2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "ordered-data.h"
56 #include "compression.h"
58 #include "free-space-cache.h"
59 #include "inode-map.h"
63 struct btrfs_iget_args {
65 struct btrfs_root *root;
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
106 u64 orig_block_len, u64 ram_bytes,
109 static int btrfs_dirty_inode(struct inode *inode);
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
117 err = btrfs_init_acl(trans, inode, dir);
119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
128 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
132 struct page **compressed_pages)
134 struct btrfs_key key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
137 struct page *page = NULL;
140 struct btrfs_file_extent_item *ei;
143 size_t cur_size = size;
145 unsigned long offset;
147 if (compressed_size && compressed_pages)
148 cur_size = compressed_size;
150 path = btrfs_alloc_path();
154 path->leave_spinning = 1;
156 key.objectid = btrfs_ino(inode);
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
168 leaf = path->nodes[0];
169 ei = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_file_extent_item);
171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 btrfs_set_file_extent_encryption(leaf, ei, 0);
174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 ptr = btrfs_file_extent_inline_start(ei);
178 if (compress_type != BTRFS_COMPRESS_NONE) {
181 while (compressed_size > 0) {
182 cpage = compressed_pages[i];
183 cur_size = min_t(unsigned long, compressed_size,
186 kaddr = kmap_atomic(cpage);
187 write_extent_buffer(leaf, kaddr, ptr, cur_size);
188 kunmap_atomic(kaddr);
192 compressed_size -= cur_size;
194 btrfs_set_file_extent_compression(leaf, ei,
197 page = find_get_page(inode->i_mapping,
198 start >> PAGE_CACHE_SHIFT);
199 btrfs_set_file_extent_compression(leaf, ei, 0);
200 kaddr = kmap_atomic(page);
201 offset = start & (PAGE_CACHE_SIZE - 1);
202 write_extent_buffer(leaf, kaddr + offset, ptr, size);
203 kunmap_atomic(kaddr);
204 page_cache_release(page);
206 btrfs_mark_buffer_dirty(leaf);
207 btrfs_free_path(path);
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
218 BTRFS_I(inode)->disk_i_size = inode->i_size;
219 ret = btrfs_update_inode(trans, root, inode);
223 btrfs_free_path(path);
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
233 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
234 struct btrfs_root *root,
235 struct inode *inode, u64 start, u64 end,
236 size_t compressed_size, int compress_type,
237 struct page **compressed_pages)
239 u64 isize = i_size_read(inode);
240 u64 actual_end = min(end + 1, isize);
241 u64 inline_len = actual_end - start;
242 u64 aligned_end = ALIGN(end, root->sectorsize);
243 u64 data_len = inline_len;
247 data_len = compressed_size;
250 actual_end >= PAGE_CACHE_SIZE ||
251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
253 (actual_end & (root->sectorsize - 1)) == 0) ||
255 data_len > root->fs_info->max_inline) {
259 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
263 if (isize > actual_end)
264 inline_len = min_t(u64, isize, actual_end);
265 ret = insert_inline_extent(trans, root, inode, start,
266 inline_len, compressed_size,
267 compress_type, compressed_pages);
268 if (ret && ret != -ENOSPC) {
269 btrfs_abort_transaction(trans, root, ret);
271 } else if (ret == -ENOSPC) {
275 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
276 btrfs_delalloc_release_metadata(inode, end + 1 - start);
277 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
281 struct async_extent {
286 unsigned long nr_pages;
288 struct list_head list;
293 struct btrfs_root *root;
294 struct page *locked_page;
297 struct list_head extents;
298 struct btrfs_work work;
301 static noinline int add_async_extent(struct async_cow *cow,
302 u64 start, u64 ram_size,
305 unsigned long nr_pages,
308 struct async_extent *async_extent;
310 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
311 BUG_ON(!async_extent); /* -ENOMEM */
312 async_extent->start = start;
313 async_extent->ram_size = ram_size;
314 async_extent->compressed_size = compressed_size;
315 async_extent->pages = pages;
316 async_extent->nr_pages = nr_pages;
317 async_extent->compress_type = compress_type;
318 list_add_tail(&async_extent->list, &cow->extents);
323 * we create compressed extents in two phases. The first
324 * phase compresses a range of pages that have already been
325 * locked (both pages and state bits are locked).
327 * This is done inside an ordered work queue, and the compression
328 * is spread across many cpus. The actual IO submission is step
329 * two, and the ordered work queue takes care of making sure that
330 * happens in the same order things were put onto the queue by
331 * writepages and friends.
333 * If this code finds it can't get good compression, it puts an
334 * entry onto the work queue to write the uncompressed bytes. This
335 * makes sure that both compressed inodes and uncompressed inodes
336 * are written in the same order that the flusher thread sent them
339 static noinline int compress_file_range(struct inode *inode,
340 struct page *locked_page,
342 struct async_cow *async_cow,
345 struct btrfs_root *root = BTRFS_I(inode)->root;
346 struct btrfs_trans_handle *trans;
348 u64 blocksize = root->sectorsize;
350 u64 isize = i_size_read(inode);
352 struct page **pages = NULL;
353 unsigned long nr_pages;
354 unsigned long nr_pages_ret = 0;
355 unsigned long total_compressed = 0;
356 unsigned long total_in = 0;
357 unsigned long max_compressed = 128 * 1024;
358 unsigned long max_uncompressed = 128 * 1024;
361 int compress_type = root->fs_info->compress_type;
364 /* if this is a small write inside eof, kick off a defrag */
365 if ((end - start + 1) < 16 * 1024 &&
366 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
367 btrfs_add_inode_defrag(NULL, inode);
369 actual_end = min_t(u64, isize, end + 1);
372 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
373 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
376 * we don't want to send crud past the end of i_size through
377 * compression, that's just a waste of CPU time. So, if the
378 * end of the file is before the start of our current
379 * requested range of bytes, we bail out to the uncompressed
380 * cleanup code that can deal with all of this.
382 * It isn't really the fastest way to fix things, but this is a
383 * very uncommon corner.
385 if (actual_end <= start)
386 goto cleanup_and_bail_uncompressed;
388 total_compressed = actual_end - start;
390 /* we want to make sure that amount of ram required to uncompress
391 * an extent is reasonable, so we limit the total size in ram
392 * of a compressed extent to 128k. This is a crucial number
393 * because it also controls how easily we can spread reads across
394 * cpus for decompression.
396 * We also want to make sure the amount of IO required to do
397 * a random read is reasonably small, so we limit the size of
398 * a compressed extent to 128k.
400 total_compressed = min(total_compressed, max_uncompressed);
401 num_bytes = ALIGN(end - start + 1, blocksize);
402 num_bytes = max(blocksize, num_bytes);
407 * we do compression for mount -o compress and when the
408 * inode has not been flagged as nocompress. This flag can
409 * change at any time if we discover bad compression ratios.
411 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
412 (btrfs_test_opt(root, COMPRESS) ||
413 (BTRFS_I(inode)->force_compress) ||
414 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
416 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
418 /* just bail out to the uncompressed code */
422 if (BTRFS_I(inode)->force_compress)
423 compress_type = BTRFS_I(inode)->force_compress;
426 * we need to call clear_page_dirty_for_io on each
427 * page in the range. Otherwise applications with the file
428 * mmap'd can wander in and change the page contents while
429 * we are compressing them.
431 * If the compression fails for any reason, we set the pages
432 * dirty again later on.
434 extent_range_clear_dirty_for_io(inode, start, end);
436 ret = btrfs_compress_pages(compress_type,
437 inode->i_mapping, start,
438 total_compressed, pages,
439 nr_pages, &nr_pages_ret,
445 unsigned long offset = total_compressed &
446 (PAGE_CACHE_SIZE - 1);
447 struct page *page = pages[nr_pages_ret - 1];
450 /* zero the tail end of the last page, we might be
451 * sending it down to disk
454 kaddr = kmap_atomic(page);
455 memset(kaddr + offset, 0,
456 PAGE_CACHE_SIZE - offset);
457 kunmap_atomic(kaddr);
464 trans = btrfs_join_transaction(root);
466 ret = PTR_ERR(trans);
468 goto cleanup_and_out;
470 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
472 /* lets try to make an inline extent */
473 if (ret || total_in < (actual_end - start)) {
474 /* we didn't compress the entire range, try
475 * to make an uncompressed inline extent.
477 ret = cow_file_range_inline(trans, root, inode,
478 start, end, 0, 0, NULL);
480 /* try making a compressed inline extent */
481 ret = cow_file_range_inline(trans, root, inode,
484 compress_type, pages);
488 * inline extent creation worked or returned error,
489 * we don't need to create any more async work items.
490 * Unlock and free up our temp pages.
492 extent_clear_unlock_delalloc(inode,
493 &BTRFS_I(inode)->io_tree,
495 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
496 EXTENT_CLEAR_DELALLOC |
497 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
499 btrfs_end_transaction(trans, root);
502 btrfs_end_transaction(trans, root);
507 * we aren't doing an inline extent round the compressed size
508 * up to a block size boundary so the allocator does sane
511 total_compressed = ALIGN(total_compressed, blocksize);
514 * one last check to make sure the compression is really a
515 * win, compare the page count read with the blocks on disk
517 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
518 if (total_compressed >= total_in) {
521 num_bytes = total_in;
524 if (!will_compress && pages) {
526 * the compression code ran but failed to make things smaller,
527 * free any pages it allocated and our page pointer array
529 for (i = 0; i < nr_pages_ret; i++) {
530 WARN_ON(pages[i]->mapping);
531 page_cache_release(pages[i]);
535 total_compressed = 0;
538 /* flag the file so we don't compress in the future */
539 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540 !(BTRFS_I(inode)->force_compress)) {
541 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
547 /* the async work queues will take care of doing actual
548 * allocation on disk for these compressed pages,
549 * and will submit them to the elevator.
551 add_async_extent(async_cow, start, num_bytes,
552 total_compressed, pages, nr_pages_ret,
555 if (start + num_bytes < end) {
562 cleanup_and_bail_uncompressed:
564 * No compression, but we still need to write the pages in
565 * the file we've been given so far. redirty the locked
566 * page if it corresponds to our extent and set things up
567 * for the async work queue to run cow_file_range to do
568 * the normal delalloc dance
570 if (page_offset(locked_page) >= start &&
571 page_offset(locked_page) <= end) {
572 __set_page_dirty_nobuffers(locked_page);
573 /* unlocked later on in the async handlers */
576 extent_range_redirty_for_io(inode, start, end);
577 add_async_extent(async_cow, start, end - start + 1,
578 0, NULL, 0, BTRFS_COMPRESS_NONE);
586 for (i = 0; i < nr_pages_ret; i++) {
587 WARN_ON(pages[i]->mapping);
588 page_cache_release(pages[i]);
595 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
597 EXTENT_CLEAR_UNLOCK_PAGE |
599 EXTENT_CLEAR_DELALLOC |
600 EXTENT_SET_WRITEBACK |
601 EXTENT_END_WRITEBACK);
602 if (!trans || IS_ERR(trans))
603 btrfs_error(root->fs_info, ret, "Failed to join transaction");
605 btrfs_abort_transaction(trans, root, ret);
610 * phase two of compressed writeback. This is the ordered portion
611 * of the code, which only gets called in the order the work was
612 * queued. We walk all the async extents created by compress_file_range
613 * and send them down to the disk.
615 static noinline int submit_compressed_extents(struct inode *inode,
616 struct async_cow *async_cow)
618 struct async_extent *async_extent;
620 struct btrfs_trans_handle *trans;
621 struct btrfs_key ins;
622 struct extent_map *em;
623 struct btrfs_root *root = BTRFS_I(inode)->root;
624 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
625 struct extent_io_tree *io_tree;
628 if (list_empty(&async_cow->extents))
632 while (!list_empty(&async_cow->extents)) {
633 async_extent = list_entry(async_cow->extents.next,
634 struct async_extent, list);
635 list_del(&async_extent->list);
637 io_tree = &BTRFS_I(inode)->io_tree;
640 /* did the compression code fall back to uncompressed IO? */
641 if (!async_extent->pages) {
642 int page_started = 0;
643 unsigned long nr_written = 0;
645 lock_extent(io_tree, async_extent->start,
646 async_extent->start +
647 async_extent->ram_size - 1);
649 /* allocate blocks */
650 ret = cow_file_range(inode, async_cow->locked_page,
652 async_extent->start +
653 async_extent->ram_size - 1,
654 &page_started, &nr_written, 0);
659 * if page_started, cow_file_range inserted an
660 * inline extent and took care of all the unlocking
661 * and IO for us. Otherwise, we need to submit
662 * all those pages down to the drive.
664 if (!page_started && !ret)
665 extent_write_locked_range(io_tree,
666 inode, async_extent->start,
667 async_extent->start +
668 async_extent->ram_size - 1,
672 unlock_page(async_cow->locked_page);
678 lock_extent(io_tree, async_extent->start,
679 async_extent->start + async_extent->ram_size - 1);
681 trans = btrfs_join_transaction(root);
683 ret = PTR_ERR(trans);
685 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
686 ret = btrfs_reserve_extent(trans, root,
687 async_extent->compressed_size,
688 async_extent->compressed_size,
689 0, alloc_hint, &ins, 1);
690 if (ret && ret != -ENOSPC)
691 btrfs_abort_transaction(trans, root, ret);
692 btrfs_end_transaction(trans, root);
698 for (i = 0; i < async_extent->nr_pages; i++) {
699 WARN_ON(async_extent->pages[i]->mapping);
700 page_cache_release(async_extent->pages[i]);
702 kfree(async_extent->pages);
703 async_extent->nr_pages = 0;
704 async_extent->pages = NULL;
706 if (ret == -ENOSPC) {
707 unlock_extent(io_tree, async_extent->start,
708 async_extent->start +
709 async_extent->ram_size - 1);
716 * here we're doing allocation and writeback of the
719 btrfs_drop_extent_cache(inode, async_extent->start,
720 async_extent->start +
721 async_extent->ram_size - 1, 0);
723 em = alloc_extent_map();
726 goto out_free_reserve;
728 em->start = async_extent->start;
729 em->len = async_extent->ram_size;
730 em->orig_start = em->start;
731 em->mod_start = em->start;
732 em->mod_len = em->len;
734 em->block_start = ins.objectid;
735 em->block_len = ins.offset;
736 em->orig_block_len = ins.offset;
737 em->ram_bytes = async_extent->ram_size;
738 em->bdev = root->fs_info->fs_devices->latest_bdev;
739 em->compress_type = async_extent->compress_type;
740 set_bit(EXTENT_FLAG_PINNED, &em->flags);
741 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
745 write_lock(&em_tree->lock);
746 ret = add_extent_mapping(em_tree, em, 1);
747 write_unlock(&em_tree->lock);
748 if (ret != -EEXIST) {
752 btrfs_drop_extent_cache(inode, async_extent->start,
753 async_extent->start +
754 async_extent->ram_size - 1, 0);
758 goto out_free_reserve;
760 ret = btrfs_add_ordered_extent_compress(inode,
763 async_extent->ram_size,
765 BTRFS_ORDERED_COMPRESSED,
766 async_extent->compress_type);
768 goto out_free_reserve;
771 * clear dirty, set writeback and unlock the pages.
773 extent_clear_unlock_delalloc(inode,
774 &BTRFS_I(inode)->io_tree,
776 async_extent->start +
777 async_extent->ram_size - 1,
778 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
779 EXTENT_CLEAR_UNLOCK |
780 EXTENT_CLEAR_DELALLOC |
781 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
783 ret = btrfs_submit_compressed_write(inode,
785 async_extent->ram_size,
787 ins.offset, async_extent->pages,
788 async_extent->nr_pages);
789 alloc_hint = ins.objectid + ins.offset;
799 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
801 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
803 async_extent->start +
804 async_extent->ram_size - 1,
805 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
806 EXTENT_CLEAR_UNLOCK |
807 EXTENT_CLEAR_DELALLOC |
809 EXTENT_SET_WRITEBACK |
810 EXTENT_END_WRITEBACK);
815 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
818 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
819 struct extent_map *em;
822 read_lock(&em_tree->lock);
823 em = search_extent_mapping(em_tree, start, num_bytes);
826 * if block start isn't an actual block number then find the
827 * first block in this inode and use that as a hint. If that
828 * block is also bogus then just don't worry about it.
830 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
832 em = search_extent_mapping(em_tree, 0, 0);
833 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
834 alloc_hint = em->block_start;
838 alloc_hint = em->block_start;
842 read_unlock(&em_tree->lock);
848 * when extent_io.c finds a delayed allocation range in the file,
849 * the call backs end up in this code. The basic idea is to
850 * allocate extents on disk for the range, and create ordered data structs
851 * in ram to track those extents.
853 * locked_page is the page that writepage had locked already. We use
854 * it to make sure we don't do extra locks or unlocks.
856 * *page_started is set to one if we unlock locked_page and do everything
857 * required to start IO on it. It may be clean and already done with
860 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
862 struct btrfs_root *root,
863 struct page *locked_page,
864 u64 start, u64 end, int *page_started,
865 unsigned long *nr_written,
870 unsigned long ram_size;
873 u64 blocksize = root->sectorsize;
874 struct btrfs_key ins;
875 struct extent_map *em;
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
879 BUG_ON(btrfs_is_free_space_inode(inode));
881 num_bytes = ALIGN(end - start + 1, blocksize);
882 num_bytes = max(blocksize, num_bytes);
883 disk_num_bytes = num_bytes;
885 /* if this is a small write inside eof, kick off defrag */
886 if (num_bytes < 64 * 1024 &&
887 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
888 btrfs_add_inode_defrag(trans, inode);
891 /* lets try to make an inline extent */
892 ret = cow_file_range_inline(trans, root, inode,
893 start, end, 0, 0, NULL);
895 extent_clear_unlock_delalloc(inode,
896 &BTRFS_I(inode)->io_tree,
898 EXTENT_CLEAR_UNLOCK_PAGE |
899 EXTENT_CLEAR_UNLOCK |
900 EXTENT_CLEAR_DELALLOC |
902 EXTENT_SET_WRITEBACK |
903 EXTENT_END_WRITEBACK);
905 *nr_written = *nr_written +
906 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
909 } else if (ret < 0) {
910 btrfs_abort_transaction(trans, root, ret);
915 BUG_ON(disk_num_bytes >
916 btrfs_super_total_bytes(root->fs_info->super_copy));
918 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
919 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
921 while (disk_num_bytes > 0) {
924 cur_alloc_size = disk_num_bytes;
925 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
926 root->sectorsize, 0, alloc_hint,
929 btrfs_abort_transaction(trans, root, ret);
933 em = alloc_extent_map();
939 em->orig_start = em->start;
940 ram_size = ins.offset;
941 em->len = ins.offset;
942 em->mod_start = em->start;
943 em->mod_len = em->len;
945 em->block_start = ins.objectid;
946 em->block_len = ins.offset;
947 em->orig_block_len = ins.offset;
948 em->ram_bytes = ram_size;
949 em->bdev = root->fs_info->fs_devices->latest_bdev;
950 set_bit(EXTENT_FLAG_PINNED, &em->flags);
954 write_lock(&em_tree->lock);
955 ret = add_extent_mapping(em_tree, em, 1);
956 write_unlock(&em_tree->lock);
957 if (ret != -EEXIST) {
961 btrfs_drop_extent_cache(inode, start,
962 start + ram_size - 1, 0);
967 cur_alloc_size = ins.offset;
968 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
969 ram_size, cur_alloc_size, 0);
973 if (root->root_key.objectid ==
974 BTRFS_DATA_RELOC_TREE_OBJECTID) {
975 ret = btrfs_reloc_clone_csums(inode, start,
978 btrfs_abort_transaction(trans, root, ret);
983 if (disk_num_bytes < cur_alloc_size)
986 /* we're not doing compressed IO, don't unlock the first
987 * page (which the caller expects to stay locked), don't
988 * clear any dirty bits and don't set any writeback bits
990 * Do set the Private2 bit so we know this page was properly
991 * setup for writepage
993 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
994 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
997 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
998 start, start + ram_size - 1,
1000 disk_num_bytes -= cur_alloc_size;
1001 num_bytes -= cur_alloc_size;
1002 alloc_hint = ins.objectid + ins.offset;
1003 start += cur_alloc_size;
1009 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
1011 extent_clear_unlock_delalloc(inode,
1012 &BTRFS_I(inode)->io_tree,
1013 start, end, locked_page,
1014 EXTENT_CLEAR_UNLOCK_PAGE |
1015 EXTENT_CLEAR_UNLOCK |
1016 EXTENT_CLEAR_DELALLOC |
1017 EXTENT_CLEAR_DIRTY |
1018 EXTENT_SET_WRITEBACK |
1019 EXTENT_END_WRITEBACK);
1024 static noinline int cow_file_range(struct inode *inode,
1025 struct page *locked_page,
1026 u64 start, u64 end, int *page_started,
1027 unsigned long *nr_written,
1030 struct btrfs_trans_handle *trans;
1031 struct btrfs_root *root = BTRFS_I(inode)->root;
1034 trans = btrfs_join_transaction(root);
1035 if (IS_ERR(trans)) {
1036 extent_clear_unlock_delalloc(inode,
1037 &BTRFS_I(inode)->io_tree,
1038 start, end, locked_page,
1039 EXTENT_CLEAR_UNLOCK_PAGE |
1040 EXTENT_CLEAR_UNLOCK |
1041 EXTENT_CLEAR_DELALLOC |
1042 EXTENT_CLEAR_DIRTY |
1043 EXTENT_SET_WRITEBACK |
1044 EXTENT_END_WRITEBACK);
1045 return PTR_ERR(trans);
1047 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1049 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1050 page_started, nr_written, unlock);
1052 btrfs_end_transaction(trans, root);
1058 * work queue call back to started compression on a file and pages
1060 static noinline void async_cow_start(struct btrfs_work *work)
1062 struct async_cow *async_cow;
1064 async_cow = container_of(work, struct async_cow, work);
1066 compress_file_range(async_cow->inode, async_cow->locked_page,
1067 async_cow->start, async_cow->end, async_cow,
1069 if (num_added == 0) {
1070 btrfs_add_delayed_iput(async_cow->inode);
1071 async_cow->inode = NULL;
1076 * work queue call back to submit previously compressed pages
1078 static noinline void async_cow_submit(struct btrfs_work *work)
1080 struct async_cow *async_cow;
1081 struct btrfs_root *root;
1082 unsigned long nr_pages;
1084 async_cow = container_of(work, struct async_cow, work);
1086 root = async_cow->root;
1087 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1090 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1092 waitqueue_active(&root->fs_info->async_submit_wait))
1093 wake_up(&root->fs_info->async_submit_wait);
1095 if (async_cow->inode)
1096 submit_compressed_extents(async_cow->inode, async_cow);
1099 static noinline void async_cow_free(struct btrfs_work *work)
1101 struct async_cow *async_cow;
1102 async_cow = container_of(work, struct async_cow, work);
1103 if (async_cow->inode)
1104 btrfs_add_delayed_iput(async_cow->inode);
1108 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1109 u64 start, u64 end, int *page_started,
1110 unsigned long *nr_written)
1112 struct async_cow *async_cow;
1113 struct btrfs_root *root = BTRFS_I(inode)->root;
1114 unsigned long nr_pages;
1116 int limit = 10 * 1024 * 1024;
1118 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1119 1, 0, NULL, GFP_NOFS);
1120 while (start < end) {
1121 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1122 BUG_ON(!async_cow); /* -ENOMEM */
1123 async_cow->inode = igrab(inode);
1124 async_cow->root = root;
1125 async_cow->locked_page = locked_page;
1126 async_cow->start = start;
1128 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1131 cur_end = min(end, start + 512 * 1024 - 1);
1133 async_cow->end = cur_end;
1134 INIT_LIST_HEAD(&async_cow->extents);
1136 async_cow->work.func = async_cow_start;
1137 async_cow->work.ordered_func = async_cow_submit;
1138 async_cow->work.ordered_free = async_cow_free;
1139 async_cow->work.flags = 0;
1141 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1143 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1145 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1148 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1149 wait_event(root->fs_info->async_submit_wait,
1150 (atomic_read(&root->fs_info->async_delalloc_pages) <
1154 while (atomic_read(&root->fs_info->async_submit_draining) &&
1155 atomic_read(&root->fs_info->async_delalloc_pages)) {
1156 wait_event(root->fs_info->async_submit_wait,
1157 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1161 *nr_written += nr_pages;
1162 start = cur_end + 1;
1168 static noinline int csum_exist_in_range(struct btrfs_root *root,
1169 u64 bytenr, u64 num_bytes)
1172 struct btrfs_ordered_sum *sums;
1175 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1176 bytenr + num_bytes - 1, &list, 0);
1177 if (ret == 0 && list_empty(&list))
1180 while (!list_empty(&list)) {
1181 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1182 list_del(&sums->list);
1189 * when nowcow writeback call back. This checks for snapshots or COW copies
1190 * of the extents that exist in the file, and COWs the file as required.
