfs_path *path;
3962 struct extent_buffer *leaf;
3963 struct btrfs_dir_item *di;
3964 struct btrfs_key key;
3966 u64 ino = btrfs_ino(inode);
3967 u64 dir_ino = btrfs_ino(dir);
3969 path = btrfs_alloc_path();
3975 path->leave_spinning = 1;
3976 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3977 name, name_len, -1);
3986 leaf = path->nodes[0];
3987 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3988 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3991 btrfs_release_path(path);
3994 * If we don't have dir index, we have to get it by looking up
3995 * the inode ref, since we get the inode ref, remove it directly,
3996 * it is unnecessary to do delayed deletion.
3998 * But if we have dir index, needn't search inode ref to get it.
3999 * Since the inode ref is close to the inode item, it is better
4000 * that we delay to delete it, and just do this deletion when
4001 * we update the inode item.
4003 if (BTRFS_I(inode)->dir_index) {
4004 ret = btrfs_delayed_delete_inode_ref(inode);
4006 index = BTRFS_I(inode)->dir_index;
4011 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4014 btrfs_info(root->fs_info,
4015 "failed to delete reference to %.*s, inode %llu parent %llu",
4016 name_len, name, ino, dir_ino);
4017 btrfs_abort_transaction(trans, ret);
4021 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4023 btrfs_abort_transaction(trans, ret);
4027 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4029 if (ret != 0 && ret != -ENOENT) {
4030 btrfs_abort_transaction(trans, ret);
4034 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4039 btrfs_abort_transaction(trans, ret);
4041 btrfs_free_path(path);
4045 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4046 inode_inc_iversion(inode);
4047 inode_inc_iversion(dir);
4048 inode->i_ctime = dir->i_mtime =
4049 dir->i_ctime = current_fs_time(inode->i_sb);
4050 ret = btrfs_update_inode(trans, root, dir);
4055 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4056 struct btrfs_root *root,
4057 struct inode *dir, struct inode *inode,
4058 const char *name, int name_len)
4061 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4064 ret = btrfs_update_inode(trans, root, inode);
4070 * helper to start transaction for unlink and rmdir.
4072 * unlink and rmdir are special in btrfs, they do not always free space, so
4073 * if we cannot make our reservations the normal way try and see if there is
4074 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4075 * allow the unlink to occur.
4077 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4079 struct btrfs_root *root = BTRFS_I(dir)->root;
4082 * 1 for the possible orphan item
4083 * 1 for the dir item
4084 * 1 for the dir index
4085 * 1 for the inode ref
4088 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4091 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4093 struct btrfs_root *root = BTRFS_I(dir)->root;
4094 struct btrfs_trans_handle *trans;
4095 struct inode *inode = d_inode(dentry);
4098 trans = __unlink_start_trans(dir);
4100 return PTR_ERR(trans);
4102 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4104 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4105 dentry->d_name.name, dentry->d_name.len);
4109 if (inode->i_nlink == 0) {
4110 ret = btrfs_orphan_add(trans, inode);
4116 btrfs_end_transaction(trans, root);
4117 btrfs_btree_balance_dirty(root);
4121 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4122 struct btrfs_root *root,
4123 struct inode *dir, u64 objectid,
4124 const char *name, int name_len)
4126 struct btrfs_path *path;
4127 struct extent_buffer *leaf;
4128 struct btrfs_dir_item *di;
4129 struct btrfs_key key;
4132 u64 dir_ino = btrfs_ino(dir);
4134 path = btrfs_alloc_path();
4138 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4139 name, name_len, -1);
4140 if (IS_ERR_OR_NULL(di)) {
4148 leaf = path->nodes[0];
4149 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4150 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4151 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4153 btrfs_abort_transaction(trans, ret);
4156 btrfs_release_path(path);
4158 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4159 objectid, root->root_key.objectid,
4160 dir_ino, &index, name, name_len);
4162 if (ret != -ENOENT) {
4163 btrfs_abort_transaction(trans, ret);
4166 di = btrfs_search_dir_index_item(root, path, dir_ino,
4168 if (IS_ERR_OR_NULL(di)) {
4173 btrfs_abort_transaction(trans, ret);
4177 leaf = path->nodes[0];
4178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4179 btrfs_release_path(path);
4182 btrfs_release_path(path);
4184 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4186 btrfs_abort_transaction(trans, ret);
4190 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4191 inode_inc_iversion(dir);
4192 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4193 ret = btrfs_update_inode_fallback(trans, root, dir);
4195 btrfs_abort_transaction(trans, ret);
4197 btrfs_free_path(path);
4201 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4203 struct inode *inode = d_inode(dentry);
4205 struct btrfs_root *root = BTRFS_I(dir)->root;
4206 struct btrfs_trans_handle *trans;
4208 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4210 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4213 trans = __unlink_start_trans(dir);
4215 return PTR_ERR(trans);
4217 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4218 err = btrfs_unlink_subvol(trans, root, dir,
4219 BTRFS_I(inode)->location.objectid,
4220 dentry->d_name.name,
4221 dentry->d_name.len);
4225 err = btrfs_orphan_add(trans, inode);
4229 /* now the directory is empty */
4230 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4231 dentry->d_name.name, dentry->d_name.len);
4233 btrfs_i_size_write(inode, 0);
4235 btrfs_end_transaction(trans, root);
4236 btrfs_btree_balance_dirty(root);
4241 static int truncate_space_check(struct btrfs_trans_handle *trans,
4242 struct btrfs_root *root,
4248 * This is only used to apply pressure to the enospc system, we don't
4249 * intend to use this reservation at all.
4251 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4252 bytes_deleted *= root->nodesize;
4253 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4254 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4256 trace_btrfs_space_reservation(root->fs_info, "transaction",
4259 trans->bytes_reserved += bytes_deleted;
4265 static int truncate_inline_extent(struct inode *inode,
4266 struct btrfs_path *path,
4267 struct btrfs_key *found_key,
4271 struct extent_buffer *leaf = path->nodes[0];
4272 int slot = path->slots[0];
4273 struct btrfs_file_extent_item *fi;
4274 u32 size = (u32)(new_size - found_key->offset);
4275 struct btrfs_root *root = BTRFS_I(inode)->root;
4277 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4279 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4280 loff_t offset = new_size;
4281 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4284 * Zero out the remaining of the last page of our inline extent,
4285 * instead of directly truncating our inline extent here - that
4286 * would be much more complex (decompressing all the data, then
4287 * compressing the truncated data, which might be bigger than
4288 * the size of the inline extent, resize the extent, etc).
4289 * We release the path because to get the page we might need to
4290 * read the extent item from disk (data not in the page cache).
4292 btrfs_release_path(path);
4293 return btrfs_truncate_block(inode, offset, page_end - offset,
4297 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4298 size = btrfs_file_extent_calc_inline_size(size);
4299 btrfs_truncate_item(root, path, size, 1);
4301 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4302 inode_sub_bytes(inode, item_end + 1 - new_size);
4308 * this can truncate away extent items, csum items and directory items.
4309 * It starts at a high offset and removes keys until it can't find
4310 * any higher than new_size
4312 * csum items that cross the new i_size are truncated to the new size
4315 * min_type is the minimum key type to truncate down to. If set to 0, this
4316 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4318 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4319 struct btrfs_root *root,
4320 struct inode *inode,
4321 u64 new_size, u32 min_type)
4323 struct btrfs_path *path;
4324 struct extent_buffer *leaf;
4325 struct btrfs_file_extent_item *fi;
4326 struct btrfs_key key;
4327 struct btrfs_key found_key;
4328 u64 extent_start = 0;
4329 u64 extent_num_bytes = 0;
4330 u64 extent_offset = 0;
4332 u64 last_size = new_size;
4333 u32 found_type = (u8)-1;
4336 int pending_del_nr = 0;
4337 int pending_del_slot = 0;
4338 int extent_type = -1;
4341 u64 ino = btrfs_ino(inode);
4342 u64 bytes_deleted = 0;
4344 bool should_throttle = 0;
4345 bool should_end = 0;
4347 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4350 * for non-free space inodes and ref cows, we want to back off from
4353 if (!btrfs_is_free_space_inode(inode) &&
4354 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4357 path = btrfs_alloc_path();
4360 path->reada = READA_BACK;
4363 * We want to drop from the next block forward in case this new size is
4364 * not block aligned since we will be keeping the last block of the
4365 * extent just the way it is.
4367 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4368 root == root->fs_info->tree_root)
4369 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4370 root->sectorsize), (u64)-1, 0);
4373 * This function is also used to drop the items in the log tree before
4374 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4375 * it is used to drop the loged items. So we shouldn't kill the delayed
4378 if (min_type == 0 && root == BTRFS_I(inode)->root)
4379 btrfs_kill_delayed_inode_items(inode);
4382 key.offset = (u64)-1;
4387 * with a 16K leaf size and 128MB extents, you can actually queue
4388 * up a huge file in a single leaf. Most of the time that
4389 * bytes_deleted is > 0, it will be huge by the time we get here
4391 if (be_nice && bytes_deleted > SZ_32M) {
4392 if (btrfs_should_end_transaction(trans, root)) {
4399 path->leave_spinning = 1;
4400 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4407 /* there are no items in the tree for us to truncate, we're
4410 if (path->slots[0] == 0)
4417 leaf = path->nodes[0];
4418 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4419 found_type = found_key.type;
4421 if (found_key.objectid != ino)
4424 if (found_type < min_type)
4427 item_end = found_key.offset;
4428 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4429 fi = btrfs_item_ptr(leaf, path->slots[0],
4430 struct btrfs_file_extent_item);
4431 extent_type = btrfs_file_extent_type(leaf, fi);
4432 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4434 btrfs_file_extent_num_bytes(leaf, fi);
4435 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4436 item_end += btrfs_file_extent_inline_len(leaf,
4437 path->slots[0], fi);
4441 if (found_type > min_type) {
4444 if (item_end < new_size)
4446 if (found_key.offset >= new_size)
4452 /* FIXME, shrink the extent if the ref count is only 1 */
4453 if (found_type != BTRFS_EXTENT_DATA_KEY)
4457 last_size = found_key.offset;
4459 last_size = new_size;
4461 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4463 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4465 u64 orig_num_bytes =
4466 btrfs_file_extent_num_bytes(leaf, fi);
4467 extent_num_bytes = ALIGN(new_size -
4470 btrfs_set_file_extent_num_bytes(leaf, fi,
4472 num_dec = (orig_num_bytes -
4474 if (test_bit(BTRFS_ROOT_REF_COWS,
4477 inode_sub_bytes(inode, num_dec);
4478 btrfs_mark_buffer_dirty(leaf);
4481 btrfs_file_extent_disk_num_bytes(leaf,
4483 extent_offset = found_key.offset -
4484 btrfs_file_extent_offset(leaf, fi);
4486 /* FIXME blocksize != 4096 */
4487 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4488 if (extent_start != 0) {
4490 if (test_bit(BTRFS_ROOT_REF_COWS,
4492 inode_sub_bytes(inode, num_dec);
4495 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4497 * we can't truncate inline items that have had
4501 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4502 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4505 * Need to release path in order to truncate a
4506 * compressed extent. So delete any accumulated
4507 * extent items so far.
4509 if (btrfs_file_extent_compression(leaf, fi) !=
4510 BTRFS_COMPRESS_NONE && pending_del_nr) {
4511 err = btrfs_del_items(trans, root, path,
4515 btrfs_abort_transaction(trans,
4522 err = truncate_inline_extent(inode, path,
4527 btrfs_abort_transaction(trans, err);
4530 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4532 inode_sub_bytes(inode, item_end + 1 - new_size);
4537 if (!pending_del_nr) {
4538 /* no pending yet, add ourselves */
4539 pending_del_slot = path->slots[0];
4541 } else if (pending_del_nr &&
4542 path->slots[0] + 1 == pending_del_slot) {
4543 /* hop on the pending chunk */
4545 pending_del_slot = path->slots[0];
4552 should_throttle = 0;
4555 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4556 root == root->fs_info->tree_root)) {
4557 btrfs_set_path_blocking(path);
4558 bytes_deleted += extent_num_bytes;
4559 ret = btrfs_free_extent(trans, root, extent_start,
4560 extent_num_bytes, 0,
4561 btrfs_header_owner(leaf),
4562 ino, extent_offset);
4564 if (btrfs_should_throttle_delayed_refs(trans, root))
4565 btrfs_async_run_delayed_refs(root,
4567 trans->delayed_ref_updates * 2, 0);
4569 if (truncate_space_check(trans, root,
4570 extent_num_bytes)) {
4573 if (btrfs_should_throttle_delayed_refs(trans,
4575 should_throttle = 1;
4580 if (found_type == BTRFS_INODE_ITEM_KEY)
4583 if (path->slots[0] == 0 ||
4584 path->slots[0] != pending_del_slot ||
4585 should_throttle || should_end) {
4586 if (pending_del_nr) {
4587 ret = btrfs_del_items(trans, root, path,
4591 btrfs_abort_transaction(trans, ret);
4596 btrfs_release_path(path);
4597 if (should_throttle) {
4598 unsigned long updates = trans->delayed_ref_updates;
4600 trans->delayed_ref_updates = 0;
4601 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4607 * if we failed to refill our space rsv, bail out
4608 * and let the transaction restart
4620 if (pending_del_nr) {
4621 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4624 btrfs_abort_transaction(trans, ret);
4627 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4628 btrfs_ordered_update_i_size(inode, last_size, NULL);
4630 btrfs_free_path(path);
4632 if (be_nice && bytes_deleted > SZ_32M) {
4633 unsigned long updates = trans->delayed_ref_updates;
4635 trans->delayed_ref_updates = 0;
4636 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4645 * btrfs_truncate_block - read, zero a chunk and write a block
4646 * @inode - inode that we're zeroing
4647 * @from - the offset to start zeroing
4648 * @len - the length to zero, 0 to zero the entire range respective to the
4650 * @front - zero up to the offset instead of from the offset on
4652 * This will find the block for the "from" offset and cow the block and zero the
4653 * part we want to zero. This is used with truncate and hole punching.
4655 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4658 struct address_space *mapping = inode->i_mapping;
4659 struct btrfs_root *root = BTRFS_I(inode)->root;
4660 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4661 struct btrfs_ordered_extent *ordered;
4662 struct extent_state *cached_state = NULL;
4664 u32 blocksize = root->sectorsize;
4665 pgoff_t index = from >> PAGE_SHIFT;
4666 unsigned offset = from & (blocksize - 1);
4668 gfp_t mask = btrfs_alloc_write_mask(mapping);
4673 if ((offset & (blocksize - 1)) == 0 &&
4674 (!len || ((len & (blocksize - 1)) == 0)))
4677 ret = btrfs_delalloc_reserve_space(inode,
4678 round_down(from, blocksize), blocksize);
4683 page = find_or_create_page(mapping, index, mask);
4685 btrfs_delalloc_release_space(inode,
4686 round_down(from, blocksize),
4692 block_start = round_down(from, blocksize);
4693 block_end = block_start + blocksize - 1;
4695 if (!PageUptodate(page)) {
4696 ret = btrfs_readpage(NULL, page);
4698 if (page->mapping != mapping) {
4703 if (!PageUptodate(page)) {
4708 wait_on_page_writeback(page);
4710 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4711 set_page_extent_mapped(page);
4713 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4715 unlock_extent_cached(io_tree, block_start, block_end,
4716 &cached_state, GFP_NOFS);
4719 btrfs_start_ordered_extent(inode, ordered, 1);
4720 btrfs_put_ordered_extent(ordered);
4724 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4725 EXTENT_DIRTY | EXTENT_DELALLOC |
4726 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4727 0, 0, &cached_state, GFP_NOFS);
4729 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4732 unlock_extent_cached(io_tree, block_start, block_end,
4733 &cached_state, GFP_NOFS);
4737 if (offset != blocksize) {
4739 len = blocksize - offset;
4742 memset(kaddr + (block_start - page_offset(page)),
4745 memset(kaddr + (block_start - page_offset(page)) + offset,
4747 flush_dcache_page(page);
4750 ClearPageChecked(page);
4751 set_page_dirty(page);
4752 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4757 btrfs_delalloc_release_space(inode, block_start,
4765 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4766 u64 offset, u64 len)
4768 struct btrfs_trans_handle *trans;
4772 * Still need to make sure the inode looks like it's been updated so
4773 * that any holes get logged if we fsync.
4775 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4776 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4777 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4778 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4783 * 1 - for the one we're dropping
4784 * 1 - for the one we're adding
4785 * 1 - for updating the inode.
4787 trans = btrfs_start_transaction(root, 3);
4789 return PTR_ERR(trans);
4791 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4793 btrfs_abort_transaction(trans, ret);
4794 btrfs_end_transaction(trans, root);
4798 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4799 0, 0, len, 0, len, 0, 0, 0);
4801 btrfs_abort_transaction(trans, ret);
4803 btrfs_update_inode(trans, root, inode);
4804 btrfs_end_transaction(trans, root);
4809 * This function puts in dummy file extents for the area we're creating a hole
4810 * for. So if we are truncating this file to a larger size we need to insert
4811 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4812 * the range between oldsize and size
4814 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4816 struct btrfs_root *root = BTRFS_I(inode)->root;
4817 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4818 struct extent_map *em = NULL;
4819 struct extent_state *cached_state = NULL;
4820 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4821 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4822 u64 block_end = ALIGN(size, root->sectorsize);
4829 * If our size started in the middle of a block we need to zero out the
4830 * rest of the block before we expand the i_size, otherwise we could
4831 * expose stale data.
4833 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4837 if (size <= hole_start)
4841 struct btrfs_ordered_extent *ordered;
4843 lock_extent_bits(io_tree, hole_start, block_end - 1,
4845 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4846 block_end - hole_start);
4849 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4850 &cached_state, GFP_NOFS);
4851 btrfs_start_ordered_extent(inode, ordered, 1);
4852 btrfs_put_ordered_extent(ordered);
4855 cur_offset = hole_start;
4857 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4858 block_end - cur_offset, 0);
4864 last_byte = min(extent_map_end(em), block_end);
4865 last_byte = ALIGN(last_byte , root->sectorsize);
4866 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4867 struct extent_map *hole_em;
4868 hole_size = last_byte - cur_offset;
4870 err = maybe_insert_hole(root, inode, cur_offset,
4874 btrfs_drop_extent_cache(inode, cur_offset,
4875 cur_offset + hole_size - 1, 0);
4876 hole_em = alloc_extent_map();
4878 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4879 &BTRFS_I(inode)->runtime_flags);
4882 hole_em->start = cur_offset;
4883 hole_em->len = hole_size;
4884 hole_em->orig_start = cur_offset;
4886 hole_em->block_start = EXTENT_MAP_HOLE;
4887 hole_em->block_len = 0;
4888 hole_em->orig_block_len = 0;
4889 hole_em->ram_bytes = hole_size;
4890 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4891 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4892 hole_em->generation = root->fs_info->generation;
4895 write_lock(&em_tree->lock);
4896 err = add_extent_mapping(em_tree, hole_em, 1);
4897 write_unlock(&em_tree->lock);
4900 btrfs_drop_extent_cache(inode, cur_offset,
4904 free_extent_map(hole_em);
4907 free_extent_map(em);
4909 cur_offset = last_byte;
4910 if (cur_offset >= block_end)
4913 free_extent_map(em);
4914 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4919 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4921 struct btrfs_root *root = BTRFS_I(inode)->root;
4922 struct btrfs_trans_handle *trans;
4923 loff_t oldsize = i_size_read(inode);
4924 loff_t newsize = attr->ia_size;
4925 int mask = attr->ia_valid;
4929 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4930 * special case where we need to update the times despite not having
4931 * these flags set. For all other operations the VFS set these flags
4932 * explicitly if it wants a timestamp update.
