Merge branch 'stable/128gb.v5.1' into stable/for-linus-3.7
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42
43 /*
44  * when auto defrag is enabled we
45  * queue up these defrag structs to remember which
46  * inodes need defragging passes
47  */
48 struct inode_defrag {
49         struct rb_node rb_node;
50         /* objectid */
51         u64 ino;
52         /*
53          * transid where the defrag was added, we search for
54          * extents newer than this
55          */
56         u64 transid;
57
58         /* root objectid */
59         u64 root;
60
61         /* last offset we were able to defrag */
62         u64 last_offset;
63
64         /* if we've wrapped around back to zero once already */
65         int cycled;
66 };
67
68 static int __compare_inode_defrag(struct inode_defrag *defrag1,
69                                   struct inode_defrag *defrag2)
70 {
71         if (defrag1->root > defrag2->root)
72                 return 1;
73         else if (defrag1->root < defrag2->root)
74                 return -1;
75         else if (defrag1->ino > defrag2->ino)
76                 return 1;
77         else if (defrag1->ino < defrag2->ino)
78                 return -1;
79         else
80                 return 0;
81 }
82
83 /* pop a record for an inode into the defrag tree.  The lock
84  * must be held already
85  *
86  * If you're inserting a record for an older transid than an
87  * existing record, the transid already in the tree is lowered
88  *
89  * If an existing record is found the defrag item you
90  * pass in is freed
91  */
92 static void __btrfs_add_inode_defrag(struct inode *inode,
93                                     struct inode_defrag *defrag)
94 {
95         struct btrfs_root *root = BTRFS_I(inode)->root;
96         struct inode_defrag *entry;
97         struct rb_node **p;
98         struct rb_node *parent = NULL;
99         int ret;
100
101         p = &root->fs_info->defrag_inodes.rb_node;
102         while (*p) {
103                 parent = *p;
104                 entry = rb_entry(parent, struct inode_defrag, rb_node);
105
106                 ret = __compare_inode_defrag(defrag, entry);
107                 if (ret < 0)
108                         p = &parent->rb_left;
109                 else if (ret > 0)
110                         p = &parent->rb_right;
111                 else {
112                         /* if we're reinserting an entry for
113                          * an old defrag run, make sure to
114                          * lower the transid of our existing record
115                          */
116                         if (defrag->transid < entry->transid)
117                                 entry->transid = defrag->transid;
118                         if (defrag->last_offset > entry->last_offset)
119                                 entry->last_offset = defrag->last_offset;
120                         goto exists;
121                 }
122         }
123         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
124         rb_link_node(&defrag->rb_node, parent, p);
125         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
126         return;
127
128 exists:
129         kfree(defrag);
130         return;
131
132 }
133
134 /*
135  * insert a defrag record for this inode if auto defrag is
136  * enabled
137  */
138 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
139                            struct inode *inode)
140 {
141         struct btrfs_root *root = BTRFS_I(inode)->root;
142         struct inode_defrag *defrag;
143         u64 transid;
144
145         if (!btrfs_test_opt(root, AUTO_DEFRAG))
146                 return 0;
147
148         if (btrfs_fs_closing(root->fs_info))
149                 return 0;
150
151         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
152                 return 0;
153
154         if (trans)
155                 transid = trans->transid;
156         else
157                 transid = BTRFS_I(inode)->root->last_trans;
158
159         defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
160         if (!defrag)
161                 return -ENOMEM;
162
163         defrag->ino = btrfs_ino(inode);
164         defrag->transid = transid;
165         defrag->root = root->root_key.objectid;
166
167         spin_lock(&root->fs_info->defrag_inodes_lock);
168         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
169                 __btrfs_add_inode_defrag(inode, defrag);
170         else
171                 kfree(defrag);
172         spin_unlock(&root->fs_info->defrag_inodes_lock);
173         return 0;
174 }
175
176 /*
177  * must be called with the defrag_inodes lock held
178  */
179 struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info,
180                                              u64 root, u64 ino,
181                                              struct rb_node **next)
182 {
183         struct inode_defrag *entry = NULL;
184         struct inode_defrag tmp;
185         struct rb_node *p;
186         struct rb_node *parent = NULL;
187         int ret;
188
189         tmp.ino = ino;
190         tmp.root = root;
191
192         p = info->defrag_inodes.rb_node;
193         while (p) {
194                 parent = p;
195                 entry = rb_entry(parent, struct inode_defrag, rb_node);
196
197                 ret = __compare_inode_defrag(&tmp, entry);
198                 if (ret < 0)
199                         p = parent->rb_left;
200                 else if (ret > 0)
201                         p = parent->rb_right;
202                 else
203                         return entry;
204         }
205
206         if (next) {
207                 while (parent && __compare_inode_defrag(&tmp, entry) > 0) {
208                         parent = rb_next(parent);
209                         entry = rb_entry(parent, struct inode_defrag, rb_node);
210                 }
211                 *next = parent;
212         }
213         return NULL;
214 }
215
216 /*
217  * run through the list of inodes in the FS that need
218  * defragging
219  */
220 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
221 {
222         struct inode_defrag *defrag;
223         struct btrfs_root *inode_root;
224         struct inode *inode;
225         struct rb_node *n;
226         struct btrfs_key key;
227         struct btrfs_ioctl_defrag_range_args range;
228         u64 first_ino = 0;
229         u64 root_objectid = 0;
230         int num_defrag;
231         int defrag_batch = 1024;
232
233         memset(&range, 0, sizeof(range));
234         range.len = (u64)-1;
235
236         atomic_inc(&fs_info->defrag_running);
237         spin_lock(&fs_info->defrag_inodes_lock);
238         while(1) {
239                 n = NULL;
240
241                 /* find an inode to defrag */
242                 defrag = btrfs_find_defrag_inode(fs_info, root_objectid,
243                                                  first_ino, &n);
244                 if (!defrag) {
245                         if (n) {
246                                 defrag = rb_entry(n, struct inode_defrag,
247                                                   rb_node);
248                         } else if (root_objectid || first_ino) {
249                                 root_objectid = 0;
250                                 first_ino = 0;
251                                 continue;
252                         } else {
253                                 break;
254                         }
255                 }
256
257                 /* remove it from the rbtree */
258                 first_ino = defrag->ino + 1;
259                 root_objectid = defrag->root;
260                 rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
261
262                 if (btrfs_fs_closing(fs_info))
263                         goto next_free;
264
265                 spin_unlock(&fs_info->defrag_inodes_lock);
266
267                 /* get the inode */
268                 key.objectid = defrag->root;
269                 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
270                 key.offset = (u64)-1;
271                 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
272                 if (IS_ERR(inode_root))
273                         goto next;
274
275                 key.objectid = defrag->ino;
276                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
277                 key.offset = 0;
278
279                 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
280                 if (IS_ERR(inode))
281                         goto next;
282
283                 /* do a chunk of defrag */
284                 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
285                 range.start = defrag->last_offset;
286                 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
287                                                defrag_batch);
288                 /*
289                  * if we filled the whole defrag batch, there
290                  * must be more work to do.  Queue this defrag
291                  * again
292                  */
293                 if (num_defrag == defrag_batch) {
294                         defrag->last_offset = range.start;
295                         __btrfs_add_inode_defrag(inode, defrag);
296                         /*
297                          * we don't want to kfree defrag, we added it back to
298                          * the rbtree
299                          */
300                         defrag = NULL;
301                 } else if (defrag->last_offset && !defrag->cycled) {
302                         /*
303                          * we didn't fill our defrag batch, but
304                          * we didn't start at zero.  Make sure we loop
305                          * around to the start of the file.