1192 * If no cow copies or snapshots exist, we write directly to the existing
1195 static noinline int run_delalloc_nocow(struct inode *inode,
1196 struct page *locked_page,
1197 u64 start, u64 end, int *page_started, int force,
1198 unsigned long *nr_written)
1200 struct btrfs_root *root = BTRFS_I(inode)->root;
1201 struct btrfs_trans_handle *trans;
1202 struct extent_buffer *leaf;
1203 struct btrfs_path *path;
1204 struct btrfs_file_extent_item *fi;
1205 struct btrfs_key found_key;
1220 u64 ino = btrfs_ino(inode);
1222 path = btrfs_alloc_path();
1224 extent_clear_unlock_delalloc(inode,
1225 &BTRFS_I(inode)->io_tree,
1226 start, end, locked_page,
1227 EXTENT_CLEAR_UNLOCK_PAGE |
1228 EXTENT_CLEAR_UNLOCK |
1229 EXTENT_CLEAR_DELALLOC |
1230 EXTENT_CLEAR_DIRTY |
1231 EXTENT_SET_WRITEBACK |
1232 EXTENT_END_WRITEBACK);
1236 nolock = btrfs_is_free_space_inode(inode);
1239 trans = btrfs_join_transaction_nolock(root);
1241 trans = btrfs_join_transaction(root);
1243 if (IS_ERR(trans)) {
1244 extent_clear_unlock_delalloc(inode,
1245 &BTRFS_I(inode)->io_tree,
1246 start, end, locked_page,
1247 EXTENT_CLEAR_UNLOCK_PAGE |
1248 EXTENT_CLEAR_UNLOCK |
1249 EXTENT_CLEAR_DELALLOC |
1250 EXTENT_CLEAR_DIRTY |
1251 EXTENT_SET_WRITEBACK |
1252 EXTENT_END_WRITEBACK);
1253 btrfs_free_path(path);
1254 return PTR_ERR(trans);
1257 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1259 cow_start = (u64)-1;
1262 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1265 btrfs_abort_transaction(trans, root, ret);
1268 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1269 leaf = path->nodes[0];
1270 btrfs_item_key_to_cpu(leaf, &found_key,
1271 path->slots[0] - 1);
1272 if (found_key.objectid == ino &&
1273 found_key.type == BTRFS_EXTENT_DATA_KEY)
1278 leaf = path->nodes[0];
1279 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1280 ret = btrfs_next_leaf(root, path);
1282 btrfs_abort_transaction(trans, root, ret);
1287 leaf = path->nodes[0];
1293 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1295 if (found_key.objectid > ino ||
1296 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1297 found_key.offset > end)
1300 if (found_key.offset > cur_offset) {
1301 extent_end = found_key.offset;
1306 fi = btrfs_item_ptr(leaf, path->slots[0],
1307 struct btrfs_file_extent_item);
1308 extent_type = btrfs_file_extent_type(leaf, fi);
1310 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1311 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1312 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1313 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1314 extent_offset = btrfs_file_extent_offset(leaf, fi);
1315 extent_end = found_key.offset +
1316 btrfs_file_extent_num_bytes(leaf, fi);
1318 btrfs_file_extent_disk_num_bytes(leaf, fi);
1319 if (extent_end <= start) {
1323 if (disk_bytenr == 0)
1325 if (btrfs_file_extent_compression(leaf, fi) ||
1326 btrfs_file_extent_encryption(leaf, fi) ||
1327 btrfs_file_extent_other_encoding(leaf, fi))
1329 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1331 if (btrfs_extent_readonly(root, disk_bytenr))
1333 if (btrfs_cross_ref_exist(trans, root, ino,
1335 extent_offset, disk_bytenr))
1337 disk_bytenr += extent_offset;
1338 disk_bytenr += cur_offset - found_key.offset;
1339 num_bytes = min(end + 1, extent_end) - cur_offset;
1341 * force cow if csum exists in the range.
1342 * this ensure that csum for a given extent are
1343 * either valid or do not exist.
1345 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1348 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1349 extent_end = found_key.offset +
1350 btrfs_file_extent_inline_len(leaf, fi);
1351 extent_end = ALIGN(extent_end, root->sectorsize);
1356 if (extent_end <= start) {
1361 if (cow_start == (u64)-1)
1362 cow_start = cur_offset;
1363 cur_offset = extent_end;
1364 if (cur_offset > end)
1370 btrfs_release_path(path);
1371 if (cow_start != (u64)-1) {
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1373 cow_start, found_key.offset - 1,
1374 page_started, nr_written, 1);
1376 btrfs_abort_transaction(trans, root, ret);
1379 cow_start = (u64)-1;
1382 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1383 struct extent_map *em;
1384 struct extent_map_tree *em_tree;
1385 em_tree = &BTRFS_I(inode)->extent_tree;
1386 em = alloc_extent_map();
1387 BUG_ON(!em); /* -ENOMEM */
1388 em->start = cur_offset;
1389 em->orig_start = found_key.offset - extent_offset;
1390 em->len = num_bytes;
1391 em->block_len = num_bytes;
1392 em->block_start = disk_bytenr;
1393 em->orig_block_len = disk_num_bytes;
1394 em->ram_bytes = ram_bytes;
1395 em->bdev = root->fs_info->fs_devices->latest_bdev;
1396 em->mod_start = em->start;
1397 em->mod_len = em->len;
1398 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1399 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1400 em->generation = -1;
1402 write_lock(&em_tree->lock);
1403 ret = add_extent_mapping(em_tree, em, 1);
1404 write_unlock(&em_tree->lock);
1405 if (ret != -EEXIST) {
1406 free_extent_map(em);
1409 btrfs_drop_extent_cache(inode, em->start,
1410 em->start + em->len - 1, 0);
1412 type = BTRFS_ORDERED_PREALLOC;
1414 type = BTRFS_ORDERED_NOCOW;
1417 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1418 num_bytes, num_bytes, type);
1419 BUG_ON(ret); /* -ENOMEM */
1421 if (root->root_key.objectid ==
1422 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1426 btrfs_abort_transaction(trans, root, ret);
1431 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1432 cur_offset, cur_offset + num_bytes - 1,
1433 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1434 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1435 EXTENT_SET_PRIVATE2);
1436 cur_offset = extent_end;
1437 if (cur_offset > end)
1440 btrfs_release_path(path);
1442 if (cur_offset <= end && cow_start == (u64)-1) {
1443 cow_start = cur_offset;
1447 if (cow_start != (u64)-1) {
1448 ret = __cow_file_range(trans, inode, root, locked_page,
1450 page_started, nr_written, 1);
1452 btrfs_abort_transaction(trans, root, ret);
1458 err = btrfs_end_transaction(trans, root);
1462 if (ret && cur_offset < end)
1463 extent_clear_unlock_delalloc(inode,
1464 &BTRFS_I(inode)->io_tree,
1465 cur_offset, end, locked_page,
1466 EXTENT_CLEAR_UNLOCK_PAGE |
1467 EXTENT_CLEAR_UNLOCK |
1468 EXTENT_CLEAR_DELALLOC |
1469 EXTENT_CLEAR_DIRTY |
1470 EXTENT_SET_WRITEBACK |
1471 EXTENT_END_WRITEBACK);
1473 btrfs_free_path(path);
1478 * extent_io.c call back to do delayed allocation processing
1480 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1481 u64 start, u64 end, int *page_started,
1482 unsigned long *nr_written)
1485 struct btrfs_root *root = BTRFS_I(inode)->root;
1487 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1488 ret = run_delalloc_nocow(inode, locked_page, start, end,
1489 page_started, 1, nr_written);
1490 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1491 ret = run_delalloc_nocow(inode, locked_page, start, end,
1492 page_started, 0, nr_written);
1493 } else if (!btrfs_test_opt(root, COMPRESS) &&
1494 !(BTRFS_I(inode)->force_compress) &&
1495 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1496 ret = cow_file_range(inode, locked_page, start, end,
1497 page_started, nr_written, 1);
1499 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1500 &BTRFS_I(inode)->runtime_flags);
1501 ret = cow_file_range_async(inode, locked_page, start, end,
1502 page_started, nr_written);
1507 static void btrfs_split_extent_hook(struct inode *inode,
1508 struct extent_state *orig, u64 split)
1510 /* not delalloc, ignore it */
1511 if (!(orig->state & EXTENT_DELALLOC))
1514 spin_lock(&BTRFS_I(inode)->lock);
1515 BTRFS_I(inode)->outstanding_extents++;
1516 spin_unlock(&BTRFS_I(inode)->lock);
1520 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1521 * extents so we can keep track of new extents that are just merged onto old
1522 * extents, such as when we are doing sequential writes, so we can properly
1523 * account for the metadata space we'll need.
1525 static void btrfs_merge_extent_hook(struct inode *inode,
1526 struct extent_state *new,
1527 struct extent_state *other)
1529 /* not delalloc, ignore it */
1530 if (!(other->state & EXTENT_DELALLOC))
1533 spin_lock(&BTRFS_I(inode)->lock);
1534 BTRFS_I(inode)->outstanding_extents--;
1535 spin_unlock(&BTRFS_I(inode)->lock);
1538 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1539 struct inode *inode)
1541 spin_lock(&root->delalloc_lock);
1542 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1543 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1544 &root->delalloc_inodes);
1545 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1546 &BTRFS_I(inode)->runtime_flags);
1547 root->nr_delalloc_inodes++;
1548 if (root->nr_delalloc_inodes == 1) {
1549 spin_lock(&root->fs_info->delalloc_root_lock);
1550 BUG_ON(!list_empty(&root->delalloc_root));
1551 list_add_tail(&root->delalloc_root,
1552 &root->fs_info->delalloc_roots);
1553 spin_unlock(&root->fs_info->delalloc_root_lock);
1556 spin_unlock(&root->delalloc_lock);
1559 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1560 struct inode *inode)
1562 spin_lock(&root->delalloc_lock);
1563 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1564 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1565 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1566 &BTRFS_I(inode)->runtime_flags);
1567 root->nr_delalloc_inodes--;
1568 if (!root->nr_delalloc_inodes) {
1569 spin_lock(&root->fs_info->delalloc_root_lock);
1570 BUG_ON(list_empty(&root->delalloc_root));
1571 list_del_init(&root->delalloc_root);
1572 spin_unlock(&root->fs_info->delalloc_root_lock);
1575 spin_unlock(&root->delalloc_lock);
1579 * extent_io.c set_bit_hook, used to track delayed allocation
1580 * bytes in this file, and to maintain the list of inodes that
1581 * have pending delalloc work to be done.
1583 static void btrfs_set_bit_hook(struct inode *inode,
1584 struct extent_state *state, unsigned long *bits)
1588 * set_bit and clear bit hooks normally require _irqsave/restore
1589 * but in this case, we are only testing for the DELALLOC
1590 * bit, which is only set or cleared with irqs on
1592 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1593 struct btrfs_root *root = BTRFS_I(inode)->root;
1594 u64 len = state->end + 1 - state->start;
1595 bool do_list = !btrfs_is_free_space_inode(inode);
1597 if (*bits & EXTENT_FIRST_DELALLOC) {
1598 *bits &= ~EXTENT_FIRST_DELALLOC;
1600 spin_lock(&BTRFS_I(inode)->lock);
1601 BTRFS_I(inode)->outstanding_extents++;
1602 spin_unlock(&BTRFS_I(inode)->lock);
1605 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1606 root->fs_info->delalloc_batch);
1607 spin_lock(&BTRFS_I(inode)->lock);
1608 BTRFS_I(inode)->delalloc_bytes += len;
1609 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1610 &BTRFS_I(inode)->runtime_flags))
1611 btrfs_add_delalloc_inodes(root, inode);
1612 spin_unlock(&BTRFS_I(inode)->lock);
1617 * extent_io.c clear_bit_hook, see set_bit_hook for why
1619 static void btrfs_clear_bit_hook(struct inode *inode,
1620 struct extent_state *state,
1621 unsigned long *bits)
1624 * set_bit and clear bit hooks normally require _irqsave/restore
1625 * but in this case, we are only testing for the DELALLOC
1626 * bit, which is only set or cleared with irqs on
1628 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1629 struct btrfs_root *root = BTRFS_I(inode)->root;
1630 u64 len = state->end + 1 - state->start;
1631 bool do_list = !btrfs_is_free_space_inode(inode);
1633 if (*bits & EXTENT_FIRST_DELALLOC) {
1634 *bits &= ~EXTENT_FIRST_DELALLOC;
1635 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1636 spin_lock(&BTRFS_I(inode)->lock);
1637 BTRFS_I(inode)->outstanding_extents--;
1638 spin_unlock(&BTRFS_I(inode)->lock);
1641 if (*bits & EXTENT_DO_ACCOUNTING)
1642 btrfs_delalloc_release_metadata(inode, len);
1644 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1645 && do_list && !(state->state & EXTENT_NORESERVE))
1646 btrfs_free_reserved_data_space(inode, len);
1648 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1649 root->fs_info->delalloc_batch);
1650 spin_lock(&BTRFS_I(inode)->lock);
1651 BTRFS_I(inode)->delalloc_bytes -= len;
1652 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1653 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1654 &BTRFS_I(inode)->runtime_flags))
1655 btrfs_del_delalloc_inode(root, inode);
1656 spin_unlock(&BTRFS_I(inode)->lock);
1661 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1662 * we don't create bios that span stripes or chunks
1664 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1665 size_t size, struct bio *bio,
1666 unsigned long bio_flags)
1668 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1669 u64 logical = (u64)bio->bi_sector << 9;
1674 if (bio_flags & EXTENT_BIO_COMPRESSED)
1677 length = bio->bi_size;
1678 map_length = length;
1679 ret = btrfs_map_block(root->fs_info, rw, logical,
1680 &map_length, NULL, 0);
1681 /* Will always return 0 with map_multi == NULL */
1683 if (map_length < length + size)
1689 * in order to insert checksums into the metadata in large chunks,
1690 * we wait until bio submission time. All the pages in the bio are
1691 * checksummed and sums are attached onto the ordered extent record.
1693 * At IO completion time the cums attached on the ordered extent record
1694 * are inserted into the btree
1696 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1697 struct bio *bio, int mirror_num,
1698 unsigned long bio_flags,
1701 struct btrfs_root *root = BTRFS_I(inode)->root;
1704 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1705 BUG_ON(ret); /* -ENOMEM */
1710 * in order to insert checksums into the metadata in large chunks,
1711 * we wait until bio submission time. All the pages in the bio are
1712 * checksummed and sums are attached onto the ordered extent record.
1714 * At IO completion time the cums attached on the ordered extent record
1715 * are inserted into the btree
1717 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1718 int mirror_num, unsigned long bio_flags,
1721 struct btrfs_root *root = BTRFS_I(inode)->root;
1724 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1726 bio_endio(bio, ret);
1731 * extent_io.c submission hook. This does the right thing for csum calculation
1732 * on write, or reading the csums from the tree before a read
1734 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1735 int mirror_num, unsigned long bio_flags,
1738 struct btrfs_root *root = BTRFS_I(inode)->root;
1742 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1744 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1746 if (btrfs_is_free_space_inode(inode))
1749 if (!(rw & REQ_WRITE)) {
1750 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1754 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1755 ret = btrfs_submit_compressed_read(inode, bio,
1759 } else if (!skip_sum) {
1760 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1765 } else if (async && !skip_sum) {
1766 /* csum items have already been cloned */
1767 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1769 /* we're doing a write, do the async checksumming */
1770 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1771 inode, rw, bio, mirror_num,
1772 bio_flags, bio_offset,
1773 __btrfs_submit_bio_start,
1774 __btrfs_submit_bio_done);
1776 } else if (!skip_sum) {
1777 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1783 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1787 bio_endio(bio, ret);
1792 * given a list of ordered sums record them in the inode. This happens
1793 * at IO completion time based on sums calculated at bio submission time.
1795 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1796 struct inode *inode, u64 file_offset,
1797 struct list_head *list)
1799 struct btrfs_ordered_sum *sum;
1801 list_for_each_entry(sum, list, list) {
1802 trans->adding_csums = 1;
1803 btrfs_csum_file_blocks(trans,
1804 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1805 trans->adding_csums = 0;
1810 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1811 struct extent_state **cached_state)
1813 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1814 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1815 cached_state, GFP_NOFS);
1818 /* see btrfs_writepage_start_hook for details on why this is required */
1819 struct btrfs_writepage_fixup {
1821 struct btrfs_work work;
1824 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1826 struct btrfs_writepage_fixup *fixup;
1827 struct btrfs_ordered_extent *ordered;
1828 struct extent_state *cached_state = NULL;
1830 struct inode *inode;
1835 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1839 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1840 ClearPageChecked(page);
1844 inode = page->mapping->host;
1845 page_start = page_offset(page);
1846 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1848 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1851 /* already ordered? We're done */
1852 if (PagePrivate2(page))
1855 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1857 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1858 page_end, &cached_state, GFP_NOFS);
1860 btrfs_start_ordered_extent(inode, ordered, 1);
1861 btrfs_put_ordered_extent(ordered);
1865 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1867 mapping_set_error(page->mapping, ret);
1868 end_extent_writepage(page, ret, page_start, page_end);
1869 ClearPageChecked(page);
1873 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1874 ClearPageChecked(page);
1875 set_page_dirty(page);
1877 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1878 &cached_state, GFP_NOFS);
1881 page_cache_release(page);
1886 * There are a few paths in the higher layers of the kernel that directly
1887 * set the page dirty bit without asking the filesystem if it is a
1888 * good idea. This causes problems because we want to make sure COW
1889 * properly happens and the data=ordered rules are followed.
1891 * In our case any range that doesn't have the ORDERED bit set
1892 * hasn't been properly setup for IO. We kick off an async process
1893 * to fix it up. The async helper will wait for ordered extents, set
1894 * the delalloc bit and make it safe to write the page.
1896 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1898 struct inode *inode = page->mapping->host;
1899 struct btrfs_writepage_fixup *fixup;
1900 struct btrfs_root *root = BTRFS_I(inode)->root;
1902 /* this page is properly in the ordered list */
1903 if (TestClearPagePrivate2(page))
1906 if (PageChecked(page))
1909 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1913 SetPageChecked(page);
1914 page_cache_get(page);
1915 fixup->work.func = btrfs_writepage_fixup_worker;
1917 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1921 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1922 struct inode *inode, u64 file_pos,
1923 u64 disk_bytenr, u64 disk_num_bytes,
1924 u64 num_bytes, u64 ram_bytes,
1925 u8 compression, u8 encryption,
1926 u16 other_encoding, int extent_type)
1928 struct btrfs_root *root = BTRFS_I(inode)->root;
1929 struct btrfs_file_extent_item *fi;
1930 struct btrfs_path *path;
1931 struct extent_buffer *leaf;
1932 struct btrfs_key ins;
1935 path = btrfs_alloc_path();
1939 path->leave_spinning = 1;
1942 * we may be replacing one extent in the tree with another.
1943 * The new extent is pinned in the extent map, and we don't want
1944 * to drop it from the cache until it is completely in the btree.
1946 * So, tell btrfs_drop_extents to leave this extent in the cache.
1947 * the caller is expected to unpin it and allow it to be merged
1950 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1951 file_pos + num_bytes, 0);
1955 ins.objectid = btrfs_ino(inode);
1956 ins.offset = file_pos;
1957 ins.type = BTRFS_EXTENT_DATA_KEY;
1958 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1961 leaf = path->nodes[0];
1962 fi = btrfs_item_ptr(leaf, path->slots[0],
1963 struct btrfs_file_extent_item);
1964 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1965 btrfs_set_file_extent_type(leaf, fi, extent_type);
1966 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1967 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1968 btrfs_set_file_extent_offset(leaf, fi, 0);
1969 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1970 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1971 btrfs_set_file_extent_compression(leaf, fi, compression);
1972 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1973 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1975 btrfs_mark_buffer_dirty(leaf);
1976 btrfs_release_path(path);
1978 inode_add_bytes(inode, num_bytes);
1980 ins.objectid = disk_bytenr;
1981 ins.offset = disk_num_bytes;
1982 ins.type = BTRFS_EXTENT_ITEM_KEY;
1983 ret = btrfs_alloc_reserved_file_extent(trans, root,
1984 root->root_key.objectid,
1985 btrfs_ino(inode), file_pos, &ins);
1987 btrfs_free_path(path);
1992 /* snapshot-aware defrag */
1993 struct sa_defrag_extent_backref {
1994 struct rb_node node;
1995 struct old_sa_defrag_extent *old;
2004 struct old_sa_defrag_extent {
2005 struct list_head list;
2006 struct new_sa_defrag_extent *new;
2015 struct new_sa_defrag_extent {
2016 struct rb_root root;
2017 struct list_head head;
2018 struct btrfs_path *path;
2019 struct inode *inode;
2027 static int backref_comp(struct sa_defrag_extent_backref *b1,
2028 struct sa_defrag_extent_backref *b2)
2030 if (b1->root_id < b2->root_id)
2032 else if (b1->root_id > b2->root_id)
2035 if (b1->inum < b2->inum)
2037 else if (b1->inum > b2->inum)
2040 if (b1->file_pos < b2->file_pos)
2042 else if (b1->file_pos > b2->file_pos)
2046 * [------------------------------] ===> (a range of space)
2047 * |<--->| |<---->| =============> (fs/file tree A)
2048 * |<---------------------------->| ===> (fs/file tree B)
2050 * A range of space can refer to two file extents in one tree while
2051 * refer to only one file extent in another tree.
2053 * So we may process a disk offset more than one time(two extents in A)
2054 * and locate at the same extent(one extent in B), then insert two same
2055 * backrefs(both refer to the extent in B).
2060 static void backref_insert(struct rb_root *root,
2061 struct sa_defrag_extent_backref *backref)
2063 struct rb_node **p = &root->rb_node;
2064 struct rb_node *parent = NULL;
2065 struct sa_defrag_extent_backref *entry;
2070 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2072 ret = backref_comp(backref, entry);
2076 p = &(*p)->rb_right;
2079 rb_link_node(&backref->node, parent, p);
2080 rb_insert_color(&backref->node, root);
2084 * Note the backref might has changed, and in this case we just return 0.