4934 if (newsize != oldsize) {
4935 inode_inc_iversion(inode);
4936 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4937 inode->i_ctime = inode->i_mtime =
4938 current_fs_time(inode->i_sb);
4941 if (newsize > oldsize) {
4943 * Don't do an expanding truncate while snapshoting is ongoing.
4944 * This is to ensure the snapshot captures a fully consistent
4945 * state of this file - if the snapshot captures this expanding
4946 * truncation, it must capture all writes that happened before
4949 btrfs_wait_for_snapshot_creation(root);
4950 ret = btrfs_cont_expand(inode, oldsize, newsize);
4952 btrfs_end_write_no_snapshoting(root);
4956 trans = btrfs_start_transaction(root, 1);
4957 if (IS_ERR(trans)) {
4958 btrfs_end_write_no_snapshoting(root);
4959 return PTR_ERR(trans);
4962 i_size_write(inode, newsize);
4963 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4964 pagecache_isize_extended(inode, oldsize, newsize);
4965 ret = btrfs_update_inode(trans, root, inode);
4966 btrfs_end_write_no_snapshoting(root);
4967 btrfs_end_transaction(trans, root);
4971 * We're truncating a file that used to have good data down to
4972 * zero. Make sure it gets into the ordered flush list so that
4973 * any new writes get down to disk quickly.
4976 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4977 &BTRFS_I(inode)->runtime_flags);
4980 * 1 for the orphan item we're going to add
4981 * 1 for the orphan item deletion.
4983 trans = btrfs_start_transaction(root, 2);
4985 return PTR_ERR(trans);
4988 * We need to do this in case we fail at _any_ point during the
4989 * actual truncate. Once we do the truncate_setsize we could
4990 * invalidate pages which forces any outstanding ordered io to
4991 * be instantly completed which will give us extents that need
4992 * to be truncated. If we fail to get an orphan inode down we
4993 * could have left over extents that were never meant to live,
4994 * so we need to guarantee from this point on that everything
4995 * will be consistent.
4997 ret = btrfs_orphan_add(trans, inode);
4998 btrfs_end_transaction(trans, root);
5002 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5003 truncate_setsize(inode, newsize);
5005 /* Disable nonlocked read DIO to avoid the end less truncate */
5006 btrfs_inode_block_unlocked_dio(inode);
5007 inode_dio_wait(inode);
5008 btrfs_inode_resume_unlocked_dio(inode);
5010 ret = btrfs_truncate(inode);
5011 if (ret && inode->i_nlink) {
5015 * failed to truncate, disk_i_size is only adjusted down
5016 * as we remove extents, so it should represent the true
5017 * size of the inode, so reset the in memory size and
5018 * delete our orphan entry.
5020 trans = btrfs_join_transaction(root);
5021 if (IS_ERR(trans)) {
5022 btrfs_orphan_del(NULL, inode);
5025 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5026 err = btrfs_orphan_del(trans, inode);
5028 btrfs_abort_transaction(trans, err);
5029 btrfs_end_transaction(trans, root);
5036 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5038 struct inode *inode = d_inode(dentry);
5039 struct btrfs_root *root = BTRFS_I(inode)->root;
5042 if (btrfs_root_readonly(root))
5045 err = inode_change_ok(inode, attr);
5049 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5050 err = btrfs_setsize(inode, attr);
5055 if (attr->ia_valid) {
5056 setattr_copy(inode, attr);
5057 inode_inc_iversion(inode);
5058 err = btrfs_dirty_inode(inode);
5060 if (!err && attr->ia_valid & ATTR_MODE)
5061 err = posix_acl_chmod(inode, inode->i_mode);
5068 * While truncating the inode pages during eviction, we get the VFS calling
5069 * btrfs_invalidatepage() against each page of the inode. This is slow because
5070 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5071 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5072 * extent_state structures over and over, wasting lots of time.
5074 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5075 * those expensive operations on a per page basis and do only the ordered io
5076 * finishing, while we release here the extent_map and extent_state structures,
5077 * without the excessive merging and splitting.
5079 static void evict_inode_truncate_pages(struct inode *inode)
5081 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5082 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5083 struct rb_node *node;
5085 ASSERT(inode->i_state & I_FREEING);
5086 truncate_inode_pages_final(&inode->i_data);
5088 write_lock(&map_tree->lock);
5089 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5090 struct extent_map *em;
5092 node = rb_first(&map_tree->map);
5093 em = rb_entry(node, struct extent_map, rb_node);
5094 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5095 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5096 remove_extent_mapping(map_tree, em);
5097 free_extent_map(em);
5098 if (need_resched()) {
5099 write_unlock(&map_tree->lock);
5101 write_lock(&map_tree->lock);
5104 write_unlock(&map_tree->lock);
5107 * Keep looping until we have no more ranges in the io tree.
5108 * We can have ongoing bios started by readpages (called from readahead)
5109 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5110 * still in progress (unlocked the pages in the bio but did not yet
5111 * unlocked the ranges in the io tree). Therefore this means some
5112 * ranges can still be locked and eviction started because before
5113 * submitting those bios, which are executed by a separate task (work
5114 * queue kthread), inode references (inode->i_count) were not taken
5115 * (which would be dropped in the end io callback of each bio).
5116 * Therefore here we effectively end up waiting for those bios and
5117 * anyone else holding locked ranges without having bumped the inode's
5118 * reference count - if we don't do it, when they access the inode's
5119 * io_tree to unlock a range it may be too late, leading to an
5120 * use-after-free issue.
5122 spin_lock(&io_tree->lock);
5123 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5124 struct extent_state *state;
5125 struct extent_state *cached_state = NULL;
5129 node = rb_first(&io_tree->state);
5130 state = rb_entry(node, struct extent_state, rb_node);
5131 start = state->start;
5133 spin_unlock(&io_tree->lock);
5135 lock_extent_bits(io_tree, start, end, &cached_state);
5138 * If still has DELALLOC flag, the extent didn't reach disk,
5139 * and its reserved space won't be freed by delayed_ref.
5140 * So we need to free its reserved space here.
5141 * (Refer to comment in btrfs_invalidatepage, case 2)
5143 * Note, end is the bytenr of last byte, so we need + 1 here.
5145 if (state->state & EXTENT_DELALLOC)
5146 btrfs_qgroup_free_data(inode, start, end - start + 1);
5148 clear_extent_bit(io_tree, start, end,
5149 EXTENT_LOCKED | EXTENT_DIRTY |
5150 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5151 EXTENT_DEFRAG, 1, 1,
5152 &cached_state, GFP_NOFS);
5155 spin_lock(&io_tree->lock);
5157 spin_unlock(&io_tree->lock);
5160 void btrfs_evict_inode(struct inode *inode)
5162 struct btrfs_trans_handle *trans;
5163 struct btrfs_root *root = BTRFS_I(inode)->root;
5164 struct btrfs_block_rsv *rsv, *global_rsv;
5165 int steal_from_global = 0;
5169 trace_btrfs_inode_evict(inode);
5172 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5176 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5178 evict_inode_truncate_pages(inode);
5180 if (inode->i_nlink &&
5181 ((btrfs_root_refs(&root->root_item) != 0 &&
5182 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5183 btrfs_is_free_space_inode(inode)))
5186 if (is_bad_inode(inode)) {
5187 btrfs_orphan_del(NULL, inode);
5190 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5191 if (!special_file(inode->i_mode))
5192 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5194 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5196 if (root->fs_info->log_root_recovering) {
5197 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5198 &BTRFS_I(inode)->runtime_flags));
5202 if (inode->i_nlink > 0) {
5203 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5204 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5208 ret = btrfs_commit_inode_delayed_inode(inode);
5210 btrfs_orphan_del(NULL, inode);
5214 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5216 btrfs_orphan_del(NULL, inode);
5219 rsv->size = min_size;
5221 global_rsv = &root->fs_info->global_block_rsv;
5223 btrfs_i_size_write(inode, 0);
5226 * This is a bit simpler than btrfs_truncate since we've already
5227 * reserved our space for our orphan item in the unlink, so we just
5228 * need to reserve some slack space in case we add bytes and update
5229 * inode item when doing the truncate.
5232 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5233 BTRFS_RESERVE_FLUSH_LIMIT);
5236 * Try and steal from the global reserve since we will
5237 * likely not use this space anyway, we want to try as
5238 * hard as possible to get this to work.
5241 steal_from_global++;
5243 steal_from_global = 0;
5247 * steal_from_global == 0: we reserved stuff, hooray!
5248 * steal_from_global == 1: we didn't reserve stuff, boo!
5249 * steal_from_global == 2: we've committed, still not a lot of
5250 * room but maybe we'll have room in the global reserve this
5252 * steal_from_global == 3: abandon all hope!
5254 if (steal_from_global > 2) {
5255 btrfs_warn(root->fs_info,
5256 "Could not get space for a delete, will truncate on mount %d",
5258 btrfs_orphan_del(NULL, inode);
5259 btrfs_free_block_rsv(root, rsv);
5263 trans = btrfs_join_transaction(root);
5264 if (IS_ERR(trans)) {
5265 btrfs_orphan_del(NULL, inode);
5266 btrfs_free_block_rsv(root, rsv);
5271 * We can't just steal from the global reserve, we need to make
5272 * sure there is room to do it, if not we need to commit and try
5275 if (steal_from_global) {
5276 if (!btrfs_check_space_for_delayed_refs(trans, root))
5277 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5284 * Couldn't steal from the global reserve, we have too much
5285 * pending stuff built up, commit the transaction and try it
5289 ret = btrfs_commit_transaction(trans, root);
5291 btrfs_orphan_del(NULL, inode);
5292 btrfs_free_block_rsv(root, rsv);
5297 steal_from_global = 0;
5300 trans->block_rsv = rsv;
5302 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5303 if (ret != -ENOSPC && ret != -EAGAIN)
5306 trans->block_rsv = &root->fs_info->trans_block_rsv;
5307 btrfs_end_transaction(trans, root);
5309 btrfs_btree_balance_dirty(root);
5312 btrfs_free_block_rsv(root, rsv);
5315 * Errors here aren't a big deal, it just means we leave orphan items
5316 * in the tree. They will be cleaned up on the next mount.
5319 trans->block_rsv = root->orphan_block_rsv;
5320 btrfs_orphan_del(trans, inode);
5322 btrfs_orphan_del(NULL, inode);
5325 trans->block_rsv = &root->fs_info->trans_block_rsv;
5326 if (!(root == root->fs_info->tree_root ||
5327 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5328 btrfs_return_ino(root, btrfs_ino(inode));
5330 btrfs_end_transaction(trans, root);
5331 btrfs_btree_balance_dirty(root);
5333 btrfs_remove_delayed_node(inode);
5338 * this returns the key found in the dir entry in the location pointer.
5339 * If no dir entries were found, location->objectid is 0.
5341 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5342 struct btrfs_key *location)
5344 const char *name = dentry->d_name.name;
5345 int namelen = dentry->d_name.len;
5346 struct btrfs_dir_item *di;
5347 struct btrfs_path *path;
5348 struct btrfs_root *root = BTRFS_I(dir)->root;
5351 path = btrfs_alloc_path();
5355 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5360 if (IS_ERR_OR_NULL(di))
5363 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5365 btrfs_free_path(path);
5368 location->objectid = 0;
5373 * when we hit a tree root in a directory, the btrfs part of the inode
5374 * needs to be changed to reflect the root directory of the tree root. This
5375 * is kind of like crossing a mount point.
5377 static int fixup_tree_root_location(struct btrfs_root *root,
5379 struct dentry *dentry,
5380 struct btrfs_key *location,
5381 struct btrfs_root **sub_root)
5383 struct btrfs_path *path;
5384 struct btrfs_root *new_root;
5385 struct btrfs_root_ref *ref;
5386 struct extent_buffer *leaf;
5387 struct btrfs_key key;
5391 path = btrfs_alloc_path();
5398 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5399 key.type = BTRFS_ROOT_REF_KEY;
5400 key.offset = location->objectid;
5402 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5410 leaf = path->nodes[0];
5411 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5412 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5413 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5416 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5417 (unsigned long)(ref + 1),
5418 dentry->d_name.len);
5422 btrfs_release_path(path);
5424 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5425 if (IS_ERR(new_root)) {
5426 err = PTR_ERR(new_root);
5430 *sub_root = new_root;
5431 location->objectid = btrfs_root_dirid(&new_root->root_item);
5432 location->type = BTRFS_INODE_ITEM_KEY;
5433 location->offset = 0;
5436 btrfs_free_path(path);
5440 static void inode_tree_add(struct inode *inode)
5442 struct btrfs_root *root = BTRFS_I(inode)->root;
5443 struct btrfs_inode *entry;
5445 struct rb_node *parent;
5446 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5447 u64 ino = btrfs_ino(inode);
5449 if (inode_unhashed(inode))
5452 spin_lock(&root->inode_lock);
5453 p = &root->inode_tree.rb_node;
5456 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5458 if (ino < btrfs_ino(&entry->vfs_inode))
5459 p = &parent->rb_left;
5460 else if (ino > btrfs_ino(&entry->vfs_inode))
5461 p = &parent->rb_right;
5463 WARN_ON(!(entry->vfs_inode.i_state &
5464 (I_WILL_FREE | I_FREEING)));
5465 rb_replace_node(parent, new, &root->inode_tree);
5466 RB_CLEAR_NODE(parent);
5467 spin_unlock(&root->inode_lock);
5471 rb_link_node(new, parent, p);
5472 rb_insert_color(new, &root->inode_tree);
5473 spin_unlock(&root->inode_lock);
5476 static void inode_tree_del(struct inode *inode)
5478 struct btrfs_root *root = BTRFS_I(inode)->root;
5481 spin_lock(&root->inode_lock);
5482 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5483 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5484 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5485 empty = RB_EMPTY_ROOT(&root->inode_tree);
5487 spin_unlock(&root->inode_lock);
5489 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5490 synchronize_srcu(&root->fs_info->subvol_srcu);
5491 spin_lock(&root->inode_lock);
5492 empty = RB_EMPTY_ROOT(&root->inode_tree);
5493 spin_unlock(&root->inode_lock);
5495 btrfs_add_dead_root(root);
5499 void btrfs_invalidate_inodes(struct btrfs_root *root)
5501 struct rb_node *node;
5502 struct rb_node *prev;
5503 struct btrfs_inode *entry;
5504 struct inode *inode;
5507 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5508 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5510 spin_lock(&root->inode_lock);
5512 node = root->inode_tree.rb_node;
5516 entry = rb_entry(node, struct btrfs_inode, rb_node);
5518 if (objectid < btrfs_ino(&entry->vfs_inode))
5519 node = node->rb_left;
5520 else if (objectid > btrfs_ino(&entry->vfs_inode))
5521 node = node->rb_right;
5527 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5528 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5532 prev = rb_next(prev);
5536 entry = rb_entry(node, struct btrfs_inode, rb_node);
5537 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5538 inode = igrab(&entry->vfs_inode);
5540 spin_unlock(&root->inode_lock);
5541 if (atomic_read(&inode->i_count) > 1)
5542 d_prune_aliases(inode);
5544 * btrfs_drop_inode will have it removed from
5545 * the inode cache when its usage count
5550 spin_lock(&root->inode_lock);
5554 if (cond_resched_lock(&root->inode_lock))
5557 node = rb_next(node);
5559 spin_unlock(&root->inode_lock);
5562 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5564 struct btrfs_iget_args *args = p;
5565 inode->i_ino = args->location->objectid;
5566 memcpy(&BTRFS_I(inode)->location, args->location,
5567 sizeof(*args->location));
5568 BTRFS_I(inode)->root = args->root;
5572 static int btrfs_find_actor(struct inode *inode, void *opaque)
5574 struct btrfs_iget_args *args = opaque;
5575 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5576 args->root == BTRFS_I(inode)->root;
5579 static struct inode *btrfs_iget_locked(struct super_block *s,
5580 struct btrfs_key *location,
5581 struct btrfs_root *root)
5583 struct inode *inode;
5584 struct btrfs_iget_args args;
5585 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5587 args.location = location;
5590 inode = iget5_locked(s, hashval, btrfs_find_actor,
5591 btrfs_init_locked_inode,
5596 /* Get an inode object given its location and corresponding root.