306                          */
307                         defrag->last_offset = 0;
308                         defrag->cycled = 1;
309                         __btrfs_add_inode_defrag(inode, defrag);
310                         defrag = NULL;
311                 }
312
313                 iput(inode);
314 next:
315                 spin_lock(&fs_info->defrag_inodes_lock);
316 next_free:
317                 kfree(defrag);
318         }
319         spin_unlock(&fs_info->defrag_inodes_lock);
320
321         atomic_dec(&fs_info->defrag_running);
322
323         /*
324          * during unmount, we use the transaction_wait queue to
325          * wait for the defragger to stop
326          */
327         wake_up(&fs_info->transaction_wait);
328         return 0;
329 }
330
331 /* simple helper to fault in pages and copy.  This should go away
332  * and be replaced with calls into generic code.
333  */
334 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
335                                          size_t write_bytes,
336                                          struct page **prepared_pages,
337                                          struct iov_iter *i)
338 {
339         size_t copied = 0;
340         size_t total_copied = 0;
341         int pg = 0;
342         int offset = pos & (PAGE_CACHE_SIZE - 1);
343
344         while (write_bytes > 0) {
345                 size_t count = min_t(size_t,
346                                      PAGE_CACHE_SIZE - offset, write_bytes);
347                 struct page *page = prepared_pages[pg];
348                 /*
349                  * Copy data from userspace to the current page
350                  *
351                  * Disable pagefault to avoid recursive lock since
352                  * the pages are already locked
353                  */
354                 pagefault_disable();
355                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
356                 pagefault_enable();
357
358                 /* Flush processor's dcache for this page */
359                 flush_dcache_page(page);
360
361                 /*
362                  * if we get a partial write, we can end up with
363                  * partially up to date pages.  These add
364                  * a lot of complexity, so make sure they don't
365                  * happen by forcing this copy to be retried.
366                  *
367                  * The rest of the btrfs_file_write code will fall
368                  * back to page at a time copies after we return 0.
369                  */
370                 if (!PageUptodate(page) && copied < count)
371                         copied = 0;
372
373                 iov_iter_advance(i, copied);
374                 write_bytes -= copied;
375                 total_copied += copied;
376
377                 /* Return to btrfs_file_aio_write to fault page */
378                 if (unlikely(copied == 0))
379                         break;
380
381                 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
382                         offset += copied;
383                 } else {
384                         pg++;
385                         offset = 0;
386                 }
387         }
388         return total_copied;
389 }
390
391 /*
392  * unlocks pages after btrfs_file_write is done with them
393  */
394 void btrfs_drop_pages(struct page **pages, size_t num_pages)
395 {
396         size_t i;
397         for (i = 0; i < num_pages; i++) {
398                 /* page checked is some magic around finding pages that
399                  * have been modified without going through btrfs_set_page_dirty
400                  * clear it here
401                  */
402                 ClearPageChecked(pages[i]);
403                 unlock_page(pages[i]);
404                 mark_page_accessed(pages[i]);
405                 page_cache_release(pages[i]);
406         }
407 }
408
409 /*
410  * after copy_from_user, pages need to be dirtied and we need to make
411  * sure holes are created between the current EOF and the start of
412  * any next extents (if required).
413  *
414  * this also makes the decision about creating an inline extent vs
415  * doing real data extents, marking pages dirty and delalloc as required.
416  */
417 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
418                       struct page **pages, size_t num_pages,
419                       loff_t pos, size_t write_bytes,
420                       struct extent_state **cached)
421 {
422         int err = 0;
423         int i;
424         u64 num_bytes;
425         u64 start_pos;
426         u64 end_of_last_block;
427         u64 end_pos = pos + write_bytes;
428         loff_t isize = i_size_read(inode);
429
430         start_pos = pos & ~((u64)root->sectorsize - 1);
431         num_bytes = (write_bytes + pos - start_pos +
432                     root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
433
434         end_of_last_block = start_pos + num_bytes - 1;
435         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
436                                         cached);
437         if (err)
438                 return err;
439
440         for (i = 0; i < num_pages; i++) {
441                 struct page *p = pages[i];
442                 SetPageUptodate(p);
443                 ClearPageChecked(p);
444                 set_page_dirty(p);
445         }
446
447         /*
448          * we've only changed i_size in ram, and we haven't updated
449          * the disk i_size.  There is no need to log the inode
450          * at this time.
451          */
452         if (end_pos > isize)
453                 i_size_write(inode, end_pos);
454         return 0;
455 }
456
457 /*
458  * this drops all the extents in the cache that intersect the range
459  * [start, end].  Existing extents are split as required.
460  */
461 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
462                             int skip_pinned)
463 {
464         struct extent_map *em;
465         struct extent_map *split = NULL;
466         struct extent_map *split2 = NULL;
467         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
468         u64 len = end - start + 1;
469         int ret;
470         int testend = 1;
471         unsigned long flags;
472         int compressed = 0;
473
474         WARN_ON(end < start);
475         if (end == (u64)-1) {
476                 len = (u64)-1;
477                 testend = 0;
478         }
479         while (1) {
480                 if (!split)
481                         split = alloc_extent_map();
482                 if (!split2)
483                         split2 = alloc_extent_map();
484                 BUG_ON(!split || !split2); /* -ENOMEM */
485
486                 write_lock(&em_tree->lock);
487                 em = lookup_extent_mapping(em_tree, start, len);
488                 if (!em) {
489                         write_unlock(&em_tree->lock);
490                         break;
491                 }
492                 flags = em->flags;
493                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
494                         if (testend && em->start + em->len >= start + len) {
495                                 free_extent_map(em);
496                                 write_unlock(&em_tree->lock);
497                                 break;
498                         }
499                         start = em->start + em->len;
500                         if (testend)
501                                 len = start + len - (em->start + em->len);
502                         free_extent_map(em);
503                         write_unlock(&em_tree->lock);
504                         continue;
505                 }
506                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
507                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
508                 remove_extent_mapping(em_tree, em);
509
510                 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
511                     em->start < start) {
512                         split->start = em->start;
513                         split->len = start - em->start;
514                         split->orig_start = em->orig_start;
515                         split->block_start = em->block_start;
516
517                         if (compressed)
518                                 split->block_len = em->block_len;
519                         else
520                                 split->block_len = split->len;
521
522                         split->bdev = em->bdev;
523                         split->flags = flags;
524                         split->compress_type = em->compress_type;
525                         ret = add_extent_mapping(em_tree, split);
526                         BUG_ON(ret); /* Logic error */
527                         free_extent_map(split);
528                         split = split2;
529                         split2 = NULL;
530                 }
531                 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
532                     testend && em->start + em->len > start + len) {
533                         u64 diff = start + len - em->start;
534
535                         split->start = start + len;
536                         split->len = em->start + em->len - (start + len);
537                         split->bdev = em->bdev;
538                         split->flags = flags;
539                         split->compress_type = em->compress_type;
540
541                         if (compressed) {
542                                 split->block_len = em->block_len;
543                                 split->block_start = em->block_start;
544                                 split->orig_start = em->orig_start;
545                         } else {
546                                 split->block_len = split->len;
547                                 split->block_start = em->block_start + diff;
548                                 split->orig_start = split->start;
549                         }
550
551                         ret = add_extent_mapping(em_tree, split);
552                         BUG_ON(ret); /* Logic error */
553                         free_extent_map(split);
554                         split = NULL;
555                 }
556                 write_unlock(&em_tree->lock);
557
558                 /* once for us */
559                 free_extent_map(em);
560                 /* once for the tree*/
561                 free_extent_map(em);
562         }
563         if (split)
564                 free_extent_map(split);
565         if (split2)
566                 free_extent_map(split2);
567         return 0;
568 }
569
570 /*
571  * this is very complex, but the basic idea is to drop all extents
572  * in the range start - end.  hint_block is filled in with a block number
573  * that would be a good hint to the block allocator for this file.
