1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Red Hat. All rights reserved.
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
18 #include "free-space-cache.h"
19 #include "transaction.h"
21 #include "extent_io.h"
23 #include "space-info.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
28 #include "inode-item.h"
29 #include "accessors.h"
30 #include "file-item.h"
34 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
35 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
36 #define FORCE_EXTENT_THRESHOLD SZ_1M
38 static struct kmem_cache *btrfs_free_space_cachep;
39 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
41 struct btrfs_trim_range {
44 struct list_head list;
47 static int link_free_space(struct btrfs_free_space_ctl *ctl,
48 struct btrfs_free_space *info);
49 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
50 struct btrfs_free_space *info, bool update_stat);
51 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
52 struct btrfs_free_space *bitmap_info, u64 *offset,
53 u64 *bytes, bool for_alloc);
54 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
55 struct btrfs_free_space *bitmap_info);
56 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
57 struct btrfs_free_space *info, u64 offset,
58 u64 bytes, bool update_stats);
60 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
62 struct btrfs_free_space *info;
65 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
66 info = rb_entry(node, struct btrfs_free_space, offset_index);
68 unlink_free_space(ctl, info, true);
69 kmem_cache_free(btrfs_free_space_cachep, info);
71 free_bitmap(ctl, info);
74 cond_resched_lock(&ctl->tree_lock);
78 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
79 struct btrfs_path *path,
82 struct btrfs_fs_info *fs_info = root->fs_info;
84 struct btrfs_key location;
85 struct btrfs_disk_key disk_key;
86 struct btrfs_free_space_header *header;
87 struct extent_buffer *leaf;
88 struct inode *inode = NULL;
92 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100 btrfs_release_path(path);
101 return ERR_PTR(-ENOENT);
104 leaf = path->nodes[0];
105 header = btrfs_item_ptr(leaf, path->slots[0],
106 struct btrfs_free_space_header);
107 btrfs_free_space_key(leaf, header, &disk_key);
108 btrfs_disk_key_to_cpu(&location, &disk_key);
109 btrfs_release_path(path);
112 * We are often under a trans handle at this point, so we need to make
113 * sure NOFS is set to keep us from deadlocking.
115 nofs_flag = memalloc_nofs_save();
116 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
117 btrfs_release_path(path);
118 memalloc_nofs_restore(nofs_flag);
122 mapping_set_gfp_mask(inode->i_mapping,
123 mapping_gfp_constraint(inode->i_mapping,
124 ~(__GFP_FS | __GFP_HIGHMEM)));
129 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
130 struct btrfs_path *path)
132 struct btrfs_fs_info *fs_info = block_group->fs_info;
133 struct inode *inode = NULL;
134 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
136 spin_lock(&block_group->lock);
137 if (block_group->inode)
138 inode = igrab(block_group->inode);
139 spin_unlock(&block_group->lock);
143 inode = __lookup_free_space_inode(fs_info->tree_root, path,
148 spin_lock(&block_group->lock);
149 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
150 btrfs_info(fs_info, "Old style space inode found, converting.");
151 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
152 BTRFS_INODE_NODATACOW;
153 block_group->disk_cache_state = BTRFS_DC_CLEAR;
156 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
157 block_group->inode = igrab(inode);
158 spin_unlock(&block_group->lock);
163 static int __create_free_space_inode(struct btrfs_root *root,
164 struct btrfs_trans_handle *trans,
165 struct btrfs_path *path,
168 struct btrfs_key key;
169 struct btrfs_disk_key disk_key;
170 struct btrfs_free_space_header *header;
171 struct btrfs_inode_item *inode_item;
172 struct extent_buffer *leaf;
173 /* We inline CRCs for the free disk space cache */
174 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
175 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
178 ret = btrfs_insert_empty_inode(trans, root, path, ino);
182 leaf = path->nodes[0];
183 inode_item = btrfs_item_ptr(leaf, path->slots[0],
184 struct btrfs_inode_item);
185 btrfs_item_key(leaf, &disk_key, path->slots[0]);
186 memzero_extent_buffer(leaf, (unsigned long)inode_item,
187 sizeof(*inode_item));
188 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
189 btrfs_set_inode_size(leaf, inode_item, 0);
190 btrfs_set_inode_nbytes(leaf, inode_item, 0);
191 btrfs_set_inode_uid(leaf, inode_item, 0);
192 btrfs_set_inode_gid(leaf, inode_item, 0);
193 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
194 btrfs_set_inode_flags(leaf, inode_item, flags);
195 btrfs_set_inode_nlink(leaf, inode_item, 1);
196 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
197 btrfs_set_inode_block_group(leaf, inode_item, offset);
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_release_path(path);
201 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
204 ret = btrfs_insert_empty_item(trans, root, path, &key,
205 sizeof(struct btrfs_free_space_header));
207 btrfs_release_path(path);
211 leaf = path->nodes[0];
212 header = btrfs_item_ptr(leaf, path->slots[0],
213 struct btrfs_free_space_header);
214 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
215 btrfs_set_free_space_key(leaf, header, &disk_key);
216 btrfs_mark_buffer_dirty(leaf);
217 btrfs_release_path(path);
222 int create_free_space_inode(struct btrfs_trans_handle *trans,
223 struct btrfs_block_group *block_group,
224 struct btrfs_path *path)
229 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
233 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
234 ino, block_group->start);
238 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
239 * handles lookup, otherwise it takes ownership and iputs the inode.
240 * Don't reuse an inode pointer after passing it into this function.
242 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
244 struct btrfs_block_group *block_group)
246 struct btrfs_path *path;
247 struct btrfs_key key;
250 path = btrfs_alloc_path();
255 inode = lookup_free_space_inode(block_group, path);
257 if (PTR_ERR(inode) != -ENOENT)
258 ret = PTR_ERR(inode);
261 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
263 btrfs_add_delayed_iput(BTRFS_I(inode));
267 /* One for the block groups ref */
268 spin_lock(&block_group->lock);
269 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
270 block_group->inode = NULL;
271 spin_unlock(&block_group->lock);
274 spin_unlock(&block_group->lock);
276 /* One for the lookup ref */
277 btrfs_add_delayed_iput(BTRFS_I(inode));
279 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
281 key.offset = block_group->start;
282 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
289 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
291 btrfs_free_path(path);
295 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
296 struct btrfs_block_group *block_group,
297 struct inode *vfs_inode)
299 struct btrfs_truncate_control control = {
300 .inode = BTRFS_I(vfs_inode),
302 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
303 .min_type = BTRFS_EXTENT_DATA_KEY,
304 .clear_extent_range = true,
306 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
307 struct btrfs_root *root = inode->root;
308 struct extent_state *cached_state = NULL;
313 struct btrfs_path *path = btrfs_alloc_path();
320 mutex_lock(&trans->transaction->cache_write_mutex);
321 if (!list_empty(&block_group->io_list)) {
322 list_del_init(&block_group->io_list);
324 btrfs_wait_cache_io(trans, block_group, path);
325 btrfs_put_block_group(block_group);
329 * now that we've truncated the cache away, its no longer
332 spin_lock(&block_group->lock);
333 block_group->disk_cache_state = BTRFS_DC_CLEAR;
334 spin_unlock(&block_group->lock);
335 btrfs_free_path(path);
338 btrfs_i_size_write(inode, 0);
339 truncate_pagecache(vfs_inode, 0);
341 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
342 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
345 * We skip the throttling logic for free space cache inodes, so we don't
346 * need to check for -EAGAIN.
348 ret = btrfs_truncate_inode_items(trans, root, &control);
350 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
351 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
353 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
357 ret = btrfs_update_inode(trans, root, inode);
361 mutex_unlock(&trans->transaction->cache_write_mutex);
363 btrfs_abort_transaction(trans, ret);
368 static void readahead_cache(struct inode *inode)
370 struct file_ra_state ra;
371 unsigned long last_index;
373 file_ra_state_init(&ra, inode->i_mapping);
374 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
376 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
379 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
384 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
386 /* Make sure we can fit our crcs and generation into the first page */
387 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
390 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
392 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
396 io_ctl->num_pages = num_pages;
397 io_ctl->fs_info = btrfs_sb(inode->i_sb);
398 io_ctl->inode = inode;
402 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
404 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
406 kfree(io_ctl->pages);
407 io_ctl->pages = NULL;
410 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
418 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
420 ASSERT(io_ctl->index < io_ctl->num_pages);
421 io_ctl->page = io_ctl->pages[io_ctl->index++];
422 io_ctl->cur = page_address(io_ctl->page);
423 io_ctl->orig = io_ctl->cur;
424 io_ctl->size = PAGE_SIZE;
426 clear_page(io_ctl->cur);
429 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
433 io_ctl_unmap_page(io_ctl);
435 for (i = 0; i < io_ctl->num_pages; i++) {
436 if (io_ctl->pages[i]) {
437 btrfs_page_clear_checked(io_ctl->fs_info,
439 page_offset(io_ctl->pages[i]),
441 unlock_page(io_ctl->pages[i]);
442 put_page(io_ctl->pages[i]);
447 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
450 struct inode *inode = io_ctl->inode;
451 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
454 for (i = 0; i < io_ctl->num_pages; i++) {
457 page = find_or_create_page(inode->i_mapping, i, mask);
459 io_ctl_drop_pages(io_ctl);
463 ret = set_page_extent_mapped(page);
467 io_ctl_drop_pages(io_ctl);
471 io_ctl->pages[i] = page;
472 if (uptodate && !PageUptodate(page)) {
473 btrfs_read_folio(NULL, page_folio(page));
475 if (page->mapping != inode->i_mapping) {
476 btrfs_err(BTRFS_I(inode)->root->fs_info,
477 "free space cache page truncated");
478 io_ctl_drop_pages(io_ctl);
481 if (!PageUptodate(page)) {
482 btrfs_err(BTRFS_I(inode)->root->fs_info,
483 "error reading free space cache");
484 io_ctl_drop_pages(io_ctl);
490 for (i = 0; i < io_ctl->num_pages; i++)
491 clear_page_dirty_for_io(io_ctl->pages[i]);
496 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
498 io_ctl_map_page(io_ctl, 1);
501 * Skip the csum areas. If we don't check crcs then we just have a
502 * 64bit chunk at the front of the first page.
504 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
505 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
507 put_unaligned_le64(generation, io_ctl->cur);
508 io_ctl->cur += sizeof(u64);
511 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
516 * Skip the crc area. If we don't check crcs then we just have a 64bit
517 * chunk at the front of the first page.
519 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
520 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
522 cache_gen = get_unaligned_le64(io_ctl->cur);
523 if (cache_gen != generation) {
524 btrfs_err_rl(io_ctl->fs_info,
525 "space cache generation (%llu) does not match inode (%llu)",
526 cache_gen, generation);
527 io_ctl_unmap_page(io_ctl);
530 io_ctl->cur += sizeof(u64);
534 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
541 offset = sizeof(u32) * io_ctl->num_pages;
543 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
544 btrfs_crc32c_final(crc, (u8 *)&crc);
545 io_ctl_unmap_page(io_ctl);
546 tmp = page_address(io_ctl->pages[0]);
551 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
558 offset = sizeof(u32) * io_ctl->num_pages;
560 tmp = page_address(io_ctl->pages[0]);
564 io_ctl_map_page(io_ctl, 0);
565 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
566 btrfs_crc32c_final(crc, (u8 *)&crc);
568 btrfs_err_rl(io_ctl->fs_info,
569 "csum mismatch on free space cache");
570 io_ctl_unmap_page(io_ctl);
577 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
580 struct btrfs_free_space_entry *entry;
586 put_unaligned_le64(offset, &entry->offset);
587 put_unaligned_le64(bytes, &entry->bytes);
588 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
589 BTRFS_FREE_SPACE_EXTENT;
590 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
591 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
593 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
596 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
598 /* No more pages to map */
599 if (io_ctl->index >= io_ctl->num_pages)
602 /* map the next page */
603 io_ctl_map_page(io_ctl, 1);
607 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
613 * If we aren't at the start of the current page, unmap this one and
614 * map the next one if there is any left.