5597 * Returns in *is_new if the inode was read from disk
5599 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5600 struct btrfs_root *root, int *new)
5602 struct inode *inode;
5604 inode = btrfs_iget_locked(s, location, root);
5606 return ERR_PTR(-ENOMEM);
5608 if (inode->i_state & I_NEW) {
5609 btrfs_read_locked_inode(inode);
5610 if (!is_bad_inode(inode)) {
5611 inode_tree_add(inode);
5612 unlock_new_inode(inode);
5616 unlock_new_inode(inode);
5618 inode = ERR_PTR(-ESTALE);
5625 static struct inode *new_simple_dir(struct super_block *s,
5626 struct btrfs_key *key,
5627 struct btrfs_root *root)
5629 struct inode *inode = new_inode(s);
5632 return ERR_PTR(-ENOMEM);
5634 BTRFS_I(inode)->root = root;
5635 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5636 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5638 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5639 inode->i_op = &btrfs_dir_ro_inode_operations;
5640 inode->i_fop = &simple_dir_operations;
5641 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5642 inode->i_mtime = current_fs_time(inode->i_sb);
5643 inode->i_atime = inode->i_mtime;
5644 inode->i_ctime = inode->i_mtime;
5645 BTRFS_I(inode)->i_otime = inode->i_mtime;
5650 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5652 struct inode *inode;
5653 struct btrfs_root *root = BTRFS_I(dir)->root;
5654 struct btrfs_root *sub_root = root;
5655 struct btrfs_key location;
5659 if (dentry->d_name.len > BTRFS_NAME_LEN)
5660 return ERR_PTR(-ENAMETOOLONG);
5662 ret = btrfs_inode_by_name(dir, dentry, &location);
5664 return ERR_PTR(ret);
5666 if (location.objectid == 0)
5667 return ERR_PTR(-ENOENT);
5669 if (location.type == BTRFS_INODE_ITEM_KEY) {
5670 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5674 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5676 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5677 ret = fixup_tree_root_location(root, dir, dentry,
5678 &location, &sub_root);
5681 inode = ERR_PTR(ret);
5683 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5685 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5687 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5689 if (!IS_ERR(inode) && root != sub_root) {
5690 down_read(&root->fs_info->cleanup_work_sem);
5691 if (!(inode->i_sb->s_flags & MS_RDONLY))
5692 ret = btrfs_orphan_cleanup(sub_root);
5693 up_read(&root->fs_info->cleanup_work_sem);
5696 inode = ERR_PTR(ret);
5703 static int btrfs_dentry_delete(const struct dentry *dentry)
5705 struct btrfs_root *root;
5706 struct inode *inode = d_inode(dentry);
5708 if (!inode && !IS_ROOT(dentry))
5709 inode = d_inode(dentry->d_parent);
5712 root = BTRFS_I(inode)->root;
5713 if (btrfs_root_refs(&root->root_item) == 0)
5716 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5722 static void btrfs_dentry_release(struct dentry *dentry)
5724 kfree(dentry->d_fsdata);
5727 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5730 struct inode *inode;
5732 inode = btrfs_lookup_dentry(dir, dentry);
5733 if (IS_ERR(inode)) {
5734 if (PTR_ERR(inode) == -ENOENT)
5737 return ERR_CAST(inode);
5740 return d_splice_alias(inode, dentry);
5743 unsigned char btrfs_filetype_table[] = {
5744 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5747 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5749 struct inode *inode = file_inode(file);
5750 struct btrfs_root *root = BTRFS_I(inode)->root;
5751 struct btrfs_item *item;
5752 struct btrfs_dir_item *di;
5753 struct btrfs_key key;
5754 struct btrfs_key found_key;
5755 struct btrfs_path *path;
5756 struct list_head ins_list;
5757 struct list_head del_list;
5759 struct extent_buffer *leaf;
5761 unsigned char d_type;
5766 int key_type = BTRFS_DIR_INDEX_KEY;
5770 int is_curr = 0; /* ctx->pos points to the current index? */
5774 /* FIXME, use a real flag for deciding about the key type */
5775 if (root->fs_info->tree_root == root)
5776 key_type = BTRFS_DIR_ITEM_KEY;
5778 if (!dir_emit_dots(file, ctx))
5781 path = btrfs_alloc_path();
5785 path->reada = READA_FORWARD;
5787 if (key_type == BTRFS_DIR_INDEX_KEY) {
5788 INIT_LIST_HEAD(&ins_list);
5789 INIT_LIST_HEAD(&del_list);
5790 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5794 key.type = key_type;
5795 key.offset = ctx->pos;
5796 key.objectid = btrfs_ino(inode);
5798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5804 leaf = path->nodes[0];
5805 slot = path->slots[0];
5806 if (slot >= btrfs_header_nritems(leaf)) {
5807 ret = btrfs_next_leaf(root, path);
5815 item = btrfs_item_nr(slot);
5816 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5818 if (found_key.objectid != key.objectid)
5820 if (found_key.type != key_type)
5822 if (found_key.offset < ctx->pos)
5824 if (key_type == BTRFS_DIR_INDEX_KEY &&
5825 btrfs_should_delete_dir_index(&del_list,
5829 ctx->pos = found_key.offset;
5832 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5834 di_total = btrfs_item_size(leaf, item);
5836 while (di_cur < di_total) {
5837 struct btrfs_key location;
5839 if (verify_dir_item(root, leaf, di))
5842 name_len = btrfs_dir_name_len(leaf, di);
5843 if (name_len <= sizeof(tmp_name)) {
5844 name_ptr = tmp_name;
5846 name_ptr = kmalloc(name_len, GFP_KERNEL);
5852 read_extent_buffer(leaf, name_ptr,
5853 (unsigned long)(di + 1), name_len);
5855 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5856 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5859 /* is this a reference to our own snapshot? If so
5862 * In contrast to old kernels, we insert the snapshot's
5863 * dir item and dir index after it has been created, so
5864 * we won't find a reference to our own snapshot. We
5865 * still keep the following code for backward
5868 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5869 location.objectid == root->root_key.objectid) {
5873 over = !dir_emit(ctx, name_ptr, name_len,
5874 location.objectid, d_type);
5877 if (name_ptr != tmp_name)
5883 di_len = btrfs_dir_name_len(leaf, di) +
5884 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5886 di = (struct btrfs_dir_item *)((char *)di + di_len);
5892 if (key_type == BTRFS_DIR_INDEX_KEY) {
5895 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5901 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5902 * it was was set to the termination value in previous call. We assume
5903 * that "." and ".." were emitted if we reach this point and set the
5904 * termination value as well for an empty directory.
5906 if (ctx->pos > 2 && !emitted)
5909 /* Reached end of directory/root. Bump pos past the last item. */
5913 * Stop new entries from being returned after we return the last
5916 * New directory entries are assigned a strictly increasing
5917 * offset. This means that new entries created during readdir
5918 * are *guaranteed* to be seen in the future by that readdir.
5919 * This has broken buggy programs which operate on names as
5920 * they're returned by readdir. Until we re-use freed offsets
5921 * we have this hack to stop new entries from being returned
5922 * under the assumption that they'll never reach this huge
5925 * This is being careful not to overflow 32bit loff_t unless the
5926 * last entry requires it because doing so has broken 32bit apps
5929 if (key_type == BTRFS_DIR_INDEX_KEY) {
5930 if (ctx->pos >= INT_MAX)
5931 ctx->pos = LLONG_MAX;
5939 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5940 btrfs_free_path(path);
5944 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5946 struct btrfs_root *root = BTRFS_I(inode)->root;
5947 struct btrfs_trans_handle *trans;
5949 bool nolock = false;
5951 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5954 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5957 if (wbc->sync_mode == WB_SYNC_ALL) {
5959 trans = btrfs_join_transaction_nolock(root);
5961 trans = btrfs_join_transaction(root);
5963 return PTR_ERR(trans);
5964 ret = btrfs_commit_transaction(trans, root);
5970 * This is somewhat expensive, updating the tree every time the
5971 * inode changes. But, it is most likely to find the inode in cache.
5972 * FIXME, needs more benchmarking...there are no reasons other than performance
5973 * to keep or drop this code.
5975 static int btrfs_dirty_inode(struct inode *inode)
5977 struct btrfs_root *root = BTRFS_I(inode)->root;
5978 struct btrfs_trans_handle *trans;
5981 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5984 trans = btrfs_join_transaction(root);
5986 return PTR_ERR(trans);
5988 ret = btrfs_update_inode(trans, root, inode);
5989 if (ret && ret == -ENOSPC) {
5990 /* whoops, lets try again with the full transaction */
5991 btrfs_end_transaction(trans, root);
5992 trans = btrfs_start_transaction(root, 1);
5994 return PTR_ERR(trans);
5996 ret = btrfs_update_inode(trans, root, inode);
5998 btrfs_end_transaction(trans, root);
5999 if (BTRFS_I(inode)->delayed_node)
6000 btrfs_balance_delayed_items(root);
6006 * This is a copy of file_update_time. We need this so we can return error on
6007 * ENOSPC for updating the inode in the case of file write and mmap writes.
6009 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6012 struct btrfs_root *root = BTRFS_I(inode)->root;
6014 if (btrfs_root_readonly(root))
6017 if (flags & S_VERSION)
6018 inode_inc_iversion(inode);
6019 if (flags & S_CTIME)
6020 inode->i_ctime = *now;
6021 if (flags & S_MTIME)
6022 inode->i_mtime = *now;
6023 if (flags & S_ATIME)
6024 inode->i_atime = *now;
6025 return btrfs_dirty_inode(inode);
6029 * find the highest existing sequence number in a directory
6030 * and then set the in-memory index_cnt variable to reflect
6031 * free sequence numbers
6033 static int btrfs_set_inode_index_count(struct inode *inode)
6035 struct btrfs_root *root = BTRFS_I(inode)->root;
6036 struct btrfs_key key, found_key;
6037 struct btrfs_path *path;
6038 struct extent_buffer *leaf;
6041 key.objectid = btrfs_ino(inode);
6042 key.type = BTRFS_DIR_INDEX_KEY;
6043 key.offset = (u64)-1;
6045 path = btrfs_alloc_path();
6049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6052 /* FIXME: we should be able to handle this */
6058 * MAGIC NUMBER EXPLANATION:
6059 * since we search a directory based on f_pos we have to start at 2
6060 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6061 * else has to start at 2
6063 if (path->slots[0] == 0) {
6064 BTRFS_I(inode)->index_cnt = 2;
6070 leaf = path->nodes[0];
6071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6073 if (found_key.objectid != btrfs_ino(inode) ||
6074 found_key.type != BTRFS_DIR_INDEX_KEY) {
6075 BTRFS_I(inode)->index_cnt = 2;
6079 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6081 btrfs_free_path(path);
6086 * helper to find a free sequence number in a given directory. This current
6087 * code is very simple, later versions will do smarter things in the btree
6089 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6093 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6094 ret = btrfs_inode_delayed_dir_index_count(dir);
6096 ret = btrfs_set_inode_index_count(dir);
6102 *index = BTRFS_I(dir)->index_cnt;
6103 BTRFS_I(dir)->index_cnt++;
6108 static int btrfs_insert_inode_locked(struct inode *inode)
6110 struct btrfs_iget_args args;
6111 args.location = &BTRFS_I(inode)->location;
6112 args.root = BTRFS_I(inode)->root;
6114 return insert_inode_locked4(inode,
6115 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6116 btrfs_find_actor, &args);
6119 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6120 struct btrfs_root *root,
6122 const char *name, int name_len,
6123 u64 ref_objectid, u64 objectid,
6124 umode_t mode, u64 *index)
6126 struct inode *inode;
6127 struct btrfs_inode_item *inode_item;
6128 struct btrfs_key *location;
6129 struct btrfs_path *path;
6130 struct btrfs_inode_ref *ref;
6131 struct btrfs_key key[2];
6133 int nitems = name ? 2 : 1;
6137 path = btrfs_alloc_path();
6139 return ERR_PTR(-ENOMEM);
6141 inode = new_inode(root->fs_info->sb);
6143 btrfs_free_path(path);
6144 return ERR_PTR(-ENOMEM);
6148 * O_TMPFILE, set link count to 0, so that after this point,
6149 * we fill in an inode item with the correct link count.
6152 set_nlink(inode, 0);
6155 * we have to initialize this early, so we can reclaim the inode
6156 * number if we fail afterwards in this function.
6158 inode->i_ino = objectid;
6161 trace_btrfs_inode_request(dir);
6163 ret = btrfs_set_inode_index(dir, index);
6165 btrfs_free_path(path);
6167 return ERR_PTR(ret);
6173 * index_cnt is ignored for everything but a dir,
6174 * btrfs_get_inode_index_count has an explanation for the magic
6177 BTRFS_I(inode)->index_cnt = 2;
6178 BTRFS_I(inode)->dir_index = *index;
6179 BTRFS_I(inode)->root = root;
6180 BTRFS_I(inode)->generation = trans->transid;
6181 inode->i_generation = BTRFS_I(inode)->generation;
6184 * We could have gotten an inode number from somebody who was fsynced
6185 * and then removed in this same transaction, so let's just set full
6186 * sync since it will be a full sync anyway and this will blow away the
6187 * old info in the log.
6189 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6191 key[0].objectid = objectid;
6192 key[0].type = BTRFS_INODE_ITEM_KEY;
6195 sizes[0] = sizeof(struct btrfs_inode_item);
6199 * Start new inodes with an inode_ref. This is slightly more
6200 * efficient for small numbers of hard links since they will
6201 * be packed into one item. Extended refs will kick in if we
6202 * add more hard links than can fit in the ref item.
6204 key[1].objectid = objectid;
6205 key[1].type = BTRFS_INODE_REF_KEY;
6206 key[1].offset = ref_objectid;
6208 sizes[1] = name_len + sizeof(*ref);
6211 location = &BTRFS_I(inode)->location;
6212 location->objectid = objectid;
6213 location->offset = 0;
6214 location->type = BTRFS_INODE_ITEM_KEY;
6216 ret = btrfs_insert_inode_locked(inode);
6220 path->leave_spinning = 1;
6221 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6225 inode_init_owner(inode, dir, mode);
6226 inode_set_bytes(inode, 0);
6228 inode->i_mtime = current_fs_time(inode->i_sb);
6229 inode->i_atime = inode->i_mtime;
6230 inode->i_ctime = inode->i_mtime;
6231 BTRFS_I(inode)->i_otime = inode->i_mtime;
6233 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6234 struct btrfs_inode_item);
6235 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6236 sizeof(*inode_item));
6237 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6240 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6241 struct btrfs_inode_ref);
6242 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6243 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6244 ptr = (unsigned long)(ref + 1);
6245 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6248 btrfs_mark_buffer_dirty(path->nodes[0]);
6249 btrfs_free_path(path);
6251 btrfs_inherit_iflags(inode, dir);
6253 if (S_ISREG(mode)) {
6254 if (btrfs_test_opt(root->fs_info, NODATASUM))
6255 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6256 if (btrfs_test_opt(root->fs_info, NODATACOW))
6257 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6258 BTRFS_INODE_NODATASUM;
6261 inode_tree_add(inode);
6263 trace_btrfs_inode_new(inode);
6264 btrfs_set_inode_last_trans(trans, inode);
6266 btrfs_update_root_times(trans, root);
6268 ret = btrfs_inode_inherit_props(trans, inode, dir);
6270 btrfs_err(root->fs_info,
6271 "error inheriting props for ino %llu (root %llu): %d",
6272 btrfs_ino(inode), root->root_key.objectid, ret);
6277 unlock_new_inode(inode);
6280 BTRFS_I(dir)->index_cnt--;
6281 btrfs_free_path(path);
6283 return ERR_PTR(ret);
6286 static inline u8 btrfs_inode_type(struct inode *inode)
6288 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6292 * utility function to add 'inode' into 'parent_inode' with
6293 * a give name and a given sequence number.
6294 * if 'add_backref' is true, also insert a backref from the
6295 * inode to the parent directory.
6297 int btrfs_add_link(struct btrfs_trans_handle *trans,
6298 struct inode *parent_inode, struct inode *inode,
6299 const char *name, int name_len, int add_backref, u64 index)
6302 struct btrfs_key key;
6303 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6304 u64 ino = btrfs_ino(inode);
6305 u64 parent_ino = btrfs_ino(parent_inode);
6307 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6308 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6311 key.type = BTRFS_INODE_ITEM_KEY;
6315 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6316 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6317 key.objectid, root->root_key.objectid,
6318 parent_ino, index, name, name_len);
6319 } else if (add_backref) {
6320 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6324 /* Nothing to clean up yet */
6328 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6330 btrfs_inode_type(inode), index);
6331 if (ret == -EEXIST || ret == -EOVERFLOW)
6334 btrfs_abort_transaction(trans, ret);
6338 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6340 inode_inc_iversion(parent_inode);
6341 parent_inode->i_mtime = parent_inode->i_ctime =
6342 current_fs_time(parent_inode->i_sb);
6343 ret = btrfs_update_inode(trans, root, parent_inode);
6345 btrfs_abort_transaction(trans, ret);
6349 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6352 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6353 key.objectid, root->root_key.objectid,
6354 parent_ino, &local_index, name, name_len);
6356 } else if (add_backref) {
6360 err = btrfs_del_inode_ref(trans, root, name, name_len,
6361 ino, parent_ino, &local_index);
6366 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6367 struct inode *dir, struct dentry *dentry,
6368 struct inode *inode, int backref, u64 index)
6370 int err = btrfs_add_link(trans, dir, inode,
6371 dentry->d_name.name, dentry->d_name.len,
6378 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6379 umode_t mode, dev_t rdev)
6381 struct btrfs_trans_handle *trans;
6382 struct btrfs_root *root = BTRFS_I(dir)->root;
6383 struct inode *inode = NULL;
6390 * 2 for inode item and ref
6392 * 1 for xattr if selinux is on
6394 trans = btrfs_start_transaction(root, 5);
6396 return PTR_ERR(trans);
6398 err = btrfs_find_free_ino(root, &objectid);
6402 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6403 dentry->d_name.len, btrfs_ino(dir), objectid,
6405 if (IS_ERR(inode)) {
6406 err = PTR_ERR(inode);
6411 * If the active LSM wants to access the inode during
6412 * d_instantiate it needs these. Smack checks to see
6413 * if the filesystem supports xattrs by looking at the
6416 inode->i_op = &btrfs_special_inode_operations;
6417 init_special_inode(inode, inode->i_mode, rdev);
6419 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6421 goto out_unlock_inode;
6423 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6425 goto out_unlock_inode;
6427 btrfs_update_inode(trans, root, inode);
6428 unlock_new_inode(inode);
6429 d_instantiate(dentry, inode);
6433 btrfs_end_transaction(trans, root);
6434 btrfs_balance_delayed_items(root);
6435 btrfs_btree_balance_dirty(root);
6437 inode_dec_link_count(inode);
6444 unlock_new_inode(inode);
6449 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6450 umode_t mode, bool excl)
6452 struct btrfs_trans_handle *trans;
6453 struct btrfs_root *root = BTRFS_I(dir)->root;
6454 struct inode *inode = NULL;
6455 int drop_inode_on_err = 0;
6461 * 2 for inode item and ref
6463 * 1 for xattr if selinux is on
6465 trans = btrfs_start_transaction(root, 5);
6467 return PTR_ERR(trans);
6469 err = btrfs_find_free_ino(root, &objectid);
6473 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6474 dentry->d_name.len, btrfs_ino(dir), objectid,
6476 if (IS_ERR(inode)) {
6477 err = PTR_ERR(inode);
6480 drop_inode_on_err = 1;
6482 * If the active LSM wants to access the inode during
6483 * d_instantiate it needs these. Smack checks to see
6484 * if the filesystem supports xattrs by looking at the
6487 inode->i_fop = &btrfs_file_operations;
6488 inode->i_op = &btrfs_file_inode_operations;
6489 inode->i_mapping->a_ops = &btrfs_aops;
6491 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6493 goto out_unlock_inode;
6495 err = btrfs_update_inode(trans, root, inode);
6497 goto out_unlock_inode;
6499 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6501 goto out_unlock_inode;
6503 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6504 unlock_new_inode(inode);
6505 d_instantiate(dentry, inode);
6508 btrfs_end_transaction(trans, root);
6509 if (err && drop_inode_on_err) {
6510 inode_dec_link_count(inode);
6513 btrfs_balance_delayed_items(root);
6514 btrfs_btree_balance_dirty(root);
6518 unlock_new_inode(inode);
6523 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6524 struct dentry *dentry)
6526 struct btrfs_trans_handle *trans = NULL;
6527 struct btrfs_root *root = BTRFS_I(dir)->root;
6528 struct inode *inode = d_inode(old_dentry);
6533 /* do not allow sys_link's with other subvols of the same device */
6534 if (root->objectid != BTRFS_I(inode)->root->objectid)
6537 if (inode->i_nlink >= BTRFS_LINK_MAX)
6540 err = btrfs_set_inode_index(dir, &index);
6545 * 2 items for inode and inode ref
6546 * 2 items for dir items
6547 * 1 item for parent inode
6549 trans = btrfs_start_transaction(root, 5);
6550 if (IS_ERR(trans)) {
6551 err = PTR_ERR(trans);
6556 /* There are several dir indexes for this inode, clear the cache. */
6557 BTRFS_I(inode)->dir_index = 0ULL;
6559 inode_inc_iversion(inode);
6560 inode->i_ctime = current_fs_time(inode->i_sb);
6562 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6564 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6569 struct dentry *parent = dentry->d_parent;
6570 err = btrfs_update_inode(trans, root, inode);
6573 if (inode->i_nlink == 1) {
6575 * If new hard link count is 1, it's a file created
6576 * with open(2) O_TMPFILE flag.