574  *
575  * If an extent intersects the range but is not entirely inside the range
576  * it is either truncated or split.  Anything entirely inside the range
577  * is deleted from the tree.
578  */
579 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
580                        u64 start, u64 end, u64 *hint_byte, int drop_cache)
581 {
582         struct btrfs_root *root = BTRFS_I(inode)->root;
583         struct extent_buffer *leaf;
584         struct btrfs_file_extent_item *fi;
585         struct btrfs_path *path;
586         struct btrfs_key key;
587         struct btrfs_key new_key;
588         u64 ino = btrfs_ino(inode);
589         u64 search_start = start;
590         u64 disk_bytenr = 0;
591         u64 num_bytes = 0;
592         u64 extent_offset = 0;
593         u64 extent_end = 0;
594         int del_nr = 0;
595         int del_slot = 0;
596         int extent_type;
597         int recow;
598         int ret;
599         int modify_tree = -1;
600
601         if (drop_cache)
602                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
603
604         path = btrfs_alloc_path();
605         if (!path)
606                 return -ENOMEM;
607
608         if (start >= BTRFS_I(inode)->disk_i_size)
609                 modify_tree = 0;
610
611         while (1) {
612                 recow = 0;
613                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
614                                                search_start, modify_tree);
615                 if (ret < 0)
616                         break;
617                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
618                         leaf = path->nodes[0];
619                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
620                         if (key.objectid == ino &&
621                             key.type == BTRFS_EXTENT_DATA_KEY)
622                                 path->slots[0]--;
623                 }
624                 ret = 0;
625 next_slot:
626                 leaf = path->nodes[0];
627                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
628                         BUG_ON(del_nr > 0);
629                         ret = btrfs_next_leaf(root, path);
630                         if (ret < 0)
631                                 break;
632                         if (ret > 0) {
633                                 ret = 0;
634                                 break;
635                         }
636                         leaf = path->nodes[0];
637                         recow = 1;
638                 }
639
640                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641                 if (key.objectid > ino ||
642                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
643                         break;
644
645                 fi = btrfs_item_ptr(leaf, path->slots[0],
646                                     struct btrfs_file_extent_item);
647                 extent_type = btrfs_file_extent_type(leaf, fi);
648
649                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
650                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
651                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
652                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
653                         extent_offset = btrfs_file_extent_offset(leaf, fi);
654                         extent_end = key.offset +
655                                 btrfs_file_extent_num_bytes(leaf, fi);
656                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
657                         extent_end = key.offset +
658                                 btrfs_file_extent_inline_len(leaf, fi);
659                 } else {
660                         WARN_ON(1);
661                         extent_end = search_start;
662                 }
663
664                 if (extent_end <= search_start) {
665                         path->slots[0]++;
666                         goto next_slot;
667                 }
668
669                 search_start = max(key.offset, start);
670                 if (recow || !modify_tree) {
671                         modify_tree = -1;
672                         btrfs_release_path(path);
673                         continue;
674                 }
675
676                 /*
677                  *     | - range to drop - |
678                  *  | -------- extent -------- |
679                  */
680                 if (start > key.offset && end < extent_end) {
681                         BUG_ON(del_nr > 0);
682                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
683
684                         memcpy(&new_key, &key, sizeof(new_key));
685                         new_key.offset = start;
686                         ret = btrfs_duplicate_item(trans, root, path,
687                                                    &new_key);
688                         if (ret == -EAGAIN) {
689                                 btrfs_release_path(path);
690                                 continue;
691                         }
692                         if (ret < 0)
693                                 break;
694
695                         leaf = path->nodes[0];
696                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
697                                             struct btrfs_file_extent_item);
698                         btrfs_set_file_extent_num_bytes(leaf, fi,
699                                                         start - key.offset);
700
701                         fi = btrfs_item_ptr(leaf, path->slots[0],
702                                             struct btrfs_file_extent_item);
703
704                         extent_offset += start - key.offset;
705                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
706                         btrfs_set_file_extent_num_bytes(leaf, fi,
707                                                         extent_end - start);
708                         btrfs_mark_buffer_dirty(leaf);
709
710                         if (disk_bytenr > 0) {
711                                 ret = btrfs_inc_extent_ref(trans, root,
712                                                 disk_bytenr, num_bytes, 0,
713                                                 root->root_key.objectid,
714                                                 new_key.objectid,
715                                                 start - extent_offset, 0);
716                                 BUG_ON(ret); /* -ENOMEM */
717                                 *hint_byte = disk_bytenr;
718                         }
719                         key.offset = start;
720                 }
721                 /*
722                  *  | ---- range to drop ----- |
723                  *      | -------- extent -------- |
724                  */
725                 if (start <= key.offset && end < extent_end) {
726                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
727
728                         memcpy(&new_key, &key, sizeof(new_key));
729                         new_key.offset = end;
730                         btrfs_set_item_key_safe(trans, root, path, &new_key);
731
732                         extent_offset += end - key.offset;
733                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
734                         btrfs_set_file_extent_num_bytes(leaf, fi,
735                                                         extent_end - end);
736                         btrfs_mark_buffer_dirty(leaf);
737                         if (disk_bytenr > 0) {
738                                 inode_sub_bytes(inode, end - key.offset);
739                                 *hint_byte = disk_bytenr;
740                         }
741                         break;
742                 }
743
744                 search_start = extent_end;
745                 /*
746                  *       | ---- range to drop ----- |
747                  *  | -------- extent -------- |
748                  */
749                 if (start > key.offset && end >= extent_end) {
750                         BUG_ON(del_nr > 0);
751                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
752
753                         btrfs_set_file_extent_num_bytes(leaf, fi,
754                                                         start - key.offset);
755                         btrfs_mark_buffer_dirty(leaf);
756                         if (disk_bytenr > 0) {
757                                 inode_sub_bytes(inode, extent_end - start);
758                                 *hint_byte = disk_bytenr;
759                         }
760                         if (end == extent_end)
761                                 break;
762
763                         path->slots[0]++;
764                         goto next_slot;
765                 }
766
767                 /*
768                  *  | ---- range to drop ----- |
769                  *    | ------ extent ------ |
770                  */
771                 if (start <= key.offset && end >= extent_end) {
772                         if (del_nr == 0) {
773                                 del_slot = path->slots[0];
774                                 del_nr = 1;
775                         } else {
776                                 BUG_ON(del_slot + del_nr != path->slots[0]);
777                                 del_nr++;
778                         }
779
780                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
781                                 inode_sub_bytes(inode,
782                                                 extent_end - key.offset);
783                                 extent_end = ALIGN(extent_end,
784                                                    root->sectorsize);
785                         } else if (disk_bytenr > 0) {
786                                 ret = btrfs_free_extent(trans, root,
787                                                 disk_bytenr, num_bytes, 0,
788                                                 root->root_key.objectid,
789                                                 key.objectid, key.offset -
790                                                 extent_offset, 0);
791                                 BUG_ON(ret); /* -ENOMEM */
792                                 inode_sub_bytes(inode,
793                                                 extent_end - key.offset);
794                                 *hint_byte = disk_bytenr;
795                         }
796
797                         if (end == extent_end)
798                                 break;
799
800                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
801                                 path->slots[0]++;
802                                 goto next_slot;
803                         }
804
805                         ret = btrfs_del_items(trans, root, path, del_slot,
806                                               del_nr);
807                         if (ret) {
808                                 btrfs_abort_transaction(trans, root, ret);
809                                 goto out;
810                         }
811
812                         del_nr = 0;
813                         del_slot = 0;
814
815                         btrfs_release_path(path);
816                         continue;
817                 }
818
819                 BUG_ON(1);
820         }
821
822         if (!ret && del_nr > 0) {
823                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
824                 if (ret)
825                         btrfs_abort_transaction(trans, root, ret);
826         }
827
828 out:
829         btrfs_free_path(path);
830         return ret;
831 }
832
833 static int extent_mergeable(struct extent_buffer *leaf, int slot,
834                             u64 objectid, u64 bytenr, u64 orig_offset,
835                             u64 *start, u64 *end)
836 {
837         struct btrfs_file_extent_item *fi;
838         struct btrfs_key key;
839         u64 extent_end;
840
841         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
842                 return 0;
843
844         btrfs_item_key_to_cpu(leaf, &key, slot);
845         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
846                 return 0;
847
848         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
849         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
850             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
851             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
852             btrfs_file_extent_compression(leaf, fi) ||
853             btrfs_file_extent_encryption(leaf, fi) ||
854             btrfs_file_extent_other_encoding(leaf, fi))
855                 return 0;
856
857         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
858         if ((*start && *start != key.offset) || (*end && *end != extent_end))
859                 return 0;
860
861         *start = key.offset;
862         *end = extent_end;
863         return 1;
864 }
865
866 /*
867  * Mark extent in the range start - end as written.