616 if (io_ctl->cur != io_ctl->orig) {
617 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
618 if (io_ctl->index >= io_ctl->num_pages)
620 io_ctl_map_page(io_ctl, 0);
623 copy_page(io_ctl->cur, bitmap);
624 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
625 if (io_ctl->index < io_ctl->num_pages)
626 io_ctl_map_page(io_ctl, 0);
630 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
633 * If we're not on the boundary we know we've modified the page and we
634 * need to crc the page.
636 if (io_ctl->cur != io_ctl->orig)
637 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
639 io_ctl_unmap_page(io_ctl);
641 while (io_ctl->index < io_ctl->num_pages) {
642 io_ctl_map_page(io_ctl, 1);
643 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
647 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
648 struct btrfs_free_space *entry, u8 *type)
650 struct btrfs_free_space_entry *e;
654 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
660 entry->offset = get_unaligned_le64(&e->offset);
661 entry->bytes = get_unaligned_le64(&e->bytes);
663 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
664 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
666 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
669 io_ctl_unmap_page(io_ctl);
674 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
675 struct btrfs_free_space *entry)
679 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
683 copy_page(entry->bitmap, io_ctl->cur);
684 io_ctl_unmap_page(io_ctl);
689 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
691 struct btrfs_block_group *block_group = ctl->block_group;
695 u64 size = block_group->length;
696 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
697 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
699 max_bitmaps = max_t(u64, max_bitmaps, 1);
701 if (ctl->total_bitmaps > max_bitmaps)
702 btrfs_err(block_group->fs_info,
703 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
704 block_group->start, block_group->length,
705 ctl->total_bitmaps, ctl->unit, max_bitmaps,
707 ASSERT(ctl->total_bitmaps <= max_bitmaps);
710 * We are trying to keep the total amount of memory used per 1GiB of
711 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
712 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
713 * bitmaps, we may end up using more memory than this.
716 max_bytes = MAX_CACHE_BYTES_PER_GIG;
718 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
720 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
723 * we want the extent entry threshold to always be at most 1/2 the max
724 * bytes we can have, or whatever is less than that.
726 extent_bytes = max_bytes - bitmap_bytes;
727 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
729 ctl->extents_thresh =
730 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
733 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
734 struct btrfs_free_space_ctl *ctl,
735 struct btrfs_path *path, u64 offset)
737 struct btrfs_fs_info *fs_info = root->fs_info;
738 struct btrfs_free_space_header *header;
739 struct extent_buffer *leaf;
740 struct btrfs_io_ctl io_ctl;
741 struct btrfs_key key;
742 struct btrfs_free_space *e, *n;
750 /* Nothing in the space cache, goodbye */
751 if (!i_size_read(inode))
754 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762 btrfs_release_path(path);
768 leaf = path->nodes[0];
769 header = btrfs_item_ptr(leaf, path->slots[0],
770 struct btrfs_free_space_header);
771 num_entries = btrfs_free_space_entries(leaf, header);
772 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
773 generation = btrfs_free_space_generation(leaf, header);
774 btrfs_release_path(path);
776 if (!BTRFS_I(inode)->generation) {
778 "the free space cache file (%llu) is invalid, skip it",
783 if (BTRFS_I(inode)->generation != generation) {
785 "free space inode generation (%llu) did not match free space cache generation (%llu)",
786 BTRFS_I(inode)->generation, generation);
793 ret = io_ctl_init(&io_ctl, inode, 0);
797 readahead_cache(inode);
799 ret = io_ctl_prepare_pages(&io_ctl, true);
803 ret = io_ctl_check_crc(&io_ctl, 0);
807 ret = io_ctl_check_generation(&io_ctl, generation);
811 while (num_entries) {
812 e = kmem_cache_zalloc(btrfs_free_space_cachep,
819 ret = io_ctl_read_entry(&io_ctl, e, &type);
821 kmem_cache_free(btrfs_free_space_cachep, e);
827 kmem_cache_free(btrfs_free_space_cachep, e);
831 if (type == BTRFS_FREE_SPACE_EXTENT) {
832 spin_lock(&ctl->tree_lock);
833 ret = link_free_space(ctl, e);
834 spin_unlock(&ctl->tree_lock);
837 "Duplicate entries in free space cache, dumping");
838 kmem_cache_free(btrfs_free_space_cachep, e);
844 e->bitmap = kmem_cache_zalloc(
845 btrfs_free_space_bitmap_cachep, GFP_NOFS);
849 btrfs_free_space_cachep, e);
852 spin_lock(&ctl->tree_lock);
853 ret = link_free_space(ctl, e);
855 spin_unlock(&ctl->tree_lock);
857 "Duplicate entries in free space cache, dumping");
858 kmem_cache_free(btrfs_free_space_cachep, e);
861 ctl->total_bitmaps++;
862 recalculate_thresholds(ctl);
863 spin_unlock(&ctl->tree_lock);
864 list_add_tail(&e->list, &bitmaps);
870 io_ctl_unmap_page(&io_ctl);
873 * We add the bitmaps at the end of the entries in order that
874 * the bitmap entries are added to the cache.
876 list_for_each_entry_safe(e, n, &bitmaps, list) {
877 list_del_init(&e->list);
878 ret = io_ctl_read_bitmap(&io_ctl, e);
883 io_ctl_drop_pages(&io_ctl);
886 io_ctl_free(&io_ctl);
889 io_ctl_drop_pages(&io_ctl);
891 spin_lock(&ctl->tree_lock);
892 __btrfs_remove_free_space_cache(ctl);
893 spin_unlock(&ctl->tree_lock);
897 static int copy_free_space_cache(struct btrfs_block_group *block_group,
898 struct btrfs_free_space_ctl *ctl)
900 struct btrfs_free_space *info;
904 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
905 info = rb_entry(n, struct btrfs_free_space, offset_index);
907 const u64 offset = info->offset;
908 const u64 bytes = info->bytes;
910 unlink_free_space(ctl, info, true);
911 spin_unlock(&ctl->tree_lock);
912 kmem_cache_free(btrfs_free_space_cachep, info);
913 ret = btrfs_add_free_space(block_group, offset, bytes);
914 spin_lock(&ctl->tree_lock);
916 u64 offset = info->offset;
917 u64 bytes = ctl->unit;
919 ret = search_bitmap(ctl, info, &offset, &bytes, false);
921 bitmap_clear_bits(ctl, info, offset, bytes, true);
922 spin_unlock(&ctl->tree_lock);
923 ret = btrfs_add_free_space(block_group, offset,
925 spin_lock(&ctl->tree_lock);
927 free_bitmap(ctl, info);
931 cond_resched_lock(&ctl->tree_lock);
936 static struct lock_class_key btrfs_free_space_inode_key;
938 int load_free_space_cache(struct btrfs_block_group *block_group)
940 struct btrfs_fs_info *fs_info = block_group->fs_info;
941 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
942 struct btrfs_free_space_ctl tmp_ctl = {};
944 struct btrfs_path *path;
947 u64 used = block_group->used;
950 * Because we could potentially discard our loaded free space, we want
951 * to load everything into a temporary structure first, and then if it's
952 * valid copy it all into the actual free space ctl.
954 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
957 * If this block group has been marked to be cleared for one reason or
958 * another then we can't trust the on disk cache, so just return.
960 spin_lock(&block_group->lock);
961 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
962 spin_unlock(&block_group->lock);
965 spin_unlock(&block_group->lock);
967 path = btrfs_alloc_path();
970 path->search_commit_root = 1;
971 path->skip_locking = 1;
974 * We must pass a path with search_commit_root set to btrfs_iget in
975 * order to avoid a deadlock when allocating extents for the tree root.
977 * When we are COWing an extent buffer from the tree root, when looking
978 * for a free extent, at extent-tree.c:find_free_extent(), we can find
979 * block group without its free space cache loaded. When we find one
980 * we must load its space cache which requires reading its free space
981 * cache's inode item from the root tree. If this inode item is located
982 * in the same leaf that we started COWing before, then we end up in
983 * deadlock on the extent buffer (trying to read lock it when we
984 * previously write locked it).
986 * It's safe to read the inode item using the commit root because
987 * block groups, once loaded, stay in memory forever (until they are
988 * removed) as well as their space caches once loaded. New block groups
989 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
990 * we will never try to read their inode item while the fs is mounted.
992 inode = lookup_free_space_inode(block_group, path);
994 btrfs_free_path(path);
998 /* We may have converted the inode and made the cache invalid. */
999 spin_lock(&block_group->lock);
1000 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1001 spin_unlock(&block_group->lock);
1002 btrfs_free_path(path);
1005 spin_unlock(&block_group->lock);
1008 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1009 * free space inodes to prevent false positives related to locks for normal
1012 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1013 &btrfs_free_space_inode_key);
1015 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1016 path, block_group->start);
1017 btrfs_free_path(path);
1021 matched = (tmp_ctl.free_space == (block_group->length - used -
1022 block_group->bytes_super));
1025 spin_lock(&tmp_ctl.tree_lock);
1026 ret = copy_free_space_cache(block_group, &tmp_ctl);
1027 spin_unlock(&tmp_ctl.tree_lock);
1029 * ret == 1 means we successfully loaded the free space cache,
1030 * so we need to re-set it here.
1036 * We need to call the _locked variant so we don't try to update
1037 * the discard counters.
1039 spin_lock(&tmp_ctl.tree_lock);
1040 __btrfs_remove_free_space_cache(&tmp_ctl);
1041 spin_unlock(&tmp_ctl.tree_lock);
1043 "block group %llu has wrong amount of free space",
1044 block_group->start);
1049 /* This cache is bogus, make sure it gets cleared */
1050 spin_lock(&block_group->lock);
1051 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1052 spin_unlock(&block_group->lock);
1056 "failed to load free space cache for block group %llu, rebuilding it now",
1057 block_group->start);
1060 spin_lock(&ctl->tree_lock);
1061 btrfs_discard_update_discardable(block_group);
1062 spin_unlock(&ctl->tree_lock);
1067 static noinline_for_stack
1068 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1069 struct btrfs_free_space_ctl *ctl,
1070 struct btrfs_block_group *block_group,
1071 int *entries, int *bitmaps,
1072 struct list_head *bitmap_list)
1075 struct btrfs_free_cluster *cluster = NULL;
1076 struct btrfs_free_cluster *cluster_locked = NULL;
1077 struct rb_node *node = rb_first(&ctl->free_space_offset);
1078 struct btrfs_trim_range *trim_entry;
1080 /* Get the cluster for this block_group if it exists */
1081 if (block_group && !list_empty(&block_group->cluster_list)) {
1082 cluster = list_entry(block_group->cluster_list.next,
1083 struct btrfs_free_cluster,
1087 if (!node && cluster) {
1088 cluster_locked = cluster;
1089 spin_lock(&cluster_locked->lock);
1090 node = rb_first(&cluster->root);
1094 /* Write out the extent entries */
1096 struct btrfs_free_space *e;
1098 e = rb_entry(node, struct btrfs_free_space, offset_index);
1101 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1107 list_add_tail(&e->list, bitmap_list);
1110 node = rb_next(node);
1111 if (!node && cluster) {
1112 node = rb_first(&cluster->root);
1113 cluster_locked = cluster;
1114 spin_lock(&cluster_locked->lock);
1118 if (cluster_locked) {
1119 spin_unlock(&cluster_locked->lock);
1120 cluster_locked = NULL;
1124 * Make sure we don't miss any range that was removed from our rbtree
1125 * because trimming is running. Otherwise after a umount+mount (or crash
1126 * after committing the transaction) we would leak free space and get
1127 * an inconsistent free space cache report from fsck.