6578 err = btrfs_orphan_del(trans, inode);
6582 d_instantiate(dentry, inode);
6583 btrfs_log_new_name(trans, inode, NULL, parent);
6586 btrfs_balance_delayed_items(root);
6589 btrfs_end_transaction(trans, root);
6591 inode_dec_link_count(inode);
6594 btrfs_btree_balance_dirty(root);
6598 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6600 struct inode *inode = NULL;
6601 struct btrfs_trans_handle *trans;
6602 struct btrfs_root *root = BTRFS_I(dir)->root;
6604 int drop_on_err = 0;
6609 * 2 items for inode and ref
6610 * 2 items for dir items
6611 * 1 for xattr if selinux is on
6613 trans = btrfs_start_transaction(root, 5);
6615 return PTR_ERR(trans);
6617 err = btrfs_find_free_ino(root, &objectid);
6621 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6622 dentry->d_name.len, btrfs_ino(dir), objectid,
6623 S_IFDIR | mode, &index);
6624 if (IS_ERR(inode)) {
6625 err = PTR_ERR(inode);
6630 /* these must be set before we unlock the inode */
6631 inode->i_op = &btrfs_dir_inode_operations;
6632 inode->i_fop = &btrfs_dir_file_operations;
6634 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6636 goto out_fail_inode;
6638 btrfs_i_size_write(inode, 0);
6639 err = btrfs_update_inode(trans, root, inode);
6641 goto out_fail_inode;
6643 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6644 dentry->d_name.len, 0, index);
6646 goto out_fail_inode;
6648 d_instantiate(dentry, inode);
6650 * mkdir is special. We're unlocking after we call d_instantiate
6651 * to avoid a race with nfsd calling d_instantiate.
6653 unlock_new_inode(inode);
6657 btrfs_end_transaction(trans, root);
6659 inode_dec_link_count(inode);
6662 btrfs_balance_delayed_items(root);
6663 btrfs_btree_balance_dirty(root);
6667 unlock_new_inode(inode);
6671 /* Find next extent map of a given extent map, caller needs to ensure locks */
6672 static struct extent_map *next_extent_map(struct extent_map *em)
6674 struct rb_node *next;
6676 next = rb_next(&em->rb_node);
6679 return container_of(next, struct extent_map, rb_node);
6682 static struct extent_map *prev_extent_map(struct extent_map *em)
6684 struct rb_node *prev;
6686 prev = rb_prev(&em->rb_node);
6689 return container_of(prev, struct extent_map, rb_node);
6692 /* helper for btfs_get_extent. Given an existing extent in the tree,
6693 * the existing extent is the nearest extent to map_start,
6694 * and an extent that you want to insert, deal with overlap and insert
6695 * the best fitted new extent into the tree.
6697 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6698 struct extent_map *existing,
6699 struct extent_map *em,
6702 struct extent_map *prev;
6703 struct extent_map *next;
6708 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6710 if (existing->start > map_start) {
6712 prev = prev_extent_map(next);
6715 next = next_extent_map(prev);
6718 start = prev ? extent_map_end(prev) : em->start;
6719 start = max_t(u64, start, em->start);
6720 end = next ? next->start : extent_map_end(em);
6721 end = min_t(u64, end, extent_map_end(em));
6722 start_diff = start - em->start;
6724 em->len = end - start;
6725 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6726 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6727 em->block_start += start_diff;
6728 em->block_len -= start_diff;
6730 return add_extent_mapping(em_tree, em, 0);
6733 static noinline int uncompress_inline(struct btrfs_path *path,
6735 size_t pg_offset, u64 extent_offset,
6736 struct btrfs_file_extent_item *item)
6739 struct extent_buffer *leaf = path->nodes[0];
6742 unsigned long inline_size;
6746 WARN_ON(pg_offset != 0);
6747 compress_type = btrfs_file_extent_compression(leaf, item);
6748 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6749 inline_size = btrfs_file_extent_inline_item_len(leaf,
6750 btrfs_item_nr(path->slots[0]));
6751 tmp = kmalloc(inline_size, GFP_NOFS);
6754 ptr = btrfs_file_extent_inline_start(item);
6756 read_extent_buffer(leaf, tmp, ptr, inline_size);
6758 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6759 ret = btrfs_decompress(compress_type, tmp, page,
6760 extent_offset, inline_size, max_size);
6766 * a bit scary, this does extent mapping from logical file offset to the disk.
6767 * the ugly parts come from merging extents from the disk with the in-ram
6768 * representation. This gets more complex because of the data=ordered code,
6769 * where the in-ram extents might be locked pending data=ordered completion.
6771 * This also copies inline extents directly into the page.
6774 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6775 size_t pg_offset, u64 start, u64 len,
6780 u64 extent_start = 0;
6782 u64 objectid = btrfs_ino(inode);
6784 struct btrfs_path *path = NULL;
6785 struct btrfs_root *root = BTRFS_I(inode)->root;
6786 struct btrfs_file_extent_item *item;
6787 struct extent_buffer *leaf;
6788 struct btrfs_key found_key;
6789 struct extent_map *em = NULL;
6790 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6791 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6792 struct btrfs_trans_handle *trans = NULL;
6793 const bool new_inline = !page || create;
6796 read_lock(&em_tree->lock);
6797 em = lookup_extent_mapping(em_tree, start, len);
6799 em->bdev = root->fs_info->fs_devices->latest_bdev;
6800 read_unlock(&em_tree->lock);
6803 if (em->start > start || em->start + em->len <= start)
6804 free_extent_map(em);
6805 else if (em->block_start == EXTENT_MAP_INLINE && page)
6806 free_extent_map(em);
6810 em = alloc_extent_map();
6815 em->bdev = root->fs_info->fs_devices->latest_bdev;
6816 em->start = EXTENT_MAP_HOLE;
6817 em->orig_start = EXTENT_MAP_HOLE;
6819 em->block_len = (u64)-1;
6822 path = btrfs_alloc_path();
6828 * Chances are we'll be called again, so go ahead and do
6831 path->reada = READA_FORWARD;
6834 ret = btrfs_lookup_file_extent(trans, root, path,
6835 objectid, start, trans != NULL);
6842 if (path->slots[0] == 0)
6847 leaf = path->nodes[0];
6848 item = btrfs_item_ptr(leaf, path->slots[0],
6849 struct btrfs_file_extent_item);
6850 /* are we inside the extent that was found? */
6851 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6852 found_type = found_key.type;
6853 if (found_key.objectid != objectid ||
6854 found_type != BTRFS_EXTENT_DATA_KEY) {
6856 * If we backup past the first extent we want to move forward
6857 * and see if there is an extent in front of us, otherwise we'll
6858 * say there is a hole for our whole search range which can
6865 found_type = btrfs_file_extent_type(leaf, item);
6866 extent_start = found_key.offset;
6867 if (found_type == BTRFS_FILE_EXTENT_REG ||
6868 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6869 extent_end = extent_start +
6870 btrfs_file_extent_num_bytes(leaf, item);
6871 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6873 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6874 extent_end = ALIGN(extent_start + size, root->sectorsize);
6877 if (start >= extent_end) {
6879 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6880 ret = btrfs_next_leaf(root, path);
6887 leaf = path->nodes[0];
6889 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6890 if (found_key.objectid != objectid ||
6891 found_key.type != BTRFS_EXTENT_DATA_KEY)
6893 if (start + len <= found_key.offset)
6895 if (start > found_key.offset)
6898 em->orig_start = start;
6899 em->len = found_key.offset - start;
6903 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6905 if (found_type == BTRFS_FILE_EXTENT_REG ||
6906 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6908 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6912 size_t extent_offset;
6918 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6919 extent_offset = page_offset(page) + pg_offset - extent_start;
6920 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6921 size - extent_offset);
6922 em->start = extent_start + extent_offset;
6923 em->len = ALIGN(copy_size, root->sectorsize);
6924 em->orig_block_len = em->len;
6925 em->orig_start = em->start;
6926 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6927 if (create == 0 && !PageUptodate(page)) {
6928 if (btrfs_file_extent_compression(leaf, item) !=
6929 BTRFS_COMPRESS_NONE) {
6930 ret = uncompress_inline(path, page, pg_offset,
6931 extent_offset, item);
6938 read_extent_buffer(leaf, map + pg_offset, ptr,
6940 if (pg_offset + copy_size < PAGE_SIZE) {
6941 memset(map + pg_offset + copy_size, 0,
6942 PAGE_SIZE - pg_offset -
6947 flush_dcache_page(page);
6948 } else if (create && PageUptodate(page)) {
6952 free_extent_map(em);
6955 btrfs_release_path(path);
6956 trans = btrfs_join_transaction(root);
6959 return ERR_CAST(trans);
6963 write_extent_buffer(leaf, map + pg_offset, ptr,
6966 btrfs_mark_buffer_dirty(leaf);
6968 set_extent_uptodate(io_tree, em->start,
6969 extent_map_end(em) - 1, NULL, GFP_NOFS);
6974 em->orig_start = start;
6977 em->block_start = EXTENT_MAP_HOLE;
6978 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6980 btrfs_release_path(path);
6981 if (em->start > start || extent_map_end(em) <= start) {
6982 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6983 em->start, em->len, start, len);
6989 write_lock(&em_tree->lock);
6990 ret = add_extent_mapping(em_tree, em, 0);
6991 /* it is possible that someone inserted the extent into the tree
6992 * while we had the lock dropped. It is also possible that
6993 * an overlapping map exists in the tree
6995 if (ret == -EEXIST) {
6996 struct extent_map *existing;
7000 existing = search_extent_mapping(em_tree, start, len);
7002 * existing will always be non-NULL, since there must be
7003 * extent causing the -EEXIST.
7005 if (existing->start == em->start &&
7006 extent_map_end(existing) == extent_map_end(em) &&
7007 em->block_start == existing->block_start) {
7009 * these two extents are the same, it happens
7010 * with inlines especially
7012 free_extent_map(em);
7016 } else if (start >= extent_map_end(existing) ||
7017 start <= existing->start) {
7019 * The existing extent map is the one nearest to
7020 * the [start, start + len) range which overlaps
7022 err = merge_extent_mapping(em_tree, existing,
7024 free_extent_map(existing);
7026 free_extent_map(em);
7030 free_extent_map(em);
7035 write_unlock(&em_tree->lock);
7038 trace_btrfs_get_extent(root, em);
7040 btrfs_free_path(path);
7042 ret = btrfs_end_transaction(trans, root);
7047 free_extent_map(em);
7048 return ERR_PTR(err);
7050 BUG_ON(!em); /* Error is always set */
7054 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7055 size_t pg_offset, u64 start, u64 len,
7058 struct extent_map *em;
7059 struct extent_map *hole_em = NULL;
7060 u64 range_start = start;
7066 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7073 * - a pre-alloc extent,
7074 * there might actually be delalloc bytes behind it.
7076 if (em->block_start != EXTENT_MAP_HOLE &&
7077 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7083 /* check to see if we've wrapped (len == -1 or similar) */
7092 /* ok, we didn't find anything, lets look for delalloc */
7093 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7094 end, len, EXTENT_DELALLOC, 1);
7095 found_end = range_start + found;
7096 if (found_end < range_start)
7097 found_end = (u64)-1;
7100 * we didn't find anything useful, return
7101 * the original results from get_extent()
7103 if (range_start > end || found_end <= start) {
7109 /* adjust the range_start to make sure it doesn't
7110 * go backwards from the start they passed in
7112 range_start = max(start, range_start);
7113 found = found_end - range_start;
7116 u64 hole_start = start;
7119 em = alloc_extent_map();
7125 * when btrfs_get_extent can't find anything it
7126 * returns one huge hole
7128 * make sure what it found really fits our range, and
7129 * adjust to make sure it is based on the start from
7133 u64 calc_end = extent_map_end(hole_em);
7135 if (calc_end <= start || (hole_em->start > end)) {
7136 free_extent_map(hole_em);
7139 hole_start = max(hole_em->start, start);
7140 hole_len = calc_end - hole_start;
7144 if (hole_em && range_start > hole_start) {
7145 /* our hole starts before our delalloc, so we
7146 * have to return just the parts of the hole
7147 * that go until the delalloc starts
7149 em->len = min(hole_len,
7150 range_start - hole_start);
7151 em->start = hole_start;
7152 em->orig_start = hole_start;
7154 * don't adjust block start at all,
7155 * it is fixed at EXTENT_MAP_HOLE
7157 em->block_start = hole_em->block_start;
7158 em->block_len = hole_len;
7159 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7160 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7162 em->start = range_start;
7164 em->orig_start = range_start;
7165 em->block_start = EXTENT_MAP_DELALLOC;
7166 em->block_len = found;
7168 } else if (hole_em) {
7173 free_extent_map(hole_em);
7175 free_extent_map(em);
7176 return ERR_PTR(err);
7181 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7184 const u64 orig_start,
7185 const u64 block_start,
7186 const u64 block_len,
7187 const u64 orig_block_len,
7188 const u64 ram_bytes,
7191 struct extent_map *em = NULL;
7194 down_read(&BTRFS_I(inode)->dio_sem);
7195 if (type != BTRFS_ORDERED_NOCOW) {
7196 em = create_pinned_em(inode, start, len, orig_start,
7197 block_start, block_len, orig_block_len,
7202 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7203 len, block_len, type);
7206 free_extent_map(em);
7207 btrfs_drop_extent_cache(inode, start,
7208 start + len - 1, 0);
7213 up_read(&BTRFS_I(inode)->dio_sem);
7218 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7221 struct btrfs_root *root = BTRFS_I(inode)->root;
7222 struct extent_map *em;
7223 struct btrfs_key ins;
7227 alloc_hint = get_extent_allocation_hint(inode, start, len);
7228 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7229 alloc_hint, &ins, 1, 1);
7231 return ERR_PTR(ret);
7233 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7234 ins.objectid, ins.offset, ins.offset,
7236 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7238 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7244 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7245 * block must be cow'd
7247 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7248 u64 *orig_start, u64 *orig_block_len,
7251 struct btrfs_trans_handle *trans;
7252 struct btrfs_path *path;
7254 struct extent_buffer *leaf;
7255 struct btrfs_root *root = BTRFS_I(inode)->root;
7256 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7257 struct btrfs_file_extent_item *fi;
7258 struct btrfs_key key;
7265 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7267 path = btrfs_alloc_path();
7271 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7276 slot = path->slots[0];
7279 /* can't find the item, must cow */
7286 leaf = path->nodes[0];
7287 btrfs_item_key_to_cpu(leaf, &key, slot);
7288 if (key.objectid != btrfs_ino(inode) ||
7289 key.type != BTRFS_EXTENT_DATA_KEY) {
7290 /* not our file or wrong item type, must cow */
7294 if (key.offset > offset) {
7295 /* Wrong offset, must cow */
7299 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7300 found_type = btrfs_file_extent_type(leaf, fi);
7301 if (found_type != BTRFS_FILE_EXTENT_REG &&
7302 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7303 /* not a regular extent, must cow */
7307 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7310 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7311 if (extent_end <= offset)
7314 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7315 if (disk_bytenr == 0)
7318 if (btrfs_file_extent_compression(leaf, fi) ||
7319 btrfs_file_extent_encryption(leaf, fi) ||
7320 btrfs_file_extent_other_encoding(leaf, fi))
7323 backref_offset = btrfs_file_extent_offset(leaf, fi);
7326 *orig_start = key.offset - backref_offset;
7327 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7328 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7331 if (btrfs_extent_readonly(root, disk_bytenr))
7334 num_bytes = min(offset + *len, extent_end) - offset;
7335 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7338 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7339 ret = test_range_bit(io_tree, offset, range_end,
7340 EXTENT_DELALLOC, 0, NULL);
7347 btrfs_release_path(path);
7350 * look for other files referencing this extent, if we
7351 * find any we must cow
7353 trans = btrfs_join_transaction(root);
7354 if (IS_ERR(trans)) {
7359 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7360 key.offset - backref_offset, disk_bytenr);
7361 btrfs_end_transaction(trans, root);
7368 * adjust disk_bytenr and num_bytes to cover just the bytes
7369 * in this extent we are about to write. If there
7370 * are any csums in that range we have to cow in order
7371 * to keep the csums correct
7373 disk_bytenr += backref_offset;
7374 disk_bytenr += offset - key.offset;
7375 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7378 * all of the above have passed, it is safe to overwrite this extent
7384 btrfs_free_path(path);
7388 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7390 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7392 void **pagep = NULL;
7393 struct page *page = NULL;
7397 start_idx = start >> PAGE_SHIFT;
7400 * end is the last byte in the last page. end == start is legal
7402 end_idx = end >> PAGE_SHIFT;
7406 /* Most of the code in this while loop is lifted from
7407 * find_get_page. It's been modified to begin searching from a
7408 * page and return just the first page found in that range. If the
7409 * found idx is less than or equal to the end idx then we know that
7410 * a page exists. If no pages are found or if those pages are
7411 * outside of the range then we're fine (yay!) */
7412 while (page == NULL &&
7413 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7414 page = radix_tree_deref_slot(pagep);
7415 if (unlikely(!page))
7418 if (radix_tree_exception(page)) {
7419 if (radix_tree_deref_retry(page)) {
7424 * Otherwise, shmem/tmpfs must be storing a swap entry
7425 * here as an exceptional entry: so return it without
7426 * attempting to raise page count.
7429 break; /* TODO: Is this relevant for this use case? */
7432 if (!page_cache_get_speculative(page)) {
7438 * Has the page moved?
7439 * This is part of the lockless pagecache protocol. See
7440 * include/linux/pagemap.h for details.
7442 if (unlikely(page != *pagep)) {
7449 if (page->index <= end_idx)
7458 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7459 struct extent_state **cached_state, int writing)
7461 struct btrfs_ordered_extent *ordered;
7465 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7468 * We're concerned with the entire range that we're going to be
7469 * doing DIO to, so we need to make sure there's no ordered
7470 * extents in this range.