868  *
869  * This changes extent type from 'pre-allocated' to 'regular'. If only
870  * part of extent is marked as written, the extent will be split into
871  * two or three.
872  */
873 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
874                               struct inode *inode, u64 start, u64 end)
875 {
876         struct btrfs_root *root = BTRFS_I(inode)->root;
877         struct extent_buffer *leaf;
878         struct btrfs_path *path;
879         struct btrfs_file_extent_item *fi;
880         struct btrfs_key key;
881         struct btrfs_key new_key;
882         u64 bytenr;
883         u64 num_bytes;
884         u64 extent_end;
885         u64 orig_offset;
886         u64 other_start;
887         u64 other_end;
888         u64 split;
889         int del_nr = 0;
890         int del_slot = 0;
891         int recow;
892         int ret;
893         u64 ino = btrfs_ino(inode);
894
895         btrfs_drop_extent_cache(inode, start, end - 1, 0);
896
897         path = btrfs_alloc_path();
898         if (!path)
899                 return -ENOMEM;
900 again:
901         recow = 0;
902         split = start;
903         key.objectid = ino;
904         key.type = BTRFS_EXTENT_DATA_KEY;
905         key.offset = split;
906
907         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
908         if (ret < 0)
909                 goto out;
910         if (ret > 0 && path->slots[0] > 0)
911                 path->slots[0]--;
912
913         leaf = path->nodes[0];
914         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
915         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
916         fi = btrfs_item_ptr(leaf, path->slots[0],
917                             struct btrfs_file_extent_item);
918         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
919                BTRFS_FILE_EXTENT_PREALLOC);
920         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
921         BUG_ON(key.offset > start || extent_end < end);
922
923         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
924         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
925         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
926         memcpy(&new_key, &key, sizeof(new_key));
927
928         if (start == key.offset && end < extent_end) {
929                 other_start = 0;
930                 other_end = start;
931                 if (extent_mergeable(leaf, path->slots[0] - 1,
932                                      ino, bytenr, orig_offset,
933                                      &other_start, &other_end)) {
934                         new_key.offset = end;
935                         btrfs_set_item_key_safe(trans, root, path, &new_key);
936                         fi = btrfs_item_ptr(leaf, path->slots[0],
937                                             struct btrfs_file_extent_item);
938                         btrfs_set_file_extent_num_bytes(leaf, fi,
939                                                         extent_end - end);
940                         btrfs_set_file_extent_offset(leaf, fi,
941                                                      end - orig_offset);
942                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
943                                             struct btrfs_file_extent_item);
944                         btrfs_set_file_extent_num_bytes(leaf, fi,
945                                                         end - other_start);
946                         btrfs_mark_buffer_dirty(leaf);
947                         goto out;
948                 }
949         }
950
951         if (start > key.offset && end == extent_end) {
952                 other_start = end;
953                 other_end = 0;
954                 if (extent_mergeable(leaf, path->slots[0] + 1,
955                                      ino, bytenr, orig_offset,
956                                      &other_start, &other_end)) {
957                         fi = btrfs_item_ptr(leaf, path->slots[0],
958                                             struct btrfs_file_extent_item);
959                         btrfs_set_file_extent_num_bytes(leaf, fi,
960                                                         start - key.offset);
961                         path->slots[0]++;
962                         new_key.offset = start;
963                         btrfs_set_item_key_safe(trans, root, path, &new_key);
964
965                         fi = btrfs_item_ptr(leaf, path->slots[0],
966                                             struct btrfs_file_extent_item);
967                         btrfs_set_file_extent_num_bytes(leaf, fi,
968                                                         other_end - start);
969                         btrfs_set_file_extent_offset(leaf, fi,
970                                                      start - orig_offset);
971                         btrfs_mark_buffer_dirty(leaf);
972                         goto out;
973                 }
974         }
975
976         while (start > key.offset || end < extent_end) {
977                 if (key.offset == start)
978                         split = end;
979
980                 new_key.offset = split;
981                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
982                 if (ret == -EAGAIN) {
983                         btrfs_release_path(path);
984                         goto again;
985                 }
986                 if (ret < 0) {
987                         btrfs_abort_transaction(trans, root, ret);
988                         goto out;
989                 }
990
991                 leaf = path->nodes[0];
992                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
993                                     struct btrfs_file_extent_item);
994                 btrfs_set_file_extent_num_bytes(leaf, fi,
995                                                 split - key.offset);
996
997                 fi = btrfs_item_ptr(leaf, path->slots[0],
998                                     struct btrfs_file_extent_item);
999
1000                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1001                 btrfs_set_file_extent_num_bytes(leaf, fi,
1002                                                 extent_end - split);
1003                 btrfs_mark_buffer_dirty(leaf);
1004
1005                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1006                                            root->root_key.objectid,
1007                                            ino, orig_offset, 0);
1008                 BUG_ON(ret); /* -ENOMEM */
1009
1010                 if (split == start) {
1011                         key.offset = start;
1012                 } else {
1013                         BUG_ON(start != key.offset);
1014                         path->slots[0]--;
1015                         extent_end = end;
1016                 }
1017                 recow = 1;
1018         }
1019
1020         other_start = end;
1021         other_end = 0;
1022         if (extent_mergeable(leaf, path->slots[0] + 1,
1023                              ino, bytenr, orig_offset,
1024                              &other_start, &other_end)) {
1025                 if (recow) {
1026                         btrfs_release_path(path);
1027                         goto again;
1028                 }
1029                 extent_end = other_end;
1030                 del_slot = path->slots[0] + 1;
1031                 del_nr++;
1032                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1033                                         0, root->root_key.objectid,
1034                                         ino, orig_offset, 0);
1035                 BUG_ON(ret); /* -ENOMEM */
1036         }
1037         other_start = 0;
1038         other_end = start;
1039         if (extent_mergeable(leaf, path->slots[0] - 1,
1040                              ino, bytenr, orig_offset,
1041                              &other_start, &other_end)) {
1042                 if (recow) {
1043                         btrfs_release_path(path);
1044                         goto again;
1045                 }
1046                 key.offset = other_start;
1047                 del_slot = path->slots[0];
1048                 del_nr++;
1049                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1050                                         0, root->root_key.objectid,
1051                                         ino, orig_offset, 0);
1052                 BUG_ON(ret); /* -ENOMEM */
1053         }
1054         if (del_nr == 0) {
1055                 fi = btrfs_item_ptr(leaf, path->slots[0],
1056                            struct btrfs_file_extent_item);
1057                 btrfs_set_file_extent_type(leaf, fi,
1058                                            BTRFS_FILE_EXTENT_REG);
1059                 btrfs_mark_buffer_dirty(leaf);
1060         } else {
1061                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1062                            struct btrfs_file_extent_item);
1063                 btrfs_set_file_extent_type(leaf, fi,
1064                                            BTRFS_FILE_EXTENT_REG);
1065                 btrfs_set_file_extent_num_bytes(leaf, fi,
1066                                                 extent_end - key.offset);
1067                 btrfs_mark_buffer_dirty(leaf);
1068
1069                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1070                 if (ret < 0) {
1071                         btrfs_abort_transaction(trans, root, ret);
1072                         goto out;