1129 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1130 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1131 trim_entry->bytes, NULL);
1140 spin_unlock(&cluster_locked->lock);
1144 static noinline_for_stack int
1145 update_cache_item(struct btrfs_trans_handle *trans,
1146 struct btrfs_root *root,
1147 struct inode *inode,
1148 struct btrfs_path *path, u64 offset,
1149 int entries, int bitmaps)
1151 struct btrfs_key key;
1152 struct btrfs_free_space_header *header;
1153 struct extent_buffer *leaf;
1156 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1157 key.offset = offset;
1160 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1162 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1163 EXTENT_DELALLOC, NULL);
1166 leaf = path->nodes[0];
1168 struct btrfs_key found_key;
1169 ASSERT(path->slots[0]);
1171 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1172 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1173 found_key.offset != offset) {
1174 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1175 inode->i_size - 1, EXTENT_DELALLOC,
1177 btrfs_release_path(path);
1182 BTRFS_I(inode)->generation = trans->transid;
1183 header = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_free_space_header);
1185 btrfs_set_free_space_entries(leaf, header, entries);
1186 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1187 btrfs_set_free_space_generation(leaf, header, trans->transid);
1188 btrfs_mark_buffer_dirty(leaf);
1189 btrfs_release_path(path);
1197 static noinline_for_stack int write_pinned_extent_entries(
1198 struct btrfs_trans_handle *trans,
1199 struct btrfs_block_group *block_group,
1200 struct btrfs_io_ctl *io_ctl,
1203 u64 start, extent_start, extent_end, len;
1204 struct extent_io_tree *unpin = NULL;
1211 * We want to add any pinned extents to our free space cache
1212 * so we don't leak the space
1214 * We shouldn't have switched the pinned extents yet so this is the
1217 unpin = &trans->transaction->pinned_extents;
1219 start = block_group->start;
1221 while (start < block_group->start + block_group->length) {
1222 ret = find_first_extent_bit(unpin, start,
1223 &extent_start, &extent_end,
1224 EXTENT_DIRTY, NULL);
1228 /* This pinned extent is out of our range */
1229 if (extent_start >= block_group->start + block_group->length)
1232 extent_start = max(extent_start, start);
1233 extent_end = min(block_group->start + block_group->length,
1235 len = extent_end - extent_start;
1238 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1248 static noinline_for_stack int
1249 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1251 struct btrfs_free_space *entry, *next;
1254 /* Write out the bitmaps */
1255 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1256 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1259 list_del_init(&entry->list);
1265 static int flush_dirty_cache(struct inode *inode)
1269 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1271 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1272 EXTENT_DELALLOC, NULL);
1277 static void noinline_for_stack
1278 cleanup_bitmap_list(struct list_head *bitmap_list)
1280 struct btrfs_free_space *entry, *next;
1282 list_for_each_entry_safe(entry, next, bitmap_list, list)
1283 list_del_init(&entry->list);
1286 static void noinline_for_stack
1287 cleanup_write_cache_enospc(struct inode *inode,
1288 struct btrfs_io_ctl *io_ctl,
1289 struct extent_state **cached_state)
1291 io_ctl_drop_pages(io_ctl);
1292 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1296 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1297 struct btrfs_trans_handle *trans,
1298 struct btrfs_block_group *block_group,
1299 struct btrfs_io_ctl *io_ctl,
1300 struct btrfs_path *path, u64 offset)
1303 struct inode *inode = io_ctl->inode;
1308 /* Flush the dirty pages in the cache file. */
1309 ret = flush_dirty_cache(inode);
1313 /* Update the cache item to tell everyone this cache file is valid. */
1314 ret = update_cache_item(trans, root, inode, path, offset,
1315 io_ctl->entries, io_ctl->bitmaps);
1318 invalidate_inode_pages2(inode->i_mapping);
1319 BTRFS_I(inode)->generation = 0;
1321 btrfs_debug(root->fs_info,
1322 "failed to write free space cache for block group %llu error %d",
1323 block_group->start, ret);
1325 btrfs_update_inode(trans, root, BTRFS_I(inode));
1328 /* the dirty list is protected by the dirty_bgs_lock */
1329 spin_lock(&trans->transaction->dirty_bgs_lock);
1331 /* the disk_cache_state is protected by the block group lock */
1332 spin_lock(&block_group->lock);
1335 * only mark this as written if we didn't get put back on
1336 * the dirty list while waiting for IO. Otherwise our
1337 * cache state won't be right, and we won't get written again
1339 if (!ret && list_empty(&block_group->dirty_list))
1340 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1342 block_group->disk_cache_state = BTRFS_DC_ERROR;
1344 spin_unlock(&block_group->lock);
1345 spin_unlock(&trans->transaction->dirty_bgs_lock);
1346 io_ctl->inode = NULL;
1354 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1355 struct btrfs_block_group *block_group,
1356 struct btrfs_path *path)
1358 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1359 block_group, &block_group->io_ctl,
1360 path, block_group->start);
1364 * Write out cached info to an inode.
1366 * @root: root the inode belongs to
1367 * @inode: freespace inode we are writing out
1368 * @ctl: free space cache we are going to write out
1369 * @block_group: block_group for this cache if it belongs to a block_group
1370 * @io_ctl: holds context for the io
1371 * @trans: the trans handle
1373 * This function writes out a free space cache struct to disk for quick recovery
1374 * on mount. This will return 0 if it was successful in writing the cache out,
1375 * or an errno if it was not.
1377 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1378 struct btrfs_free_space_ctl *ctl,
1379 struct btrfs_block_group *block_group,
1380 struct btrfs_io_ctl *io_ctl,
1381 struct btrfs_trans_handle *trans)
1383 struct extent_state *cached_state = NULL;
1384 LIST_HEAD(bitmap_list);
1390 if (!i_size_read(inode))
1393 WARN_ON(io_ctl->pages);
1394 ret = io_ctl_init(io_ctl, inode, 1);
1398 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1399 down_write(&block_group->data_rwsem);
1400 spin_lock(&block_group->lock);
1401 if (block_group->delalloc_bytes) {
1402 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1403 spin_unlock(&block_group->lock);
1404 up_write(&block_group->data_rwsem);
1405 BTRFS_I(inode)->generation = 0;
1410 spin_unlock(&block_group->lock);
1413 /* Lock all pages first so we can lock the extent safely. */
1414 ret = io_ctl_prepare_pages(io_ctl, false);
1418 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1421 io_ctl_set_generation(io_ctl, trans->transid);
1423 mutex_lock(&ctl->cache_writeout_mutex);
1424 /* Write out the extent entries in the free space cache */
1425 spin_lock(&ctl->tree_lock);
1426 ret = write_cache_extent_entries(io_ctl, ctl,
1427 block_group, &entries, &bitmaps,
1430 goto out_nospc_locked;
1433 * Some spaces that are freed in the current transaction are pinned,
1434 * they will be added into free space cache after the transaction is
1435 * committed, we shouldn't lose them.
1437 * If this changes while we are working we'll get added back to
1438 * the dirty list and redo it. No locking needed
1440 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1442 goto out_nospc_locked;
1445 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1446 * locked while doing it because a concurrent trim can be manipulating
1447 * or freeing the bitmap.
1449 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1450 spin_unlock(&ctl->tree_lock);
1451 mutex_unlock(&ctl->cache_writeout_mutex);
1455 /* Zero out the rest of the pages just to make sure */
1456 io_ctl_zero_remaining_pages(io_ctl);
1458 /* Everything is written out, now we dirty the pages in the file. */
1459 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1460 io_ctl->num_pages, 0, i_size_read(inode),
1461 &cached_state, false);
1465 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1466 up_write(&block_group->data_rwsem);
1468 * Release the pages and unlock the extent, we will flush
1471 io_ctl_drop_pages(io_ctl);
1472 io_ctl_free(io_ctl);
1474 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1478 * at this point the pages are under IO and we're happy,
1479 * The caller is responsible for waiting on them and updating
1480 * the cache and the inode
1482 io_ctl->entries = entries;
1483 io_ctl->bitmaps = bitmaps;
1485 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1492 cleanup_bitmap_list(&bitmap_list);
1493 spin_unlock(&ctl->tree_lock);
1494 mutex_unlock(&ctl->cache_writeout_mutex);
1497 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1500 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1501 up_write(&block_group->data_rwsem);
1504 io_ctl->inode = NULL;
1505 io_ctl_free(io_ctl);
1507 invalidate_inode_pages2(inode->i_mapping);
1508 BTRFS_I(inode)->generation = 0;
1510 btrfs_update_inode(trans, root, BTRFS_I(inode));
1516 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1517 struct btrfs_block_group *block_group,
1518 struct btrfs_path *path)
1520 struct btrfs_fs_info *fs_info = trans->fs_info;
1521 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1522 struct inode *inode;
1525 spin_lock(&block_group->lock);
1526 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1527 spin_unlock(&block_group->lock);
1530 spin_unlock(&block_group->lock);
1532 inode = lookup_free_space_inode(block_group, path);
1536 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1537 block_group, &block_group->io_ctl, trans);
1539 btrfs_debug(fs_info,
1540 "failed to write free space cache for block group %llu error %d",
1541 block_group->start, ret);
1542 spin_lock(&block_group->lock);
1543 block_group->disk_cache_state = BTRFS_DC_ERROR;
1544 spin_unlock(&block_group->lock);
1546 block_group->io_ctl.inode = NULL;
1551 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1552 * to wait for IO and put the inode
1558 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1561 ASSERT(offset >= bitmap_start);
1562 offset -= bitmap_start;
1563 return (unsigned long)(div_u64(offset, unit));
1566 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1568 return (unsigned long)(div_u64(bytes, unit));
1571 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1575 u64 bytes_per_bitmap;
1577 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1578 bitmap_start = offset - ctl->start;
1579 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1580 bitmap_start *= bytes_per_bitmap;
1581 bitmap_start += ctl->start;
1583 return bitmap_start;
1586 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1587 struct btrfs_free_cluster *cluster,
1588 struct btrfs_free_space *new_entry)
1590 struct rb_root *root;
1592 struct rb_node *parent = NULL;
1594 lockdep_assert_held(&ctl->tree_lock);
1597 lockdep_assert_held(&cluster->lock);
1598 root = &cluster->root;
1600 root = &ctl->free_space_offset;
1606 struct btrfs_free_space *info;
1609 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1611 if (new_entry->offset < info->offset) {
1613 } else if (new_entry->offset > info->offset) {
1614 p = &(*p)->rb_right;
1617 * we could have a bitmap entry and an extent entry
1618 * share the same offset. If this is the case, we want
1619 * the extent entry to always be found first if we do a
1620 * linear search through the tree, since we want to have
1621 * the quickest allocation time, and allocating from an
1622 * extent is faster than allocating from a bitmap. So
1623 * if we're inserting a bitmap and we find an entry at
1624 * this offset, we want to go right, or after this entry
1625 * logically. If we are inserting an extent and we've
1626 * found a bitmap, we want to go left, or before
1629 if (new_entry->bitmap) {
1634 p = &(*p)->rb_right;
1636 if (!info->bitmap) {
1645 rb_link_node(&new_entry->offset_index, parent, p);
1646 rb_insert_color(&new_entry->offset_index, root);
1652 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1653 * searched through the bitmap and figured out the largest ->max_extent_size,
1654 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1655 * allocator the wrong thing, we want to use the actual real max_extent_size
1656 * we've found already if it's larger, or we want to use ->bytes.