7472 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7473 lockend - lockstart + 1);
7476 * We need to make sure there are no buffered pages in this
7477 * range either, we could have raced between the invalidate in
7478 * generic_file_direct_write and locking the extent. The
7479 * invalidate needs to happen so that reads after a write do not
7484 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7487 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7488 cached_state, GFP_NOFS);
7492 * If we are doing a DIO read and the ordered extent we
7493 * found is for a buffered write, we can not wait for it
7494 * to complete and retry, because if we do so we can
7495 * deadlock with concurrent buffered writes on page
7496 * locks. This happens only if our DIO read covers more
7497 * than one extent map, if at this point has already
7498 * created an ordered extent for a previous extent map
7499 * and locked its range in the inode's io tree, and a
7500 * concurrent write against that previous extent map's
7501 * range and this range started (we unlock the ranges
7502 * in the io tree only when the bios complete and
7503 * buffered writes always lock pages before attempting
7504 * to lock range in the io tree).
7507 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7508 btrfs_start_ordered_extent(inode, ordered, 1);
7511 btrfs_put_ordered_extent(ordered);
7514 * We could trigger writeback for this range (and wait
7515 * for it to complete) and then invalidate the pages for
7516 * this range (through invalidate_inode_pages2_range()),
7517 * but that can lead us to a deadlock with a concurrent
7518 * call to readpages() (a buffered read or a defrag call
7519 * triggered a readahead) on a page lock due to an
7520 * ordered dio extent we created before but did not have
7521 * yet a corresponding bio submitted (whence it can not
7522 * complete), which makes readpages() wait for that
7523 * ordered extent to complete while holding a lock on
7538 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7539 u64 len, u64 orig_start,
7540 u64 block_start, u64 block_len,
7541 u64 orig_block_len, u64 ram_bytes,
7544 struct extent_map_tree *em_tree;
7545 struct extent_map *em;
7546 struct btrfs_root *root = BTRFS_I(inode)->root;
7549 em_tree = &BTRFS_I(inode)->extent_tree;
7550 em = alloc_extent_map();
7552 return ERR_PTR(-ENOMEM);
7555 em->orig_start = orig_start;
7556 em->mod_start = start;
7559 em->block_len = block_len;
7560 em->block_start = block_start;
7561 em->bdev = root->fs_info->fs_devices->latest_bdev;
7562 em->orig_block_len = orig_block_len;
7563 em->ram_bytes = ram_bytes;
7564 em->generation = -1;
7565 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7566 if (type == BTRFS_ORDERED_PREALLOC)
7567 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7570 btrfs_drop_extent_cache(inode, em->start,
7571 em->start + em->len - 1, 0);
7572 write_lock(&em_tree->lock);
7573 ret = add_extent_mapping(em_tree, em, 1);
7574 write_unlock(&em_tree->lock);
7575 } while (ret == -EEXIST);
7578 free_extent_map(em);
7579 return ERR_PTR(ret);
7585 static void adjust_dio_outstanding_extents(struct inode *inode,
7586 struct btrfs_dio_data *dio_data,
7589 unsigned num_extents;
7591 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7592 BTRFS_MAX_EXTENT_SIZE);
7594 * If we have an outstanding_extents count still set then we're
7595 * within our reservation, otherwise we need to adjust our inode
7596 * counter appropriately.
7598 if (dio_data->outstanding_extents) {
7599 dio_data->outstanding_extents -= num_extents;
7601 spin_lock(&BTRFS_I(inode)->lock);
7602 BTRFS_I(inode)->outstanding_extents += num_extents;
7603 spin_unlock(&BTRFS_I(inode)->lock);
7607 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7608 struct buffer_head *bh_result, int create)
7610 struct extent_map *em;
7611 struct btrfs_root *root = BTRFS_I(inode)->root;
7612 struct extent_state *cached_state = NULL;
7613 struct btrfs_dio_data *dio_data = NULL;
7614 u64 start = iblock << inode->i_blkbits;
7615 u64 lockstart, lockend;
7616 u64 len = bh_result->b_size;
7617 int unlock_bits = EXTENT_LOCKED;
7621 unlock_bits |= EXTENT_DIRTY;
7623 len = min_t(u64, len, root->sectorsize);
7626 lockend = start + len - 1;
7628 if (current->journal_info) {
7630 * Need to pull our outstanding extents and set journal_info to NULL so
7631 * that anything that needs to check if there's a transaction doesn't get
7634 dio_data = current->journal_info;
7635 current->journal_info = NULL;
7639 * If this errors out it's because we couldn't invalidate pagecache for
7640 * this range and we need to fallback to buffered.
7642 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7648 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7655 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7656 * io. INLINE is special, and we could probably kludge it in here, but
7657 * it's still buffered so for safety lets just fall back to the generic
7660 * For COMPRESSED we _have_ to read the entire extent in so we can
7661 * decompress it, so there will be buffering required no matter what we
7662 * do, so go ahead and fallback to buffered.
7664 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7665 * to buffered IO. Don't blame me, this is the price we pay for using
7668 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7669 em->block_start == EXTENT_MAP_INLINE) {
7670 free_extent_map(em);
7675 /* Just a good old fashioned hole, return */
7676 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7677 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7678 free_extent_map(em);
7683 * We don't allocate a new extent in the following cases
7685 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7687 * 2) The extent is marked as PREALLOC. We're good to go here and can
7688 * just use the extent.
7692 len = min(len, em->len - (start - em->start));
7693 lockstart = start + len;
7697 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7698 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7699 em->block_start != EXTENT_MAP_HOLE)) {
7701 u64 block_start, orig_start, orig_block_len, ram_bytes;
7703 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7704 type = BTRFS_ORDERED_PREALLOC;
7706 type = BTRFS_ORDERED_NOCOW;
7707 len = min(len, em->len - (start - em->start));
7708 block_start = em->block_start + (start - em->start);
7710 if (can_nocow_extent(inode, start, &len, &orig_start,
7711 &orig_block_len, &ram_bytes) == 1 &&
7712 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7713 struct extent_map *em2;
7715 em2 = btrfs_create_dio_extent(inode, start, len,
7716 orig_start, block_start,
7717 len, orig_block_len,
7719 btrfs_dec_nocow_writers(root->fs_info, block_start);
7720 if (type == BTRFS_ORDERED_PREALLOC) {
7721 free_extent_map(em);
7724 if (em2 && IS_ERR(em2)) {
7733 * this will cow the extent, reset the len in case we changed
7736 len = bh_result->b_size;
7737 free_extent_map(em);
7738 em = btrfs_new_extent_direct(inode, start, len);
7743 len = min(len, em->len - (start - em->start));
7745 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7747 bh_result->b_size = len;
7748 bh_result->b_bdev = em->bdev;
7749 set_buffer_mapped(bh_result);
7751 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7752 set_buffer_new(bh_result);
7755 * Need to update the i_size under the extent lock so buffered
7756 * readers will get the updated i_size when we unlock.
7758 if (start + len > i_size_read(inode))
7759 i_size_write(inode, start + len);
7761 adjust_dio_outstanding_extents(inode, dio_data, len);
7762 btrfs_free_reserved_data_space(inode, start, len);
7763 WARN_ON(dio_data->reserve < len);
7764 dio_data->reserve -= len;
7765 dio_data->unsubmitted_oe_range_end = start + len;
7766 current->journal_info = dio_data;
7770 * In the case of write we need to clear and unlock the entire range,
7771 * in the case of read we need to unlock only the end area that we
7772 * aren't using if there is any left over space.
7774 if (lockstart < lockend) {
7775 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7776 lockend, unlock_bits, 1, 0,
7777 &cached_state, GFP_NOFS);
7779 free_extent_state(cached_state);
7782 free_extent_map(em);
7787 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7788 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7791 current->journal_info = dio_data;
7793 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7794 * write less data then expected, so that we don't underflow our inode's
7795 * outstanding extents counter.
7797 if (create && dio_data)
7798 adjust_dio_outstanding_extents(inode, dio_data, len);
7803 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7806 struct btrfs_root *root = BTRFS_I(inode)->root;
7809 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7813 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7814 BTRFS_WQ_ENDIO_DIO_REPAIR);
7818 ret = btrfs_map_bio(root, bio, mirror_num, 0);
7824 static int btrfs_check_dio_repairable(struct inode *inode,
7825 struct bio *failed_bio,
7826 struct io_failure_record *failrec,
7831 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7832 failrec->logical, failrec->len);
7833 if (num_copies == 1) {
7835 * we only have a single copy of the data, so don't bother with
7836 * all the retry and error correction code that follows. no
7837 * matter what the error is, it is very likely to persist.
7839 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7840 num_copies, failrec->this_mirror, failed_mirror);
7844 failrec->failed_mirror = failed_mirror;
7845 failrec->this_mirror++;
7846 if (failrec->this_mirror == failed_mirror)
7847 failrec->this_mirror++;
7849 if (failrec->this_mirror > num_copies) {
7850 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7851 num_copies, failrec->this_mirror, failed_mirror);
7858 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7859 struct page *page, unsigned int pgoff,
7860 u64 start, u64 end, int failed_mirror,
7861 bio_end_io_t *repair_endio, void *repair_arg)
7863 struct io_failure_record *failrec;
7869 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7871 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7875 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7878 free_io_failure(inode, failrec);
7882 if ((failed_bio->bi_vcnt > 1)
7883 || (failed_bio->bi_io_vec->bv_len
7884 > BTRFS_I(inode)->root->sectorsize))
7885 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7887 read_mode = READ_SYNC;
7889 isector = start - btrfs_io_bio(failed_bio)->logical;
7890 isector >>= inode->i_sb->s_blocksize_bits;
7891 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7892 pgoff, isector, repair_endio, repair_arg);
7894 free_io_failure(inode, failrec);
7897 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7899 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7900 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7901 read_mode, failrec->this_mirror, failrec->in_validation);
7903 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7905 free_io_failure(inode, failrec);
7912 struct btrfs_retry_complete {
7913 struct completion done;
7914 struct inode *inode;
7919 static void btrfs_retry_endio_nocsum(struct bio *bio)
7921 struct btrfs_retry_complete *done = bio->bi_private;
7922 struct inode *inode;
7923 struct bio_vec *bvec;
7929 ASSERT(bio->bi_vcnt == 1);
7930 inode = bio->bi_io_vec->bv_page->mapping->host;
7931 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7934 bio_for_each_segment_all(bvec, bio, i)
7935 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7937 complete(&done->done);
7941 static int __btrfs_correct_data_nocsum(struct inode *inode,
7942 struct btrfs_io_bio *io_bio)
7944 struct btrfs_fs_info *fs_info;
7945 struct bio_vec *bvec;
7946 struct btrfs_retry_complete done;
7954 fs_info = BTRFS_I(inode)->root->fs_info;
7955 sectorsize = BTRFS_I(inode)->root->sectorsize;
7957 start = io_bio->logical;
7960 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7961 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7962 pgoff = bvec->bv_offset;
7964 next_block_or_try_again:
7967 init_completion(&done.done);
7969 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7970 pgoff, start, start + sectorsize - 1,
7972 btrfs_retry_endio_nocsum, &done);
7976 wait_for_completion(&done.done);
7978 if (!done.uptodate) {
7979 /* We might have another mirror, so try again */
7980 goto next_block_or_try_again;
7983 start += sectorsize;
7986 pgoff += sectorsize;
7987 goto next_block_or_try_again;
7994 static void btrfs_retry_endio(struct bio *bio)
7996 struct btrfs_retry_complete *done = bio->bi_private;
7997 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7998 struct inode *inode;
7999 struct bio_vec *bvec;
8010 start = done->start;
8012 ASSERT(bio->bi_vcnt == 1);
8013 inode = bio->bi_io_vec->bv_page->mapping->host;
8014 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8016 bio_for_each_segment_all(bvec, bio, i) {
8017 ret = __readpage_endio_check(done->inode, io_bio, i,
8018 bvec->bv_page, bvec->bv_offset,
8019 done->start, bvec->bv_len);
8021 clean_io_failure(done->inode, done->start,
8022 bvec->bv_page, bvec->bv_offset);
8027 done->uptodate = uptodate;
8029 complete(&done->done);
8033 static int __btrfs_subio_endio_read(struct inode *inode,
8034 struct btrfs_io_bio *io_bio, int err)
8036 struct btrfs_fs_info *fs_info;
8037 struct bio_vec *bvec;
8038 struct btrfs_retry_complete done;
8048 fs_info = BTRFS_I(inode)->root->fs_info;
8049 sectorsize = BTRFS_I(inode)->root->sectorsize;
8052 start = io_bio->logical;
8055 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8056 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8058 pgoff = bvec->bv_offset;
8060 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8061 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8062 bvec->bv_page, pgoff, start,
8069 init_completion(&done.done);
8071 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8072 pgoff, start, start + sectorsize - 1,
8074 btrfs_retry_endio, &done);
8080 wait_for_completion(&done.done);
8082 if (!done.uptodate) {
8083 /* We might have another mirror, so try again */
8087 offset += sectorsize;
8088 start += sectorsize;
8093 pgoff += sectorsize;
8101 static int btrfs_subio_endio_read(struct inode *inode,
8102 struct btrfs_io_bio *io_bio, int err)
8104 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8108 return __btrfs_correct_data_nocsum(inode, io_bio);
8112 return __btrfs_subio_endio_read(inode, io_bio, err);
8116 static void btrfs_endio_direct_read(struct bio *bio)
8118 struct btrfs_dio_private *dip = bio->bi_private;
8119 struct inode *inode = dip->inode;
8120 struct bio *dio_bio;
8121 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8122 int err = bio->bi_error;
8124 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8125 err = btrfs_subio_endio_read(inode, io_bio, err);
8127 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8128 dip->logical_offset + dip->bytes - 1);
8129 dio_bio = dip->dio_bio;
8133 dio_bio->bi_error = bio->bi_error;
8134 dio_end_io(dio_bio, bio->bi_error);
8137 io_bio->end_io(io_bio, err);
8141 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8146 struct btrfs_root *root = BTRFS_I(inode)->root;
8147 struct btrfs_ordered_extent *ordered = NULL;
8148 u64 ordered_offset = offset;
8149 u64 ordered_bytes = bytes;
8153 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8160 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8161 finish_ordered_fn, NULL, NULL);
8162 btrfs_queue_work(root->fs_info->endio_write_workers,
8166 * our bio might span multiple ordered extents. If we haven't
8167 * completed the accounting for the whole dio, go back and try again
8169 if (ordered_offset < offset + bytes) {
8170 ordered_bytes = offset + bytes - ordered_offset;
8176 static void btrfs_endio_direct_write(struct bio *bio)
8178 struct btrfs_dio_private *dip = bio->bi_private;
8179 struct bio *dio_bio = dip->dio_bio;
8181 btrfs_endio_direct_write_update_ordered(dip->inode,
8182 dip->logical_offset,
8188 dio_bio->bi_error = bio->bi_error;
8189 dio_end_io(dio_bio, bio->bi_error);
8193 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8194 struct bio *bio, int mirror_num,
8195 unsigned long bio_flags, u64 offset)
8198 struct btrfs_root *root = BTRFS_I(inode)->root;
8199 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8200 BUG_ON(ret); /* -ENOMEM */
8204 static void btrfs_end_dio_bio(struct bio *bio)
8206 struct btrfs_dio_private *dip = bio->bi_private;
8207 int err = bio->bi_error;
8210 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8211 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8212 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8213 (unsigned long long)bio->bi_iter.bi_sector,
8214 bio->bi_iter.bi_size, err);
8216 if (dip->subio_endio)
8217 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8223 * before atomic variable goto zero, we must make sure
8224 * dip->errors is perceived to be set.
8226 smp_mb__before_atomic();
8229 /* if there are more bios still pending for this dio, just exit */
8230 if (!atomic_dec_and_test(&dip->pending_bios))
8234 bio_io_error(dip->orig_bio);
8236 dip->dio_bio->bi_error = 0;
8237 bio_endio(dip->orig_bio);
8243 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8244 u64 first_sector, gfp_t gfp_flags)
8247 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8249 bio_associate_current(bio);
8253 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8254 struct inode *inode,
8255 struct btrfs_dio_private *dip,
8259 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8260 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8264 * We load all the csum data we need when we submit
8265 * the first bio to reduce the csum tree search and
8268 if (dip->logical_offset == file_offset) {
8269 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8275 if (bio == dip->orig_bio)
8278 file_offset -= dip->logical_offset;
8279 file_offset >>= inode->i_sb->s_blocksize_bits;
8280 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8285 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8286 u64 file_offset, int skip_sum,
8289 struct btrfs_dio_private *dip = bio->bi_private;
8290 bool write = bio_op(bio) == REQ_OP_WRITE;
8291 struct btrfs_root *root = BTRFS_I(inode)->root;
8295 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8300 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8301 BTRFS_WQ_ENDIO_DATA);
8309 if (write && async_submit) {
8310 ret = btrfs_wq_submit_bio(root->fs_info,
8311 inode, bio, 0, 0, file_offset,
8312 __btrfs_submit_bio_start_direct_io,
8313 __btrfs_submit_bio_done);
8317 * If we aren't doing async submit, calculate the csum of the
8320 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8324 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8330 ret = btrfs_map_bio(root, bio, 0, async_submit);
8336 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8339 struct inode *inode = dip->inode;
8340 struct btrfs_root *root = BTRFS_I(inode)->root;
8342 struct bio *orig_bio = dip->orig_bio;
8343 struct bio_vec *bvec = orig_bio->bi_io_vec;
8344 u64 start_sector = orig_bio->bi_iter.bi_sector;
8345 u64 file_offset = dip->logical_offset;
8348 u32 blocksize = root->sectorsize;
8349 int async_submit = 0;
8354 map_length = orig_bio->bi_iter.bi_size;
8355 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8356 start_sector << 9, &map_length, NULL, 0);
8360 if (map_length >= orig_bio->bi_iter.bi_size) {
8362 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8366 /* async crcs make it difficult to collect full stripe writes. */
8367 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8372 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8376 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
8377 bio->bi_private = dip;
8378 bio->bi_end_io = btrfs_end_dio_bio;
8379 btrfs_io_bio(bio)->logical = file_offset;
8380 atomic_inc(&dip->pending_bios);
8382 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8383 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8386 if (unlikely(map_length < submit_len + blocksize ||
8387 bio_add_page(bio, bvec->bv_page, blocksize,
8388 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8390 * inc the count before we submit the bio so
8391 * we know the end IO handler won't happen before
8392 * we inc the count. Otherwise, the dip might get freed
8393 * before we're done setting it up
8395 atomic_inc(&dip->pending_bios);
8396 ret = __btrfs_submit_dio_bio(bio, inode,
8397 file_offset, skip_sum,
8401 atomic_dec(&dip->pending_bios);
8405 start_sector += submit_len >> 9;
8406 file_offset += submit_len;
8410 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8411 start_sector, GFP_NOFS);
8414 bio_set_op_attrs(bio, bio_op(orig_bio), orig_bio->bi_opf);
8415 bio->bi_private = dip;
8416 bio->bi_end_io = btrfs_end_dio_bio;
8417 btrfs_io_bio(bio)->logical = file_offset;
8419 map_length = orig_bio->bi_iter.bi_size;
8420 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8422 &map_length, NULL, 0);
8430 submit_len += blocksize;
8440 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8449 * before atomic variable goto zero, we must
8450 * make sure dip->errors is perceived to be set.