2086 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2089 struct btrfs_file_extent_item *extent;
2090 struct btrfs_fs_info *fs_info;
2091 struct old_sa_defrag_extent *old = ctx;
2092 struct new_sa_defrag_extent *new = old->new;
2093 struct btrfs_path *path = new->path;
2094 struct btrfs_key key;
2095 struct btrfs_root *root;
2096 struct sa_defrag_extent_backref *backref;
2097 struct extent_buffer *leaf;
2098 struct inode *inode = new->inode;
2104 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2105 inum == btrfs_ino(inode))
2108 key.objectid = root_id;
2109 key.type = BTRFS_ROOT_ITEM_KEY;
2110 key.offset = (u64)-1;
2112 fs_info = BTRFS_I(inode)->root->fs_info;
2113 root = btrfs_read_fs_root_no_name(fs_info, &key);
2115 if (PTR_ERR(root) == -ENOENT)
2118 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2119 inum, offset, root_id);
2120 return PTR_ERR(root);
2123 key.objectid = inum;
2124 key.type = BTRFS_EXTENT_DATA_KEY;
2125 if (offset > (u64)-1 << 32)
2128 key.offset = offset;
2130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2139 leaf = path->nodes[0];
2140 slot = path->slots[0];
2142 if (slot >= btrfs_header_nritems(leaf)) {
2143 ret = btrfs_next_leaf(root, path);
2146 } else if (ret > 0) {
2155 btrfs_item_key_to_cpu(leaf, &key, slot);
2157 if (key.objectid > inum)
2160 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2163 extent = btrfs_item_ptr(leaf, slot,
2164 struct btrfs_file_extent_item);
2166 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2169 extent_offset = btrfs_file_extent_offset(leaf, extent);
2170 if (key.offset - extent_offset != offset)
2173 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2174 if (extent_offset >= old->extent_offset + old->offset +
2175 old->len || extent_offset + num_bytes <=
2176 old->extent_offset + old->offset)
2182 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2188 backref->root_id = root_id;
2189 backref->inum = inum;
2190 backref->file_pos = offset + extent_offset;
2191 backref->num_bytes = num_bytes;
2192 backref->extent_offset = extent_offset;
2193 backref->generation = btrfs_file_extent_generation(leaf, extent);
2195 backref_insert(&new->root, backref);
2198 btrfs_release_path(path);
2203 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2204 struct new_sa_defrag_extent *new)
2206 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2207 struct old_sa_defrag_extent *old, *tmp;
2212 list_for_each_entry_safe(old, tmp, &new->head, list) {
2213 ret = iterate_inodes_from_logical(old->bytenr, fs_info,
2214 path, record_one_backref,
2216 BUG_ON(ret < 0 && ret != -ENOENT);
2218 /* no backref to be processed for this extent */
2220 list_del(&old->list);
2225 if (list_empty(&new->head))
2231 static int relink_is_mergable(struct extent_buffer *leaf,
2232 struct btrfs_file_extent_item *fi,
2235 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2238 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2241 if (btrfs_file_extent_compression(leaf, fi) ||
2242 btrfs_file_extent_encryption(leaf, fi) ||
2243 btrfs_file_extent_other_encoding(leaf, fi))
2250 * Note the backref might has changed, and in this case we just return 0.
2252 static noinline int relink_extent_backref(struct btrfs_path *path,
2253 struct sa_defrag_extent_backref *prev,
2254 struct sa_defrag_extent_backref *backref)
2256 struct btrfs_file_extent_item *extent;
2257 struct btrfs_file_extent_item *item;
2258 struct btrfs_ordered_extent *ordered;
2259 struct btrfs_trans_handle *trans;
2260 struct btrfs_fs_info *fs_info;
2261 struct btrfs_root *root;
2262 struct btrfs_key key;
2263 struct extent_buffer *leaf;
2264 struct old_sa_defrag_extent *old = backref->old;
2265 struct new_sa_defrag_extent *new = old->new;
2266 struct inode *src_inode = new->inode;
2267 struct inode *inode;
2268 struct extent_state *cached = NULL;
2277 if (prev && prev->root_id == backref->root_id &&
2278 prev->inum == backref->inum &&
2279 prev->file_pos + prev->num_bytes == backref->file_pos)
2282 /* step 1: get root */
2283 key.objectid = backref->root_id;
2284 key.type = BTRFS_ROOT_ITEM_KEY;
2285 key.offset = (u64)-1;
2287 fs_info = BTRFS_I(src_inode)->root->fs_info;
2288 index = srcu_read_lock(&fs_info->subvol_srcu);
2290 root = btrfs_read_fs_root_no_name(fs_info, &key);
2292 srcu_read_unlock(&fs_info->subvol_srcu, index);
2293 if (PTR_ERR(root) == -ENOENT)
2295 return PTR_ERR(root);
2298 /* step 2: get inode */
2299 key.objectid = backref->inum;
2300 key.type = BTRFS_INODE_ITEM_KEY;
2303 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2304 if (IS_ERR(inode)) {
2305 srcu_read_unlock(&fs_info->subvol_srcu, index);
2309 srcu_read_unlock(&fs_info->subvol_srcu, index);
2311 /* step 3: relink backref */
2312 lock_start = backref->file_pos;
2313 lock_end = backref->file_pos + backref->num_bytes - 1;
2314 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2317 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2319 btrfs_put_ordered_extent(ordered);
2323 trans = btrfs_join_transaction(root);
2324 if (IS_ERR(trans)) {
2325 ret = PTR_ERR(trans);
2329 key.objectid = backref->inum;
2330 key.type = BTRFS_EXTENT_DATA_KEY;
2331 key.offset = backref->file_pos;
2333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2336 } else if (ret > 0) {
2341 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2342 struct btrfs_file_extent_item);
2344 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2345 backref->generation)
2348 btrfs_release_path(path);
2350 start = backref->file_pos;
2351 if (backref->extent_offset < old->extent_offset + old->offset)
2352 start += old->extent_offset + old->offset -
2353 backref->extent_offset;
2355 len = min(backref->extent_offset + backref->num_bytes,
2356 old->extent_offset + old->offset + old->len);
2357 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2359 ret = btrfs_drop_extents(trans, root, inode, start,
2364 key.objectid = btrfs_ino(inode);
2365 key.type = BTRFS_EXTENT_DATA_KEY;
2368 path->leave_spinning = 1;
2370 struct btrfs_file_extent_item *fi;
2372 struct btrfs_key found_key;
2374 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2379 leaf = path->nodes[0];
2380 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2382 fi = btrfs_item_ptr(leaf, path->slots[0],
2383 struct btrfs_file_extent_item);
2384 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2386 if (relink_is_mergable(leaf, fi, new->bytenr) &&
2387 extent_len + found_key.offset == start) {
2388 btrfs_set_file_extent_num_bytes(leaf, fi,
2390 btrfs_mark_buffer_dirty(leaf);
2391 inode_add_bytes(inode, len);
2397 btrfs_release_path(path);
2402 ret = btrfs_insert_empty_item(trans, root, path, &key,
2405 btrfs_abort_transaction(trans, root, ret);
2409 leaf = path->nodes[0];
2410 item = btrfs_item_ptr(leaf, path->slots[0],
2411 struct btrfs_file_extent_item);
2412 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2413 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2414 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2415 btrfs_set_file_extent_num_bytes(leaf, item, len);
2416 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2417 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2418 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2419 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2420 btrfs_set_file_extent_encryption(leaf, item, 0);
2421 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2423 btrfs_mark_buffer_dirty(leaf);
2424 inode_add_bytes(inode, len);
2425 btrfs_release_path(path);
2427 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2429 backref->root_id, backref->inum,
2430 new->file_pos, 0); /* start - extent_offset */
2432 btrfs_abort_transaction(trans, root, ret);
2438 btrfs_release_path(path);
2439 path->leave_spinning = 0;
2440 btrfs_end_transaction(trans, root);
2442 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2448 static void relink_file_extents(struct new_sa_defrag_extent *new)
2450 struct btrfs_path *path;
2451 struct old_sa_defrag_extent *old, *tmp;
2452 struct sa_defrag_extent_backref *backref;
2453 struct sa_defrag_extent_backref *prev = NULL;
2454 struct inode *inode;
2455 struct btrfs_root *root;
2456 struct rb_node *node;
2460 root = BTRFS_I(inode)->root;
2462 path = btrfs_alloc_path();
2466 if (!record_extent_backrefs(path, new)) {
2467 btrfs_free_path(path);
2470 btrfs_release_path(path);
2473 node = rb_first(&new->root);
2476 rb_erase(node, &new->root);
2478 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2480 ret = relink_extent_backref(path, prev, backref);
2493 btrfs_free_path(path);
2495 list_for_each_entry_safe(old, tmp, &new->head, list) {
2496 list_del(&old->list);
2500 atomic_dec(&root->fs_info->defrag_running);
2501 wake_up(&root->fs_info->transaction_wait);
2506 static struct new_sa_defrag_extent *
2507 record_old_file_extents(struct inode *inode,
2508 struct btrfs_ordered_extent *ordered)
2510 struct btrfs_root *root = BTRFS_I(inode)->root;
2511 struct btrfs_path *path;
2512 struct btrfs_key key;
2513 struct old_sa_defrag_extent *old, *tmp;
2514 struct new_sa_defrag_extent *new;
2517 new = kmalloc(sizeof(*new), GFP_NOFS);
2522 new->file_pos = ordered->file_offset;
2523 new->len = ordered->len;
2524 new->bytenr = ordered->start;
2525 new->disk_len = ordered->disk_len;
2526 new->compress_type = ordered->compress_type;
2527 new->root = RB_ROOT;
2528 INIT_LIST_HEAD(&new->head);
2530 path = btrfs_alloc_path();
2534 key.objectid = btrfs_ino(inode);
2535 key.type = BTRFS_EXTENT_DATA_KEY;
2536 key.offset = new->file_pos;
2538 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2541 if (ret > 0 && path->slots[0] > 0)
2544 /* find out all the old extents for the file range */
2546 struct btrfs_file_extent_item *extent;
2547 struct extent_buffer *l;
2556 slot = path->slots[0];
2558 if (slot >= btrfs_header_nritems(l)) {
2559 ret = btrfs_next_leaf(root, path);
2567 btrfs_item_key_to_cpu(l, &key, slot);
2569 if (key.objectid != btrfs_ino(inode))
2571 if (key.type != BTRFS_EXTENT_DATA_KEY)
2573 if (key.offset >= new->file_pos + new->len)
2576 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2578 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2579 if (key.offset + num_bytes < new->file_pos)
2582 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2586 extent_offset = btrfs_file_extent_offset(l, extent);
2588 old = kmalloc(sizeof(*old), GFP_NOFS);
2592 offset = max(new->file_pos, key.offset);
2593 end = min(new->file_pos + new->len, key.offset + num_bytes);
2595 old->bytenr = disk_bytenr;
2596 old->extent_offset = extent_offset;
2597 old->offset = offset - key.offset;
2598 old->len = end - offset;
2601 list_add_tail(&old->list, &new->head);
2607 btrfs_free_path(path);
2608 atomic_inc(&root->fs_info->defrag_running);
2613 list_for_each_entry_safe(old, tmp, &new->head, list) {
2614 list_del(&old->list);
2618 btrfs_free_path(path);
2625 * helper function for btrfs_finish_ordered_io, this
2626 * just reads in some of the csum leaves to prime them into ram
2627 * before we start the transaction. It limits the amount of btree
2628 * reads required while inside the transaction.
2630 /* as ordered data IO finishes, this gets called so we can finish
2631 * an ordered extent if the range of bytes in the file it covers are
2634 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2636 struct inode *inode = ordered_extent->inode;
2637 struct btrfs_root *root = BTRFS_I(inode)->root;
2638 struct btrfs_trans_handle *trans = NULL;
2639 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2640 struct extent_state *cached_state = NULL;
2641 struct new_sa_defrag_extent *new = NULL;
2642 int compress_type = 0;
2646 nolock = btrfs_is_free_space_inode(inode);
2648 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2653 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2654 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2655 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2657 trans = btrfs_join_transaction_nolock(root);
2659 trans = btrfs_join_transaction(root);
2660 if (IS_ERR(trans)) {
2661 ret = PTR_ERR(trans);
2665 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2666 ret = btrfs_update_inode_fallback(trans, root, inode);
2667 if (ret) /* -ENOMEM or corruption */
2668 btrfs_abort_transaction(trans, root, ret);
2672 lock_extent_bits(io_tree, ordered_extent->file_offset,
2673 ordered_extent->file_offset + ordered_extent->len - 1,
2676 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2677 ordered_extent->file_offset + ordered_extent->len - 1,
2678 EXTENT_DEFRAG, 1, cached_state);
2680 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2681 if (last_snapshot >= BTRFS_I(inode)->generation)
2682 /* the inode is shared */
2683 new = record_old_file_extents(inode, ordered_extent);
2685 clear_extent_bit(io_tree, ordered_extent->file_offset,
2686 ordered_extent->file_offset + ordered_extent->len - 1,
2687 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2691 trans = btrfs_join_transaction_nolock(root);
2693 trans = btrfs_join_transaction(root);
2694 if (IS_ERR(trans)) {
2695 ret = PTR_ERR(trans);
2699 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2701 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2702 compress_type = ordered_extent->compress_type;
2703 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2704 BUG_ON(compress_type);
2705 ret = btrfs_mark_extent_written(trans, inode,
2706 ordered_extent->file_offset,
2707 ordered_extent->file_offset +
2708 ordered_extent->len);
2710 BUG_ON(root == root->fs_info->tree_root);
2711 ret = insert_reserved_file_extent(trans, inode,
2712 ordered_extent->file_offset,
2713 ordered_extent->start,
2714 ordered_extent->disk_len,
2715 ordered_extent->len,
2716 ordered_extent->len,
2717 compress_type, 0, 0,
2718 BTRFS_FILE_EXTENT_REG);
2720 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2721 ordered_extent->file_offset, ordered_extent->len,
2724 btrfs_abort_transaction(trans, root, ret);
2728 add_pending_csums(trans, inode, ordered_extent->file_offset,
2729 &ordered_extent->list);
2731 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2732 ret = btrfs_update_inode_fallback(trans, root, inode);
2733 if (ret) { /* -ENOMEM or corruption */
2734 btrfs_abort_transaction(trans, root, ret);
2739 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2740 ordered_extent->file_offset +
2741 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2743 if (root != root->fs_info->tree_root)
2744 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2746 btrfs_end_transaction(trans, root);
2749 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2750 ordered_extent->file_offset +
2751 ordered_extent->len - 1, NULL, GFP_NOFS);
2754 * If the ordered extent had an IOERR or something else went
2755 * wrong we need to return the space for this ordered extent
2756 * back to the allocator.
2758 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2759 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2760 btrfs_free_reserved_extent(root, ordered_extent->start,
2761 ordered_extent->disk_len);
2766 * This needs to be done to make sure anybody waiting knows we are done
2767 * updating everything for this ordered extent.
2769 btrfs_remove_ordered_extent(inode, ordered_extent);
2771 /* for snapshot-aware defrag */
2773 relink_file_extents(new);
2776 btrfs_put_ordered_extent(ordered_extent);
2777 /* once for the tree */
2778 btrfs_put_ordered_extent(ordered_extent);
2783 static void finish_ordered_fn(struct btrfs_work *work)
2785 struct btrfs_ordered_extent *ordered_extent;
2786 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2787 btrfs_finish_ordered_io(ordered_extent);
2790 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2791 struct extent_state *state, int uptodate)
2793 struct inode *inode = page->mapping->host;
2794 struct btrfs_root *root = BTRFS_I(inode)->root;
2795 struct btrfs_ordered_extent *ordered_extent = NULL;
2796 struct btrfs_workers *workers;
2798 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2800 ClearPagePrivate2(page);
2801 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2802 end - start + 1, uptodate))
2805 ordered_extent->work.func = finish_ordered_fn;
2806 ordered_extent->work.flags = 0;
2808 if (btrfs_is_free_space_inode(inode))
2809 workers = &root->fs_info->endio_freespace_worker;
2811 workers = &root->fs_info->endio_write_workers;
2812 btrfs_queue_worker(workers, &ordered_extent->work);
2818 * when reads are done, we need to check csums to verify the data is correct
2819 * if there's a match, we allow the bio to finish. If not, the code in
2820 * extent_io.c will try to find good copies for us.
2822 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2823 struct extent_state *state, int mirror)
2825 size_t offset = start - page_offset(page);
2826 struct inode *inode = page->mapping->host;
2827 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2829 u64 private = ~(u32)0;
2831 struct btrfs_root *root = BTRFS_I(inode)->root;
2833 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2834 DEFAULT_RATELIMIT_BURST);
2836 if (PageChecked(page)) {
2837 ClearPageChecked(page);
2841 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2844 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2845 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2846 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2851 if (state && state->start == start) {
2852 private = state->private;
2855 ret = get_state_private(io_tree, start, &private);
2857 kaddr = kmap_atomic(page);
2861 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
2862 btrfs_csum_final(csum, (char *)&csum);
2863 if (csum != private)
2866 kunmap_atomic(kaddr);
2871 if (__ratelimit(&_rs))
2872 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2873 (unsigned long long)btrfs_ino(page->mapping->host),
2874 (unsigned long long)start, csum,
2875 (unsigned long long)private);
2876 memset(kaddr + offset, 1, end - start + 1);
2877 flush_dcache_page(page);
2878 kunmap_atomic(kaddr);
2884 struct delayed_iput {
2885 struct list_head list;
2886 struct inode *inode;
2889 /* JDM: If this is fs-wide, why can't we add a pointer to
2890 * btrfs_inode instead and avoid the allocation? */
2891 void btrfs_add_delayed_iput(struct inode *inode)
2893 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2894 struct delayed_iput *delayed;
2896 if (atomic_add_unless(&inode->i_count, -1, 1))
2899 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2900 delayed->inode = inode;
2902 spin_lock(&fs_info->delayed_iput_lock);
2903 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2904 spin_unlock(&fs_info->delayed_iput_lock);
2907 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2910 struct btrfs_fs_info *fs_info = root->fs_info;
2911 struct delayed_iput *delayed;
2914 spin_lock(&fs_info->delayed_iput_lock);
2915 empty = list_empty(&fs_info->delayed_iputs);
2916 spin_unlock(&fs_info->delayed_iput_lock);
2920 spin_lock(&fs_info->delayed_iput_lock);
2921 list_splice_init(&fs_info->delayed_iputs, &list);
2922 spin_unlock(&fs_info->delayed_iput_lock);
2924 while (!list_empty(&list)) {
2925 delayed = list_entry(list.next, struct delayed_iput, list);
2926 list_del(&delayed->list);
2927 iput(delayed->inode);
2933 * This is called in transaction commit time. If there are no orphan
2934 * files in the subvolume, it removes orphan item and frees block_rsv
2937 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2938 struct btrfs_root *root)
2940 struct btrfs_block_rsv *block_rsv;
2943 if (atomic_read(&root->orphan_inodes) ||
2944 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2947 spin_lock(&root->orphan_lock);
2948 if (atomic_read(&root->orphan_inodes)) {
2949 spin_unlock(&root->orphan_lock);
2953 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2954 spin_unlock(&root->orphan_lock);
2958 block_rsv = root->orphan_block_rsv;
2959 root->orphan_block_rsv = NULL;
2960 spin_unlock(&root->orphan_lock);
2962 if (root->orphan_item_inserted &&
2963 btrfs_root_refs(&root->root_item) > 0) {
2964 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2965 root->root_key.objectid);
2967 root->orphan_item_inserted = 0;
2971 WARN_ON(block_rsv->size > 0);
2972 btrfs_free_block_rsv(root, block_rsv);
2977 * This creates an orphan entry for the given inode in case something goes
2978 * wrong in the middle of an unlink/truncate.
2980 * NOTE: caller of this function should reserve 5 units of metadata for
2983 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2985 struct btrfs_root *root = BTRFS_I(inode)->root;
2986 struct btrfs_block_rsv *block_rsv = NULL;
2991 if (!root->orphan_block_rsv) {
2992 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2997 spin_lock(&root->orphan_lock);
2998 if (!root->orphan_block_rsv) {
2999 root->orphan_block_rsv = block_rsv;
3000 } else if (block_rsv) {
3001 btrfs_free_block_rsv(root, block_rsv);
3005 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3006 &BTRFS_I(inode)->runtime_flags)) {
3009 * For proper ENOSPC handling, we should do orphan
3010 * cleanup when mounting. But this introduces backward
3011 * compatibility issue.
3013 if (!xchg(&root->orphan_item_inserted, 1))
3019 atomic_inc(&root->orphan_inodes);
3022 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3023 &BTRFS_I(inode)->runtime_flags))
3025 spin_unlock(&root->orphan_lock);
3027 /* grab metadata reservation from transaction handle */
3029 ret = btrfs_orphan_reserve_metadata(trans, inode);
3030 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3033 /* insert an orphan item to track this unlinked/truncated file */
3035 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3036 if (ret && ret != -EEXIST) {
3037 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3038 &BTRFS_I(inode)->runtime_flags);
3039 btrfs_abort_transaction(trans, root, ret);
3045 /* insert an orphan item to track subvolume contains orphan files */
3047 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3048 root->root_key.objectid);
3049 if (ret && ret != -EEXIST) {
3050 btrfs_abort_transaction(trans, root, ret);
3058 * We have done the truncate/delete so we can go ahead and remove the orphan
3059 * item for this particular inode.
3061 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3062 struct inode *inode)
3064 struct btrfs_root *root = BTRFS_I(inode)->root;
3065 int delete_item = 0;
3066 int release_rsv = 0;
3069 spin_lock(&root->orphan_lock);
3070 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3071 &BTRFS_I(inode)->runtime_flags))
3074 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3075 &BTRFS_I(inode)->runtime_flags))
3077 spin_unlock(&root->orphan_lock);
3079 if (trans && delete_item) {
3080 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3081 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3085 btrfs_orphan_release_metadata(inode);
3086 atomic_dec(&root->orphan_inodes);
3093 * this cleans up any orphans that may be left on the list from the last use
3096 int btrfs_orphan_cleanup(struct btrfs_root *root)
3098 struct btrfs_path *path;
3099 struct extent_buffer *leaf;
3100 struct btrfs_key key, found_key;
3101 struct btrfs_trans_handle *trans;
3102 struct inode *inode;
3103 u64 last_objectid = 0;
3104 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3106 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3109 path = btrfs_alloc_path();
3116 key.objectid = BTRFS_ORPHAN_OBJECTID;
3117 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3118 key.offset = (u64)-1;
3121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3126 * if ret == 0 means we found what we were searching for, which
3127 * is weird, but possible, so only screw with path if we didn't
3128 * find the key and see if we have stuff that matches
3132 if (path->slots[0] == 0)
3137 /* pull out the item */
3138 leaf = path->nodes[0];
3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3141 /* make sure the item matches what we want */
3142 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3144 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3147 /* release the path since we're done with it */
3148 btrfs_release_path(path);
3151 * this is where we are basically btrfs_lookup, without the
3152 * crossing root thing. we store the inode number in the
3153 * offset of the orphan item.
3156 if (found_key.offset == last_objectid) {
3157 btrfs_err(root->fs_info,
3158 "Error removing orphan entry, stopping orphan cleanup");
3163 last_objectid = found_key.offset;
3165 found_key.objectid = found_key.offset;
3166 found_key.type = BTRFS_INODE_ITEM_KEY;
3167 found_key.offset = 0;
3168 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3169 ret = PTR_ERR_OR_ZERO(inode);
3170 if (ret && ret != -ESTALE)
3173 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3174 struct btrfs_root *dead_root;
3175 struct btrfs_fs_info *fs_info = root->fs_info;
3176 int is_dead_root = 0;
3179 * this is an orphan in the tree root. Currently these
3180 * could come from 2 sources:
3181 * a) a snapshot deletion in progress
3182 * b) a free space cache inode
3183 * We need to distinguish those two, as the snapshot
3184 * orphan must not get deleted.
3185 * find_dead_roots already ran before us, so if this
3186 * is a snapshot deletion, we should find the root
3187 * in the dead_roots list
3189 spin_lock(&fs_info->trans_lock);
3190 list_for_each_entry(dead_root, &fs_info->dead_roots,
3192 if (dead_root->root_key.objectid ==
3193 found_key.objectid) {
3198 spin_unlock(&fs_info->trans_lock);
3200 /* prevent this orphan from being found again */
3201 key.offset = found_key.objectid - 1;
3206 * Inode is already gone but the orphan item is still there,
3207 * kill the orphan item.
3209 if (ret == -ESTALE) {
3210 trans = btrfs_start_transaction(root, 1);
3211 if (IS_ERR(trans)) {
3212 ret = PTR_ERR(trans);
3215 btrfs_debug(root->fs_info, "auto deleting %Lu",
3216 found_key.objectid);
3217 ret = btrfs_del_orphan_item(trans, root,
3218 found_key.objectid);
3219 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3220 btrfs_end_transaction(trans, root);
3225 * add this inode to the orphan list so btrfs_orphan_del does
3226 * the proper thing when we hit it
3228 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3229 &BTRFS_I(inode)->runtime_flags);
3230 atomic_inc(&root->orphan_inodes);
3232 /* if we have links, this was a truncate, lets do that */
3233 if (inode->i_nlink) {
3234 if (!S_ISREG(inode->i_mode)) {
3241 /* 1 for the orphan item deletion. */
3242 trans = btrfs_start_transaction(root, 1);
3243 if (IS_ERR(trans)) {
3245 ret = PTR_ERR(trans);
3248 ret = btrfs_orphan_add(trans, inode);
3249 btrfs_end_transaction(trans, root);
3255 ret = btrfs_truncate(inode);
3257 btrfs_orphan_del(NULL, inode);
3262 /* this will do delete_inode and everything for us */
3267 /* release the path since we're done with it */
3268 btrfs_release_path(path);
3270 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3272 if (root->orphan_block_rsv)
3273 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3276 if (root->orphan_block_rsv || root->orphan_item_inserted) {
3277 trans = btrfs_join_transaction(root);
3279 btrfs_end_transaction(trans, root);
3283 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3285 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3289 btrfs_crit(root->fs_info,
3290 "could not do orphan cleanup %d", ret);
3291 btrfs_free_path(path);
3296 * very simple check to peek ahead in the leaf looking for xattrs. If we
3297 * don't find any xattrs, we know there can't be any acls.