1658 * This matters because find_free_space() will skip entries who's ->bytes is
1659 * less than the required bytes. So if we didn't search down this bitmap, we
1660 * may pick some previous entry that has a smaller ->max_extent_size than we
1661 * have. For example, assume we have two entries, one that has
1662 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1663 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1664 * call into find_free_space(), and return with max_extent_size == 4K, because
1665 * that first bitmap entry had ->max_extent_size set, but the second one did
1666 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1667 * 8K contiguous range.
1669 * Consider the other case, we have 2 8K chunks in that second entry and still
1670 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1671 * allocator comes in it'll fully search our second bitmap, and this time it'll
1672 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1673 * right allocation the next loop through.
1675 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1677 if (entry->bitmap && entry->max_extent_size)
1678 return entry->max_extent_size;
1679 return entry->bytes;
1683 * We want the largest entry to be leftmost, so this is inverted from what you'd
1686 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1688 const struct btrfs_free_space *entry, *exist;
1690 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1691 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1692 return get_max_extent_size(exist) < get_max_extent_size(entry);
1696 * searches the tree for the given offset.
1698 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1699 * want a section that has at least bytes size and comes at or after the given
1702 static struct btrfs_free_space *
1703 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1704 u64 offset, int bitmap_only, int fuzzy)
1706 struct rb_node *n = ctl->free_space_offset.rb_node;
1707 struct btrfs_free_space *entry = NULL, *prev = NULL;
1709 lockdep_assert_held(&ctl->tree_lock);
1711 /* find entry that is closest to the 'offset' */
1713 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1716 if (offset < entry->offset)
1718 else if (offset > entry->offset)
1733 * bitmap entry and extent entry may share same offset,
1734 * in that case, bitmap entry comes after extent entry.
1739 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1740 if (entry->offset != offset)
1743 WARN_ON(!entry->bitmap);
1746 if (entry->bitmap) {
1748 * if previous extent entry covers the offset,
1749 * we should return it instead of the bitmap entry
1751 n = rb_prev(&entry->offset_index);
1753 prev = rb_entry(n, struct btrfs_free_space,
1755 if (!prev->bitmap &&
1756 prev->offset + prev->bytes > offset)
1766 /* find last entry before the 'offset' */
1768 if (entry->offset > offset) {
1769 n = rb_prev(&entry->offset_index);
1771 entry = rb_entry(n, struct btrfs_free_space,
1773 ASSERT(entry->offset <= offset);
1782 if (entry->bitmap) {
1783 n = rb_prev(&entry->offset_index);
1785 prev = rb_entry(n, struct btrfs_free_space,
1787 if (!prev->bitmap &&
1788 prev->offset + prev->bytes > offset)
1791 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1793 } else if (entry->offset + entry->bytes > offset)
1800 n = rb_next(&entry->offset_index);
1803 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1804 if (entry->bitmap) {
1805 if (entry->offset + BITS_PER_BITMAP *
1809 if (entry->offset + entry->bytes > offset)
1816 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1817 struct btrfs_free_space *info,
1820 lockdep_assert_held(&ctl->tree_lock);
1822 rb_erase(&info->offset_index, &ctl->free_space_offset);
1823 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1824 ctl->free_extents--;
1826 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1827 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1828 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1832 ctl->free_space -= info->bytes;
1835 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1836 struct btrfs_free_space *info)
1840 lockdep_assert_held(&ctl->tree_lock);
1842 ASSERT(info->bytes || info->bitmap);
1843 ret = tree_insert_offset(ctl, NULL, info);
1847 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1849 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1850 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1851 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1854 ctl->free_space += info->bytes;
1855 ctl->free_extents++;
1859 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1860 struct btrfs_free_space *info)
1862 ASSERT(info->bitmap);
1865 * If our entry is empty it's because we're on a cluster and we don't
1866 * want to re-link it into our ctl bytes index.
1868 if (RB_EMPTY_NODE(&info->bytes_index))
1871 lockdep_assert_held(&ctl->tree_lock);
1873 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1874 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1877 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1878 struct btrfs_free_space *info,
1879 u64 offset, u64 bytes, bool update_stat)
1881 unsigned long start, count, end;
1882 int extent_delta = -1;
1884 start = offset_to_bit(info->offset, ctl->unit, offset);
1885 count = bytes_to_bits(bytes, ctl->unit);
1886 end = start + count;
1887 ASSERT(end <= BITS_PER_BITMAP);
1889 bitmap_clear(info->bitmap, start, count);
1891 info->bytes -= bytes;
1892 if (info->max_extent_size > ctl->unit)
1893 info->max_extent_size = 0;
1895 relink_bitmap_entry(ctl, info);
1897 if (start && test_bit(start - 1, info->bitmap))
1900 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1903 info->bitmap_extents += extent_delta;
1904 if (!btrfs_free_space_trimmed(info)) {
1905 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1906 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1910 ctl->free_space -= bytes;
1913 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1914 struct btrfs_free_space *info, u64 offset,
1917 unsigned long start, count, end;
1918 int extent_delta = 1;
1920 start = offset_to_bit(info->offset, ctl->unit, offset);
1921 count = bytes_to_bits(bytes, ctl->unit);
1922 end = start + count;
1923 ASSERT(end <= BITS_PER_BITMAP);
1925 bitmap_set(info->bitmap, start, count);
1928 * We set some bytes, we have no idea what the max extent size is
1931 info->max_extent_size = 0;
1932 info->bytes += bytes;
1933 ctl->free_space += bytes;
1935 relink_bitmap_entry(ctl, info);
1937 if (start && test_bit(start - 1, info->bitmap))
1940 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1943 info->bitmap_extents += extent_delta;
1944 if (!btrfs_free_space_trimmed(info)) {
1945 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1946 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1951 * If we can not find suitable extent, we will use bytes to record
1952 * the size of the max extent.
1954 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1955 struct btrfs_free_space *bitmap_info, u64 *offset,
1956 u64 *bytes, bool for_alloc)
1958 unsigned long found_bits = 0;
1959 unsigned long max_bits = 0;
1960 unsigned long bits, i;
1961 unsigned long next_zero;
1962 unsigned long extent_bits;
1965 * Skip searching the bitmap if we don't have a contiguous section that
1966 * is large enough for this allocation.
1969 bitmap_info->max_extent_size &&
1970 bitmap_info->max_extent_size < *bytes) {
1971 *bytes = bitmap_info->max_extent_size;
1975 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1976 max_t(u64, *offset, bitmap_info->offset));
1977 bits = bytes_to_bits(*bytes, ctl->unit);
1979 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1980 if (for_alloc && bits == 1) {
1984 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1985 BITS_PER_BITMAP, i);
1986 extent_bits = next_zero - i;
1987 if (extent_bits >= bits) {
1988 found_bits = extent_bits;
1990 } else if (extent_bits > max_bits) {
1991 max_bits = extent_bits;
1997 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1998 *bytes = (u64)(found_bits) * ctl->unit;
2002 *bytes = (u64)(max_bits) * ctl->unit;
2003 bitmap_info->max_extent_size = *bytes;
2004 relink_bitmap_entry(ctl, bitmap_info);
2008 /* Cache the size of the max extent in bytes */
2009 static struct btrfs_free_space *
2010 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2011 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2013 struct btrfs_free_space *entry;
2014 struct rb_node *node;
2019 if (!ctl->free_space_offset.rb_node)
2022 if (use_bytes_index) {
2023 node = rb_first_cached(&ctl->free_space_bytes);
2025 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2029 node = &entry->offset_index;
2032 for (; node; node = rb_next(node)) {
2033 if (use_bytes_index)
2034 entry = rb_entry(node, struct btrfs_free_space,
2037 entry = rb_entry(node, struct btrfs_free_space,
2041 * If we are using the bytes index then all subsequent entries
2042 * in this tree are going to be < bytes, so simply set the max
2043 * extent size and exit the loop.
2045 * If we're using the offset index then we need to keep going
2046 * through the rest of the tree.
2048 if (entry->bytes < *bytes) {
2049 *max_extent_size = max(get_max_extent_size(entry),
2051 if (use_bytes_index)
2056 /* make sure the space returned is big enough
2057 * to match our requested alignment
2059 if (*bytes >= align) {
2060 tmp = entry->offset - ctl->start + align - 1;
2061 tmp = div64_u64(tmp, align);
2062 tmp = tmp * align + ctl->start;
2063 align_off = tmp - entry->offset;
2066 tmp = entry->offset;
2070 * We don't break here if we're using the bytes index because we
2071 * may have another entry that has the correct alignment that is
2072 * the right size, so we don't want to miss that possibility.
2073 * At worst this adds another loop through the logic, but if we
2074 * broke here we could prematurely ENOSPC.
2076 if (entry->bytes < *bytes + align_off) {
2077 *max_extent_size = max(get_max_extent_size(entry),
2082 if (entry->bitmap) {
2083 struct rb_node *old_next = rb_next(node);
2086 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2093 max(get_max_extent_size(entry),
2098 * The bitmap may have gotten re-arranged in the space
2099 * index here because the max_extent_size may have been
2100 * updated. Start from the beginning again if this
2103 if (use_bytes_index && old_next != rb_next(node))
2109 *bytes = entry->bytes - align_off;
2116 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2117 struct btrfs_free_space *info, u64 offset)
2119 info->offset = offset_to_bitmap(ctl, offset);
2121 info->bitmap_extents = 0;
2122 INIT_LIST_HEAD(&info->list);
2123 link_free_space(ctl, info);
2124 ctl->total_bitmaps++;
2125 recalculate_thresholds(ctl);
2128 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2129 struct btrfs_free_space *bitmap_info)
2132 * Normally when this is called, the bitmap is completely empty. However,
2133 * if we are blowing up the free space cache for one reason or another
2134 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2135 * we may leave stats on the table.
2137 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2138 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2139 bitmap_info->bitmap_extents;
2140 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2143 unlink_free_space(ctl, bitmap_info, true);
2144 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2145 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2146 ctl->total_bitmaps--;
2147 recalculate_thresholds(ctl);
2150 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2151 struct btrfs_free_space *bitmap_info,
2152 u64 *offset, u64 *bytes)
2155 u64 search_start, search_bytes;
2159 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2162 * We need to search for bits in this bitmap. We could only cover some
2163 * of the extent in this bitmap thanks to how we add space, so we need
2164 * to search for as much as it as we can and clear that amount, and then
2165 * go searching for the next bit.
2167 search_start = *offset;
2168 search_bytes = ctl->unit;
2169 search_bytes = min(search_bytes, end - search_start + 1);
2170 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2172 if (ret < 0 || search_start != *offset)
2175 /* We may have found more bits than what we need */
2176 search_bytes = min(search_bytes, *bytes);
2178 /* Cannot clear past the end of the bitmap */
2179 search_bytes = min(search_bytes, end - search_start + 1);
2181 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2182 *offset += search_bytes;
2183 *bytes -= search_bytes;
2186 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2187 if (!bitmap_info->bytes)
2188 free_bitmap(ctl, bitmap_info);
2191 * no entry after this bitmap, but we still have bytes to
2192 * remove, so something has gone wrong.
2197 bitmap_info = rb_entry(next, struct btrfs_free_space,
2201 * if the next entry isn't a bitmap we need to return to let the
2202 * extent stuff do its work.
2204 if (!bitmap_info->bitmap)
2208 * Ok the next item is a bitmap, but it may not actually hold
2209 * the information for the rest of this free space stuff, so
2210 * look for it, and if we don't find it return so we can try
2211 * everything over again.
