2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args {
60 struct btrfs_root *root;
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
93 static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
106 err = btrfs_init_acl(trans, inode, dir);
108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
121 struct page **compressed_pages)
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
129 struct btrfs_file_extent_item *ei;
132 size_t cur_size = size;
134 unsigned long offset;
136 if (compressed_size && compressed_pages)
137 cur_size = compressed_size;
139 path = btrfs_alloc_path();
143 path->leave_spinning = 1;
145 key.objectid = btrfs_ino(inode);
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
167 if (compress_type != BTRFS_COMPRESS_NONE) {
170 while (compressed_size > 0) {
171 cpage = compressed_pages[i];
172 cur_size = min_t(unsigned long, compressed_size,
175 kaddr = kmap_atomic(cpage);
176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 kunmap_atomic(kaddr);
181 compressed_size -= cur_size;
183 btrfs_set_file_extent_compression(leaf, ei,
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
189 kaddr = kmap_atomic(page);
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 kunmap_atomic(kaddr);
193 page_cache_release(page);
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
207 BTRFS_I(inode)->disk_i_size = inode->i_size;
208 ret = btrfs_update_inode(trans, root, inode);
212 btrfs_free_path(path);
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
225 size_t compressed_size, int compress_type,
226 struct page **compressed_pages)
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
234 u64 data_len = inline_len;
238 data_len = compressed_size;
241 actual_end >= PAGE_CACHE_SIZE ||
242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
244 (actual_end & (root->sectorsize - 1)) == 0) ||
246 data_len > root->fs_info->max_inline) {
250 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
259 compress_type, compressed_pages);
261 btrfs_abort_transaction(trans, root, ret);
264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
269 struct async_extent {
274 unsigned long nr_pages;
276 struct list_head list;
281 struct btrfs_root *root;
282 struct page *locked_page;
285 struct list_head extents;
286 struct btrfs_work work;
289 static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
293 unsigned long nr_pages,
296 struct async_extent *async_extent;
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
299 BUG_ON(!async_extent); /* -ENOMEM */
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
305 async_extent->compress_type = compress_type;
306 list_add_tail(&async_extent->list, &cow->extents);
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
324 * are written in the same order that pdflush sent them down.
326 static noinline int compress_file_range(struct inode *inode,
327 struct page *locked_page,
329 struct async_cow *async_cow,
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct btrfs_trans_handle *trans;
335 u64 blocksize = root->sectorsize;
337 u64 isize = i_size_read(inode);
339 struct page **pages = NULL;
340 unsigned long nr_pages;
341 unsigned long nr_pages_ret = 0;
342 unsigned long total_compressed = 0;
343 unsigned long total_in = 0;
344 unsigned long max_compressed = 128 * 1024;
345 unsigned long max_uncompressed = 128 * 1024;
348 int compress_type = root->fs_info->compress_type;
350 /* if this is a small write inside eof, kick off a defrag */
351 if ((end - start + 1) < 16 * 1024 &&
352 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
353 btrfs_add_inode_defrag(NULL, inode);
355 actual_end = min_t(u64, isize, end + 1);
358 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
359 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
362 * we don't want to send crud past the end of i_size through
363 * compression, that's just a waste of CPU time. So, if the
364 * end of the file is before the start of our current
365 * requested range of bytes, we bail out to the uncompressed
366 * cleanup code that can deal with all of this.
368 * It isn't really the fastest way to fix things, but this is a
369 * very uncommon corner.
371 if (actual_end <= start)
372 goto cleanup_and_bail_uncompressed;
374 total_compressed = actual_end - start;
376 /* we want to make sure that amount of ram required to uncompress
377 * an extent is reasonable, so we limit the total size in ram
378 * of a compressed extent to 128k. This is a crucial number
379 * because it also controls how easily we can spread reads across
380 * cpus for decompression.
382 * We also want to make sure the amount of IO required to do
383 * a random read is reasonably small, so we limit the size of
384 * a compressed extent to 128k.
386 total_compressed = min(total_compressed, max_uncompressed);
387 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
388 num_bytes = max(blocksize, num_bytes);
393 * we do compression for mount -o compress and when the
394 * inode has not been flagged as nocompress. This flag can
395 * change at any time if we discover bad compression ratios.
397 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
398 (btrfs_test_opt(root, COMPRESS) ||
399 (BTRFS_I(inode)->force_compress) ||
400 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
402 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
404 /* just bail out to the uncompressed code */
408 if (BTRFS_I(inode)->force_compress)
409 compress_type = BTRFS_I(inode)->force_compress;
411 ret = btrfs_compress_pages(compress_type,
412 inode->i_mapping, start,
413 total_compressed, pages,
414 nr_pages, &nr_pages_ret,
420 unsigned long offset = total_compressed &
421 (PAGE_CACHE_SIZE - 1);
422 struct page *page = pages[nr_pages_ret - 1];
425 /* zero the tail end of the last page, we might be
426 * sending it down to disk
429 kaddr = kmap_atomic(page);
430 memset(kaddr + offset, 0,
431 PAGE_CACHE_SIZE - offset);
432 kunmap_atomic(kaddr);
439 trans = btrfs_join_transaction(root);
441 ret = PTR_ERR(trans);
443 goto cleanup_and_out;
445 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
447 /* lets try to make an inline extent */
448 if (ret || total_in < (actual_end - start)) {
449 /* we didn't compress the entire range, try
450 * to make an uncompressed inline extent.
452 ret = cow_file_range_inline(trans, root, inode,
453 start, end, 0, 0, NULL);
455 /* try making a compressed inline extent */
456 ret = cow_file_range_inline(trans, root, inode,
459 compress_type, pages);
463 * inline extent creation worked or returned error,
464 * we don't need to create any more async work items.
465 * Unlock and free up our temp pages.
467 extent_clear_unlock_delalloc(inode,
468 &BTRFS_I(inode)->io_tree,
470 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
471 EXTENT_CLEAR_DELALLOC |
472 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
474 btrfs_end_transaction(trans, root);
477 btrfs_end_transaction(trans, root);
482 * we aren't doing an inline extent round the compressed size
483 * up to a block size boundary so the allocator does sane
486 total_compressed = (total_compressed + blocksize - 1) &
490 * one last check to make sure the compression is really a
491 * win, compare the page count read with the blocks on disk
493 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
494 ~(PAGE_CACHE_SIZE - 1);
495 if (total_compressed >= total_in) {
498 num_bytes = total_in;
501 if (!will_compress && pages) {
503 * the compression code ran but failed to make things smaller,
504 * free any pages it allocated and our page pointer array
506 for (i = 0; i < nr_pages_ret; i++) {
507 WARN_ON(pages[i]->mapping);
508 page_cache_release(pages[i]);
512 total_compressed = 0;
515 /* flag the file so we don't compress in the future */
516 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
517 !(BTRFS_I(inode)->force_compress)) {
518 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
524 /* the async work queues will take care of doing actual
525 * allocation on disk for these compressed pages,
526 * and will submit them to the elevator.
528 add_async_extent(async_cow, start, num_bytes,
529 total_compressed, pages, nr_pages_ret,
532 if (start + num_bytes < end) {
539 cleanup_and_bail_uncompressed:
541 * No compression, but we still need to write the pages in
542 * the file we've been given so far. redirty the locked
543 * page if it corresponds to our extent and set things up
544 * for the async work queue to run cow_file_range to do
545 * the normal delalloc dance
547 if (page_offset(locked_page) >= start &&
548 page_offset(locked_page) <= end) {
549 __set_page_dirty_nobuffers(locked_page);
550 /* unlocked later on in the async handlers */
552 add_async_extent(async_cow, start, end - start + 1,
553 0, NULL, 0, BTRFS_COMPRESS_NONE);
561 for (i = 0; i < nr_pages_ret; i++) {
562 WARN_ON(pages[i]->mapping);
563 page_cache_release(pages[i]);
570 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
572 EXTENT_CLEAR_UNLOCK_PAGE |
574 EXTENT_CLEAR_DELALLOC |
575 EXTENT_SET_WRITEBACK |
576 EXTENT_END_WRITEBACK);
577 if (!trans || IS_ERR(trans))
578 btrfs_error(root->fs_info, ret, "Failed to join transaction");
580 btrfs_abort_transaction(trans, root, ret);
585 * phase two of compressed writeback. This is the ordered portion
586 * of the code, which only gets called in the order the work was
587 * queued. We walk all the async extents created by compress_file_range
588 * and send them down to the disk.
590 static noinline int submit_compressed_extents(struct inode *inode,
591 struct async_cow *async_cow)
593 struct async_extent *async_extent;
595 struct btrfs_trans_handle *trans;
596 struct btrfs_key ins;
597 struct extent_map *em;
598 struct btrfs_root *root = BTRFS_I(inode)->root;
599 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
600 struct extent_io_tree *io_tree;
603 if (list_empty(&async_cow->extents))
607 while (!list_empty(&async_cow->extents)) {
608 async_extent = list_entry(async_cow->extents.next,
609 struct async_extent, list);
610 list_del(&async_extent->list);
612 io_tree = &BTRFS_I(inode)->io_tree;
615 /* did the compression code fall back to uncompressed IO? */
616 if (!async_extent->pages) {
617 int page_started = 0;
618 unsigned long nr_written = 0;
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start +
622 async_extent->ram_size - 1);
624 /* allocate blocks */
625 ret = cow_file_range(inode, async_cow->locked_page,
627 async_extent->start +
628 async_extent->ram_size - 1,
629 &page_started, &nr_written, 0);
634 * if page_started, cow_file_range inserted an
635 * inline extent and took care of all the unlocking
636 * and IO for us. Otherwise, we need to submit
637 * all those pages down to the drive.
639 if (!page_started && !ret)
640 extent_write_locked_range(io_tree,
641 inode, async_extent->start,
642 async_extent->start +
643 async_extent->ram_size - 1,
651 lock_extent(io_tree, async_extent->start,
652 async_extent->start + async_extent->ram_size - 1);
654 trans = btrfs_join_transaction(root);
656 ret = PTR_ERR(trans);
658 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
659 ret = btrfs_reserve_extent(trans, root,
660 async_extent->compressed_size,
661 async_extent->compressed_size,
662 0, alloc_hint, &ins, 1);
664 btrfs_abort_transaction(trans, root, ret);
665 btrfs_end_transaction(trans, root);
670 for (i = 0; i < async_extent->nr_pages; i++) {
671 WARN_ON(async_extent->pages[i]->mapping);
672 page_cache_release(async_extent->pages[i]);
674 kfree(async_extent->pages);
675 async_extent->nr_pages = 0;
676 async_extent->pages = NULL;
677 unlock_extent(io_tree, async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1);
682 goto out_free; /* JDM: Requeue? */
686 * here we're doing allocation and writeback of the
689 btrfs_drop_extent_cache(inode, async_extent->start,
690 async_extent->start +
691 async_extent->ram_size - 1, 0);
693 em = alloc_extent_map();
694 BUG_ON(!em); /* -ENOMEM */
695 em->start = async_extent->start;
696 em->len = async_extent->ram_size;
697 em->orig_start = em->start;
699 em->block_start = ins.objectid;
700 em->block_len = ins.offset;
701 em->bdev = root->fs_info->fs_devices->latest_bdev;
702 em->compress_type = async_extent->compress_type;
703 set_bit(EXTENT_FLAG_PINNED, &em->flags);
704 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
707 write_lock(&em_tree->lock);
708 ret = add_extent_mapping(em_tree, em);
709 write_unlock(&em_tree->lock);
710 if (ret != -EEXIST) {
714 btrfs_drop_extent_cache(inode, async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1, 0);
719 ret = btrfs_add_ordered_extent_compress(inode,
722 async_extent->ram_size,
724 BTRFS_ORDERED_COMPRESSED,
725 async_extent->compress_type);
726 BUG_ON(ret); /* -ENOMEM */
729 * clear dirty, set writeback and unlock the pages.
731 extent_clear_unlock_delalloc(inode,
732 &BTRFS_I(inode)->io_tree,
734 async_extent->start +
735 async_extent->ram_size - 1,
736 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
737 EXTENT_CLEAR_UNLOCK |
738 EXTENT_CLEAR_DELALLOC |
739 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
741 ret = btrfs_submit_compressed_write(inode,
743 async_extent->ram_size,
745 ins.offset, async_extent->pages,
746 async_extent->nr_pages);
748 BUG_ON(ret); /* -ENOMEM */
749 alloc_hint = ins.objectid + ins.offset;
761 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 struct extent_map *em;
768 read_lock(&em_tree->lock);
769 em = search_extent_mapping(em_tree, start, num_bytes);
772 * if block start isn't an actual block number then find the
773 * first block in this inode and use that as a hint. If that
774 * block is also bogus then just don't worry about it.
776 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 em = search_extent_mapping(em_tree, 0, 0);
779 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
780 alloc_hint = em->block_start;
784 alloc_hint = em->block_start;
788 read_unlock(&em_tree->lock);
794 * when extent_io.c finds a delayed allocation range in the file,
795 * the call backs end up in this code. The basic idea is to
796 * allocate extents on disk for the range, and create ordered data structs
797 * in ram to track those extents.
799 * locked_page is the page that writepage had locked already. We use
800 * it to make sure we don't do extra locks or unlocks.
802 * *page_started is set to one if we unlock locked_page and do everything
803 * required to start IO on it. It may be clean and already done with
806 static noinline int cow_file_range(struct inode *inode,
807 struct page *locked_page,
808 u64 start, u64 end, int *page_started,
809 unsigned long *nr_written,
812 struct btrfs_root *root = BTRFS_I(inode)->root;
813 struct btrfs_trans_handle *trans;
816 unsigned long ram_size;
819 u64 blocksize = root->sectorsize;
820 struct btrfs_key ins;
821 struct extent_map *em;
822 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
825 BUG_ON(btrfs_is_free_space_inode(root, inode));
826 trans = btrfs_join_transaction(root);
828 extent_clear_unlock_delalloc(inode,
829 &BTRFS_I(inode)->io_tree,
831 EXTENT_CLEAR_UNLOCK_PAGE |
832 EXTENT_CLEAR_UNLOCK |
833 EXTENT_CLEAR_DELALLOC |
835 EXTENT_SET_WRITEBACK |
836 EXTENT_END_WRITEBACK);
837 return PTR_ERR(trans);
839 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
841 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
842 num_bytes = max(blocksize, num_bytes);
843 disk_num_bytes = num_bytes;
846 /* if this is a small write inside eof, kick off defrag */
847 if (num_bytes < 64 * 1024 &&
848 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
849 btrfs_add_inode_defrag(trans, inode);
852 /* lets try to make an inline extent */
853 ret = cow_file_range_inline(trans, root, inode,
854 start, end, 0, 0, NULL);
856 extent_clear_unlock_delalloc(inode,
857 &BTRFS_I(inode)->io_tree,
859 EXTENT_CLEAR_UNLOCK_PAGE |
860 EXTENT_CLEAR_UNLOCK |
861 EXTENT_CLEAR_DELALLOC |
863 EXTENT_SET_WRITEBACK |
864 EXTENT_END_WRITEBACK);
866 *nr_written = *nr_written +
867 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
870 } else if (ret < 0) {
871 btrfs_abort_transaction(trans, root, ret);
876 BUG_ON(disk_num_bytes >
877 btrfs_super_total_bytes(root->fs_info->super_copy));
879 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
880 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
882 while (disk_num_bytes > 0) {
885 cur_alloc_size = disk_num_bytes;
886 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
887 root->sectorsize, 0, alloc_hint,
890 btrfs_abort_transaction(trans, root, ret);
894 em = alloc_extent_map();
895 BUG_ON(!em); /* -ENOMEM */
897 em->orig_start = em->start;
898 ram_size = ins.offset;
899 em->len = ins.offset;
901 em->block_start = ins.objectid;
902 em->block_len = ins.offset;
903 em->bdev = root->fs_info->fs_devices->latest_bdev;
904 set_bit(EXTENT_FLAG_PINNED, &em->flags);
907 write_lock(&em_tree->lock);
908 ret = add_extent_mapping(em_tree, em);
909 write_unlock(&em_tree->lock);
910 if (ret != -EEXIST) {
914 btrfs_drop_extent_cache(inode, start,
915 start + ram_size - 1, 0);
918 cur_alloc_size = ins.offset;
919 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
920 ram_size, cur_alloc_size, 0);
921 BUG_ON(ret); /* -ENOMEM */
923 if (root->root_key.objectid ==
924 BTRFS_DATA_RELOC_TREE_OBJECTID) {
925 ret = btrfs_reloc_clone_csums(inode, start,
928 btrfs_abort_transaction(trans, root, ret);
933 if (disk_num_bytes < cur_alloc_size)
936 /* we're not doing compressed IO, don't unlock the first
937 * page (which the caller expects to stay locked), don't
938 * clear any dirty bits and don't set any writeback bits
940 * Do set the Private2 bit so we know this page was properly
941 * setup for writepage
943 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
944 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
947 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
948 start, start + ram_size - 1,
950 disk_num_bytes -= cur_alloc_size;
951 num_bytes -= cur_alloc_size;
952 alloc_hint = ins.objectid + ins.offset;
953 start += cur_alloc_size;
957 btrfs_end_transaction(trans, root);
961 extent_clear_unlock_delalloc(inode,
962 &BTRFS_I(inode)->io_tree,
964 EXTENT_CLEAR_UNLOCK_PAGE |
965 EXTENT_CLEAR_UNLOCK |
966 EXTENT_CLEAR_DELALLOC |
968 EXTENT_SET_WRITEBACK |
969 EXTENT_END_WRITEBACK);
975 * work queue call back to started compression on a file and pages
977 static noinline void async_cow_start(struct btrfs_work *work)
979 struct async_cow *async_cow;
981 async_cow = container_of(work, struct async_cow, work);
983 compress_file_range(async_cow->inode, async_cow->locked_page,
984 async_cow->start, async_cow->end, async_cow,
987 async_cow->inode = NULL;
991 * work queue call back to submit previously compressed pages
993 static noinline void async_cow_submit(struct btrfs_work *work)
995 struct async_cow *async_cow;
996 struct btrfs_root *root;
997 unsigned long nr_pages;
999 async_cow = container_of(work, struct async_cow, work);
1001 root = async_cow->root;
1002 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1005 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
1007 if (atomic_read(&root->fs_info->async_delalloc_pages) <
1009 waitqueue_active(&root->fs_info->async_submit_wait))
1010 wake_up(&root->fs_info->async_submit_wait);
1012 if (async_cow->inode)
1013 submit_compressed_extents(async_cow->inode, async_cow);
1016 static noinline void async_cow_free(struct btrfs_work *work)
1018 struct async_cow *async_cow;
1019 async_cow = container_of(work, struct async_cow, work);
1023 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1024 u64 start, u64 end, int *page_started,
1025 unsigned long *nr_written)
1027 struct async_cow *async_cow;
1028 struct btrfs_root *root = BTRFS_I(inode)->root;
1029 unsigned long nr_pages;
1031 int limit = 10 * 1024 * 1042;
1033 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1034 1, 0, NULL, GFP_NOFS);
1035 while (start < end) {
1036 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1037 BUG_ON(!async_cow); /* -ENOMEM */
1038 async_cow->inode = inode;
1039 async_cow->root = root;
1040 async_cow->locked_page = locked_page;
1041 async_cow->start = start;
1043 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1046 cur_end = min(end, start + 512 * 1024 - 1);
1048 async_cow->end = cur_end;
1049 INIT_LIST_HEAD(&async_cow->extents);
1051 async_cow->work.func = async_cow_start;
1052 async_cow->work.ordered_func = async_cow_submit;
1053 async_cow->work.ordered_free = async_cow_free;
1054 async_cow->work.flags = 0;
1056 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1058 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1060 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1063 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1064 wait_event(root->fs_info->async_submit_wait,
1065 (atomic_read(&root->fs_info->async_delalloc_pages) <
1069 while (atomic_read(&root->fs_info->async_submit_draining) &&
1070 atomic_read(&root->fs_info->async_delalloc_pages)) {
1071 wait_event(root->fs_info->async_submit_wait,
1072 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1076 *nr_written += nr_pages;
1077 start = cur_end + 1;
1083 static noinline int csum_exist_in_range(struct btrfs_root *root,
1084 u64 bytenr, u64 num_bytes)
1087 struct btrfs_ordered_sum *sums;
1090 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1091 bytenr + num_bytes - 1, &list, 0);
1092 if (ret == 0 && list_empty(&list))
1095 while (!list_empty(&list)) {
1096 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1097 list_del(&sums->list);
1104 * when nowcow writeback call back. This checks for snapshots or COW copies
1105 * of the extents that exist in the file, and COWs the file as required.