8452 smp_mb__before_atomic();
8453 if (atomic_dec_and_test(&dip->pending_bios))
8454 bio_io_error(dip->orig_bio);
8456 /* bio_end_io() will handle error, so we needn't return it */
8460 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8463 struct btrfs_dio_private *dip = NULL;
8464 struct bio *io_bio = NULL;
8465 struct btrfs_io_bio *btrfs_bio;
8467 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8470 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8472 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8478 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8484 dip->private = dio_bio->bi_private;
8486 dip->logical_offset = file_offset;
8487 dip->bytes = dio_bio->bi_iter.bi_size;
8488 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8489 io_bio->bi_private = dip;
8490 dip->orig_bio = io_bio;
8491 dip->dio_bio = dio_bio;
8492 atomic_set(&dip->pending_bios, 0);
8493 btrfs_bio = btrfs_io_bio(io_bio);
8494 btrfs_bio->logical = file_offset;
8497 io_bio->bi_end_io = btrfs_endio_direct_write;
8499 io_bio->bi_end_io = btrfs_endio_direct_read;
8500 dip->subio_endio = btrfs_subio_endio_read;
8504 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8505 * even if we fail to submit a bio, because in such case we do the
8506 * corresponding error handling below and it must not be done a second
8507 * time by btrfs_direct_IO().
8510 struct btrfs_dio_data *dio_data = current->journal_info;
8512 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8514 dio_data->unsubmitted_oe_range_start =
8515 dio_data->unsubmitted_oe_range_end;
8518 ret = btrfs_submit_direct_hook(dip, skip_sum);
8522 if (btrfs_bio->end_io)
8523 btrfs_bio->end_io(btrfs_bio, ret);
8527 * If we arrived here it means either we failed to submit the dip
8528 * or we either failed to clone the dio_bio or failed to allocate the
8529 * dip. If we cloned the dio_bio and allocated the dip, we can just
8530 * call bio_endio against our io_bio so that we get proper resource
8531 * cleanup if we fail to submit the dip, otherwise, we must do the
8532 * same as btrfs_endio_direct_[write|read] because we can't call these
8533 * callbacks - they require an allocated dip and a clone of dio_bio.
8535 if (io_bio && dip) {
8536 io_bio->bi_error = -EIO;
8539 * The end io callbacks free our dip, do the final put on io_bio
8540 * and all the cleanup and final put for dio_bio (through
8547 btrfs_endio_direct_write_update_ordered(inode,
8549 dio_bio->bi_iter.bi_size,
8552 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8553 file_offset + dio_bio->bi_iter.bi_size - 1);
8555 dio_bio->bi_error = -EIO;
8557 * Releases and cleans up our dio_bio, no need to bio_put()
8558 * nor bio_endio()/bio_io_error() against dio_bio.
8560 dio_end_io(dio_bio, ret);
8567 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8568 const struct iov_iter *iter, loff_t offset)
8572 unsigned blocksize_mask = root->sectorsize - 1;
8573 ssize_t retval = -EINVAL;
8575 if (offset & blocksize_mask)
8578 if (iov_iter_alignment(iter) & blocksize_mask)
8581 /* If this is a write we don't need to check anymore */
8582 if (iov_iter_rw(iter) == WRITE)
8585 * Check to make sure we don't have duplicate iov_base's in this
8586 * iovec, if so return EINVAL, otherwise we'll get csum errors
8587 * when reading back.
8589 for (seg = 0; seg < iter->nr_segs; seg++) {
8590 for (i = seg + 1; i < iter->nr_segs; i++) {
8591 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8600 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8602 struct file *file = iocb->ki_filp;
8603 struct inode *inode = file->f_mapping->host;
8604 struct btrfs_root *root = BTRFS_I(inode)->root;
8605 struct btrfs_dio_data dio_data = { 0 };
8606 loff_t offset = iocb->ki_pos;
8610 bool relock = false;
8613 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8616 inode_dio_begin(inode);
8617 smp_mb__after_atomic();
8620 * The generic stuff only does filemap_write_and_wait_range, which
8621 * isn't enough if we've written compressed pages to this area, so
8622 * we need to flush the dirty pages again to make absolutely sure
8623 * that any outstanding dirty pages are on disk.
8625 count = iov_iter_count(iter);
8626 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8627 &BTRFS_I(inode)->runtime_flags))
8628 filemap_fdatawrite_range(inode->i_mapping, offset,
8629 offset + count - 1);
8631 if (iov_iter_rw(iter) == WRITE) {
8633 * If the write DIO is beyond the EOF, we need update
8634 * the isize, but it is protected by i_mutex. So we can
8635 * not unlock the i_mutex at this case.
8637 if (offset + count <= inode->i_size) {
8638 inode_unlock(inode);
8641 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8644 dio_data.outstanding_extents = div64_u64(count +
8645 BTRFS_MAX_EXTENT_SIZE - 1,
8646 BTRFS_MAX_EXTENT_SIZE);
8649 * We need to know how many extents we reserved so that we can
8650 * do the accounting properly if we go over the number we
8651 * originally calculated. Abuse current->journal_info for this.
8653 dio_data.reserve = round_up(count, root->sectorsize);
8654 dio_data.unsubmitted_oe_range_start = (u64)offset;
8655 dio_data.unsubmitted_oe_range_end = (u64)offset;
8656 current->journal_info = &dio_data;
8657 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8658 &BTRFS_I(inode)->runtime_flags)) {
8659 inode_dio_end(inode);
8660 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8664 ret = __blockdev_direct_IO(iocb, inode,
8665 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8666 iter, btrfs_get_blocks_direct, NULL,
8667 btrfs_submit_direct, flags);
8668 if (iov_iter_rw(iter) == WRITE) {
8669 current->journal_info = NULL;
8670 if (ret < 0 && ret != -EIOCBQUEUED) {
8671 if (dio_data.reserve)
8672 btrfs_delalloc_release_space(inode, offset,
8675 * On error we might have left some ordered extents
8676 * without submitting corresponding bios for them, so
8677 * cleanup them up to avoid other tasks getting them
8678 * and waiting for them to complete forever.
8680 if (dio_data.unsubmitted_oe_range_start <
8681 dio_data.unsubmitted_oe_range_end)
8682 btrfs_endio_direct_write_update_ordered(inode,
8683 dio_data.unsubmitted_oe_range_start,
8684 dio_data.unsubmitted_oe_range_end -
8685 dio_data.unsubmitted_oe_range_start,
8687 } else if (ret >= 0 && (size_t)ret < count)
8688 btrfs_delalloc_release_space(inode, offset,
8689 count - (size_t)ret);
8693 inode_dio_end(inode);
8700 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8702 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8703 __u64 start, __u64 len)
8707 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8711 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8714 int btrfs_readpage(struct file *file, struct page *page)
8716 struct extent_io_tree *tree;
8717 tree = &BTRFS_I(page->mapping->host)->io_tree;
8718 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8721 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8723 struct extent_io_tree *tree;
8724 struct inode *inode = page->mapping->host;
8727 if (current->flags & PF_MEMALLOC) {
8728 redirty_page_for_writepage(wbc, page);
8734 * If we are under memory pressure we will call this directly from the
8735 * VM, we need to make sure we have the inode referenced for the ordered
8736 * extent. If not just return like we didn't do anything.
8738 if (!igrab(inode)) {
8739 redirty_page_for_writepage(wbc, page);
8740 return AOP_WRITEPAGE_ACTIVATE;
8742 tree = &BTRFS_I(page->mapping->host)->io_tree;
8743 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8744 btrfs_add_delayed_iput(inode);
8748 static int btrfs_writepages(struct address_space *mapping,
8749 struct writeback_control *wbc)
8751 struct extent_io_tree *tree;
8753 tree = &BTRFS_I(mapping->host)->io_tree;
8754 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8758 btrfs_readpages(struct file *file, struct address_space *mapping,
8759 struct list_head *pages, unsigned nr_pages)
8761 struct extent_io_tree *tree;
8762 tree = &BTRFS_I(mapping->host)->io_tree;
8763 return extent_readpages(tree, mapping, pages, nr_pages,
8766 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8768 struct extent_io_tree *tree;
8769 struct extent_map_tree *map;
8772 tree = &BTRFS_I(page->mapping->host)->io_tree;
8773 map = &BTRFS_I(page->mapping->host)->extent_tree;
8774 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8776 ClearPagePrivate(page);
8777 set_page_private(page, 0);
8783 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8785 if (PageWriteback(page) || PageDirty(page))
8787 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8790 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8791 unsigned int length)
8793 struct inode *inode = page->mapping->host;
8794 struct extent_io_tree *tree;
8795 struct btrfs_ordered_extent *ordered;
8796 struct extent_state *cached_state = NULL;
8797 u64 page_start = page_offset(page);
8798 u64 page_end = page_start + PAGE_SIZE - 1;
8801 int inode_evicting = inode->i_state & I_FREEING;
8804 * we have the page locked, so new writeback can't start,
8805 * and the dirty bit won't be cleared while we are here.
8807 * Wait for IO on this page so that we can safely clear
8808 * the PagePrivate2 bit and do ordered accounting
8810 wait_on_page_writeback(page);
8812 tree = &BTRFS_I(inode)->io_tree;
8814 btrfs_releasepage(page, GFP_NOFS);
8818 if (!inode_evicting)
8819 lock_extent_bits(tree, page_start, page_end, &cached_state);
8822 ordered = btrfs_lookup_ordered_range(inode, start,
8823 page_end - start + 1);
8825 end = min(page_end, ordered->file_offset + ordered->len - 1);
8827 * IO on this page will never be started, so we need
8828 * to account for any ordered extents now
8830 if (!inode_evicting)
8831 clear_extent_bit(tree, start, end,
8832 EXTENT_DIRTY | EXTENT_DELALLOC |
8833 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8834 EXTENT_DEFRAG, 1, 0, &cached_state,
8837 * whoever cleared the private bit is responsible
8838 * for the finish_ordered_io
8840 if (TestClearPagePrivate2(page)) {
8841 struct btrfs_ordered_inode_tree *tree;
8844 tree = &BTRFS_I(inode)->ordered_tree;
8846 spin_lock_irq(&tree->lock);
8847 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8848 new_len = start - ordered->file_offset;
8849 if (new_len < ordered->truncated_len)
8850 ordered->truncated_len = new_len;
8851 spin_unlock_irq(&tree->lock);
8853 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8855 end - start + 1, 1))
8856 btrfs_finish_ordered_io(ordered);
8858 btrfs_put_ordered_extent(ordered);
8859 if (!inode_evicting) {
8860 cached_state = NULL;
8861 lock_extent_bits(tree, start, end,
8866 if (start < page_end)
8871 * Qgroup reserved space handler
8872 * Page here will be either
8873 * 1) Already written to disk
8874 * In this case, its reserved space is released from data rsv map
8875 * and will be freed by delayed_ref handler finally.
8876 * So even we call qgroup_free_data(), it won't decrease reserved
8878 * 2) Not written to disk
8879 * This means the reserved space should be freed here.
8881 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8882 if (!inode_evicting) {
8883 clear_extent_bit(tree, page_start, page_end,
8884 EXTENT_LOCKED | EXTENT_DIRTY |
8885 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8886 EXTENT_DEFRAG, 1, 1,
8887 &cached_state, GFP_NOFS);
8889 __btrfs_releasepage(page, GFP_NOFS);
8892 ClearPageChecked(page);
8893 if (PagePrivate(page)) {
8894 ClearPagePrivate(page);
8895 set_page_private(page, 0);
8901 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8902 * called from a page fault handler when a page is first dirtied. Hence we must
8903 * be careful to check for EOF conditions here. We set the page up correctly
8904 * for a written page which means we get ENOSPC checking when writing into
8905 * holes and correct delalloc and unwritten extent mapping on filesystems that
8906 * support these features.
8908 * We are not allowed to take the i_mutex here so we have to play games to
8909 * protect against truncate races as the page could now be beyond EOF. Because
8910 * vmtruncate() writes the inode size before removing pages, once we have the
8911 * page lock we can determine safely if the page is beyond EOF. If it is not
8912 * beyond EOF, then the page is guaranteed safe against truncation until we
8915 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8917 struct page *page = vmf->page;
8918 struct inode *inode = file_inode(vma->vm_file);
8919 struct btrfs_root *root = BTRFS_I(inode)->root;
8920 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8921 struct btrfs_ordered_extent *ordered;
8922 struct extent_state *cached_state = NULL;
8924 unsigned long zero_start;
8933 reserved_space = PAGE_SIZE;
8935 sb_start_pagefault(inode->i_sb);
8936 page_start = page_offset(page);
8937 page_end = page_start + PAGE_SIZE - 1;
8941 * Reserving delalloc space after obtaining the page lock can lead to
8942 * deadlock. For example, if a dirty page is locked by this function
8943 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8944 * dirty page write out, then the btrfs_writepage() function could
8945 * end up waiting indefinitely to get a lock on the page currently
8946 * being processed by btrfs_page_mkwrite() function.
8948 ret = btrfs_delalloc_reserve_space(inode, page_start,
8951 ret = file_update_time(vma->vm_file);
8957 else /* -ENOSPC, -EIO, etc */
8958 ret = VM_FAULT_SIGBUS;
8964 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8967 size = i_size_read(inode);
8969 if ((page->mapping != inode->i_mapping) ||
8970 (page_start >= size)) {
8971 /* page got truncated out from underneath us */
8974 wait_on_page_writeback(page);
8976 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8977 set_page_extent_mapped(page);
8980 * we can't set the delalloc bits if there are pending ordered
8981 * extents. Drop our locks and wait for them to finish
8983 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8985 unlock_extent_cached(io_tree, page_start, page_end,
8986 &cached_state, GFP_NOFS);
8988 btrfs_start_ordered_extent(inode, ordered, 1);
8989 btrfs_put_ordered_extent(ordered);
8993 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8994 reserved_space = round_up(size - page_start, root->sectorsize);
8995 if (reserved_space < PAGE_SIZE) {
8996 end = page_start + reserved_space - 1;
8997 spin_lock(&BTRFS_I(inode)->lock);
8998 BTRFS_I(inode)->outstanding_extents++;
8999 spin_unlock(&BTRFS_I(inode)->lock);
9000 btrfs_delalloc_release_space(inode, page_start,
9001 PAGE_SIZE - reserved_space);
9006 * XXX - page_mkwrite gets called every time the page is dirtied, even
9007 * if it was already dirty, so for space accounting reasons we need to
9008 * clear any delalloc bits for the range we are fixing to save. There
9009 * is probably a better way to do this, but for now keep consistent with
9010 * prepare_pages in the normal write path.
9012 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9013 EXTENT_DIRTY | EXTENT_DELALLOC |
9014 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9015 0, 0, &cached_state, GFP_NOFS);
9017 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9020 unlock_extent_cached(io_tree, page_start, page_end,
9021 &cached_state, GFP_NOFS);
9022 ret = VM_FAULT_SIGBUS;
9027 /* page is wholly or partially inside EOF */
9028 if (page_start + PAGE_SIZE > size)
9029 zero_start = size & ~PAGE_MASK;
9031 zero_start = PAGE_SIZE;
9033 if (zero_start != PAGE_SIZE) {
9035 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9036 flush_dcache_page(page);
9039 ClearPageChecked(page);
9040 set_page_dirty(page);
9041 SetPageUptodate(page);
9043 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9044 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9045 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9047 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9051 sb_end_pagefault(inode->i_sb);
9052 return VM_FAULT_LOCKED;
9056 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9058 sb_end_pagefault(inode->i_sb);
9062 static int btrfs_truncate(struct inode *inode)
9064 struct btrfs_root *root = BTRFS_I(inode)->root;
9065 struct btrfs_block_rsv *rsv;
9068 struct btrfs_trans_handle *trans;
9069 u64 mask = root->sectorsize - 1;
9070 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9072 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9078 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9079 * 3 things going on here
9081 * 1) We need to reserve space for our orphan item and the space to
9082 * delete our orphan item. Lord knows we don't want to have a dangling
9083 * orphan item because we didn't reserve space to remove it.
9085 * 2) We need to reserve space to update our inode.
9087 * 3) We need to have something to cache all the space that is going to
9088 * be free'd up by the truncate operation, but also have some slack
9089 * space reserved in case it uses space during the truncate (thank you
9090 * very much snapshotting).
9092 * And we need these to all be separate. The fact is we can use a lot of
9093 * space doing the truncate, and we have no earthly idea how much space
9094 * we will use, so we need the truncate reservation to be separate so it
9095 * doesn't end up using space reserved for updating the inode or
9096 * removing the orphan item. We also need to be able to stop the
9097 * transaction and start a new one, which means we need to be able to
9098 * update the inode several times, and we have no idea of knowing how
9099 * many times that will be, so we can't just reserve 1 item for the
9100 * entirety of the operation, so that has to be done separately as well.
9101 * Then there is the orphan item, which does indeed need to be held on
9102 * to for the whole operation, and we need nobody to touch this reserved
9103 * space except the orphan code.
9105 * So that leaves us with
9107 * 1) root->orphan_block_rsv - for the orphan deletion.
9108 * 2) rsv - for the truncate reservation, which we will steal from the
9109 * transaction reservation.
9110 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9111 * updating the inode.
9113 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9116 rsv->size = min_size;
9120 * 1 for the truncate slack space
9121 * 1 for updating the inode.
9123 trans = btrfs_start_transaction(root, 2);
9124 if (IS_ERR(trans)) {
9125 err = PTR_ERR(trans);
9129 /* Migrate the slack space for the truncate to our reserve */
9130 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9135 * So if we truncate and then write and fsync we normally would just
9136 * write the extents that changed, which is a problem if we need to
9137 * first truncate that entire inode. So set this flag so we write out
9138 * all of the extents in the inode to the sync log so we're completely
9141 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9142 trans->block_rsv = rsv;
9145 ret = btrfs_truncate_inode_items(trans, root, inode,
9147 BTRFS_EXTENT_DATA_KEY);
9148 if (ret != -ENOSPC && ret != -EAGAIN) {
9153 trans->block_rsv = &root->fs_info->trans_block_rsv;
9154 ret = btrfs_update_inode(trans, root, inode);
9160 btrfs_end_transaction(trans, root);
9161 btrfs_btree_balance_dirty(root);
9163 trans = btrfs_start_transaction(root, 2);
9164 if (IS_ERR(trans)) {
9165 ret = err = PTR_ERR(trans);
9170 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9172 BUG_ON(ret); /* shouldn't happen */
9173 trans->block_rsv = rsv;
9176 if (ret == 0 && inode->i_nlink > 0) {
9177 trans->block_rsv = root->orphan_block_rsv;
9178 ret = btrfs_orphan_del(trans, inode);
9184 trans->block_rsv = &root->fs_info->trans_block_rsv;
9185 ret = btrfs_update_inode(trans, root, inode);
9189 ret = btrfs_end_transaction(trans, root);
9190 btrfs_btree_balance_dirty(root);
9193 btrfs_free_block_rsv(root, rsv);
9202 * create a new subvolume directory/inode (helper for the ioctl).