2213 search_start = *offset;
2214 search_bytes = ctl->unit;
2215 ret = search_bitmap(ctl, bitmap_info, &search_start,
2216 &search_bytes, false);
2217 if (ret < 0 || search_start != *offset)
2221 } else if (!bitmap_info->bytes)
2222 free_bitmap(ctl, bitmap_info);
2227 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2228 struct btrfs_free_space *info, u64 offset,
2229 u64 bytes, enum btrfs_trim_state trim_state)
2231 u64 bytes_to_set = 0;
2235 * This is a tradeoff to make bitmap trim state minimal. We mark the
2236 * whole bitmap untrimmed if at any point we add untrimmed regions.
2238 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2239 if (btrfs_free_space_trimmed(info)) {
2240 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2241 info->bitmap_extents;
2242 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2244 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2247 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2249 bytes_to_set = min(end - offset, bytes);
2251 bitmap_set_bits(ctl, info, offset, bytes_to_set);
2253 return bytes_to_set;
2257 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2258 struct btrfs_free_space *info)
2260 struct btrfs_block_group *block_group = ctl->block_group;
2261 struct btrfs_fs_info *fs_info = block_group->fs_info;
2262 bool forced = false;
2264 #ifdef CONFIG_BTRFS_DEBUG
2265 if (btrfs_should_fragment_free_space(block_group))
2269 /* This is a way to reclaim large regions from the bitmaps. */
2270 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2274 * If we are below the extents threshold then we can add this as an
2275 * extent, and don't have to deal with the bitmap
2277 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2279 * If this block group has some small extents we don't want to
2280 * use up all of our free slots in the cache with them, we want
2281 * to reserve them to larger extents, however if we have plenty
2282 * of cache left then go ahead an dadd them, no sense in adding
2283 * the overhead of a bitmap if we don't have to.
2285 if (info->bytes <= fs_info->sectorsize * 8) {
2286 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2294 * The original block groups from mkfs can be really small, like 8
2295 * megabytes, so don't bother with a bitmap for those entries. However
2296 * some block groups can be smaller than what a bitmap would cover but
2297 * are still large enough that they could overflow the 32k memory limit,
2298 * so allow those block groups to still be allowed to have a bitmap
2301 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2307 static const struct btrfs_free_space_op free_space_op = {
2308 .use_bitmap = use_bitmap,
2311 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2312 struct btrfs_free_space *info)
2314 struct btrfs_free_space *bitmap_info;
2315 struct btrfs_block_group *block_group = NULL;
2317 u64 bytes, offset, bytes_added;
2318 enum btrfs_trim_state trim_state;
2321 bytes = info->bytes;
2322 offset = info->offset;
2323 trim_state = info->trim_state;
2325 if (!ctl->op->use_bitmap(ctl, info))
2328 if (ctl->op == &free_space_op)
2329 block_group = ctl->block_group;
2332 * Since we link bitmaps right into the cluster we need to see if we
2333 * have a cluster here, and if so and it has our bitmap we need to add
2334 * the free space to that bitmap.
2336 if (block_group && !list_empty(&block_group->cluster_list)) {
2337 struct btrfs_free_cluster *cluster;
2338 struct rb_node *node;
2339 struct btrfs_free_space *entry;
2341 cluster = list_entry(block_group->cluster_list.next,
2342 struct btrfs_free_cluster,
2344 spin_lock(&cluster->lock);
2345 node = rb_first(&cluster->root);
2347 spin_unlock(&cluster->lock);
2348 goto no_cluster_bitmap;
2351 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2352 if (!entry->bitmap) {
2353 spin_unlock(&cluster->lock);
2354 goto no_cluster_bitmap;
2357 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2358 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2360 bytes -= bytes_added;
2361 offset += bytes_added;
2363 spin_unlock(&cluster->lock);
2371 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2378 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2380 bytes -= bytes_added;
2381 offset += bytes_added;
2391 if (info && info->bitmap) {
2392 add_new_bitmap(ctl, info, offset);
2397 spin_unlock(&ctl->tree_lock);
2399 /* no pre-allocated info, allocate a new one */
2401 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2404 spin_lock(&ctl->tree_lock);
2410 /* allocate the bitmap */
2411 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2413 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2414 spin_lock(&ctl->tree_lock);
2415 if (!info->bitmap) {
2425 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2427 kmem_cache_free(btrfs_free_space_cachep, info);
2434 * Free space merging rules:
2435 * 1) Merge trimmed areas together
2436 * 2) Let untrimmed areas coalesce with trimmed areas
2437 * 3) Always pull neighboring regions from bitmaps
2439 * The above rules are for when we merge free space based on btrfs_trim_state.
2440 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2441 * same reason: to promote larger extent regions which makes life easier for
2442 * find_free_extent(). Rule 2 enables coalescing based on the common path
2443 * being returning free space from btrfs_finish_extent_commit(). So when free
2444 * space is trimmed, it will prevent aggregating trimmed new region and
2445 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2446 * and provide find_free_extent() with the largest extents possible hoping for
2449 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2450 struct btrfs_free_space *info, bool update_stat)
2452 struct btrfs_free_space *left_info = NULL;
2453 struct btrfs_free_space *right_info;
2454 bool merged = false;
2455 u64 offset = info->offset;
2456 u64 bytes = info->bytes;
2457 const bool is_trimmed = btrfs_free_space_trimmed(info);
2458 struct rb_node *right_prev = NULL;
2461 * first we want to see if there is free space adjacent to the range we
2462 * are adding, if there is remove that struct and add a new one to
2463 * cover the entire range
2465 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2467 right_prev = rb_prev(&right_info->offset_index);
2470 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2471 else if (!right_info)
2472 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2474 /* See try_merge_free_space() comment. */
2475 if (right_info && !right_info->bitmap &&
2476 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2477 unlink_free_space(ctl, right_info, update_stat);
2478 info->bytes += right_info->bytes;
2479 kmem_cache_free(btrfs_free_space_cachep, right_info);
2483 /* See try_merge_free_space() comment. */
2484 if (left_info && !left_info->bitmap &&
2485 left_info->offset + left_info->bytes == offset &&
2486 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2487 unlink_free_space(ctl, left_info, update_stat);
2488 info->offset = left_info->offset;
2489 info->bytes += left_info->bytes;
2490 kmem_cache_free(btrfs_free_space_cachep, left_info);
2497 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2498 struct btrfs_free_space *info,
2501 struct btrfs_free_space *bitmap;
2504 const u64 end = info->offset + info->bytes;
2505 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2508 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2512 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2513 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2516 bytes = (j - i) * ctl->unit;
2517 info->bytes += bytes;
2519 /* See try_merge_free_space() comment. */
2520 if (!btrfs_free_space_trimmed(bitmap))
2521 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2523 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2526 free_bitmap(ctl, bitmap);
2531 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2532 struct btrfs_free_space *info,
2535 struct btrfs_free_space *bitmap;
2539 unsigned long prev_j;
2542 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2543 /* If we're on a boundary, try the previous logical bitmap. */
2544 if (bitmap_offset == info->offset) {
2545 if (info->offset == 0)
2547 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2550 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2554 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2556 prev_j = (unsigned long)-1;
2557 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2565 if (prev_j == (unsigned long)-1)
2566 bytes = (i + 1) * ctl->unit;
2568 bytes = (i - prev_j) * ctl->unit;
2570 info->offset -= bytes;
2571 info->bytes += bytes;
2573 /* See try_merge_free_space() comment. */
2574 if (!btrfs_free_space_trimmed(bitmap))
2575 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2577 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2580 free_bitmap(ctl, bitmap);
2586 * We prefer always to allocate from extent entries, both for clustered and
2587 * non-clustered allocation requests. So when attempting to add a new extent
2588 * entry, try to see if there's adjacent free space in bitmap entries, and if
2589 * there is, migrate that space from the bitmaps to the extent.
2590 * Like this we get better chances of satisfying space allocation requests
2591 * because we attempt to satisfy them based on a single cache entry, and never
2592 * on 2 or more entries - even if the entries represent a contiguous free space
2593 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2596 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2597 struct btrfs_free_space *info,
2601 * Only work with disconnected entries, as we can change their offset,
2602 * and must be extent entries.
2604 ASSERT(!info->bitmap);
2605 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2607 if (ctl->total_bitmaps > 0) {
2609 bool stole_front = false;
2611 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2612 if (ctl->total_bitmaps > 0)
2613 stole_front = steal_from_bitmap_to_front(ctl, info,
2616 if (stole_end || stole_front)
2617 try_merge_free_space(ctl, info, update_stat);
2621 int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2622 u64 offset, u64 bytes,
2623 enum btrfs_trim_state trim_state)
2625 struct btrfs_fs_info *fs_info = block_group->fs_info;
2626 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2627 struct btrfs_free_space *info;
2629 u64 filter_bytes = bytes;
2631 ASSERT(!btrfs_is_zoned(fs_info));
2633 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2637 info->offset = offset;
2638 info->bytes = bytes;
2639 info->trim_state = trim_state;
2640 RB_CLEAR_NODE(&info->offset_index);
2641 RB_CLEAR_NODE(&info->bytes_index);
2643 spin_lock(&ctl->tree_lock);
2645 if (try_merge_free_space(ctl, info, true))
2649 * There was no extent directly to the left or right of this new
2650 * extent then we know we're going to have to allocate a new extent, so
2651 * before we do that see if we need to drop this into a bitmap
2653 ret = insert_into_bitmap(ctl, info);
2662 * Only steal free space from adjacent bitmaps if we're sure we're not
2663 * going to add the new free space to existing bitmap entries - because
2664 * that would mean unnecessary work that would be reverted. Therefore
2665 * attempt to steal space from bitmaps if we're adding an extent entry.
2667 steal_from_bitmap(ctl, info, true);
2669 filter_bytes = max(filter_bytes, info->bytes);
2671 ret = link_free_space(ctl, info);
2673 kmem_cache_free(btrfs_free_space_cachep, info);
2675 btrfs_discard_update_discardable(block_group);
2676 spin_unlock(&ctl->tree_lock);
2679 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2680 ASSERT(ret != -EEXIST);
2683 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2684 btrfs_discard_check_filter(block_group, filter_bytes);
2685 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2691 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2692 u64 bytenr, u64 size, bool used)
2694 struct btrfs_space_info *sinfo = block_group->space_info;
2695 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2696 u64 offset = bytenr - block_group->start;
2697 u64 to_free, to_unusable;
2698 int bg_reclaim_threshold = 0;
2699 bool initial = (size == block_group->length);
2700 u64 reclaimable_unusable;
2702 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2705 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2707 spin_lock(&ctl->tree_lock);
2708 /* Count initial region as zone_unusable until it gets activated. */
2712 test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &block_group->fs_info->flags) &&
2713 (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2716 to_free = block_group->zone_capacity;
2717 else if (offset >= block_group->alloc_offset)
2719 else if (offset + size <= block_group->alloc_offset)
2722 to_free = offset + size - block_group->alloc_offset;
2723 to_unusable = size - to_free;
2725 ctl->free_space += to_free;
2727 * If the block group is read-only, we should account freed space into
2730 if (!block_group->ro)
2731 block_group->zone_unusable += to_unusable;
2732 spin_unlock(&ctl->tree_lock);
2734 spin_lock(&block_group->lock);
2735 block_group->alloc_offset -= size;
2736 spin_unlock(&block_group->lock);
2739 reclaimable_unusable = block_group->zone_unusable -
2740 (block_group->length - block_group->zone_capacity);
2741 /* All the region is now unusable. Mark it as unused and reclaim */
2742 if (block_group->zone_unusable == block_group->length &&
2743 block_group->alloc_offset) {
2744 btrfs_mark_bg_unused(block_group);
2745 } else if (bg_reclaim_threshold &&
2746 reclaimable_unusable >=
2747 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2748 btrfs_mark_bg_to_reclaim(block_group);
2754 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2755 u64 bytenr, u64 size)
2757 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2759 if (btrfs_is_zoned(block_group->fs_info))
2760 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2763 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2764 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2766 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2769 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2770 u64 bytenr, u64 size)
2772 if (btrfs_is_zoned(block_group->fs_info))
2773 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2776 return btrfs_add_free_space(block_group, bytenr, size);
2780 * This is a subtle distinction because when adding free space back in general,
2781 * we want it to be added as untrimmed for async. But in the case where we add
2782 * it on loading of a block group, we want to consider it trimmed.