3299 * slot is the slot the inode is in, objectid is the objectid of the inode
3301 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3302 int slot, u64 objectid)
3304 u32 nritems = btrfs_header_nritems(leaf);
3305 struct btrfs_key found_key;
3306 static u64 xattr_access = 0;
3307 static u64 xattr_default = 0;
3310 if (!xattr_access) {
3311 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3312 strlen(POSIX_ACL_XATTR_ACCESS));
3313 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3314 strlen(POSIX_ACL_XATTR_DEFAULT));
3318 while (slot < nritems) {
3319 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3321 /* we found a different objectid, there must not be acls */
3322 if (found_key.objectid != objectid)
3325 /* we found an xattr, assume we've got an acl */
3326 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3327 if (found_key.offset == xattr_access ||
3328 found_key.offset == xattr_default)
3333 * we found a key greater than an xattr key, there can't
3334 * be any acls later on
3336 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3343 * it goes inode, inode backrefs, xattrs, extents,
3344 * so if there are a ton of hard links to an inode there can
3345 * be a lot of backrefs. Don't waste time searching too hard,
3346 * this is just an optimization
3351 /* we hit the end of the leaf before we found an xattr or
3352 * something larger than an xattr. We have to assume the inode
3359 * read an inode from the btree into the in-memory inode
3361 static void btrfs_read_locked_inode(struct inode *inode)
3363 struct btrfs_path *path;
3364 struct extent_buffer *leaf;
3365 struct btrfs_inode_item *inode_item;
3366 struct btrfs_timespec *tspec;
3367 struct btrfs_root *root = BTRFS_I(inode)->root;
3368 struct btrfs_key location;
3372 bool filled = false;
3374 ret = btrfs_fill_inode(inode, &rdev);
3378 path = btrfs_alloc_path();
3382 path->leave_spinning = 1;
3383 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3385 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3389 leaf = path->nodes[0];
3394 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3395 struct btrfs_inode_item);
3396 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3397 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3398 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3399 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3400 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3402 tspec = btrfs_inode_atime(inode_item);
3403 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3404 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3406 tspec = btrfs_inode_mtime(inode_item);
3407 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3408 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3410 tspec = btrfs_inode_ctime(inode_item);
3411 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3412 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3414 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3415 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3416 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3419 * If we were modified in the current generation and evicted from memory
3420 * and then re-read we need to do a full sync since we don't have any
3421 * idea about which extents were modified before we were evicted from
3424 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3425 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3426 &BTRFS_I(inode)->runtime_flags);
3428 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3429 inode->i_generation = BTRFS_I(inode)->generation;
3431 rdev = btrfs_inode_rdev(leaf, inode_item);
3433 BTRFS_I(inode)->index_cnt = (u64)-1;
3434 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3437 * try to precache a NULL acl entry for files that don't have
3438 * any xattrs or acls
3440 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3443 cache_no_acl(inode);
3445 btrfs_free_path(path);
3447 switch (inode->i_mode & S_IFMT) {
3449 inode->i_mapping->a_ops = &btrfs_aops;
3450 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3451 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3452 inode->i_fop = &btrfs_file_operations;
3453 inode->i_op = &btrfs_file_inode_operations;
3456 inode->i_fop = &btrfs_dir_file_operations;
3457 if (root == root->fs_info->tree_root)
3458 inode->i_op = &btrfs_dir_ro_inode_operations;
3460 inode->i_op = &btrfs_dir_inode_operations;
3463 inode->i_op = &btrfs_symlink_inode_operations;
3464 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3465 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3468 inode->i_op = &btrfs_special_inode_operations;
3469 init_special_inode(inode, inode->i_mode, rdev);
3473 btrfs_update_iflags(inode);
3477 btrfs_free_path(path);
3478 make_bad_inode(inode);
3482 * given a leaf and an inode, copy the inode fields into the leaf
3484 static void fill_inode_item(struct btrfs_trans_handle *trans,
3485 struct extent_buffer *leaf,
3486 struct btrfs_inode_item *item,
3487 struct inode *inode)
3489 struct btrfs_map_token token;
3491 btrfs_init_map_token(&token);
3493 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3494 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3495 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3497 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3498 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3500 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3501 inode->i_atime.tv_sec, &token);
3502 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3503 inode->i_atime.tv_nsec, &token);
3505 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3506 inode->i_mtime.tv_sec, &token);
3507 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3508 inode->i_mtime.tv_nsec, &token);
3510 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3511 inode->i_ctime.tv_sec, &token);
3512 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3513 inode->i_ctime.tv_nsec, &token);
3515 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3517 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3519 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3520 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3521 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3522 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3523 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3527 * copy everything in the in-memory inode into the btree.
3529 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3530 struct btrfs_root *root, struct inode *inode)
3532 struct btrfs_inode_item *inode_item;
3533 struct btrfs_path *path;
3534 struct extent_buffer *leaf;
3537 path = btrfs_alloc_path();
3541 path->leave_spinning = 1;
3542 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3550 btrfs_unlock_up_safe(path, 1);
3551 leaf = path->nodes[0];
3552 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3553 struct btrfs_inode_item);
3555 fill_inode_item(trans, leaf, inode_item, inode);
3556 btrfs_mark_buffer_dirty(leaf);
3557 btrfs_set_inode_last_trans(trans, inode);
3560 btrfs_free_path(path);
3565 * copy everything in the in-memory inode into the btree.
3567 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3568 struct btrfs_root *root, struct inode *inode)
3573 * If the inode is a free space inode, we can deadlock during commit
3574 * if we put it into the delayed code.
3576 * The data relocation inode should also be directly updated
3579 if (!btrfs_is_free_space_inode(inode)
3580 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3581 btrfs_update_root_times(trans, root);
3583 ret = btrfs_delayed_update_inode(trans, root, inode);
3585 btrfs_set_inode_last_trans(trans, inode);
3589 return btrfs_update_inode_item(trans, root, inode);
3592 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3593 struct btrfs_root *root,
3594 struct inode *inode)
3598 ret = btrfs_update_inode(trans, root, inode);
3600 return btrfs_update_inode_item(trans, root, inode);
3605 * unlink helper that gets used here in inode.c and in the tree logging
3606 * recovery code. It remove a link in a directory with a given name, and
3607 * also drops the back refs in the inode to the directory
3609 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3610 struct btrfs_root *root,
3611 struct inode *dir, struct inode *inode,
3612 const char *name, int name_len)
3614 struct btrfs_path *path;
3616 struct extent_buffer *leaf;
3617 struct btrfs_dir_item *di;
3618 struct btrfs_key key;
3620 u64 ino = btrfs_ino(inode);
3621 u64 dir_ino = btrfs_ino(dir);
3623 path = btrfs_alloc_path();
3629 path->leave_spinning = 1;
3630 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3631 name, name_len, -1);
3640 leaf = path->nodes[0];
3641 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3642 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3645 btrfs_release_path(path);
3647 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3650 btrfs_info(root->fs_info,
3651 "failed to delete reference to %.*s, inode %llu parent %llu",
3653 (unsigned long long)ino, (unsigned long long)dir_ino);
3654 btrfs_abort_transaction(trans, root, ret);
3658 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3660 btrfs_abort_transaction(trans, root, ret);
3664 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3666 if (ret != 0 && ret != -ENOENT) {
3667 btrfs_abort_transaction(trans, root, ret);
3671 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3676 btrfs_abort_transaction(trans, root, ret);
3678 btrfs_free_path(path);
3682 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3683 inode_inc_iversion(inode);
3684 inode_inc_iversion(dir);
3685 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3686 ret = btrfs_update_inode(trans, root, dir);
3691 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3692 struct btrfs_root *root,
3693 struct inode *dir, struct inode *inode,
3694 const char *name, int name_len)
3697 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3699 btrfs_drop_nlink(inode);
3700 ret = btrfs_update_inode(trans, root, inode);
3706 * helper to start transaction for unlink and rmdir.
3708 * unlink and rmdir are special in btrfs, they do not always free space, so
3709 * if we cannot make our reservations the normal way try and see if there is
3710 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3711 * allow the unlink to occur.
3713 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3715 struct btrfs_trans_handle *trans;
3716 struct btrfs_root *root = BTRFS_I(dir)->root;
3720 * 1 for the possible orphan item
3721 * 1 for the dir item
3722 * 1 for the dir index
3723 * 1 for the inode ref
3726 trans = btrfs_start_transaction(root, 5);
3727 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3730 if (PTR_ERR(trans) == -ENOSPC) {
3731 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3733 trans = btrfs_start_transaction(root, 0);
3736 ret = btrfs_cond_migrate_bytes(root->fs_info,
3737 &root->fs_info->trans_block_rsv,
3740 btrfs_end_transaction(trans, root);
3741 return ERR_PTR(ret);
3743 trans->block_rsv = &root->fs_info->trans_block_rsv;
3744 trans->bytes_reserved = num_bytes;
3749 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3751 struct btrfs_root *root = BTRFS_I(dir)->root;
3752 struct btrfs_trans_handle *trans;
3753 struct inode *inode = dentry->d_inode;
3756 trans = __unlink_start_trans(dir);
3758 return PTR_ERR(trans);
3760 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3762 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3763 dentry->d_name.name, dentry->d_name.len);
3767 if (inode->i_nlink == 0) {
3768 ret = btrfs_orphan_add(trans, inode);
3774 btrfs_end_transaction(trans, root);
3775 btrfs_btree_balance_dirty(root);
3779 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3780 struct btrfs_root *root,
3781 struct inode *dir, u64 objectid,
3782 const char *name, int name_len)
3784 struct btrfs_path *path;
3785 struct extent_buffer *leaf;
3786 struct btrfs_dir_item *di;
3787 struct btrfs_key key;
3790 u64 dir_ino = btrfs_ino(dir);
3792 path = btrfs_alloc_path();
3796 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3797 name, name_len, -1);
3798 if (IS_ERR_OR_NULL(di)) {
3806 leaf = path->nodes[0];
3807 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3808 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3809 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3811 btrfs_abort_transaction(trans, root, ret);
3814 btrfs_release_path(path);
3816 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3817 objectid, root->root_key.objectid,
3818 dir_ino, &index, name, name_len);
3820 if (ret != -ENOENT) {
3821 btrfs_abort_transaction(trans, root, ret);
3824 di = btrfs_search_dir_index_item(root, path, dir_ino,
3826 if (IS_ERR_OR_NULL(di)) {
3831 btrfs_abort_transaction(trans, root, ret);
3835 leaf = path->nodes[0];
3836 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3837 btrfs_release_path(path);
3840 btrfs_release_path(path);
3842 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3844 btrfs_abort_transaction(trans, root, ret);
3848 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3849 inode_inc_iversion(dir);
3850 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3851 ret = btrfs_update_inode_fallback(trans, root, dir);
3853 btrfs_abort_transaction(trans, root, ret);
3855 btrfs_free_path(path);
3859 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3861 struct inode *inode = dentry->d_inode;
3863 struct btrfs_root *root = BTRFS_I(dir)->root;
3864 struct btrfs_trans_handle *trans;
3866 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3868 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3871 trans = __unlink_start_trans(dir);
3873 return PTR_ERR(trans);
3875 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3876 err = btrfs_unlink_subvol(trans, root, dir,
3877 BTRFS_I(inode)->location.objectid,
3878 dentry->d_name.name,
3879 dentry->d_name.len);
3883 err = btrfs_orphan_add(trans, inode);
3887 /* now the directory is empty */
3888 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3889 dentry->d_name.name, dentry->d_name.len);
3891 btrfs_i_size_write(inode, 0);
3893 btrfs_end_transaction(trans, root);
3894 btrfs_btree_balance_dirty(root);
3900 * this can truncate away extent items, csum items and directory items.
3901 * It starts at a high offset and removes keys until it can't find
3902 * any higher than new_size
3904 * csum items that cross the new i_size are truncated to the new size
3907 * min_type is the minimum key type to truncate down to. If set to 0, this
3908 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3910 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3911 struct btrfs_root *root,
3912 struct inode *inode,
3913 u64 new_size, u32 min_type)
3915 struct btrfs_path *path;
3916 struct extent_buffer *leaf;
3917 struct btrfs_file_extent_item *fi;
3918 struct btrfs_key key;
3919 struct btrfs_key found_key;
3920 u64 extent_start = 0;
3921 u64 extent_num_bytes = 0;
3922 u64 extent_offset = 0;
3924 u32 found_type = (u8)-1;
3927 int pending_del_nr = 0;
3928 int pending_del_slot = 0;
3929 int extent_type = -1;
3932 u64 ino = btrfs_ino(inode);
3934 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3936 path = btrfs_alloc_path();
3942 * We want to drop from the next block forward in case this new size is
3943 * not block aligned since we will be keeping the last block of the
3944 * extent just the way it is.
3946 if (root->ref_cows || root == root->fs_info->tree_root)
3947 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3948 root->sectorsize), (u64)-1, 0);
3951 * This function is also used to drop the items in the log tree before
3952 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3953 * it is used to drop the loged items. So we shouldn't kill the delayed
3956 if (min_type == 0 && root == BTRFS_I(inode)->root)
3957 btrfs_kill_delayed_inode_items(inode);
3960 key.offset = (u64)-1;
3964 path->leave_spinning = 1;
3965 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3972 /* there are no items in the tree for us to truncate, we're
3975 if (path->slots[0] == 0)
3982 leaf = path->nodes[0];
3983 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3984 found_type = btrfs_key_type(&found_key);
3986 if (found_key.objectid != ino)
3989 if (found_type < min_type)
3992 item_end = found_key.offset;
3993 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3994 fi = btrfs_item_ptr(leaf, path->slots[0],
3995 struct btrfs_file_extent_item);
3996 extent_type = btrfs_file_extent_type(leaf, fi);
3997 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3999 btrfs_file_extent_num_bytes(leaf, fi);
4000 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4001 item_end += btrfs_file_extent_inline_len(leaf,
4006 if (found_type > min_type) {
4009 if (item_end < new_size)
4011 if (found_key.offset >= new_size)
4017 /* FIXME, shrink the extent if the ref count is only 1 */
4018 if (found_type != BTRFS_EXTENT_DATA_KEY)
4021 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4023 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4025 u64 orig_num_bytes =
4026 btrfs_file_extent_num_bytes(leaf, fi);
4027 extent_num_bytes = ALIGN(new_size -
4030 btrfs_set_file_extent_num_bytes(leaf, fi,
4032 num_dec = (orig_num_bytes -
4034 if (root->ref_cows && extent_start != 0)
4035 inode_sub_bytes(inode, num_dec);
4036 btrfs_mark_buffer_dirty(leaf);
4039 btrfs_file_extent_disk_num_bytes(leaf,
4041 extent_offset = found_key.offset -
4042 btrfs_file_extent_offset(leaf, fi);
4044 /* FIXME blocksize != 4096 */
4045 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4046 if (extent_start != 0) {
4049 inode_sub_bytes(inode, num_dec);
4052 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4054 * we can't truncate inline items that have had
4058 btrfs_file_extent_compression(leaf, fi) == 0 &&
4059 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4060 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4061 u32 size = new_size - found_key.offset;
4063 if (root->ref_cows) {
4064 inode_sub_bytes(inode, item_end + 1 -
4068 btrfs_file_extent_calc_inline_size(size);
4069 btrfs_truncate_item(root, path, size, 1);
4070 } else if (root->ref_cows) {
4071 inode_sub_bytes(inode, item_end + 1 -
4077 if (!pending_del_nr) {
4078 /* no pending yet, add ourselves */
4079 pending_del_slot = path->slots[0];
4081 } else if (pending_del_nr &&
4082 path->slots[0] + 1 == pending_del_slot) {
4083 /* hop on the pending chunk */
4085 pending_del_slot = path->slots[0];
4092 if (found_extent && (root->ref_cows ||
4093 root == root->fs_info->tree_root)) {
4094 btrfs_set_path_blocking(path);
4095 ret = btrfs_free_extent(trans, root, extent_start,
4096 extent_num_bytes, 0,
4097 btrfs_header_owner(leaf),
4098 ino, extent_offset, 0);
4102 if (found_type == BTRFS_INODE_ITEM_KEY)
4105 if (path->slots[0] == 0 ||
4106 path->slots[0] != pending_del_slot) {
4107 if (pending_del_nr) {
4108 ret = btrfs_del_items(trans, root, path,
4112 btrfs_abort_transaction(trans,
4118 btrfs_release_path(path);
4125 if (pending_del_nr) {
4126 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4129 btrfs_abort_transaction(trans, root, ret);
4132 btrfs_free_path(path);
4137 * btrfs_truncate_page - read, zero a chunk and write a page
4138 * @inode - inode that we're zeroing
4139 * @from - the offset to start zeroing
4140 * @len - the length to zero, 0 to zero the entire range respective to the
4142 * @front - zero up to the offset instead of from the offset on
4144 * This will find the page for the "from" offset and cow the page and zero the
4145 * part we want to zero. This is used with truncate and hole punching.
4147 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4150 struct address_space *mapping = inode->i_mapping;
4151 struct btrfs_root *root = BTRFS_I(inode)->root;
4152 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4153 struct btrfs_ordered_extent *ordered;
4154 struct extent_state *cached_state = NULL;
4156 u32 blocksize = root->sectorsize;
4157 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4158 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4160 gfp_t mask = btrfs_alloc_write_mask(mapping);
4165 if ((offset & (blocksize - 1)) == 0 &&
4166 (!len || ((len & (blocksize - 1)) == 0)))
4168 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4173 page = find_or_create_page(mapping, index, mask);
4175 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4180 page_start = page_offset(page);
4181 page_end = page_start + PAGE_CACHE_SIZE - 1;
4183 if (!PageUptodate(page)) {
4184 ret = btrfs_readpage(NULL, page);
4186 if (page->mapping != mapping) {
4188 page_cache_release(page);
4191 if (!PageUptodate(page)) {
4196 wait_on_page_writeback(page);
4198 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4199 set_page_extent_mapped(page);
4201 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4203 unlock_extent_cached(io_tree, page_start, page_end,
4204 &cached_state, GFP_NOFS);
4206 page_cache_release(page);
4207 btrfs_start_ordered_extent(inode, ordered, 1);
4208 btrfs_put_ordered_extent(ordered);
4212 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4213 EXTENT_DIRTY | EXTENT_DELALLOC |
4214 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4215 0, 0, &cached_state, GFP_NOFS);
4217 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4220 unlock_extent_cached(io_tree, page_start, page_end,
4221 &cached_state, GFP_NOFS);
4225 if (offset != PAGE_CACHE_SIZE) {
4227 len = PAGE_CACHE_SIZE - offset;
4230 memset(kaddr, 0, offset);
4232 memset(kaddr + offset, 0, len);
4233 flush_dcache_page(page);
4236 ClearPageChecked(page);
4237 set_page_dirty(page);
4238 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4243 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4245 page_cache_release(page);
4251 * This function puts in dummy file extents for the area we're creating a hole
4252 * for. So if we are truncating this file to a larger size we need to insert
4253 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4254 * the range between oldsize and size
4256 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4258 struct btrfs_trans_handle *trans;
4259 struct btrfs_root *root = BTRFS_I(inode)->root;
4260 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4261 struct extent_map *em = NULL;
4262 struct extent_state *cached_state = NULL;
4263 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4264 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4265 u64 block_end = ALIGN(size, root->sectorsize);
4272 * If our size started in the middle of a page we need to zero out the
4273 * rest of the page before we expand the i_size, otherwise we could
4274 * expose stale data.
4276 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4280 if (size <= hole_start)
4284 struct btrfs_ordered_extent *ordered;
4285 btrfs_wait_ordered_range(inode, hole_start,
4286 block_end - hole_start);
4287 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4289 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4292 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4293 &cached_state, GFP_NOFS);
4294 btrfs_put_ordered_extent(ordered);
4297 cur_offset = hole_start;
4299 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4300 block_end - cur_offset, 0);
4306 last_byte = min(extent_map_end(em), block_end);
4307 last_byte = ALIGN(last_byte , root->sectorsize);
4308 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4309 struct extent_map *hole_em;
4310 hole_size = last_byte - cur_offset;
4312 trans = btrfs_start_transaction(root, 3);
4313 if (IS_ERR(trans)) {
4314 err = PTR_ERR(trans);
4318 err = btrfs_drop_extents(trans, root, inode,
4320 cur_offset + hole_size, 1);
4322 btrfs_abort_transaction(trans, root, err);
4323 btrfs_end_transaction(trans, root);
4327 err = btrfs_insert_file_extent(trans, root,
4328 btrfs_ino(inode), cur_offset, 0,
4329 0, hole_size, 0, hole_size,
4332 btrfs_abort_transaction(trans, root, err);
4333 btrfs_end_transaction(trans, root);
4337 btrfs_drop_extent_cache(inode, cur_offset,
4338 cur_offset + hole_size - 1, 0);
4339 hole_em = alloc_extent_map();
4341 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4342 &BTRFS_I(inode)->runtime_flags);
4345 hole_em->start = cur_offset;
4346 hole_em->len = hole_size;
4347 hole_em->orig_start = cur_offset;
4349 hole_em->block_start = EXTENT_MAP_HOLE;
4350 hole_em->block_len = 0;
4351 hole_em->orig_block_len = 0;
4352 hole_em->ram_bytes = hole_size;
4353 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4354 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4355 hole_em->generation = trans->transid;
4358 write_lock(&em_tree->lock);
4359 err = add_extent_mapping(em_tree, hole_em, 1);
4360 write_unlock(&em_tree->lock);
4363 btrfs_drop_extent_cache(inode, cur_offset,
4367 free_extent_map(hole_em);
4369 btrfs_update_inode(trans, root, inode);
4370 btrfs_end_transaction(trans, root);
4372 free_extent_map(em);
4374 cur_offset = last_byte;
4375 if (cur_offset >= block_end)
4379 free_extent_map(em);
4380 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4385 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4387 struct btrfs_root *root = BTRFS_I(inode)->root;
4388 struct btrfs_trans_handle *trans;
4389 loff_t oldsize = i_size_read(inode);
4390 loff_t newsize = attr->ia_size;
4391 int mask = attr->ia_valid;
4394 if (newsize == oldsize)
4398 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4399 * special case where we need to update the times despite not having
4400 * these flags set. For all other operations the VFS set these flags
4401 * explicitly if it wants a timestamp update.
4403 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4404 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4406 if (newsize > oldsize) {
4407 truncate_pagecache(inode, oldsize, newsize);
4408 ret = btrfs_cont_expand(inode, oldsize, newsize);
4412 trans = btrfs_start_transaction(root, 1);
4414 return PTR_ERR(trans);
4416 i_size_write(inode, newsize);
4417 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4418 ret = btrfs_update_inode(trans, root, inode);
4419 btrfs_end_transaction(trans, root);
4423 * We're truncating a file that used to have good data down to
4424 * zero. Make sure it gets into the ordered flush list so that
4425 * any new writes get down to disk quickly.
4428 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4429 &BTRFS_I(inode)->runtime_flags);
4432 * 1 for the orphan item we're going to add
4433 * 1 for the orphan item deletion.
4435 trans = btrfs_start_transaction(root, 2);
4437 return PTR_ERR(trans);
4440 * We need to do this in case we fail at _any_ point during the
4441 * actual truncate. Once we do the truncate_setsize we could
4442 * invalidate pages which forces any outstanding ordered io to
4443 * be instantly completed which will give us extents that need
4444 * to be truncated. If we fail to get an orphan inode down we
4445 * could have left over extents that were never meant to live,
4446 * so we need to garuntee from this point on that everything
4447 * will be consistent.