9204 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9205 struct btrfs_root *new_root,
9206 struct btrfs_root *parent_root,
9209 struct inode *inode;
9213 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9214 new_dirid, new_dirid,
9215 S_IFDIR | (~current_umask() & S_IRWXUGO),
9218 return PTR_ERR(inode);
9219 inode->i_op = &btrfs_dir_inode_operations;
9220 inode->i_fop = &btrfs_dir_file_operations;
9222 set_nlink(inode, 1);
9223 btrfs_i_size_write(inode, 0);
9224 unlock_new_inode(inode);
9226 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9228 btrfs_err(new_root->fs_info,
9229 "error inheriting subvolume %llu properties: %d",
9230 new_root->root_key.objectid, err);
9232 err = btrfs_update_inode(trans, new_root, inode);
9238 struct inode *btrfs_alloc_inode(struct super_block *sb)
9240 struct btrfs_inode *ei;
9241 struct inode *inode;
9243 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9250 ei->last_sub_trans = 0;
9251 ei->logged_trans = 0;
9252 ei->delalloc_bytes = 0;
9253 ei->defrag_bytes = 0;
9254 ei->disk_i_size = 0;
9257 ei->index_cnt = (u64)-1;
9259 ei->last_unlink_trans = 0;
9260 ei->last_log_commit = 0;
9261 ei->delayed_iput_count = 0;
9263 spin_lock_init(&ei->lock);
9264 ei->outstanding_extents = 0;
9265 ei->reserved_extents = 0;
9267 ei->runtime_flags = 0;
9268 ei->force_compress = BTRFS_COMPRESS_NONE;
9270 ei->delayed_node = NULL;
9272 ei->i_otime.tv_sec = 0;
9273 ei->i_otime.tv_nsec = 0;
9275 inode = &ei->vfs_inode;
9276 extent_map_tree_init(&ei->extent_tree);
9277 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9278 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9279 ei->io_tree.track_uptodate = 1;
9280 ei->io_failure_tree.track_uptodate = 1;
9281 atomic_set(&ei->sync_writers, 0);
9282 mutex_init(&ei->log_mutex);
9283 mutex_init(&ei->delalloc_mutex);
9284 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9285 INIT_LIST_HEAD(&ei->delalloc_inodes);
9286 INIT_LIST_HEAD(&ei->delayed_iput);
9287 RB_CLEAR_NODE(&ei->rb_node);
9288 init_rwsem(&ei->dio_sem);
9293 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9294 void btrfs_test_destroy_inode(struct inode *inode)
9296 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9297 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9301 static void btrfs_i_callback(struct rcu_head *head)
9303 struct inode *inode = container_of(head, struct inode, i_rcu);
9304 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9307 void btrfs_destroy_inode(struct inode *inode)
9309 struct btrfs_ordered_extent *ordered;
9310 struct btrfs_root *root = BTRFS_I(inode)->root;
9312 WARN_ON(!hlist_empty(&inode->i_dentry));
9313 WARN_ON(inode->i_data.nrpages);
9314 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9315 WARN_ON(BTRFS_I(inode)->reserved_extents);
9316 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9317 WARN_ON(BTRFS_I(inode)->csum_bytes);
9318 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9321 * This can happen where we create an inode, but somebody else also
9322 * created the same inode and we need to destroy the one we already
9328 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9329 &BTRFS_I(inode)->runtime_flags)) {
9330 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9332 atomic_dec(&root->orphan_inodes);
9336 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9340 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9341 ordered->file_offset, ordered->len);
9342 btrfs_remove_ordered_extent(inode, ordered);
9343 btrfs_put_ordered_extent(ordered);
9344 btrfs_put_ordered_extent(ordered);
9347 btrfs_qgroup_check_reserved_leak(inode);
9348 inode_tree_del(inode);
9349 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9351 call_rcu(&inode->i_rcu, btrfs_i_callback);
9354 int btrfs_drop_inode(struct inode *inode)
9356 struct btrfs_root *root = BTRFS_I(inode)->root;
9361 /* the snap/subvol tree is on deleting */
9362 if (btrfs_root_refs(&root->root_item) == 0)
9365 return generic_drop_inode(inode);
9368 static void init_once(void *foo)
9370 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9372 inode_init_once(&ei->vfs_inode);
9375 void btrfs_destroy_cachep(void)
9378 * Make sure all delayed rcu free inodes are flushed before we
9382 kmem_cache_destroy(btrfs_inode_cachep);
9383 kmem_cache_destroy(btrfs_trans_handle_cachep);
9384 kmem_cache_destroy(btrfs_transaction_cachep);
9385 kmem_cache_destroy(btrfs_path_cachep);
9386 kmem_cache_destroy(btrfs_free_space_cachep);
9389 int btrfs_init_cachep(void)
9391 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9392 sizeof(struct btrfs_inode), 0,
9393 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9395 if (!btrfs_inode_cachep)
9398 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9399 sizeof(struct btrfs_trans_handle), 0,
9400 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9401 if (!btrfs_trans_handle_cachep)
9404 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9405 sizeof(struct btrfs_transaction), 0,
9406 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9407 if (!btrfs_transaction_cachep)
9410 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9411 sizeof(struct btrfs_path), 0,
9412 SLAB_MEM_SPREAD, NULL);
9413 if (!btrfs_path_cachep)
9416 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9417 sizeof(struct btrfs_free_space), 0,
9418 SLAB_MEM_SPREAD, NULL);
9419 if (!btrfs_free_space_cachep)
9424 btrfs_destroy_cachep();
9428 static int btrfs_getattr(struct vfsmount *mnt,
9429 struct dentry *dentry, struct kstat *stat)
9432 struct inode *inode = d_inode(dentry);
9433 u32 blocksize = inode->i_sb->s_blocksize;
9435 generic_fillattr(inode, stat);
9436 stat->dev = BTRFS_I(inode)->root->anon_dev;
9438 spin_lock(&BTRFS_I(inode)->lock);
9439 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9440 spin_unlock(&BTRFS_I(inode)->lock);
9441 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9442 ALIGN(delalloc_bytes, blocksize)) >> 9;
9446 static int btrfs_rename_exchange(struct inode *old_dir,
9447 struct dentry *old_dentry,
9448 struct inode *new_dir,
9449 struct dentry *new_dentry)
9451 struct btrfs_trans_handle *trans;
9452 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9453 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9454 struct inode *new_inode = new_dentry->d_inode;
9455 struct inode *old_inode = old_dentry->d_inode;
9456 struct timespec ctime = CURRENT_TIME;
9457 struct dentry *parent;
9458 u64 old_ino = btrfs_ino(old_inode);
9459 u64 new_ino = btrfs_ino(new_inode);
9464 bool root_log_pinned = false;
9465 bool dest_log_pinned = false;
9467 /* we only allow rename subvolume link between subvolumes */
9468 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9471 /* close the race window with snapshot create/destroy ioctl */
9472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9473 down_read(&root->fs_info->subvol_sem);
9474 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9475 down_read(&dest->fs_info->subvol_sem);
9478 * We want to reserve the absolute worst case amount of items. So if
9479 * both inodes are subvols and we need to unlink them then that would
9480 * require 4 item modifications, but if they are both normal inodes it
9481 * would require 5 item modifications, so we'll assume their normal
9482 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9483 * should cover the worst case number of items we'll modify.
9485 trans = btrfs_start_transaction(root, 12);
9486 if (IS_ERR(trans)) {
9487 ret = PTR_ERR(trans);
9492 * We need to find a free sequence number both in the source and
9493 * in the destination directory for the exchange.
9495 ret = btrfs_set_inode_index(new_dir, &old_idx);
9498 ret = btrfs_set_inode_index(old_dir, &new_idx);
9502 BTRFS_I(old_inode)->dir_index = 0ULL;
9503 BTRFS_I(new_inode)->dir_index = 0ULL;
9505 /* Reference for the source. */
9506 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9507 /* force full log commit if subvolume involved. */
9508 btrfs_set_log_full_commit(root->fs_info, trans);
9510 btrfs_pin_log_trans(root);
9511 root_log_pinned = true;
9512 ret = btrfs_insert_inode_ref(trans, dest,
9513 new_dentry->d_name.name,
9514 new_dentry->d_name.len,
9516 btrfs_ino(new_dir), old_idx);
9521 /* And now for the dest. */
9522 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9523 /* force full log commit if subvolume involved. */
9524 btrfs_set_log_full_commit(dest->fs_info, trans);
9526 btrfs_pin_log_trans(dest);
9527 dest_log_pinned = true;
9528 ret = btrfs_insert_inode_ref(trans, root,
9529 old_dentry->d_name.name,
9530 old_dentry->d_name.len,
9532 btrfs_ino(old_dir), new_idx);
9537 /* Update inode version and ctime/mtime. */
9538 inode_inc_iversion(old_dir);
9539 inode_inc_iversion(new_dir);
9540 inode_inc_iversion(old_inode);
9541 inode_inc_iversion(new_inode);
9542 old_dir->i_ctime = old_dir->i_mtime = ctime;
9543 new_dir->i_ctime = new_dir->i_mtime = ctime;
9544 old_inode->i_ctime = ctime;
9545 new_inode->i_ctime = ctime;
9547 if (old_dentry->d_parent != new_dentry->d_parent) {
9548 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9549 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9552 /* src is a subvolume */
9553 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9554 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9555 ret = btrfs_unlink_subvol(trans, root, old_dir,
9557 old_dentry->d_name.name,
9558 old_dentry->d_name.len);
9559 } else { /* src is an inode */
9560 ret = __btrfs_unlink_inode(trans, root, old_dir,
9561 old_dentry->d_inode,
9562 old_dentry->d_name.name,
9563 old_dentry->d_name.len);
9565 ret = btrfs_update_inode(trans, root, old_inode);
9568 btrfs_abort_transaction(trans, ret);
9572 /* dest is a subvolume */
9573 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9574 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9575 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9577 new_dentry->d_name.name,
9578 new_dentry->d_name.len);
9579 } else { /* dest is an inode */
9580 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9581 new_dentry->d_inode,
9582 new_dentry->d_name.name,
9583 new_dentry->d_name.len);
9585 ret = btrfs_update_inode(trans, dest, new_inode);
9588 btrfs_abort_transaction(trans, ret);
9592 ret = btrfs_add_link(trans, new_dir, old_inode,
9593 new_dentry->d_name.name,
9594 new_dentry->d_name.len, 0, old_idx);
9596 btrfs_abort_transaction(trans, ret);
9600 ret = btrfs_add_link(trans, old_dir, new_inode,
9601 old_dentry->d_name.name,
9602 old_dentry->d_name.len, 0, new_idx);
9604 btrfs_abort_transaction(trans, ret);
9608 if (old_inode->i_nlink == 1)
9609 BTRFS_I(old_inode)->dir_index = old_idx;
9610 if (new_inode->i_nlink == 1)
9611 BTRFS_I(new_inode)->dir_index = new_idx;
9613 if (root_log_pinned) {
9614 parent = new_dentry->d_parent;
9615 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9616 btrfs_end_log_trans(root);
9617 root_log_pinned = false;
9619 if (dest_log_pinned) {
9620 parent = old_dentry->d_parent;
9621 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9622 btrfs_end_log_trans(dest);
9623 dest_log_pinned = false;
9627 * If we have pinned a log and an error happened, we unpin tasks
9628 * trying to sync the log and force them to fallback to a transaction
9629 * commit if the log currently contains any of the inodes involved in
9630 * this rename operation (to ensure we do not persist a log with an
9631 * inconsistent state for any of these inodes or leading to any
9632 * inconsistencies when replayed). If the transaction was aborted, the
9633 * abortion reason is propagated to userspace when attempting to commit
9634 * the transaction. If the log does not contain any of these inodes, we
9635 * allow the tasks to sync it.
9637 if (ret && (root_log_pinned || dest_log_pinned)) {
9638 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9639 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9640 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9642 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9643 btrfs_set_log_full_commit(root->fs_info, trans);
9645 if (root_log_pinned) {
9646 btrfs_end_log_trans(root);
9647 root_log_pinned = false;
9649 if (dest_log_pinned) {
9650 btrfs_end_log_trans(dest);
9651 dest_log_pinned = false;
9654 ret = btrfs_end_transaction(trans, root);
9656 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9657 up_read(&dest->fs_info->subvol_sem);
9658 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9659 up_read(&root->fs_info->subvol_sem);
9664 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9665 struct btrfs_root *root,
9667 struct dentry *dentry)
9670 struct inode *inode;
9674 ret = btrfs_find_free_ino(root, &objectid);
9678 inode = btrfs_new_inode(trans, root, dir,
9679 dentry->d_name.name,
9683 S_IFCHR | WHITEOUT_MODE,
9686 if (IS_ERR(inode)) {
9687 ret = PTR_ERR(inode);
9691 inode->i_op = &btrfs_special_inode_operations;
9692 init_special_inode(inode, inode->i_mode,
9695 ret = btrfs_init_inode_security(trans, inode, dir,
9700 ret = btrfs_add_nondir(trans, dir, dentry,
9705 ret = btrfs_update_inode(trans, root, inode);
9707 unlock_new_inode(inode);
9709 inode_dec_link_count(inode);
9715 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9716 struct inode *new_dir, struct dentry *new_dentry,
9719 struct btrfs_trans_handle *trans;
9720 unsigned int trans_num_items;
9721 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9722 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9723 struct inode *new_inode = d_inode(new_dentry);
9724 struct inode *old_inode = d_inode(old_dentry);
9728 u64 old_ino = btrfs_ino(old_inode);
9729 bool log_pinned = false;
9731 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9734 /* we only allow rename subvolume link between subvolumes */
9735 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9738 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9739 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9742 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9743 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9747 /* check for collisions, even if the name isn't there */
9748 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9749 new_dentry->d_name.name,
9750 new_dentry->d_name.len);
9753 if (ret == -EEXIST) {
9755 * eexist without a new_inode */
9756 if (WARN_ON(!new_inode)) {
9760 /* maybe -EOVERFLOW */
9767 * we're using rename to replace one file with another. Start IO on it
9768 * now so we don't add too much work to the end of the transaction
9770 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9771 filemap_flush(old_inode->i_mapping);
9773 /* close the racy window with snapshot create/destroy ioctl */
9774 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9775 down_read(&root->fs_info->subvol_sem);
9777 * We want to reserve the absolute worst case amount of items. So if
9778 * both inodes are subvols and we need to unlink them then that would
9779 * require 4 item modifications, but if they are both normal inodes it
9780 * would require 5 item modifications, so we'll assume they are normal
9781 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9782 * should cover the worst case number of items we'll modify.
9783 * If our rename has the whiteout flag, we need more 5 units for the
9784 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9785 * when selinux is enabled).
9787 trans_num_items = 11;
9788 if (flags & RENAME_WHITEOUT)
9789 trans_num_items += 5;
9790 trans = btrfs_start_transaction(root, trans_num_items);
9791 if (IS_ERR(trans)) {
9792 ret = PTR_ERR(trans);
9797 btrfs_record_root_in_trans(trans, dest);
9799 ret = btrfs_set_inode_index(new_dir, &index);
9803 BTRFS_I(old_inode)->dir_index = 0ULL;
9804 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9805 /* force full log commit if subvolume involved. */
9806 btrfs_set_log_full_commit(root->fs_info, trans);
9808 btrfs_pin_log_trans(root);
9810 ret = btrfs_insert_inode_ref(trans, dest,
9811 new_dentry->d_name.name,
9812 new_dentry->d_name.len,
9814 btrfs_ino(new_dir), index);
9819 inode_inc_iversion(old_dir);
9820 inode_inc_iversion(new_dir);
9821 inode_inc_iversion(old_inode);
9822 old_dir->i_ctime = old_dir->i_mtime =
9823 new_dir->i_ctime = new_dir->i_mtime =
9824 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9826 if (old_dentry->d_parent != new_dentry->d_parent)
9827 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9829 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9830 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9831 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9832 old_dentry->d_name.name,
9833 old_dentry->d_name.len);
9835 ret = __btrfs_unlink_inode(trans, root, old_dir,
9836 d_inode(old_dentry),
9837 old_dentry->d_name.name,
9838 old_dentry->d_name.len);
9840 ret = btrfs_update_inode(trans, root, old_inode);
9843 btrfs_abort_transaction(trans, ret);
9848 inode_inc_iversion(new_inode);
9849 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9850 if (unlikely(btrfs_ino(new_inode) ==
9851 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9852 root_objectid = BTRFS_I(new_inode)->location.objectid;
9853 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9855 new_dentry->d_name.name,
9856 new_dentry->d_name.len);
9857 BUG_ON(new_inode->i_nlink == 0);
9859 ret = btrfs_unlink_inode(trans, dest, new_dir,
9860 d_inode(new_dentry),
9861 new_dentry->d_name.name,
9862 new_dentry->d_name.len);
9864 if (!ret && new_inode->i_nlink == 0)
9865 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9867 btrfs_abort_transaction(trans, ret);
9872 ret = btrfs_add_link(trans, new_dir, old_inode,
9873 new_dentry->d_name.name,
9874 new_dentry->d_name.len, 0, index);
9876 btrfs_abort_transaction(trans, ret);
9880 if (old_inode->i_nlink == 1)
9881 BTRFS_I(old_inode)->dir_index = index;
9884 struct dentry *parent = new_dentry->d_parent;
9886 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9887 btrfs_end_log_trans(root);
9891 if (flags & RENAME_WHITEOUT) {
9892 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9896 btrfs_abort_transaction(trans, ret);
9902 * If we have pinned the log and an error happened, we unpin tasks
9903 * trying to sync the log and force them to fallback to a transaction
9904 * commit if the log currently contains any of the inodes involved in
9905 * this rename operation (to ensure we do not persist a log with an
9906 * inconsistent state for any of these inodes or leading to any
9907 * inconsistencies when replayed). If the transaction was aborted, the
9908 * abortion reason is propagated to userspace when attempting to commit
9909 * the transaction. If the log does not contain any of these inodes, we
9910 * allow the tasks to sync it.