2784 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2785 u64 bytenr, u64 size)
2787 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2789 if (btrfs_is_zoned(block_group->fs_info))
2790 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2793 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2794 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2795 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2797 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2800 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2801 u64 offset, u64 bytes)
2803 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2804 struct btrfs_free_space *info;
2806 bool re_search = false;
2808 if (btrfs_is_zoned(block_group->fs_info)) {
2810 * This can happen with conventional zones when replaying log.
2811 * Since the allocation info of tree-log nodes are not recorded
2812 * to the extent-tree, calculate_alloc_pointer() failed to
2813 * advance the allocation pointer after last allocated tree log
2816 * This function is called from
2817 * btrfs_pin_extent_for_log_replay() when replaying the log.
2818 * Advance the pointer not to overwrite the tree-log nodes.
2820 if (block_group->start + block_group->alloc_offset <
2822 block_group->alloc_offset =
2823 offset + bytes - block_group->start;
2828 spin_lock(&ctl->tree_lock);
2835 info = tree_search_offset(ctl, offset, 0, 0);
2838 * oops didn't find an extent that matched the space we wanted
2839 * to remove, look for a bitmap instead
2841 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2845 * If we found a partial bit of our free space in a
2846 * bitmap but then couldn't find the other part this may
2847 * be a problem, so WARN about it.
2855 if (!info->bitmap) {
2856 unlink_free_space(ctl, info, true);
2857 if (offset == info->offset) {
2858 u64 to_free = min(bytes, info->bytes);
2860 info->bytes -= to_free;
2861 info->offset += to_free;
2863 ret = link_free_space(ctl, info);
2866 kmem_cache_free(btrfs_free_space_cachep, info);
2873 u64 old_end = info->bytes + info->offset;
2875 info->bytes = offset - info->offset;
2876 ret = link_free_space(ctl, info);
2881 /* Not enough bytes in this entry to satisfy us */
2882 if (old_end < offset + bytes) {
2883 bytes -= old_end - offset;
2886 } else if (old_end == offset + bytes) {
2890 spin_unlock(&ctl->tree_lock);
2892 ret = __btrfs_add_free_space(block_group,
2894 old_end - (offset + bytes),
2901 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2902 if (ret == -EAGAIN) {
2907 btrfs_discard_update_discardable(block_group);
2908 spin_unlock(&ctl->tree_lock);
2913 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2916 struct btrfs_fs_info *fs_info = block_group->fs_info;
2917 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918 struct btrfs_free_space *info;
2923 * Zoned btrfs does not use free space tree and cluster. Just print
2924 * out the free space after the allocation offset.
2926 if (btrfs_is_zoned(fs_info)) {
2927 btrfs_info(fs_info, "free space %llu active %d",
2928 block_group->zone_capacity - block_group->alloc_offset,
2929 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2930 &block_group->runtime_flags));
2934 spin_lock(&ctl->tree_lock);
2935 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2936 info = rb_entry(n, struct btrfs_free_space, offset_index);
2937 if (info->bytes >= bytes && !block_group->ro)
2939 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2940 info->offset, info->bytes,
2941 (info->bitmap) ? "yes" : "no");
2943 spin_unlock(&ctl->tree_lock);
2944 btrfs_info(fs_info, "block group has cluster?: %s",
2945 list_empty(&block_group->cluster_list) ? "no" : "yes");
2947 "%d blocks of free space at or bigger than bytes is", count);
2950 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2951 struct btrfs_free_space_ctl *ctl)
2953 struct btrfs_fs_info *fs_info = block_group->fs_info;
2955 spin_lock_init(&ctl->tree_lock);
2956 ctl->unit = fs_info->sectorsize;
2957 ctl->start = block_group->start;
2958 ctl->block_group = block_group;
2959 ctl->op = &free_space_op;
2960 ctl->free_space_bytes = RB_ROOT_CACHED;
2961 INIT_LIST_HEAD(&ctl->trimming_ranges);
2962 mutex_init(&ctl->cache_writeout_mutex);
2965 * we only want to have 32k of ram per block group for keeping
2966 * track of free space, and if we pass 1/2 of that we want to
2967 * start converting things over to using bitmaps
2969 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2973 * for a given cluster, put all of its extents back into the free
2974 * space cache. If the block group passed doesn't match the block group
2975 * pointed to by the cluster, someone else raced in and freed the
2976 * cluster already. In that case, we just return without changing anything
2978 static void __btrfs_return_cluster_to_free_space(
2979 struct btrfs_block_group *block_group,
2980 struct btrfs_free_cluster *cluster)
2982 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2983 struct rb_node *node;
2985 lockdep_assert_held(&ctl->tree_lock);
2987 spin_lock(&cluster->lock);
2988 if (cluster->block_group != block_group) {
2989 spin_unlock(&cluster->lock);
2993 cluster->block_group = NULL;
2994 cluster->window_start = 0;
2995 list_del_init(&cluster->block_group_list);
2997 node = rb_first(&cluster->root);
2999 struct btrfs_free_space *entry;
3001 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3002 node = rb_next(&entry->offset_index);
3003 rb_erase(&entry->offset_index, &cluster->root);
3004 RB_CLEAR_NODE(&entry->offset_index);
3006 if (!entry->bitmap) {
3007 /* Merging treats extents as if they were new */
3008 if (!btrfs_free_space_trimmed(entry)) {
3009 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3010 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3014 try_merge_free_space(ctl, entry, false);
3015 steal_from_bitmap(ctl, entry, false);
3017 /* As we insert directly, update these statistics */
3018 if (!btrfs_free_space_trimmed(entry)) {
3019 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3020 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3024 tree_insert_offset(ctl, NULL, entry);
3025 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3028 cluster->root = RB_ROOT;
3029 spin_unlock(&cluster->lock);
3030 btrfs_put_block_group(block_group);
3033 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3035 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3036 struct btrfs_free_cluster *cluster;
3037 struct list_head *head;
3039 spin_lock(&ctl->tree_lock);
3040 while ((head = block_group->cluster_list.next) !=
3041 &block_group->cluster_list) {
3042 cluster = list_entry(head, struct btrfs_free_cluster,
3045 WARN_ON(cluster->block_group != block_group);
3046 __btrfs_return_cluster_to_free_space(block_group, cluster);
3048 cond_resched_lock(&ctl->tree_lock);
3050 __btrfs_remove_free_space_cache(ctl);
3051 btrfs_discard_update_discardable(block_group);
3052 spin_unlock(&ctl->tree_lock);
3057 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3059 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3061 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3062 struct btrfs_free_space *info;
3063 struct rb_node *node;
3066 spin_lock(&ctl->tree_lock);
3067 node = rb_first(&ctl->free_space_offset);
3070 info = rb_entry(node, struct btrfs_free_space, offset_index);
3072 if (!btrfs_free_space_trimmed(info)) {
3077 node = rb_next(node);
3080 spin_unlock(&ctl->tree_lock);
3084 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3085 u64 offset, u64 bytes, u64 empty_size,
3086 u64 *max_extent_size)
3088 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3089 struct btrfs_discard_ctl *discard_ctl =
3090 &block_group->fs_info->discard_ctl;
3091 struct btrfs_free_space *entry = NULL;
3092 u64 bytes_search = bytes + empty_size;
3095 u64 align_gap_len = 0;
3096 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3097 bool use_bytes_index = (offset == block_group->start);
3099 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3101 spin_lock(&ctl->tree_lock);
3102 entry = find_free_space(ctl, &offset, &bytes_search,
3103 block_group->full_stripe_len, max_extent_size,
3109 if (entry->bitmap) {
3110 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3112 if (!btrfs_free_space_trimmed(entry))
3113 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3116 free_bitmap(ctl, entry);
3118 unlink_free_space(ctl, entry, true);
3119 align_gap_len = offset - entry->offset;
3120 align_gap = entry->offset;
3121 align_gap_trim_state = entry->trim_state;
3123 if (!btrfs_free_space_trimmed(entry))
3124 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3126 entry->offset = offset + bytes;
3127 WARN_ON(entry->bytes < bytes + align_gap_len);
3129 entry->bytes -= bytes + align_gap_len;
3131 kmem_cache_free(btrfs_free_space_cachep, entry);
3133 link_free_space(ctl, entry);
3136 btrfs_discard_update_discardable(block_group);
3137 spin_unlock(&ctl->tree_lock);
3140 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3141 align_gap_trim_state);
3146 * given a cluster, put all of its extents back into the free space
3147 * cache. If a block group is passed, this function will only free
3148 * a cluster that belongs to the passed block group.
3150 * Otherwise, it'll get a reference on the block group pointed to by the
3151 * cluster and remove the cluster from it.