1107 * If no cow copies or snapshots exist, we write directly to the existing
1110 static noinline int run_delalloc_nocow(struct inode *inode,
1111 struct page *locked_page,
1112 u64 start, u64 end, int *page_started, int force,
1113 unsigned long *nr_written)
1115 struct btrfs_root *root = BTRFS_I(inode)->root;
1116 struct btrfs_trans_handle *trans;
1117 struct extent_buffer *leaf;
1118 struct btrfs_path *path;
1119 struct btrfs_file_extent_item *fi;
1120 struct btrfs_key found_key;
1133 u64 ino = btrfs_ino(inode);
1135 path = btrfs_alloc_path();
1139 nolock = btrfs_is_free_space_inode(root, inode);
1142 trans = btrfs_join_transaction_nolock(root);
1144 trans = btrfs_join_transaction(root);
1146 if (IS_ERR(trans)) {
1147 btrfs_free_path(path);
1148 return PTR_ERR(trans);
1151 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1153 cow_start = (u64)-1;
1156 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1159 btrfs_abort_transaction(trans, root, ret);
1162 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1163 leaf = path->nodes[0];
1164 btrfs_item_key_to_cpu(leaf, &found_key,
1165 path->slots[0] - 1);
1166 if (found_key.objectid == ino &&
1167 found_key.type == BTRFS_EXTENT_DATA_KEY)
1172 leaf = path->nodes[0];
1173 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1174 ret = btrfs_next_leaf(root, path);
1176 btrfs_abort_transaction(trans, root, ret);
1181 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1189 if (found_key.objectid > ino ||
1190 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1191 found_key.offset > end)
1194 if (found_key.offset > cur_offset) {
1195 extent_end = found_key.offset;
1200 fi = btrfs_item_ptr(leaf, path->slots[0],
1201 struct btrfs_file_extent_item);
1202 extent_type = btrfs_file_extent_type(leaf, fi);
1204 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1205 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1206 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 extent_offset = btrfs_file_extent_offset(leaf, fi);
1208 extent_end = found_key.offset +
1209 btrfs_file_extent_num_bytes(leaf, fi);
1210 if (extent_end <= start) {
1214 if (disk_bytenr == 0)
1216 if (btrfs_file_extent_compression(leaf, fi) ||
1217 btrfs_file_extent_encryption(leaf, fi) ||
1218 btrfs_file_extent_other_encoding(leaf, fi))
1220 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1222 if (btrfs_extent_readonly(root, disk_bytenr))
1224 if (btrfs_cross_ref_exist(trans, root, ino,
1226 extent_offset, disk_bytenr))
1228 disk_bytenr += extent_offset;
1229 disk_bytenr += cur_offset - found_key.offset;
1230 num_bytes = min(end + 1, extent_end) - cur_offset;
1232 * force cow if csum exists in the range.
1233 * this ensure that csum for a given extent are
1234 * either valid or do not exist.
1236 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1239 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1240 extent_end = found_key.offset +
1241 btrfs_file_extent_inline_len(leaf, fi);
1242 extent_end = ALIGN(extent_end, root->sectorsize);
1247 if (extent_end <= start) {
1252 if (cow_start == (u64)-1)
1253 cow_start = cur_offset;
1254 cur_offset = extent_end;
1255 if (cur_offset > end)
1261 btrfs_release_path(path);
1262 if (cow_start != (u64)-1) {
1263 ret = cow_file_range(inode, locked_page, cow_start,
1264 found_key.offset - 1, page_started,
1267 btrfs_abort_transaction(trans, root, ret);
1270 cow_start = (u64)-1;
1273 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1274 struct extent_map *em;
1275 struct extent_map_tree *em_tree;
1276 em_tree = &BTRFS_I(inode)->extent_tree;
1277 em = alloc_extent_map();
1278 BUG_ON(!em); /* -ENOMEM */
1279 em->start = cur_offset;
1280 em->orig_start = em->start;
1281 em->len = num_bytes;
1282 em->block_len = num_bytes;
1283 em->block_start = disk_bytenr;
1284 em->bdev = root->fs_info->fs_devices->latest_bdev;
1285 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1287 write_lock(&em_tree->lock);
1288 ret = add_extent_mapping(em_tree, em);
1289 write_unlock(&em_tree->lock);
1290 if (ret != -EEXIST) {
1291 free_extent_map(em);
1294 btrfs_drop_extent_cache(inode, em->start,
1295 em->start + em->len - 1, 0);
1297 type = BTRFS_ORDERED_PREALLOC;
1299 type = BTRFS_ORDERED_NOCOW;
1302 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1303 num_bytes, num_bytes, type);
1304 BUG_ON(ret); /* -ENOMEM */
1306 if (root->root_key.objectid ==
1307 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1308 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1311 btrfs_abort_transaction(trans, root, ret);
1316 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1317 cur_offset, cur_offset + num_bytes - 1,
1318 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1319 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1320 EXTENT_SET_PRIVATE2);
1321 cur_offset = extent_end;
1322 if (cur_offset > end)
1325 btrfs_release_path(path);
1327 if (cur_offset <= end && cow_start == (u64)-1)
1328 cow_start = cur_offset;
1329 if (cow_start != (u64)-1) {
1330 ret = cow_file_range(inode, locked_page, cow_start, end,
1331 page_started, nr_written, 1);
1333 btrfs_abort_transaction(trans, root, ret);
1340 err = btrfs_end_transaction_nolock(trans, root);
1342 err = btrfs_end_transaction(trans, root);
1347 btrfs_free_path(path);
1352 * extent_io.c call back to do delayed allocation processing
1354 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1355 u64 start, u64 end, int *page_started,
1356 unsigned long *nr_written)
1359 struct btrfs_root *root = BTRFS_I(inode)->root;
1361 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1362 ret = run_delalloc_nocow(inode, locked_page, start, end,
1363 page_started, 1, nr_written);
1364 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1365 ret = run_delalloc_nocow(inode, locked_page, start, end,
1366 page_started, 0, nr_written);
1367 else if (!btrfs_test_opt(root, COMPRESS) &&
1368 !(BTRFS_I(inode)->force_compress) &&
1369 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1370 ret = cow_file_range(inode, locked_page, start, end,
1371 page_started, nr_written, 1);
1373 ret = cow_file_range_async(inode, locked_page, start, end,
1374 page_started, nr_written);
1378 static void btrfs_split_extent_hook(struct inode *inode,
1379 struct extent_state *orig, u64 split)
1381 /* not delalloc, ignore it */
1382 if (!(orig->state & EXTENT_DELALLOC))
1385 spin_lock(&BTRFS_I(inode)->lock);
1386 BTRFS_I(inode)->outstanding_extents++;
1387 spin_unlock(&BTRFS_I(inode)->lock);
1391 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1392 * extents so we can keep track of new extents that are just merged onto old
1393 * extents, such as when we are doing sequential writes, so we can properly
1394 * account for the metadata space we'll need.
1396 static void btrfs_merge_extent_hook(struct inode *inode,
1397 struct extent_state *new,
1398 struct extent_state *other)
1400 /* not delalloc, ignore it */
1401 if (!(other->state & EXTENT_DELALLOC))
1404 spin_lock(&BTRFS_I(inode)->lock);
1405 BTRFS_I(inode)->outstanding_extents--;
1406 spin_unlock(&BTRFS_I(inode)->lock);
1410 * extent_io.c set_bit_hook, used to track delayed allocation
1411 * bytes in this file, and to maintain the list of inodes that
1412 * have pending delalloc work to be done.
1414 static void btrfs_set_bit_hook(struct inode *inode,
1415 struct extent_state *state, int *bits)
1419 * set_bit and clear bit hooks normally require _irqsave/restore
1420 * but in this case, we are only testing for the DELALLOC
1421 * bit, which is only set or cleared with irqs on
1423 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1424 struct btrfs_root *root = BTRFS_I(inode)->root;
1425 u64 len = state->end + 1 - state->start;
1426 bool do_list = !btrfs_is_free_space_inode(root, inode);
1428 if (*bits & EXTENT_FIRST_DELALLOC) {
1429 *bits &= ~EXTENT_FIRST_DELALLOC;
1431 spin_lock(&BTRFS_I(inode)->lock);
1432 BTRFS_I(inode)->outstanding_extents++;
1433 spin_unlock(&BTRFS_I(inode)->lock);
1436 spin_lock(&root->fs_info->delalloc_lock);
1437 BTRFS_I(inode)->delalloc_bytes += len;
1438 root->fs_info->delalloc_bytes += len;
1439 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1440 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1441 &root->fs_info->delalloc_inodes);
1443 spin_unlock(&root->fs_info->delalloc_lock);
1448 * extent_io.c clear_bit_hook, see set_bit_hook for why
1450 static void btrfs_clear_bit_hook(struct inode *inode,
1451 struct extent_state *state, int *bits)
1454 * set_bit and clear bit hooks normally require _irqsave/restore
1455 * but in this case, we are only testing for the DELALLOC
1456 * bit, which is only set or cleared with irqs on
1458 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1459 struct btrfs_root *root = BTRFS_I(inode)->root;
1460 u64 len = state->end + 1 - state->start;
1461 bool do_list = !btrfs_is_free_space_inode(root, inode);
1463 if (*bits & EXTENT_FIRST_DELALLOC) {
1464 *bits &= ~EXTENT_FIRST_DELALLOC;
1465 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1466 spin_lock(&BTRFS_I(inode)->lock);
1467 BTRFS_I(inode)->outstanding_extents--;
1468 spin_unlock(&BTRFS_I(inode)->lock);
1471 if (*bits & EXTENT_DO_ACCOUNTING)
1472 btrfs_delalloc_release_metadata(inode, len);
1474 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1476 btrfs_free_reserved_data_space(inode, len);
1478 spin_lock(&root->fs_info->delalloc_lock);
1479 root->fs_info->delalloc_bytes -= len;
1480 BTRFS_I(inode)->delalloc_bytes -= len;
1482 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1483 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1484 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1486 spin_unlock(&root->fs_info->delalloc_lock);
1491 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1492 * we don't create bios that span stripes or chunks
1494 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1495 size_t size, struct bio *bio,
1496 unsigned long bio_flags)
1498 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1499 struct btrfs_mapping_tree *map_tree;
1500 u64 logical = (u64)bio->bi_sector << 9;
1505 if (bio_flags & EXTENT_BIO_COMPRESSED)
1508 length = bio->bi_size;
1509 map_tree = &root->fs_info->mapping_tree;
1510 map_length = length;
1511 ret = btrfs_map_block(map_tree, READ, logical,
1512 &map_length, NULL, 0);
1513 /* Will always return 0 or 1 with map_multi == NULL */
1515 if (map_length < length + size)
1521 * in order to insert checksums into the metadata in large chunks,
1522 * we wait until bio submission time. All the pages in the bio are
1523 * checksummed and sums are attached onto the ordered extent record.
1525 * At IO completion time the cums attached on the ordered extent record
1526 * are inserted into the btree
1528 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1529 struct bio *bio, int mirror_num,
1530 unsigned long bio_flags,
1533 struct btrfs_root *root = BTRFS_I(inode)->root;
1536 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1537 BUG_ON(ret); /* -ENOMEM */
1542 * in order to insert checksums into the metadata in large chunks,
1543 * we wait until bio submission time. All the pages in the bio are
1544 * checksummed and sums are attached onto the ordered extent record.
1546 * At IO completion time the cums attached on the ordered extent record
1547 * are inserted into the btree
1549 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1550 int mirror_num, unsigned long bio_flags,
1553 struct btrfs_root *root = BTRFS_I(inode)->root;
1554 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1558 * extent_io.c submission hook. This does the right thing for csum calculation
1559 * on write, or reading the csums from the tree before a read
1561 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1562 int mirror_num, unsigned long bio_flags,
1565 struct btrfs_root *root = BTRFS_I(inode)->root;
1570 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1572 if (btrfs_is_free_space_inode(root, inode))
1575 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1579 if (!(rw & REQ_WRITE)) {
1580 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1581 return btrfs_submit_compressed_read(inode, bio,
1582 mirror_num, bio_flags);
1583 } else if (!skip_sum) {
1584 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1589 } else if (!skip_sum) {
1590 /* csum items have already been cloned */
1591 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1593 /* we're doing a write, do the async checksumming */
1594 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1595 inode, rw, bio, mirror_num,
1596 bio_flags, bio_offset,
1597 __btrfs_submit_bio_start,
1598 __btrfs_submit_bio_done);
1602 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1606 * given a list of ordered sums record them in the inode. This happens
1607 * at IO completion time based on sums calculated at bio submission time.
1609 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1610 struct inode *inode, u64 file_offset,
1611 struct list_head *list)
1613 struct btrfs_ordered_sum *sum;
1615 list_for_each_entry(sum, list, list) {
1616 btrfs_csum_file_blocks(trans,
1617 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1622 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1623 struct extent_state **cached_state)
1625 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1627 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1628 cached_state, GFP_NOFS);
1631 /* see btrfs_writepage_start_hook for details on why this is required */
1632 struct btrfs_writepage_fixup {
1634 struct btrfs_work work;
1637 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1639 struct btrfs_writepage_fixup *fixup;
1640 struct btrfs_ordered_extent *ordered;
1641 struct extent_state *cached_state = NULL;
1643 struct inode *inode;
1648 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1652 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1653 ClearPageChecked(page);
1657 inode = page->mapping->host;
1658 page_start = page_offset(page);
1659 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1661 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1664 /* already ordered? We're done */
1665 if (PagePrivate2(page))
1668 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1670 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1671 page_end, &cached_state, GFP_NOFS);
1673 btrfs_start_ordered_extent(inode, ordered, 1);
1674 btrfs_put_ordered_extent(ordered);
1678 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1680 mapping_set_error(page->mapping, ret);
1681 end_extent_writepage(page, ret, page_start, page_end);
1682 ClearPageChecked(page);
1686 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1687 ClearPageChecked(page);
1688 set_page_dirty(page);
1690 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1691 &cached_state, GFP_NOFS);
1694 page_cache_release(page);
1699 * There are a few paths in the higher layers of the kernel that directly
1700 * set the page dirty bit without asking the filesystem if it is a
1701 * good idea. This causes problems because we want to make sure COW
1702 * properly happens and the data=ordered rules are followed.
1704 * In our case any range that doesn't have the ORDERED bit set
1705 * hasn't been properly setup for IO. We kick off an async process
1706 * to fix it up. The async helper will wait for ordered extents, set
1707 * the delalloc bit and make it safe to write the page.
1709 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1711 struct inode *inode = page->mapping->host;
1712 struct btrfs_writepage_fixup *fixup;
1713 struct btrfs_root *root = BTRFS_I(inode)->root;
1715 /* this page is properly in the ordered list */
1716 if (TestClearPagePrivate2(page))
1719 if (PageChecked(page))
1722 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1726 SetPageChecked(page);
1727 page_cache_get(page);
1728 fixup->work.func = btrfs_writepage_fixup_worker;
1730 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1734 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1735 struct inode *inode, u64 file_pos,
1736 u64 disk_bytenr, u64 disk_num_bytes,
1737 u64 num_bytes, u64 ram_bytes,
1738 u8 compression, u8 encryption,
1739 u16 other_encoding, int extent_type)
1741 struct btrfs_root *root = BTRFS_I(inode)->root;
1742 struct btrfs_file_extent_item *fi;
1743 struct btrfs_path *path;
1744 struct extent_buffer *leaf;
1745 struct btrfs_key ins;
1749 path = btrfs_alloc_path();
1753 path->leave_spinning = 1;
1756 * we may be replacing one extent in the tree with another.
1757 * The new extent is pinned in the extent map, and we don't want
1758 * to drop it from the cache until it is completely in the btree.
1760 * So, tell btrfs_drop_extents to leave this extent in the cache.
1761 * the caller is expected to unpin it and allow it to be merged
1764 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1769 ins.objectid = btrfs_ino(inode);
1770 ins.offset = file_pos;
1771 ins.type = BTRFS_EXTENT_DATA_KEY;
1772 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1775 leaf = path->nodes[0];
1776 fi = btrfs_item_ptr(leaf, path->slots[0],
1777 struct btrfs_file_extent_item);
1778 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1779 btrfs_set_file_extent_type(leaf, fi, extent_type);
1780 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1781 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1782 btrfs_set_file_extent_offset(leaf, fi, 0);
1783 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1784 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1785 btrfs_set_file_extent_compression(leaf, fi, compression);
1786 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1787 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1789 btrfs_unlock_up_safe(path, 1);
1790 btrfs_set_lock_blocking(leaf);
1792 btrfs_mark_buffer_dirty(leaf);
1794 inode_add_bytes(inode, num_bytes);
1796 ins.objectid = disk_bytenr;
1797 ins.offset = disk_num_bytes;
1798 ins.type = BTRFS_EXTENT_ITEM_KEY;
1799 ret = btrfs_alloc_reserved_file_extent(trans, root,
1800 root->root_key.objectid,
1801 btrfs_ino(inode), file_pos, &ins);
1803 btrfs_free_path(path);
1809 * helper function for btrfs_finish_ordered_io, this
1810 * just reads in some of the csum leaves to prime them into ram
1811 * before we start the transaction. It limits the amount of btree
1812 * reads required while inside the transaction.
1814 /* as ordered data IO finishes, this gets called so we can finish
1815 * an ordered extent if the range of bytes in the file it covers are
1818 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1820 struct btrfs_root *root = BTRFS_I(inode)->root;
1821 struct btrfs_trans_handle *trans = NULL;
1822 struct btrfs_ordered_extent *ordered_extent = NULL;
1823 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1824 struct extent_state *cached_state = NULL;
1825 int compress_type = 0;
1829 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1833 BUG_ON(!ordered_extent); /* Logic error */
1835 nolock = btrfs_is_free_space_inode(root, inode);
1837 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1838 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1839 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1842 trans = btrfs_join_transaction_nolock(root);
1844 trans = btrfs_join_transaction(root);
1846 return PTR_ERR(trans);
1847 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1848 ret = btrfs_update_inode_fallback(trans, root, inode);
1849 if (ret) /* -ENOMEM or corruption */
1850 btrfs_abort_transaction(trans, root, ret);
1855 lock_extent_bits(io_tree, ordered_extent->file_offset,
1856 ordered_extent->file_offset + ordered_extent->len - 1,
1860 trans = btrfs_join_transaction_nolock(root);
1862 trans = btrfs_join_transaction(root);
1863 if (IS_ERR(trans)) {
1864 ret = PTR_ERR(trans);
1868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1871 compress_type = ordered_extent->compress_type;
1872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1873 BUG_ON(compress_type);
1874 ret = btrfs_mark_extent_written(trans, inode,
1875 ordered_extent->file_offset,
1876 ordered_extent->file_offset +
1877 ordered_extent->len);
1879 BUG_ON(root == root->fs_info->tree_root);
1880 ret = insert_reserved_file_extent(trans, inode,
1881 ordered_extent->file_offset,
1882 ordered_extent->start,
1883 ordered_extent->disk_len,
1884 ordered_extent->len,
1885 ordered_extent->len,
1886 compress_type, 0, 0,
1887 BTRFS_FILE_EXTENT_REG);
1888 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1889 ordered_extent->file_offset,
1890 ordered_extent->len);
1892 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1893 ordered_extent->file_offset +
1894 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1896 btrfs_abort_transaction(trans, root, ret);
1900 add_pending_csums(trans, inode, ordered_extent->file_offset,
1901 &ordered_extent->list);
1903 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1904 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1905 ret = btrfs_update_inode_fallback(trans, root, inode);
1906 if (ret) { /* -ENOMEM or corruption */
1907 btrfs_abort_transaction(trans, root, ret);
1913 if (root != root->fs_info->tree_root)
1914 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1917 btrfs_end_transaction_nolock(trans, root);
1919 btrfs_end_transaction(trans, root);
1923 btrfs_put_ordered_extent(ordered_extent);
1924 /* once for the tree */
1925 btrfs_put_ordered_extent(ordered_extent);
1929 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1930 ordered_extent->file_offset +
1931 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1935 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1936 struct extent_state *state, int uptodate)
1938 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1940 ClearPagePrivate2(page);
1941 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1945 * when reads are done, we need to check csums to verify the data is correct
1946 * if there's a match, we allow the bio to finish. If not, the code in
1947 * extent_io.c will try to find good copies for us.