1073                 }
1074         }
1075 out:
1076         btrfs_free_path(path);
1077         return 0;
1078 }
1079
1080 /*
1081  * on error we return an unlocked page and the error value
1082  * on success we return a locked page and 0
1083  */
1084 static int prepare_uptodate_page(struct page *page, u64 pos,
1085                                  bool force_uptodate)
1086 {
1087         int ret = 0;
1088
1089         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1090             !PageUptodate(page)) {
1091                 ret = btrfs_readpage(NULL, page);
1092                 if (ret)
1093                         return ret;
1094                 lock_page(page);
1095                 if (!PageUptodate(page)) {
1096                         unlock_page(page);
1097                         return -EIO;
1098                 }
1099         }
1100         return 0;
1101 }
1102
1103 /*
1104  * this gets pages into the page cache and locks them down, it also properly
1105  * waits for data=ordered extents to finish before allowing the pages to be
1106  * modified.
1107  */
1108 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1109                          struct page **pages, size_t num_pages,
1110                          loff_t pos, unsigned long first_index,
1111                          size_t write_bytes, bool force_uptodate)
1112 {
1113         struct extent_state *cached_state = NULL;
1114         int i;
1115         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1116         struct inode *inode = fdentry(file)->d_inode;
1117         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1118         int err = 0;
1119         int faili = 0;
1120         u64 start_pos;
1121         u64 last_pos;
1122
1123         start_pos = pos & ~((u64)root->sectorsize - 1);
1124         last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1125
1126 again:
1127         for (i = 0; i < num_pages; i++) {
1128                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1129                                                mask | __GFP_WRITE);
1130                 if (!pages[i]) {
1131                         faili = i - 1;
1132                         err = -ENOMEM;
1133                         goto fail;
1134                 }
1135
1136                 if (i == 0)
1137                         err = prepare_uptodate_page(pages[i], pos,
1138                                                     force_uptodate);
1139                 if (i == num_pages - 1)
1140                         err = prepare_uptodate_page(pages[i],
1141                                                     pos + write_bytes, false);
1142                 if (err) {
1143                         page_cache_release(pages[i]);
1144                         faili = i - 1;
1145                         goto fail;
1146                 }
1147                 wait_on_page_writeback(pages[i]);
1148         }
1149         err = 0;
1150         if (start_pos < inode->i_size) {
1151                 struct btrfs_ordered_extent *ordered;
1152                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1153                                  start_pos, last_pos - 1, 0, &cached_state);
1154                 ordered = btrfs_lookup_first_ordered_extent(inode,
1155                                                             last_pos - 1);
1156                 if (ordered &&
1157                     ordered->file_offset + ordered->len > start_pos &&
1158                     ordered->file_offset < last_pos) {
1159                         btrfs_put_ordered_extent(ordered);
1160                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1161                                              start_pos, last_pos - 1,
1162                                              &cached_state, GFP_NOFS);
1163                         for (i = 0; i < num_pages; i++) {
1164                                 unlock_page(pages[i]);
1165                                 page_cache_release(pages[i]);
1166                         }
1167                         btrfs_wait_ordered_range(inode, start_pos,
1168                                                  last_pos - start_pos);
1169                         goto again;
1170                 }
1171                 if (ordered)
1172                         btrfs_put_ordered_extent(ordered);
1173
1174                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1175                                   last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1176                                   EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1177                                   GFP_NOFS);
1178                 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1179                                      start_pos, last_pos - 1, &cached_state,
1180                                      GFP_NOFS);
1181         }
1182         for (i = 0; i < num_pages; i++) {
1183                 if (clear_page_dirty_for_io(pages[i]))
1184                         account_page_redirty(pages[i]);
1185                 set_page_extent_mapped(pages[i]);
1186                 WARN_ON(!PageLocked(pages[i]));
1187         }
1188         return 0;
1189 fail:
1190         while (faili >= 0) {
1191                 unlock_page(pages[faili]);
1192                 page_cache_release(pages[faili]);
1193                 faili--;
1194         }
1195         return err;
1196
1197 }
1198
1199 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1200                                                struct iov_iter *i,
1201                                                loff_t pos)
1202 {
1203         struct inode *inode = fdentry(file)->d_inode;
1204         struct btrfs_root *root = BTRFS_I(inode)->root;
1205         struct page **pages = NULL;
1206         unsigned long first_index;
1207         size_t num_written = 0;
1208         int nrptrs;
1209         int ret = 0;
1210         bool force_page_uptodate = false;
1211
1212         nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1213                      PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1214                      (sizeof(struct page *)));
1215         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1216         nrptrs = max(nrptrs, 8);
1217         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1218         if (!pages)
1219                 return -ENOMEM;
1220
1221         first_index = pos >> PAGE_CACHE_SHIFT;
1222
1223         while (iov_iter_count(i) > 0) {
1224                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1225                 size_t write_bytes = min(iov_iter_count(i),
1226                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1227                                          offset);
1228                 size_t num_pages = (write_bytes + offset +
1229                                     PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1230                 size_t dirty_pages;
1231                 size_t copied;
1232
1233                 WARN_ON(num_pages > nrptrs);
1234
1235                 /*
1236                  * Fault pages before locking them in prepare_pages
1237                  * to avoid recursive lock
1238                  */
1239                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1240                         ret = -EFAULT;
1241                         break;
1242                 }
1243
1244                 ret = btrfs_delalloc_reserve_space(inode,
1245                                         num_pages << PAGE_CACHE_SHIFT);
1246                 if (ret)
1247                         break;
1248
1249                 /*
1250                  * This is going to setup the pages array with the number of
1251                  * pages we want, so we don't really need to worry about the
1252                  * contents of pages from loop to loop
1253                  */
1254                 ret = prepare_pages(root, file, pages, num_pages,
1255                                     pos, first_index, write_bytes,
1256                                     force_page_uptodate);
1257                 if (ret) {
1258                         btrfs_delalloc_release_space(inode,
1259                                         num_pages << PAGE_CACHE_SHIFT);
1260                         break;
1261                 }
1262
1263                 copied = btrfs_copy_from_user(pos, num_pages,
1264                                            write_bytes, pages, i);
1265
1266                 /*
1267                  * if we have trouble faulting in the pages, fall
1268                  * back to one page at a time
1269                  */
1270                 if (copied < write_bytes)
1271                         nrptrs = 1;
1272
1273                 if (copied == 0) {
1274                         force_page_uptodate = true;
1275                         dirty_pages = 0;
1276                 } else {
1277                         force_page_uptodate = false;
1278                         dirty_pages = (copied + offset +
1279                                        PAGE_CACHE_SIZE - 1) >>
1280                                        PAGE_CACHE_SHIFT;
1281                 }
1282
1283                 /*
1284                  * If we had a short copy we need to release the excess delaloc
1285                  * bytes we reserved.  We need to increment outstanding_extents
1286                  * because btrfs_delalloc_release_space will decrement it, but
1287                  * we still have an outstanding extent for the chunk we actually
1288                  * managed to copy.
1289                  */
1290                 if (num_pages > dirty_pages) {
1291                         if (copied > 0) {
1292                                 spin_lock(&BTRFS_I(inode)->lock);
1293                                 BTRFS_I(inode)->outstanding_extents++;
1294                                 spin_unlock(&BTRFS_I(inode)->lock);
1295                         }
1296                         btrfs_delalloc_release_space(inode,
1297                                         (num_pages - dirty_pages) <<
1298                                         PAGE_CACHE_SHIFT);
1299                 }
1300
1301                 if (copied > 0) {
1302                         ret = btrfs_dirty_pages(root, inode, pages,
1303                                                 dirty_pages, pos, copied,
1304                                                 NULL);
1305                         if (ret) {
1306                                 btrfs_delalloc_release_space(inode,
1307                                         dirty_pages << PAGE_CACHE_SHIFT);
1308                                 btrfs_drop_pages(pages, num_pages);
1309                                 break;
1310                         }
1311                 }
1312
1313                 btrfs_drop_pages(pages, num_pages);
1314
1315                 cond_resched();
1316
1317                 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1318                                                    dirty_pages);
1319                 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1320                         btrfs_btree_balance_dirty(root, 1);
1321
1322                 pos += copied;
1323                 num_written += copied;
1324         }
1325
1326         kfree(pages);
1327
1328         return num_written ? num_written : ret;
1329 }
1330
1331 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1332                                     const struct iovec *iov,
1333                                     unsigned long nr_segs, loff_t pos,
1334                                     loff_t *ppos, size_t count, size_t ocount)
1335 {
1336         struct file *file = iocb->ki_filp;
1337         struct iov_iter i;
1338         ssize_t written;
1339         ssize_t written_buffered;
1340         loff_t endbyte;
1341         int err;
1342
1343         written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1344                                             count, ocount);
1345
1346         if (written < 0 || written == count)
1347                 return written;
1348
1349         pos += written;
1350         count -= written;
1351         iov_iter_init(&i, iov, nr_segs, count, written);
1352         written_buffered = __btrfs_buffered_write(file, &i, pos);
1353         if (written_buffered < 0) {
1354                 err = written_buffered;
1355                 goto out;
1356         }
1357         endbyte = pos + written_buffered - 1;
1358         err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1359         if (err)
1360                 goto out;
1361         written += written_buffered;
1362         *ppos = pos + written_buffered;
1363         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1364                                  endbyte >> PAGE_CACHE_SHIFT);
1365 out:
1366         return written ? written : err;
1367 }
1368
1369 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1370                                     const struct iovec *iov,
1371                                     unsigned long nr_segs, loff_t pos)
1372 {
1373         struct file *file = iocb->ki_filp;
1374         struct inode *inode = fdentry(file)->d_inode;
1375         struct btrfs_root *root = BTRFS_I(inode)->root;
1376         loff_t *ppos = &iocb->ki_pos;
1377         u64 start_pos;
1378         ssize_t num_written = 0;
1379         ssize_t err = 0;
1380         size_t count, ocount;
1381
1382         sb_start_write(inode->i_sb);
1383
1384         mutex_lock(&inode->i_mutex);
1385
1386         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1387         if (err) {
1388                 mutex_unlock(&inode->i_mutex);
1389                 goto out;
1390         }
1391         count = ocount;
1392
1393         current->backing_dev_info = inode->i_mapping->backing_dev_info;
1394         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1395         if (err) {
1396                 mutex_unlock(&inode->i_mutex);
1397                 goto out;
1398         }
1399
1400         if (count == 0) {
1401                 mutex_unlock(&inode->i_mutex);
1402                 goto out;
1403         }
1404
1405         err = file_remove_suid(file);
1406         if (err) {
1407                 mutex_unlock(&inode->i_mutex);
1408                 goto out;
1409         }
1410
1411         /*
1412          * If BTRFS flips readonly due to some impossible error
1413          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1414          * although we have opened a file as writable, we have
1415          * to stop this write operation to ensure FS consistency.
1416          */
1417         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1418                 mutex_unlock(&inode->i_mutex);
1419                 err = -EROFS;
1420                 goto out;
1421         }
1422
1423         err = file_update_time(file);
1424         if (err) {
1425                 mutex_unlock(&inode->i_mutex);
1426                 goto out;
1427         }
1428
1429         start_pos = round_down(pos, root->sectorsize);
1430         if (start_pos > i_size_read(inode)) {
1431                 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1432                 if (err) {
1433                         mutex_unlock(&inode->i_mutex);
1434                         goto out;
1435                 }
1436         }
1437
1438         if (unlikely(file->f_flags & O_DIRECT)) {
1439                 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1440                                                    pos, ppos, count, ocount);
1441         } else {
1442                 struct iov_iter i;
1443
1444                 iov_iter_init(&i, iov, nr_segs, count, num_written);
1445
1446                 num_written = __btrfs_buffered_write(file, &i, pos);
1447                 if (num_written > 0)
1448                         *ppos = pos + num_written;
1449         }
1450
1451         mutex_unlock(&inode->i_mutex);
1452
1453         /*
1454          * we want to make sure fsync finds this change
1455          * but we haven't joined a transaction running right now.
1456          *
1457          * Later on, someone is sure to update the inode and get the
1458          * real transid recorded.
1459          *
1460          * We set last_trans now to the fs_info generation + 1,
1461          * this will either be one more than the running transaction
1462          * or the generation used for the next transaction if there isn't
1463          * one running right now.
1464          */
1465         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1466         if (num_written > 0 || num_written == -EIOCBQUEUED) {
1467                 err = generic_write_sync(file, pos, num_written);
1468                 if (err < 0 && num_written > 0)
1469                         num_written = err;
1470         }
1471 out:
1472         sb_end_write(inode->i_sb);
1473         current->backing_dev_info = NULL;
1474         return num_written ? num_written : err;
1475 }
1476
1477 int btrfs_release_file(struct inode *inode, struct file *filp)
1478 {
1479         /*
1480          * ordered_data_close is set by settattr when we are about to truncate
1481          * a file from a non-zero size to a zero size.  This tries to
1482          * flush down new bytes that may have been written if the
1483          * application were using truncate to replace a file in place.
1484          */
1485         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1486                                &BTRFS_I(inode)->runtime_flags)) {
1487                 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1488                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1489                         filemap_flush(inode->i_mapping);
1490         }
1491         if (filp->private_data)
1492                 btrfs_ioctl_trans_end(filp);
1493         return 0;
1494 }
1495
1496 /*
1497  * fsync call for both files and directories.  This logs the inode into
1498  * the tree log instead of forcing full commits whenever possible.
1499  *
1500  * It needs to call filemap_fdatawait so that all ordered extent updates are
1501  * in the metadata btree are up to date for copying to the log.
1502  *
1503  * It drops the inode mutex before doing the tree log commit.  This is an
1504  * important optimization for directories because holding the mutex prevents
1505  * new operations on the dir while we write to disk.
1506  */
1507 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1508 {
1509         struct dentry *dentry = file->f_path.dentry;
1510         struct inode *inode = dentry->d_inode;
1511         struct btrfs_root *root = BTRFS_I(inode)->root;
1512         int ret = 0;
1513         struct btrfs_trans_handle *trans;
1514
1515         trace_btrfs_sync_file(file, datasync);
1516
1517         mutex_lock(&inode->i_mutex);
1518
1519         /*
1520          * we wait first, since the writeback may change the inode, also wait
1521          * ordered range does a filemape_write_and_wait_range which is why we
1522          * don't do it above like other file systems.
1523          */
1524         root->log_batch++;
1525         btrfs_wait_ordered_range(inode, start, end);
1526         root->log_batch++;
1527
1528         /*
1529          * check the transaction that last modified this inode
1530          * and see if its already been committed
1531          */
1532         if (!BTRFS_I(inode)->last_trans) {
1533                 mutex_unlock(&inode->i_mutex);
1534                 goto out;
1535         }
1536
1537         /*
1538          * if the last transaction that changed this file was before
1539          * the current transaction, we can bail out now without any
1540          * syncing
1541          */
1542         smp_mb();
1543         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1544             BTRFS_I(inode)->last_trans <=
1545             root->fs_info->last_trans_committed) {
1546                 BTRFS_I(inode)->last_trans = 0;
1547                 mutex_unlock(&inode->i_mutex);
1548                 goto out;
1549         }
1550
1551         /*
1552          * ok we haven't committed the transaction yet, lets do a commit
1553          */
1554         if (file->private_data)
1555                 btrfs_ioctl_trans_end(file);
1556
1557         trans = btrfs_start_transaction(root, 0);
1558         if (IS_ERR(trans)) {
1559                 ret = PTR_ERR(trans);
1560                 mutex_unlock(&inode->i_mutex);
1561                 goto out;
1562         }
1563
1564         ret = btrfs_log_dentry_safe(trans, root, dentry);
1565         if (ret < 0) {
1566                 mutex_unlock(&inode->i_mutex);
1567                 goto out;
1568         }
1569
1570         /* we've logged all the items and now have a consistent
1571          * version of the file in the log.  It is possible that
1572          * someone will come in and modify the file, but that's
1573          * fine because the log is consistent on disk, and we
1574          * have references to all of the file's extents
1575          *
1576          * It is possible that someone will come in and log the
1577          * file again, but that will end up using the synchronization
1578          * inside btrfs_sync_log to keep things safe.
1579          */
1580         mutex_unlock(&inode->i_mutex);
1581
1582         if (ret != BTRFS_NO_LOG_SYNC) {
1583                 if (ret > 0) {
1584                         ret = btrfs_commit_transaction(trans, root);
1585                 } else {
1586                         ret = btrfs_sync_log(trans, root);
1587                         if (ret == 0)
1588                                 ret = btrfs_end_transaction(trans, root);
1589                         else
1590                                 ret = btrfs_commit_transaction(trans, root);
1591                 }
1592         } else {
1593                 ret = btrfs_end_transaction(trans, root);
1594         }
1595 out:
1596         return ret > 0 ? -EIO : ret;
1597 }
1598
1599 static const struct vm_operations_struct btrfs_file_vm_ops = {
1600         .fault          = filemap_fault,
1601         .page_mkwrite   = btrfs_page_mkwrite,
1602 };
1603
1604 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
1605 {
1606         struct address_space *mapping = filp->f_mapping;
1607
1608         if (!mapping->a_ops->readpage)
1609                 return -ENOEXEC;
1610
1611         file_accessed(filp);
1612         vma->vm_ops = &btrfs_file_vm_ops;
1613         vma->vm_flags |= VM_CAN_NONLINEAR;
1614
1615         return 0;
1616 }
1617
1618 static long btrfs_fallocate(struct file *file, int mode,
1619                             loff_t offset, loff_t len)
1620 {
1621         struct inode *inode = file->f_path.dentry->d_inode;
1622         struct extent_state *cached_state = NULL;
1623         u64 cur_offset;
1624         u64 last_byte;
1625         u64 alloc_start;
1626         u64 alloc_end;
1627         u64 alloc_hint = 0;
1628         u64 locked_end;
1629         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1630         struct extent_map *em;
1631         int ret;
1632
1633         alloc_start = offset & ~mask;
1634         alloc_end =  (offset + len + mask) & ~mask;
1635
1636         /* We only support the FALLOC_FL_KEEP_SIZE mode */
1637         if (mode & ~FALLOC_FL_KEEP_SIZE)
1638                 return -EOPNOTSUPP;
1639
1640         /*
1641          * Make sure we have enough space before we do the
1642          * allocation.
1643          */
1644         ret = btrfs_check_data_free_space(inode, len);
1645         if (ret)
1646                 return ret;
1647
1648         /*
1649          * wait for ordered IO before we have any locks.  We'll loop again
1650          * below with the locks held.
1651          */
1652         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1653
1654         mutex_lock(&inode->i_mutex);
1655         ret = inode_newsize_ok(inode, alloc_end);
1656         if (ret)
1657                 goto out;
1658
1659         if (alloc_start > inode->i_size) {
1660                 ret = btrfs_cont_expand(inode, i_size_read(inode),
1661                                         alloc_start);
1662                 if (ret)
1663                         goto out;
1664         }
1665
1666         locked_end = alloc_end - 1;
1667         while (1) {
1668                 struct btrfs_ordered_extent *ordered;
1669
1670                 /* the extent lock is ordered inside the running
1671                  * transaction
1672                  */
1673                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1674                                  locked_end, 0, &cached_state);
1675                 ordered = btrfs_lookup_first_ordered_extent(inode,
1676                                                             alloc_end - 1);
1677                 if (ordered &&
1678                     ordered->file_offset + ordered->len > alloc_start &&
1679                     ordered->file_offset < alloc_end) {
1680                         btrfs_put_ordered_extent(ordered);
1681                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1682                                              alloc_start, locked_end,
1683                                              &cached_state, GFP_NOFS);
1684                         /*
1685                          * we can't wait on the range with the transaction
1686                          * running or with the extent lock held
1687                          */
1688                         btrfs_wait_ordered_range(inode, alloc_start,
1689                                                  alloc_end - alloc_start);
1690                 } else {
1691                         if (ordered)
1692                                 btrfs_put_ordered_extent(ordered);
1693                         break;
1694                 }
1695         }
1696
1697         cur_offset = alloc_start;
1698         while (1) {
1699                 u64 actual_end;
1700
1701                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1702                                       alloc_end - cur_offset, 0);
1703                 if (IS_ERR_OR_NULL(em)) {
1704                         if (!em)
1705                                 ret = -ENOMEM;
1706                         else
1707                                 ret = PTR_ERR(em);
1708                         break;
1709                 }
1710                 last_byte = min(extent_map_end(em), alloc_end);
1711                 actual_end = min_t(u64, extent_map_end(em), offset + len);
1712                 last_byte = (last_byte + mask) & ~mask;
1713
1714                 if (em->block_start == EXTENT_MAP_HOLE ||
1715                     (cur_offset >= inode->i_size &&
1716                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1717                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1718                                                         last_byte - cur_offset,
1719                                                         1 << inode->i_blkbits,
1720                                                         offset + len,
1721                                                         &alloc_hint);
1722
1723                         if (ret < 0) {
1724                                 free_extent_map(em);
1725                                 break;
1726                         }
1727                 } else if (actual_end > inode->i_size &&
1728                            !(mode & FALLOC_FL_KEEP_SIZE)) {
1729                         /*
1730                          * We didn't need to allocate any more space, but we
1731                          * still extended the size of the file so we need to
1732                          * update i_size.
1733                          */
1734                         inode->i_ctime = CURRENT_TIME;
1735                         i_size_write(inode, actual_end);
1736                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
1737                 }
1738                 free_extent_map(em);
1739
1740                 cur_offset = last_byte;
1741                 if (cur_offset >= alloc_end) {
1742                         ret = 0;
1743                         break;
1744                 }
1745         }
1746         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1747                              &cached_state, GFP_NOFS);
1748 out:
1749         mutex_unlock(&inode->i_mutex);
1750         /* Let go of our reservation. */
1751         btrfs_free_reserved_data_space(inode, len);
1752         return ret;
1753 }
1754
1755 static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
1756 {
1757         struct btrfs_root *root = BTRFS_I(inode)->root;
1758         struct extent_map *em;
1759         struct extent_state *cached_state = NULL;
1760         u64 lockstart = *offset;
1761         u64 lockend = i_size_read(inode);
1762         u64 start = *offset;
1763         u64 orig_start = *offset;
1764         u64 len = i_size_read(inode);
1765         u64 last_end = 0;
1766         int ret = 0;
1767
1768         lockend = max_t(u64, root->sectorsize, lockend);
1769         if (lockend <= lockstart)
1770                 lockend = lockstart + root->sectorsize;
1771
1772         len = lockend - lockstart + 1;
1773
1774         len = max_t(u64, len, root->sectorsize);
1775         if (inode->i_size == 0)
1776                 return -ENXIO;
1777
1778         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
1779                          &cached_state);
1780
1781         /*
1782          * Delalloc is such a pain.  If we have a hole and we have pending
1783          * delalloc for a portion of the hole we will get back a hole that
1784          * exists for the entire range since it hasn't been actually written
1785          * yet.  So to take care of this case we need to look for an extent just
1786          * before the position we want in case there is outstanding delalloc
1787          * going on here.
1788          */
1789         if (origin == SEEK_HOLE && start != 0) {
1790                 if (start <= root->sectorsize)
1791                         em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
1792                                                      root->sectorsize, 0);
1793                 else
1794                         em = btrfs_get_extent_fiemap(inode, NULL, 0,
1795                                                      start - root->sectorsize,
1796                                                      root->sectorsize, 0);
1797                 if (IS_ERR(em)) {
1798                         ret = PTR_ERR(em);
1799                         goto out;
1800                 }
1801                 last_end = em->start + em->len;
1802                 if (em->block_start == EXTENT_MAP_DELALLOC)
1803                         last_end = min_t(u64, last_end, inode->i_size);
1804                 free_extent_map(em);
1805         }
1806
1807         while (1) {
1808                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
1809                 if (IS_ERR(em)) {
1810                         ret = PTR_ERR(em);
1811                         break;
1812                 }
1813
1814                 if (em->block_start == EXTENT_MAP_HOLE) {
1815                         if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1816                                 if (last_end <= orig_start) {
1817                                         free_extent_map(em);
1818                                         ret = -ENXIO;
1819                                         break;
1820                                 }
1821                         }
1822
1823                         if (origin == SEEK_HOLE) {
1824                                 *offset = start;
1825                                 free_extent_map(em);
1826                                 break;
1827                         }
1828                 } else {
1829                         if (origin == SEEK_DATA) {
1830                                 if (em->block_start == EXTENT_MAP_DELALLOC) {
1831                                         if (start >= inode->i_size) {
1832                                                 free_extent_map(em);
1833                                                 ret = -ENXIO;
1834                                                 break;
1835                                         }
1836                                 }
1837
1838                                 *offset = start;
1839                                 free_extent_map(em);
1840                                 break;
1841                         }
1842                 }
1843
1844                 start = em->start + em->len;
1845                 last_end = em->start + em->len;
1846
1847                 if (em->block_start == EXTENT_MAP_DELALLOC)
1848                         last_end = min_t(u64, last_end, inode->i_size);
1849
1850                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1851                         free_extent_map(em);
1852                         ret = -ENXIO;
1853                         break;
1854                 }
1855                 free_extent_map(em);
1856                 cond_resched();
1857         }
1858         if (!ret)
1859                 *offset = min(*offset, inode->i_size);
1860 out:
1861         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1862                              &cached_state, GFP_NOFS);
1863         return ret;
1864 }
1865
1866 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
1867 {
1868         struct inode *inode = file->f_mapping->host;
1869         int ret;
1870
1871         mutex_lock(&inode->i_mutex);
1872         switch (origin) {
1873         case SEEK_END:
1874         case SEEK_CUR:
1875                 offset = generic_file_llseek(file, offset, origin);
1876                 goto out;
1877         case SEEK_DATA:
1878         case SEEK_HOLE:
1879                 if (offset >= i_size_read(inode)) {
1880                         mutex_unlock(&inode->i_mutex);
1881                         return -ENXIO;
1882                 }
1883
1884                 ret = find_desired_extent(inode, &offset, origin);
1885                 if (ret) {
1886                         mutex_unlock(&inode->i_mutex);
1887                         return ret;
1888                 }
1889         }
1890
1891         if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
1892                 offset = -EINVAL;
1893                 goto out;
1894         }
1895         if (offset > inode->i_sb->s_maxbytes) {
1896                 offset = -EINVAL;
1897                 goto out;
1898         }
1899
1900         /* Special lock needed here? */
1901         if (offset != file->f_pos) {
1902                 file->f_pos = offset;
1903                 file->f_version = 0;
1904         }
1905 out:
1906         mutex_unlock(&inode->i_mutex);
1907         return offset;
1908 }
1909
1910 const struct file_operations btrfs_file_operations = {
1911         .llseek         = btrfs_file_llseek,
1912         .read           = do_sync_read,
1913         .write          = do_sync_write,
1914         .aio_read       = generic_file_aio_read,
1915         .splice_read    = generic_file_splice_read,
1916         .aio_write      = btrfs_file_aio_write,
1917         .mmap           = btrfs_file_mmap,
1918         .open           = generic_file_open,
1919         .release        = btrfs_release_file,
1920         .fsync          = btrfs_sync_file,
1921         .fallocate      = btrfs_fallocate,
1922         .unlocked_ioctl = btrfs_ioctl,
1923 #ifdef CONFIG_COMPAT
1924         .compat_ioctl   = btrfs_ioctl,
1925 #endif
1926 };