4449 ret = btrfs_orphan_add(trans, inode);
4450 btrfs_end_transaction(trans, root);
4454 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4455 truncate_setsize(inode, newsize);
4457 /* Disable nonlocked read DIO to avoid the end less truncate */
4458 btrfs_inode_block_unlocked_dio(inode);
4459 inode_dio_wait(inode);
4460 btrfs_inode_resume_unlocked_dio(inode);
4462 ret = btrfs_truncate(inode);
4463 if (ret && inode->i_nlink)
4464 btrfs_orphan_del(NULL, inode);
4470 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4472 struct inode *inode = dentry->d_inode;
4473 struct btrfs_root *root = BTRFS_I(inode)->root;
4476 if (btrfs_root_readonly(root))
4479 err = inode_change_ok(inode, attr);
4483 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4484 err = btrfs_setsize(inode, attr);
4489 if (attr->ia_valid) {
4490 setattr_copy(inode, attr);
4491 inode_inc_iversion(inode);
4492 err = btrfs_dirty_inode(inode);
4494 if (!err && attr->ia_valid & ATTR_MODE)
4495 err = btrfs_acl_chmod(inode);
4501 void btrfs_evict_inode(struct inode *inode)
4503 struct btrfs_trans_handle *trans;
4504 struct btrfs_root *root = BTRFS_I(inode)->root;
4505 struct btrfs_block_rsv *rsv, *global_rsv;
4506 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4509 trace_btrfs_inode_evict(inode);
4511 truncate_inode_pages(&inode->i_data, 0);
4512 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
4513 btrfs_is_free_space_inode(inode)))
4516 if (is_bad_inode(inode)) {
4517 btrfs_orphan_del(NULL, inode);
4520 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4521 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4523 if (root->fs_info->log_root_recovering) {
4524 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4525 &BTRFS_I(inode)->runtime_flags));
4529 if (inode->i_nlink > 0) {
4530 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4534 ret = btrfs_commit_inode_delayed_inode(inode);
4536 btrfs_orphan_del(NULL, inode);
4540 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4542 btrfs_orphan_del(NULL, inode);
4545 rsv->size = min_size;
4547 global_rsv = &root->fs_info->global_block_rsv;
4549 btrfs_i_size_write(inode, 0);
4552 * This is a bit simpler than btrfs_truncate since we've already
4553 * reserved our space for our orphan item in the unlink, so we just
4554 * need to reserve some slack space in case we add bytes and update
4555 * inode item when doing the truncate.
4558 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4559 BTRFS_RESERVE_FLUSH_LIMIT);
4562 * Try and steal from the global reserve since we will
4563 * likely not use this space anyway, we want to try as
4564 * hard as possible to get this to work.
4567 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4570 btrfs_warn(root->fs_info,
4571 "Could not get space for a delete, will truncate on mount %d",
4573 btrfs_orphan_del(NULL, inode);
4574 btrfs_free_block_rsv(root, rsv);
4578 trans = btrfs_join_transaction(root);
4579 if (IS_ERR(trans)) {
4580 btrfs_orphan_del(NULL, inode);
4581 btrfs_free_block_rsv(root, rsv);
4585 trans->block_rsv = rsv;
4587 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4591 trans->block_rsv = &root->fs_info->trans_block_rsv;
4592 btrfs_end_transaction(trans, root);
4594 btrfs_btree_balance_dirty(root);
4597 btrfs_free_block_rsv(root, rsv);
4600 trans->block_rsv = root->orphan_block_rsv;
4601 ret = btrfs_orphan_del(trans, inode);
4605 trans->block_rsv = &root->fs_info->trans_block_rsv;
4606 if (!(root == root->fs_info->tree_root ||
4607 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4608 btrfs_return_ino(root, btrfs_ino(inode));
4610 btrfs_end_transaction(trans, root);
4611 btrfs_btree_balance_dirty(root);
4613 btrfs_remove_delayed_node(inode);
4619 * this returns the key found in the dir entry in the location pointer.
4620 * If no dir entries were found, location->objectid is 0.
4622 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4623 struct btrfs_key *location)
4625 const char *name = dentry->d_name.name;
4626 int namelen = dentry->d_name.len;
4627 struct btrfs_dir_item *di;
4628 struct btrfs_path *path;
4629 struct btrfs_root *root = BTRFS_I(dir)->root;
4632 path = btrfs_alloc_path();
4636 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4641 if (IS_ERR_OR_NULL(di))
4644 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4646 btrfs_free_path(path);
4649 location->objectid = 0;
4654 * when we hit a tree root in a directory, the btrfs part of the inode
4655 * needs to be changed to reflect the root directory of the tree root. This
4656 * is kind of like crossing a mount point.
4658 static int fixup_tree_root_location(struct btrfs_root *root,
4660 struct dentry *dentry,
4661 struct btrfs_key *location,
4662 struct btrfs_root **sub_root)
4664 struct btrfs_path *path;
4665 struct btrfs_root *new_root;
4666 struct btrfs_root_ref *ref;
4667 struct extent_buffer *leaf;
4671 path = btrfs_alloc_path();
4678 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4679 BTRFS_I(dir)->root->root_key.objectid,
4680 location->objectid);
4687 leaf = path->nodes[0];
4688 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4689 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4690 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4693 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4694 (unsigned long)(ref + 1),
4695 dentry->d_name.len);
4699 btrfs_release_path(path);
4701 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4702 if (IS_ERR(new_root)) {
4703 err = PTR_ERR(new_root);
4707 *sub_root = new_root;
4708 location->objectid = btrfs_root_dirid(&new_root->root_item);
4709 location->type = BTRFS_INODE_ITEM_KEY;
4710 location->offset = 0;
4713 btrfs_free_path(path);
4717 static void inode_tree_add(struct inode *inode)
4719 struct btrfs_root *root = BTRFS_I(inode)->root;
4720 struct btrfs_inode *entry;
4722 struct rb_node *parent;
4723 u64 ino = btrfs_ino(inode);
4725 if (inode_unhashed(inode))
4729 spin_lock(&root->inode_lock);
4730 p = &root->inode_tree.rb_node;
4733 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4735 if (ino < btrfs_ino(&entry->vfs_inode))
4736 p = &parent->rb_left;
4737 else if (ino > btrfs_ino(&entry->vfs_inode))
4738 p = &parent->rb_right;
4740 WARN_ON(!(entry->vfs_inode.i_state &
4741 (I_WILL_FREE | I_FREEING)));
4742 rb_erase(parent, &root->inode_tree);
4743 RB_CLEAR_NODE(parent);
4744 spin_unlock(&root->inode_lock);
4748 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4749 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4750 spin_unlock(&root->inode_lock);
4753 static void inode_tree_del(struct inode *inode)
4755 struct btrfs_root *root = BTRFS_I(inode)->root;
4758 spin_lock(&root->inode_lock);
4759 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4760 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4761 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4762 empty = RB_EMPTY_ROOT(&root->inode_tree);
4764 spin_unlock(&root->inode_lock);
4767 * Free space cache has inodes in the tree root, but the tree root has a
4768 * root_refs of 0, so this could end up dropping the tree root as a
4769 * snapshot, so we need the extra !root->fs_info->tree_root check to
4770 * make sure we don't drop it.
4772 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4773 root != root->fs_info->tree_root) {
4774 synchronize_srcu(&root->fs_info->subvol_srcu);
4775 spin_lock(&root->inode_lock);
4776 empty = RB_EMPTY_ROOT(&root->inode_tree);
4777 spin_unlock(&root->inode_lock);
4779 btrfs_add_dead_root(root);
4783 void btrfs_invalidate_inodes(struct btrfs_root *root)
4785 struct rb_node *node;
4786 struct rb_node *prev;
4787 struct btrfs_inode *entry;
4788 struct inode *inode;
4791 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4793 spin_lock(&root->inode_lock);
4795 node = root->inode_tree.rb_node;
4799 entry = rb_entry(node, struct btrfs_inode, rb_node);
4801 if (objectid < btrfs_ino(&entry->vfs_inode))
4802 node = node->rb_left;
4803 else if (objectid > btrfs_ino(&entry->vfs_inode))
4804 node = node->rb_right;
4810 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4811 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4815 prev = rb_next(prev);
4819 entry = rb_entry(node, struct btrfs_inode, rb_node);
4820 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4821 inode = igrab(&entry->vfs_inode);
4823 spin_unlock(&root->inode_lock);
4824 if (atomic_read(&inode->i_count) > 1)
4825 d_prune_aliases(inode);
4827 * btrfs_drop_inode will have it removed from
4828 * the inode cache when its usage count
4833 spin_lock(&root->inode_lock);
4837 if (cond_resched_lock(&root->inode_lock))
4840 node = rb_next(node);
4842 spin_unlock(&root->inode_lock);
4845 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4847 struct btrfs_iget_args *args = p;
4848 inode->i_ino = args->ino;
4849 BTRFS_I(inode)->root = args->root;
4853 static int btrfs_find_actor(struct inode *inode, void *opaque)
4855 struct btrfs_iget_args *args = opaque;
4856 return args->ino == btrfs_ino(inode) &&
4857 args->root == BTRFS_I(inode)->root;
4860 static struct inode *btrfs_iget_locked(struct super_block *s,
4862 struct btrfs_root *root)
4864 struct inode *inode;
4865 struct btrfs_iget_args args;
4866 args.ino = objectid;
4869 inode = iget5_locked(s, objectid, btrfs_find_actor,
4870 btrfs_init_locked_inode,
4875 /* Get an inode object given its location and corresponding root.
4876 * Returns in *is_new if the inode was read from disk
4878 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4879 struct btrfs_root *root, int *new)
4881 struct inode *inode;
4883 inode = btrfs_iget_locked(s, location->objectid, root);
4885 return ERR_PTR(-ENOMEM);
4887 if (inode->i_state & I_NEW) {
4888 BTRFS_I(inode)->root = root;
4889 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4890 btrfs_read_locked_inode(inode);
4891 if (!is_bad_inode(inode)) {
4892 inode_tree_add(inode);
4893 unlock_new_inode(inode);
4897 unlock_new_inode(inode);
4899 inode = ERR_PTR(-ESTALE);
4906 static struct inode *new_simple_dir(struct super_block *s,
4907 struct btrfs_key *key,
4908 struct btrfs_root *root)
4910 struct inode *inode = new_inode(s);
4913 return ERR_PTR(-ENOMEM);
4915 BTRFS_I(inode)->root = root;
4916 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4917 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4919 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4920 inode->i_op = &btrfs_dir_ro_inode_operations;
4921 inode->i_fop = &simple_dir_operations;
4922 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4923 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4928 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4930 struct inode *inode;
4931 struct btrfs_root *root = BTRFS_I(dir)->root;
4932 struct btrfs_root *sub_root = root;
4933 struct btrfs_key location;
4937 if (dentry->d_name.len > BTRFS_NAME_LEN)
4938 return ERR_PTR(-ENAMETOOLONG);
4940 ret = btrfs_inode_by_name(dir, dentry, &location);
4942 return ERR_PTR(ret);
4944 if (location.objectid == 0)
4947 if (location.type == BTRFS_INODE_ITEM_KEY) {
4948 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4952 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4954 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4955 ret = fixup_tree_root_location(root, dir, dentry,
4956 &location, &sub_root);
4959 inode = ERR_PTR(ret);
4961 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4963 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4965 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4967 if (!IS_ERR(inode) && root != sub_root) {
4968 down_read(&root->fs_info->cleanup_work_sem);
4969 if (!(inode->i_sb->s_flags & MS_RDONLY))
4970 ret = btrfs_orphan_cleanup(sub_root);
4971 up_read(&root->fs_info->cleanup_work_sem);
4974 inode = ERR_PTR(ret);
4981 static int btrfs_dentry_delete(const struct dentry *dentry)
4983 struct btrfs_root *root;
4984 struct inode *inode = dentry->d_inode;
4986 if (!inode && !IS_ROOT(dentry))
4987 inode = dentry->d_parent->d_inode;
4990 root = BTRFS_I(inode)->root;
4991 if (btrfs_root_refs(&root->root_item) == 0)
4994 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5000 static void btrfs_dentry_release(struct dentry *dentry)
5002 if (dentry->d_fsdata)
5003 kfree(dentry->d_fsdata);
5006 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5011 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
5015 unsigned char btrfs_filetype_table[] = {
5016 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5019 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5021 struct inode *inode = file_inode(file);
5022 struct btrfs_root *root = BTRFS_I(inode)->root;
5023 struct btrfs_item *item;
5024 struct btrfs_dir_item *di;
5025 struct btrfs_key key;
5026 struct btrfs_key found_key;
5027 struct btrfs_path *path;
5028 struct list_head ins_list;
5029 struct list_head del_list;
5031 struct extent_buffer *leaf;
5033 unsigned char d_type;
5038 int key_type = BTRFS_DIR_INDEX_KEY;
5042 int is_curr = 0; /* ctx->pos points to the current index? */
5044 /* FIXME, use a real flag for deciding about the key type */
5045 if (root->fs_info->tree_root == root)
5046 key_type = BTRFS_DIR_ITEM_KEY;
5048 if (!dir_emit_dots(file, ctx))
5051 path = btrfs_alloc_path();
5057 if (key_type == BTRFS_DIR_INDEX_KEY) {
5058 INIT_LIST_HEAD(&ins_list);
5059 INIT_LIST_HEAD(&del_list);
5060 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5063 btrfs_set_key_type(&key, key_type);
5064 key.offset = ctx->pos;
5065 key.objectid = btrfs_ino(inode);
5067 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5072 leaf = path->nodes[0];
5073 slot = path->slots[0];
5074 if (slot >= btrfs_header_nritems(leaf)) {
5075 ret = btrfs_next_leaf(root, path);
5083 item = btrfs_item_nr(leaf, slot);
5084 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5086 if (found_key.objectid != key.objectid)
5088 if (btrfs_key_type(&found_key) != key_type)
5090 if (found_key.offset < ctx->pos)
5092 if (key_type == BTRFS_DIR_INDEX_KEY &&
5093 btrfs_should_delete_dir_index(&del_list,
5097 ctx->pos = found_key.offset;
5100 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5102 di_total = btrfs_item_size(leaf, item);
5104 while (di_cur < di_total) {
5105 struct btrfs_key location;
5107 if (verify_dir_item(root, leaf, di))
5110 name_len = btrfs_dir_name_len(leaf, di);
5111 if (name_len <= sizeof(tmp_name)) {
5112 name_ptr = tmp_name;
5114 name_ptr = kmalloc(name_len, GFP_NOFS);
5120 read_extent_buffer(leaf, name_ptr,
5121 (unsigned long)(di + 1), name_len);
5123 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5124 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5127 /* is this a reference to our own snapshot? If so
5130 * In contrast to old kernels, we insert the snapshot's
5131 * dir item and dir index after it has been created, so
5132 * we won't find a reference to our own snapshot. We
5133 * still keep the following code for backward
5136 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5137 location.objectid == root->root_key.objectid) {
5141 over = !dir_emit(ctx, name_ptr, name_len,
5142 location.objectid, d_type);
5145 if (name_ptr != tmp_name)
5150 di_len = btrfs_dir_name_len(leaf, di) +
5151 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5153 di = (struct btrfs_dir_item *)((char *)di + di_len);
5159 if (key_type == BTRFS_DIR_INDEX_KEY) {
5162 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5167 /* Reached end of directory/root. Bump pos past the last item. */
5168 if (key_type == BTRFS_DIR_INDEX_KEY)
5170 * 32-bit glibc will use getdents64, but then strtol -
5171 * so the last number we can serve is this.
5173 ctx->pos = 0x7fffffff;
5179 if (key_type == BTRFS_DIR_INDEX_KEY)
5180 btrfs_put_delayed_items(&ins_list, &del_list);
5181 btrfs_free_path(path);
5185 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5187 struct btrfs_root *root = BTRFS_I(inode)->root;
5188 struct btrfs_trans_handle *trans;
5190 bool nolock = false;
5192 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5195 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5198 if (wbc->sync_mode == WB_SYNC_ALL) {
5200 trans = btrfs_join_transaction_nolock(root);
5202 trans = btrfs_join_transaction(root);
5204 return PTR_ERR(trans);
5205 ret = btrfs_commit_transaction(trans, root);
5211 * This is somewhat expensive, updating the tree every time the
5212 * inode changes. But, it is most likely to find the inode in cache.
5213 * FIXME, needs more benchmarking...there are no reasons other than performance
5214 * to keep or drop this code.
5216 static int btrfs_dirty_inode(struct inode *inode)
5218 struct btrfs_root *root = BTRFS_I(inode)->root;
5219 struct btrfs_trans_handle *trans;
5222 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5225 trans = btrfs_join_transaction(root);
5227 return PTR_ERR(trans);
5229 ret = btrfs_update_inode(trans, root, inode);
5230 if (ret && ret == -ENOSPC) {
5231 /* whoops, lets try again with the full transaction */
5232 btrfs_end_transaction(trans, root);
5233 trans = btrfs_start_transaction(root, 1);
5235 return PTR_ERR(trans);
5237 ret = btrfs_update_inode(trans, root, inode);
5239 btrfs_end_transaction(trans, root);
5240 if (BTRFS_I(inode)->delayed_node)
5241 btrfs_balance_delayed_items(root);
5247 * This is a copy of file_update_time. We need this so we can return error on
5248 * ENOSPC for updating the inode in the case of file write and mmap writes.
5250 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5253 struct btrfs_root *root = BTRFS_I(inode)->root;
5255 if (btrfs_root_readonly(root))
5258 if (flags & S_VERSION)
5259 inode_inc_iversion(inode);
5260 if (flags & S_CTIME)
5261 inode->i_ctime = *now;
5262 if (flags & S_MTIME)
5263 inode->i_mtime = *now;
5264 if (flags & S_ATIME)
5265 inode->i_atime = *now;
5266 return btrfs_dirty_inode(inode);
5270 * find the highest existing sequence number in a directory
5271 * and then set the in-memory index_cnt variable to reflect
5272 * free sequence numbers
5274 static int btrfs_set_inode_index_count(struct inode *inode)
5276 struct btrfs_root *root = BTRFS_I(inode)->root;
5277 struct btrfs_key key, found_key;
5278 struct btrfs_path *path;
5279 struct extent_buffer *leaf;
5282 key.objectid = btrfs_ino(inode);
5283 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5284 key.offset = (u64)-1;
5286 path = btrfs_alloc_path();
5290 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5293 /* FIXME: we should be able to handle this */
5299 * MAGIC NUMBER EXPLANATION:
5300 * since we search a directory based on f_pos we have to start at 2
5301 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5302 * else has to start at 2
5304 if (path->slots[0] == 0) {
5305 BTRFS_I(inode)->index_cnt = 2;
5311 leaf = path->nodes[0];
5312 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5314 if (found_key.objectid != btrfs_ino(inode) ||
5315 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5316 BTRFS_I(inode)->index_cnt = 2;
5320 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5322 btrfs_free_path(path);
5327 * helper to find a free sequence number in a given directory. This current
5328 * code is very simple, later versions will do smarter things in the btree
5330 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5334 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5335 ret = btrfs_inode_delayed_dir_index_count(dir);
5337 ret = btrfs_set_inode_index_count(dir);
5343 *index = BTRFS_I(dir)->index_cnt;
5344 BTRFS_I(dir)->index_cnt++;
5349 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5350 struct btrfs_root *root,
5352 const char *name, int name_len,
5353 u64 ref_objectid, u64 objectid,
5354 umode_t mode, u64 *index)
5356 struct inode *inode;
5357 struct btrfs_inode_item *inode_item;
5358 struct btrfs_key *location;
5359 struct btrfs_path *path;
5360 struct btrfs_inode_ref *ref;
5361 struct btrfs_key key[2];
5367 path = btrfs_alloc_path();
5369 return ERR_PTR(-ENOMEM);
5371 inode = new_inode(root->fs_info->sb);
5373 btrfs_free_path(path);
5374 return ERR_PTR(-ENOMEM);
5378 * we have to initialize this early, so we can reclaim the inode
5379 * number if we fail afterwards in this function.
5381 inode->i_ino = objectid;
5384 trace_btrfs_inode_request(dir);
5386 ret = btrfs_set_inode_index(dir, index);
5388 btrfs_free_path(path);
5390 return ERR_PTR(ret);
5394 * index_cnt is ignored for everything but a dir,
5395 * btrfs_get_inode_index_count has an explanation for the magic
5398 BTRFS_I(inode)->index_cnt = 2;
5399 BTRFS_I(inode)->root = root;
5400 BTRFS_I(inode)->generation = trans->transid;
5401 inode->i_generation = BTRFS_I(inode)->generation;
5404 * We could have gotten an inode number from somebody who was fsynced
5405 * and then removed in this same transaction, so let's just set full
5406 * sync since it will be a full sync anyway and this will blow away the
5407 * old info in the log.
5409 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5416 key[0].objectid = objectid;
5417 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5421 * Start new inodes with an inode_ref. This is slightly more
5422 * efficient for small numbers of hard links since they will
5423 * be packed into one item. Extended refs will kick in if we
5424 * add more hard links than can fit in the ref item.
5426 key[1].objectid = objectid;
5427 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5428 key[1].offset = ref_objectid;
5430 sizes[0] = sizeof(struct btrfs_inode_item);
5431 sizes[1] = name_len + sizeof(*ref);
5433 path->leave_spinning = 1;
5434 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5438 inode_init_owner(inode, dir, mode);
5439 inode_set_bytes(inode, 0);
5440 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5441 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5442 struct btrfs_inode_item);
5443 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5444 sizeof(*inode_item));
5445 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5447 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5448 struct btrfs_inode_ref);
5449 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5450 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5451 ptr = (unsigned long)(ref + 1);
5452 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5454 btrfs_mark_buffer_dirty(path->nodes[0]);
5455 btrfs_free_path(path);
5457 location = &BTRFS_I(inode)->location;
5458 location->objectid = objectid;
5459 location->offset = 0;
5460 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5462 btrfs_inherit_iflags(inode, dir);
5464 if (S_ISREG(mode)) {
5465 if (btrfs_test_opt(root, NODATASUM))
5466 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5467 if (btrfs_test_opt(root, NODATACOW))
5468 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5469 BTRFS_INODE_NODATASUM;
5472 insert_inode_hash(inode);
5473 inode_tree_add(inode);
5475 trace_btrfs_inode_new(inode);
5476 btrfs_set_inode_last_trans(trans, inode);
5478 btrfs_update_root_times(trans, root);
5483 BTRFS_I(dir)->index_cnt--;
5484 btrfs_free_path(path);
5486 return ERR_PTR(ret);
5489 static inline u8 btrfs_inode_type(struct inode *inode)
5491 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5495 * utility function to add 'inode' into 'parent_inode' with
5496 * a give name and a given sequence number.
5497 * if 'add_backref' is true, also insert a backref from the
5498 * inode to the parent directory.
5500 int btrfs_add_link(struct btrfs_trans_handle *trans,
5501 struct inode *parent_inode, struct inode *inode,
5502 const char *name, int name_len, int add_backref, u64 index)
5505 struct btrfs_key key;
5506 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5507 u64 ino = btrfs_ino(inode);
5508 u64 parent_ino = btrfs_ino(parent_inode);
5510 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5511 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5514 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5518 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5519 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5520 key.objectid, root->root_key.objectid,
5521 parent_ino, index, name, name_len);
5522 } else if (add_backref) {
5523 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5527 /* Nothing to clean up yet */
5531 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5533 btrfs_inode_type(inode), index);
5534 if (ret == -EEXIST || ret == -EOVERFLOW)
5537 btrfs_abort_transaction(trans, root, ret);
5541 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5543 inode_inc_iversion(parent_inode);
5544 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5545 ret = btrfs_update_inode(trans, root, parent_inode);
5547 btrfs_abort_transaction(trans, root, ret);
5551 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5554 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5555 key.objectid, root->root_key.objectid,
5556 parent_ino, &local_index, name, name_len);
5558 } else if (add_backref) {
5562 err = btrfs_del_inode_ref(trans, root, name, name_len,
5563 ino, parent_ino, &local_index);
5568 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5569 struct inode *dir, struct dentry *dentry,
5570 struct inode *inode, int backref, u64 index)
5572 int err = btrfs_add_link(trans, dir, inode,
5573 dentry->d_name.name, dentry->d_name.len,
5580 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5581 umode_t mode, dev_t rdev)
5583 struct btrfs_trans_handle *trans;
5584 struct btrfs_root *root = BTRFS_I(dir)->root;
5585 struct inode *inode = NULL;
5591 if (!new_valid_dev(rdev))
5595 * 2 for inode item and ref
5597 * 1 for xattr if selinux is on
5599 trans = btrfs_start_transaction(root, 5);
5601 return PTR_ERR(trans);
5603 err = btrfs_find_free_ino(root, &objectid);
5607 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5608 dentry->d_name.len, btrfs_ino(dir), objectid,
5610 if (IS_ERR(inode)) {
5611 err = PTR_ERR(inode);
5615 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5622 * If the active LSM wants to access the inode during
5623 * d_instantiate it needs these. Smack checks to see
5624 * if the filesystem supports xattrs by looking at the
5628 inode->i_op = &btrfs_special_inode_operations;
5629 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5633 init_special_inode(inode, inode->i_mode, rdev);
5634 btrfs_update_inode(trans, root, inode);
5635 d_instantiate(dentry, inode);
5638 btrfs_end_transaction(trans, root);
5639 btrfs_btree_balance_dirty(root);
5641 inode_dec_link_count(inode);
5647 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5648 umode_t mode, bool excl)
5650 struct btrfs_trans_handle *trans;
5651 struct btrfs_root *root = BTRFS_I(dir)->root;
5652 struct inode *inode = NULL;
5653 int drop_inode_on_err = 0;
5659 * 2 for inode item and ref
5661 * 1 for xattr if selinux is on
5663 trans = btrfs_start_transaction(root, 5);
5665 return PTR_ERR(trans);
5667 err = btrfs_find_free_ino(root, &objectid);
5671 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5672 dentry->d_name.len, btrfs_ino(dir), objectid,
5674 if (IS_ERR(inode)) {
5675 err = PTR_ERR(inode);
5678 drop_inode_on_err = 1;
5680 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5684 err = btrfs_update_inode(trans, root, inode);
5689 * If the active LSM wants to access the inode during
5690 * d_instantiate it needs these. Smack checks to see
5691 * if the filesystem supports xattrs by looking at the
5694 inode->i_fop = &btrfs_file_operations;
5695 inode->i_op = &btrfs_file_inode_operations;
5697 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5701 inode->i_mapping->a_ops = &btrfs_aops;
5702 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5703 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5704 d_instantiate(dentry, inode);
5707 btrfs_end_transaction(trans, root);
5708 if (err && drop_inode_on_err) {
5709 inode_dec_link_count(inode);
5712 btrfs_btree_balance_dirty(root);
5716 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5717 struct dentry *dentry)
5719 struct btrfs_trans_handle *trans;
5720 struct btrfs_root *root = BTRFS_I(dir)->root;
5721 struct inode *inode = old_dentry->d_inode;
5726 /* do not allow sys_link's with other subvols of the same device */
5727 if (root->objectid != BTRFS_I(inode)->root->objectid)
5730 if (inode->i_nlink >= BTRFS_LINK_MAX)
5733 err = btrfs_set_inode_index(dir, &index);
5738 * 2 items for inode and inode ref
5739 * 2 items for dir items
5740 * 1 item for parent inode
5742 trans = btrfs_start_transaction(root, 5);
5743 if (IS_ERR(trans)) {
5744 err = PTR_ERR(trans);
5748 btrfs_inc_nlink(inode);
5749 inode_inc_iversion(inode);
5750 inode->i_ctime = CURRENT_TIME;
5752 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5754 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5759 struct dentry *parent = dentry->d_parent;
5760 err = btrfs_update_inode(trans, root, inode);
5763 d_instantiate(dentry, inode);
5764 btrfs_log_new_name(trans, inode, NULL, parent);
5767 btrfs_end_transaction(trans, root);
5770 inode_dec_link_count(inode);
5773 btrfs_btree_balance_dirty(root);
5777 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5779 struct inode *inode = NULL;
5780 struct btrfs_trans_handle *trans;
5781 struct btrfs_root *root = BTRFS_I(dir)->root;
5783 int drop_on_err = 0;
5788 * 2 items for inode and ref
5789 * 2 items for dir items
5790 * 1 for xattr if selinux is on
5792 trans = btrfs_start_transaction(root, 5);
5794 return PTR_ERR(trans);
5796 err = btrfs_find_free_ino(root, &objectid);
5800 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5801 dentry->d_name.len, btrfs_ino(dir), objectid,
5802 S_IFDIR | mode, &index);
5803 if (IS_ERR(inode)) {
5804 err = PTR_ERR(inode);
5810 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5814 inode->i_op = &btrfs_dir_inode_operations;
5815 inode->i_fop = &btrfs_dir_file_operations;
5817 btrfs_i_size_write(inode, 0);
5818 err = btrfs_update_inode(trans, root, inode);
5822 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5823 dentry->d_name.len, 0, index);
5827 d_instantiate(dentry, inode);
5831 btrfs_end_transaction(trans, root);
5834 btrfs_btree_balance_dirty(root);
5838 /* helper for btfs_get_extent. Given an existing extent in the tree,
5839 * and an extent that you want to insert, deal with overlap and insert
5840 * the new extent into the tree.
5842 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5843 struct extent_map *existing,
5844 struct extent_map *em,
5845 u64 map_start, u64 map_len)
5849 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5850 start_diff = map_start - em->start;
5851 em->start = map_start;
5853 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5854 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5855 em->block_start += start_diff;
5856 em->block_len -= start_diff;
5858 return add_extent_mapping(em_tree, em, 0);
5861 static noinline int uncompress_inline(struct btrfs_path *path,
5862 struct inode *inode, struct page *page,
5863 size_t pg_offset, u64 extent_offset,
5864 struct btrfs_file_extent_item *item)
5867 struct extent_buffer *leaf = path->nodes[0];
5870 unsigned long inline_size;
5874 WARN_ON(pg_offset != 0);
5875 compress_type = btrfs_file_extent_compression(leaf, item);
5876 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5877 inline_size = btrfs_file_extent_inline_item_len(leaf,
5878 btrfs_item_nr(leaf, path->slots[0]));
5879 tmp = kmalloc(inline_size, GFP_NOFS);
5882 ptr = btrfs_file_extent_inline_start(item);
5884 read_extent_buffer(leaf, tmp, ptr, inline_size);
5886 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5887 ret = btrfs_decompress(compress_type, tmp, page,
5888 extent_offset, inline_size, max_size);
5890 char *kaddr = kmap_atomic(page);
5891 unsigned long copy_size = min_t(u64,
5892 PAGE_CACHE_SIZE - pg_offset,
5893 max_size - extent_offset);
5894 memset(kaddr + pg_offset, 0, copy_size);
5895 kunmap_atomic(kaddr);
5902 * a bit scary, this does extent mapping from logical file offset to the disk.
5903 * the ugly parts come from merging extents from the disk with the in-ram
5904 * representation. This gets more complex because of the data=ordered code,
5905 * where the in-ram extents might be locked pending data=ordered completion.
5907 * This also copies inline extents directly into the page.
5910 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5911 size_t pg_offset, u64 start, u64 len,
5917 u64 extent_start = 0;
5919 u64 objectid = btrfs_ino(inode);
5921 struct btrfs_path *path = NULL;
5922 struct btrfs_root *root = BTRFS_I(inode)->root;
5923 struct btrfs_file_extent_item *item;
5924 struct extent_buffer *leaf;
5925 struct btrfs_key found_key;
5926 struct extent_map *em = NULL;
5927 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5928 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5929 struct btrfs_trans_handle *trans = NULL;
5933 read_lock(&em_tree->lock);
5934 em = lookup_extent_mapping(em_tree, start, len);
5936 em->bdev = root->fs_info->fs_devices->latest_bdev;
5937 read_unlock(&em_tree->lock);
5940 if (em->start > start || em->start + em->len <= start)
5941 free_extent_map(em);
5942 else if (em->block_start == EXTENT_MAP_INLINE && page)
5943 free_extent_map(em);
5947 em = alloc_extent_map();
5952 em->bdev = root->fs_info->fs_devices->latest_bdev;
5953 em->start = EXTENT_MAP_HOLE;
5954 em->orig_start = EXTENT_MAP_HOLE;
5956 em->block_len = (u64)-1;
5959 path = btrfs_alloc_path();
5965 * Chances are we'll be called again, so go ahead and do
5971 ret = btrfs_lookup_file_extent(trans, root, path,
5972 objectid, start, trans != NULL);
5979 if (path->slots[0] == 0)
5984 leaf = path->nodes[0];
5985 item = btrfs_item_ptr(leaf, path->slots[0],
5986 struct btrfs_file_extent_item);
5987 /* are we inside the extent that was found? */
5988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5989 found_type = btrfs_key_type(&found_key);
5990 if (found_key.objectid != objectid ||
5991 found_type != BTRFS_EXTENT_DATA_KEY) {
5995 found_type = btrfs_file_extent_type(leaf, item);
5996 extent_start = found_key.offset;
5997 compress_type = btrfs_file_extent_compression(leaf, item);
5998 if (found_type == BTRFS_FILE_EXTENT_REG ||
5999 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6000 extent_end = extent_start +
6001 btrfs_file_extent_num_bytes(leaf, item);
6002 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6004 size = btrfs_file_extent_inline_len(leaf, item);
6005 extent_end = ALIGN(extent_start + size, root->sectorsize);
6008 if (start >= extent_end) {
6010 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6011 ret = btrfs_next_leaf(root, path);
6018 leaf = path->nodes[0];
6020 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6021 if (found_key.objectid != objectid ||
6022 found_key.type != BTRFS_EXTENT_DATA_KEY)
6024 if (start + len <= found_key.offset)
6027 em->orig_start = start;
6028 em->len = found_key.offset - start;
6032 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6033 if (found_type == BTRFS_FILE_EXTENT_REG ||
6034 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6035 em->start = extent_start;
6036 em->len = extent_end - extent_start;
6037 em->orig_start = extent_start -
6038 btrfs_file_extent_offset(leaf, item);
6039 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6041 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6043 em->block_start = EXTENT_MAP_HOLE;
6046 if (compress_type != BTRFS_COMPRESS_NONE) {
6047 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6048 em->compress_type = compress_type;
6049 em->block_start = bytenr;
6050 em->block_len = em->orig_block_len;
6052 bytenr += btrfs_file_extent_offset(leaf, item);
6053 em->block_start = bytenr;
6054 em->block_len = em->len;
6055 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6056 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6059 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6063 size_t extent_offset;
6066 em->block_start = EXTENT_MAP_INLINE;
6067 if (!page || create) {
6068 em->start = extent_start;
6069 em->len = extent_end - extent_start;
6073 size = btrfs_file_extent_inline_len(leaf, item);
6074 extent_offset = page_offset(page) + pg_offset - extent_start;
6075 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6076 size - extent_offset);
6077 em->start = extent_start + extent_offset;
6078 em->len = ALIGN(copy_size, root->sectorsize);
6079 em->orig_block_len = em->len;
6080 em->orig_start = em->start;
6081 if (compress_type) {
6082 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6083 em->compress_type = compress_type;
6085 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6086 if (create == 0 && !PageUptodate(page)) {
6087 if (btrfs_file_extent_compression(leaf, item) !=
6088 BTRFS_COMPRESS_NONE) {
6089 ret = uncompress_inline(path, inode, page,
6091 extent_offset, item);
6092 BUG_ON(ret); /* -ENOMEM */
6095 read_extent_buffer(leaf, map + pg_offset, ptr,
6097 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6098 memset(map + pg_offset + copy_size, 0,
6099 PAGE_CACHE_SIZE - pg_offset -
6104 flush_dcache_page(page);
6105 } else if (create && PageUptodate(page)) {
6109 free_extent_map(em);
6112 btrfs_release_path(path);
6113 trans = btrfs_join_transaction(root);
6116 return ERR_CAST(trans);
6120 write_extent_buffer(leaf, map + pg_offset, ptr,
6123 btrfs_mark_buffer_dirty(leaf);
6125 set_extent_uptodate(io_tree, em->start,
6126 extent_map_end(em) - 1, NULL, GFP_NOFS);
6129 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6133 em->orig_start = start;
6136 em->block_start = EXTENT_MAP_HOLE;
6137 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6139 btrfs_release_path(path);
6140 if (em->start > start || extent_map_end(em) <= start) {
6141 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6142 (unsigned long long)em->start,
6143 (unsigned long long)em->len,
6144 (unsigned long long)start,
6145 (unsigned long long)len);
6151 write_lock(&em_tree->lock);
6152 ret = add_extent_mapping(em_tree, em, 0);
6153 /* it is possible that someone inserted the extent into the tree
6154 * while we had the lock dropped. It is also possible that
6155 * an overlapping map exists in the tree
6157 if (ret == -EEXIST) {
6158 struct extent_map *existing;
6162 existing = lookup_extent_mapping(em_tree, start, len);
6163 if (existing && (existing->start > start ||
6164 existing->start + existing->len <= start)) {
6165 free_extent_map(existing);
6169 existing = lookup_extent_mapping(em_tree, em->start,
6172 err = merge_extent_mapping(em_tree, existing,
6175 free_extent_map(existing);
6177 free_extent_map(em);
6182 free_extent_map(em);
6186 free_extent_map(em);
6191 write_unlock(&em_tree->lock);
6195 trace_btrfs_get_extent(root, em);
6198 btrfs_free_path(path);
6200 ret = btrfs_end_transaction(trans, root);
6205 free_extent_map(em);
6206 return ERR_PTR(err);
6208 BUG_ON(!em); /* Error is always set */
6212 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6213 size_t pg_offset, u64 start, u64 len,
6216 struct extent_map *em;
6217 struct extent_map *hole_em = NULL;
6218 u64 range_start = start;
6224 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6231 * - a pre-alloc extent,
6232 * there might actually be delalloc bytes behind it.
6234 if (em->block_start != EXTENT_MAP_HOLE &&
6235 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6241 /* check to see if we've wrapped (len == -1 or similar) */
6250 /* ok, we didn't find anything, lets look for delalloc */
6251 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6252 end, len, EXTENT_DELALLOC, 1);
6253 found_end = range_start + found;
6254 if (found_end < range_start)
6255 found_end = (u64)-1;
6258 * we didn't find anything useful, return
6259 * the original results from get_extent()
6261 if (range_start > end || found_end <= start) {
6267 /* adjust the range_start to make sure it doesn't
6268 * go backwards from the start they passed in
6270 range_start = max(start,range_start);
6271 found = found_end - range_start;
6274 u64 hole_start = start;
6277 em = alloc_extent_map();
6283 * when btrfs_get_extent can't find anything it
6284 * returns one huge hole
6286 * make sure what it found really fits our range, and
6287 * adjust to make sure it is based on the start from
6291 u64 calc_end = extent_map_end(hole_em);
6293 if (calc_end <= start || (hole_em->start > end)) {
6294 free_extent_map(hole_em);
6297 hole_start = max(hole_em->start, start);
6298 hole_len = calc_end - hole_start;
6302 if (hole_em && range_start > hole_start) {
6303 /* our hole starts before our delalloc, so we
6304 * have to return just the parts of the hole
6305 * that go until the delalloc starts
6307 em->len = min(hole_len,
6308 range_start - hole_start);
6309 em->start = hole_start;
6310 em->orig_start = hole_start;
6312 * don't adjust block start at all,
6313 * it is fixed at EXTENT_MAP_HOLE
6315 em->block_start = hole_em->block_start;
6316 em->block_len = hole_len;
6317 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6318 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6320 em->start = range_start;
6322 em->orig_start = range_start;
6323 em->block_start = EXTENT_MAP_DELALLOC;
6324 em->block_len = found;
6326 } else if (hole_em) {
6331 free_extent_map(hole_em);
6333 free_extent_map(em);
6334 return ERR_PTR(err);
6339 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6342 struct btrfs_root *root = BTRFS_I(inode)->root;
6343 struct btrfs_trans_handle *trans;
6344 struct extent_map *em;
6345 struct btrfs_key ins;
6349 trans = btrfs_join_transaction(root);
6351 return ERR_CAST(trans);
6353 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6355 alloc_hint = get_extent_allocation_hint(inode, start, len);
6356 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
6357 alloc_hint, &ins, 1);
6363 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6364 ins.offset, ins.offset, ins.offset, 0);
6368 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6369 ins.offset, ins.offset, 0);
6371 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6375 btrfs_end_transaction(trans, root);
6380 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6381 * block must be cow'd
6383 noinline int can_nocow_extent(struct btrfs_trans_handle *trans,
6384 struct inode *inode, u64 offset, u64 *len,
6385 u64 *orig_start, u64 *orig_block_len,
6388 struct btrfs_path *path;
6390 struct extent_buffer *leaf;
6391 struct btrfs_root *root = BTRFS_I(inode)->root;
6392 struct btrfs_file_extent_item *fi;
6393 struct btrfs_key key;
6400 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6401 path = btrfs_alloc_path();
6405 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
6410 slot = path->slots[0];
6413 /* can't find the item, must cow */
6420 leaf = path->nodes[0];
6421 btrfs_item_key_to_cpu(leaf, &key, slot);
6422 if (key.objectid != btrfs_ino(inode) ||
6423 key.type != BTRFS_EXTENT_DATA_KEY) {
6424 /* not our file or wrong item type, must cow */
6428 if (key.offset > offset) {
6429 /* Wrong offset, must cow */
6433 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6434 found_type = btrfs_file_extent_type(leaf, fi);
6435 if (found_type != BTRFS_FILE_EXTENT_REG &&
6436 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6437 /* not a regular extent, must cow */
6441 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6444 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6445 if (disk_bytenr == 0)
6448 if (btrfs_file_extent_compression(leaf, fi) ||
6449 btrfs_file_extent_encryption(leaf, fi) ||
6450 btrfs_file_extent_other_encoding(leaf, fi))
6453 backref_offset = btrfs_file_extent_offset(leaf, fi);
6456 *orig_start = key.offset - backref_offset;
6457 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6458 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6461 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6463 if (btrfs_extent_readonly(root, disk_bytenr))
6467 * look for other files referencing this extent, if we
6468 * find any we must cow
6470 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6471 key.offset - backref_offset, disk_bytenr))
6475 * adjust disk_bytenr and num_bytes to cover just the bytes
6476 * in this extent we are about to write. If there
6477 * are any csums in that range we have to cow in order
6478 * to keep the csums correct
6480 disk_bytenr += backref_offset;
6481 disk_bytenr += offset - key.offset;
6482 num_bytes = min(offset + *len, extent_end) - offset;
6483 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6486 * all of the above have passed, it is safe to overwrite this extent
6492 btrfs_free_path(path);
6496 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6497 struct extent_state **cached_state, int writing)
6499 struct btrfs_ordered_extent *ordered;
6503 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6506 * We're concerned with the entire range that we're going to be
6507 * doing DIO to, so we need to make sure theres no ordered
6508 * extents in this range.
6510 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6511 lockend - lockstart + 1);
6514 * We need to make sure there are no buffered pages in this
6515 * range either, we could have raced between the invalidate in
6516 * generic_file_direct_write and locking the extent. The
6517 * invalidate needs to happen so that reads after a write do not
6520 if (!ordered && (!writing ||
6521 !test_range_bit(&BTRFS_I(inode)->io_tree,
6522 lockstart, lockend, EXTENT_UPTODATE, 0,
6526 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6527 cached_state, GFP_NOFS);
6530 btrfs_start_ordered_extent(inode, ordered, 1);
6531 btrfs_put_ordered_extent(ordered);
6533 /* Screw you mmap */
6534 ret = filemap_write_and_wait_range(inode->i_mapping,
6541 * If we found a page that couldn't be invalidated just
6542 * fall back to buffered.
6544 ret = invalidate_inode_pages2_range(inode->i_mapping,
6545 lockstart >> PAGE_CACHE_SHIFT,
6546 lockend >> PAGE_CACHE_SHIFT);
6557 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6558 u64 len, u64 orig_start,
6559 u64 block_start, u64 block_len,
6560 u64 orig_block_len, u64 ram_bytes,
6563 struct extent_map_tree *em_tree;
6564 struct extent_map *em;
6565 struct btrfs_root *root = BTRFS_I(inode)->root;
6568 em_tree = &BTRFS_I(inode)->extent_tree;
6569 em = alloc_extent_map();
6571 return ERR_PTR(-ENOMEM);
6574 em->orig_start = orig_start;
6575 em->mod_start = start;
6578 em->block_len = block_len;
6579 em->block_start = block_start;
6580 em->bdev = root->fs_info->fs_devices->latest_bdev;
6581 em->orig_block_len = orig_block_len;
6582 em->ram_bytes = ram_bytes;
6583 em->generation = -1;
6584 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6585 if (type == BTRFS_ORDERED_PREALLOC)
6586 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6589 btrfs_drop_extent_cache(inode, em->start,
6590 em->start + em->len - 1, 0);
6591 write_lock(&em_tree->lock);
6592 ret = add_extent_mapping(em_tree, em, 1);
6593 write_unlock(&em_tree->lock);
6594 } while (ret == -EEXIST);
6597 free_extent_map(em);
6598 return ERR_PTR(ret);
6605 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6606 struct buffer_head *bh_result, int create)
6608 struct extent_map *em;
6609 struct btrfs_root *root = BTRFS_I(inode)->root;
6610 struct extent_state *cached_state = NULL;
6611 u64 start = iblock << inode->i_blkbits;
6612 u64 lockstart, lockend;
6613 u64 len = bh_result->b_size;
6614 struct btrfs_trans_handle *trans;
6615 int unlock_bits = EXTENT_LOCKED;
6619 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6621 len = min_t(u64, len, root->sectorsize);
6624 lockend = start + len - 1;
6627 * If this errors out it's because we couldn't invalidate pagecache for
6628 * this range and we need to fallback to buffered.
6630 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6633 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6640 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6641 * io. INLINE is special, and we could probably kludge it in here, but
6642 * it's still buffered so for safety lets just fall back to the generic
6645 * For COMPRESSED we _have_ to read the entire extent in so we can
6646 * decompress it, so there will be buffering required no matter what we
6647 * do, so go ahead and fallback to buffered.
6649 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6650 * to buffered IO. Don't blame me, this is the price we pay for using
6653 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6654 em->block_start == EXTENT_MAP_INLINE) {
6655 free_extent_map(em);
6660 /* Just a good old fashioned hole, return */
6661 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6662 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6663 free_extent_map(em);
6668 * We don't allocate a new extent in the following cases
6670 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6672 * 2) The extent is marked as PREALLOC. We're good to go here and can
6673 * just use the extent.
6677 len = min(len, em->len - (start - em->start));
6678 lockstart = start + len;
6682 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6683 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6684 em->block_start != EXTENT_MAP_HOLE)) {
6687 u64 block_start, orig_start, orig_block_len, ram_bytes;
6689 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6690 type = BTRFS_ORDERED_PREALLOC;
6692 type = BTRFS_ORDERED_NOCOW;
6693 len = min(len, em->len - (start - em->start));
6694 block_start = em->block_start + (start - em->start);
6697 * we're not going to log anything, but we do need
6698 * to make sure the current transaction stays open
6699 * while we look for nocow cross refs
6701 trans = btrfs_join_transaction(root);
6705 if (can_nocow_extent(trans, inode, start, &len, &orig_start,
6706 &orig_block_len, &ram_bytes) == 1) {
6707 if (type == BTRFS_ORDERED_PREALLOC) {
6708 free_extent_map(em);
6709 em = create_pinned_em(inode, start, len,
6715 btrfs_end_transaction(trans, root);
6720 ret = btrfs_add_ordered_extent_dio(inode, start,
6721 block_start, len, len, type);
6722 btrfs_end_transaction(trans, root);
6724 free_extent_map(em);
6729 btrfs_end_transaction(trans, root);
6733 * this will cow the extent, reset the len in case we changed
6736 len = bh_result->b_size;
6737 free_extent_map(em);
6738 em = btrfs_new_extent_direct(inode, start, len);
6743 len = min(len, em->len - (start - em->start));
6745 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6747 bh_result->b_size = len;
6748 bh_result->b_bdev = em->bdev;
6749 set_buffer_mapped(bh_result);
6751 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6752 set_buffer_new(bh_result);
6755 * Need to update the i_size under the extent lock so buffered
6756 * readers will get the updated i_size when we unlock.
6758 if (start + len > i_size_read(inode))
6759 i_size_write(inode, start + len);
6761 spin_lock(&BTRFS_I(inode)->lock);
6762 BTRFS_I(inode)->outstanding_extents++;
6763 spin_unlock(&BTRFS_I(inode)->lock);
6765 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6766 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6767 &cached_state, GFP_NOFS);
6772 * In the case of write we need to clear and unlock the entire range,
6773 * in the case of read we need to unlock only the end area that we
6774 * aren't using if there is any left over space.
6776 if (lockstart < lockend) {
6777 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6778 lockend, unlock_bits, 1, 0,
6779 &cached_state, GFP_NOFS);
6781 free_extent_state(cached_state);
6784 free_extent_map(em);
6789 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6790 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6794 struct btrfs_dio_private {
6795 struct inode *inode;
6801 /* number of bios pending for this dio */
6802 atomic_t pending_bios;
6807 /* orig_bio is our btrfs_io_bio */
6808 struct bio *orig_bio;
6810 /* dio_bio came from fs/direct-io.c */
6811 struct bio *dio_bio;
6814 static void btrfs_endio_direct_read(struct bio *bio, int err)
6816 struct btrfs_dio_private *dip = bio->bi_private;
6817 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6818 struct bio_vec *bvec = bio->bi_io_vec;
6819 struct inode *inode = dip->inode;
6820 struct btrfs_root *root = BTRFS_I(inode)->root;
6821 struct bio *dio_bio;
6824 start = dip->logical_offset;
6826 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6827 struct page *page = bvec->bv_page;
6830 u64 private = ~(u32)0;
6831 unsigned long flags;
6833 if (get_state_private(&BTRFS_I(inode)->io_tree,
6836 local_irq_save(flags);
6837 kaddr = kmap_atomic(page);
6838 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6839 csum, bvec->bv_len);
6840 btrfs_csum_final(csum, (char *)&csum);
6841 kunmap_atomic(kaddr);
6842 local_irq_restore(flags);
6844 flush_dcache_page(bvec->bv_page);
6845 if (csum != private) {
6847 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6848 (unsigned long long)btrfs_ino(inode),
6849 (unsigned long long)start,
6850 csum, (unsigned)private);
6855 start += bvec->bv_len;
6857 } while (bvec <= bvec_end);
6859 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6860 dip->logical_offset + dip->bytes - 1);
6861 dio_bio = dip->dio_bio;
6865 /* If we had a csum failure make sure to clear the uptodate flag */
6867 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6868 dio_end_io(dio_bio, err);
6872 static void btrfs_endio_direct_write(struct bio *bio, int err)
6874 struct btrfs_dio_private *dip = bio->bi_private;
6875 struct inode *inode = dip->inode;
6876 struct btrfs_root *root = BTRFS_I(inode)->root;
6877 struct btrfs_ordered_extent *ordered = NULL;
6878 u64 ordered_offset = dip->logical_offset;
6879 u64 ordered_bytes = dip->bytes;
6880 struct bio *dio_bio;
6886 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6888 ordered_bytes, !err);
6892 ordered->work.func = finish_ordered_fn;
6893 ordered->work.flags = 0;
6894 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6898 * our bio might span multiple ordered extents. If we haven't
6899 * completed the accounting for the whole dio, go back and try again
6901 if (ordered_offset < dip->logical_offset + dip->bytes) {
6902 ordered_bytes = dip->logical_offset + dip->bytes -
6908 dio_bio = dip->dio_bio;
6912 /* If we had an error make sure to clear the uptodate flag */
6914 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6915 dio_end_io(dio_bio, err);
6919 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6920 struct bio *bio, int mirror_num,
6921 unsigned long bio_flags, u64 offset)
6924 struct btrfs_root *root = BTRFS_I(inode)->root;
6925 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6926 BUG_ON(ret); /* -ENOMEM */
6930 static void btrfs_end_dio_bio(struct bio *bio, int err)
6932 struct btrfs_dio_private *dip = bio->bi_private;
6935 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6936 "sector %#Lx len %u err no %d\n",
6937 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6938 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6942 * before atomic variable goto zero, we must make sure
6943 * dip->errors is perceived to be set.
6945 smp_mb__before_atomic_dec();
6948 /* if there are more bios still pending for this dio, just exit */
6949 if (!atomic_dec_and_test(&dip->pending_bios))
6953 bio_io_error(dip->orig_bio);
6955 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
6956 bio_endio(dip->orig_bio, 0);
6962 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6963 u64 first_sector, gfp_t gfp_flags)
6965 int nr_vecs = bio_get_nr_vecs(bdev);
6966 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6969 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6970 int rw, u64 file_offset, int skip_sum,
6973 int write = rw & REQ_WRITE;
6974 struct btrfs_root *root = BTRFS_I(inode)->root;
6978 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6983 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6991 if (write && async_submit) {
6992 ret = btrfs_wq_submit_bio(root->fs_info,
6993 inode, rw, bio, 0, 0,
6995 __btrfs_submit_bio_start_direct_io,
6996 __btrfs_submit_bio_done);
7000 * If we aren't doing async submit, calculate the csum of the
7003 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7006 } else if (!skip_sum) {
7007 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
7013 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7019 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7022 struct inode *inode = dip->inode;
7023 struct btrfs_root *root = BTRFS_I(inode)->root;
7025 struct bio *orig_bio = dip->orig_bio;
7026 struct bio_vec *bvec = orig_bio->bi_io_vec;
7027 u64 start_sector = orig_bio->bi_sector;
7028 u64 file_offset = dip->logical_offset;
7033 int async_submit = 0;
7035 map_length = orig_bio->bi_size;
7036 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7037 &map_length, NULL, 0);
7042 if (map_length >= orig_bio->bi_size) {
7047 /* async crcs make it difficult to collect full stripe writes. */
7048 if (btrfs_get_alloc_profile(root, 1) &
7049 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7054 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7057 bio->bi_private = dip;
7058 bio->bi_end_io = btrfs_end_dio_bio;
7059 atomic_inc(&dip->pending_bios);
7061 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7062 if (unlikely(map_length < submit_len + bvec->bv_len ||
7063 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7064 bvec->bv_offset) < bvec->bv_len)) {
7066 * inc the count before we submit the bio so
7067 * we know the end IO handler won't happen before
7068 * we inc the count. Otherwise, the dip might get freed
7069 * before we're done setting it up
7071 atomic_inc(&dip->pending_bios);
7072 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7073 file_offset, skip_sum,
7077 atomic_dec(&dip->pending_bios);
7081 start_sector += submit_len >> 9;
7082 file_offset += submit_len;
7087 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7088 start_sector, GFP_NOFS);
7091 bio->bi_private = dip;
7092 bio->bi_end_io = btrfs_end_dio_bio;
7094 map_length = orig_bio->bi_size;
7095 ret = btrfs_map_block(root->fs_info, rw,
7097 &map_length, NULL, 0);
7103 submit_len += bvec->bv_len;
7110 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7119 * before atomic variable goto zero, we must
7120 * make sure dip->errors is perceived to be set.
7122 smp_mb__before_atomic_dec();
7123 if (atomic_dec_and_test(&dip->pending_bios))
7124 bio_io_error(dip->orig_bio);
7126 /* bio_end_io() will handle error, so we needn't return it */
7130 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7131 struct inode *inode, loff_t file_offset)
7133 struct btrfs_root *root = BTRFS_I(inode)->root;
7134 struct btrfs_dio_private *dip;
7137 int write = rw & REQ_WRITE;
7140 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7142 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7149 dip = kmalloc(sizeof(*dip), GFP_NOFS);
7155 dip->private = dio_bio->bi_private;
7157 dip->logical_offset = file_offset;
7158 dip->bytes = dio_bio->bi_size;
7159 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7160 io_bio->bi_private = dip;
7162 dip->orig_bio = io_bio;
7163 dip->dio_bio = dio_bio;
7164 atomic_set(&dip->pending_bios, 0);
7167 io_bio->bi_end_io = btrfs_endio_direct_write;
7169 io_bio->bi_end_io = btrfs_endio_direct_read;
7171 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7180 * If this is a write, we need to clean up the reserved space and kill
7181 * the ordered extent.
7184 struct btrfs_ordered_extent *ordered;
7185 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7186 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7187 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7188 btrfs_free_reserved_extent(root, ordered->start,
7190 btrfs_put_ordered_extent(ordered);
7191 btrfs_put_ordered_extent(ordered);
7193 bio_endio(dio_bio, ret);
7196 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7197 const struct iovec *iov, loff_t offset,
7198 unsigned long nr_segs)
7204 unsigned blocksize_mask = root->sectorsize - 1;
7205 ssize_t retval = -EINVAL;
7206 loff_t end = offset;
7208 if (offset & blocksize_mask)
7211 /* Check the memory alignment. Blocks cannot straddle pages */
7212 for (seg = 0; seg < nr_segs; seg++) {
7213 addr = (unsigned long)iov[seg].iov_base;
7214 size = iov[seg].iov_len;
7216 if ((addr & blocksize_mask) || (size & blocksize_mask))
7219 /* If this is a write we don't need to check anymore */
7224 * Check to make sure we don't have duplicate iov_base's in this
7225 * iovec, if so return EINVAL, otherwise we'll get csum errors
7226 * when reading back.
7228 for (i = seg + 1; i < nr_segs; i++) {
7229 if (iov[seg].iov_base == iov[i].iov_base)
7238 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7239 const struct iovec *iov, loff_t offset,
7240 unsigned long nr_segs)
7242 struct file *file = iocb->ki_filp;
7243 struct inode *inode = file->f_mapping->host;
7247 bool relock = false;
7250 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7254 atomic_inc(&inode->i_dio_count);
7255 smp_mb__after_atomic_inc();
7258 * The generic stuff only does filemap_write_and_wait_range, which isn't
7259 * enough if we've written compressed pages to this area, so we need to
7260 * call btrfs_wait_ordered_range to make absolutely sure that any
7261 * outstanding dirty pages are on disk.
7263 count = iov_length(iov, nr_segs);
7264 btrfs_wait_ordered_range(inode, offset, count);
7268 * If the write DIO is beyond the EOF, we need update
7269 * the isize, but it is protected by i_mutex. So we can
7270 * not unlock the i_mutex at this case.
7272 if (offset + count <= inode->i_size) {
7273 mutex_unlock(&inode->i_mutex);
7276 ret = btrfs_delalloc_reserve_space(inode, count);
7279 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7280 &BTRFS_I(inode)->runtime_flags))) {
7281 inode_dio_done(inode);
7282 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7286 ret = __blockdev_direct_IO(rw, iocb, inode,
7287 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7288 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7289 btrfs_submit_direct, flags);
7291 if (ret < 0 && ret != -EIOCBQUEUED)
7292 btrfs_delalloc_release_space(inode, count);
7293 else if (ret >= 0 && (size_t)ret < count)
7294 btrfs_delalloc_release_space(inode,
7295 count - (size_t)ret);
7297 btrfs_delalloc_release_metadata(inode, 0);
7301 inode_dio_done(inode);
7303 mutex_lock(&inode->i_mutex);
7308 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7310 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7311 __u64 start, __u64 len)
7315 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7319 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7322 int btrfs_readpage(struct file *file, struct page *page)
7324 struct extent_io_tree *tree;
7325 tree = &BTRFS_I(page->mapping->host)->io_tree;
7326 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7329 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7331 struct extent_io_tree *tree;
7334 if (current->flags & PF_MEMALLOC) {
7335 redirty_page_for_writepage(wbc, page);
7339 tree = &BTRFS_I(page->mapping->host)->io_tree;
7340 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7343 static int btrfs_writepages(struct address_space *mapping,
7344 struct writeback_control *wbc)
7346 struct extent_io_tree *tree;
7348 tree = &BTRFS_I(mapping->host)->io_tree;
7349 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7353 btrfs_readpages(struct file *file, struct address_space *mapping,
7354 struct list_head *pages, unsigned nr_pages)
7356 struct extent_io_tree *tree;
7357 tree = &BTRFS_I(mapping->host)->io_tree;
7358 return extent_readpages(tree, mapping, pages, nr_pages,
7361 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7363 struct extent_io_tree *tree;
7364 struct extent_map_tree *map;
7367 tree = &BTRFS_I(page->mapping->host)->io_tree;
7368 map = &BTRFS_I(page->mapping->host)->extent_tree;
7369 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7371 ClearPagePrivate(page);
7372 set_page_private(page, 0);
7373 page_cache_release(page);
7378 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7380 if (PageWriteback(page) || PageDirty(page))
7382 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7385 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7386 unsigned int length)
7388 struct inode *inode = page->mapping->host;
7389 struct extent_io_tree *tree;
7390 struct btrfs_ordered_extent *ordered;
7391 struct extent_state *cached_state = NULL;
7392 u64 page_start = page_offset(page);
7393 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7396 * we have the page locked, so new writeback can't start,
7397 * and the dirty bit won't be cleared while we are here.
7399 * Wait for IO on this page so that we can safely clear
7400 * the PagePrivate2 bit and do ordered accounting
7402 wait_on_page_writeback(page);
7404 tree = &BTRFS_I(inode)->io_tree;
7406 btrfs_releasepage(page, GFP_NOFS);
7409 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7410 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7413 * IO on this page will never be started, so we need
7414 * to account for any ordered extents now
7416 clear_extent_bit(tree, page_start, page_end,
7417 EXTENT_DIRTY | EXTENT_DELALLOC |
7418 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7419 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7421 * whoever cleared the private bit is responsible
7422 * for the finish_ordered_io
7424 if (TestClearPagePrivate2(page) &&
7425 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7426 PAGE_CACHE_SIZE, 1)) {
7427 btrfs_finish_ordered_io(ordered);
7429 btrfs_put_ordered_extent(ordered);
7430 cached_state = NULL;
7431 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7433 clear_extent_bit(tree, page_start, page_end,
7434 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7435 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7436 &cached_state, GFP_NOFS);
7437 __btrfs_releasepage(page, GFP_NOFS);
7439 ClearPageChecked(page);
7440 if (PagePrivate(page)) {
7441 ClearPagePrivate(page);
7442 set_page_private(page, 0);
7443 page_cache_release(page);
7448 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7449 * called from a page fault handler when a page is first dirtied. Hence we must
7450 * be careful to check for EOF conditions here. We set the page up correctly
7451 * for a written page which means we get ENOSPC checking when writing into
7452 * holes and correct delalloc and unwritten extent mapping on filesystems that
7453 * support these features.
7455 * We are not allowed to take the i_mutex here so we have to play games to
7456 * protect against truncate races as the page could now be beyond EOF. Because
7457 * vmtruncate() writes the inode size before removing pages, once we have the
7458 * page lock we can determine safely if the page is beyond EOF. If it is not
7459 * beyond EOF, then the page is guaranteed safe against truncation until we
7462 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7464 struct page *page = vmf->page;
7465 struct inode *inode = file_inode(vma->vm_file);
7466 struct btrfs_root *root = BTRFS_I(inode)->root;
7467 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7468 struct btrfs_ordered_extent *ordered;
7469 struct extent_state *cached_state = NULL;
7471 unsigned long zero_start;
7478 sb_start_pagefault(inode->i_sb);
7479 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7481 ret = file_update_time(vma->vm_file);
7487 else /* -ENOSPC, -EIO, etc */
7488 ret = VM_FAULT_SIGBUS;
7494 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7497 size = i_size_read(inode);
7498 page_start = page_offset(page);
7499 page_end = page_start + PAGE_CACHE_SIZE - 1;
7501 if ((page->mapping != inode->i_mapping) ||
7502 (page_start >= size)) {
7503 /* page got truncated out from underneath us */
7506 wait_on_page_writeback(page);
7508 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7509 set_page_extent_mapped(page);
7512 * we can't set the delalloc bits if there are pending ordered
7513 * extents. Drop our locks and wait for them to finish
7515 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7517 unlock_extent_cached(io_tree, page_start, page_end,
7518 &cached_state, GFP_NOFS);
7520 btrfs_start_ordered_extent(inode, ordered, 1);
7521 btrfs_put_ordered_extent(ordered);
7526 * XXX - page_mkwrite gets called every time the page is dirtied, even
7527 * if it was already dirty, so for space accounting reasons we need to
7528 * clear any delalloc bits for the range we are fixing to save. There
7529 * is probably a better way to do this, but for now keep consistent with
7530 * prepare_pages in the normal write path.
7532 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7533 EXTENT_DIRTY | EXTENT_DELALLOC |
7534 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7535 0, 0, &cached_state, GFP_NOFS);
7537 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7540 unlock_extent_cached(io_tree, page_start, page_end,
7541 &cached_state, GFP_NOFS);
7542 ret = VM_FAULT_SIGBUS;
7547 /* page is wholly or partially inside EOF */
7548 if (page_start + PAGE_CACHE_SIZE > size)
7549 zero_start = size & ~PAGE_CACHE_MASK;
7551 zero_start = PAGE_CACHE_SIZE;
7553 if (zero_start != PAGE_CACHE_SIZE) {
7555 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7556 flush_dcache_page(page);
7559 ClearPageChecked(page);
7560 set_page_dirty(page);
7561 SetPageUptodate(page);
7563 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7564 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7565 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7567 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7571 sb_end_pagefault(inode->i_sb);
7572 return VM_FAULT_LOCKED;
7576 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7578 sb_end_pagefault(inode->i_sb);
7582 static int btrfs_truncate(struct inode *inode)
7584 struct btrfs_root *root = BTRFS_I(inode)->root;
7585 struct btrfs_block_rsv *rsv;
7588 struct btrfs_trans_handle *trans;
7589 u64 mask = root->sectorsize - 1;
7590 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7592 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
7593 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
7596 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7597 * 3 things going on here
7599 * 1) We need to reserve space for our orphan item and the space to
7600 * delete our orphan item. Lord knows we don't want to have a dangling
7601 * orphan item because we didn't reserve space to remove it.
7603 * 2) We need to reserve space to update our inode.
7605 * 3) We need to have something to cache all the space that is going to
7606 * be free'd up by the truncate operation, but also have some slack
7607 * space reserved in case it uses space during the truncate (thank you
7608 * very much snapshotting).
7610 * And we need these to all be seperate. The fact is we can use alot of
7611 * space doing the truncate, and we have no earthly idea how much space
7612 * we will use, so we need the truncate reservation to be seperate so it
7613 * doesn't end up using space reserved for updating the inode or
7614 * removing the orphan item. We also need to be able to stop the
7615 * transaction and start a new one, which means we need to be able to
7616 * update the inode several times, and we have no idea of knowing how
7617 * many times that will be, so we can't just reserve 1 item for the
7618 * entirety of the opration, so that has to be done seperately as well.
7619 * Then there is the orphan item, which does indeed need to be held on
7620 * to for the whole operation, and we need nobody to touch this reserved
7621 * space except the orphan code.
7623 * So that leaves us with
7625 * 1) root->orphan_block_rsv - for the orphan deletion.
7626 * 2) rsv - for the truncate reservation, which we will steal from the
7627 * transaction reservation.
7628 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7629 * updating the inode.
7631 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7634 rsv->size = min_size;
7638 * 1 for the truncate slack space
7639 * 1 for updating the inode.
7641 trans = btrfs_start_transaction(root, 2);
7642 if (IS_ERR(trans)) {
7643 err = PTR_ERR(trans);
7647 /* Migrate the slack space for the truncate to our reserve */
7648 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7653 * setattr is responsible for setting the ordered_data_close flag,
7654 * but that is only tested during the last file release. That
7655 * could happen well after the next commit, leaving a great big
7656 * window where new writes may get lost if someone chooses to write
7657 * to this file after truncating to zero
7659 * The inode doesn't have any dirty data here, and so if we commit
7660 * this is a noop. If someone immediately starts writing to the inode
7661 * it is very likely we'll catch some of their writes in this
7662 * transaction, and the commit will find this file on the ordered
7663 * data list with good things to send down.
7665 * This is a best effort solution, there is still a window where
7666 * using truncate to replace the contents of the file will
7667 * end up with a zero length file after a crash.
7669 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7670 &BTRFS_I(inode)->runtime_flags))
7671 btrfs_add_ordered_operation(trans, root, inode);
7674 * So if we truncate and then write and fsync we normally would just
7675 * write the extents that changed, which is a problem if we need to
7676 * first truncate that entire inode. So set this flag so we write out
7677 * all of the extents in the inode to the sync log so we're completely
7680 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7681 trans->block_rsv = rsv;
7684 ret = btrfs_truncate_inode_items(trans, root, inode,
7686 BTRFS_EXTENT_DATA_KEY);
7687 if (ret != -ENOSPC) {
7692 trans->block_rsv = &root->fs_info->trans_block_rsv;
7693 ret = btrfs_update_inode(trans, root, inode);
7699 btrfs_end_transaction(trans, root);
7700 btrfs_btree_balance_dirty(root);
7702 trans = btrfs_start_transaction(root, 2);
7703 if (IS_ERR(trans)) {
7704 ret = err = PTR_ERR(trans);
7709 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7711 BUG_ON(ret); /* shouldn't happen */
7712 trans->block_rsv = rsv;
7715 if (ret == 0 && inode->i_nlink > 0) {
7716 trans->block_rsv = root->orphan_block_rsv;
7717 ret = btrfs_orphan_del(trans, inode);
7723 trans->block_rsv = &root->fs_info->trans_block_rsv;
7724 ret = btrfs_update_inode(trans, root, inode);
7728 ret = btrfs_end_transaction(trans, root);
7729 btrfs_btree_balance_dirty(root);
7733 btrfs_free_block_rsv(root, rsv);
7742 * create a new subvolume directory/inode (helper for the ioctl).
7744 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7745 struct btrfs_root *new_root, u64 new_dirid)
7747 struct inode *inode;
7751 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7752 new_dirid, new_dirid,
7753 S_IFDIR | (~current_umask() & S_IRWXUGO),
7756 return PTR_ERR(inode);
7757 inode->i_op = &btrfs_dir_inode_operations;
7758 inode->i_fop = &btrfs_dir_file_operations;
7760 set_nlink(inode, 1);
7761 btrfs_i_size_write(inode, 0);
7763 err = btrfs_update_inode(trans, new_root, inode);
7769 struct inode *btrfs_alloc_inode(struct super_block *sb)
7771 struct btrfs_inode *ei;
7772 struct inode *inode;
7774 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7781 ei->last_sub_trans = 0;
7782 ei->logged_trans = 0;
7783 ei->delalloc_bytes = 0;
7784 ei->disk_i_size = 0;
7787 ei->index_cnt = (u64)-1;
7788 ei->last_unlink_trans = 0;
7789 ei->last_log_commit = 0;
7791 spin_lock_init(&ei->lock);
7792 ei->outstanding_extents = 0;
7793 ei->reserved_extents = 0;
7795 ei->runtime_flags = 0;
7796 ei->force_compress = BTRFS_COMPRESS_NONE;
7798 ei->delayed_node = NULL;
7800 inode = &ei->vfs_inode;
7801 extent_map_tree_init(&ei->extent_tree);
7802 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7803 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7804 ei->io_tree.track_uptodate = 1;
7805 ei->io_failure_tree.track_uptodate = 1;
7806 atomic_set(&ei->sync_writers, 0);
7807 mutex_init(&ei->log_mutex);
7808 mutex_init(&ei->delalloc_mutex);
7809 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7810 INIT_LIST_HEAD(&ei->delalloc_inodes);
7811 INIT_LIST_HEAD(&ei->ordered_operations);
7812 RB_CLEAR_NODE(&ei->rb_node);
7817 static void btrfs_i_callback(struct rcu_head *head)
7819 struct inode *inode = container_of(head, struct inode, i_rcu);
7820 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7823 void btrfs_destroy_inode(struct inode *inode)
7825 struct btrfs_ordered_extent *ordered;
7826 struct btrfs_root *root = BTRFS_I(inode)->root;
7828 WARN_ON(!hlist_empty(&inode->i_dentry));
7829 WARN_ON(inode->i_data.nrpages);
7830 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7831 WARN_ON(BTRFS_I(inode)->reserved_extents);
7832 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7833 WARN_ON(BTRFS_I(inode)->csum_bytes);
7836 * This can happen where we create an inode, but somebody else also
7837 * created the same inode and we need to destroy the one we already
7844 * Make sure we're properly removed from the ordered operation
7848 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7849 spin_lock(&root->fs_info->ordered_root_lock);
7850 list_del_init(&BTRFS_I(inode)->ordered_operations);
7851 spin_unlock(&root->fs_info->ordered_root_lock);
7854 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7855 &BTRFS_I(inode)->runtime_flags)) {
7856 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7857 (unsigned long long)btrfs_ino(inode));
7858 atomic_dec(&root->orphan_inodes);
7862 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7866 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7867 (unsigned long long)ordered->file_offset,
7868 (unsigned long long)ordered->len);
7869 btrfs_remove_ordered_extent(inode, ordered);
7870 btrfs_put_ordered_extent(ordered);
7871 btrfs_put_ordered_extent(ordered);
7874 inode_tree_del(inode);
7875 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7877 call_rcu(&inode->i_rcu, btrfs_i_callback);
7880 int btrfs_drop_inode(struct inode *inode)
7882 struct btrfs_root *root = BTRFS_I(inode)->root;
7887 /* the snap/subvol tree is on deleting */
7888 if (btrfs_root_refs(&root->root_item) == 0 &&
7889 root != root->fs_info->tree_root)
7892 return generic_drop_inode(inode);
7895 static void init_once(void *foo)
7897 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7899 inode_init_once(&ei->vfs_inode);
7902 void btrfs_destroy_cachep(void)
7905 * Make sure all delayed rcu free inodes are flushed before we
7909 if (btrfs_inode_cachep)
7910 kmem_cache_destroy(btrfs_inode_cachep);
7911 if (btrfs_trans_handle_cachep)
7912 kmem_cache_destroy(btrfs_trans_handle_cachep);
7913 if (btrfs_transaction_cachep)
7914 kmem_cache_destroy(btrfs_transaction_cachep);
7915 if (btrfs_path_cachep)
7916 kmem_cache_destroy(btrfs_path_cachep);
7917 if (btrfs_free_space_cachep)
7918 kmem_cache_destroy(btrfs_free_space_cachep);
7919 if (btrfs_delalloc_work_cachep)
7920 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7923 int btrfs_init_cachep(void)
7925 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7926 sizeof(struct btrfs_inode), 0,
7927 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7928 if (!btrfs_inode_cachep)
7931 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7932 sizeof(struct btrfs_trans_handle), 0,
7933 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7934 if (!btrfs_trans_handle_cachep)
7937 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7938 sizeof(struct btrfs_transaction), 0,
7939 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7940 if (!btrfs_transaction_cachep)
7943 btrfs_path_cachep = kmem_cache_create("btrfs_path",
7944 sizeof(struct btrfs_path), 0,
7945 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7946 if (!btrfs_path_cachep)
7949 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7950 sizeof(struct btrfs_free_space), 0,
7951 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7952 if (!btrfs_free_space_cachep)
7955 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7956 sizeof(struct btrfs_delalloc_work), 0,
7957 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7959 if (!btrfs_delalloc_work_cachep)
7964 btrfs_destroy_cachep();
7968 static int btrfs_getattr(struct vfsmount *mnt,
7969 struct dentry *dentry, struct kstat *stat)
7972 struct inode *inode = dentry->d_inode;
7973 u32 blocksize = inode->i_sb->s_blocksize;
7975 generic_fillattr(inode, stat);
7976 stat->dev = BTRFS_I(inode)->root->anon_dev;
7977 stat->blksize = PAGE_CACHE_SIZE;
7979 spin_lock(&BTRFS_I(inode)->lock);
7980 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7981 spin_unlock(&BTRFS_I(inode)->lock);
7982 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7983 ALIGN(delalloc_bytes, blocksize)) >> 9;
7987 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7988 struct inode *new_dir, struct dentry *new_dentry)
7990 struct btrfs_trans_handle *trans;
7991 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7992 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7993 struct inode *new_inode = new_dentry->d_inode;
7994 struct inode *old_inode = old_dentry->d_inode;
7995 struct timespec ctime = CURRENT_TIME;
7999 u64 old_ino = btrfs_ino(old_inode);
8001 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8004 /* we only allow rename subvolume link between subvolumes */
8005 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8008 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8009 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8012 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8013 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8017 /* check for collisions, even if the name isn't there */
8018 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8019 new_dentry->d_name.name,
8020 new_dentry->d_name.len);
8023 if (ret == -EEXIST) {
8025 * eexist without a new_inode */
8031 /* maybe -EOVERFLOW */
8038 * we're using rename to replace one file with another.
8039 * and the replacement file is large. Start IO on it now so
8040 * we don't add too much work to the end of the transaction
8042 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8043 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8044 filemap_flush(old_inode->i_mapping);
8046 /* close the racy window with snapshot create/destroy ioctl */
8047 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8048 down_read(&root->fs_info->subvol_sem);
8050 * We want to reserve the absolute worst case amount of items. So if
8051 * both inodes are subvols and we need to unlink them then that would
8052 * require 4 item modifications, but if they are both normal inodes it
8053 * would require 5 item modifications, so we'll assume their normal
8054 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8055 * should cover the worst case number of items we'll modify.
8057 trans = btrfs_start_transaction(root, 11);
8058 if (IS_ERR(trans)) {
8059 ret = PTR_ERR(trans);
8064 btrfs_record_root_in_trans(trans, dest);
8066 ret = btrfs_set_inode_index(new_dir, &index);
8070 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8071 /* force full log commit if subvolume involved. */
8072 root->fs_info->last_trans_log_full_commit = trans->transid;
8074 ret = btrfs_insert_inode_ref(trans, dest,
8075 new_dentry->d_name.name,
8076 new_dentry->d_name.len,
8078 btrfs_ino(new_dir), index);
8082 * this is an ugly little race, but the rename is required
8083 * to make sure that if we crash, the inode is either at the
8084 * old name or the new one. pinning the log transaction lets
8085 * us make sure we don't allow a log commit to come in after
8086 * we unlink the name but before we add the new name back in.
8088 btrfs_pin_log_trans(root);
8091 * make sure the inode gets flushed if it is replacing
8094 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8095 btrfs_add_ordered_operation(trans, root, old_inode);
8097 inode_inc_iversion(old_dir);
8098 inode_inc_iversion(new_dir);
8099 inode_inc_iversion(old_inode);
8100 old_dir->i_ctime = old_dir->i_mtime = ctime;
8101 new_dir->i_ctime = new_dir->i_mtime = ctime;
8102 old_inode->i_ctime = ctime;
8104 if (old_dentry->d_parent != new_dentry->d_parent)
8105 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8107 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8108 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8109 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8110 old_dentry->d_name.name,
8111 old_dentry->d_name.len);
8113 ret = __btrfs_unlink_inode(trans, root, old_dir,
8114 old_dentry->d_inode,
8115 old_dentry->d_name.name,
8116 old_dentry->d_name.len);
8118 ret = btrfs_update_inode(trans, root, old_inode);
8121 btrfs_abort_transaction(trans, root, ret);
8126 inode_inc_iversion(new_inode);
8127 new_inode->i_ctime = CURRENT_TIME;
8128 if (unlikely(btrfs_ino(new_inode) ==
8129 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8130 root_objectid = BTRFS_I(new_inode)->location.objectid;
8131 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8133 new_dentry->d_name.name,
8134 new_dentry->d_name.len);
8135 BUG_ON(new_inode->i_nlink == 0);
8137 ret = btrfs_unlink_inode(trans, dest, new_dir,
8138 new_dentry->d_inode,
8139 new_dentry->d_name.name,
8140 new_dentry->d_name.len);
8142 if (!ret && new_inode->i_nlink == 0) {
8143 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8147 btrfs_abort_transaction(trans, root, ret);
8152 ret = btrfs_add_link(trans, new_dir, old_inode,
8153 new_dentry->d_name.name,
8154 new_dentry->d_name.len, 0, index);
8156 btrfs_abort_transaction(trans, root, ret);
8160 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8161 struct dentry *parent = new_dentry->d_parent;
8162 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8163 btrfs_end_log_trans(root);
8166 btrfs_end_transaction(trans, root);
8168 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8169 up_read(&root->fs_info->subvol_sem);
8174 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8176 struct btrfs_delalloc_work *delalloc_work;
8178 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8180 if (delalloc_work->wait)
8181 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8183 filemap_flush(delalloc_work->inode->i_mapping);
8185 if (delalloc_work->delay_iput)
8186 btrfs_add_delayed_iput(delalloc_work->inode);
8188 iput(delalloc_work->inode);
8189 complete(&delalloc_work->completion);
8192 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8193 int wait, int delay_iput)
8195 struct btrfs_delalloc_work *work;
8197 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8201 init_completion(&work->completion);
8202 INIT_LIST_HEAD(&work->list);
8203 work->inode = inode;
8205 work->delay_iput = delay_iput;
8206 work->work.func = btrfs_run_delalloc_work;
8211 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8213 wait_for_completion(&work->completion);
8214 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8218 * some fairly slow code that needs optimization. This walks the list
8219 * of all the inodes with pending delalloc and forces them to disk.
8221 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8223 struct btrfs_inode *binode;
8224 struct inode *inode;
8225 struct btrfs_delalloc_work *work, *next;
8226 struct list_head works;
8227 struct list_head splice;
8230 INIT_LIST_HEAD(&works);
8231 INIT_LIST_HEAD(&splice);
8233 spin_lock(&root->delalloc_lock);
8234 list_splice_init(&root->delalloc_inodes, &splice);
8235 while (!list_empty(&splice)) {
8236 binode = list_entry(splice.next, struct btrfs_inode,
8239 list_move_tail(&binode->delalloc_inodes,
8240 &root->delalloc_inodes);
8241 inode = igrab(&binode->vfs_inode);
8243 cond_resched_lock(&root->delalloc_lock);
8246 spin_unlock(&root->delalloc_lock);
8248 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8249 if (unlikely(!work)) {
8253 list_add_tail(&work->list, &works);
8254 btrfs_queue_worker(&root->fs_info->flush_workers,
8258 spin_lock(&root->delalloc_lock);
8260 spin_unlock(&root->delalloc_lock);
8262 list_for_each_entry_safe(work, next, &works, list) {
8263 list_del_init(&work->list);
8264 btrfs_wait_and_free_delalloc_work(work);
8268 list_for_each_entry_safe(work, next, &works, list) {
8269 list_del_init(&work->list);
8270 btrfs_wait_and_free_delalloc_work(work);
8273 if (!list_empty_careful(&splice)) {
8274 spin_lock(&root->delalloc_lock);
8275 list_splice_tail(&splice, &root->delalloc_inodes);
8276 spin_unlock(&root->delalloc_lock);
8281 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8285 if (root->fs_info->sb->s_flags & MS_RDONLY)
8288 ret = __start_delalloc_inodes(root, delay_iput);
8290 * the filemap_flush will queue IO into the worker threads, but
8291 * we have to make sure the IO is actually started and that
8292 * ordered extents get created before we return
8294 atomic_inc(&root->fs_info->async_submit_draining);
8295 while (atomic_read(&root->fs_info->nr_async_submits) ||
8296 atomic_read(&root->fs_info->async_delalloc_pages)) {
8297 wait_event(root->fs_info->async_submit_wait,
8298 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8299 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8301 atomic_dec(&root->fs_info->async_submit_draining);
8305 int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8308 struct btrfs_root *root;
8309 struct list_head splice;
8312 if (fs_info->sb->s_flags & MS_RDONLY)
8315 INIT_LIST_HEAD(&splice);
8317 spin_lock(&fs_info->delalloc_root_lock);
8318 list_splice_init(&fs_info->delalloc_roots, &splice);
8319 while (!list_empty(&splice)) {
8320 root = list_first_entry(&splice, struct btrfs_root,
8322 root = btrfs_grab_fs_root(root);
8324 list_move_tail(&root->delalloc_root,
8325 &fs_info->delalloc_roots);
8326 spin_unlock(&fs_info->delalloc_root_lock);
8328 ret = __start_delalloc_inodes(root, delay_iput);
8329 btrfs_put_fs_root(root);
8333 spin_lock(&fs_info->delalloc_root_lock);
8335 spin_unlock(&fs_info->delalloc_root_lock);
8337 atomic_inc(&fs_info->async_submit_draining);
8338 while (atomic_read(&fs_info->nr_async_submits) ||
8339 atomic_read(&fs_info->async_delalloc_pages)) {
8340 wait_event(fs_info->async_submit_wait,
8341 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8342 atomic_read(&fs_info->async_delalloc_pages) == 0));
8344 atomic_dec(&fs_info->async_submit_draining);
8347 if (!list_empty_careful(&splice)) {
8348 spin_lock(&fs_info->delalloc_root_lock);
8349 list_splice_tail(&splice, &fs_info->delalloc_roots);
8350 spin_unlock(&fs_info->delalloc_root_lock);
8355 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8356 const char *symname)
8358 struct btrfs_trans_handle *trans;
8359 struct btrfs_root *root = BTRFS_I(dir)->root;
8360 struct btrfs_path *path;
8361 struct btrfs_key key;
8362 struct inode *inode = NULL;
8370 struct btrfs_file_extent_item *ei;
8371 struct extent_buffer *leaf;
8373 name_len = strlen(symname) + 1;
8374 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8375 return -ENAMETOOLONG;
8378 * 2 items for inode item and ref
8379 * 2 items for dir items
8380 * 1 item for xattr if selinux is on
8382 trans = btrfs_start_transaction(root, 5);
8384 return PTR_ERR(trans);
8386 err = btrfs_find_free_ino(root, &objectid);
8390 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8391 dentry->d_name.len, btrfs_ino(dir), objectid,
8392 S_IFLNK|S_IRWXUGO, &index);
8393 if (IS_ERR(inode)) {
8394 err = PTR_ERR(inode);
8398 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8405 * If the active LSM wants to access the inode during
8406 * d_instantiate it needs these. Smack checks to see
8407 * if the filesystem supports xattrs by looking at the
8410 inode->i_fop = &btrfs_file_operations;
8411 inode->i_op = &btrfs_file_inode_operations;
8413 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8417 inode->i_mapping->a_ops = &btrfs_aops;
8418 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8419 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8424 path = btrfs_alloc_path();
8430 key.objectid = btrfs_ino(inode);
8432 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8433 datasize = btrfs_file_extent_calc_inline_size(name_len);
8434 err = btrfs_insert_empty_item(trans, root, path, &key,
8438 btrfs_free_path(path);
8441 leaf = path->nodes[0];
8442 ei = btrfs_item_ptr(leaf, path->slots[0],
8443 struct btrfs_file_extent_item);
8444 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8445 btrfs_set_file_extent_type(leaf, ei,
8446 BTRFS_FILE_EXTENT_INLINE);
8447 btrfs_set_file_extent_encryption(leaf, ei, 0);
8448 btrfs_set_file_extent_compression(leaf, ei, 0);
8449 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8450 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8452 ptr = btrfs_file_extent_inline_start(ei);
8453 write_extent_buffer(leaf, symname, ptr, name_len);
8454 btrfs_mark_buffer_dirty(leaf);
8455 btrfs_free_path(path);
8457 inode->i_op = &btrfs_symlink_inode_operations;
8458 inode->i_mapping->a_ops = &btrfs_symlink_aops;
8459 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8460 inode_set_bytes(inode, name_len);
8461 btrfs_i_size_write(inode, name_len - 1);
8462 err = btrfs_update_inode(trans, root, inode);
8468 d_instantiate(dentry, inode);
8469 btrfs_end_transaction(trans, root);
8471 inode_dec_link_count(inode);
8474 btrfs_btree_balance_dirty(root);
8478 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8479 u64 start, u64 num_bytes, u64 min_size,
8480 loff_t actual_len, u64 *alloc_hint,
8481 struct btrfs_trans_handle *trans)
8483 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8484 struct extent_map *em;
8485 struct btrfs_root *root = BTRFS_I(inode)->root;
8486 struct btrfs_key ins;
8487 u64 cur_offset = start;
8491 bool own_trans = true;
8495 while (num_bytes > 0) {
8497 trans = btrfs_start_transaction(root, 3);
8498 if (IS_ERR(trans)) {
8499 ret = PTR_ERR(trans);
8504 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8505 cur_bytes = max(cur_bytes, min_size);
8506 ret = btrfs_reserve_extent(trans, root, cur_bytes,
8507 min_size, 0, *alloc_hint, &ins, 1);
8510 btrfs_end_transaction(trans, root);
8514 ret = insert_reserved_file_extent(trans, inode,
8515 cur_offset, ins.objectid,
8516 ins.offset, ins.offset,
8517 ins.offset, 0, 0, 0,
8518 BTRFS_FILE_EXTENT_PREALLOC);
8520 btrfs_abort_transaction(trans, root, ret);
8522 btrfs_end_transaction(trans, root);
8525 btrfs_drop_extent_cache(inode, cur_offset,
8526 cur_offset + ins.offset -1, 0);
8528 em = alloc_extent_map();
8530 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8531 &BTRFS_I(inode)->runtime_flags);
8535 em->start = cur_offset;
8536 em->orig_start = cur_offset;
8537 em->len = ins.offset;
8538 em->block_start = ins.objectid;
8539 em->block_len = ins.offset;
8540 em->orig_block_len = ins.offset;
8541 em->ram_bytes = ins.offset;
8542 em->bdev = root->fs_info->fs_devices->latest_bdev;
8543 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8544 em->generation = trans->transid;
8547 write_lock(&em_tree->lock);
8548 ret = add_extent_mapping(em_tree, em, 1);
8549 write_unlock(&em_tree->lock);
8552 btrfs_drop_extent_cache(inode, cur_offset,
8553 cur_offset + ins.offset - 1,
8556 free_extent_map(em);
8558 num_bytes -= ins.offset;
8559 cur_offset += ins.offset;
8560 *alloc_hint = ins.objectid + ins.offset;
8562 inode_inc_iversion(inode);
8563 inode->i_ctime = CURRENT_TIME;
8564 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8565 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8566 (actual_len > inode->i_size) &&
8567 (cur_offset > inode->i_size)) {
8568 if (cur_offset > actual_len)
8569 i_size = actual_len;
8571 i_size = cur_offset;
8572 i_size_write(inode, i_size);
8573 btrfs_ordered_update_i_size(inode, i_size, NULL);
8576 ret = btrfs_update_inode(trans, root, inode);
8579 btrfs_abort_transaction(trans, root, ret);
8581 btrfs_end_transaction(trans, root);
8586 btrfs_end_transaction(trans, root);
8591 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8592 u64 start, u64 num_bytes, u64 min_size,
8593 loff_t actual_len, u64 *alloc_hint)
8595 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8596 min_size, actual_len, alloc_hint,
8600 int btrfs_prealloc_file_range_trans(struct inode *inode,
8601 struct btrfs_trans_handle *trans, int mode,
8602 u64 start, u64 num_bytes, u64 min_size,
8603 loff_t actual_len, u64 *alloc_hint)
8605 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8606 min_size, actual_len, alloc_hint, trans);
8609 static int btrfs_set_page_dirty(struct page *page)
8611 return __set_page_dirty_nobuffers(page);
8614 static int btrfs_permission(struct inode *inode, int mask)
8616 struct btrfs_root *root = BTRFS_I(inode)->root;
8617 umode_t mode = inode->i_mode;
8619 if (mask & MAY_WRITE &&
8620 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8621 if (btrfs_root_readonly(root))
8623 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8626 return generic_permission(inode, mask);
8629 static const struct inode_operations btrfs_dir_inode_operations = {
8630 .getattr = btrfs_getattr,
8631 .lookup = btrfs_lookup,
8632 .create = btrfs_create,
8633 .unlink = btrfs_unlink,
8635 .mkdir = btrfs_mkdir,
8636 .rmdir = btrfs_rmdir,
8637 .rename = btrfs_rename,
8638 .symlink = btrfs_symlink,
8639 .setattr = btrfs_setattr,
8640 .mknod = btrfs_mknod,
8641 .setxattr = btrfs_setxattr,
8642 .getxattr = btrfs_getxattr,
8643 .listxattr = btrfs_listxattr,
8644 .removexattr = btrfs_removexattr,
8645 .permission = btrfs_permission,
8646 .get_acl = btrfs_get_acl,
8648 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8649 .lookup = btrfs_lookup,
8650 .permission = btrfs_permission,
8651 .get_acl = btrfs_get_acl,
8654 static const struct file_operations btrfs_dir_file_operations = {
8655 .llseek = generic_file_llseek,
8656 .read = generic_read_dir,
8657 .iterate = btrfs_real_readdir,
8658 .unlocked_ioctl = btrfs_ioctl,
8659 #ifdef CONFIG_COMPAT
8660 .compat_ioctl = btrfs_ioctl,
8662 .release = btrfs_release_file,
8663 .fsync = btrfs_sync_file,
8666 static struct extent_io_ops btrfs_extent_io_ops = {
8667 .fill_delalloc = run_delalloc_range,
8668 .submit_bio_hook = btrfs_submit_bio_hook,
8669 .merge_bio_hook = btrfs_merge_bio_hook,
8670 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8671 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8672 .writepage_start_hook = btrfs_writepage_start_hook,
8673 .set_bit_hook = btrfs_set_bit_hook,
8674 .clear_bit_hook = btrfs_clear_bit_hook,
8675 .merge_extent_hook = btrfs_merge_extent_hook,
8676 .split_extent_hook = btrfs_split_extent_hook,
8680 * btrfs doesn't support the bmap operation because swapfiles
8681 * use bmap to make a mapping of extents in the file. They assume
8682 * these extents won't change over the life of the file and they
8683 * use the bmap result to do IO directly to the drive.
8685 * the btrfs bmap call would return logical addresses that aren't
8686 * suitable for IO and they also will change frequently as COW
8687 * operations happen. So, swapfile + btrfs == corruption.
8689 * For now we're avoiding this by dropping bmap.
8691 static const struct address_space_operations btrfs_aops = {
8692 .readpage = btrfs_readpage,
8693 .writepage = btrfs_writepage,
8694 .writepages = btrfs_writepages,
8695 .readpages = btrfs_readpages,
8696 .direct_IO = btrfs_direct_IO,
8697 .invalidatepage = btrfs_invalidatepage,
8698 .releasepage = btrfs_releasepage,
8699 .set_page_dirty = btrfs_set_page_dirty,
8700 .error_remove_page = generic_error_remove_page,
8703 static const struct address_space_operations btrfs_symlink_aops = {
8704 .readpage = btrfs_readpage,
8705 .writepage = btrfs_writepage,
8706 .invalidatepage = btrfs_invalidatepage,
8707 .releasepage = btrfs_releasepage,
8710 static const struct inode_operations btrfs_file_inode_operations = {
8711 .getattr = btrfs_getattr,
8712 .setattr = btrfs_setattr,
8713 .setxattr = btrfs_setxattr,
8714 .getxattr = btrfs_getxattr,
8715 .listxattr = btrfs_listxattr,
8716 .removexattr = btrfs_removexattr,
8717 .permission = btrfs_permission,
8718 .fiemap = btrfs_fiemap,
8719 .get_acl = btrfs_get_acl,
8720 .update_time = btrfs_update_time,
8722 static const struct inode_operations btrfs_special_inode_operations = {
8723 .getattr = btrfs_getattr,
8724 .setattr = btrfs_setattr,
8725 .permission = btrfs_permission,
8726 .setxattr = btrfs_setxattr,
8727 .getxattr = btrfs_getxattr,
8728 .listxattr = btrfs_listxattr,
8729 .removexattr = btrfs_removexattr,
8730 .get_acl = btrfs_get_acl,
8731 .update_time = btrfs_update_time,
8733 static const struct inode_operations btrfs_symlink_inode_operations = {
8734 .readlink = generic_readlink,
8735 .follow_link = page_follow_link_light,
8736 .put_link = page_put_link,
8737 .getattr = btrfs_getattr,
8738 .setattr = btrfs_setattr,
8739 .permission = btrfs_permission,
8740 .setxattr = btrfs_setxattr,
8741 .getxattr = btrfs_getxattr,
8742 .listxattr = btrfs_listxattr,
8743 .removexattr = btrfs_removexattr,
8744 .get_acl = btrfs_get_acl,
8745 .update_time = btrfs_update_time,
8748 const struct dentry_operations btrfs_dentry_operations = {
8749 .d_delete = btrfs_dentry_delete,
8750 .d_release = btrfs_dentry_release,