1949 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1950 struct extent_state *state)
1952 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1953 struct inode *inode = page->mapping->host;
1954 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1956 u64 private = ~(u32)0;
1958 struct btrfs_root *root = BTRFS_I(inode)->root;
1961 if (PageChecked(page)) {
1962 ClearPageChecked(page);
1966 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1969 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1970 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1971 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1976 if (state && state->start == start) {
1977 private = state->private;
1980 ret = get_state_private(io_tree, start, &private);
1982 kaddr = kmap_atomic(page);
1986 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1987 btrfs_csum_final(csum, (char *)&csum);
1988 if (csum != private)
1991 kunmap_atomic(kaddr);
1996 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1998 (unsigned long long)btrfs_ino(page->mapping->host),
1999 (unsigned long long)start, csum,
2000 (unsigned long long)private);
2001 memset(kaddr + offset, 1, end - start + 1);
2002 flush_dcache_page(page);
2003 kunmap_atomic(kaddr);
2009 struct delayed_iput {
2010 struct list_head list;
2011 struct inode *inode;
2014 /* JDM: If this is fs-wide, why can't we add a pointer to
2015 * btrfs_inode instead and avoid the allocation? */
2016 void btrfs_add_delayed_iput(struct inode *inode)
2018 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2019 struct delayed_iput *delayed;
2021 if (atomic_add_unless(&inode->i_count, -1, 1))
2024 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2025 delayed->inode = inode;
2027 spin_lock(&fs_info->delayed_iput_lock);
2028 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2029 spin_unlock(&fs_info->delayed_iput_lock);
2032 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2035 struct btrfs_fs_info *fs_info = root->fs_info;
2036 struct delayed_iput *delayed;
2039 spin_lock(&fs_info->delayed_iput_lock);
2040 empty = list_empty(&fs_info->delayed_iputs);
2041 spin_unlock(&fs_info->delayed_iput_lock);
2045 down_read(&root->fs_info->cleanup_work_sem);
2046 spin_lock(&fs_info->delayed_iput_lock);
2047 list_splice_init(&fs_info->delayed_iputs, &list);
2048 spin_unlock(&fs_info->delayed_iput_lock);
2050 while (!list_empty(&list)) {
2051 delayed = list_entry(list.next, struct delayed_iput, list);
2052 list_del(&delayed->list);
2053 iput(delayed->inode);
2056 up_read(&root->fs_info->cleanup_work_sem);
2059 enum btrfs_orphan_cleanup_state {
2060 ORPHAN_CLEANUP_STARTED = 1,
2061 ORPHAN_CLEANUP_DONE = 2,
2065 * This is called in transaction commit time. If there are no orphan
2066 * files in the subvolume, it removes orphan item and frees block_rsv
2069 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2070 struct btrfs_root *root)
2072 struct btrfs_block_rsv *block_rsv;
2075 if (!list_empty(&root->orphan_list) ||
2076 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2079 spin_lock(&root->orphan_lock);
2080 if (!list_empty(&root->orphan_list)) {
2081 spin_unlock(&root->orphan_lock);
2085 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2086 spin_unlock(&root->orphan_lock);
2090 block_rsv = root->orphan_block_rsv;
2091 root->orphan_block_rsv = NULL;
2092 spin_unlock(&root->orphan_lock);
2094 if (root->orphan_item_inserted &&
2095 btrfs_root_refs(&root->root_item) > 0) {
2096 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2097 root->root_key.objectid);
2099 root->orphan_item_inserted = 0;
2103 WARN_ON(block_rsv->size > 0);
2104 btrfs_free_block_rsv(root, block_rsv);
2109 * This creates an orphan entry for the given inode in case something goes
2110 * wrong in the middle of an unlink/truncate.
2112 * NOTE: caller of this function should reserve 5 units of metadata for
2115 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2117 struct btrfs_root *root = BTRFS_I(inode)->root;
2118 struct btrfs_block_rsv *block_rsv = NULL;
2123 if (!root->orphan_block_rsv) {
2124 block_rsv = btrfs_alloc_block_rsv(root);
2129 spin_lock(&root->orphan_lock);
2130 if (!root->orphan_block_rsv) {
2131 root->orphan_block_rsv = block_rsv;
2132 } else if (block_rsv) {
2133 btrfs_free_block_rsv(root, block_rsv);
2137 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2138 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2141 * For proper ENOSPC handling, we should do orphan
2142 * cleanup when mounting. But this introduces backward
2143 * compatibility issue.
2145 if (!xchg(&root->orphan_item_inserted, 1))
2153 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2154 BTRFS_I(inode)->orphan_meta_reserved = 1;
2157 spin_unlock(&root->orphan_lock);
2159 /* grab metadata reservation from transaction handle */
2161 ret = btrfs_orphan_reserve_metadata(trans, inode);
2162 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2165 /* insert an orphan item to track this unlinked/truncated file */
2167 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2168 if (ret && ret != -EEXIST) {
2169 btrfs_abort_transaction(trans, root, ret);
2175 /* insert an orphan item to track subvolume contains orphan files */
2177 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2178 root->root_key.objectid);
2179 if (ret && ret != -EEXIST) {
2180 btrfs_abort_transaction(trans, root, ret);
2188 * We have done the truncate/delete so we can go ahead and remove the orphan
2189 * item for this particular inode.
2191 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2193 struct btrfs_root *root = BTRFS_I(inode)->root;
2194 int delete_item = 0;
2195 int release_rsv = 0;
2198 spin_lock(&root->orphan_lock);
2199 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2200 list_del_init(&BTRFS_I(inode)->i_orphan);
2204 if (BTRFS_I(inode)->orphan_meta_reserved) {
2205 BTRFS_I(inode)->orphan_meta_reserved = 0;
2208 spin_unlock(&root->orphan_lock);
2210 if (trans && delete_item) {
2211 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2212 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2216 btrfs_orphan_release_metadata(inode);
2222 * this cleans up any orphans that may be left on the list from the last use
2225 int btrfs_orphan_cleanup(struct btrfs_root *root)
2227 struct btrfs_path *path;
2228 struct extent_buffer *leaf;
2229 struct btrfs_key key, found_key;
2230 struct btrfs_trans_handle *trans;
2231 struct inode *inode;
2232 u64 last_objectid = 0;
2233 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2235 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2238 path = btrfs_alloc_path();
2245 key.objectid = BTRFS_ORPHAN_OBJECTID;
2246 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2247 key.offset = (u64)-1;
2250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2255 * if ret == 0 means we found what we were searching for, which
2256 * is weird, but possible, so only screw with path if we didn't
2257 * find the key and see if we have stuff that matches
2261 if (path->slots[0] == 0)
2266 /* pull out the item */
2267 leaf = path->nodes[0];
2268 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2270 /* make sure the item matches what we want */
2271 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2273 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2276 /* release the path since we're done with it */
2277 btrfs_release_path(path);
2280 * this is where we are basically btrfs_lookup, without the
2281 * crossing root thing. we store the inode number in the
2282 * offset of the orphan item.
2285 if (found_key.offset == last_objectid) {
2286 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2287 "stopping orphan cleanup\n");
2292 last_objectid = found_key.offset;
2294 found_key.objectid = found_key.offset;
2295 found_key.type = BTRFS_INODE_ITEM_KEY;
2296 found_key.offset = 0;
2297 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2298 ret = PTR_RET(inode);
2299 if (ret && ret != -ESTALE)
2302 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2303 struct btrfs_root *dead_root;
2304 struct btrfs_fs_info *fs_info = root->fs_info;
2305 int is_dead_root = 0;
2308 * this is an orphan in the tree root. Currently these
2309 * could come from 2 sources:
2310 * a) a snapshot deletion in progress
2311 * b) a free space cache inode
2312 * We need to distinguish those two, as the snapshot
2313 * orphan must not get deleted.
2314 * find_dead_roots already ran before us, so if this
2315 * is a snapshot deletion, we should find the root
2316 * in the dead_roots list
2318 spin_lock(&fs_info->trans_lock);
2319 list_for_each_entry(dead_root, &fs_info->dead_roots,
2321 if (dead_root->root_key.objectid ==
2322 found_key.objectid) {
2327 spin_unlock(&fs_info->trans_lock);
2329 /* prevent this orphan from being found again */
2330 key.offset = found_key.objectid - 1;
2335 * Inode is already gone but the orphan item is still there,
2336 * kill the orphan item.
2338 if (ret == -ESTALE) {
2339 trans = btrfs_start_transaction(root, 1);
2340 if (IS_ERR(trans)) {
2341 ret = PTR_ERR(trans);
2344 ret = btrfs_del_orphan_item(trans, root,
2345 found_key.objectid);
2346 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2347 btrfs_end_transaction(trans, root);
2352 * add this inode to the orphan list so btrfs_orphan_del does
2353 * the proper thing when we hit it
2355 spin_lock(&root->orphan_lock);
2356 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2357 spin_unlock(&root->orphan_lock);
2359 /* if we have links, this was a truncate, lets do that */
2360 if (inode->i_nlink) {
2361 if (!S_ISREG(inode->i_mode)) {
2367 ret = btrfs_truncate(inode);
2372 /* this will do delete_inode and everything for us */
2377 /* release the path since we're done with it */
2378 btrfs_release_path(path);
2380 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2382 if (root->orphan_block_rsv)
2383 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2386 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2387 trans = btrfs_join_transaction(root);
2389 btrfs_end_transaction(trans, root);
2393 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2395 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2399 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2400 btrfs_free_path(path);
2405 * very simple check to peek ahead in the leaf looking for xattrs. If we
2406 * don't find any xattrs, we know there can't be any acls.
2408 * slot is the slot the inode is in, objectid is the objectid of the inode
2410 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2411 int slot, u64 objectid)
2413 u32 nritems = btrfs_header_nritems(leaf);
2414 struct btrfs_key found_key;
2418 while (slot < nritems) {
2419 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2421 /* we found a different objectid, there must not be acls */
2422 if (found_key.objectid != objectid)
2425 /* we found an xattr, assume we've got an acl */
2426 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2430 * we found a key greater than an xattr key, there can't
2431 * be any acls later on
2433 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2440 * it goes inode, inode backrefs, xattrs, extents,
2441 * so if there are a ton of hard links to an inode there can
2442 * be a lot of backrefs. Don't waste time searching too hard,
2443 * this is just an optimization
2448 /* we hit the end of the leaf before we found an xattr or
2449 * something larger than an xattr. We have to assume the inode
2456 * read an inode from the btree into the in-memory inode
2458 static void btrfs_read_locked_inode(struct inode *inode)
2460 struct btrfs_path *path;
2461 struct extent_buffer *leaf;
2462 struct btrfs_inode_item *inode_item;
2463 struct btrfs_timespec *tspec;
2464 struct btrfs_root *root = BTRFS_I(inode)->root;
2465 struct btrfs_key location;
2469 bool filled = false;
2471 ret = btrfs_fill_inode(inode, &rdev);
2475 path = btrfs_alloc_path();
2479 path->leave_spinning = 1;
2480 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2482 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2486 leaf = path->nodes[0];
2491 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2492 struct btrfs_inode_item);
2493 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2494 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2495 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2496 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2497 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2499 tspec = btrfs_inode_atime(inode_item);
2500 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2501 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2503 tspec = btrfs_inode_mtime(inode_item);
2504 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2505 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2507 tspec = btrfs_inode_ctime(inode_item);
2508 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2509 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2511 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2512 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2513 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2514 inode->i_generation = BTRFS_I(inode)->generation;
2516 rdev = btrfs_inode_rdev(leaf, inode_item);
2518 BTRFS_I(inode)->index_cnt = (u64)-1;
2519 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2522 * try to precache a NULL acl entry for files that don't have
2523 * any xattrs or acls
2525 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2528 cache_no_acl(inode);
2530 btrfs_free_path(path);
2532 switch (inode->i_mode & S_IFMT) {
2534 inode->i_mapping->a_ops = &btrfs_aops;
2535 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2536 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2537 inode->i_fop = &btrfs_file_operations;
2538 inode->i_op = &btrfs_file_inode_operations;
2541 inode->i_fop = &btrfs_dir_file_operations;
2542 if (root == root->fs_info->tree_root)
2543 inode->i_op = &btrfs_dir_ro_inode_operations;
2545 inode->i_op = &btrfs_dir_inode_operations;
2548 inode->i_op = &btrfs_symlink_inode_operations;
2549 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2550 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2553 inode->i_op = &btrfs_special_inode_operations;
2554 init_special_inode(inode, inode->i_mode, rdev);
2558 btrfs_update_iflags(inode);
2562 btrfs_free_path(path);
2563 make_bad_inode(inode);
2567 * given a leaf and an inode, copy the inode fields into the leaf
2569 static void fill_inode_item(struct btrfs_trans_handle *trans,
2570 struct extent_buffer *leaf,
2571 struct btrfs_inode_item *item,
2572 struct inode *inode)
2574 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2575 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2576 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2577 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2578 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2580 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2581 inode->i_atime.tv_sec);
2582 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2583 inode->i_atime.tv_nsec);
2585 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2586 inode->i_mtime.tv_sec);
2587 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2588 inode->i_mtime.tv_nsec);
2590 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2591 inode->i_ctime.tv_sec);
2592 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2593 inode->i_ctime.tv_nsec);
2595 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2596 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2597 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2598 btrfs_set_inode_transid(leaf, item, trans->transid);
2599 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2600 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2601 btrfs_set_inode_block_group(leaf, item, 0);
2605 * copy everything in the in-memory inode into the btree.
2607 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2608 struct btrfs_root *root, struct inode *inode)
2610 struct btrfs_inode_item *inode_item;
2611 struct btrfs_path *path;
2612 struct extent_buffer *leaf;
2615 path = btrfs_alloc_path();
2619 path->leave_spinning = 1;
2620 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2628 btrfs_unlock_up_safe(path, 1);
2629 leaf = path->nodes[0];
2630 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2631 struct btrfs_inode_item);
2633 fill_inode_item(trans, leaf, inode_item, inode);
2634 btrfs_mark_buffer_dirty(leaf);
2635 btrfs_set_inode_last_trans(trans, inode);
2638 btrfs_free_path(path);
2643 * copy everything in the in-memory inode into the btree.
2645 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2646 struct btrfs_root *root, struct inode *inode)
2651 * If the inode is a free space inode, we can deadlock during commit
2652 * if we put it into the delayed code.
2654 * The data relocation inode should also be directly updated
2657 if (!btrfs_is_free_space_inode(root, inode)
2658 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2659 ret = btrfs_delayed_update_inode(trans, root, inode);
2661 btrfs_set_inode_last_trans(trans, inode);
2665 return btrfs_update_inode_item(trans, root, inode);
2668 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2669 struct btrfs_root *root, struct inode *inode)
2673 ret = btrfs_update_inode(trans, root, inode);
2675 return btrfs_update_inode_item(trans, root, inode);
2680 * unlink helper that gets used here in inode.c and in the tree logging
2681 * recovery code. It remove a link in a directory with a given name, and
2682 * also drops the back refs in the inode to the directory
2684 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2685 struct btrfs_root *root,
2686 struct inode *dir, struct inode *inode,
2687 const char *name, int name_len)
2689 struct btrfs_path *path;
2691 struct extent_buffer *leaf;
2692 struct btrfs_dir_item *di;
2693 struct btrfs_key key;
2695 u64 ino = btrfs_ino(inode);
2696 u64 dir_ino = btrfs_ino(dir);
2698 path = btrfs_alloc_path();
2704 path->leave_spinning = 1;
2705 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2706 name, name_len, -1);
2715 leaf = path->nodes[0];
2716 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2717 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2720 btrfs_release_path(path);
2722 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2725 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2726 "inode %llu parent %llu\n", name_len, name,
2727 (unsigned long long)ino, (unsigned long long)dir_ino);
2728 btrfs_abort_transaction(trans, root, ret);
2732 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2734 btrfs_abort_transaction(trans, root, ret);
2738 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2740 if (ret != 0 && ret != -ENOENT) {
2741 btrfs_abort_transaction(trans, root, ret);
2745 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2750 btrfs_free_path(path);
2754 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2755 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2756 btrfs_update_inode(trans, root, dir);
2761 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *root,
2763 struct inode *dir, struct inode *inode,
2764 const char *name, int name_len)
2767 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2769 btrfs_drop_nlink(inode);
2770 ret = btrfs_update_inode(trans, root, inode);
2776 /* helper to check if there is any shared block in the path */
2777 static int check_path_shared(struct btrfs_root *root,
2778 struct btrfs_path *path)
2780 struct extent_buffer *eb;
2784 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2787 if (!path->nodes[level])
2789 eb = path->nodes[level];
2790 if (!btrfs_block_can_be_shared(root, eb))
2792 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2801 * helper to start transaction for unlink and rmdir.
2803 * unlink and rmdir are special in btrfs, they do not always free space.
2804 * so in enospc case, we should make sure they will free space before
2805 * allowing them to use the global metadata reservation.
2807 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2808 struct dentry *dentry)
2810 struct btrfs_trans_handle *trans;
2811 struct btrfs_root *root = BTRFS_I(dir)->root;
2812 struct btrfs_path *path;
2813 struct btrfs_inode_ref *ref;
2814 struct btrfs_dir_item *di;
2815 struct inode *inode = dentry->d_inode;
2820 u64 ino = btrfs_ino(inode);
2821 u64 dir_ino = btrfs_ino(dir);
2824 * 1 for the possible orphan item
2825 * 1 for the dir item
2826 * 1 for the dir index
2827 * 1 for the inode ref
2828 * 1 for the inode ref in the tree log
2829 * 2 for the dir entries in the log
2832 trans = btrfs_start_transaction(root, 8);
2833 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2836 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2837 return ERR_PTR(-ENOSPC);
2839 /* check if there is someone else holds reference */
2840 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2841 return ERR_PTR(-ENOSPC);
2843 if (atomic_read(&inode->i_count) > 2)
2844 return ERR_PTR(-ENOSPC);
2846 if (xchg(&root->fs_info->enospc_unlink, 1))
2847 return ERR_PTR(-ENOSPC);
2849 path = btrfs_alloc_path();
2851 root->fs_info->enospc_unlink = 0;
2852 return ERR_PTR(-ENOMEM);
2855 /* 1 for the orphan item */
2856 trans = btrfs_start_transaction(root, 1);
2857 if (IS_ERR(trans)) {
2858 btrfs_free_path(path);
2859 root->fs_info->enospc_unlink = 0;
2863 path->skip_locking = 1;
2864 path->search_commit_root = 1;
2866 ret = btrfs_lookup_inode(trans, root, path,
2867 &BTRFS_I(dir)->location, 0);
2873 if (check_path_shared(root, path))
2878 btrfs_release_path(path);
2880 ret = btrfs_lookup_inode(trans, root, path,
2881 &BTRFS_I(inode)->location, 0);
2887 if (check_path_shared(root, path))
2892 btrfs_release_path(path);
2894 if (ret == 0 && S_ISREG(inode->i_mode)) {
2895 ret = btrfs_lookup_file_extent(trans, root, path,
2901 BUG_ON(ret == 0); /* Corruption */
2902 if (check_path_shared(root, path))
2904 btrfs_release_path(path);
2912 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2913 dentry->d_name.name, dentry->d_name.len, 0);
2919 if (check_path_shared(root, path))
2925 btrfs_release_path(path);
2927 ref = btrfs_lookup_inode_ref(trans, root, path,
2928 dentry->d_name.name, dentry->d_name.len,
2934 BUG_ON(!ref); /* Logic error */
2935 if (check_path_shared(root, path))
2937 index = btrfs_inode_ref_index(path->nodes[0], ref);
2938 btrfs_release_path(path);
2941 * This is a commit root search, if we can lookup inode item and other
2942 * relative items in the commit root, it means the transaction of
2943 * dir/file creation has been committed, and the dir index item that we
2944 * delay to insert has also been inserted into the commit root. So
2945 * we needn't worry about the delayed insertion of the dir index item
2948 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2949 dentry->d_name.name, dentry->d_name.len, 0);
2954 BUG_ON(ret == -ENOENT);
2955 if (check_path_shared(root, path))
2960 btrfs_free_path(path);
2961 /* Migrate the orphan reservation over */
2963 err = btrfs_block_rsv_migrate(trans->block_rsv,
2964 &root->fs_info->global_block_rsv,
2965 trans->bytes_reserved);
2968 btrfs_end_transaction(trans, root);
2969 root->fs_info->enospc_unlink = 0;
2970 return ERR_PTR(err);
2973 trans->block_rsv = &root->fs_info->global_block_rsv;
2977 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2978 struct btrfs_root *root)
2980 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2981 btrfs_block_rsv_release(root, trans->block_rsv,
2982 trans->bytes_reserved);
2983 trans->block_rsv = &root->fs_info->trans_block_rsv;
2984 BUG_ON(!root->fs_info->enospc_unlink);
2985 root->fs_info->enospc_unlink = 0;
2987 btrfs_end_transaction(trans, root);
2990 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2992 struct btrfs_root *root = BTRFS_I(dir)->root;
2993 struct btrfs_trans_handle *trans;
2994 struct inode *inode = dentry->d_inode;
2996 unsigned long nr = 0;
2998 trans = __unlink_start_trans(dir, dentry);
3000 return PTR_ERR(trans);
3002 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3004 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3005 dentry->d_name.name, dentry->d_name.len);
3009 if (inode->i_nlink == 0) {
3010 ret = btrfs_orphan_add(trans, inode);
3016 nr = trans->blocks_used;
3017 __unlink_end_trans(trans, root);
3018 btrfs_btree_balance_dirty(root, nr);
3022 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct inode *dir, u64 objectid,
3025 const char *name, int name_len)
3027 struct btrfs_path *path;
3028 struct extent_buffer *leaf;
3029 struct btrfs_dir_item *di;
3030 struct btrfs_key key;
3033 u64 dir_ino = btrfs_ino(dir);
3035 path = btrfs_alloc_path();
3039 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3040 name, name_len, -1);
3041 if (IS_ERR_OR_NULL(di)) {
3049 leaf = path->nodes[0];
3050 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3051 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3052 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3054 btrfs_abort_transaction(trans, root, ret);
3057 btrfs_release_path(path);
3059 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3060 objectid, root->root_key.objectid,
3061 dir_ino, &index, name, name_len);
3063 if (ret != -ENOENT) {
3064 btrfs_abort_transaction(trans, root, ret);
3067 di = btrfs_search_dir_index_item(root, path, dir_ino,
3069 if (IS_ERR_OR_NULL(di)) {
3074 btrfs_abort_transaction(trans, root, ret);
3078 leaf = path->nodes[0];
3079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3080 btrfs_release_path(path);
3083 btrfs_release_path(path);
3085 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3087 btrfs_abort_transaction(trans, root, ret);
3091 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3092 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3093 ret = btrfs_update_inode(trans, root, dir);
3095 btrfs_abort_transaction(trans, root, ret);
3097 btrfs_free_path(path);
3101 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3103 struct inode *inode = dentry->d_inode;
3105 struct btrfs_root *root = BTRFS_I(dir)->root;
3106 struct btrfs_trans_handle *trans;
3107 unsigned long nr = 0;
3109 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3110 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3113 trans = __unlink_start_trans(dir, dentry);
3115 return PTR_ERR(trans);
3117 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3118 err = btrfs_unlink_subvol(trans, root, dir,
3119 BTRFS_I(inode)->location.objectid,
3120 dentry->d_name.name,
3121 dentry->d_name.len);
3125 err = btrfs_orphan_add(trans, inode);
3129 /* now the directory is empty */
3130 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3131 dentry->d_name.name, dentry->d_name.len);
3133 btrfs_i_size_write(inode, 0);
3135 nr = trans->blocks_used;
3136 __unlink_end_trans(trans, root);
3137 btrfs_btree_balance_dirty(root, nr);
3143 * this can truncate away extent items, csum items and directory items.