3153 void btrfs_return_cluster_to_free_space(
3154 struct btrfs_block_group *block_group,
3155 struct btrfs_free_cluster *cluster)
3157 struct btrfs_free_space_ctl *ctl;
3159 /* first, get a safe pointer to the block group */
3160 spin_lock(&cluster->lock);
3162 block_group = cluster->block_group;
3164 spin_unlock(&cluster->lock);
3167 } else if (cluster->block_group != block_group) {
3168 /* someone else has already freed it don't redo their work */
3169 spin_unlock(&cluster->lock);
3172 btrfs_get_block_group(block_group);
3173 spin_unlock(&cluster->lock);
3175 ctl = block_group->free_space_ctl;
3177 /* now return any extents the cluster had on it */
3178 spin_lock(&ctl->tree_lock);
3179 __btrfs_return_cluster_to_free_space(block_group, cluster);
3180 spin_unlock(&ctl->tree_lock);
3182 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3184 /* finally drop our ref */
3185 btrfs_put_block_group(block_group);
3188 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3189 struct btrfs_free_cluster *cluster,
3190 struct btrfs_free_space *entry,
3191 u64 bytes, u64 min_start,
3192 u64 *max_extent_size)
3194 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3196 u64 search_start = cluster->window_start;
3197 u64 search_bytes = bytes;
3200 search_start = min_start;
3201 search_bytes = bytes;
3203 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3205 *max_extent_size = max(get_max_extent_size(entry),
3211 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3217 * given a cluster, try to allocate 'bytes' from it, returns 0
3218 * if it couldn't find anything suitably large, or a logical disk offset
3219 * if things worked out
3221 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3222 struct btrfs_free_cluster *cluster, u64 bytes,
3223 u64 min_start, u64 *max_extent_size)
3225 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3226 struct btrfs_discard_ctl *discard_ctl =
3227 &block_group->fs_info->discard_ctl;
3228 struct btrfs_free_space *entry = NULL;
3229 struct rb_node *node;
3232 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3234 spin_lock(&cluster->lock);
3235 if (bytes > cluster->max_size)
3238 if (cluster->block_group != block_group)
3241 node = rb_first(&cluster->root);
3245 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3247 if (entry->bytes < bytes)
3248 *max_extent_size = max(get_max_extent_size(entry),
3251 if (entry->bytes < bytes ||
3252 (!entry->bitmap && entry->offset < min_start)) {
3253 node = rb_next(&entry->offset_index);
3256 entry = rb_entry(node, struct btrfs_free_space,
3261 if (entry->bitmap) {
3262 ret = btrfs_alloc_from_bitmap(block_group,
3263 cluster, entry, bytes,
3264 cluster->window_start,
3267 node = rb_next(&entry->offset_index);
3270 entry = rb_entry(node, struct btrfs_free_space,
3274 cluster->window_start += bytes;
3276 ret = entry->offset;
3278 entry->offset += bytes;
3279 entry->bytes -= bytes;
3285 spin_unlock(&cluster->lock);
3290 spin_lock(&ctl->tree_lock);
3292 if (!btrfs_free_space_trimmed(entry))
3293 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3295 ctl->free_space -= bytes;
3296 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3297 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3299 spin_lock(&cluster->lock);
3300 if (entry->bytes == 0) {
3301 rb_erase(&entry->offset_index, &cluster->root);
3302 ctl->free_extents--;
3303 if (entry->bitmap) {
3304 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3306 ctl->total_bitmaps--;
3307 recalculate_thresholds(ctl);
3308 } else if (!btrfs_free_space_trimmed(entry)) {
3309 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3311 kmem_cache_free(btrfs_free_space_cachep, entry);
3314 spin_unlock(&cluster->lock);
3315 spin_unlock(&ctl->tree_lock);
3320 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3321 struct btrfs_free_space *entry,
3322 struct btrfs_free_cluster *cluster,
3323 u64 offset, u64 bytes,
3324 u64 cont1_bytes, u64 min_bytes)
3326 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3327 unsigned long next_zero;
3329 unsigned long want_bits;
3330 unsigned long min_bits;
3331 unsigned long found_bits;
3332 unsigned long max_bits = 0;
3333 unsigned long start = 0;
3334 unsigned long total_found = 0;
3337 lockdep_assert_held(&ctl->tree_lock);
3339 i = offset_to_bit(entry->offset, ctl->unit,
3340 max_t(u64, offset, entry->offset));
3341 want_bits = bytes_to_bits(bytes, ctl->unit);
3342 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3345 * Don't bother looking for a cluster in this bitmap if it's heavily
3348 if (entry->max_extent_size &&
3349 entry->max_extent_size < cont1_bytes)
3353 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3354 next_zero = find_next_zero_bit(entry->bitmap,
3355 BITS_PER_BITMAP, i);
3356 if (next_zero - i >= min_bits) {
3357 found_bits = next_zero - i;
3358 if (found_bits > max_bits)
3359 max_bits = found_bits;
3362 if (next_zero - i > max_bits)
3363 max_bits = next_zero - i;
3368 entry->max_extent_size = (u64)max_bits * ctl->unit;
3374 cluster->max_size = 0;
3377 total_found += found_bits;
3379 if (cluster->max_size < found_bits * ctl->unit)
3380 cluster->max_size = found_bits * ctl->unit;
3382 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3387 cluster->window_start = start * ctl->unit + entry->offset;
3388 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3389 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3392 * We need to know if we're currently on the normal space index when we
3393 * manipulate the bitmap so that we know we need to remove and re-insert
3394 * it into the space_index tree. Clear the bytes_index node here so the
3395 * bitmap manipulation helpers know not to mess with the space_index
3396 * until this bitmap entry is added back into the normal cache.
3398 RB_CLEAR_NODE(&entry->bytes_index);
3400 ret = tree_insert_offset(ctl, cluster, entry);
3401 ASSERT(!ret); /* -EEXIST; Logic error */
3403 trace_btrfs_setup_cluster(block_group, cluster,
3404 total_found * ctl->unit, 1);
3409 * This searches the block group for just extents to fill the cluster with.
3410 * Try to find a cluster with at least bytes total bytes, at least one
3411 * extent of cont1_bytes, and other clusters of at least min_bytes.
3414 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3415 struct btrfs_free_cluster *cluster,
3416 struct list_head *bitmaps, u64 offset, u64 bytes,
3417 u64 cont1_bytes, u64 min_bytes)
3419 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3420 struct btrfs_free_space *first = NULL;
3421 struct btrfs_free_space *entry = NULL;
3422 struct btrfs_free_space *last;
3423 struct rb_node *node;
3428 lockdep_assert_held(&ctl->tree_lock);
3430 entry = tree_search_offset(ctl, offset, 0, 1);
3435 * We don't want bitmaps, so just move along until we find a normal
3438 while (entry->bitmap || entry->bytes < min_bytes) {
3439 if (entry->bitmap && list_empty(&entry->list))
3440 list_add_tail(&entry->list, bitmaps);
3441 node = rb_next(&entry->offset_index);
3444 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3447 window_free = entry->bytes;
3448 max_extent = entry->bytes;
3452 for (node = rb_next(&entry->offset_index); node;
3453 node = rb_next(&entry->offset_index)) {
3454 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3456 if (entry->bitmap) {
3457 if (list_empty(&entry->list))
3458 list_add_tail(&entry->list, bitmaps);
3462 if (entry->bytes < min_bytes)
3466 window_free += entry->bytes;
3467 if (entry->bytes > max_extent)
3468 max_extent = entry->bytes;
3471 if (window_free < bytes || max_extent < cont1_bytes)
3474 cluster->window_start = first->offset;
3476 node = &first->offset_index;
3479 * now we've found our entries, pull them out of the free space
3480 * cache and put them into the cluster rbtree
3485 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3486 node = rb_next(&entry->offset_index);
3487 if (entry->bitmap || entry->bytes < min_bytes)
3490 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3491 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3492 ret = tree_insert_offset(ctl, cluster, entry);
3493 total_size += entry->bytes;
3494 ASSERT(!ret); /* -EEXIST; Logic error */
3495 } while (node && entry != last);
3497 cluster->max_size = max_extent;
3498 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3503 * This specifically looks for bitmaps that may work in the cluster, we assume
3504 * that we have already failed to find extents that will work.
3507 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3508 struct btrfs_free_cluster *cluster,
3509 struct list_head *bitmaps, u64 offset, u64 bytes,
3510 u64 cont1_bytes, u64 min_bytes)
3512 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3513 struct btrfs_free_space *entry = NULL;
3515 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3517 if (ctl->total_bitmaps == 0)
3521 * The bitmap that covers offset won't be in the list unless offset
3522 * is just its start offset.
3524 if (!list_empty(bitmaps))
3525 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3527 if (!entry || entry->offset != bitmap_offset) {
3528 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3529 if (entry && list_empty(&entry->list))
3530 list_add(&entry->list, bitmaps);
3533 list_for_each_entry(entry, bitmaps, list) {
3534 if (entry->bytes < bytes)
3536 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3537 bytes, cont1_bytes, min_bytes);
3543 * The bitmaps list has all the bitmaps that record free space
3544 * starting after offset, so no more search is required.
3550 * here we try to find a cluster of blocks in a block group. The goal
3551 * is to find at least bytes+empty_size.
3552 * We might not find them all in one contiguous area.
3554 * returns zero and sets up cluster if things worked out, otherwise
3555 * it returns -enospc
3557 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3558 struct btrfs_free_cluster *cluster,
3559 u64 offset, u64 bytes, u64 empty_size)
3561 struct btrfs_fs_info *fs_info = block_group->fs_info;
3562 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3563 struct btrfs_free_space *entry, *tmp;
3570 * Choose the minimum extent size we'll require for this
3571 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3572 * For metadata, allow allocates with smaller extents. For
3573 * data, keep it dense.
3575 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3576 cont1_bytes = bytes + empty_size;
3577 min_bytes = cont1_bytes;
3578 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3579 cont1_bytes = bytes;
3580 min_bytes = fs_info->sectorsize;
3582 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3583 min_bytes = fs_info->sectorsize;
3586 spin_lock(&ctl->tree_lock);
3589 * If we know we don't have enough space to make a cluster don't even
3590 * bother doing all the work to try and find one.
3592 if (ctl->free_space < bytes) {
3593 spin_unlock(&ctl->tree_lock);
3597 spin_lock(&cluster->lock);
3599 /* someone already found a cluster, hooray */
3600 if (cluster->block_group) {
3605 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3608 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3610 cont1_bytes, min_bytes);
3612 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3613 offset, bytes + empty_size,
3614 cont1_bytes, min_bytes);
3616 /* Clear our temporary list */
3617 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3618 list_del_init(&entry->list);
3621 btrfs_get_block_group(block_group);
3622 list_add_tail(&cluster->block_group_list,
3623 &block_group->cluster_list);
3624 cluster->block_group = block_group;
3626 trace_btrfs_failed_cluster_setup(block_group);
3629 spin_unlock(&cluster->lock);
3630 spin_unlock(&ctl->tree_lock);
3636 * simple code to zero out a cluster
3638 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3640 spin_lock_init(&cluster->lock);
3641 spin_lock_init(&cluster->refill_lock);
3642 cluster->root = RB_ROOT;
3643 cluster->max_size = 0;
3644 cluster->fragmented = false;
3645 INIT_LIST_HEAD(&cluster->block_group_list);
3646 cluster->block_group = NULL;
3649 static int do_trimming(struct btrfs_block_group *block_group,
3650 u64 *total_trimmed, u64 start, u64 bytes,
3651 u64 reserved_start, u64 reserved_bytes,
3652 enum btrfs_trim_state reserved_trim_state,
3653 struct btrfs_trim_range *trim_entry)
3655 struct btrfs_space_info *space_info = block_group->space_info;
3656 struct btrfs_fs_info *fs_info = block_group->fs_info;
3657 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3660 const u64 end = start + bytes;
3661 const u64 reserved_end = reserved_start + reserved_bytes;
3662 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3665 spin_lock(&space_info->lock);
3666 spin_lock(&block_group->lock);
3667 if (!block_group->ro) {
3668 block_group->reserved += reserved_bytes;
3669 space_info->bytes_reserved += reserved_bytes;
3672 spin_unlock(&block_group->lock);
3673 spin_unlock(&space_info->lock);
3675 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3677 *total_trimmed += trimmed;
3678 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3681 mutex_lock(&ctl->cache_writeout_mutex);
3682 if (reserved_start < start)
3683 __btrfs_add_free_space(block_group, reserved_start,
3684 start - reserved_start,
3685 reserved_trim_state);
3686 if (end < reserved_end)
3687 __btrfs_add_free_space(block_group, end, reserved_end - end,
3688 reserved_trim_state);
3689 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3690 list_del(&trim_entry->list);
3691 mutex_unlock(&ctl->cache_writeout_mutex);
3694 spin_lock(&space_info->lock);
3695 spin_lock(&block_group->lock);
3696 if (block_group->ro)
3697 space_info->bytes_readonly += reserved_bytes;
3698 block_group->reserved -= reserved_bytes;
3699 space_info->bytes_reserved -= reserved_bytes;
3700 spin_unlock(&block_group->lock);
3701 spin_unlock(&space_info->lock);
3708 * If @async is set, then we will trim 1 region and return.
3710 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3711 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3714 struct btrfs_discard_ctl *discard_ctl =
3715 &block_group->fs_info->discard_ctl;
3716 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3717 struct btrfs_free_space *entry;
3718 struct rb_node *node;
3722 enum btrfs_trim_state extent_trim_state;
3724 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3726 while (start < end) {
3727 struct btrfs_trim_range trim_entry;
3729 mutex_lock(&ctl->cache_writeout_mutex);
3730 spin_lock(&ctl->tree_lock);
3732 if (ctl->free_space < minlen)
3735 entry = tree_search_offset(ctl, start, 0, 1);
3739 /* Skip bitmaps and if async, already trimmed entries */
3740 while (entry->bitmap ||
3741 (async && btrfs_free_space_trimmed(entry))) {
3742 node = rb_next(&entry->offset_index);
3745 entry = rb_entry(node, struct btrfs_free_space,
3749 if (entry->offset >= end)
3752 extent_start = entry->offset;
3753 extent_bytes = entry->bytes;
3754 extent_trim_state = entry->trim_state;
3756 start = entry->offset;
3757 bytes = entry->bytes;
3758 if (bytes < minlen) {
3759 spin_unlock(&ctl->tree_lock);
3760 mutex_unlock(&ctl->cache_writeout_mutex);
3763 unlink_free_space(ctl, entry, true);
3765 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3766 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3767 * X when we come back around. So trim it now.