9912 if (ret && log_pinned) {
9913 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9914 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9915 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9917 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9918 btrfs_set_log_full_commit(root->fs_info, trans);
9920 btrfs_end_log_trans(root);
9923 btrfs_end_transaction(trans, root);
9925 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9926 up_read(&root->fs_info->subvol_sem);
9931 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9932 struct inode *new_dir, struct dentry *new_dentry,
9935 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9938 if (flags & RENAME_EXCHANGE)
9939 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9942 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9945 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9947 struct btrfs_delalloc_work *delalloc_work;
9948 struct inode *inode;
9950 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9952 inode = delalloc_work->inode;
9953 filemap_flush(inode->i_mapping);
9954 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9955 &BTRFS_I(inode)->runtime_flags))
9956 filemap_flush(inode->i_mapping);
9958 if (delalloc_work->delay_iput)
9959 btrfs_add_delayed_iput(inode);
9962 complete(&delalloc_work->completion);
9965 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9968 struct btrfs_delalloc_work *work;
9970 work = kmalloc(sizeof(*work), GFP_NOFS);
9974 init_completion(&work->completion);
9975 INIT_LIST_HEAD(&work->list);
9976 work->inode = inode;
9977 work->delay_iput = delay_iput;
9978 WARN_ON_ONCE(!inode);
9979 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9980 btrfs_run_delalloc_work, NULL, NULL);
9985 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9987 wait_for_completion(&work->completion);
9992 * some fairly slow code that needs optimization. This walks the list
9993 * of all the inodes with pending delalloc and forces them to disk.
9995 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9998 struct btrfs_inode *binode;
9999 struct inode *inode;
10000 struct btrfs_delalloc_work *work, *next;
10001 struct list_head works;
10002 struct list_head splice;
10005 INIT_LIST_HEAD(&works);
10006 INIT_LIST_HEAD(&splice);
10008 mutex_lock(&root->delalloc_mutex);
10009 spin_lock(&root->delalloc_lock);
10010 list_splice_init(&root->delalloc_inodes, &splice);
10011 while (!list_empty(&splice)) {
10012 binode = list_entry(splice.next, struct btrfs_inode,
10015 list_move_tail(&binode->delalloc_inodes,
10016 &root->delalloc_inodes);
10017 inode = igrab(&binode->vfs_inode);
10019 cond_resched_lock(&root->delalloc_lock);
10022 spin_unlock(&root->delalloc_lock);
10024 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10027 btrfs_add_delayed_iput(inode);
10033 list_add_tail(&work->list, &works);
10034 btrfs_queue_work(root->fs_info->flush_workers,
10037 if (nr != -1 && ret >= nr)
10040 spin_lock(&root->delalloc_lock);
10042 spin_unlock(&root->delalloc_lock);
10045 list_for_each_entry_safe(work, next, &works, list) {
10046 list_del_init(&work->list);
10047 btrfs_wait_and_free_delalloc_work(work);
10050 if (!list_empty_careful(&splice)) {
10051 spin_lock(&root->delalloc_lock);
10052 list_splice_tail(&splice, &root->delalloc_inodes);
10053 spin_unlock(&root->delalloc_lock);
10055 mutex_unlock(&root->delalloc_mutex);
10059 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10063 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10066 ret = __start_delalloc_inodes(root, delay_iput, -1);
10070 * the filemap_flush will queue IO into the worker threads, but
10071 * we have to make sure the IO is actually started and that
10072 * ordered extents get created before we return
10074 atomic_inc(&root->fs_info->async_submit_draining);
10075 while (atomic_read(&root->fs_info->nr_async_submits) ||
10076 atomic_read(&root->fs_info->async_delalloc_pages)) {
10077 wait_event(root->fs_info->async_submit_wait,
10078 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10079 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10081 atomic_dec(&root->fs_info->async_submit_draining);
10085 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10088 struct btrfs_root *root;
10089 struct list_head splice;
10092 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10095 INIT_LIST_HEAD(&splice);
10097 mutex_lock(&fs_info->delalloc_root_mutex);
10098 spin_lock(&fs_info->delalloc_root_lock);
10099 list_splice_init(&fs_info->delalloc_roots, &splice);
10100 while (!list_empty(&splice) && nr) {
10101 root = list_first_entry(&splice, struct btrfs_root,
10103 root = btrfs_grab_fs_root(root);
10105 list_move_tail(&root->delalloc_root,
10106 &fs_info->delalloc_roots);
10107 spin_unlock(&fs_info->delalloc_root_lock);
10109 ret = __start_delalloc_inodes(root, delay_iput, nr);
10110 btrfs_put_fs_root(root);
10118 spin_lock(&fs_info->delalloc_root_lock);
10120 spin_unlock(&fs_info->delalloc_root_lock);
10123 atomic_inc(&fs_info->async_submit_draining);
10124 while (atomic_read(&fs_info->nr_async_submits) ||
10125 atomic_read(&fs_info->async_delalloc_pages)) {
10126 wait_event(fs_info->async_submit_wait,
10127 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10128 atomic_read(&fs_info->async_delalloc_pages) == 0));
10130 atomic_dec(&fs_info->async_submit_draining);
10132 if (!list_empty_careful(&splice)) {
10133 spin_lock(&fs_info->delalloc_root_lock);
10134 list_splice_tail(&splice, &fs_info->delalloc_roots);
10135 spin_unlock(&fs_info->delalloc_root_lock);
10137 mutex_unlock(&fs_info->delalloc_root_mutex);
10141 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10142 const char *symname)
10144 struct btrfs_trans_handle *trans;
10145 struct btrfs_root *root = BTRFS_I(dir)->root;
10146 struct btrfs_path *path;
10147 struct btrfs_key key;
10148 struct inode *inode = NULL;
10150 int drop_inode = 0;
10156 struct btrfs_file_extent_item *ei;
10157 struct extent_buffer *leaf;
10159 name_len = strlen(symname);
10160 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10161 return -ENAMETOOLONG;
10164 * 2 items for inode item and ref
10165 * 2 items for dir items
10166 * 1 item for updating parent inode item
10167 * 1 item for the inline extent item
10168 * 1 item for xattr if selinux is on
10170 trans = btrfs_start_transaction(root, 7);
10172 return PTR_ERR(trans);
10174 err = btrfs_find_free_ino(root, &objectid);
10178 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10179 dentry->d_name.len, btrfs_ino(dir), objectid,
10180 S_IFLNK|S_IRWXUGO, &index);
10181 if (IS_ERR(inode)) {
10182 err = PTR_ERR(inode);
10187 * If the active LSM wants to access the inode during
10188 * d_instantiate it needs these. Smack checks to see
10189 * if the filesystem supports xattrs by looking at the
10192 inode->i_fop = &btrfs_file_operations;
10193 inode->i_op = &btrfs_file_inode_operations;
10194 inode->i_mapping->a_ops = &btrfs_aops;
10195 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10197 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10199 goto out_unlock_inode;
10201 path = btrfs_alloc_path();
10204 goto out_unlock_inode;
10206 key.objectid = btrfs_ino(inode);
10208 key.type = BTRFS_EXTENT_DATA_KEY;
10209 datasize = btrfs_file_extent_calc_inline_size(name_len);
10210 err = btrfs_insert_empty_item(trans, root, path, &key,
10213 btrfs_free_path(path);
10214 goto out_unlock_inode;
10216 leaf = path->nodes[0];
10217 ei = btrfs_item_ptr(leaf, path->slots[0],
10218 struct btrfs_file_extent_item);
10219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10220 btrfs_set_file_extent_type(leaf, ei,
10221 BTRFS_FILE_EXTENT_INLINE);
10222 btrfs_set_file_extent_encryption(leaf, ei, 0);
10223 btrfs_set_file_extent_compression(leaf, ei, 0);
10224 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10225 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10227 ptr = btrfs_file_extent_inline_start(ei);
10228 write_extent_buffer(leaf, symname, ptr, name_len);
10229 btrfs_mark_buffer_dirty(leaf);
10230 btrfs_free_path(path);
10232 inode->i_op = &btrfs_symlink_inode_operations;
10233 inode_nohighmem(inode);
10234 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10235 inode_set_bytes(inode, name_len);
10236 btrfs_i_size_write(inode, name_len);
10237 err = btrfs_update_inode(trans, root, inode);
10239 * Last step, add directory indexes for our symlink inode. This is the
10240 * last step to avoid extra cleanup of these indexes if an error happens
10244 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10247 goto out_unlock_inode;
10250 unlock_new_inode(inode);
10251 d_instantiate(dentry, inode);
10254 btrfs_end_transaction(trans, root);
10256 inode_dec_link_count(inode);
10259 btrfs_btree_balance_dirty(root);
10264 unlock_new_inode(inode);
10268 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10269 u64 start, u64 num_bytes, u64 min_size,
10270 loff_t actual_len, u64 *alloc_hint,
10271 struct btrfs_trans_handle *trans)
10273 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10274 struct extent_map *em;
10275 struct btrfs_root *root = BTRFS_I(inode)->root;
10276 struct btrfs_key ins;
10277 u64 cur_offset = start;
10280 u64 last_alloc = (u64)-1;
10282 bool own_trans = true;
10286 while (num_bytes > 0) {
10288 trans = btrfs_start_transaction(root, 3);
10289 if (IS_ERR(trans)) {
10290 ret = PTR_ERR(trans);
10295 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10296 cur_bytes = max(cur_bytes, min_size);
10298 * If we are severely fragmented we could end up with really
10299 * small allocations, so if the allocator is returning small
10300 * chunks lets make its job easier by only searching for those
10303 cur_bytes = min(cur_bytes, last_alloc);
10304 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
10305 *alloc_hint, &ins, 1, 0);
10308 btrfs_end_transaction(trans, root);
10311 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10313 last_alloc = ins.offset;
10314 ret = insert_reserved_file_extent(trans, inode,
10315 cur_offset, ins.objectid,
10316 ins.offset, ins.offset,
10317 ins.offset, 0, 0, 0,
10318 BTRFS_FILE_EXTENT_PREALLOC);
10320 btrfs_free_reserved_extent(root, ins.objectid,
10322 btrfs_abort_transaction(trans, ret);
10324 btrfs_end_transaction(trans, root);
10328 btrfs_drop_extent_cache(inode, cur_offset,
10329 cur_offset + ins.offset -1, 0);
10331 em = alloc_extent_map();
10333 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10334 &BTRFS_I(inode)->runtime_flags);
10338 em->start = cur_offset;
10339 em->orig_start = cur_offset;
10340 em->len = ins.offset;
10341 em->block_start = ins.objectid;
10342 em->block_len = ins.offset;
10343 em->orig_block_len = ins.offset;
10344 em->ram_bytes = ins.offset;
10345 em->bdev = root->fs_info->fs_devices->latest_bdev;
10346 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10347 em->generation = trans->transid;
10350 write_lock(&em_tree->lock);
10351 ret = add_extent_mapping(em_tree, em, 1);
10352 write_unlock(&em_tree->lock);
10353 if (ret != -EEXIST)
10355 btrfs_drop_extent_cache(inode, cur_offset,
10356 cur_offset + ins.offset - 1,
10359 free_extent_map(em);
10361 num_bytes -= ins.offset;
10362 cur_offset += ins.offset;
10363 *alloc_hint = ins.objectid + ins.offset;
10365 inode_inc_iversion(inode);
10366 inode->i_ctime = current_fs_time(inode->i_sb);
10367 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10368 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10369 (actual_len > inode->i_size) &&
10370 (cur_offset > inode->i_size)) {
10371 if (cur_offset > actual_len)
10372 i_size = actual_len;
10374 i_size = cur_offset;
10375 i_size_write(inode, i_size);
10376 btrfs_ordered_update_i_size(inode, i_size, NULL);
10379 ret = btrfs_update_inode(trans, root, inode);
10382 btrfs_abort_transaction(trans, ret);
10384 btrfs_end_transaction(trans, root);
10389 btrfs_end_transaction(trans, root);
10394 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10395 u64 start, u64 num_bytes, u64 min_size,
10396 loff_t actual_len, u64 *alloc_hint)
10398 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10399 min_size, actual_len, alloc_hint,
10403 int btrfs_prealloc_file_range_trans(struct inode *inode,
10404 struct btrfs_trans_handle *trans, int mode,
10405 u64 start, u64 num_bytes, u64 min_size,
10406 loff_t actual_len, u64 *alloc_hint)
10408 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10409 min_size, actual_len, alloc_hint, trans);
10412 static int btrfs_set_page_dirty(struct page *page)
10414 return __set_page_dirty_nobuffers(page);
10417 static int btrfs_permission(struct inode *inode, int mask)
10419 struct btrfs_root *root = BTRFS_I(inode)->root;
10420 umode_t mode = inode->i_mode;
10422 if (mask & MAY_WRITE &&
10423 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10424 if (btrfs_root_readonly(root))
10426 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10429 return generic_permission(inode, mask);
10432 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10434 struct btrfs_trans_handle *trans;
10435 struct btrfs_root *root = BTRFS_I(dir)->root;
10436 struct inode *inode = NULL;
10442 * 5 units required for adding orphan entry
10444 trans = btrfs_start_transaction(root, 5);
10446 return PTR_ERR(trans);
10448 ret = btrfs_find_free_ino(root, &objectid);
10452 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10453 btrfs_ino(dir), objectid, mode, &index);
10454 if (IS_ERR(inode)) {
10455 ret = PTR_ERR(inode);
10460 inode->i_fop = &btrfs_file_operations;
10461 inode->i_op = &btrfs_file_inode_operations;
10463 inode->i_mapping->a_ops = &btrfs_aops;
10464 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10466 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10470 ret = btrfs_update_inode(trans, root, inode);
10473 ret = btrfs_orphan_add(trans, inode);
10478 * We set number of links to 0 in btrfs_new_inode(), and here we set
10479 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10482 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10484 set_nlink(inode, 1);
10485 unlock_new_inode(inode);
10486 d_tmpfile(dentry, inode);
10487 mark_inode_dirty(inode);
10490 btrfs_end_transaction(trans, root);
10493 btrfs_balance_delayed_items(root);
10494 btrfs_btree_balance_dirty(root);
10498 unlock_new_inode(inode);
10503 /* Inspired by filemap_check_errors() */
10504 int btrfs_inode_check_errors(struct inode *inode)
10508 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10509 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10511 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10512 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10518 static const struct inode_operations btrfs_dir_inode_operations = {
10519 .getattr = btrfs_getattr,
10520 .lookup = btrfs_lookup,
10521 .create = btrfs_create,
10522 .unlink = btrfs_unlink,
10523 .link = btrfs_link,
10524 .mkdir = btrfs_mkdir,
10525 .rmdir = btrfs_rmdir,
10526 .rename2 = btrfs_rename2,
10527 .symlink = btrfs_symlink,
10528 .setattr = btrfs_setattr,
10529 .mknod = btrfs_mknod,
10530 .setxattr = generic_setxattr,
10531 .getxattr = generic_getxattr,
10532 .listxattr = btrfs_listxattr,
10533 .removexattr = generic_removexattr,
10534 .permission = btrfs_permission,
10535 .get_acl = btrfs_get_acl,
10536 .set_acl = btrfs_set_acl,
10537 .update_time = btrfs_update_time,
10538 .tmpfile = btrfs_tmpfile,
10540 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10541 .lookup = btrfs_lookup,
10542 .permission = btrfs_permission,
10543 .get_acl = btrfs_get_acl,
10544 .set_acl = btrfs_set_acl,
10545 .update_time = btrfs_update_time,
10548 static const struct file_operations btrfs_dir_file_operations = {
10549 .llseek = generic_file_llseek,
10550 .read = generic_read_dir,
10551 .iterate_shared = btrfs_real_readdir,
10552 .unlocked_ioctl = btrfs_ioctl,
10553 #ifdef CONFIG_COMPAT
10554 .compat_ioctl = btrfs_compat_ioctl,
10556 .release = btrfs_release_file,
10557 .fsync = btrfs_sync_file,
10560 static const struct extent_io_ops btrfs_extent_io_ops = {
10561 .fill_delalloc = run_delalloc_range,
10562 .submit_bio_hook = btrfs_submit_bio_hook,
10563 .merge_bio_hook = btrfs_merge_bio_hook,
10564 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10565 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10566 .writepage_start_hook = btrfs_writepage_start_hook,
10567 .set_bit_hook = btrfs_set_bit_hook,
10568 .clear_bit_hook = btrfs_clear_bit_hook,
10569 .merge_extent_hook = btrfs_merge_extent_hook,
10570 .split_extent_hook = btrfs_split_extent_hook,
10574 * btrfs doesn't support the bmap operation because swapfiles
10575 * use bmap to make a mapping of extents in the file. They assume
10576 * these extents won't change over the life of the file and they
10577 * use the bmap result to do IO directly to the drive.
10579 * the btrfs bmap call would return logical addresses that aren't
10580 * suitable for IO and they also will change frequently as COW
10581 * operations happen. So, swapfile + btrfs == corruption.
10583 * For now we're avoiding this by dropping bmap.
10585 static const struct address_space_operations btrfs_aops = {
10586 .readpage = btrfs_readpage,
10587 .writepage = btrfs_writepage,
10588 .writepages = btrfs_writepages,
10589 .readpages = btrfs_readpages,
10590 .direct_IO = btrfs_direct_IO,
10591 .invalidatepage = btrfs_invalidatepage,
10592 .releasepage = btrfs_releasepage,
10593 .set_page_dirty = btrfs_set_page_dirty,
10594 .error_remove_page = generic_error_remove_page,
10597 static const struct address_space_operations btrfs_symlink_aops = {
10598 .readpage = btrfs_readpage,
10599 .writepage = btrfs_writepage,
10600 .invalidatepage = btrfs_invalidatepage,
10601 .releasepage = btrfs_releasepage,
10604 static const struct inode_operations btrfs_file_inode_operations = {
10605 .getattr = btrfs_getattr,
10606 .setattr = btrfs_setattr,
10607 .setxattr = generic_setxattr,
10608 .getxattr = generic_getxattr,
10609 .listxattr = btrfs_listxattr,
10610 .removexattr = generic_removexattr,
10611 .permission = btrfs_permission,
10612 .fiemap = btrfs_fiemap,
10613 .get_acl = btrfs_get_acl,
10614 .set_acl = btrfs_set_acl,
10615 .update_time = btrfs_update_time,
10617 static const struct inode_operations btrfs_special_inode_operations = {
10618 .getattr = btrfs_getattr,
10619 .setattr = btrfs_setattr,
10620 .permission = btrfs_permission,
10621 .setxattr = generic_setxattr,
10622 .getxattr = generic_getxattr,
10623 .listxattr = btrfs_listxattr,
10624 .removexattr = generic_removexattr,
10625 .get_acl = btrfs_get_acl,
10626 .set_acl = btrfs_set_acl,
10627 .update_time = btrfs_update_time,
10629 static const struct inode_operations btrfs_symlink_inode_operations = {
10630 .readlink = generic_readlink,
10631 .get_link = page_get_link,
10632 .getattr = btrfs_getattr,
10633 .setattr = btrfs_setattr,
10634 .permission = btrfs_permission,
10635 .setxattr = generic_setxattr,
10636 .getxattr = generic_getxattr,
10637 .listxattr = btrfs_listxattr,
10638 .removexattr = generic_removexattr,
10639 .update_time = btrfs_update_time,
10642 const struct dentry_operations btrfs_dentry_operations = {
10643 .d_delete = btrfs_dentry_delete,
10644 .d_release = btrfs_dentry_release,