3144 * It starts at a high offset and removes keys until it can't find
3145 * any higher than new_size
3147 * csum items that cross the new i_size are truncated to the new size
3150 * min_type is the minimum key type to truncate down to. If set to 0, this
3151 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3153 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3154 struct btrfs_root *root,
3155 struct inode *inode,
3156 u64 new_size, u32 min_type)
3158 struct btrfs_path *path;
3159 struct extent_buffer *leaf;
3160 struct btrfs_file_extent_item *fi;
3161 struct btrfs_key key;
3162 struct btrfs_key found_key;
3163 u64 extent_start = 0;
3164 u64 extent_num_bytes = 0;
3165 u64 extent_offset = 0;
3167 u64 mask = root->sectorsize - 1;
3168 u32 found_type = (u8)-1;
3171 int pending_del_nr = 0;
3172 int pending_del_slot = 0;
3173 int extent_type = -1;
3176 u64 ino = btrfs_ino(inode);
3178 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3180 path = btrfs_alloc_path();
3185 if (root->ref_cows || root == root->fs_info->tree_root)
3186 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3189 * This function is also used to drop the items in the log tree before
3190 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3191 * it is used to drop the loged items. So we shouldn't kill the delayed
3194 if (min_type == 0 && root == BTRFS_I(inode)->root)
3195 btrfs_kill_delayed_inode_items(inode);
3198 key.offset = (u64)-1;
3202 path->leave_spinning = 1;
3203 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3210 /* there are no items in the tree for us to truncate, we're
3213 if (path->slots[0] == 0)
3220 leaf = path->nodes[0];
3221 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3222 found_type = btrfs_key_type(&found_key);
3224 if (found_key.objectid != ino)
3227 if (found_type < min_type)
3230 item_end = found_key.offset;
3231 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3232 fi = btrfs_item_ptr(leaf, path->slots[0],
3233 struct btrfs_file_extent_item);
3234 extent_type = btrfs_file_extent_type(leaf, fi);
3235 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3237 btrfs_file_extent_num_bytes(leaf, fi);
3238 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3239 item_end += btrfs_file_extent_inline_len(leaf,
3244 if (found_type > min_type) {
3247 if (item_end < new_size)
3249 if (found_key.offset >= new_size)
3255 /* FIXME, shrink the extent if the ref count is only 1 */
3256 if (found_type != BTRFS_EXTENT_DATA_KEY)
3259 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3261 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3263 u64 orig_num_bytes =
3264 btrfs_file_extent_num_bytes(leaf, fi);
3265 extent_num_bytes = new_size -
3266 found_key.offset + root->sectorsize - 1;
3267 extent_num_bytes = extent_num_bytes &
3268 ~((u64)root->sectorsize - 1);
3269 btrfs_set_file_extent_num_bytes(leaf, fi,
3271 num_dec = (orig_num_bytes -
3273 if (root->ref_cows && extent_start != 0)
3274 inode_sub_bytes(inode, num_dec);
3275 btrfs_mark_buffer_dirty(leaf);
3278 btrfs_file_extent_disk_num_bytes(leaf,
3280 extent_offset = found_key.offset -
3281 btrfs_file_extent_offset(leaf, fi);
3283 /* FIXME blocksize != 4096 */
3284 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3285 if (extent_start != 0) {
3288 inode_sub_bytes(inode, num_dec);
3291 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3293 * we can't truncate inline items that have had
3297 btrfs_file_extent_compression(leaf, fi) == 0 &&
3298 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3299 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3300 u32 size = new_size - found_key.offset;
3302 if (root->ref_cows) {
3303 inode_sub_bytes(inode, item_end + 1 -
3307 btrfs_file_extent_calc_inline_size(size);
3308 btrfs_truncate_item(trans, root, path,
3310 } else if (root->ref_cows) {
3311 inode_sub_bytes(inode, item_end + 1 -
3317 if (!pending_del_nr) {
3318 /* no pending yet, add ourselves */
3319 pending_del_slot = path->slots[0];
3321 } else if (pending_del_nr &&
3322 path->slots[0] + 1 == pending_del_slot) {
3323 /* hop on the pending chunk */
3325 pending_del_slot = path->slots[0];
3332 if (found_extent && (root->ref_cows ||
3333 root == root->fs_info->tree_root)) {
3334 btrfs_set_path_blocking(path);
3335 ret = btrfs_free_extent(trans, root, extent_start,
3336 extent_num_bytes, 0,
3337 btrfs_header_owner(leaf),
3338 ino, extent_offset, 0);
3342 if (found_type == BTRFS_INODE_ITEM_KEY)
3345 if (path->slots[0] == 0 ||
3346 path->slots[0] != pending_del_slot) {
3347 if (root->ref_cows &&
3348 BTRFS_I(inode)->location.objectid !=
3349 BTRFS_FREE_INO_OBJECTID) {
3353 if (pending_del_nr) {
3354 ret = btrfs_del_items(trans, root, path,
3358 btrfs_abort_transaction(trans,
3364 btrfs_release_path(path);
3371 if (pending_del_nr) {
3372 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3375 btrfs_abort_transaction(trans, root, ret);
3378 btrfs_free_path(path);
3383 * taken from block_truncate_page, but does cow as it zeros out
3384 * any bytes left in the last page in the file.
3386 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3388 struct inode *inode = mapping->host;
3389 struct btrfs_root *root = BTRFS_I(inode)->root;
3390 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3391 struct btrfs_ordered_extent *ordered;
3392 struct extent_state *cached_state = NULL;
3394 u32 blocksize = root->sectorsize;
3395 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3396 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3398 gfp_t mask = btrfs_alloc_write_mask(mapping);
3403 if ((offset & (blocksize - 1)) == 0)
3405 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3411 page = find_or_create_page(mapping, index, mask);
3413 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3417 page_start = page_offset(page);
3418 page_end = page_start + PAGE_CACHE_SIZE - 1;
3420 if (!PageUptodate(page)) {
3421 ret = btrfs_readpage(NULL, page);
3423 if (page->mapping != mapping) {
3425 page_cache_release(page);
3428 if (!PageUptodate(page)) {
3433 wait_on_page_writeback(page);
3435 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3436 set_page_extent_mapped(page);
3438 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3440 unlock_extent_cached(io_tree, page_start, page_end,
3441 &cached_state, GFP_NOFS);
3443 page_cache_release(page);
3444 btrfs_start_ordered_extent(inode, ordered, 1);
3445 btrfs_put_ordered_extent(ordered);
3449 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3450 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3451 0, 0, &cached_state, GFP_NOFS);
3453 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3456 unlock_extent_cached(io_tree, page_start, page_end,
3457 &cached_state, GFP_NOFS);
3462 if (offset != PAGE_CACHE_SIZE) {
3464 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3465 flush_dcache_page(page);
3468 ClearPageChecked(page);
3469 set_page_dirty(page);
3470 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3475 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3477 page_cache_release(page);
3483 * This function puts in dummy file extents for the area we're creating a hole
3484 * for. So if we are truncating this file to a larger size we need to insert
3485 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3486 * the range between oldsize and size
3488 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3490 struct btrfs_trans_handle *trans;
3491 struct btrfs_root *root = BTRFS_I(inode)->root;
3492 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3493 struct extent_map *em = NULL;
3494 struct extent_state *cached_state = NULL;
3495 u64 mask = root->sectorsize - 1;
3496 u64 hole_start = (oldsize + mask) & ~mask;
3497 u64 block_end = (size + mask) & ~mask;
3503 if (size <= hole_start)
3507 struct btrfs_ordered_extent *ordered;
3508 btrfs_wait_ordered_range(inode, hole_start,
3509 block_end - hole_start);
3510 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3512 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3515 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3516 &cached_state, GFP_NOFS);
3517 btrfs_put_ordered_extent(ordered);
3520 cur_offset = hole_start;
3522 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3523 block_end - cur_offset, 0);
3528 last_byte = min(extent_map_end(em), block_end);
3529 last_byte = (last_byte + mask) & ~mask;
3530 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3532 hole_size = last_byte - cur_offset;
3534 trans = btrfs_start_transaction(root, 3);
3535 if (IS_ERR(trans)) {
3536 err = PTR_ERR(trans);
3540 err = btrfs_drop_extents(trans, inode, cur_offset,
3541 cur_offset + hole_size,
3544 btrfs_abort_transaction(trans, root, err);
3545 btrfs_end_transaction(trans, root);
3549 err = btrfs_insert_file_extent(trans, root,
3550 btrfs_ino(inode), cur_offset, 0,
3551 0, hole_size, 0, hole_size,
3554 btrfs_abort_transaction(trans, root, err);
3555 btrfs_end_transaction(trans, root);
3559 btrfs_drop_extent_cache(inode, hole_start,
3562 btrfs_update_inode(trans, root, inode);
3563 btrfs_end_transaction(trans, root);
3565 free_extent_map(em);
3567 cur_offset = last_byte;
3568 if (cur_offset >= block_end)
3572 free_extent_map(em);
3573 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3578 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3580 struct btrfs_root *root = BTRFS_I(inode)->root;
3581 struct btrfs_trans_handle *trans;
3582 loff_t oldsize = i_size_read(inode);
3585 if (newsize == oldsize)
3588 if (newsize > oldsize) {
3589 truncate_pagecache(inode, oldsize, newsize);
3590 ret = btrfs_cont_expand(inode, oldsize, newsize);
3594 trans = btrfs_start_transaction(root, 1);
3596 return PTR_ERR(trans);
3598 i_size_write(inode, newsize);
3599 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3600 ret = btrfs_update_inode(trans, root, inode);
3601 btrfs_end_transaction(trans, root);
3605 * We're truncating a file that used to have good data down to
3606 * zero. Make sure it gets into the ordered flush list so that
3607 * any new writes get down to disk quickly.
3610 BTRFS_I(inode)->ordered_data_close = 1;
3612 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3613 truncate_setsize(inode, newsize);
3614 ret = btrfs_truncate(inode);
3620 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3622 struct inode *inode = dentry->d_inode;
3623 struct btrfs_root *root = BTRFS_I(inode)->root;
3626 if (btrfs_root_readonly(root))
3629 err = inode_change_ok(inode, attr);
3633 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3634 err = btrfs_setsize(inode, attr->ia_size);
3639 if (attr->ia_valid) {
3640 setattr_copy(inode, attr);
3641 err = btrfs_dirty_inode(inode);
3643 if (!err && attr->ia_valid & ATTR_MODE)
3644 err = btrfs_acl_chmod(inode);
3650 void btrfs_evict_inode(struct inode *inode)
3652 struct btrfs_trans_handle *trans;
3653 struct btrfs_root *root = BTRFS_I(inode)->root;
3654 struct btrfs_block_rsv *rsv, *global_rsv;
3655 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3659 trace_btrfs_inode_evict(inode);
3661 truncate_inode_pages(&inode->i_data, 0);
3662 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3663 btrfs_is_free_space_inode(root, inode)))
3666 if (is_bad_inode(inode)) {
3667 btrfs_orphan_del(NULL, inode);
3670 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3671 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3673 if (root->fs_info->log_root_recovering) {
3674 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3678 if (inode->i_nlink > 0) {
3679 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3683 rsv = btrfs_alloc_block_rsv(root);
3685 btrfs_orphan_del(NULL, inode);
3688 rsv->size = min_size;
3689 global_rsv = &root->fs_info->global_block_rsv;
3691 btrfs_i_size_write(inode, 0);
3694 * This is a bit simpler than btrfs_truncate since
3696 * 1) We've already reserved our space for our orphan item in the
3698 * 2) We're going to delete the inode item, so we don't need to update
3701 * So we just need to reserve some slack space in case we add bytes when
3702 * doing the truncate.
3705 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3708 * Try and steal from the global reserve since we will
3709 * likely not use this space anyway, we want to try as
3710 * hard as possible to get this to work.
3713 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3716 printk(KERN_WARNING "Could not get space for a "
3717 "delete, will truncate on mount %d\n", ret);
3718 btrfs_orphan_del(NULL, inode);
3719 btrfs_free_block_rsv(root, rsv);
3723 trans = btrfs_start_transaction(root, 0);
3724 if (IS_ERR(trans)) {
3725 btrfs_orphan_del(NULL, inode);
3726 btrfs_free_block_rsv(root, rsv);
3730 trans->block_rsv = rsv;
3732 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3736 nr = trans->blocks_used;
3737 btrfs_end_transaction(trans, root);
3739 btrfs_btree_balance_dirty(root, nr);
3742 btrfs_free_block_rsv(root, rsv);
3745 trans->block_rsv = root->orphan_block_rsv;
3746 ret = btrfs_orphan_del(trans, inode);
3750 trans->block_rsv = &root->fs_info->trans_block_rsv;
3751 if (!(root == root->fs_info->tree_root ||
3752 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3753 btrfs_return_ino(root, btrfs_ino(inode));
3755 nr = trans->blocks_used;
3756 btrfs_end_transaction(trans, root);
3757 btrfs_btree_balance_dirty(root, nr);
3759 end_writeback(inode);
3764 * this returns the key found in the dir entry in the location pointer.
3765 * If no dir entries were found, location->objectid is 0.
3767 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3768 struct btrfs_key *location)
3770 const char *name = dentry->d_name.name;
3771 int namelen = dentry->d_name.len;
3772 struct btrfs_dir_item *di;
3773 struct btrfs_path *path;
3774 struct btrfs_root *root = BTRFS_I(dir)->root;
3777 path = btrfs_alloc_path();
3781 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3786 if (IS_ERR_OR_NULL(di))
3789 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3791 btrfs_free_path(path);
3794 location->objectid = 0;
3799 * when we hit a tree root in a directory, the btrfs part of the inode
3800 * needs to be changed to reflect the root directory of the tree root. This
3801 * is kind of like crossing a mount point.
3803 static int fixup_tree_root_location(struct btrfs_root *root,
3805 struct dentry *dentry,
3806 struct btrfs_key *location,
3807 struct btrfs_root **sub_root)
3809 struct btrfs_path *path;
3810 struct btrfs_root *new_root;
3811 struct btrfs_root_ref *ref;
3812 struct extent_buffer *leaf;
3816 path = btrfs_alloc_path();
3823 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3824 BTRFS_I(dir)->root->root_key.objectid,
3825 location->objectid);
3832 leaf = path->nodes[0];
3833 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3834 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3835 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3838 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3839 (unsigned long)(ref + 1),
3840 dentry->d_name.len);
3844 btrfs_release_path(path);
3846 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3847 if (IS_ERR(new_root)) {
3848 err = PTR_ERR(new_root);
3852 if (btrfs_root_refs(&new_root->root_item) == 0) {
3857 *sub_root = new_root;
3858 location->objectid = btrfs_root_dirid(&new_root->root_item);
3859 location->type = BTRFS_INODE_ITEM_KEY;
3860 location->offset = 0;
3863 btrfs_free_path(path);
3867 static void inode_tree_add(struct inode *inode)
3869 struct btrfs_root *root = BTRFS_I(inode)->root;
3870 struct btrfs_inode *entry;
3872 struct rb_node *parent;
3873 u64 ino = btrfs_ino(inode);
3875 p = &root->inode_tree.rb_node;
3878 if (inode_unhashed(inode))
3881 spin_lock(&root->inode_lock);
3884 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3886 if (ino < btrfs_ino(&entry->vfs_inode))
3887 p = &parent->rb_left;
3888 else if (ino > btrfs_ino(&entry->vfs_inode))
3889 p = &parent->rb_right;
3891 WARN_ON(!(entry->vfs_inode.i_state &
3892 (I_WILL_FREE | I_FREEING)));
3893 rb_erase(parent, &root->inode_tree);
3894 RB_CLEAR_NODE(parent);
3895 spin_unlock(&root->inode_lock);
3899 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3900 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3901 spin_unlock(&root->inode_lock);
3904 static void inode_tree_del(struct inode *inode)
3906 struct btrfs_root *root = BTRFS_I(inode)->root;
3909 spin_lock(&root->inode_lock);
3910 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3911 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3912 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3913 empty = RB_EMPTY_ROOT(&root->inode_tree);
3915 spin_unlock(&root->inode_lock);
3918 * Free space cache has inodes in the tree root, but the tree root has a
3919 * root_refs of 0, so this could end up dropping the tree root as a
3920 * snapshot, so we need the extra !root->fs_info->tree_root check to
3921 * make sure we don't drop it.
3923 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3924 root != root->fs_info->tree_root) {
3925 synchronize_srcu(&root->fs_info->subvol_srcu);
3926 spin_lock(&root->inode_lock);
3927 empty = RB_EMPTY_ROOT(&root->inode_tree);
3928 spin_unlock(&root->inode_lock);
3930 btrfs_add_dead_root(root);
3934 void btrfs_invalidate_inodes(struct btrfs_root *root)
3936 struct rb_node *node;
3937 struct rb_node *prev;
3938 struct btrfs_inode *entry;
3939 struct inode *inode;
3942 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3944 spin_lock(&root->inode_lock);
3946 node = root->inode_tree.rb_node;
3950 entry = rb_entry(node, struct btrfs_inode, rb_node);
3952 if (objectid < btrfs_ino(&entry->vfs_inode))
3953 node = node->rb_left;
3954 else if (objectid > btrfs_ino(&entry->vfs_inode))
3955 node = node->rb_right;
3961 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3962 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3966 prev = rb_next(prev);
3970 entry = rb_entry(node, struct btrfs_inode, rb_node);
3971 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3972 inode = igrab(&entry->vfs_inode);
3974 spin_unlock(&root->inode_lock);
3975 if (atomic_read(&inode->i_count) > 1)
3976 d_prune_aliases(inode);
3978 * btrfs_drop_inode will have it removed from
3979 * the inode cache when its usage count
3984 spin_lock(&root->inode_lock);
3988 if (cond_resched_lock(&root->inode_lock))
3991 node = rb_next(node);
3993 spin_unlock(&root->inode_lock);
3996 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3998 struct btrfs_iget_args *args = p;
3999 inode->i_ino = args->ino;
4000 BTRFS_I(inode)->root = args->root;
4001 btrfs_set_inode_space_info(args->root, inode);
4005 static int btrfs_find_actor(struct inode *inode, void *opaque)
4007 struct btrfs_iget_args *args = opaque;
4008 return args->ino == btrfs_ino(inode) &&
4009 args->root == BTRFS_I(inode)->root;
4012 static struct inode *btrfs_iget_locked(struct super_block *s,
4014 struct btrfs_root *root)
4016 struct inode *inode;
4017 struct btrfs_iget_args args;
4018 args.ino = objectid;
4021 inode = iget5_locked(s, objectid, btrfs_find_actor,
4022 btrfs_init_locked_inode,
4027 /* Get an inode object given its location and corresponding root.
4028 * Returns in *is_new if the inode was read from disk
4030 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4031 struct btrfs_root *root, int *new)
4033 struct inode *inode;
4035 inode = btrfs_iget_locked(s, location->objectid, root);
4037 return ERR_PTR(-ENOMEM);
4039 if (inode->i_state & I_NEW) {
4040 BTRFS_I(inode)->root = root;
4041 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4042 btrfs_read_locked_inode(inode);
4043 if (!is_bad_inode(inode)) {
4044 inode_tree_add(inode);
4045 unlock_new_inode(inode);
4049 unlock_new_inode(inode);
4051 inode = ERR_PTR(-ESTALE);
4058 static struct inode *new_simple_dir(struct super_block *s,
4059 struct btrfs_key *key,
4060 struct btrfs_root *root)
4062 struct inode *inode = new_inode(s);
4065 return ERR_PTR(-ENOMEM);
4067 BTRFS_I(inode)->root = root;
4068 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4069 BTRFS_I(inode)->dummy_inode = 1;
4071 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4072 inode->i_op = &simple_dir_inode_operations;
4073 inode->i_fop = &simple_dir_operations;
4074 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4075 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4080 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4082 struct inode *inode;
4083 struct btrfs_root *root = BTRFS_I(dir)->root;
4084 struct btrfs_root *sub_root = root;
4085 struct btrfs_key location;
4089 if (dentry->d_name.len > BTRFS_NAME_LEN)
4090 return ERR_PTR(-ENAMETOOLONG);
4092 if (unlikely(d_need_lookup(dentry))) {
4093 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4094 kfree(dentry->d_fsdata);
4095 dentry->d_fsdata = NULL;
4096 /* This thing is hashed, drop it for now */
4099 ret = btrfs_inode_by_name(dir, dentry, &location);
4103 return ERR_PTR(ret);
4105 if (location.objectid == 0)
4108 if (location.type == BTRFS_INODE_ITEM_KEY) {
4109 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4113 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4115 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4116 ret = fixup_tree_root_location(root, dir, dentry,
4117 &location, &sub_root);
4120 inode = ERR_PTR(ret);
4122 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4124 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4126 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4128 if (!IS_ERR(inode) && root != sub_root) {
4129 down_read(&root->fs_info->cleanup_work_sem);
4130 if (!(inode->i_sb->s_flags & MS_RDONLY))
4131 ret = btrfs_orphan_cleanup(sub_root);
4132 up_read(&root->fs_info->cleanup_work_sem);
4134 inode = ERR_PTR(ret);
4140 static int btrfs_dentry_delete(const struct dentry *dentry)
4142 struct btrfs_root *root;
4144 if (!dentry->d_inode && !IS_ROOT(dentry))
4145 dentry = dentry->d_parent;
4147 if (dentry->d_inode) {
4148 root = BTRFS_I(dentry->d_inode)->root;
4149 if (btrfs_root_refs(&root->root_item) == 0)
4155 static void btrfs_dentry_release(struct dentry *dentry)
4157 if (dentry->d_fsdata)
4158 kfree(dentry->d_fsdata);
4161 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4162 struct nameidata *nd)
4166 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4167 if (unlikely(d_need_lookup(dentry))) {
4168 spin_lock(&dentry->d_lock);
4169 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4170 spin_unlock(&dentry->d_lock);
4175 unsigned char btrfs_filetype_table[] = {
4176 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4179 static int btrfs_real_readdir(struct file *filp, void *dirent,
4182 struct inode *inode = filp->f_dentry->d_inode;
4183 struct btrfs_root *root = BTRFS_I(inode)->root;
4184 struct btrfs_item *item;
4185 struct btrfs_dir_item *di;
4186 struct btrfs_key key;
4187 struct btrfs_key found_key;
4188 struct btrfs_path *path;
4189 struct list_head ins_list;
4190 struct list_head del_list;
4193 struct extent_buffer *leaf;
4195 unsigned char d_type;
4200 int key_type = BTRFS_DIR_INDEX_KEY;
4204 int is_curr = 0; /* filp->f_pos points to the current index? */
4206 /* FIXME, use a real flag for deciding about the key type */
4207 if (root->fs_info->tree_root == root)
4208 key_type = BTRFS_DIR_ITEM_KEY;
4210 /* special case for "." */
4211 if (filp->f_pos == 0) {
4212 over = filldir(dirent, ".", 1,
4213 filp->f_pos, btrfs_ino(inode), DT_DIR);
4218 /* special case for .., just use the back ref */
4219 if (filp->f_pos == 1) {
4220 u64 pino = parent_ino(filp->f_path.dentry);
4221 over = filldir(dirent, "..", 2,
4222 filp->f_pos, pino, DT_DIR);
4227 path = btrfs_alloc_path();
4233 if (key_type == BTRFS_DIR_INDEX_KEY) {
4234 INIT_LIST_HEAD(&ins_list);
4235 INIT_LIST_HEAD(&del_list);
4236 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4239 btrfs_set_key_type(&key, key_type);
4240 key.offset = filp->f_pos;
4241 key.objectid = btrfs_ino(inode);
4243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4248 leaf = path->nodes[0];
4249 slot = path->slots[0];
4250 if (slot >= btrfs_header_nritems(leaf)) {
4251 ret = btrfs_next_leaf(root, path);
4259 item = btrfs_item_nr(leaf, slot);
4260 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4262 if (found_key.objectid != key.objectid)
4264 if (btrfs_key_type(&found_key) != key_type)
4266 if (found_key.offset < filp->f_pos)
4268 if (key_type == BTRFS_DIR_INDEX_KEY &&
4269 btrfs_should_delete_dir_index(&del_list,
4273 filp->f_pos = found_key.offset;
4276 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4278 di_total = btrfs_item_size(leaf, item);
4280 while (di_cur < di_total) {
4281 struct btrfs_key location;
4284 if (verify_dir_item(root, leaf, di))
4287 name_len = btrfs_dir_name_len(leaf, di);
4288 if (name_len <= sizeof(tmp_name)) {
4289 name_ptr = tmp_name;
4291 name_ptr = kmalloc(name_len, GFP_NOFS);
4297 read_extent_buffer(leaf, name_ptr,
4298 (unsigned long)(di + 1), name_len);
4300 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4301 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4305 q.hash = full_name_hash(q.name, q.len);
4306 tmp = d_lookup(filp->f_dentry, &q);
4308 struct btrfs_key *newkey;
4310 newkey = kzalloc(sizeof(struct btrfs_key),
4314 tmp = d_alloc(filp->f_dentry, &q);
4320 memcpy(newkey, &location,
4321 sizeof(struct btrfs_key));
4322 tmp->d_fsdata = newkey;
4323 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4330 /* is this a reference to our own snapshot? If so
4333 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4334 location.objectid == root->root_key.objectid) {
4338 over = filldir(dirent, name_ptr, name_len,
4339 found_key.offset, location.objectid,
4343 if (name_ptr != tmp_name)
4348 di_len = btrfs_dir_name_len(leaf, di) +
4349 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4351 di = (struct btrfs_dir_item *)((char *)di + di_len);
4357 if (key_type == BTRFS_DIR_INDEX_KEY) {
4360 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4366 /* Reached end of directory/root. Bump pos past the last item. */
4367 if (key_type == BTRFS_DIR_INDEX_KEY)
4369 * 32-bit glibc will use getdents64, but then strtol -
4370 * so the last number we can serve is this.
4372 filp->f_pos = 0x7fffffff;
4378 if (key_type == BTRFS_DIR_INDEX_KEY)
4379 btrfs_put_delayed_items(&ins_list, &del_list);
4380 btrfs_free_path(path);
4384 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4386 struct btrfs_root *root = BTRFS_I(inode)->root;
4387 struct btrfs_trans_handle *trans;
4389 bool nolock = false;
4391 if (BTRFS_I(inode)->dummy_inode)
4394 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4397 if (wbc->sync_mode == WB_SYNC_ALL) {
4399 trans = btrfs_join_transaction_nolock(root);
4401 trans = btrfs_join_transaction(root);
4403 return PTR_ERR(trans);
4405 ret = btrfs_end_transaction_nolock(trans, root);
4407 ret = btrfs_commit_transaction(trans, root);
4413 * This is somewhat expensive, updating the tree every time the
4414 * inode changes. But, it is most likely to find the inode in cache.
4415 * FIXME, needs more benchmarking...there are no reasons other than performance
4416 * to keep or drop this code.
4418 int btrfs_dirty_inode(struct inode *inode)
4420 struct btrfs_root *root = BTRFS_I(inode)->root;
4421 struct btrfs_trans_handle *trans;
4424 if (BTRFS_I(inode)->dummy_inode)
4427 trans = btrfs_join_transaction(root);
4429 return PTR_ERR(trans);
4431 ret = btrfs_update_inode(trans, root, inode);
4432 if (ret && ret == -ENOSPC) {
4433 /* whoops, lets try again with the full transaction */
4434 btrfs_end_transaction(trans, root);
4435 trans = btrfs_start_transaction(root, 1);
4437 return PTR_ERR(trans);
4439 ret = btrfs_update_inode(trans, root, inode);
4441 btrfs_end_transaction(trans, root);
4442 if (BTRFS_I(inode)->delayed_node)
4443 btrfs_balance_delayed_items(root);
4449 * This is a copy of file_update_time. We need this so we can return error on
4450 * ENOSPC for updating the inode in the case of file write and mmap writes.
4452 int btrfs_update_time(struct file *file)
4454 struct inode *inode = file->f_path.dentry->d_inode;
4455 struct timespec now;
4457 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4459 /* First try to exhaust all avenues to not sync */
4460 if (IS_NOCMTIME(inode))
4463 now = current_fs_time(inode->i_sb);
4464 if (!timespec_equal(&inode->i_mtime, &now))
4467 if (!timespec_equal(&inode->i_ctime, &now))
4470 if (IS_I_VERSION(inode))
4471 sync_it |= S_VERSION;
4476 /* Finally allowed to write? Takes lock. */
4477 if (mnt_want_write_file(file))
4480 /* Only change inode inside the lock region */
4481 if (sync_it & S_VERSION)
4482 inode_inc_iversion(inode);
4483 if (sync_it & S_CTIME)
4484 inode->i_ctime = now;
4485 if (sync_it & S_MTIME)
4486 inode->i_mtime = now;
4487 ret = btrfs_dirty_inode(inode);
4489 mark_inode_dirty_sync(inode);
4490 mnt_drop_write(file->f_path.mnt);
4495 * find the highest existing sequence number in a directory
4496 * and then set the in-memory index_cnt variable to reflect
4497 * free sequence numbers
4499 static int btrfs_set_inode_index_count(struct inode *inode)
4501 struct btrfs_root *root = BTRFS_I(inode)->root;
4502 struct btrfs_key key, found_key;
4503 struct btrfs_path *path;
4504 struct extent_buffer *leaf;
4507 key.objectid = btrfs_ino(inode);
4508 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4509 key.offset = (u64)-1;
4511 path = btrfs_alloc_path();
4515 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4518 /* FIXME: we should be able to handle this */
4524 * MAGIC NUMBER EXPLANATION:
4525 * since we search a directory based on f_pos we have to start at 2
4526 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4527 * else has to start at 2
4529 if (path->slots[0] == 0) {
4530 BTRFS_I(inode)->index_cnt = 2;
4536 leaf = path->nodes[0];
4537 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4539 if (found_key.objectid != btrfs_ino(inode) ||
4540 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4541 BTRFS_I(inode)->index_cnt = 2;
4545 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4547 btrfs_free_path(path);
4552 * helper to find a free sequence number in a given directory. This current
4553 * code is very simple, later versions will do smarter things in the btree
4555 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4559 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4560 ret = btrfs_inode_delayed_dir_index_count(dir);
4562 ret = btrfs_set_inode_index_count(dir);
4568 *index = BTRFS_I(dir)->index_cnt;
4569 BTRFS_I(dir)->index_cnt++;
4574 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4575 struct btrfs_root *root,
4577 const char *name, int name_len,
4578 u64 ref_objectid, u64 objectid,
4579 umode_t mode, u64 *index)
4581 struct inode *inode;
4582 struct btrfs_inode_item *inode_item;
4583 struct btrfs_key *location;
4584 struct btrfs_path *path;
4585 struct btrfs_inode_ref *ref;
4586 struct btrfs_key key[2];
4592 path = btrfs_alloc_path();
4594 return ERR_PTR(-ENOMEM);
4596 inode = new_inode(root->fs_info->sb);
4598 btrfs_free_path(path);
4599 return ERR_PTR(-ENOMEM);
4603 * we have to initialize this early, so we can reclaim the inode
4604 * number if we fail afterwards in this function.
4606 inode->i_ino = objectid;
4609 trace_btrfs_inode_request(dir);
4611 ret = btrfs_set_inode_index(dir, index);
4613 btrfs_free_path(path);
4615 return ERR_PTR(ret);
4619 * index_cnt is ignored for everything but a dir,
4620 * btrfs_get_inode_index_count has an explanation for the magic
4623 BTRFS_I(inode)->index_cnt = 2;
4624 BTRFS_I(inode)->root = root;
4625 BTRFS_I(inode)->generation = trans->transid;
4626 inode->i_generation = BTRFS_I(inode)->generation;
4627 btrfs_set_inode_space_info(root, inode);
4634 key[0].objectid = objectid;
4635 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4638 key[1].objectid = objectid;
4639 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4640 key[1].offset = ref_objectid;
4642 sizes[0] = sizeof(struct btrfs_inode_item);
4643 sizes[1] = name_len + sizeof(*ref);
4645 path->leave_spinning = 1;
4646 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4650 inode_init_owner(inode, dir, mode);
4651 inode_set_bytes(inode, 0);
4652 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4653 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4654 struct btrfs_inode_item);
4655 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4657 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4658 struct btrfs_inode_ref);
4659 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4660 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4661 ptr = (unsigned long)(ref + 1);
4662 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4664 btrfs_mark_buffer_dirty(path->nodes[0]);
4665 btrfs_free_path(path);
4667 location = &BTRFS_I(inode)->location;
4668 location->objectid = objectid;
4669 location->offset = 0;
4670 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4672 btrfs_inherit_iflags(inode, dir);
4674 if (S_ISREG(mode)) {
4675 if (btrfs_test_opt(root, NODATASUM))
4676 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4677 if (btrfs_test_opt(root, NODATACOW) ||
4678 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4679 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4682 insert_inode_hash(inode);
4683 inode_tree_add(inode);
4685 trace_btrfs_inode_new(inode);
4686 btrfs_set_inode_last_trans(trans, inode);
4691 BTRFS_I(dir)->index_cnt--;
4692 btrfs_free_path(path);
4694 return ERR_PTR(ret);
4697 static inline u8 btrfs_inode_type(struct inode *inode)
4699 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4703 * utility function to add 'inode' into 'parent_inode' with
4704 * a give name and a given sequence number.
4705 * if 'add_backref' is true, also insert a backref from the
4706 * inode to the parent directory.
4708 int btrfs_add_link(struct btrfs_trans_handle *trans,
4709 struct inode *parent_inode, struct inode *inode,
4710 const char *name, int name_len, int add_backref, u64 index)
4713 struct btrfs_key key;
4714 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4715 u64 ino = btrfs_ino(inode);
4716 u64 parent_ino = btrfs_ino(parent_inode);
4718 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4719 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4722 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4726 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4727 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4728 key.objectid, root->root_key.objectid,
4729 parent_ino, index, name, name_len);
4730 } else if (add_backref) {
4731 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4735 /* Nothing to clean up yet */
4739 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4741 btrfs_inode_type(inode), index);
4745 btrfs_abort_transaction(trans, root, ret);
4749 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4751 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4752 ret = btrfs_update_inode(trans, root, parent_inode);
4754 btrfs_abort_transaction(trans, root, ret);
4758 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4761 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4762 key.objectid, root->root_key.objectid,
4763 parent_ino, &local_index, name, name_len);
4765 } else if (add_backref) {
4769 err = btrfs_del_inode_ref(trans, root, name, name_len,
4770 ino, parent_ino, &local_index);
4775 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4776 struct inode *dir, struct dentry *dentry,
4777 struct inode *inode, int backref, u64 index)
4779 int err = btrfs_add_link(trans, dir, inode,
4780 dentry->d_name.name, dentry->d_name.len,
4787 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4788 umode_t mode, dev_t rdev)
4790 struct btrfs_trans_handle *trans;
4791 struct btrfs_root *root = BTRFS_I(dir)->root;
4792 struct inode *inode = NULL;
4796 unsigned long nr = 0;
4799 if (!new_valid_dev(rdev))
4803 * 2 for inode item and ref
4805 * 1 for xattr if selinux is on
4807 trans = btrfs_start_transaction(root, 5);
4809 return PTR_ERR(trans);
4811 err = btrfs_find_free_ino(root, &objectid);
4815 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4816 dentry->d_name.len, btrfs_ino(dir), objectid,
4818 if (IS_ERR(inode)) {
4819 err = PTR_ERR(inode);
4823 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4830 * If the active LSM wants to access the inode during
4831 * d_instantiate it needs these. Smack checks to see
4832 * if the filesystem supports xattrs by looking at the
4836 inode->i_op = &btrfs_special_inode_operations;
4837 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4841 init_special_inode(inode, inode->i_mode, rdev);
4842 btrfs_update_inode(trans, root, inode);
4843 d_instantiate(dentry, inode);
4846 nr = trans->blocks_used;
4847 btrfs_end_transaction(trans, root);
4848 btrfs_btree_balance_dirty(root, nr);
4850 inode_dec_link_count(inode);
4856 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4857 umode_t mode, struct nameidata *nd)
4859 struct btrfs_trans_handle *trans;
4860 struct btrfs_root *root = BTRFS_I(dir)->root;
4861 struct inode *inode = NULL;
4864 unsigned long nr = 0;
4869 * 2 for inode item and ref
4871 * 1 for xattr if selinux is on
4873 trans = btrfs_start_transaction(root, 5);
4875 return PTR_ERR(trans);
4877 err = btrfs_find_free_ino(root, &objectid);
4881 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4882 dentry->d_name.len, btrfs_ino(dir), objectid,
4884 if (IS_ERR(inode)) {
4885 err = PTR_ERR(inode);
4889 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4896 * If the active LSM wants to access the inode during
4897 * d_instantiate it needs these. Smack checks to see
4898 * if the filesystem supports xattrs by looking at the
4901 inode->i_fop = &btrfs_file_operations;
4902 inode->i_op = &btrfs_file_inode_operations;
4904 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4908 inode->i_mapping->a_ops = &btrfs_aops;
4909 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4910 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4911 d_instantiate(dentry, inode);
4914 nr = trans->blocks_used;
4915 btrfs_end_transaction(trans, root);
4917 inode_dec_link_count(inode);
4920 btrfs_btree_balance_dirty(root, nr);
4924 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4925 struct dentry *dentry)
4927 struct btrfs_trans_handle *trans;
4928 struct btrfs_root *root = BTRFS_I(dir)->root;
4929 struct inode *inode = old_dentry->d_inode;
4931 unsigned long nr = 0;
4935 /* do not allow sys_link's with other subvols of the same device */
4936 if (root->objectid != BTRFS_I(inode)->root->objectid)
4939 if (inode->i_nlink == ~0U)
4942 err = btrfs_set_inode_index(dir, &index);
4947 * 2 items for inode and inode ref
4948 * 2 items for dir items
4949 * 1 item for parent inode
4951 trans = btrfs_start_transaction(root, 5);
4952 if (IS_ERR(trans)) {
4953 err = PTR_ERR(trans);
4957 btrfs_inc_nlink(inode);
4958 inode->i_ctime = CURRENT_TIME;
4961 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4966 struct dentry *parent = dentry->d_parent;
4967 err = btrfs_update_inode(trans, root, inode);
4970 d_instantiate(dentry, inode);
4971 btrfs_log_new_name(trans, inode, NULL, parent);
4974 nr = trans->blocks_used;
4975 btrfs_end_transaction(trans, root);
4978 inode_dec_link_count(inode);
4981 btrfs_btree_balance_dirty(root, nr);
4985 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4987 struct inode *inode = NULL;
4988 struct btrfs_trans_handle *trans;
4989 struct btrfs_root *root = BTRFS_I(dir)->root;
4991 int drop_on_err = 0;
4994 unsigned long nr = 1;
4997 * 2 items for inode and ref
4998 * 2 items for dir items
4999 * 1 for xattr if selinux is on
5001 trans = btrfs_start_transaction(root, 5);
5003 return PTR_ERR(trans);
5005 err = btrfs_find_free_ino(root, &objectid);
5009 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5010 dentry->d_name.len, btrfs_ino(dir), objectid,
5011 S_IFDIR | mode, &index);
5012 if (IS_ERR(inode)) {
5013 err = PTR_ERR(inode);
5019 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5023 inode->i_op = &btrfs_dir_inode_operations;
5024 inode->i_fop = &btrfs_dir_file_operations;
5026 btrfs_i_size_write(inode, 0);
5027 err = btrfs_update_inode(trans, root, inode);
5031 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5032 dentry->d_name.len, 0, index);
5036 d_instantiate(dentry, inode);
5040 nr = trans->blocks_used;
5041 btrfs_end_transaction(trans, root);
5044 btrfs_btree_balance_dirty(root, nr);
5048 /* helper for btfs_get_extent. Given an existing extent in the tree,
5049 * and an extent that you want to insert, deal with overlap and insert
5050 * the new extent into the tree.
5052 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5053 struct extent_map *existing,
5054 struct extent_map *em,
5055 u64 map_start, u64 map_len)
5059 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5060 start_diff = map_start - em->start;
5061 em->start = map_start;
5063 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5064 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5065 em->block_start += start_diff;
5066 em->block_len -= start_diff;
5068 return add_extent_mapping(em_tree, em);
5071 static noinline int uncompress_inline(struct btrfs_path *path,
5072 struct inode *inode, struct page *page,
5073 size_t pg_offset, u64 extent_offset,
5074 struct btrfs_file_extent_item *item)
5077 struct extent_buffer *leaf = path->nodes[0];
5080 unsigned long inline_size;
5084 WARN_ON(pg_offset != 0);
5085 compress_type = btrfs_file_extent_compression(leaf, item);
5086 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5087 inline_size = btrfs_file_extent_inline_item_len(leaf,
5088 btrfs_item_nr(leaf, path->slots[0]));
5089 tmp = kmalloc(inline_size, GFP_NOFS);
5092 ptr = btrfs_file_extent_inline_start(item);
5094 read_extent_buffer(leaf, tmp, ptr, inline_size);
5096 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5097 ret = btrfs_decompress(compress_type, tmp, page,
5098 extent_offset, inline_size, max_size);
5100 char *kaddr = kmap_atomic(page);
5101 unsigned long copy_size = min_t(u64,
5102 PAGE_CACHE_SIZE - pg_offset,
5103 max_size - extent_offset);
5104 memset(kaddr + pg_offset, 0, copy_size);
5105 kunmap_atomic(kaddr);
5112 * a bit scary, this does extent mapping from logical file offset to the disk.
5113 * the ugly parts come from merging extents from the disk with the in-ram
5114 * representation. This gets more complex because of the data=ordered code,
5115 * where the in-ram extents might be locked pending data=ordered completion.
5117 * This also copies inline extents directly into the page.
5120 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5121 size_t pg_offset, u64 start, u64 len,
5127 u64 extent_start = 0;
5129 u64 objectid = btrfs_ino(inode);
5131 struct btrfs_path *path = NULL;
5132 struct btrfs_root *root = BTRFS_I(inode)->root;
5133 struct btrfs_file_extent_item *item;
5134 struct extent_buffer *leaf;
5135 struct btrfs_key found_key;
5136 struct extent_map *em = NULL;
5137 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5138 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5139 struct btrfs_trans_handle *trans = NULL;
5143 read_lock(&em_tree->lock);
5144 em = lookup_extent_mapping(em_tree, start, len);
5146 em->bdev = root->fs_info->fs_devices->latest_bdev;
5147 read_unlock(&em_tree->lock);
5150 if (em->start > start || em->start + em->len <= start)
5151 free_extent_map(em);
5152 else if (em->block_start == EXTENT_MAP_INLINE && page)
5153 free_extent_map(em);
5157 em = alloc_extent_map();
5162 em->bdev = root->fs_info->fs_devices->latest_bdev;
5163 em->start = EXTENT_MAP_HOLE;
5164 em->orig_start = EXTENT_MAP_HOLE;
5166 em->block_len = (u64)-1;
5169 path = btrfs_alloc_path();
5175 * Chances are we'll be called again, so go ahead and do
5181 ret = btrfs_lookup_file_extent(trans, root, path,
5182 objectid, start, trans != NULL);
5189 if (path->slots[0] == 0)
5194 leaf = path->nodes[0];
5195 item = btrfs_item_ptr(leaf, path->slots[0],
5196 struct btrfs_file_extent_item);
5197 /* are we inside the extent that was found? */
5198 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5199 found_type = btrfs_key_type(&found_key);
5200 if (found_key.objectid != objectid ||
5201 found_type != BTRFS_EXTENT_DATA_KEY) {
5205 found_type = btrfs_file_extent_type(leaf, item);
5206 extent_start = found_key.offset;
5207 compress_type = btrfs_file_extent_compression(leaf, item);
5208 if (found_type == BTRFS_FILE_EXTENT_REG ||
5209 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5210 extent_end = extent_start +
5211 btrfs_file_extent_num_bytes(leaf, item);
5212 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5214 size = btrfs_file_extent_inline_len(leaf, item);
5215 extent_end = (extent_start + size + root->sectorsize - 1) &
5216 ~((u64)root->sectorsize - 1);
5219 if (start >= extent_end) {
5221 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5222 ret = btrfs_next_leaf(root, path);
5229 leaf = path->nodes[0];
5231 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5232 if (found_key.objectid != objectid ||
5233 found_key.type != BTRFS_EXTENT_DATA_KEY)
5235 if (start + len <= found_key.offset)
5238 em->len = found_key.offset - start;
5242 if (found_type == BTRFS_FILE_EXTENT_REG ||
5243 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5244 em->start = extent_start;
5245 em->len = extent_end - extent_start;
5246 em->orig_start = extent_start -
5247 btrfs_file_extent_offset(leaf, item);
5248 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5250 em->block_start = EXTENT_MAP_HOLE;
5253 if (compress_type != BTRFS_COMPRESS_NONE) {
5254 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5255 em->compress_type = compress_type;
5256 em->block_start = bytenr;
5257 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5260 bytenr += btrfs_file_extent_offset(leaf, item);
5261 em->block_start = bytenr;
5262 em->block_len = em->len;
5263 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5264 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5267 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5271 size_t extent_offset;
5274 em->block_start = EXTENT_MAP_INLINE;
5275 if (!page || create) {
5276 em->start = extent_start;
5277 em->len = extent_end - extent_start;
5281 size = btrfs_file_extent_inline_len(leaf, item);
5282 extent_offset = page_offset(page) + pg_offset - extent_start;
5283 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5284 size - extent_offset);
5285 em->start = extent_start + extent_offset;
5286 em->len = (copy_size + root->sectorsize - 1) &
5287 ~((u64)root->sectorsize - 1);
5288 em->orig_start = EXTENT_MAP_INLINE;
5289 if (compress_type) {
5290 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5291 em->compress_type = compress_type;
5293 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5294 if (create == 0 && !PageUptodate(page)) {
5295 if (btrfs_file_extent_compression(leaf, item) !=
5296 BTRFS_COMPRESS_NONE) {
5297 ret = uncompress_inline(path, inode, page,
5299 extent_offset, item);
5300 BUG_ON(ret); /* -ENOMEM */
5303 read_extent_buffer(leaf, map + pg_offset, ptr,
5305 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5306 memset(map + pg_offset + copy_size, 0,
5307 PAGE_CACHE_SIZE - pg_offset -
5312 flush_dcache_page(page);
5313 } else if (create && PageUptodate(page)) {
5317 free_extent_map(em);
5320 btrfs_release_path(path);
5321 trans = btrfs_join_transaction(root);
5324 return ERR_CAST(trans);
5328 write_extent_buffer(leaf, map + pg_offset, ptr,
5331 btrfs_mark_buffer_dirty(leaf);
5333 set_extent_uptodate(io_tree, em->start,
5334 extent_map_end(em) - 1, NULL, GFP_NOFS);
5337 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5344 em->block_start = EXTENT_MAP_HOLE;
5345 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5347 btrfs_release_path(path);
5348 if (em->start > start || extent_map_end(em) <= start) {
5349 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5350 "[%llu %llu]\n", (unsigned long long)em->start,
5351 (unsigned long long)em->len,
5352 (unsigned long long)start,
5353 (unsigned long long)len);
5359 write_lock(&em_tree->lock);
5360 ret = add_extent_mapping(em_tree, em);
5361 /* it is possible that someone inserted the extent into the tree
5362 * while we had the lock dropped. It is also possible that
5363 * an overlapping map exists in the tree
5365 if (ret == -EEXIST) {
5366 struct extent_map *existing;
5370 existing = lookup_extent_mapping(em_tree, start, len);
5371 if (existing && (existing->start > start ||
5372 existing->start + existing->len <= start)) {
5373 free_extent_map(existing);
5377 existing = lookup_extent_mapping(em_tree, em->start,
5380 err = merge_extent_mapping(em_tree, existing,
5383 free_extent_map(existing);
5385 free_extent_map(em);
5390 free_extent_map(em);
5394 free_extent_map(em);
5399 write_unlock(&em_tree->lock);
5402 trace_btrfs_get_extent(root, em);
5405 btrfs_free_path(path);
5407 ret = btrfs_end_transaction(trans, root);
5412 free_extent_map(em);
5413 return ERR_PTR(err);
5415 BUG_ON(!em); /* Error is always set */
5419 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5420 size_t pg_offset, u64 start, u64 len,
5423 struct extent_map *em;
5424 struct extent_map *hole_em = NULL;
5425 u64 range_start = start;
5431 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5436 * if our em maps to a hole, there might
5437 * actually be delalloc bytes behind it
5439 if (em->block_start != EXTENT_MAP_HOLE)
5445 /* check to see if we've wrapped (len == -1 or similar) */
5454 /* ok, we didn't find anything, lets look for delalloc */
5455 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5456 end, len, EXTENT_DELALLOC, 1);
5457 found_end = range_start + found;
5458 if (found_end < range_start)
5459 found_end = (u64)-1;
5462 * we didn't find anything useful, return
5463 * the original results from get_extent()
5465 if (range_start > end || found_end <= start) {
5471 /* adjust the range_start to make sure it doesn't
5472 * go backwards from the start they passed in
5474 range_start = max(start,range_start);
5475 found = found_end - range_start;
5478 u64 hole_start = start;
5481 em = alloc_extent_map();
5487 * when btrfs_get_extent can't find anything it
5488 * returns one huge hole
5490 * make sure what it found really fits our range, and
5491 * adjust to make sure it is based on the start from
5495 u64 calc_end = extent_map_end(hole_em);
5497 if (calc_end <= start || (hole_em->start > end)) {
5498 free_extent_map(hole_em);
5501 hole_start = max(hole_em->start, start);
5502 hole_len = calc_end - hole_start;
5506 if (hole_em && range_start > hole_start) {
5507 /* our hole starts before our delalloc, so we
5508 * have to return just the parts of the hole
5509 * that go until the delalloc starts
5511 em->len = min(hole_len,
5512 range_start - hole_start);
5513 em->start = hole_start;
5514 em->orig_start = hole_start;
5516 * don't adjust block start at all,
5517 * it is fixed at EXTENT_MAP_HOLE
5519 em->block_start = hole_em->block_start;
5520 em->block_len = hole_len;
5522 em->start = range_start;
5524 em->orig_start = range_start;
5525 em->block_start = EXTENT_MAP_DELALLOC;
5526 em->block_len = found;
5528 } else if (hole_em) {
5533 free_extent_map(hole_em);
5535 free_extent_map(em);
5536 return ERR_PTR(err);
5541 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5542 struct extent_map *em,
5545 struct btrfs_root *root = BTRFS_I(inode)->root;
5546 struct btrfs_trans_handle *trans;
5547 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5548 struct btrfs_key ins;
5551 bool insert = false;
5554 * Ok if the extent map we looked up is a hole and is for the exact
5555 * range we want, there is no reason to allocate a new one, however if
5556 * it is not right then we need to free this one and drop the cache for
5559 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5561 free_extent_map(em);
5564 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5567 trans = btrfs_join_transaction(root);
5569 return ERR_CAST(trans);
5571 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5572 btrfs_add_inode_defrag(trans, inode);
5574 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5576 alloc_hint = get_extent_allocation_hint(inode, start, len);
5577 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5578 alloc_hint, &ins, 1);
5585 em = alloc_extent_map();
5587 em = ERR_PTR(-ENOMEM);
5593 em->orig_start = em->start;
5594 em->len = ins.offset;
5596 em->block_start = ins.objectid;
5597 em->block_len = ins.offset;
5598 em->bdev = root->fs_info->fs_devices->latest_bdev;
5601 * We need to do this because if we're using the original em we searched
5602 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5605 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5608 write_lock(&em_tree->lock);
5609 ret = add_extent_mapping(em_tree, em);
5610 write_unlock(&em_tree->lock);
5613 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5616 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5617 ins.offset, ins.offset, 0);
5619 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5623 btrfs_end_transaction(trans, root);
5628 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5629 * block must be cow'd
5631 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5632 struct inode *inode, u64 offset, u64 len)
5634 struct btrfs_path *path;
5636 struct extent_buffer *leaf;
5637 struct btrfs_root *root = BTRFS_I(inode)->root;
5638 struct btrfs_file_extent_item *fi;
5639 struct btrfs_key key;
5647 path = btrfs_alloc_path();
5651 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5656 slot = path->slots[0];
5659 /* can't find the item, must cow */
5666 leaf = path->nodes[0];
5667 btrfs_item_key_to_cpu(leaf, &key, slot);
5668 if (key.objectid != btrfs_ino(inode) ||
5669 key.type != BTRFS_EXTENT_DATA_KEY) {
5670 /* not our file or wrong item type, must cow */
5674 if (key.offset > offset) {
5675 /* Wrong offset, must cow */
5679 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5680 found_type = btrfs_file_extent_type(leaf, fi);
5681 if (found_type != BTRFS_FILE_EXTENT_REG &&
5682 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5683 /* not a regular extent, must cow */
5686 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5687 backref_offset = btrfs_file_extent_offset(leaf, fi);
5689 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5690 if (extent_end < offset + len) {
5691 /* extent doesn't include our full range, must cow */
5695 if (btrfs_extent_readonly(root, disk_bytenr))
5699 * look for other files referencing this extent, if we
5700 * find any we must cow
5702 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5703 key.offset - backref_offset, disk_bytenr))
5707 * adjust disk_bytenr and num_bytes to cover just the bytes
5708 * in this extent we are about to write. If there
5709 * are any csums in that range we have to cow in order
5710 * to keep the csums correct
5712 disk_bytenr += backref_offset;
5713 disk_bytenr += offset - key.offset;
5714 num_bytes = min(offset + len, extent_end) - offset;
5715 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5718 * all of the above have passed, it is safe to overwrite this extent
5723 btrfs_free_path(path);
5727 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5728 struct buffer_head *bh_result, int create)
5730 struct extent_map *em;
5731 struct btrfs_root *root = BTRFS_I(inode)->root;
5732 u64 start = iblock << inode->i_blkbits;
5733 u64 len = bh_result->b_size;
5734 struct btrfs_trans_handle *trans;
5736 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5741 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5742 * io. INLINE is special, and we could probably kludge it in here, but
5743 * it's still buffered so for safety lets just fall back to the generic
5746 * For COMPRESSED we _have_ to read the entire extent in so we can
5747 * decompress it, so there will be buffering required no matter what we
5748 * do, so go ahead and fallback to buffered.
5750 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5751 * to buffered IO. Don't blame me, this is the price we pay for using
5754 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5755 em->block_start == EXTENT_MAP_INLINE) {
5756 free_extent_map(em);
5760 /* Just a good old fashioned hole, return */
5761 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5762 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5763 free_extent_map(em);
5764 /* DIO will do one hole at a time, so just unlock a sector */
5765 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5766 start + root->sectorsize - 1);
5771 * We don't allocate a new extent in the following cases
5773 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5775 * 2) The extent is marked as PREALLOC. We're good to go here and can
5776 * just use the extent.
5780 len = em->len - (start - em->start);
5784 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5785 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5786 em->block_start != EXTENT_MAP_HOLE)) {
5791 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5792 type = BTRFS_ORDERED_PREALLOC;
5794 type = BTRFS_ORDERED_NOCOW;
5795 len = min(len, em->len - (start - em->start));
5796 block_start = em->block_start + (start - em->start);
5799 * we're not going to log anything, but we do need
5800 * to make sure the current transaction stays open
5801 * while we look for nocow cross refs
5803 trans = btrfs_join_transaction(root);
5807 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5808 ret = btrfs_add_ordered_extent_dio(inode, start,
5809 block_start, len, len, type);
5810 btrfs_end_transaction(trans, root);
5812 free_extent_map(em);
5817 btrfs_end_transaction(trans, root);
5821 * this will cow the extent, reset the len in case we changed
5824 len = bh_result->b_size;
5825 em = btrfs_new_extent_direct(inode, em, start, len);
5828 len = min(len, em->len - (start - em->start));
5830 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5831 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5834 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5836 bh_result->b_size = len;
5837 bh_result->b_bdev = em->bdev;
5838 set_buffer_mapped(bh_result);
5839 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5840 set_buffer_new(bh_result);
5842 free_extent_map(em);
5847 struct btrfs_dio_private {
5848 struct inode *inode;
5855 /* number of bios pending for this dio */
5856 atomic_t pending_bios;
5861 struct bio *orig_bio;
5864 static void btrfs_endio_direct_read(struct bio *bio, int err)
5866 struct btrfs_dio_private *dip = bio->bi_private;
5867 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5868 struct bio_vec *bvec = bio->bi_io_vec;
5869 struct inode *inode = dip->inode;
5870 struct btrfs_root *root = BTRFS_I(inode)->root;
5872 u32 *private = dip->csums;
5874 start = dip->logical_offset;
5876 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5877 struct page *page = bvec->bv_page;
5880 unsigned long flags;
5882 local_irq_save(flags);
5883 kaddr = kmap_atomic(page);
5884 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5885 csum, bvec->bv_len);
5886 btrfs_csum_final(csum, (char *)&csum);
5887 kunmap_atomic(kaddr);
5888 local_irq_restore(flags);
5890 flush_dcache_page(bvec->bv_page);
5891 if (csum != *private) {
5892 printk(KERN_ERR "btrfs csum failed ino %llu off"
5893 " %llu csum %u private %u\n",
5894 (unsigned long long)btrfs_ino(inode),
5895 (unsigned long long)start,
5901 start += bvec->bv_len;
5904 } while (bvec <= bvec_end);
5906 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5907 dip->logical_offset + dip->bytes - 1);
5908 bio->bi_private = dip->private;
5913 /* If we had a csum failure make sure to clear the uptodate flag */
5915 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5916 dio_end_io(bio, err);
5919 static void btrfs_endio_direct_write(struct bio *bio, int err)
5921 struct btrfs_dio_private *dip = bio->bi_private;
5922 struct inode *inode = dip->inode;
5923 struct btrfs_root *root = BTRFS_I(inode)->root;
5924 struct btrfs_trans_handle *trans;
5925 struct btrfs_ordered_extent *ordered = NULL;
5926 struct extent_state *cached_state = NULL;
5927 u64 ordered_offset = dip->logical_offset;
5928 u64 ordered_bytes = dip->bytes;
5934 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5942 trans = btrfs_join_transaction(root);
5943 if (IS_ERR(trans)) {
5947 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5949 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5950 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5952 err = btrfs_update_inode_fallback(trans, root, inode);
5956 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5957 ordered->file_offset + ordered->len - 1, 0,
5960 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5961 ret = btrfs_mark_extent_written(trans, inode,
5962 ordered->file_offset,
5963 ordered->file_offset +
5970 ret = insert_reserved_file_extent(trans, inode,
5971 ordered->file_offset,
5977 BTRFS_FILE_EXTENT_REG);
5978 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5979 ordered->file_offset, ordered->len);
5987 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5988 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5989 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5990 btrfs_update_inode_fallback(trans, root, inode);
5993 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5994 ordered->file_offset + ordered->len - 1,
5995 &cached_state, GFP_NOFS);
5997 btrfs_delalloc_release_metadata(inode, ordered->len);
5998 btrfs_end_transaction(trans, root);
5999 ordered_offset = ordered->file_offset + ordered->len;
6000 btrfs_put_ordered_extent(ordered);
6001 btrfs_put_ordered_extent(ordered);
6005 * our bio might span multiple ordered extents. If we haven't
6006 * completed the accounting for the whole dio, go back and try again
6008 if (ordered_offset < dip->logical_offset + dip->bytes) {
6009 ordered_bytes = dip->logical_offset + dip->bytes -
6014 bio->bi_private = dip->private;
6019 /* If we had an error make sure to clear the uptodate flag */
6021 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6022 dio_end_io(bio, err);
6025 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6026 struct bio *bio, int mirror_num,
6027 unsigned long bio_flags, u64 offset)
6030 struct btrfs_root *root = BTRFS_I(inode)->root;
6031 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6032 BUG_ON(ret); /* -ENOMEM */
6036 static void btrfs_end_dio_bio(struct bio *bio, int err)
6038 struct btrfs_dio_private *dip = bio->bi_private;
6041 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6042 "sector %#Lx len %u err no %d\n",
6043 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6044 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6048 * before atomic variable goto zero, we must make sure
6049 * dip->errors is perceived to be set.
6051 smp_mb__before_atomic_dec();
6054 /* if there are more bios still pending for this dio, just exit */
6055 if (!atomic_dec_and_test(&dip->pending_bios))
6059 bio_io_error(dip->orig_bio);
6061 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6062 bio_endio(dip->orig_bio, 0);
6068 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6069 u64 first_sector, gfp_t gfp_flags)
6071 int nr_vecs = bio_get_nr_vecs(bdev);
6072 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6075 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6076 int rw, u64 file_offset, int skip_sum,
6077 u32 *csums, int async_submit)
6079 int write = rw & REQ_WRITE;
6080 struct btrfs_root *root = BTRFS_I(inode)->root;
6084 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6091 if (write && async_submit) {
6092 ret = btrfs_wq_submit_bio(root->fs_info,
6093 inode, rw, bio, 0, 0,
6095 __btrfs_submit_bio_start_direct_io,
6096 __btrfs_submit_bio_done);
6100 * If we aren't doing async submit, calculate the csum of the
6103 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6106 } else if (!skip_sum) {
6107 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6108 file_offset, csums);
6114 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6120 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6123 struct inode *inode = dip->inode;
6124 struct btrfs_root *root = BTRFS_I(inode)->root;
6125 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6127 struct bio *orig_bio = dip->orig_bio;
6128 struct bio_vec *bvec = orig_bio->bi_io_vec;
6129 u64 start_sector = orig_bio->bi_sector;
6130 u64 file_offset = dip->logical_offset;
6134 u32 *csums = dip->csums;
6136 int async_submit = 0;
6137 int write = rw & REQ_WRITE;
6139 map_length = orig_bio->bi_size;
6140 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6141 &map_length, NULL, 0);
6147 if (map_length >= orig_bio->bi_size) {
6153 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6156 bio->bi_private = dip;
6157 bio->bi_end_io = btrfs_end_dio_bio;
6158 atomic_inc(&dip->pending_bios);
6160 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6161 if (unlikely(map_length < submit_len + bvec->bv_len ||
6162 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6163 bvec->bv_offset) < bvec->bv_len)) {
6165 * inc the count before we submit the bio so
6166 * we know the end IO handler won't happen before
6167 * we inc the count. Otherwise, the dip might get freed
6168 * before we're done setting it up
6170 atomic_inc(&dip->pending_bios);
6171 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6172 file_offset, skip_sum,
6173 csums, async_submit);
6176 atomic_dec(&dip->pending_bios);
6180 /* Write's use the ordered csums */
6181 if (!write && !skip_sum)
6182 csums = csums + nr_pages;
6183 start_sector += submit_len >> 9;
6184 file_offset += submit_len;
6189 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6190 start_sector, GFP_NOFS);
6193 bio->bi_private = dip;
6194 bio->bi_end_io = btrfs_end_dio_bio;
6196 map_length = orig_bio->bi_size;
6197 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6198 &map_length, NULL, 0);
6204 submit_len += bvec->bv_len;
6211 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6212 csums, async_submit);
6220 * before atomic variable goto zero, we must
6221 * make sure dip->errors is perceived to be set.
6223 smp_mb__before_atomic_dec();
6224 if (atomic_dec_and_test(&dip->pending_bios))
6225 bio_io_error(dip->orig_bio);
6227 /* bio_end_io() will handle error, so we needn't return it */
6231 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6234 struct btrfs_root *root = BTRFS_I(inode)->root;
6235 struct btrfs_dio_private *dip;
6236 struct bio_vec *bvec = bio->bi_io_vec;
6238 int write = rw & REQ_WRITE;
6241 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6243 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6250 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6251 if (!write && !skip_sum) {
6252 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6260 dip->private = bio->bi_private;
6262 dip->logical_offset = file_offset;
6266 dip->bytes += bvec->bv_len;
6268 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6270 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6271 bio->bi_private = dip;
6273 dip->orig_bio = bio;
6274 atomic_set(&dip->pending_bios, 0);
6277 bio->bi_end_io = btrfs_endio_direct_write;
6279 bio->bi_end_io = btrfs_endio_direct_read;
6281 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6286 * If this is a write, we need to clean up the reserved space and kill
6287 * the ordered extent.
6290 struct btrfs_ordered_extent *ordered;
6291 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6292 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6293 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6294 btrfs_free_reserved_extent(root, ordered->start,
6296 btrfs_put_ordered_extent(ordered);
6297 btrfs_put_ordered_extent(ordered);
6299 bio_endio(bio, ret);
6302 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6303 const struct iovec *iov, loff_t offset,
6304 unsigned long nr_segs)
6310 unsigned blocksize_mask = root->sectorsize - 1;
6311 ssize_t retval = -EINVAL;
6312 loff_t end = offset;
6314 if (offset & blocksize_mask)
6317 /* Check the memory alignment. Blocks cannot straddle pages */
6318 for (seg = 0; seg < nr_segs; seg++) {
6319 addr = (unsigned long)iov[seg].iov_base;
6320 size = iov[seg].iov_len;
6322 if ((addr & blocksize_mask) || (size & blocksize_mask))
6325 /* If this is a write we don't need to check anymore */
6330 * Check to make sure we don't have duplicate iov_base's in this
6331 * iovec, if so return EINVAL, otherwise we'll get csum errors
6332 * when reading back.
6334 for (i = seg + 1; i < nr_segs; i++) {
6335 if (iov[seg].iov_base == iov[i].iov_base)
6343 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6344 const struct iovec *iov, loff_t offset,
6345 unsigned long nr_segs)
6347 struct file *file = iocb->ki_filp;
6348 struct inode *inode = file->f_mapping->host;
6349 struct btrfs_ordered_extent *ordered;
6350 struct extent_state *cached_state = NULL;
6351 u64 lockstart, lockend;
6353 int writing = rw & WRITE;
6355 size_t count = iov_length(iov, nr_segs);
6357 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6363 lockend = offset + count - 1;
6366 ret = btrfs_delalloc_reserve_space(inode, count);
6372 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6375 * We're concerned with the entire range that we're going to be
6376 * doing DIO to, so we need to make sure theres no ordered
6377 * extents in this range.
6379 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6380 lockend - lockstart + 1);
6383 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6384 &cached_state, GFP_NOFS);
6385 btrfs_start_ordered_extent(inode, ordered, 1);
6386 btrfs_put_ordered_extent(ordered);
6391 * we don't use btrfs_set_extent_delalloc because we don't want
6392 * the dirty or uptodate bits
6395 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6396 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6397 EXTENT_DELALLOC, NULL, &cached_state,
6400 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6401 lockend, EXTENT_LOCKED | write_bits,
6402 1, 0, &cached_state, GFP_NOFS);
6407 free_extent_state(cached_state);
6408 cached_state = NULL;
6410 ret = __blockdev_direct_IO(rw, iocb, inode,
6411 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6412 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6413 btrfs_submit_direct, 0);
6415 if (ret < 0 && ret != -EIOCBQUEUED) {
6416 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6417 offset + iov_length(iov, nr_segs) - 1,
6418 EXTENT_LOCKED | write_bits, 1, 0,
6419 &cached_state, GFP_NOFS);
6420 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6422 * We're falling back to buffered, unlock the section we didn't
6425 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6426 offset + iov_length(iov, nr_segs) - 1,
6427 EXTENT_LOCKED | write_bits, 1, 0,
6428 &cached_state, GFP_NOFS);
6431 free_extent_state(cached_state);
6435 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6436 __u64 start, __u64 len)
6438 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6441 int btrfs_readpage(struct file *file, struct page *page)
6443 struct extent_io_tree *tree;
6444 tree = &BTRFS_I(page->mapping->host)->io_tree;
6445 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6448 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6450 struct extent_io_tree *tree;
6453 if (current->flags & PF_MEMALLOC) {
6454 redirty_page_for_writepage(wbc, page);
6458 tree = &BTRFS_I(page->mapping->host)->io_tree;
6459 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6462 int btrfs_writepages(struct address_space *mapping,
6463 struct writeback_control *wbc)
6465 struct extent_io_tree *tree;
6467 tree = &BTRFS_I(mapping->host)->io_tree;
6468 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6472 btrfs_readpages(struct file *file, struct address_space *mapping,
6473 struct list_head *pages, unsigned nr_pages)
6475 struct extent_io_tree *tree;
6476 tree = &BTRFS_I(mapping->host)->io_tree;
6477 return extent_readpages(tree, mapping, pages, nr_pages,
6480 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6482 struct extent_io_tree *tree;
6483 struct extent_map_tree *map;
6486 tree = &BTRFS_I(page->mapping->host)->io_tree;
6487 map = &BTRFS_I(page->mapping->host)->extent_tree;
6488 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6490 ClearPagePrivate(page);
6491 set_page_private(page, 0);
6492 page_cache_release(page);
6497 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6499 if (PageWriteback(page) || PageDirty(page))
6501 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6504 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6506 struct extent_io_tree *tree;
6507 struct btrfs_ordered_extent *ordered;
6508 struct extent_state *cached_state = NULL;
6509 u64 page_start = page_offset(page);
6510 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6514 * we have the page locked, so new writeback can't start,
6515 * and the dirty bit won't be cleared while we are here.
6517 * Wait for IO on this page so that we can safely clear
6518 * the PagePrivate2 bit and do ordered accounting
6520 wait_on_page_writeback(page);
6522 tree = &BTRFS_I(page->mapping->host)->io_tree;
6524 btrfs_releasepage(page, GFP_NOFS);
6527 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6528 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6532 * IO on this page will never be started, so we need
6533 * to account for any ordered extents now
6535 clear_extent_bit(tree, page_start, page_end,
6536 EXTENT_DIRTY | EXTENT_DELALLOC |
6537 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6538 &cached_state, GFP_NOFS);
6540 * whoever cleared the private bit is responsible
6541 * for the finish_ordered_io
6543 if (TestClearPagePrivate2(page)) {
6544 btrfs_finish_ordered_io(page->mapping->host,
6545 page_start, page_end);
6547 btrfs_put_ordered_extent(ordered);
6548 cached_state = NULL;
6549 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6551 clear_extent_bit(tree, page_start, page_end,
6552 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6553 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6554 __btrfs_releasepage(page, GFP_NOFS);
6556 ClearPageChecked(page);
6557 if (PagePrivate(page)) {
6558 ClearPagePrivate(page);
6559 set_page_private(page, 0);
6560 page_cache_release(page);
6565 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6566 * called from a page fault handler when a page is first dirtied. Hence we must
6567 * be careful to check for EOF conditions here. We set the page up correctly
6568 * for a written page which means we get ENOSPC checking when writing into
6569 * holes and correct delalloc and unwritten extent mapping on filesystems that
6570 * support these features.
6572 * We are not allowed to take the i_mutex here so we have to play games to
6573 * protect against truncate races as the page could now be beyond EOF. Because
6574 * vmtruncate() writes the inode size before removing pages, once we have the
6575 * page lock we can determine safely if the page is beyond EOF. If it is not
6576 * beyond EOF, then the page is guaranteed safe against truncation until we
6579 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6581 struct page *page = vmf->page;
6582 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6583 struct btrfs_root *root = BTRFS_I(inode)->root;
6584 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6585 struct btrfs_ordered_extent *ordered;
6586 struct extent_state *cached_state = NULL;
6588 unsigned long zero_start;
6595 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6597 ret = btrfs_update_time(vma->vm_file);
6603 else /* -ENOSPC, -EIO, etc */
6604 ret = VM_FAULT_SIGBUS;
6610 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6613 size = i_size_read(inode);
6614 page_start = page_offset(page);
6615 page_end = page_start + PAGE_CACHE_SIZE - 1;
6617 if ((page->mapping != inode->i_mapping) ||
6618 (page_start >= size)) {
6619 /* page got truncated out from underneath us */
6622 wait_on_page_writeback(page);
6624 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6625 set_page_extent_mapped(page);
6628 * we can't set the delalloc bits if there are pending ordered
6629 * extents. Drop our locks and wait for them to finish
6631 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6633 unlock_extent_cached(io_tree, page_start, page_end,
6634 &cached_state, GFP_NOFS);
6636 btrfs_start_ordered_extent(inode, ordered, 1);
6637 btrfs_put_ordered_extent(ordered);
6642 * XXX - page_mkwrite gets called every time the page is dirtied, even
6643 * if it was already dirty, so for space accounting reasons we need to
6644 * clear any delalloc bits for the range we are fixing to save. There
6645 * is probably a better way to do this, but for now keep consistent with
6646 * prepare_pages in the normal write path.
6648 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6649 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6650 0, 0, &cached_state, GFP_NOFS);
6652 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6655 unlock_extent_cached(io_tree, page_start, page_end,
6656 &cached_state, GFP_NOFS);
6657 ret = VM_FAULT_SIGBUS;
6662 /* page is wholly or partially inside EOF */
6663 if (page_start + PAGE_CACHE_SIZE > size)
6664 zero_start = size & ~PAGE_CACHE_MASK;
6666 zero_start = PAGE_CACHE_SIZE;
6668 if (zero_start != PAGE_CACHE_SIZE) {
6670 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6671 flush_dcache_page(page);
6674 ClearPageChecked(page);
6675 set_page_dirty(page);
6676 SetPageUptodate(page);
6678 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6679 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6681 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6685 return VM_FAULT_LOCKED;
6688 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6693 static int btrfs_truncate(struct inode *inode)
6695 struct btrfs_root *root = BTRFS_I(inode)->root;
6696 struct btrfs_block_rsv *rsv;
6699 struct btrfs_trans_handle *trans;
6701 u64 mask = root->sectorsize - 1;
6702 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6704 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6708 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6709 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6712 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6713 * 3 things going on here
6715 * 1) We need to reserve space for our orphan item and the space to
6716 * delete our orphan item. Lord knows we don't want to have a dangling
6717 * orphan item because we didn't reserve space to remove it.
6719 * 2) We need to reserve space to update our inode.
6721 * 3) We need to have something to cache all the space that is going to
6722 * be free'd up by the truncate operation, but also have some slack
6723 * space reserved in case it uses space during the truncate (thank you
6724 * very much snapshotting).
6726 * And we need these to all be seperate. The fact is we can use alot of
6727 * space doing the truncate, and we have no earthly idea how much space
6728 * we will use, so we need the truncate reservation to be seperate so it
6729 * doesn't end up using space reserved for updating the inode or
6730 * removing the orphan item. We also need to be able to stop the
6731 * transaction and start a new one, which means we need to be able to
6732 * update the inode several times, and we have no idea of knowing how
6733 * many times that will be, so we can't just reserve 1 item for the
6734 * entirety of the opration, so that has to be done seperately as well.
6735 * Then there is the orphan item, which does indeed need to be held on
6736 * to for the whole operation, and we need nobody to touch this reserved
6737 * space except the orphan code.
6739 * So that leaves us with
6741 * 1) root->orphan_block_rsv - for the orphan deletion.
6742 * 2) rsv - for the truncate reservation, which we will steal from the
6743 * transaction reservation.
6744 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6745 * updating the inode.
6747 rsv = btrfs_alloc_block_rsv(root);
6750 rsv->size = min_size;
6753 * 1 for the truncate slack space
6754 * 1 for the orphan item we're going to add
6755 * 1 for the orphan item deletion
6756 * 1 for updating the inode.
6758 trans = btrfs_start_transaction(root, 4);
6759 if (IS_ERR(trans)) {
6760 err = PTR_ERR(trans);
6764 /* Migrate the slack space for the truncate to our reserve */
6765 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6769 ret = btrfs_orphan_add(trans, inode);
6771 btrfs_end_transaction(trans, root);
6776 * setattr is responsible for setting the ordered_data_close flag,
6777 * but that is only tested during the last file release. That
6778 * could happen well after the next commit, leaving a great big
6779 * window where new writes may get lost if someone chooses to write
6780 * to this file after truncating to zero
6782 * The inode doesn't have any dirty data here, and so if we commit
6783 * this is a noop. If someone immediately starts writing to the inode
6784 * it is very likely we'll catch some of their writes in this
6785 * transaction, and the commit will find this file on the ordered
6786 * data list with good things to send down.
6788 * This is a best effort solution, there is still a window where
6789 * using truncate to replace the contents of the file will
6790 * end up with a zero length file after a crash.
6792 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6793 btrfs_add_ordered_operation(trans, root, inode);
6796 ret = btrfs_block_rsv_refill(root, rsv, min_size);
6799 * This can only happen with the original transaction we
6800 * started above, every other time we shouldn't have a
6801 * transaction started yet.
6810 /* Just need the 1 for updating the inode */
6811 trans = btrfs_start_transaction(root, 1);
6812 if (IS_ERR(trans)) {
6813 ret = err = PTR_ERR(trans);
6819 trans->block_rsv = rsv;
6821 ret = btrfs_truncate_inode_items(trans, root, inode,
6823 BTRFS_EXTENT_DATA_KEY);
6824 if (ret != -EAGAIN) {
6829 trans->block_rsv = &root->fs_info->trans_block_rsv;
6830 ret = btrfs_update_inode(trans, root, inode);
6836 nr = trans->blocks_used;
6837 btrfs_end_transaction(trans, root);
6839 btrfs_btree_balance_dirty(root, nr);
6842 if (ret == 0 && inode->i_nlink > 0) {
6843 trans->block_rsv = root->orphan_block_rsv;
6844 ret = btrfs_orphan_del(trans, inode);
6847 } else if (ret && inode->i_nlink > 0) {
6849 * Failed to do the truncate, remove us from the in memory
6852 ret = btrfs_orphan_del(NULL, inode);
6856 trans->block_rsv = &root->fs_info->trans_block_rsv;
6857 ret = btrfs_update_inode(trans, root, inode);
6861 nr = trans->blocks_used;
6862 ret = btrfs_end_transaction(trans, root);
6863 btrfs_btree_balance_dirty(root, nr);
6867 btrfs_free_block_rsv(root, rsv);
6876 * create a new subvolume directory/inode (helper for the ioctl).
6878 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6879 struct btrfs_root *new_root, u64 new_dirid)
6881 struct inode *inode;
6885 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6886 new_dirid, new_dirid,
6887 S_IFDIR | (~current_umask() & S_IRWXUGO),
6890 return PTR_ERR(inode);
6891 inode->i_op = &btrfs_dir_inode_operations;
6892 inode->i_fop = &btrfs_dir_file_operations;
6894 set_nlink(inode, 1);
6895 btrfs_i_size_write(inode, 0);
6897 err = btrfs_update_inode(trans, new_root, inode);
6903 struct inode *btrfs_alloc_inode(struct super_block *sb)
6905 struct btrfs_inode *ei;
6906 struct inode *inode;
6908 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6913 ei->space_info = NULL;
6917 ei->last_sub_trans = 0;
6918 ei->logged_trans = 0;
6919 ei->delalloc_bytes = 0;
6920 ei->disk_i_size = 0;
6923 ei->index_cnt = (u64)-1;
6924 ei->last_unlink_trans = 0;
6926 spin_lock_init(&ei->lock);
6927 ei->outstanding_extents = 0;
6928 ei->reserved_extents = 0;
6930 ei->ordered_data_close = 0;
6931 ei->orphan_meta_reserved = 0;
6932 ei->dummy_inode = 0;
6934 ei->delalloc_meta_reserved = 0;
6935 ei->force_compress = BTRFS_COMPRESS_NONE;
6937 ei->delayed_node = NULL;
6939 inode = &ei->vfs_inode;
6940 extent_map_tree_init(&ei->extent_tree);
6941 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6942 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6943 ei->io_tree.track_uptodate = 1;
6944 ei->io_failure_tree.track_uptodate = 1;
6945 mutex_init(&ei->log_mutex);
6946 mutex_init(&ei->delalloc_mutex);
6947 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6948 INIT_LIST_HEAD(&ei->i_orphan);
6949 INIT_LIST_HEAD(&ei->delalloc_inodes);
6950 INIT_LIST_HEAD(&ei->ordered_operations);
6951 RB_CLEAR_NODE(&ei->rb_node);
6956 static void btrfs_i_callback(struct rcu_head *head)
6958 struct inode *inode = container_of(head, struct inode, i_rcu);
6959 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6962 void btrfs_destroy_inode(struct inode *inode)
6964 struct btrfs_ordered_extent *ordered;
6965 struct btrfs_root *root = BTRFS_I(inode)->root;
6967 WARN_ON(!list_empty(&inode->i_dentry));
6968 WARN_ON(inode->i_data.nrpages);
6969 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6970 WARN_ON(BTRFS_I(inode)->reserved_extents);
6971 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6972 WARN_ON(BTRFS_I(inode)->csum_bytes);
6975 * This can happen where we create an inode, but somebody else also
6976 * created the same inode and we need to destroy the one we already
6983 * Make sure we're properly removed from the ordered operation
6987 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6988 spin_lock(&root->fs_info->ordered_extent_lock);
6989 list_del_init(&BTRFS_I(inode)->ordered_operations);
6990 spin_unlock(&root->fs_info->ordered_extent_lock);
6993 spin_lock(&root->orphan_lock);
6994 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6995 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6996 (unsigned long long)btrfs_ino(inode));
6997 list_del_init(&BTRFS_I(inode)->i_orphan);
6999 spin_unlock(&root->orphan_lock);
7002 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7006 printk(KERN_ERR "btrfs found ordered "
7007 "extent %llu %llu on inode cleanup\n",
7008 (unsigned long long)ordered->file_offset,
7009 (unsigned long long)ordered->len);
7010 btrfs_remove_ordered_extent(inode, ordered);
7011 btrfs_put_ordered_extent(ordered);
7012 btrfs_put_ordered_extent(ordered);
7015 inode_tree_del(inode);
7016 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7018 btrfs_remove_delayed_node(inode);
7019 call_rcu(&inode->i_rcu, btrfs_i_callback);
7022 int btrfs_drop_inode(struct inode *inode)
7024 struct btrfs_root *root = BTRFS_I(inode)->root;
7026 if (btrfs_root_refs(&root->root_item) == 0 &&
7027 !btrfs_is_free_space_inode(root, inode))
7030 return generic_drop_inode(inode);
7033 static void init_once(void *foo)
7035 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7037 inode_init_once(&ei->vfs_inode);
7040 void btrfs_destroy_cachep(void)
7042 if (btrfs_inode_cachep)
7043 kmem_cache_destroy(btrfs_inode_cachep);
7044 if (btrfs_trans_handle_cachep)
7045 kmem_cache_destroy(btrfs_trans_handle_cachep);
7046 if (btrfs_transaction_cachep)
7047 kmem_cache_destroy(btrfs_transaction_cachep);
7048 if (btrfs_path_cachep)
7049 kmem_cache_destroy(btrfs_path_cachep);
7050 if (btrfs_free_space_cachep)
7051 kmem_cache_destroy(btrfs_free_space_cachep);
7054 int btrfs_init_cachep(void)
7056 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7057 sizeof(struct btrfs_inode), 0,
7058 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7059 if (!btrfs_inode_cachep)
7062 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7063 sizeof(struct btrfs_trans_handle), 0,
7064 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7065 if (!btrfs_trans_handle_cachep)
7068 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7069 sizeof(struct btrfs_transaction), 0,
7070 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7071 if (!btrfs_transaction_cachep)
7074 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7075 sizeof(struct btrfs_path), 0,
7076 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7077 if (!btrfs_path_cachep)
7080 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7081 sizeof(struct btrfs_free_space), 0,
7082 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7083 if (!btrfs_free_space_cachep)
7088 btrfs_destroy_cachep();
7092 static int btrfs_getattr(struct vfsmount *mnt,
7093 struct dentry *dentry, struct kstat *stat)
7095 struct inode *inode = dentry->d_inode;
7096 u32 blocksize = inode->i_sb->s_blocksize;
7098 generic_fillattr(inode, stat);
7099 stat->dev = BTRFS_I(inode)->root->anon_dev;
7100 stat->blksize = PAGE_CACHE_SIZE;
7101 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7102 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7107 * If a file is moved, it will inherit the cow and compression flags of the new
7110 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7112 struct btrfs_inode *b_dir = BTRFS_I(dir);
7113 struct btrfs_inode *b_inode = BTRFS_I(inode);
7115 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7116 b_inode->flags |= BTRFS_INODE_NODATACOW;
7118 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7120 if (b_dir->flags & BTRFS_INODE_COMPRESS)
7121 b_inode->flags |= BTRFS_INODE_COMPRESS;
7123 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
7126 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7127 struct inode *new_dir, struct dentry *new_dentry)
7129 struct btrfs_trans_handle *trans;
7130 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7131 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7132 struct inode *new_inode = new_dentry->d_inode;
7133 struct inode *old_inode = old_dentry->d_inode;
7134 struct timespec ctime = CURRENT_TIME;
7138 u64 old_ino = btrfs_ino(old_inode);
7140 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7143 /* we only allow rename subvolume link between subvolumes */
7144 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7147 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7148 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7151 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7152 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7155 * we're using rename to replace one file with another.
7156 * and the replacement file is large. Start IO on it now so
7157 * we don't add too much work to the end of the transaction
7159 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7160 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7161 filemap_flush(old_inode->i_mapping);
7163 /* close the racy window with snapshot create/destroy ioctl */
7164 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7165 down_read(&root->fs_info->subvol_sem);
7167 * We want to reserve the absolute worst case amount of items. So if
7168 * both inodes are subvols and we need to unlink them then that would
7169 * require 4 item modifications, but if they are both normal inodes it
7170 * would require 5 item modifications, so we'll assume their normal
7171 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7172 * should cover the worst case number of items we'll modify.
7174 trans = btrfs_start_transaction(root, 20);
7175 if (IS_ERR(trans)) {
7176 ret = PTR_ERR(trans);
7181 btrfs_record_root_in_trans(trans, dest);
7183 ret = btrfs_set_inode_index(new_dir, &index);
7187 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7188 /* force full log commit if subvolume involved. */
7189 root->fs_info->last_trans_log_full_commit = trans->transid;
7191 ret = btrfs_insert_inode_ref(trans, dest,
7192 new_dentry->d_name.name,
7193 new_dentry->d_name.len,
7195 btrfs_ino(new_dir), index);
7199 * this is an ugly little race, but the rename is required
7200 * to make sure that if we crash, the inode is either at the
7201 * old name or the new one. pinning the log transaction lets
7202 * us make sure we don't allow a log commit to come in after
7203 * we unlink the name but before we add the new name back in.
7205 btrfs_pin_log_trans(root);
7208 * make sure the inode gets flushed if it is replacing
7211 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7212 btrfs_add_ordered_operation(trans, root, old_inode);
7214 old_dir->i_ctime = old_dir->i_mtime = ctime;
7215 new_dir->i_ctime = new_dir->i_mtime = ctime;
7216 old_inode->i_ctime = ctime;
7218 if (old_dentry->d_parent != new_dentry->d_parent)
7219 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7221 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7222 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7223 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7224 old_dentry->d_name.name,
7225 old_dentry->d_name.len);
7227 ret = __btrfs_unlink_inode(trans, root, old_dir,
7228 old_dentry->d_inode,
7229 old_dentry->d_name.name,
7230 old_dentry->d_name.len);
7232 ret = btrfs_update_inode(trans, root, old_inode);
7235 btrfs_abort_transaction(trans, root, ret);
7240 new_inode->i_ctime = CURRENT_TIME;
7241 if (unlikely(btrfs_ino(new_inode) ==
7242 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7243 root_objectid = BTRFS_I(new_inode)->location.objectid;
7244 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7246 new_dentry->d_name.name,
7247 new_dentry->d_name.len);
7248 BUG_ON(new_inode->i_nlink == 0);
7250 ret = btrfs_unlink_inode(trans, dest, new_dir,
7251 new_dentry->d_inode,
7252 new_dentry->d_name.name,
7253 new_dentry->d_name.len);
7255 if (!ret && new_inode->i_nlink == 0) {
7256 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7260 btrfs_abort_transaction(trans, root, ret);
7265 fixup_inode_flags(new_dir, old_inode);
7267 ret = btrfs_add_link(trans, new_dir, old_inode,
7268 new_dentry->d_name.name,
7269 new_dentry->d_name.len, 0, index);
7271 btrfs_abort_transaction(trans, root, ret);
7275 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7276 struct dentry *parent = new_dentry->d_parent;
7277 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7278 btrfs_end_log_trans(root);
7281 btrfs_end_transaction(trans, root);
7283 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7284 up_read(&root->fs_info->subvol_sem);
7290 * some fairly slow code that needs optimization. This walks the list
7291 * of all the inodes with pending delalloc and forces them to disk.
7293 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7295 struct list_head *head = &root->fs_info->delalloc_inodes;
7296 struct btrfs_inode *binode;
7297 struct inode *inode;
7299 if (root->fs_info->sb->s_flags & MS_RDONLY)
7302 spin_lock(&root->fs_info->delalloc_lock);
7303 while (!list_empty(head)) {
7304 binode = list_entry(head->next, struct btrfs_inode,
7306 inode = igrab(&binode->vfs_inode);
7308 list_del_init(&binode->delalloc_inodes);
7309 spin_unlock(&root->fs_info->delalloc_lock);
7311 filemap_flush(inode->i_mapping);
7313 btrfs_add_delayed_iput(inode);
7318 spin_lock(&root->fs_info->delalloc_lock);
7320 spin_unlock(&root->fs_info->delalloc_lock);
7322 /* the filemap_flush will queue IO into the worker threads, but
7323 * we have to make sure the IO is actually started and that
7324 * ordered extents get created before we return
7326 atomic_inc(&root->fs_info->async_submit_draining);
7327 while (atomic_read(&root->fs_info->nr_async_submits) ||
7328 atomic_read(&root->fs_info->async_delalloc_pages)) {
7329 wait_event(root->fs_info->async_submit_wait,
7330 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7331 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7333 atomic_dec(&root->fs_info->async_submit_draining);
7337 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7338 const char *symname)
7340 struct btrfs_trans_handle *trans;
7341 struct btrfs_root *root = BTRFS_I(dir)->root;
7342 struct btrfs_path *path;
7343 struct btrfs_key key;
7344 struct inode *inode = NULL;
7352 struct btrfs_file_extent_item *ei;
7353 struct extent_buffer *leaf;
7354 unsigned long nr = 0;
7356 name_len = strlen(symname) + 1;
7357 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7358 return -ENAMETOOLONG;
7361 * 2 items for inode item and ref
7362 * 2 items for dir items
7363 * 1 item for xattr if selinux is on
7365 trans = btrfs_start_transaction(root, 5);
7367 return PTR_ERR(trans);
7369 err = btrfs_find_free_ino(root, &objectid);
7373 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7374 dentry->d_name.len, btrfs_ino(dir), objectid,
7375 S_IFLNK|S_IRWXUGO, &index);
7376 if (IS_ERR(inode)) {
7377 err = PTR_ERR(inode);
7381 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7388 * If the active LSM wants to access the inode during
7389 * d_instantiate it needs these. Smack checks to see
7390 * if the filesystem supports xattrs by looking at the
7393 inode->i_fop = &btrfs_file_operations;
7394 inode->i_op = &btrfs_file_inode_operations;
7396 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7400 inode->i_mapping->a_ops = &btrfs_aops;
7401 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7402 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7407 path = btrfs_alloc_path();
7413 key.objectid = btrfs_ino(inode);
7415 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7416 datasize = btrfs_file_extent_calc_inline_size(name_len);
7417 err = btrfs_insert_empty_item(trans, root, path, &key,
7421 btrfs_free_path(path);
7424 leaf = path->nodes[0];
7425 ei = btrfs_item_ptr(leaf, path->slots[0],
7426 struct btrfs_file_extent_item);
7427 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7428 btrfs_set_file_extent_type(leaf, ei,
7429 BTRFS_FILE_EXTENT_INLINE);
7430 btrfs_set_file_extent_encryption(leaf, ei, 0);
7431 btrfs_set_file_extent_compression(leaf, ei, 0);
7432 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7433 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7435 ptr = btrfs_file_extent_inline_start(ei);
7436 write_extent_buffer(leaf, symname, ptr, name_len);
7437 btrfs_mark_buffer_dirty(leaf);
7438 btrfs_free_path(path);
7440 inode->i_op = &btrfs_symlink_inode_operations;
7441 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7442 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7443 inode_set_bytes(inode, name_len);
7444 btrfs_i_size_write(inode, name_len - 1);
7445 err = btrfs_update_inode(trans, root, inode);
7451 d_instantiate(dentry, inode);
7452 nr = trans->blocks_used;
7453 btrfs_end_transaction(trans, root);
7455 inode_dec_link_count(inode);
7458 btrfs_btree_balance_dirty(root, nr);
7462 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7463 u64 start, u64 num_bytes, u64 min_size,
7464 loff_t actual_len, u64 *alloc_hint,
7465 struct btrfs_trans_handle *trans)
7467 struct btrfs_root *root = BTRFS_I(inode)->root;
7468 struct btrfs_key ins;
7469 u64 cur_offset = start;
7472 bool own_trans = true;
7476 while (num_bytes > 0) {
7478 trans = btrfs_start_transaction(root, 3);
7479 if (IS_ERR(trans)) {
7480 ret = PTR_ERR(trans);
7485 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7486 0, *alloc_hint, &ins, 1);
7489 btrfs_end_transaction(trans, root);
7493 ret = insert_reserved_file_extent(trans, inode,
7494 cur_offset, ins.objectid,
7495 ins.offset, ins.offset,
7496 ins.offset, 0, 0, 0,
7497 BTRFS_FILE_EXTENT_PREALLOC);
7499 btrfs_abort_transaction(trans, root, ret);
7501 btrfs_end_transaction(trans, root);
7504 btrfs_drop_extent_cache(inode, cur_offset,
7505 cur_offset + ins.offset -1, 0);
7507 num_bytes -= ins.offset;
7508 cur_offset += ins.offset;
7509 *alloc_hint = ins.objectid + ins.offset;
7511 inode->i_ctime = CURRENT_TIME;
7512 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7513 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7514 (actual_len > inode->i_size) &&
7515 (cur_offset > inode->i_size)) {
7516 if (cur_offset > actual_len)
7517 i_size = actual_len;
7519 i_size = cur_offset;
7520 i_size_write(inode, i_size);
7521 btrfs_ordered_update_i_size(inode, i_size, NULL);
7524 ret = btrfs_update_inode(trans, root, inode);
7527 btrfs_abort_transaction(trans, root, ret);
7529 btrfs_end_transaction(trans, root);
7534 btrfs_end_transaction(trans, root);
7539 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7540 u64 start, u64 num_bytes, u64 min_size,
7541 loff_t actual_len, u64 *alloc_hint)
7543 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7544 min_size, actual_len, alloc_hint,
7548 int btrfs_prealloc_file_range_trans(struct inode *inode,
7549 struct btrfs_trans_handle *trans, int mode,
7550 u64 start, u64 num_bytes, u64 min_size,
7551 loff_t actual_len, u64 *alloc_hint)
7553 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7554 min_size, actual_len, alloc_hint, trans);
7557 static int btrfs_set_page_dirty(struct page *page)
7559 return __set_page_dirty_nobuffers(page);
7562 static int btrfs_permission(struct inode *inode, int mask)
7564 struct btrfs_root *root = BTRFS_I(inode)->root;
7565 umode_t mode = inode->i_mode;
7567 if (mask & MAY_WRITE &&
7568 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7569 if (btrfs_root_readonly(root))
7571 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7574 return generic_permission(inode, mask);
7577 static const struct inode_operations btrfs_dir_inode_operations = {
7578 .getattr = btrfs_getattr,
7579 .lookup = btrfs_lookup,
7580 .create = btrfs_create,
7581 .unlink = btrfs_unlink,
7583 .mkdir = btrfs_mkdir,
7584 .rmdir = btrfs_rmdir,
7585 .rename = btrfs_rename,
7586 .symlink = btrfs_symlink,
7587 .setattr = btrfs_setattr,
7588 .mknod = btrfs_mknod,
7589 .setxattr = btrfs_setxattr,
7590 .getxattr = btrfs_getxattr,
7591 .listxattr = btrfs_listxattr,
7592 .removexattr = btrfs_removexattr,
7593 .permission = btrfs_permission,
7594 .get_acl = btrfs_get_acl,
7596 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7597 .lookup = btrfs_lookup,
7598 .permission = btrfs_permission,
7599 .get_acl = btrfs_get_acl,
7602 static const struct file_operations btrfs_dir_file_operations = {
7603 .llseek = generic_file_llseek,
7604 .read = generic_read_dir,
7605 .readdir = btrfs_real_readdir,
7606 .unlocked_ioctl = btrfs_ioctl,
7607 #ifdef CONFIG_COMPAT
7608 .compat_ioctl = btrfs_ioctl,
7610 .release = btrfs_release_file,
7611 .fsync = btrfs_sync_file,
7614 static struct extent_io_ops btrfs_extent_io_ops = {
7615 .fill_delalloc = run_delalloc_range,
7616 .submit_bio_hook = btrfs_submit_bio_hook,
7617 .merge_bio_hook = btrfs_merge_bio_hook,
7618 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7619 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7620 .writepage_start_hook = btrfs_writepage_start_hook,
7621 .set_bit_hook = btrfs_set_bit_hook,
7622 .clear_bit_hook = btrfs_clear_bit_hook,
7623 .merge_extent_hook = btrfs_merge_extent_hook,
7624 .split_extent_hook = btrfs_split_extent_hook,
7628 * btrfs doesn't support the bmap operation because swapfiles
7629 * use bmap to make a mapping of extents in the file. They assume
7630 * these extents won't change over the life of the file and they
7631 * use the bmap result to do IO directly to the drive.
7633 * the btrfs bmap call would return logical addresses that aren't
7634 * suitable for IO and they also will change frequently as COW
7635 * operations happen. So, swapfile + btrfs == corruption.
7637 * For now we're avoiding this by dropping bmap.
7639 static const struct address_space_operations btrfs_aops = {
7640 .readpage = btrfs_readpage,
7641 .writepage = btrfs_writepage,
7642 .writepages = btrfs_writepages,
7643 .readpages = btrfs_readpages,
7644 .direct_IO = btrfs_direct_IO,
7645 .invalidatepage = btrfs_invalidatepage,
7646 .releasepage = btrfs_releasepage,
7647 .set_page_dirty = btrfs_set_page_dirty,
7648 .error_remove_page = generic_error_remove_page,
7651 static const struct address_space_operations btrfs_symlink_aops = {
7652 .readpage = btrfs_readpage,
7653 .writepage = btrfs_writepage,
7654 .invalidatepage = btrfs_invalidatepage,
7655 .releasepage = btrfs_releasepage,
7658 static const struct inode_operations btrfs_file_inode_operations = {
7659 .getattr = btrfs_getattr,
7660 .setattr = btrfs_setattr,
7661 .setxattr = btrfs_setxattr,
7662 .getxattr = btrfs_getxattr,
7663 .listxattr = btrfs_listxattr,
7664 .removexattr = btrfs_removexattr,
7665 .permission = btrfs_permission,
7666 .fiemap = btrfs_fiemap,
7667 .get_acl = btrfs_get_acl,
7669 static const struct inode_operations btrfs_special_inode_operations = {
7670 .getattr = btrfs_getattr,
7671 .setattr = btrfs_setattr,
7672 .permission = btrfs_permission,
7673 .setxattr = btrfs_setxattr,
7674 .getxattr = btrfs_getxattr,
7675 .listxattr = btrfs_listxattr,
7676 .removexattr = btrfs_removexattr,
7677 .get_acl = btrfs_get_acl,
7679 static const struct inode_operations btrfs_symlink_inode_operations = {
7680 .readlink = generic_readlink,
7681 .follow_link = page_follow_link_light,
7682 .put_link = page_put_link,
7683 .getattr = btrfs_getattr,
7684 .setattr = btrfs_setattr,
7685 .permission = btrfs_permission,
7686 .setxattr = btrfs_setxattr,
7687 .getxattr = btrfs_getxattr,
7688 .listxattr = btrfs_listxattr,
7689 .removexattr = btrfs_removexattr,
7690 .get_acl = btrfs_get_acl,
7693 const struct dentry_operations btrfs_dentry_operations = {
7694 .d_delete = btrfs_dentry_delete,
7695 .d_release = btrfs_dentry_release,