3769 if (max_discard_size &&
3770 bytes >= (max_discard_size +
3771 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3772 bytes = max_discard_size;
3773 extent_bytes = max_discard_size;
3774 entry->offset += max_discard_size;
3775 entry->bytes -= max_discard_size;
3776 link_free_space(ctl, entry);
3778 kmem_cache_free(btrfs_free_space_cachep, entry);
3781 start = max(start, extent_start);
3782 bytes = min(extent_start + extent_bytes, end) - start;
3783 if (bytes < minlen) {
3784 spin_unlock(&ctl->tree_lock);
3785 mutex_unlock(&ctl->cache_writeout_mutex);
3789 unlink_free_space(ctl, entry, true);
3790 kmem_cache_free(btrfs_free_space_cachep, entry);
3793 spin_unlock(&ctl->tree_lock);
3794 trim_entry.start = extent_start;
3795 trim_entry.bytes = extent_bytes;
3796 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3797 mutex_unlock(&ctl->cache_writeout_mutex);
3799 ret = do_trimming(block_group, total_trimmed, start, bytes,
3800 extent_start, extent_bytes, extent_trim_state,
3803 block_group->discard_cursor = start + bytes;
3808 block_group->discard_cursor = start;
3809 if (async && *total_trimmed)
3812 if (fatal_signal_pending(current)) {
3823 block_group->discard_cursor = btrfs_block_group_end(block_group);
3824 spin_unlock(&ctl->tree_lock);
3825 mutex_unlock(&ctl->cache_writeout_mutex);
3831 * If we break out of trimming a bitmap prematurely, we should reset the
3832 * trimming bit. In a rather contrieved case, it's possible to race here so
3833 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3835 * start = start of bitmap
3836 * end = near end of bitmap
3838 * Thread 1: Thread 2:
3839 * trim_bitmaps(start)
3841 * end_trimming_bitmap()
3842 * reset_trimming_bitmap()
3844 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3846 struct btrfs_free_space *entry;
3848 spin_lock(&ctl->tree_lock);
3849 entry = tree_search_offset(ctl, offset, 1, 0);
3851 if (btrfs_free_space_trimmed(entry)) {
3852 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3853 entry->bitmap_extents;
3854 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3856 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3859 spin_unlock(&ctl->tree_lock);
3862 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3863 struct btrfs_free_space *entry)
3865 if (btrfs_free_space_trimming_bitmap(entry)) {
3866 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3867 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3868 entry->bitmap_extents;
3869 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3874 * If @async is set, then we will trim 1 region and return.
3876 static int trim_bitmaps(struct btrfs_block_group *block_group,
3877 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3878 u64 maxlen, bool async)
3880 struct btrfs_discard_ctl *discard_ctl =
3881 &block_group->fs_info->discard_ctl;
3882 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3883 struct btrfs_free_space *entry;
3887 u64 offset = offset_to_bitmap(ctl, start);
3888 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3890 while (offset < end) {
3891 bool next_bitmap = false;
3892 struct btrfs_trim_range trim_entry;
3894 mutex_lock(&ctl->cache_writeout_mutex);
3895 spin_lock(&ctl->tree_lock);
3897 if (ctl->free_space < minlen) {
3898 block_group->discard_cursor =
3899 btrfs_block_group_end(block_group);
3900 spin_unlock(&ctl->tree_lock);
3901 mutex_unlock(&ctl->cache_writeout_mutex);
3905 entry = tree_search_offset(ctl, offset, 1, 0);
3907 * Bitmaps are marked trimmed lossily now to prevent constant
3908 * discarding of the same bitmap (the reason why we are bound
3909 * by the filters). So, retrim the block group bitmaps when we
3910 * are preparing to punt to the unused_bgs list. This uses
3911 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3912 * which is the only discard index which sets minlen to 0.
3914 if (!entry || (async && minlen && start == offset &&
3915 btrfs_free_space_trimmed(entry))) {
3916 spin_unlock(&ctl->tree_lock);
3917 mutex_unlock(&ctl->cache_writeout_mutex);
3923 * Async discard bitmap trimming begins at by setting the start
3924 * to be key.objectid and the offset_to_bitmap() aligns to the
3925 * start of the bitmap. This lets us know we are fully
3926 * scanning the bitmap rather than only some portion of it.
3928 if (start == offset)
3929 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3932 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3933 if (ret2 || start >= end) {
3935 * We lossily consider a bitmap trimmed if we only skip
3936 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3938 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3939 end_trimming_bitmap(ctl, entry);
3941 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3942 spin_unlock(&ctl->tree_lock);
3943 mutex_unlock(&ctl->cache_writeout_mutex);
3949 * We already trimmed a region, but are using the locking above
3950 * to reset the trim_state.
3952 if (async && *total_trimmed) {
3953 spin_unlock(&ctl->tree_lock);
3954 mutex_unlock(&ctl->cache_writeout_mutex);
3958 bytes = min(bytes, end - start);
3959 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3960 spin_unlock(&ctl->tree_lock);
3961 mutex_unlock(&ctl->cache_writeout_mutex);
3966 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3967 * If X < @minlen, we won't trim X when we come back around.
3968 * So trim it now. We differ here from trimming extents as we
3969 * don't keep individual state per bit.
3973 bytes > (max_discard_size + minlen))
3974 bytes = max_discard_size;
3976 bitmap_clear_bits(ctl, entry, start, bytes, true);
3977 if (entry->bytes == 0)
3978 free_bitmap(ctl, entry);
3980 spin_unlock(&ctl->tree_lock);
3981 trim_entry.start = start;
3982 trim_entry.bytes = bytes;
3983 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3984 mutex_unlock(&ctl->cache_writeout_mutex);
3986 ret = do_trimming(block_group, total_trimmed, start, bytes,
3987 start, bytes, 0, &trim_entry);
3989 reset_trimming_bitmap(ctl, offset);
3990 block_group->discard_cursor =
3991 btrfs_block_group_end(block_group);
3996 offset += BITS_PER_BITMAP * ctl->unit;
4001 block_group->discard_cursor = start;
4003 if (fatal_signal_pending(current)) {
4004 if (start != offset)
4005 reset_trimming_bitmap(ctl, offset);
4014 block_group->discard_cursor = end;
4020 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4021 u64 *trimmed, u64 start, u64 end, u64 minlen)
4023 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4027 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4031 spin_lock(&block_group->lock);
4032 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4033 spin_unlock(&block_group->lock);
4036 btrfs_freeze_block_group(block_group);
4037 spin_unlock(&block_group->lock);
4039 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4043 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4044 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4045 /* If we ended in the middle of a bitmap, reset the trimming flag */
4047 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4049 btrfs_unfreeze_block_group(block_group);
4053 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4054 u64 *trimmed, u64 start, u64 end, u64 minlen,
4061 spin_lock(&block_group->lock);
4062 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4063 spin_unlock(&block_group->lock);
4066 btrfs_freeze_block_group(block_group);
4067 spin_unlock(&block_group->lock);
4069 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4070 btrfs_unfreeze_block_group(block_group);
4075 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4076 u64 *trimmed, u64 start, u64 end, u64 minlen,
4077 u64 maxlen, bool async)
4083 spin_lock(&block_group->lock);
4084 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4085 spin_unlock(&block_group->lock);
4088 btrfs_freeze_block_group(block_group);
4089 spin_unlock(&block_group->lock);
4091 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4094 btrfs_unfreeze_block_group(block_group);
4099 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4101 return btrfs_super_cache_generation(fs_info->super_copy);
4104 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4105 struct btrfs_trans_handle *trans)
4107 struct btrfs_block_group *block_group;
4108 struct rb_node *node;
4111 btrfs_info(fs_info, "cleaning free space cache v1");
4113 node = rb_first_cached(&fs_info->block_group_cache_tree);
4115 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4116 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4119 node = rb_next(node);
4125 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4127 struct btrfs_trans_handle *trans;
4131 * update_super_roots will appropriately set or unset
4132 * super_copy->cache_generation based on SPACE_CACHE and
4133 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4134 * transaction commit whether we are enabling space cache v1 and don't
4135 * have any other work to do, or are disabling it and removing free
4138 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4140 return PTR_ERR(trans);
4143 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4144 ret = cleanup_free_space_cache_v1(fs_info, trans);
4146 btrfs_abort_transaction(trans, ret);
4147 btrfs_end_transaction(trans);
4152 ret = btrfs_commit_transaction(trans);
4154 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4159 int __init btrfs_free_space_init(void)
4161 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4162 sizeof(struct btrfs_free_space), 0,
4163 SLAB_MEM_SPREAD, NULL);
4164 if (!btrfs_free_space_cachep)
4167 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4168 PAGE_SIZE, PAGE_SIZE,
4169 SLAB_MEM_SPREAD, NULL);
4170 if (!btrfs_free_space_bitmap_cachep) {
4171 kmem_cache_destroy(btrfs_free_space_cachep);
4178 void __cold btrfs_free_space_exit(void)
4180 kmem_cache_destroy(btrfs_free_space_cachep);
4181 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4184 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4186 * Use this if you need to make a bitmap or extent entry specifically, it
4187 * doesn't do any of the merging that add_free_space does, this acts a lot like
4188 * how the free space cache loading stuff works, so you can get really weird
4191 int test_add_free_space_entry(struct btrfs_block_group *cache,
4192 u64 offset, u64 bytes, bool bitmap)
4194 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4195 struct btrfs_free_space *info = NULL, *bitmap_info;
4197 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4203 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4209 spin_lock(&ctl->tree_lock);
4210 info->offset = offset;
4211 info->bytes = bytes;
4212 info->max_extent_size = 0;
4213 ret = link_free_space(ctl, info);
4214 spin_unlock(&ctl->tree_lock);
4216 kmem_cache_free(btrfs_free_space_cachep, info);
4221 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4223 kmem_cache_free(btrfs_free_space_cachep, info);
4228 spin_lock(&ctl->tree_lock);
4229 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4234 add_new_bitmap(ctl, info, offset);
4239 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4242 bytes -= bytes_added;
4243 offset += bytes_added;
4244 spin_unlock(&ctl->tree_lock);
4250 kmem_cache_free(btrfs_free_space_cachep, info);
4252 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4257 * Checks to see if the given range is in the free space cache. This is really
4258 * just used to check the absence of space, so if there is free space in the
4259 * range at all we will return 1.
4261 int test_check_exists(struct btrfs_block_group *cache,
4262 u64 offset, u64 bytes)
4264 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4265 struct btrfs_free_space *info;
4268 spin_lock(&ctl->tree_lock);
4269 info = tree_search_offset(ctl, offset, 0, 0);
4271 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4279 u64 bit_off, bit_bytes;
4281 struct btrfs_free_space *tmp;
4284 bit_bytes = ctl->unit;
4285 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4287 if (bit_off == offset) {
4290 } else if (bit_off > offset &&
4291 offset + bytes > bit_off) {
4297 n = rb_prev(&info->offset_index);
4299 tmp = rb_entry(n, struct btrfs_free_space,
4301 if (tmp->offset + tmp->bytes < offset)
4303 if (offset + bytes < tmp->offset) {
4304 n = rb_prev(&tmp->offset_index);
4311 n = rb_next(&info->offset_index);
4313 tmp = rb_entry(n, struct btrfs_free_space,
4315 if (offset + bytes < tmp->offset)
4317 if (tmp->offset + tmp->bytes < offset) {
4318 n = rb_next(&tmp->offset_index);
4329 if (info->offset == offset) {
4334 if (offset > info->offset && offset < info->offset + info->bytes)
4337 spin_unlock(&ctl->tree_lock);
4340 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */