Merge tag 'x86_urgent_for_v5.15_rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36  * when auto defrag is enabled we
37  * queue up these defrag structs to remember which
38  * inodes need defragging passes
39  */
40 struct inode_defrag {
41         struct rb_node rb_node;
42         /* objectid */
43         u64 ino;
44         /*
45          * transid where the defrag was added, we search for
46          * extents newer than this
47          */
48         u64 transid;
49
50         /* root objectid */
51         u64 root;
52
53         /* last offset we were able to defrag */
54         u64 last_offset;
55
56         /* if we've wrapped around back to zero once already */
57         int cycled;
58 };
59
60 static int __compare_inode_defrag(struct inode_defrag *defrag1,
61                                   struct inode_defrag *defrag2)
62 {
63         if (defrag1->root > defrag2->root)
64                 return 1;
65         else if (defrag1->root < defrag2->root)
66                 return -1;
67         else if (defrag1->ino > defrag2->ino)
68                 return 1;
69         else if (defrag1->ino < defrag2->ino)
70                 return -1;
71         else
72                 return 0;
73 }
74
75 /* pop a record for an inode into the defrag tree.  The lock
76  * must be held already
77  *
78  * If you're inserting a record for an older transid than an
79  * existing record, the transid already in the tree is lowered
80  *
81  * If an existing record is found the defrag item you
82  * pass in is freed
83  */
84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
85                                     struct inode_defrag *defrag)
86 {
87         struct btrfs_fs_info *fs_info = inode->root->fs_info;
88         struct inode_defrag *entry;
89         struct rb_node **p;
90         struct rb_node *parent = NULL;
91         int ret;
92
93         p = &fs_info->defrag_inodes.rb_node;
94         while (*p) {
95                 parent = *p;
96                 entry = rb_entry(parent, struct inode_defrag, rb_node);
97
98                 ret = __compare_inode_defrag(defrag, entry);
99                 if (ret < 0)
100                         p = &parent->rb_left;
101                 else if (ret > 0)
102                         p = &parent->rb_right;
103                 else {
104                         /* if we're reinserting an entry for
105                          * an old defrag run, make sure to
106                          * lower the transid of our existing record
107                          */
108                         if (defrag->transid < entry->transid)
109                                 entry->transid = defrag->transid;
110                         if (defrag->last_offset > entry->last_offset)
111                                 entry->last_offset = defrag->last_offset;
112                         return -EEXIST;
113                 }
114         }
115         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
116         rb_link_node(&defrag->rb_node, parent, p);
117         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
118         return 0;
119 }
120
121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 {
123         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
124                 return 0;
125
126         if (btrfs_fs_closing(fs_info))
127                 return 0;
128
129         return 1;
130 }
131
132 /*
133  * insert a defrag record for this inode if auto defrag is
134  * enabled
135  */
136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
137                            struct btrfs_inode *inode)
138 {
139         struct btrfs_root *root = inode->root;
140         struct btrfs_fs_info *fs_info = root->fs_info;
141         struct inode_defrag *defrag;
142         u64 transid;
143         int ret;
144
145         if (!__need_auto_defrag(fs_info))
146                 return 0;
147
148         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
149                 return 0;
150
151         if (trans)
152                 transid = trans->transid;
153         else
154                 transid = inode->root->last_trans;
155
156         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
157         if (!defrag)
158                 return -ENOMEM;
159
160         defrag->ino = btrfs_ino(inode);
161         defrag->transid = transid;
162         defrag->root = root->root_key.objectid;
163
164         spin_lock(&fs_info->defrag_inodes_lock);
165         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166                 /*
167                  * If we set IN_DEFRAG flag and evict the inode from memory,
168                  * and then re-read this inode, this new inode doesn't have
169                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
170                  */
171                 ret = __btrfs_add_inode_defrag(inode, defrag);
172                 if (ret)
173                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174         } else {
175                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176         }
177         spin_unlock(&fs_info->defrag_inodes_lock);
178         return 0;
179 }
180
181 /*
182  * Requeue the defrag object. If there is a defrag object that points to
183  * the same inode in the tree, we will merge them together (by
184  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185  */
186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
187                                        struct inode_defrag *defrag)
188 {
189         struct btrfs_fs_info *fs_info = inode->root->fs_info;
190         int ret;
191
192         if (!__need_auto_defrag(fs_info))
193                 goto out;
194
195         /*
196          * Here we don't check the IN_DEFRAG flag, because we need merge
197          * them together.
198          */
199         spin_lock(&fs_info->defrag_inodes_lock);
200         ret = __btrfs_add_inode_defrag(inode, defrag);
201         spin_unlock(&fs_info->defrag_inodes_lock);
202         if (ret)
203                 goto out;
204         return;
205 out:
206         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
207 }
208
209 /*
210  * pick the defragable inode that we want, if it doesn't exist, we will get
211  * the next one.
212  */
213 static struct inode_defrag *
214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 {
216         struct inode_defrag *entry = NULL;
217         struct inode_defrag tmp;
218         struct rb_node *p;
219         struct rb_node *parent = NULL;
220         int ret;
221
222         tmp.ino = ino;
223         tmp.root = root;
224
225         spin_lock(&fs_info->defrag_inodes_lock);
226         p = fs_info->defrag_inodes.rb_node;
227         while (p) {
228                 parent = p;
229                 entry = rb_entry(parent, struct inode_defrag, rb_node);
230
231                 ret = __compare_inode_defrag(&tmp, entry);
232                 if (ret < 0)
233                         p = parent->rb_left;
234                 else if (ret > 0)
235                         p = parent->rb_right;
236                 else
237                         goto out;
238         }
239
240         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
241                 parent = rb_next(parent);
242                 if (parent)
243                         entry = rb_entry(parent, struct inode_defrag, rb_node);
244                 else
245                         entry = NULL;
246         }
247 out:
248         if (entry)
249                 rb_erase(parent, &fs_info->defrag_inodes);
250         spin_unlock(&fs_info->defrag_inodes_lock);
251         return entry;
252 }
253
254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 {
256         struct inode_defrag *defrag;
257         struct rb_node *node;
258
259         spin_lock(&fs_info->defrag_inodes_lock);
260         node = rb_first(&fs_info->defrag_inodes);
261         while (node) {
262                 rb_erase(node, &fs_info->defrag_inodes);
263                 defrag = rb_entry(node, struct inode_defrag, rb_node);
264                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265
266                 cond_resched_lock(&fs_info->defrag_inodes_lock);
267
268                 node = rb_first(&fs_info->defrag_inodes);
269         }
270         spin_unlock(&fs_info->defrag_inodes_lock);
271 }
272
273 #define BTRFS_DEFRAG_BATCH      1024
274
275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
276                                     struct inode_defrag *defrag)
277 {
278         struct btrfs_root *inode_root;
279         struct inode *inode;
280         struct btrfs_ioctl_defrag_range_args range;
281         int num_defrag;
282         int ret;
283
284         /* get the inode */
285         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
286         if (IS_ERR(inode_root)) {
287                 ret = PTR_ERR(inode_root);
288                 goto cleanup;
289         }
290
291         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
292         btrfs_put_root(inode_root);
293         if (IS_ERR(inode)) {
294                 ret = PTR_ERR(inode);
295                 goto cleanup;
296         }
297
298         /* do a chunk of defrag */
299         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
300         memset(&range, 0, sizeof(range));
301         range.len = (u64)-1;
302         range.start = defrag->last_offset;
303
304         sb_start_write(fs_info->sb);
305         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306                                        BTRFS_DEFRAG_BATCH);
307         sb_end_write(fs_info->sb);
308         /*
309          * if we filled the whole defrag batch, there
310          * must be more work to do.  Queue this defrag
311          * again
312          */
313         if (num_defrag == BTRFS_DEFRAG_BATCH) {
314                 defrag->last_offset = range.start;
315                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
316         } else if (defrag->last_offset && !defrag->cycled) {
317                 /*
318                  * we didn't fill our defrag batch, but
319                  * we didn't start at zero.  Make sure we loop
320                  * around to the start of the file.
321                  */
322                 defrag->last_offset = 0;
323                 defrag->cycled = 1;
324                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
325         } else {
326                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
327         }
328
329         iput(inode);
330         return 0;
331 cleanup:
332         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333         return ret;
334 }
335
336 /*
337  * run through the list of inodes in the FS that need
338  * defragging
339  */
340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341 {
342         struct inode_defrag *defrag;
343         u64 first_ino = 0;
344         u64 root_objectid = 0;
345
346         atomic_inc(&fs_info->defrag_running);
347         while (1) {
348                 /* Pause the auto defragger. */
349                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
350                              &fs_info->fs_state))
351                         break;
352
353                 if (!__need_auto_defrag(fs_info))
354                         break;
355
356                 /* find an inode to defrag */
357                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358                                                  first_ino);
359                 if (!defrag) {
360                         if (root_objectid || first_ino) {
361                                 root_objectid = 0;
362                                 first_ino = 0;
363                                 continue;
364                         } else {
365                                 break;
366                         }
367                 }
368
369                 first_ino = defrag->ino + 1;
370                 root_objectid = defrag->root;
371
372                 __btrfs_run_defrag_inode(fs_info, defrag);
373         }
374         atomic_dec(&fs_info->defrag_running);
375
376         /*
377          * during unmount, we use the transaction_wait queue to
378          * wait for the defragger to stop
379          */
380         wake_up(&fs_info->transaction_wait);
381         return 0;
382 }
383
384 /* simple helper to fault in pages and copy.  This should go away
385  * and be replaced with calls into generic code.
386  */
387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
388                                          struct page **prepared_pages,
389                                          struct iov_iter *i)
390 {
391         size_t copied = 0;
392         size_t total_copied = 0;
393         int pg = 0;
394         int offset = offset_in_page(pos);
395
396         while (write_bytes > 0) {
397                 size_t count = min_t(size_t,
398                                      PAGE_SIZE - offset, write_bytes);
399                 struct page *page = prepared_pages[pg];
400                 /*
401                  * Copy data from userspace to the current page
402                  */
403                 copied = copy_page_from_iter_atomic(page, offset, count, i);
404
405                 /* Flush processor's dcache for this page */
406                 flush_dcache_page(page);
407
408                 /*
409                  * if we get a partial write, we can end up with
410                  * partially up to date pages.  These add
411                  * a lot of complexity, so make sure they don't
412                  * happen by forcing this copy to be retried.
413                  *
414                  * The rest of the btrfs_file_write code will fall
415                  * back to page at a time copies after we return 0.
416                  */
417                 if (unlikely(copied < count)) {
418                         if (!PageUptodate(page)) {
419                                 iov_iter_revert(i, copied);
420                                 copied = 0;
421                         }
422                         if (!copied)
423                                 break;
424                 }
425
426                 write_bytes -= copied;
427                 total_copied += copied;
428                 offset += copied;
429                 if (offset == PAGE_SIZE) {
430                         pg++;
431                         offset = 0;
432                 }
433         }
434         return total_copied;
435 }
436
437 /*
438  * unlocks pages after btrfs_file_write is done with them
439  */
440 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
441 {
442         size_t i;
443         for (i = 0; i < num_pages; i++) {
444                 /* page checked is some magic around finding pages that
445                  * have been modified without going through btrfs_set_page_dirty
446                  * clear it here. There should be no need to mark the pages
447                  * accessed as prepare_pages should have marked them accessed
448                  * in prepare_pages via find_or_create_page()
449                  */
450                 ClearPageChecked(pages[i]);
451                 unlock_page(pages[i]);
452                 put_page(pages[i]);
453         }
454 }
455
456 /*
457  * After btrfs_copy_from_user(), update the following things for delalloc:
458  * - Mark newly dirtied pages as DELALLOC in the io tree.
459  *   Used to advise which range is to be written back.
460  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
461  * - Update inode size for past EOF write
462  */
463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464                       size_t num_pages, loff_t pos, size_t write_bytes,
465                       struct extent_state **cached, bool noreserve)
466 {
467         struct btrfs_fs_info *fs_info = inode->root->fs_info;
468         int err = 0;
469         int i;
470         u64 num_bytes;
471         u64 start_pos;
472         u64 end_of_last_block;
473         u64 end_pos = pos + write_bytes;
474         loff_t isize = i_size_read(&inode->vfs_inode);
475         unsigned int extra_bits = 0;
476
477         if (write_bytes == 0)
478                 return 0;
479
480         if (noreserve)
481                 extra_bits |= EXTENT_NORESERVE;
482
483         start_pos = round_down(pos, fs_info->sectorsize);
484         num_bytes = round_up(write_bytes + pos - start_pos,
485                              fs_info->sectorsize);
486         ASSERT(num_bytes <= U32_MAX);
487
488         end_of_last_block = start_pos + num_bytes - 1;
489
490         /*
491          * The pages may have already been dirty, clear out old accounting so
492          * we can set things up properly
493          */
494         clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
495                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
496                          0, 0, cached);
497
498         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
499                                         extra_bits, cached);
500         if (err)
501                 return err;
502
503         for (i = 0; i < num_pages; i++) {
504                 struct page *p = pages[i];
505
506                 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
507                 ClearPageChecked(p);
508                 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
509         }
510
511         /*
512          * we've only changed i_size in ram, and we haven't updated
513          * the disk i_size.  There is no need to log the inode
514          * at this time.
515          */
516         if (end_pos > isize)
517                 i_size_write(&inode->vfs_inode, end_pos);
518         return 0;
519 }
520
521 /*
522  * this drops all the extents in the cache that intersect the range
523  * [start, end].  Existing extents are split as required.
524  */
525 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
526                              int skip_pinned)
527 {
528         struct extent_map *em;
529         struct extent_map *split = NULL;
530         struct extent_map *split2 = NULL;
531         struct extent_map_tree *em_tree = &inode->extent_tree;
532         u64 len = end - start + 1;
533         u64 gen;
534         int ret;
535         int testend = 1;
536         unsigned long flags;
537         int compressed = 0;
538         bool modified;
539
540         WARN_ON(end < start);
541         if (end == (u64)-1) {
542                 len = (u64)-1;
543                 testend = 0;
544         }
545         while (1) {
546                 int no_splits = 0;
547
548                 modified = false;
549                 if (!split)
550                         split = alloc_extent_map();
551                 if (!split2)
552                         split2 = alloc_extent_map();
553                 if (!split || !split2)
554                         no_splits = 1;
555
556                 write_lock(&em_tree->lock);
557                 em = lookup_extent_mapping(em_tree, start, len);
558                 if (!em) {
559                         write_unlock(&em_tree->lock);
560                         break;
561                 }
562                 flags = em->flags;
563                 gen = em->generation;
564                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
565                         if (testend && em->start + em->len >= start + len) {
566                                 free_extent_map(em);
567                                 write_unlock(&em_tree->lock);
568                                 break;
569                         }
570                         start = em->start + em->len;
571                         if (testend)
572                                 len = start + len - (em->start + em->len);
573                         free_extent_map(em);
574                         write_unlock(&em_tree->lock);
575                         continue;
576                 }
577                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
578                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
579                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
580                 modified = !list_empty(&em->list);
581                 if (no_splits)
582                         goto next;
583
584                 if (em->start < start) {
585                         split->start = em->start;
586                         split->len = start - em->start;
587
588                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
589                                 split->orig_start = em->orig_start;
590                                 split->block_start = em->block_start;
591
592                                 if (compressed)
593                                         split->block_len = em->block_len;
594                                 else
595                                         split->block_len = split->len;
596                                 split->orig_block_len = max(split->block_len,
597                                                 em->orig_block_len);
598                                 split->ram_bytes = em->ram_bytes;
599                         } else {
600                                 split->orig_start = split->start;
601                                 split->block_len = 0;
602                                 split->block_start = em->block_start;
603                                 split->orig_block_len = 0;
604                                 split->ram_bytes = split->len;
605                         }
606
607                         split->generation = gen;
608                         split->flags = flags;
609                         split->compress_type = em->compress_type;
610                         replace_extent_mapping(em_tree, em, split, modified);
611                         free_extent_map(split);
612                         split = split2;
613                         split2 = NULL;
614                 }
615                 if (testend && em->start + em->len > start + len) {
616                         u64 diff = start + len - em->start;
617
618                         split->start = start + len;
619                         split->len = em->start + em->len - (start + len);
620                         split->flags = flags;
621                         split->compress_type = em->compress_type;
622                         split->generation = gen;
623
624                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
625                                 split->orig_block_len = max(em->block_len,
626                                                     em->orig_block_len);
627
628                                 split->ram_bytes = em->ram_bytes;
629                                 if (compressed) {
630                                         split->block_len = em->block_len;
631                                         split->block_start = em->block_start;
632                                         split->orig_start = em->orig_start;
633                                 } else {
634                                         split->block_len = split->len;
635                                         split->block_start = em->block_start
636                                                 + diff;
637                                         split->orig_start = em->orig_start;
638                                 }
639                         } else {
640                                 split->ram_bytes = split->len;
641                                 split->orig_start = split->start;
642                                 split->block_len = 0;
643                                 split->block_start = em->block_start;
644                                 split->orig_block_len = 0;
645                         }
646
647                         if (extent_map_in_tree(em)) {
648                                 replace_extent_mapping(em_tree, em, split,
649                                                        modified);
650                         } else {
651                                 ret = add_extent_mapping(em_tree, split,
652                                                          modified);
653                                 ASSERT(ret == 0); /* Logic error */
654                         }
655                         free_extent_map(split);
656                         split = NULL;
657                 }
658 next:
659                 if (extent_map_in_tree(em))
660                         remove_extent_mapping(em_tree, em);
661                 write_unlock(&em_tree->lock);
662
663                 /* once for us */
664                 free_extent_map(em);
665                 /* once for the tree*/
666                 free_extent_map(em);
667         }
668         if (split)
669                 free_extent_map(split);
670         if (split2)
671                 free_extent_map(split2);
672 }
673
674 /*
675  * this is very complex, but the basic idea is to drop all extents
676  * in the range start - end.  hint_block is filled in with a block number
677  * that would be a good hint to the block allocator for this file.
678  *
679  * If an extent intersects the range but is not entirely inside the range
680  * it is either truncated or split.  Anything entirely inside the range
681  * is deleted from the tree.
682  *
683  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
684  * to deal with that. We set the field 'bytes_found' of the arguments structure
685  * with the number of allocated bytes found in the target range, so that the
686  * caller can update the inode's number of bytes in an atomic way when
687  * replacing extents in a range to avoid races with stat(2).
688  */
689 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
690                        struct btrfs_root *root, struct btrfs_inode *inode,
691                        struct btrfs_drop_extents_args *args)
692 {
693         struct btrfs_fs_info *fs_info = root->fs_info;
694         struct extent_buffer *leaf;
695         struct btrfs_file_extent_item *fi;
696         struct btrfs_ref ref = { 0 };
697         struct btrfs_key key;
698         struct btrfs_key new_key;
699         u64 ino = btrfs_ino(inode);
700         u64 search_start = args->start;
701         u64 disk_bytenr = 0;
702         u64 num_bytes = 0;
703         u64 extent_offset = 0;
704         u64 extent_end = 0;
705         u64 last_end = args->start;
706         int del_nr = 0;
707         int del_slot = 0;
708         int extent_type;
709         int recow;
710         int ret;
711         int modify_tree = -1;
712         int update_refs;
713         int found = 0;
714         int leafs_visited = 0;
715         struct btrfs_path *path = args->path;
716
717         args->bytes_found = 0;
718         args->extent_inserted = false;
719
720         /* Must always have a path if ->replace_extent is true */
721         ASSERT(!(args->replace_extent && !args->path));
722
723         if (!path) {
724                 path = btrfs_alloc_path();
725                 if (!path) {
726                         ret = -ENOMEM;
727                         goto out;
728                 }
729         }
730
731         if (args->drop_cache)
732                 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
733
734         if (args->start >= inode->disk_i_size && !args->replace_extent)
735                 modify_tree = 0;
736
737         update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
738         while (1) {
739                 recow = 0;
740                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
741                                                search_start, modify_tree);
742                 if (ret < 0)
743                         break;
744                 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
745                         leaf = path->nodes[0];
746                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
747                         if (key.objectid == ino &&
748                             key.type == BTRFS_EXTENT_DATA_KEY)
749                                 path->slots[0]--;
750                 }
751                 ret = 0;
752                 leafs_visited++;
753 next_slot:
754                 leaf = path->nodes[0];
755                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
756                         BUG_ON(del_nr > 0);
757                         ret = btrfs_next_leaf(root, path);
758                         if (ret < 0)
759                                 break;
760                         if (ret > 0) {
761                                 ret = 0;
762                                 break;
763                         }
764                         leafs_visited++;
765                         leaf = path->nodes[0];
766                         recow = 1;
767                 }
768
769                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
770
771                 if (key.objectid > ino)
772                         break;
773                 if (WARN_ON_ONCE(key.objectid < ino) ||
774                     key.type < BTRFS_EXTENT_DATA_KEY) {
775                         ASSERT(del_nr == 0);
776                         path->slots[0]++;
777                         goto next_slot;
778                 }
779                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
780                         break;
781
782                 fi = btrfs_item_ptr(leaf, path->slots[0],
783                                     struct btrfs_file_extent_item);
784                 extent_type = btrfs_file_extent_type(leaf, fi);
785
786                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
787                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
788                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
789                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
790                         extent_offset = btrfs_file_extent_offset(leaf, fi);
791                         extent_end = key.offset +
792                                 btrfs_file_extent_num_bytes(leaf, fi);
793                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
794                         extent_end = key.offset +
795                                 btrfs_file_extent_ram_bytes(leaf, fi);
796                 } else {
797                         /* can't happen */
798                         BUG();
799                 }
800
801                 /*
802                  * Don't skip extent items representing 0 byte lengths. They
803                  * used to be created (bug) if while punching holes we hit
804                  * -ENOSPC condition. So if we find one here, just ensure we
805                  * delete it, otherwise we would insert a new file extent item
806                  * with the same key (offset) as that 0 bytes length file
807                  * extent item in the call to setup_items_for_insert() later
808                  * in this function.
809                  */
810                 if (extent_end == key.offset && extent_end >= search_start) {
811                         last_end = extent_end;
812                         goto delete_extent_item;
813                 }
814
815                 if (extent_end <= search_start) {
816                         path->slots[0]++;
817                         goto next_slot;
818                 }
819
820                 found = 1;
821                 search_start = max(key.offset, args->start);
822                 if (recow || !modify_tree) {
823                         modify_tree = -1;
824                         btrfs_release_path(path);
825                         continue;
826                 }
827
828                 /*
829                  *     | - range to drop - |
830                  *  | -------- extent -------- |
831                  */
832                 if (args->start > key.offset && args->end < extent_end) {
833                         BUG_ON(del_nr > 0);
834                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
835                                 ret = -EOPNOTSUPP;
836                                 break;
837                         }
838
839                         memcpy(&new_key, &key, sizeof(new_key));
840                         new_key.offset = args->start;
841                         ret = btrfs_duplicate_item(trans, root, path,
842                                                    &new_key);
843                         if (ret == -EAGAIN) {
844                                 btrfs_release_path(path);
845                                 continue;
846                         }
847                         if (ret < 0)
848                                 break;
849
850                         leaf = path->nodes[0];
851                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
852                                             struct btrfs_file_extent_item);
853                         btrfs_set_file_extent_num_bytes(leaf, fi,
854                                                         args->start - key.offset);
855
856                         fi = btrfs_item_ptr(leaf, path->slots[0],
857                                             struct btrfs_file_extent_item);
858
859                         extent_offset += args->start - key.offset;
860                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
861                         btrfs_set_file_extent_num_bytes(leaf, fi,
862                                                         extent_end - args->start);
863                         btrfs_mark_buffer_dirty(leaf);
864
865                         if (update_refs && disk_bytenr > 0) {
866                                 btrfs_init_generic_ref(&ref,
867                                                 BTRFS_ADD_DELAYED_REF,
868                                                 disk_bytenr, num_bytes, 0);
869                                 btrfs_init_data_ref(&ref,
870                                                 root->root_key.objectid,
871                                                 new_key.objectid,
872                                                 args->start - extent_offset);
873                                 ret = btrfs_inc_extent_ref(trans, &ref);
874                                 BUG_ON(ret); /* -ENOMEM */
875                         }
876                         key.offset = args->start;
877                 }
878                 /*
879                  * From here on out we will have actually dropped something, so
880                  * last_end can be updated.
881                  */
882                 last_end = extent_end;
883
884                 /*
885                  *  | ---- range to drop ----- |
886                  *      | -------- extent -------- |
887                  */
888                 if (args->start <= key.offset && args->end < extent_end) {
889                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
890                                 ret = -EOPNOTSUPP;
891                                 break;
892                         }
893
894                         memcpy(&new_key, &key, sizeof(new_key));
895                         new_key.offset = args->end;
896                         btrfs_set_item_key_safe(fs_info, path, &new_key);
897
898                         extent_offset += args->end - key.offset;
899                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
900                         btrfs_set_file_extent_num_bytes(leaf, fi,
901                                                         extent_end - args->end);
902                         btrfs_mark_buffer_dirty(leaf);
903                         if (update_refs && disk_bytenr > 0)
904                                 args->bytes_found += args->end - key.offset;
905                         break;
906                 }
907
908                 search_start = extent_end;
909                 /*
910                  *       | ---- range to drop ----- |
911                  *  | -------- extent -------- |
912                  */
913                 if (args->start > key.offset && args->end >= extent_end) {
914                         BUG_ON(del_nr > 0);
915                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
916                                 ret = -EOPNOTSUPP;
917                                 break;
918                         }
919
920                         btrfs_set_file_extent_num_bytes(leaf, fi,
921                                                         args->start - key.offset);
922                         btrfs_mark_buffer_dirty(leaf);
923                         if (update_refs && disk_bytenr > 0)
924                                 args->bytes_found += extent_end - args->start;
925                         if (args->end == extent_end)
926                                 break;
927
928                         path->slots[0]++;
929                         goto next_slot;
930                 }
931
932                 /*
933                  *  | ---- range to drop ----- |
934                  *    | ------ extent ------ |
935                  */
936                 if (args->start <= key.offset && args->end >= extent_end) {
937 delete_extent_item:
938                         if (del_nr == 0) {
939                                 del_slot = path->slots[0];
940                                 del_nr = 1;
941                         } else {
942                                 BUG_ON(del_slot + del_nr != path->slots[0]);
943                                 del_nr++;
944                         }
945
946                         if (update_refs &&
947                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
948                                 args->bytes_found += extent_end - key.offset;
949                                 extent_end = ALIGN(extent_end,
950                                                    fs_info->sectorsize);
951                         } else if (update_refs && disk_bytenr > 0) {
952                                 btrfs_init_generic_ref(&ref,
953                                                 BTRFS_DROP_DELAYED_REF,
954                                                 disk_bytenr, num_bytes, 0);
955                                 btrfs_init_data_ref(&ref,
956                                                 root->root_key.objectid,
957                                                 key.objectid,
958                                                 key.offset - extent_offset);
959                                 ret = btrfs_free_extent(trans, &ref);
960                                 BUG_ON(ret); /* -ENOMEM */
961                                 args->bytes_found += extent_end - key.offset;
962                         }
963
964                         if (args->end == extent_end)
965                                 break;
966
967                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
968                                 path->slots[0]++;
969                                 goto next_slot;
970                         }
971
972                         ret = btrfs_del_items(trans, root, path, del_slot,
973                                               del_nr);
974                         if (ret) {
975                                 btrfs_abort_transaction(trans, ret);
976                                 break;
977                         }
978
979                         del_nr = 0;
980                         del_slot = 0;
981
982                         btrfs_release_path(path);
983                         continue;
984                 }
985
986                 BUG();
987         }
988
989         if (!ret && del_nr > 0) {
990                 /*
991                  * Set path->slots[0] to first slot, so that after the delete
992                  * if items are move off from our leaf to its immediate left or
993                  * right neighbor leafs, we end up with a correct and adjusted
994                  * path->slots[0] for our insertion (if args->replace_extent).
995                  */
996                 path->slots[0] = del_slot;
997                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
998                 if (ret)
999                         btrfs_abort_transaction(trans, ret);
1000         }
1001
1002         leaf = path->nodes[0];
1003         /*
1004          * If btrfs_del_items() was called, it might have deleted a leaf, in
1005          * which case it unlocked our path, so check path->locks[0] matches a
1006          * write lock.
1007          */
1008         if (!ret && args->replace_extent && leafs_visited == 1 &&
1009             path->locks[0] == BTRFS_WRITE_LOCK &&
1010             btrfs_leaf_free_space(leaf) >=
1011             sizeof(struct btrfs_item) + args->extent_item_size) {
1012
1013                 key.objectid = ino;
1014                 key.type = BTRFS_EXTENT_DATA_KEY;
1015                 key.offset = args->start;
1016                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1017                         struct btrfs_key slot_key;
1018
1019                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1020                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1021                                 path->slots[0]++;
1022                 }
1023                 setup_items_for_insert(root, path, &key,
1024                                        &args->extent_item_size, 1);
1025                 args->extent_inserted = true;
1026         }
1027
1028         if (!args->path)
1029                 btrfs_free_path(path);
1030         else if (!args->extent_inserted)
1031                 btrfs_release_path(path);
1032 out:
1033         args->drop_end = found ? min(args->end, last_end) : args->end;
1034
1035         return ret;
1036 }
1037
1038 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1039                             u64 objectid, u64 bytenr, u64 orig_offset,
1040                             u64 *start, u64 *end)
1041 {
1042         struct btrfs_file_extent_item *fi;
1043         struct btrfs_key key;
1044         u64 extent_end;
1045
1046         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1047                 return 0;
1048
1049         btrfs_item_key_to_cpu(leaf, &key, slot);
1050         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1051                 return 0;
1052
1053         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1054         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1055             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1056             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1057             btrfs_file_extent_compression(leaf, fi) ||
1058             btrfs_file_extent_encryption(leaf, fi) ||
1059             btrfs_file_extent_other_encoding(leaf, fi))
1060                 return 0;
1061
1062         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1063         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1064                 return 0;
1065
1066         *start = key.offset;
1067         *end = extent_end;
1068         return 1;
1069 }
1070
1071 /*
1072  * Mark extent in the range start - end as written.
1073  *
1074  * This changes extent type from 'pre-allocated' to 'regular'. If only
1075  * part of extent is marked as written, the extent will be split into
1076  * two or three.
1077  */
1078 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1079                               struct btrfs_inode *inode, u64 start, u64 end)
1080 {
1081         struct btrfs_fs_info *fs_info = trans->fs_info;
1082         struct btrfs_root *root = inode->root;
1083         struct extent_buffer *leaf;
1084         struct btrfs_path *path;
1085         struct btrfs_file_extent_item *fi;
1086         struct btrfs_ref ref = { 0 };
1087         struct btrfs_key key;
1088         struct btrfs_key new_key;
1089         u64 bytenr;
1090         u64 num_bytes;
1091         u64 extent_end;
1092         u64 orig_offset;
1093         u64 other_start;
1094         u64 other_end;
1095         u64 split;
1096         int del_nr = 0;
1097         int del_slot = 0;
1098         int recow;
1099         int ret = 0;
1100         u64 ino = btrfs_ino(inode);
1101
1102         path = btrfs_alloc_path();
1103         if (!path)
1104                 return -ENOMEM;
1105 again:
1106         recow = 0;
1107         split = start;
1108         key.objectid = ino;
1109         key.type = BTRFS_EXTENT_DATA_KEY;
1110         key.offset = split;
1111
1112         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1113         if (ret < 0)
1114                 goto out;
1115         if (ret > 0 && path->slots[0] > 0)
1116                 path->slots[0]--;
1117
1118         leaf = path->nodes[0];
1119         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1120         if (key.objectid != ino ||
1121             key.type != BTRFS_EXTENT_DATA_KEY) {
1122                 ret = -EINVAL;
1123                 btrfs_abort_transaction(trans, ret);
1124                 goto out;
1125         }
1126         fi = btrfs_item_ptr(leaf, path->slots[0],
1127                             struct btrfs_file_extent_item);
1128         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1129                 ret = -EINVAL;
1130                 btrfs_abort_transaction(trans, ret);
1131                 goto out;
1132         }
1133         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1134         if (key.offset > start || extent_end < end) {
1135                 ret = -EINVAL;
1136                 btrfs_abort_transaction(trans, ret);
1137                 goto out;
1138         }
1139
1140         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1141         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1142         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1143         memcpy(&new_key, &key, sizeof(new_key));
1144
1145         if (start == key.offset && end < extent_end) {
1146                 other_start = 0;
1147                 other_end = start;
1148                 if (extent_mergeable(leaf, path->slots[0] - 1,
1149                                      ino, bytenr, orig_offset,
1150                                      &other_start, &other_end)) {
1151                         new_key.offset = end;
1152                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1153                         fi = btrfs_item_ptr(leaf, path->slots[0],
1154                                             struct btrfs_file_extent_item);
1155                         btrfs_set_file_extent_generation(leaf, fi,
1156                                                          trans->transid);
1157                         btrfs_set_file_extent_num_bytes(leaf, fi,
1158                                                         extent_end - end);
1159                         btrfs_set_file_extent_offset(leaf, fi,
1160                                                      end - orig_offset);
1161                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1162                                             struct btrfs_file_extent_item);
1163                         btrfs_set_file_extent_generation(leaf, fi,
1164                                                          trans->transid);
1165                         btrfs_set_file_extent_num_bytes(leaf, fi,
1166                                                         end - other_start);
1167                         btrfs_mark_buffer_dirty(leaf);
1168                         goto out;
1169                 }
1170         }
1171
1172         if (start > key.offset && end == extent_end) {
1173                 other_start = end;
1174                 other_end = 0;
1175                 if (extent_mergeable(leaf, path->slots[0] + 1,
1176                                      ino, bytenr, orig_offset,
1177                                      &other_start, &other_end)) {
1178                         fi = btrfs_item_ptr(leaf, path->slots[0],
1179                                             struct btrfs_file_extent_item);
1180                         btrfs_set_file_extent_num_bytes(leaf, fi,
1181                                                         start - key.offset);
1182                         btrfs_set_file_extent_generation(leaf, fi,
1183                                                          trans->transid);
1184                         path->slots[0]++;
1185                         new_key.offset = start;
1186                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1187
1188                         fi = btrfs_item_ptr(leaf, path->slots[0],
1189                                             struct btrfs_file_extent_item);
1190                         btrfs_set_file_extent_generation(leaf, fi,
1191                                                          trans->transid);
1192                         btrfs_set_file_extent_num_bytes(leaf, fi,
1193                                                         other_end - start);
1194                         btrfs_set_file_extent_offset(leaf, fi,
1195                                                      start - orig_offset);
1196                         btrfs_mark_buffer_dirty(leaf);
1197                         goto out;
1198                 }
1199         }
1200
1201         while (start > key.offset || end < extent_end) {
1202                 if (key.offset == start)
1203                         split = end;
1204
1205                 new_key.offset = split;
1206                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1207                 if (ret == -EAGAIN) {
1208                         btrfs_release_path(path);
1209                         goto again;
1210                 }
1211                 if (ret < 0) {
1212                         btrfs_abort_transaction(trans, ret);
1213                         goto out;
1214                 }
1215
1216                 leaf = path->nodes[0];
1217                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1218                                     struct btrfs_file_extent_item);
1219                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220                 btrfs_set_file_extent_num_bytes(leaf, fi,
1221                                                 split - key.offset);
1222
1223                 fi = btrfs_item_ptr(leaf, path->slots[0],
1224                                     struct btrfs_file_extent_item);
1225
1226                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1227                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1228                 btrfs_set_file_extent_num_bytes(leaf, fi,
1229                                                 extent_end - split);
1230                 btrfs_mark_buffer_dirty(leaf);
1231
1232                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1233                                        num_bytes, 0);
1234                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1235                                     orig_offset);
1236                 ret = btrfs_inc_extent_ref(trans, &ref);
1237                 if (ret) {
1238                         btrfs_abort_transaction(trans, ret);
1239                         goto out;
1240                 }
1241
1242                 if (split == start) {
1243                         key.offset = start;
1244                 } else {
1245                         if (start != key.offset) {
1246                                 ret = -EINVAL;
1247                                 btrfs_abort_transaction(trans, ret);
1248                                 goto out;
1249                         }
1250                         path->slots[0]--;
1251                         extent_end = end;
1252                 }
1253                 recow = 1;
1254         }
1255
1256         other_start = end;
1257         other_end = 0;
1258         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1259                                num_bytes, 0);
1260         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1261         if (extent_mergeable(leaf, path->slots[0] + 1,
1262                              ino, bytenr, orig_offset,
1263                              &other_start, &other_end)) {
1264                 if (recow) {
1265                         btrfs_release_path(path);
1266                         goto again;
1267                 }
1268                 extent_end = other_end;
1269                 del_slot = path->slots[0] + 1;
1270                 del_nr++;
1271                 ret = btrfs_free_extent(trans, &ref);
1272                 if (ret) {
1273                         btrfs_abort_transaction(trans, ret);
1274                         goto out;
1275                 }
1276         }
1277         other_start = 0;
1278         other_end = start;
1279         if (extent_mergeable(leaf, path->slots[0] - 1,
1280                              ino, bytenr, orig_offset,
1281                              &other_start, &other_end)) {
1282                 if (recow) {
1283                         btrfs_release_path(path);
1284                         goto again;
1285                 }
1286                 key.offset = other_start;
1287                 del_slot = path->slots[0];
1288                 del_nr++;
1289                 ret = btrfs_free_extent(trans, &ref);
1290                 if (ret) {
1291                         btrfs_abort_transaction(trans, ret);
1292                         goto out;
1293                 }
1294         }
1295         if (del_nr == 0) {
1296                 fi = btrfs_item_ptr(leaf, path->slots[0],
1297                            struct btrfs_file_extent_item);
1298                 btrfs_set_file_extent_type(leaf, fi,
1299                                            BTRFS_FILE_EXTENT_REG);
1300                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1301                 btrfs_mark_buffer_dirty(leaf);
1302         } else {
1303                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1304                            struct btrfs_file_extent_item);
1305                 btrfs_set_file_extent_type(leaf, fi,
1306                                            BTRFS_FILE_EXTENT_REG);
1307                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1308                 btrfs_set_file_extent_num_bytes(leaf, fi,
1309                                                 extent_end - key.offset);
1310                 btrfs_mark_buffer_dirty(leaf);
1311
1312                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1313                 if (ret < 0) {
1314                         btrfs_abort_transaction(trans, ret);
1315                         goto out;
1316                 }
1317         }
1318 out:
1319         btrfs_free_path(path);
1320         return ret;
1321 }
1322
1323 /*
1324  * on error we return an unlocked page and the error value
1325  * on success we return a locked page and 0
1326  */
1327 static int prepare_uptodate_page(struct inode *inode,
1328                                  struct page *page, u64 pos,
1329                                  bool force_uptodate)
1330 {
1331         int ret = 0;
1332
1333         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1334             !PageUptodate(page)) {
1335                 ret = btrfs_readpage(NULL, page);
1336                 if (ret)
1337                         return ret;
1338                 lock_page(page);
1339                 if (!PageUptodate(page)) {
1340                         unlock_page(page);
1341                         return -EIO;
1342                 }
1343
1344                 /*
1345                  * Since btrfs_readpage() will unlock the page before it
1346                  * returns, there is a window where btrfs_releasepage() can be
1347                  * called to release the page.  Here we check both inode
1348                  * mapping and PagePrivate() to make sure the page was not
1349                  * released.
1350                  *
1351                  * The private flag check is essential for subpage as we need
1352                  * to store extra bitmap using page->private.
1353                  */
1354                 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1355                         unlock_page(page);
1356                         return -EAGAIN;
1357                 }
1358         }
1359         return 0;
1360 }
1361
1362 /*
1363  * this just gets pages into the page cache and locks them down.
1364  */
1365 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1366                                   size_t num_pages, loff_t pos,
1367                                   size_t write_bytes, bool force_uptodate)
1368 {
1369         int i;
1370         unsigned long index = pos >> PAGE_SHIFT;
1371         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1372         int err = 0;
1373         int faili;
1374
1375         for (i = 0; i < num_pages; i++) {
1376 again:
1377                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1378                                                mask | __GFP_WRITE);
1379                 if (!pages[i]) {
1380                         faili = i - 1;
1381                         err = -ENOMEM;
1382                         goto fail;
1383                 }
1384
1385                 err = set_page_extent_mapped(pages[i]);
1386                 if (err < 0) {
1387                         faili = i;
1388                         goto fail;
1389                 }
1390
1391                 if (i == 0)
1392                         err = prepare_uptodate_page(inode, pages[i], pos,
1393                                                     force_uptodate);
1394                 if (!err && i == num_pages - 1)
1395                         err = prepare_uptodate_page(inode, pages[i],
1396                                                     pos + write_bytes, false);
1397                 if (err) {
1398                         put_page(pages[i]);
1399                         if (err == -EAGAIN) {
1400                                 err = 0;
1401                                 goto again;
1402                         }
1403                         faili = i - 1;
1404                         goto fail;
1405                 }
1406                 wait_on_page_writeback(pages[i]);
1407         }
1408
1409         return 0;
1410 fail:
1411         while (faili >= 0) {
1412                 unlock_page(pages[faili]);
1413                 put_page(pages[faili]);
1414                 faili--;
1415         }
1416         return err;
1417
1418 }
1419
1420 /*
1421  * This function locks the extent and properly waits for data=ordered extents
1422  * to finish before allowing the pages to be modified if need.
1423  *
1424  * The return value:
1425  * 1 - the extent is locked
1426  * 0 - the extent is not locked, and everything is OK
1427  * -EAGAIN - need re-prepare the pages
1428  * the other < 0 number - Something wrong happens
1429  */
1430 static noinline int
1431 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1432                                 size_t num_pages, loff_t pos,
1433                                 size_t write_bytes,
1434                                 u64 *lockstart, u64 *lockend,
1435                                 struct extent_state **cached_state)
1436 {
1437         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1438         u64 start_pos;
1439         u64 last_pos;
1440         int i;
1441         int ret = 0;
1442
1443         start_pos = round_down(pos, fs_info->sectorsize);
1444         last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1445
1446         if (start_pos < inode->vfs_inode.i_size) {
1447                 struct btrfs_ordered_extent *ordered;
1448
1449                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1450                                 cached_state);
1451                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1452                                                      last_pos - start_pos + 1);
1453                 if (ordered &&
1454                     ordered->file_offset + ordered->num_bytes > start_pos &&
1455                     ordered->file_offset <= last_pos) {
1456                         unlock_extent_cached(&inode->io_tree, start_pos,
1457                                         last_pos, cached_state);
1458                         for (i = 0; i < num_pages; i++) {
1459                                 unlock_page(pages[i]);
1460                                 put_page(pages[i]);
1461                         }
1462                         btrfs_start_ordered_extent(ordered, 1);
1463                         btrfs_put_ordered_extent(ordered);
1464                         return -EAGAIN;
1465                 }
1466                 if (ordered)
1467                         btrfs_put_ordered_extent(ordered);
1468
1469                 *lockstart = start_pos;
1470                 *lockend = last_pos;
1471                 ret = 1;
1472         }
1473
1474         /*
1475          * We should be called after prepare_pages() which should have locked
1476          * all pages in the range.
1477          */
1478         for (i = 0; i < num_pages; i++)
1479                 WARN_ON(!PageLocked(pages[i]));
1480
1481         return ret;
1482 }
1483
1484 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1485                            size_t *write_bytes, bool nowait)
1486 {
1487         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1488         struct btrfs_root *root = inode->root;
1489         u64 lockstart, lockend;
1490         u64 num_bytes;
1491         int ret;
1492
1493         if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1494                 return 0;
1495
1496         if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1497                 return -EAGAIN;
1498
1499         lockstart = round_down(pos, fs_info->sectorsize);
1500         lockend = round_up(pos + *write_bytes,
1501                            fs_info->sectorsize) - 1;
1502         num_bytes = lockend - lockstart + 1;
1503
1504         if (nowait) {
1505                 struct btrfs_ordered_extent *ordered;
1506
1507                 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1508                         return -EAGAIN;
1509
1510                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1511                                                      num_bytes);
1512                 if (ordered) {
1513                         btrfs_put_ordered_extent(ordered);
1514                         ret = -EAGAIN;
1515                         goto out_unlock;
1516                 }
1517         } else {
1518                 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1519                                                    lockend, NULL);
1520         }
1521
1522         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1523                         NULL, NULL, NULL, false);
1524         if (ret <= 0) {
1525                 ret = 0;
1526                 if (!nowait)
1527                         btrfs_drew_write_unlock(&root->snapshot_lock);
1528         } else {
1529                 *write_bytes = min_t(size_t, *write_bytes ,
1530                                      num_bytes - pos + lockstart);
1531         }
1532 out_unlock:
1533         unlock_extent(&inode->io_tree, lockstart, lockend);
1534
1535         return ret;
1536 }
1537
1538 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1539                               size_t *write_bytes)
1540 {
1541         return check_can_nocow(inode, pos, write_bytes, true);
1542 }
1543
1544 /*
1545  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1546  *
1547  * @pos:         File offset
1548  * @write_bytes: The length to write, will be updated to the nocow writeable
1549  *               range
1550  *
1551  * This function will flush ordered extents in the range to ensure proper
1552  * nocow checks.
1553  *
1554  * Return:
1555  * >0           and update @write_bytes if we can do nocow write
1556  *  0           if we can't do nocow write
1557  * -EAGAIN      if we can't get the needed lock or there are ordered extents
1558  *              for * (nowait == true) case
1559  * <0           if other error happened
1560  *
1561  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1562  */
1563 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1564                            size_t *write_bytes)
1565 {
1566         return check_can_nocow(inode, pos, write_bytes, false);
1567 }
1568
1569 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1570 {
1571         btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1572 }
1573
1574 static void update_time_for_write(struct inode *inode)
1575 {
1576         struct timespec64 now;
1577
1578         if (IS_NOCMTIME(inode))
1579                 return;
1580
1581         now = current_time(inode);
1582         if (!timespec64_equal(&inode->i_mtime, &now))
1583                 inode->i_mtime = now;
1584
1585         if (!timespec64_equal(&inode->i_ctime, &now))
1586                 inode->i_ctime = now;
1587
1588         if (IS_I_VERSION(inode))
1589                 inode_inc_iversion(inode);
1590 }
1591
1592 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1593                              size_t count)
1594 {
1595         struct file *file = iocb->ki_filp;
1596         struct inode *inode = file_inode(file);
1597         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1598         loff_t pos = iocb->ki_pos;
1599         int ret;
1600         loff_t oldsize;
1601         loff_t start_pos;
1602
1603         if (iocb->ki_flags & IOCB_NOWAIT) {
1604                 size_t nocow_bytes = count;
1605
1606                 /* We will allocate space in case nodatacow is not set, so bail */
1607                 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1608                         return -EAGAIN;
1609                 /*
1610                  * There are holes in the range or parts of the range that must
1611                  * be COWed (shared extents, RO block groups, etc), so just bail
1612                  * out.
1613                  */
1614                 if (nocow_bytes < count)
1615                         return -EAGAIN;
1616         }
1617
1618         current->backing_dev_info = inode_to_bdi(inode);
1619         ret = file_remove_privs(file);
1620         if (ret)
1621                 return ret;
1622
1623         /*
1624          * We reserve space for updating the inode when we reserve space for the
1625          * extent we are going to write, so we will enospc out there.  We don't
1626          * need to start yet another transaction to update the inode as we will
1627          * update the inode when we finish writing whatever data we write.
1628          */
1629         update_time_for_write(inode);
1630
1631         start_pos = round_down(pos, fs_info->sectorsize);
1632         oldsize = i_size_read(inode);
1633         if (start_pos > oldsize) {
1634                 /* Expand hole size to cover write data, preventing empty gap */
1635                 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1636
1637                 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1638                 if (ret) {
1639                         current->backing_dev_info = NULL;
1640                         return ret;
1641                 }
1642         }
1643
1644         return 0;
1645 }
1646
1647 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1648                                                struct iov_iter *i)
1649 {
1650         struct file *file = iocb->ki_filp;
1651         loff_t pos;
1652         struct inode *inode = file_inode(file);
1653         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1654         struct page **pages = NULL;
1655         struct extent_changeset *data_reserved = NULL;
1656         u64 release_bytes = 0;
1657         u64 lockstart;
1658         u64 lockend;
1659         size_t num_written = 0;
1660         int nrptrs;
1661         ssize_t ret;
1662         bool only_release_metadata = false;
1663         bool force_page_uptodate = false;
1664         loff_t old_isize = i_size_read(inode);
1665         unsigned int ilock_flags = 0;
1666
1667         if (iocb->ki_flags & IOCB_NOWAIT)
1668                 ilock_flags |= BTRFS_ILOCK_TRY;
1669
1670         ret = btrfs_inode_lock(inode, ilock_flags);
1671         if (ret < 0)
1672                 return ret;
1673
1674         ret = generic_write_checks(iocb, i);
1675         if (ret <= 0)
1676                 goto out;
1677
1678         ret = btrfs_write_check(iocb, i, ret);
1679         if (ret < 0)
1680                 goto out;
1681
1682         pos = iocb->ki_pos;
1683         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1684                         PAGE_SIZE / (sizeof(struct page *)));
1685         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1686         nrptrs = max(nrptrs, 8);
1687         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1688         if (!pages) {
1689                 ret = -ENOMEM;
1690                 goto out;
1691         }
1692
1693         while (iov_iter_count(i) > 0) {
1694                 struct extent_state *cached_state = NULL;
1695                 size_t offset = offset_in_page(pos);
1696                 size_t sector_offset;
1697                 size_t write_bytes = min(iov_iter_count(i),
1698                                          nrptrs * (size_t)PAGE_SIZE -
1699                                          offset);
1700                 size_t num_pages;
1701                 size_t reserve_bytes;
1702                 size_t dirty_pages;
1703                 size_t copied;
1704                 size_t dirty_sectors;
1705                 size_t num_sectors;
1706                 int extents_locked;
1707
1708                 /*
1709                  * Fault pages before locking them in prepare_pages
1710                  * to avoid recursive lock
1711                  */
1712                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1713                         ret = -EFAULT;
1714                         break;
1715                 }
1716
1717                 only_release_metadata = false;
1718                 sector_offset = pos & (fs_info->sectorsize - 1);
1719
1720                 extent_changeset_release(data_reserved);
1721                 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1722                                                   &data_reserved, pos,
1723                                                   write_bytes);
1724                 if (ret < 0) {
1725                         /*
1726                          * If we don't have to COW at the offset, reserve
1727                          * metadata only. write_bytes may get smaller than
1728                          * requested here.
1729                          */
1730                         if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1731                                                    &write_bytes) > 0)
1732                                 only_release_metadata = true;
1733                         else
1734                                 break;
1735                 }
1736
1737                 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1738                 WARN_ON(num_pages > nrptrs);
1739                 reserve_bytes = round_up(write_bytes + sector_offset,
1740                                          fs_info->sectorsize);
1741                 WARN_ON(reserve_bytes == 0);
1742                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1743                                 reserve_bytes);
1744                 if (ret) {
1745                         if (!only_release_metadata)
1746                                 btrfs_free_reserved_data_space(BTRFS_I(inode),
1747                                                 data_reserved, pos,
1748                                                 write_bytes);
1749                         else
1750                                 btrfs_check_nocow_unlock(BTRFS_I(inode));
1751                         break;
1752                 }
1753
1754                 release_bytes = reserve_bytes;
1755 again:
1756                 /*
1757                  * This is going to setup the pages array with the number of
1758                  * pages we want, so we don't really need to worry about the
1759                  * contents of pages from loop to loop
1760                  */
1761                 ret = prepare_pages(inode, pages, num_pages,
1762                                     pos, write_bytes,
1763                                     force_page_uptodate);
1764                 if (ret) {
1765                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1766                                                        reserve_bytes);
1767                         break;
1768                 }
1769
1770                 extents_locked = lock_and_cleanup_extent_if_need(
1771                                 BTRFS_I(inode), pages,
1772                                 num_pages, pos, write_bytes, &lockstart,
1773                                 &lockend, &cached_state);
1774                 if (extents_locked < 0) {
1775                         if (extents_locked == -EAGAIN)
1776                                 goto again;
1777                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1778                                                        reserve_bytes);
1779                         ret = extents_locked;
1780                         break;
1781                 }
1782
1783                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1784
1785                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1786                 dirty_sectors = round_up(copied + sector_offset,
1787                                         fs_info->sectorsize);
1788                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1789
1790                 /*
1791                  * if we have trouble faulting in the pages, fall
1792                  * back to one page at a time
1793                  */
1794                 if (copied < write_bytes)
1795                         nrptrs = 1;
1796
1797                 if (copied == 0) {
1798                         force_page_uptodate = true;
1799                         dirty_sectors = 0;
1800                         dirty_pages = 0;
1801                 } else {
1802                         force_page_uptodate = false;
1803                         dirty_pages = DIV_ROUND_UP(copied + offset,
1804                                                    PAGE_SIZE);
1805                 }
1806
1807                 if (num_sectors > dirty_sectors) {
1808                         /* release everything except the sectors we dirtied */
1809                         release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1810                         if (only_release_metadata) {
1811                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1812                                                         release_bytes, true);
1813                         } else {
1814                                 u64 __pos;
1815
1816                                 __pos = round_down(pos,
1817                                                    fs_info->sectorsize) +
1818                                         (dirty_pages << PAGE_SHIFT);
1819                                 btrfs_delalloc_release_space(BTRFS_I(inode),
1820                                                 data_reserved, __pos,
1821                                                 release_bytes, true);
1822                         }
1823                 }
1824
1825                 release_bytes = round_up(copied + sector_offset,
1826                                         fs_info->sectorsize);
1827
1828                 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1829                                         dirty_pages, pos, copied,
1830                                         &cached_state, only_release_metadata);
1831
1832                 /*
1833                  * If we have not locked the extent range, because the range's
1834                  * start offset is >= i_size, we might still have a non-NULL
1835                  * cached extent state, acquired while marking the extent range
1836                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1837                  * possible cached extent state to avoid a memory leak.
1838                  */
1839                 if (extents_locked)
1840                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1841                                              lockstart, lockend, &cached_state);
1842                 else
1843                         free_extent_state(cached_state);
1844
1845                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1846                 if (ret) {
1847                         btrfs_drop_pages(pages, num_pages);
1848                         break;
1849                 }
1850
1851                 release_bytes = 0;
1852                 if (only_release_metadata)
1853                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1854
1855                 btrfs_drop_pages(pages, num_pages);
1856
1857                 cond_resched();
1858
1859                 balance_dirty_pages_ratelimited(inode->i_mapping);
1860
1861                 pos += copied;
1862                 num_written += copied;
1863         }
1864
1865         kfree(pages);
1866
1867         if (release_bytes) {
1868                 if (only_release_metadata) {
1869                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1870                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1871                                         release_bytes, true);
1872                 } else {
1873                         btrfs_delalloc_release_space(BTRFS_I(inode),
1874                                         data_reserved,
1875                                         round_down(pos, fs_info->sectorsize),
1876                                         release_bytes, true);
1877                 }
1878         }
1879
1880         extent_changeset_free(data_reserved);
1881         if (num_written > 0) {
1882                 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1883                 iocb->ki_pos += num_written;
1884         }
1885 out:
1886         btrfs_inode_unlock(inode, ilock_flags);
1887         return num_written ? num_written : ret;
1888 }
1889
1890 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1891                                const struct iov_iter *iter, loff_t offset)
1892 {
1893         const u32 blocksize_mask = fs_info->sectorsize - 1;
1894
1895         if (offset & blocksize_mask)
1896                 return -EINVAL;
1897
1898         if (iov_iter_alignment(iter) & blocksize_mask)
1899                 return -EINVAL;
1900
1901         return 0;
1902 }
1903
1904 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1905 {
1906         struct file *file = iocb->ki_filp;
1907         struct inode *inode = file_inode(file);
1908         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1909         loff_t pos;
1910         ssize_t written = 0;
1911         ssize_t written_buffered;
1912         loff_t endbyte;
1913         ssize_t err;
1914         unsigned int ilock_flags = 0;
1915         struct iomap_dio *dio = NULL;
1916
1917         if (iocb->ki_flags & IOCB_NOWAIT)
1918                 ilock_flags |= BTRFS_ILOCK_TRY;
1919
1920         /* If the write DIO is within EOF, use a shared lock */
1921         if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1922                 ilock_flags |= BTRFS_ILOCK_SHARED;
1923
1924 relock:
1925         err = btrfs_inode_lock(inode, ilock_flags);
1926         if (err < 0)
1927                 return err;
1928
1929         err = generic_write_checks(iocb, from);
1930         if (err <= 0) {
1931                 btrfs_inode_unlock(inode, ilock_flags);
1932                 return err;
1933         }
1934
1935         err = btrfs_write_check(iocb, from, err);
1936         if (err < 0) {
1937                 btrfs_inode_unlock(inode, ilock_flags);
1938                 goto out;
1939         }
1940
1941         pos = iocb->ki_pos;
1942         /*
1943          * Re-check since file size may have changed just before taking the
1944          * lock or pos may have changed because of O_APPEND in generic_write_check()
1945          */
1946         if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1947             pos + iov_iter_count(from) > i_size_read(inode)) {
1948                 btrfs_inode_unlock(inode, ilock_flags);
1949                 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1950                 goto relock;
1951         }
1952
1953         if (check_direct_IO(fs_info, from, pos)) {
1954                 btrfs_inode_unlock(inode, ilock_flags);
1955                 goto buffered;
1956         }
1957
1958         dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1959                              0);
1960
1961         btrfs_inode_unlock(inode, ilock_flags);
1962
1963         if (IS_ERR_OR_NULL(dio)) {
1964                 err = PTR_ERR_OR_ZERO(dio);
1965                 if (err < 0 && err != -ENOTBLK)
1966                         goto out;
1967         } else {
1968                 written = iomap_dio_complete(dio);
1969         }
1970
1971         if (written < 0 || !iov_iter_count(from)) {
1972                 err = written;
1973                 goto out;
1974         }
1975
1976 buffered:
1977         pos = iocb->ki_pos;
1978         written_buffered = btrfs_buffered_write(iocb, from);
1979         if (written_buffered < 0) {
1980                 err = written_buffered;
1981                 goto out;
1982         }
1983         /*
1984          * Ensure all data is persisted. We want the next direct IO read to be
1985          * able to read what was just written.
1986          */
1987         endbyte = pos + written_buffered - 1;
1988         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1989         if (err)
1990                 goto out;
1991         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1992         if (err)
1993                 goto out;
1994         written += written_buffered;
1995         iocb->ki_pos = pos + written_buffered;
1996         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1997                                  endbyte >> PAGE_SHIFT);
1998 out:
1999         return written ? written : err;
2000 }
2001
2002 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2003                                     struct iov_iter *from)
2004 {
2005         struct file *file = iocb->ki_filp;
2006         struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2007         ssize_t num_written = 0;
2008         const bool sync = iocb->ki_flags & IOCB_DSYNC;
2009
2010         /*
2011          * If the fs flips readonly due to some impossible error, although we
2012          * have opened a file as writable, we have to stop this write operation
2013          * to ensure consistency.
2014          */
2015         if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2016                 return -EROFS;
2017
2018         if (!(iocb->ki_flags & IOCB_DIRECT) &&
2019             (iocb->ki_flags & IOCB_NOWAIT))
2020                 return -EOPNOTSUPP;
2021
2022         if (sync)
2023                 atomic_inc(&inode->sync_writers);
2024
2025         if (iocb->ki_flags & IOCB_DIRECT)
2026                 num_written = btrfs_direct_write(iocb, from);
2027         else
2028                 num_written = btrfs_buffered_write(iocb, from);
2029
2030         btrfs_set_inode_last_sub_trans(inode);
2031
2032         if (num_written > 0)
2033                 num_written = generic_write_sync(iocb, num_written);
2034
2035         if (sync)
2036                 atomic_dec(&inode->sync_writers);
2037
2038         current->backing_dev_info = NULL;
2039         return num_written;
2040 }
2041
2042 int btrfs_release_file(struct inode *inode, struct file *filp)
2043 {
2044         struct btrfs_file_private *private = filp->private_data;
2045
2046         if (private && private->filldir_buf)
2047                 kfree(private->filldir_buf);
2048         kfree(private);
2049         filp->private_data = NULL;
2050
2051         /*
2052          * Set by setattr when we are about to truncate a file from a non-zero
2053          * size to a zero size.  This tries to flush down new bytes that may
2054          * have been written if the application were using truncate to replace
2055          * a file in place.
2056          */
2057         if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2058                                &BTRFS_I(inode)->runtime_flags))
2059                         filemap_flush(inode->i_mapping);
2060         return 0;
2061 }
2062
2063 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2064 {
2065         int ret;
2066         struct blk_plug plug;
2067
2068         /*
2069          * This is only called in fsync, which would do synchronous writes, so
2070          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2071          * multiple disks using raid profile, a large IO can be split to
2072          * several segments of stripe length (currently 64K).
2073          */
2074         blk_start_plug(&plug);
2075         atomic_inc(&BTRFS_I(inode)->sync_writers);
2076         ret = btrfs_fdatawrite_range(inode, start, end);
2077         atomic_dec(&BTRFS_I(inode)->sync_writers);
2078         blk_finish_plug(&plug);
2079
2080         return ret;
2081 }
2082
2083 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2084 {
2085         struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2086         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2087
2088         if (btrfs_inode_in_log(inode, fs_info->generation) &&
2089             list_empty(&ctx->ordered_extents))
2090                 return true;
2091
2092         /*
2093          * If we are doing a fast fsync we can not bail out if the inode's
2094          * last_trans is <= then the last committed transaction, because we only
2095          * update the last_trans of the inode during ordered extent completion,
2096          * and for a fast fsync we don't wait for that, we only wait for the
2097          * writeback to complete.
2098          */
2099         if (inode->last_trans <= fs_info->last_trans_committed &&
2100             (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2101              list_empty(&ctx->ordered_extents)))
2102                 return true;
2103
2104         return false;
2105 }
2106
2107 /*
2108  * fsync call for both files and directories.  This logs the inode into
2109  * the tree log instead of forcing full commits whenever possible.
2110  *
2111  * It needs to call filemap_fdatawait so that all ordered extent updates are
2112  * in the metadata btree are up to date for copying to the log.
2113  *
2114  * It drops the inode mutex before doing the tree log commit.  This is an
2115  * important optimization for directories because holding the mutex prevents
2116  * new operations on the dir while we write to disk.
2117  */
2118 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2119 {
2120         struct dentry *dentry = file_dentry(file);
2121         struct inode *inode = d_inode(dentry);
2122         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2123         struct btrfs_root *root = BTRFS_I(inode)->root;
2124         struct btrfs_trans_handle *trans;
2125         struct btrfs_log_ctx ctx;
2126         int ret = 0, err;
2127         u64 len;
2128         bool full_sync;
2129
2130         trace_btrfs_sync_file(file, datasync);
2131
2132         btrfs_init_log_ctx(&ctx, inode);
2133
2134         /*
2135          * Always set the range to a full range, otherwise we can get into
2136          * several problems, from missing file extent items to represent holes
2137          * when not using the NO_HOLES feature, to log tree corruption due to
2138          * races between hole detection during logging and completion of ordered
2139          * extents outside the range, to missing checksums due to ordered extents
2140          * for which we flushed only a subset of their pages.
2141          */
2142         start = 0;
2143         end = LLONG_MAX;
2144         len = (u64)LLONG_MAX + 1;
2145
2146         /*
2147          * We write the dirty pages in the range and wait until they complete
2148          * out of the ->i_mutex. If so, we can flush the dirty pages by
2149          * multi-task, and make the performance up.  See
2150          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2151          */
2152         ret = start_ordered_ops(inode, start, end);
2153         if (ret)
2154                 goto out;
2155
2156         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2157
2158         atomic_inc(&root->log_batch);
2159
2160         /*
2161          * Always check for the full sync flag while holding the inode's lock,
2162          * to avoid races with other tasks. The flag must be either set all the
2163          * time during logging or always off all the time while logging.
2164          */
2165         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2166                              &BTRFS_I(inode)->runtime_flags);
2167
2168         /*
2169          * Before we acquired the inode's lock and the mmap lock, someone may
2170          * have dirtied more pages in the target range. We need to make sure
2171          * that writeback for any such pages does not start while we are logging
2172          * the inode, because if it does, any of the following might happen when
2173          * we are not doing a full inode sync:
2174          *
2175          * 1) We log an extent after its writeback finishes but before its
2176          *    checksums are added to the csum tree, leading to -EIO errors
2177          *    when attempting to read the extent after a log replay.
2178          *
2179          * 2) We can end up logging an extent before its writeback finishes.
2180          *    Therefore after the log replay we will have a file extent item
2181          *    pointing to an unwritten extent (and no data checksums as well).
2182          *
2183          * So trigger writeback for any eventual new dirty pages and then we
2184          * wait for all ordered extents to complete below.
2185          */
2186         ret = start_ordered_ops(inode, start, end);
2187         if (ret) {
2188                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2189                 goto out;
2190         }
2191
2192         /*
2193          * We have to do this here to avoid the priority inversion of waiting on
2194          * IO of a lower priority task while holding a transaction open.
2195          *
2196          * For a full fsync we wait for the ordered extents to complete while
2197          * for a fast fsync we wait just for writeback to complete, and then
2198          * attach the ordered extents to the transaction so that a transaction
2199          * commit waits for their completion, to avoid data loss if we fsync,
2200          * the current transaction commits before the ordered extents complete
2201          * and a power failure happens right after that.
2202          *
2203          * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2204          * logical address recorded in the ordered extent may change. We need
2205          * to wait for the IO to stabilize the logical address.
2206          */
2207         if (full_sync || btrfs_is_zoned(fs_info)) {
2208                 ret = btrfs_wait_ordered_range(inode, start, len);
2209         } else {
2210                 /*
2211                  * Get our ordered extents as soon as possible to avoid doing
2212                  * checksum lookups in the csum tree, and use instead the
2213                  * checksums attached to the ordered extents.
2214                  */
2215                 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2216                                                       &ctx.ordered_extents);
2217                 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2218         }
2219
2220         if (ret)
2221                 goto out_release_extents;
2222
2223         atomic_inc(&root->log_batch);
2224
2225         smp_mb();
2226         if (skip_inode_logging(&ctx)) {
2227                 /*
2228                  * We've had everything committed since the last time we were
2229                  * modified so clear this flag in case it was set for whatever
2230                  * reason, it's no longer relevant.
2231                  */
2232                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2233                           &BTRFS_I(inode)->runtime_flags);
2234                 /*
2235                  * An ordered extent might have started before and completed
2236                  * already with io errors, in which case the inode was not
2237                  * updated and we end up here. So check the inode's mapping
2238                  * for any errors that might have happened since we last
2239                  * checked called fsync.
2240                  */
2241                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2242                 goto out_release_extents;
2243         }
2244
2245         /*
2246          * We use start here because we will need to wait on the IO to complete
2247          * in btrfs_sync_log, which could require joining a transaction (for
2248          * example checking cross references in the nocow path).  If we use join
2249          * here we could get into a situation where we're waiting on IO to
2250          * happen that is blocked on a transaction trying to commit.  With start
2251          * we inc the extwriter counter, so we wait for all extwriters to exit
2252          * before we start blocking joiners.  This comment is to keep somebody
2253          * from thinking they are super smart and changing this to
2254          * btrfs_join_transaction *cough*Josef*cough*.
2255          */
2256         trans = btrfs_start_transaction(root, 0);
2257         if (IS_ERR(trans)) {
2258                 ret = PTR_ERR(trans);
2259                 goto out_release_extents;
2260         }
2261         trans->in_fsync = true;
2262
2263         ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2264         btrfs_release_log_ctx_extents(&ctx);
2265         if (ret < 0) {
2266                 /* Fallthrough and commit/free transaction. */
2267                 ret = 1;
2268         }
2269
2270         /* we've logged all the items and now have a consistent
2271          * version of the file in the log.  It is possible that
2272          * someone will come in and modify the file, but that's
2273          * fine because the log is consistent on disk, and we
2274          * have references to all of the file's extents
2275          *
2276          * It is possible that someone will come in and log the
2277          * file again, but that will end up using the synchronization
2278          * inside btrfs_sync_log to keep things safe.
2279          */
2280         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2281
2282         if (ret != BTRFS_NO_LOG_SYNC) {
2283                 if (!ret) {
2284                         ret = btrfs_sync_log(trans, root, &ctx);
2285                         if (!ret) {
2286                                 ret = btrfs_end_transaction(trans);
2287                                 goto out;
2288                         }
2289                 }
2290                 if (!full_sync) {
2291                         ret = btrfs_wait_ordered_range(inode, start, len);
2292                         if (ret) {
2293                                 btrfs_end_transaction(trans);
2294                                 goto out;
2295                         }
2296                 }
2297                 ret = btrfs_commit_transaction(trans);
2298         } else {
2299                 ret = btrfs_end_transaction(trans);
2300         }
2301 out:
2302         ASSERT(list_empty(&ctx.list));
2303         err = file_check_and_advance_wb_err(file);
2304         if (!ret)
2305                 ret = err;
2306         return ret > 0 ? -EIO : ret;
2307
2308 out_release_extents:
2309         btrfs_release_log_ctx_extents(&ctx);
2310         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2311         goto out;
2312 }
2313
2314 static const struct vm_operations_struct btrfs_file_vm_ops = {
2315         .fault          = filemap_fault,
2316         .map_pages      = filemap_map_pages,
2317         .page_mkwrite   = btrfs_page_mkwrite,
2318 };
2319
2320 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2321 {
2322         struct address_space *mapping = filp->f_mapping;
2323
2324         if (!mapping->a_ops->readpage)
2325                 return -ENOEXEC;
2326
2327         file_accessed(filp);
2328         vma->vm_ops = &btrfs_file_vm_ops;
2329
2330         return 0;
2331 }
2332
2333 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2334                           int slot, u64 start, u64 end)
2335 {
2336         struct btrfs_file_extent_item *fi;
2337         struct btrfs_key key;
2338
2339         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2340                 return 0;
2341
2342         btrfs_item_key_to_cpu(leaf, &key, slot);
2343         if (key.objectid != btrfs_ino(inode) ||
2344             key.type != BTRFS_EXTENT_DATA_KEY)
2345                 return 0;
2346
2347         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2348
2349         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2350                 return 0;
2351
2352         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2353                 return 0;
2354
2355         if (key.offset == end)
2356                 return 1;
2357         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2358                 return 1;
2359         return 0;
2360 }
2361
2362 static int fill_holes(struct btrfs_trans_handle *trans,
2363                 struct btrfs_inode *inode,
2364                 struct btrfs_path *path, u64 offset, u64 end)
2365 {
2366         struct btrfs_fs_info *fs_info = trans->fs_info;
2367         struct btrfs_root *root = inode->root;
2368         struct extent_buffer *leaf;
2369         struct btrfs_file_extent_item *fi;
2370         struct extent_map *hole_em;
2371         struct extent_map_tree *em_tree = &inode->extent_tree;
2372         struct btrfs_key key;
2373         int ret;
2374
2375         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2376                 goto out;
2377
2378         key.objectid = btrfs_ino(inode);
2379         key.type = BTRFS_EXTENT_DATA_KEY;
2380         key.offset = offset;
2381
2382         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2383         if (ret <= 0) {
2384                 /*
2385                  * We should have dropped this offset, so if we find it then
2386                  * something has gone horribly wrong.
2387                  */
2388                 if (ret == 0)
2389                         ret = -EINVAL;
2390                 return ret;
2391         }
2392
2393         leaf = path->nodes[0];
2394         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2395                 u64 num_bytes;
2396
2397                 path->slots[0]--;
2398                 fi = btrfs_item_ptr(leaf, path->slots[0],
2399                                     struct btrfs_file_extent_item);
2400                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2401                         end - offset;
2402                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2403                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2404                 btrfs_set_file_extent_offset(leaf, fi, 0);
2405                 btrfs_mark_buffer_dirty(leaf);
2406                 goto out;
2407         }
2408
2409         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2410                 u64 num_bytes;
2411
2412                 key.offset = offset;
2413                 btrfs_set_item_key_safe(fs_info, path, &key);
2414                 fi = btrfs_item_ptr(leaf, path->slots[0],
2415                                     struct btrfs_file_extent_item);
2416                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2417                         offset;
2418                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2419                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2420                 btrfs_set_file_extent_offset(leaf, fi, 0);
2421                 btrfs_mark_buffer_dirty(leaf);
2422                 goto out;
2423         }
2424         btrfs_release_path(path);
2425
2426         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2427                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2428         if (ret)
2429                 return ret;
2430
2431 out:
2432         btrfs_release_path(path);
2433
2434         hole_em = alloc_extent_map();
2435         if (!hole_em) {
2436                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2437                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2438         } else {
2439                 hole_em->start = offset;
2440                 hole_em->len = end - offset;
2441                 hole_em->ram_bytes = hole_em->len;
2442                 hole_em->orig_start = offset;
2443
2444                 hole_em->block_start = EXTENT_MAP_HOLE;
2445                 hole_em->block_len = 0;
2446                 hole_em->orig_block_len = 0;
2447                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2448                 hole_em->generation = trans->transid;
2449
2450                 do {
2451                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2452                         write_lock(&em_tree->lock);
2453                         ret = add_extent_mapping(em_tree, hole_em, 1);
2454                         write_unlock(&em_tree->lock);
2455                 } while (ret == -EEXIST);
2456                 free_extent_map(hole_em);
2457                 if (ret)
2458                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2459                                         &inode->runtime_flags);
2460         }
2461
2462         return 0;
2463 }
2464
2465 /*
2466  * Find a hole extent on given inode and change start/len to the end of hole
2467  * extent.(hole/vacuum extent whose em->start <= start &&
2468  *         em->start + em->len > start)
2469  * When a hole extent is found, return 1 and modify start/len.
2470  */
2471 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2472 {
2473         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2474         struct extent_map *em;
2475         int ret = 0;
2476
2477         em = btrfs_get_extent(inode, NULL, 0,
2478                               round_down(*start, fs_info->sectorsize),
2479                               round_up(*len, fs_info->sectorsize));
2480         if (IS_ERR(em))
2481                 return PTR_ERR(em);
2482
2483         /* Hole or vacuum extent(only exists in no-hole mode) */
2484         if (em->block_start == EXTENT_MAP_HOLE) {
2485                 ret = 1;
2486                 *len = em->start + em->len > *start + *len ?
2487                        0 : *start + *len - em->start - em->len;
2488                 *start = em->start + em->len;
2489         }
2490         free_extent_map(em);
2491         return ret;
2492 }
2493
2494 static int btrfs_punch_hole_lock_range(struct inode *inode,
2495                                        const u64 lockstart,
2496                                        const u64 lockend,
2497                                        struct extent_state **cached_state)
2498 {
2499         /*
2500          * For subpage case, if the range is not at page boundary, we could
2501          * have pages at the leading/tailing part of the range.
2502          * This could lead to dead loop since filemap_range_has_page()
2503          * will always return true.
2504          * So here we need to do extra page alignment for
2505          * filemap_range_has_page().
2506          */
2507         const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2508         const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2509
2510         while (1) {
2511                 struct btrfs_ordered_extent *ordered;
2512                 int ret;
2513
2514                 truncate_pagecache_range(inode, lockstart, lockend);
2515
2516                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2517                                  cached_state);
2518                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2519                                                             lockend);
2520
2521                 /*
2522                  * We need to make sure we have no ordered extents in this range
2523                  * and nobody raced in and read a page in this range, if we did
2524                  * we need to try again.
2525                  */
2526                 if ((!ordered ||
2527                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2528                      ordered->file_offset > lockend)) &&
2529                      !filemap_range_has_page(inode->i_mapping,
2530                                              page_lockstart, page_lockend)) {
2531                         if (ordered)
2532                                 btrfs_put_ordered_extent(ordered);
2533                         break;
2534                 }
2535                 if (ordered)
2536                         btrfs_put_ordered_extent(ordered);
2537                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2538                                      lockend, cached_state);
2539                 ret = btrfs_wait_ordered_range(inode, lockstart,
2540                                                lockend - lockstart + 1);
2541                 if (ret)
2542                         return ret;
2543         }
2544         return 0;
2545 }
2546
2547 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2548                                      struct btrfs_inode *inode,
2549                                      struct btrfs_path *path,
2550                                      struct btrfs_replace_extent_info *extent_info,
2551                                      const u64 replace_len,
2552                                      const u64 bytes_to_drop)
2553 {
2554         struct btrfs_fs_info *fs_info = trans->fs_info;
2555         struct btrfs_root *root = inode->root;
2556         struct btrfs_file_extent_item *extent;
2557         struct extent_buffer *leaf;
2558         struct btrfs_key key;
2559         int slot;
2560         struct btrfs_ref ref = { 0 };
2561         int ret;
2562
2563         if (replace_len == 0)
2564                 return 0;
2565
2566         if (extent_info->disk_offset == 0 &&
2567             btrfs_fs_incompat(fs_info, NO_HOLES)) {
2568                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2569                 return 0;
2570         }
2571
2572         key.objectid = btrfs_ino(inode);
2573         key.type = BTRFS_EXTENT_DATA_KEY;
2574         key.offset = extent_info->file_offset;
2575         ret = btrfs_insert_empty_item(trans, root, path, &key,
2576                                       sizeof(struct btrfs_file_extent_item));
2577         if (ret)
2578                 return ret;
2579         leaf = path->nodes[0];
2580         slot = path->slots[0];
2581         write_extent_buffer(leaf, extent_info->extent_buf,
2582                             btrfs_item_ptr_offset(leaf, slot),
2583                             sizeof(struct btrfs_file_extent_item));
2584         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2585         ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2586         btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2587         btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2588         if (extent_info->is_new_extent)
2589                 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2590         btrfs_mark_buffer_dirty(leaf);
2591         btrfs_release_path(path);
2592
2593         ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2594                                                 replace_len);
2595         if (ret)
2596                 return ret;
2597
2598         /* If it's a hole, nothing more needs to be done. */
2599         if (extent_info->disk_offset == 0) {
2600                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2601                 return 0;
2602         }
2603
2604         btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2605
2606         if (extent_info->is_new_extent && extent_info->insertions == 0) {
2607                 key.objectid = extent_info->disk_offset;
2608                 key.type = BTRFS_EXTENT_ITEM_KEY;
2609                 key.offset = extent_info->disk_len;
2610                 ret = btrfs_alloc_reserved_file_extent(trans, root,
2611                                                        btrfs_ino(inode),
2612                                                        extent_info->file_offset,
2613                                                        extent_info->qgroup_reserved,
2614                                                        &key);
2615         } else {
2616                 u64 ref_offset;
2617
2618                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2619                                        extent_info->disk_offset,
2620                                        extent_info->disk_len, 0);
2621                 ref_offset = extent_info->file_offset - extent_info->data_offset;
2622                 btrfs_init_data_ref(&ref, root->root_key.objectid,
2623                                     btrfs_ino(inode), ref_offset);
2624                 ret = btrfs_inc_extent_ref(trans, &ref);
2625         }
2626
2627         extent_info->insertions++;
2628
2629         return ret;
2630 }
2631
2632 /*
2633  * The respective range must have been previously locked, as well as the inode.
2634  * The end offset is inclusive (last byte of the range).
2635  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2636  * the file range with an extent.
2637  * When not punching a hole, we don't want to end up in a state where we dropped
2638  * extents without inserting a new one, so we must abort the transaction to avoid
2639  * a corruption.
2640  */
2641 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2642                                struct btrfs_path *path, const u64 start,
2643                                const u64 end,
2644                                struct btrfs_replace_extent_info *extent_info,
2645                                struct btrfs_trans_handle **trans_out)
2646 {
2647         struct btrfs_drop_extents_args drop_args = { 0 };
2648         struct btrfs_root *root = inode->root;
2649         struct btrfs_fs_info *fs_info = root->fs_info;
2650         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2651         u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2652         struct btrfs_trans_handle *trans = NULL;
2653         struct btrfs_block_rsv *rsv;
2654         unsigned int rsv_count;
2655         u64 cur_offset;
2656         u64 len = end - start;
2657         int ret = 0;
2658
2659         if (end <= start)
2660                 return -EINVAL;
2661
2662         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2663         if (!rsv) {
2664                 ret = -ENOMEM;
2665                 goto out;
2666         }
2667         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2668         rsv->failfast = 1;
2669
2670         /*
2671          * 1 - update the inode
2672          * 1 - removing the extents in the range
2673          * 1 - adding the hole extent if no_holes isn't set or if we are
2674          *     replacing the range with a new extent
2675          */
2676         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2677                 rsv_count = 3;
2678         else
2679                 rsv_count = 2;
2680
2681         trans = btrfs_start_transaction(root, rsv_count);
2682         if (IS_ERR(trans)) {
2683                 ret = PTR_ERR(trans);
2684                 trans = NULL;
2685                 goto out_free;
2686         }
2687
2688         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2689                                       min_size, false);
2690         BUG_ON(ret);
2691         trans->block_rsv = rsv;
2692
2693         cur_offset = start;
2694         drop_args.path = path;
2695         drop_args.end = end + 1;
2696         drop_args.drop_cache = true;
2697         while (cur_offset < end) {
2698                 drop_args.start = cur_offset;
2699                 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2700                 /* If we are punching a hole decrement the inode's byte count */
2701                 if (!extent_info)
2702                         btrfs_update_inode_bytes(inode, 0,
2703                                                  drop_args.bytes_found);
2704                 if (ret != -ENOSPC) {
2705                         /*
2706                          * The only time we don't want to abort is if we are
2707                          * attempting to clone a partial inline extent, in which
2708                          * case we'll get EOPNOTSUPP.  However if we aren't
2709                          * clone we need to abort no matter what, because if we
2710                          * got EOPNOTSUPP via prealloc then we messed up and
2711                          * need to abort.
2712                          */
2713                         if (ret &&
2714                             (ret != -EOPNOTSUPP ||
2715                              (extent_info && extent_info->is_new_extent)))
2716                                 btrfs_abort_transaction(trans, ret);
2717                         break;
2718                 }
2719
2720                 trans->block_rsv = &fs_info->trans_block_rsv;
2721
2722                 if (!extent_info && cur_offset < drop_args.drop_end &&
2723                     cur_offset < ino_size) {
2724                         ret = fill_holes(trans, inode, path, cur_offset,
2725                                          drop_args.drop_end);
2726                         if (ret) {
2727                                 /*
2728                                  * If we failed then we didn't insert our hole
2729                                  * entries for the area we dropped, so now the
2730                                  * fs is corrupted, so we must abort the
2731                                  * transaction.
2732                                  */
2733                                 btrfs_abort_transaction(trans, ret);
2734                                 break;
2735                         }
2736                 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2737                         /*
2738                          * We are past the i_size here, but since we didn't
2739                          * insert holes we need to clear the mapped area so we
2740                          * know to not set disk_i_size in this area until a new
2741                          * file extent is inserted here.
2742                          */
2743                         ret = btrfs_inode_clear_file_extent_range(inode,
2744                                         cur_offset,
2745                                         drop_args.drop_end - cur_offset);
2746                         if (ret) {
2747                                 /*
2748                                  * We couldn't clear our area, so we could
2749                                  * presumably adjust up and corrupt the fs, so
2750                                  * we need to abort.
2751                                  */
2752                                 btrfs_abort_transaction(trans, ret);
2753                                 break;
2754                         }
2755                 }
2756
2757                 if (extent_info &&
2758                     drop_args.drop_end > extent_info->file_offset) {
2759                         u64 replace_len = drop_args.drop_end -
2760                                           extent_info->file_offset;
2761
2762                         ret = btrfs_insert_replace_extent(trans, inode, path,
2763                                         extent_info, replace_len,
2764                                         drop_args.bytes_found);
2765                         if (ret) {
2766                                 btrfs_abort_transaction(trans, ret);
2767                                 break;
2768                         }
2769                         extent_info->data_len -= replace_len;
2770                         extent_info->data_offset += replace_len;
2771                         extent_info->file_offset += replace_len;
2772                 }
2773
2774                 ret = btrfs_update_inode(trans, root, inode);
2775                 if (ret)
2776                         break;
2777
2778                 btrfs_end_transaction(trans);
2779                 btrfs_btree_balance_dirty(fs_info);
2780
2781                 trans = btrfs_start_transaction(root, rsv_count);
2782                 if (IS_ERR(trans)) {
2783                         ret = PTR_ERR(trans);
2784                         trans = NULL;
2785                         break;
2786                 }
2787
2788                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2789                                               rsv, min_size, false);
2790                 BUG_ON(ret);    /* shouldn't happen */
2791                 trans->block_rsv = rsv;
2792
2793                 cur_offset = drop_args.drop_end;
2794                 len = end - cur_offset;
2795                 if (!extent_info && len) {
2796                         ret = find_first_non_hole(inode, &cur_offset, &len);
2797                         if (unlikely(ret < 0))
2798                                 break;
2799                         if (ret && !len) {
2800                                 ret = 0;
2801                                 break;
2802                         }
2803                 }
2804         }
2805
2806         /*
2807          * If we were cloning, force the next fsync to be a full one since we
2808          * we replaced (or just dropped in the case of cloning holes when
2809          * NO_HOLES is enabled) file extent items and did not setup new extent
2810          * maps for the replacement extents (or holes).
2811          */
2812         if (extent_info && !extent_info->is_new_extent)
2813                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2814
2815         if (ret)
2816                 goto out_trans;
2817
2818         trans->block_rsv = &fs_info->trans_block_rsv;
2819         /*
2820          * If we are using the NO_HOLES feature we might have had already an
2821          * hole that overlaps a part of the region [lockstart, lockend] and
2822          * ends at (or beyond) lockend. Since we have no file extent items to
2823          * represent holes, drop_end can be less than lockend and so we must
2824          * make sure we have an extent map representing the existing hole (the
2825          * call to __btrfs_drop_extents() might have dropped the existing extent
2826          * map representing the existing hole), otherwise the fast fsync path
2827          * will not record the existence of the hole region
2828          * [existing_hole_start, lockend].
2829          */
2830         if (drop_args.drop_end <= end)
2831                 drop_args.drop_end = end + 1;
2832         /*
2833          * Don't insert file hole extent item if it's for a range beyond eof
2834          * (because it's useless) or if it represents a 0 bytes range (when
2835          * cur_offset == drop_end).
2836          */
2837         if (!extent_info && cur_offset < ino_size &&
2838             cur_offset < drop_args.drop_end) {
2839                 ret = fill_holes(trans, inode, path, cur_offset,
2840                                  drop_args.drop_end);
2841                 if (ret) {
2842                         /* Same comment as above. */
2843                         btrfs_abort_transaction(trans, ret);
2844                         goto out_trans;
2845                 }
2846         } else if (!extent_info && cur_offset < drop_args.drop_end) {
2847                 /* See the comment in the loop above for the reasoning here. */
2848                 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2849                                         drop_args.drop_end - cur_offset);
2850                 if (ret) {
2851                         btrfs_abort_transaction(trans, ret);
2852                         goto out_trans;
2853                 }
2854
2855         }
2856         if (extent_info) {
2857                 ret = btrfs_insert_replace_extent(trans, inode, path,
2858                                 extent_info, extent_info->data_len,
2859                                 drop_args.bytes_found);
2860                 if (ret) {
2861                         btrfs_abort_transaction(trans, ret);
2862                         goto out_trans;
2863                 }
2864         }
2865
2866 out_trans:
2867         if (!trans)
2868                 goto out_free;
2869
2870         trans->block_rsv = &fs_info->trans_block_rsv;
2871         if (ret)
2872                 btrfs_end_transaction(trans);
2873         else
2874                 *trans_out = trans;
2875 out_free:
2876         btrfs_free_block_rsv(fs_info, rsv);
2877 out:
2878         return ret;
2879 }
2880
2881 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2882 {
2883         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2884         struct btrfs_root *root = BTRFS_I(inode)->root;
2885         struct extent_state *cached_state = NULL;
2886         struct btrfs_path *path;
2887         struct btrfs_trans_handle *trans = NULL;
2888         u64 lockstart;
2889         u64 lockend;
2890         u64 tail_start;
2891         u64 tail_len;
2892         u64 orig_start = offset;
2893         int ret = 0;
2894         bool same_block;
2895         u64 ino_size;
2896         bool truncated_block = false;
2897         bool updated_inode = false;
2898
2899         ret = btrfs_wait_ordered_range(inode, offset, len);
2900         if (ret)
2901                 return ret;
2902
2903         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2904         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2905         ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2906         if (ret < 0)
2907                 goto out_only_mutex;
2908         if (ret && !len) {
2909                 /* Already in a large hole */
2910                 ret = 0;
2911                 goto out_only_mutex;
2912         }
2913
2914         lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2915         lockend = round_down(offset + len,
2916                              btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2917         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2918                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2919         /*
2920          * We needn't truncate any block which is beyond the end of the file
2921          * because we are sure there is no data there.
2922          */
2923         /*
2924          * Only do this if we are in the same block and we aren't doing the
2925          * entire block.
2926          */
2927         if (same_block && len < fs_info->sectorsize) {
2928                 if (offset < ino_size) {
2929                         truncated_block = true;
2930                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2931                                                    0);
2932                 } else {
2933                         ret = 0;
2934                 }
2935                 goto out_only_mutex;
2936         }
2937
2938         /* zero back part of the first block */
2939         if (offset < ino_size) {
2940                 truncated_block = true;
2941                 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2942                 if (ret) {
2943                         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2944                         return ret;
2945                 }
2946         }
2947
2948         /* Check the aligned pages after the first unaligned page,
2949          * if offset != orig_start, which means the first unaligned page
2950          * including several following pages are already in holes,
2951          * the extra check can be skipped */
2952         if (offset == orig_start) {
2953                 /* after truncate page, check hole again */
2954                 len = offset + len - lockstart;
2955                 offset = lockstart;
2956                 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2957                 if (ret < 0)
2958                         goto out_only_mutex;
2959                 if (ret && !len) {
2960                         ret = 0;
2961                         goto out_only_mutex;
2962                 }
2963                 lockstart = offset;
2964         }
2965
2966         /* Check the tail unaligned part is in a hole */
2967         tail_start = lockend + 1;
2968         tail_len = offset + len - tail_start;
2969         if (tail_len) {
2970                 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2971                 if (unlikely(ret < 0))
2972                         goto out_only_mutex;
2973                 if (!ret) {
2974                         /* zero the front end of the last page */
2975                         if (tail_start + tail_len < ino_size) {
2976                                 truncated_block = true;
2977                                 ret = btrfs_truncate_block(BTRFS_I(inode),
2978                                                         tail_start + tail_len,
2979                                                         0, 1);
2980                                 if (ret)
2981                                         goto out_only_mutex;
2982                         }
2983                 }
2984         }
2985
2986         if (lockend < lockstart) {
2987                 ret = 0;
2988                 goto out_only_mutex;
2989         }
2990
2991         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2992                                           &cached_state);
2993         if (ret)
2994                 goto out_only_mutex;
2995
2996         path = btrfs_alloc_path();
2997         if (!path) {
2998                 ret = -ENOMEM;
2999                 goto out;
3000         }
3001
3002         ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3003                                          lockend, NULL, &trans);
3004         btrfs_free_path(path);
3005         if (ret)
3006                 goto out;
3007
3008         ASSERT(trans != NULL);
3009         inode_inc_iversion(inode);
3010         inode->i_mtime = inode->i_ctime = current_time(inode);
3011         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3012         updated_inode = true;
3013         btrfs_end_transaction(trans);
3014         btrfs_btree_balance_dirty(fs_info);
3015 out:
3016         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3017                              &cached_state);
3018 out_only_mutex:
3019         if (!updated_inode && truncated_block && !ret) {
3020                 /*
3021                  * If we only end up zeroing part of a page, we still need to
3022                  * update the inode item, so that all the time fields are
3023                  * updated as well as the necessary btrfs inode in memory fields
3024                  * for detecting, at fsync time, if the inode isn't yet in the
3025                  * log tree or it's there but not up to date.
3026                  */
3027                 struct timespec64 now = current_time(inode);
3028
3029                 inode_inc_iversion(inode);
3030                 inode->i_mtime = now;
3031                 inode->i_ctime = now;
3032                 trans = btrfs_start_transaction(root, 1);
3033                 if (IS_ERR(trans)) {
3034                         ret = PTR_ERR(trans);
3035                 } else {
3036                         int ret2;
3037
3038                         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3039                         ret2 = btrfs_end_transaction(trans);
3040                         if (!ret)
3041                                 ret = ret2;
3042                 }
3043         }
3044         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3045         return ret;
3046 }
3047
3048 /* Helper structure to record which range is already reserved */
3049 struct falloc_range {
3050         struct list_head list;
3051         u64 start;
3052         u64 len;
3053 };
3054
3055 /*
3056  * Helper function to add falloc range
3057  *
3058  * Caller should have locked the larger range of extent containing
3059  * [start, len)
3060  */
3061 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3062 {
3063         struct falloc_range *range = NULL;
3064
3065         if (!list_empty(head)) {
3066                 /*
3067                  * As fallocate iterates by bytenr order, we only need to check
3068                  * the last range.
3069                  */
3070                 range = list_last_entry(head, struct falloc_range, list);
3071                 if (range->start + range->len == start) {
3072                         range->len += len;
3073                         return 0;
3074                 }
3075         }
3076
3077         range = kmalloc(sizeof(*range), GFP_KERNEL);
3078         if (!range)
3079                 return -ENOMEM;
3080         range->start = start;
3081         range->len = len;
3082         list_add_tail(&range->list, head);
3083         return 0;
3084 }
3085
3086 static int btrfs_fallocate_update_isize(struct inode *inode,
3087                                         const u64 end,
3088                                         const int mode)
3089 {
3090         struct btrfs_trans_handle *trans;
3091         struct btrfs_root *root = BTRFS_I(inode)->root;
3092         int ret;
3093         int ret2;
3094
3095         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3096                 return 0;
3097
3098         trans = btrfs_start_transaction(root, 1);
3099         if (IS_ERR(trans))
3100                 return PTR_ERR(trans);
3101
3102         inode->i_ctime = current_time(inode);
3103         i_size_write(inode, end);
3104         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3105         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3106         ret2 = btrfs_end_transaction(trans);
3107
3108         return ret ? ret : ret2;
3109 }
3110
3111 enum {
3112         RANGE_BOUNDARY_WRITTEN_EXTENT,
3113         RANGE_BOUNDARY_PREALLOC_EXTENT,
3114         RANGE_BOUNDARY_HOLE,
3115 };
3116
3117 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3118                                                  u64 offset)
3119 {
3120         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3121         struct extent_map *em;
3122         int ret;
3123
3124         offset = round_down(offset, sectorsize);
3125         em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3126         if (IS_ERR(em))
3127                 return PTR_ERR(em);
3128
3129         if (em->block_start == EXTENT_MAP_HOLE)
3130                 ret = RANGE_BOUNDARY_HOLE;
3131         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3132                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3133         else
3134                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3135
3136         free_extent_map(em);
3137         return ret;
3138 }
3139
3140 static int btrfs_zero_range(struct inode *inode,
3141                             loff_t offset,
3142                             loff_t len,
3143                             const int mode)
3144 {
3145         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3146         struct extent_map *em;
3147         struct extent_changeset *data_reserved = NULL;
3148         int ret;
3149         u64 alloc_hint = 0;
3150         const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3151         u64 alloc_start = round_down(offset, sectorsize);
3152         u64 alloc_end = round_up(offset + len, sectorsize);
3153         u64 bytes_to_reserve = 0;
3154         bool space_reserved = false;
3155
3156         inode_dio_wait(inode);
3157
3158         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3159                               alloc_end - alloc_start);
3160         if (IS_ERR(em)) {
3161                 ret = PTR_ERR(em);
3162                 goto out;
3163         }
3164
3165         /*
3166          * Avoid hole punching and extent allocation for some cases. More cases
3167          * could be considered, but these are unlikely common and we keep things
3168          * as simple as possible for now. Also, intentionally, if the target
3169          * range contains one or more prealloc extents together with regular
3170          * extents and holes, we drop all the existing extents and allocate a
3171          * new prealloc extent, so that we get a larger contiguous disk extent.
3172          */
3173         if (em->start <= alloc_start &&
3174             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3175                 const u64 em_end = em->start + em->len;
3176
3177                 if (em_end >= offset + len) {
3178                         /*
3179                          * The whole range is already a prealloc extent,
3180                          * do nothing except updating the inode's i_size if
3181                          * needed.
3182                          */
3183                         free_extent_map(em);
3184                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3185                                                            mode);
3186                         goto out;
3187                 }
3188                 /*
3189                  * Part of the range is already a prealloc extent, so operate
3190                  * only on the remaining part of the range.
3191                  */
3192                 alloc_start = em_end;
3193                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3194                 len = offset + len - alloc_start;
3195                 offset = alloc_start;
3196                 alloc_hint = em->block_start + em->len;
3197         }
3198         free_extent_map(em);
3199
3200         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3201             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3202                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3203                                       sectorsize);
3204                 if (IS_ERR(em)) {
3205                         ret = PTR_ERR(em);
3206                         goto out;
3207                 }
3208
3209                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3210                         free_extent_map(em);
3211                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3212                                                            mode);
3213                         goto out;
3214                 }
3215                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3216                         free_extent_map(em);
3217                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3218                                                    0);
3219                         if (!ret)
3220                                 ret = btrfs_fallocate_update_isize(inode,
3221                                                                    offset + len,
3222                                                                    mode);
3223                         return ret;
3224                 }
3225                 free_extent_map(em);
3226                 alloc_start = round_down(offset, sectorsize);
3227                 alloc_end = alloc_start + sectorsize;
3228                 goto reserve_space;
3229         }
3230
3231         alloc_start = round_up(offset, sectorsize);
3232         alloc_end = round_down(offset + len, sectorsize);
3233
3234         /*
3235          * For unaligned ranges, check the pages at the boundaries, they might
3236          * map to an extent, in which case we need to partially zero them, or
3237          * they might map to a hole, in which case we need our allocation range
3238          * to cover them.
3239          */
3240         if (!IS_ALIGNED(offset, sectorsize)) {
3241                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3242                                                             offset);
3243                 if (ret < 0)
3244                         goto out;
3245                 if (ret == RANGE_BOUNDARY_HOLE) {
3246                         alloc_start = round_down(offset, sectorsize);
3247                         ret = 0;
3248                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3249                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3250                         if (ret)
3251                                 goto out;
3252                 } else {
3253                         ret = 0;
3254                 }
3255         }
3256
3257         if (!IS_ALIGNED(offset + len, sectorsize)) {
3258                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3259                                                             offset + len);
3260                 if (ret < 0)
3261                         goto out;
3262                 if (ret == RANGE_BOUNDARY_HOLE) {
3263                         alloc_end = round_up(offset + len, sectorsize);
3264                         ret = 0;
3265                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3266                         ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3267                                                    0, 1);
3268                         if (ret)
3269                                 goto out;
3270                 } else {
3271                         ret = 0;
3272                 }
3273         }
3274
3275 reserve_space:
3276         if (alloc_start < alloc_end) {
3277                 struct extent_state *cached_state = NULL;
3278                 const u64 lockstart = alloc_start;
3279                 const u64 lockend = alloc_end - 1;
3280
3281                 bytes_to_reserve = alloc_end - alloc_start;
3282                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3283                                                       bytes_to_reserve);
3284                 if (ret < 0)
3285                         goto out;
3286                 space_reserved = true;
3287                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3288                                                   &cached_state);
3289                 if (ret)
3290                         goto out;
3291                 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3292                                                 alloc_start, bytes_to_reserve);
3293                 if (ret) {
3294                         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3295                                              lockend, &cached_state);
3296                         goto out;
3297                 }
3298                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3299                                                 alloc_end - alloc_start,
3300                                                 i_blocksize(inode),
3301                                                 offset + len, &alloc_hint);
3302                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3303                                      lockend, &cached_state);
3304                 /* btrfs_prealloc_file_range releases reserved space on error */
3305                 if (ret) {
3306                         space_reserved = false;
3307                         goto out;
3308                 }
3309         }
3310         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3311  out:
3312         if (ret && space_reserved)
3313                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3314                                                alloc_start, bytes_to_reserve);
3315         extent_changeset_free(data_reserved);
3316
3317         return ret;
3318 }
3319
3320 static long btrfs_fallocate(struct file *file, int mode,
3321                             loff_t offset, loff_t len)
3322 {
3323         struct inode *inode = file_inode(file);
3324         struct extent_state *cached_state = NULL;
3325         struct extent_changeset *data_reserved = NULL;
3326         struct falloc_range *range;
3327         struct falloc_range *tmp;
3328         struct list_head reserve_list;
3329         u64 cur_offset;
3330         u64 last_byte;
3331         u64 alloc_start;
3332         u64 alloc_end;
3333         u64 alloc_hint = 0;
3334         u64 locked_end;
3335         u64 actual_end = 0;
3336         struct extent_map *em;
3337         int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3338         int ret;
3339
3340         /* Do not allow fallocate in ZONED mode */
3341         if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3342                 return -EOPNOTSUPP;
3343
3344         alloc_start = round_down(offset, blocksize);
3345         alloc_end = round_up(offset + len, blocksize);
3346         cur_offset = alloc_start;
3347
3348         /* Make sure we aren't being give some crap mode */
3349         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3350                      FALLOC_FL_ZERO_RANGE))
3351                 return -EOPNOTSUPP;
3352
3353         if (mode & FALLOC_FL_PUNCH_HOLE)
3354                 return btrfs_punch_hole(inode, offset, len);
3355
3356         /*
3357          * Only trigger disk allocation, don't trigger qgroup reserve
3358          *
3359          * For qgroup space, it will be checked later.
3360          */
3361         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3362                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3363                                                       alloc_end - alloc_start);
3364                 if (ret < 0)
3365                         return ret;
3366         }
3367
3368         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3369
3370         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3371                 ret = inode_newsize_ok(inode, offset + len);
3372                 if (ret)
3373                         goto out;
3374         }
3375
3376         /*
3377          * TODO: Move these two operations after we have checked
3378          * accurate reserved space, or fallocate can still fail but
3379          * with page truncated or size expanded.
3380          *
3381          * But that's a minor problem and won't do much harm BTW.
3382          */
3383         if (alloc_start > inode->i_size) {
3384                 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3385                                         alloc_start);
3386                 if (ret)
3387                         goto out;
3388         } else if (offset + len > inode->i_size) {
3389                 /*
3390                  * If we are fallocating from the end of the file onward we
3391                  * need to zero out the end of the block if i_size lands in the
3392                  * middle of a block.
3393                  */
3394                 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3395                 if (ret)
3396                         goto out;
3397         }
3398
3399         /*
3400          * wait for ordered IO before we have any locks.  We'll loop again
3401          * below with the locks held.
3402          */
3403         ret = btrfs_wait_ordered_range(inode, alloc_start,
3404                                        alloc_end - alloc_start);
3405         if (ret)
3406                 goto out;
3407
3408         if (mode & FALLOC_FL_ZERO_RANGE) {
3409                 ret = btrfs_zero_range(inode, offset, len, mode);
3410                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3411                 return ret;
3412         }
3413
3414         locked_end = alloc_end - 1;
3415         while (1) {
3416                 struct btrfs_ordered_extent *ordered;
3417
3418                 /* the extent lock is ordered inside the running
3419                  * transaction
3420                  */
3421                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3422                                  locked_end, &cached_state);
3423                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3424                                                             locked_end);
3425
3426                 if (ordered &&
3427                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3428                     ordered->file_offset < alloc_end) {
3429                         btrfs_put_ordered_extent(ordered);
3430                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3431                                              alloc_start, locked_end,
3432                                              &cached_state);
3433                         /*
3434                          * we can't wait on the range with the transaction
3435                          * running or with the extent lock held
3436                          */
3437                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3438                                                        alloc_end - alloc_start);
3439                         if (ret)
3440                                 goto out;
3441                 } else {
3442                         if (ordered)
3443                                 btrfs_put_ordered_extent(ordered);
3444                         break;
3445                 }
3446         }
3447
3448         /* First, check if we exceed the qgroup limit */
3449         INIT_LIST_HEAD(&reserve_list);
3450         while (cur_offset < alloc_end) {
3451                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3452                                       alloc_end - cur_offset);
3453                 if (IS_ERR(em)) {
3454                         ret = PTR_ERR(em);
3455                         break;
3456                 }
3457                 last_byte = min(extent_map_end(em), alloc_end);
3458                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3459                 last_byte = ALIGN(last_byte, blocksize);
3460                 if (em->block_start == EXTENT_MAP_HOLE ||
3461                     (cur_offset >= inode->i_size &&
3462                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3463                         ret = add_falloc_range(&reserve_list, cur_offset,
3464                                                last_byte - cur_offset);
3465                         if (ret < 0) {
3466                                 free_extent_map(em);
3467                                 break;
3468                         }
3469                         ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3470                                         &data_reserved, cur_offset,
3471                                         last_byte - cur_offset);
3472                         if (ret < 0) {
3473                                 cur_offset = last_byte;
3474                                 free_extent_map(em);
3475                                 break;
3476                         }
3477                 } else {
3478                         /*
3479                          * Do not need to reserve unwritten extent for this
3480                          * range, free reserved data space first, otherwise
3481                          * it'll result in false ENOSPC error.
3482                          */
3483                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3484                                 data_reserved, cur_offset,
3485                                 last_byte - cur_offset);
3486                 }
3487                 free_extent_map(em);
3488                 cur_offset = last_byte;
3489         }
3490
3491         /*
3492          * If ret is still 0, means we're OK to fallocate.
3493          * Or just cleanup the list and exit.
3494          */
3495         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3496                 if (!ret)
3497                         ret = btrfs_prealloc_file_range(inode, mode,
3498                                         range->start,
3499                                         range->len, i_blocksize(inode),
3500                                         offset + len, &alloc_hint);
3501                 else
3502                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3503                                         data_reserved, range->start,
3504                                         range->len);
3505                 list_del(&range->list);
3506                 kfree(range);
3507         }
3508         if (ret < 0)
3509                 goto out_unlock;
3510
3511         /*
3512          * We didn't need to allocate any more space, but we still extended the
3513          * size of the file so we need to update i_size and the inode item.
3514          */
3515         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3516 out_unlock:
3517         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3518                              &cached_state);
3519 out:
3520         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3521         /* Let go of our reservation. */
3522         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3523                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3524                                 cur_offset, alloc_end - cur_offset);
3525         extent_changeset_free(data_reserved);
3526         return ret;
3527 }
3528
3529 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3530                                   int whence)
3531 {
3532         struct btrfs_fs_info *fs_info = inode->root->fs_info;
3533         struct extent_map *em = NULL;
3534         struct extent_state *cached_state = NULL;
3535         loff_t i_size = inode->vfs_inode.i_size;
3536         u64 lockstart;
3537         u64 lockend;
3538         u64 start;
3539         u64 len;
3540         int ret = 0;
3541
3542         if (i_size == 0 || offset >= i_size)
3543                 return -ENXIO;
3544
3545         /*
3546          * offset can be negative, in this case we start finding DATA/HOLE from
3547          * the very start of the file.
3548          */
3549         start = max_t(loff_t, 0, offset);
3550
3551         lockstart = round_down(start, fs_info->sectorsize);
3552         lockend = round_up(i_size, fs_info->sectorsize);
3553         if (lockend <= lockstart)
3554                 lockend = lockstart + fs_info->sectorsize;
3555         lockend--;
3556         len = lockend - lockstart + 1;
3557
3558         lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3559
3560         while (start < i_size) {
3561                 em = btrfs_get_extent_fiemap(inode, start, len);
3562                 if (IS_ERR(em)) {
3563                         ret = PTR_ERR(em);
3564                         em = NULL;
3565                         break;
3566                 }
3567
3568                 if (whence == SEEK_HOLE &&
3569                     (em->block_start == EXTENT_MAP_HOLE ||
3570                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3571                         break;
3572                 else if (whence == SEEK_DATA &&
3573                            (em->block_start != EXTENT_MAP_HOLE &&
3574                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3575                         break;
3576
3577                 start = em->start + em->len;
3578                 free_extent_map(em);
3579                 em = NULL;
3580                 cond_resched();
3581         }
3582         free_extent_map(em);
3583         unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3584                              &cached_state);
3585         if (ret) {
3586                 offset = ret;
3587         } else {
3588                 if (whence == SEEK_DATA && start >= i_size)
3589                         offset = -ENXIO;
3590                 else
3591                         offset = min_t(loff_t, start, i_size);
3592         }
3593
3594         return offset;
3595 }
3596
3597 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3598 {
3599         struct inode *inode = file->f_mapping->host;
3600
3601         switch (whence) {
3602         default:
3603                 return generic_file_llseek(file, offset, whence);
3604         case SEEK_DATA:
3605         case SEEK_HOLE:
3606                 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3607                 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3608                 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3609                 break;
3610         }
3611
3612         if (offset < 0)
3613                 return offset;
3614
3615         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3616 }
3617
3618 static int btrfs_file_open(struct inode *inode, struct file *filp)
3619 {
3620         int ret;
3621
3622         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3623
3624         ret = fsverity_file_open(inode, filp);
3625         if (ret)
3626                 return ret;
3627         return generic_file_open(inode, filp);
3628 }
3629
3630 static int check_direct_read(struct btrfs_fs_info *fs_info,
3631                              const struct iov_iter *iter, loff_t offset)
3632 {
3633         int ret;
3634         int i, seg;
3635
3636         ret = check_direct_IO(fs_info, iter, offset);
3637         if (ret < 0)
3638                 return ret;
3639
3640         if (!iter_is_iovec(iter))
3641                 return 0;
3642
3643         for (seg = 0; seg < iter->nr_segs; seg++)
3644                 for (i = seg + 1; i < iter->nr_segs; i++)
3645                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3646                                 return -EINVAL;
3647         return 0;
3648 }
3649
3650 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3651 {
3652         struct inode *inode = file_inode(iocb->ki_filp);
3653         ssize_t ret;
3654
3655         if (fsverity_active(inode))
3656                 return 0;
3657
3658         if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3659                 return 0;
3660
3661         btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3662         ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3663         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3664         return ret;
3665 }
3666
3667 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3668 {
3669         ssize_t ret = 0;
3670
3671         if (iocb->ki_flags & IOCB_DIRECT) {
3672                 ret = btrfs_direct_read(iocb, to);
3673                 if (ret < 0 || !iov_iter_count(to) ||
3674                     iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3675                         return ret;
3676         }
3677
3678         return filemap_read(iocb, to, ret);
3679 }
3680
3681 const struct file_operations btrfs_file_operations = {
3682         .llseek         = btrfs_file_llseek,
3683         .read_iter      = btrfs_file_read_iter,
3684         .splice_read    = generic_file_splice_read,
3685         .write_iter     = btrfs_file_write_iter,
3686         .splice_write   = iter_file_splice_write,
3687         .mmap           = btrfs_file_mmap,
3688         .open           = btrfs_file_open,
3689         .release        = btrfs_release_file,
3690         .fsync          = btrfs_sync_file,
3691         .fallocate      = btrfs_fallocate,
3692         .unlocked_ioctl = btrfs_ioctl,
3693 #ifdef CONFIG_COMPAT
3694         .compat_ioctl   = btrfs_compat_ioctl,
3695 #endif
3696         .remap_file_range = btrfs_remap_file_range,
3697 };
3698
3699 void __cold btrfs_auto_defrag_exit(void)
3700 {
3701         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3702 }
3703
3704 int __init btrfs_auto_defrag_init(void)
3705 {
3706         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3707                                         sizeof(struct inode_defrag), 0,
3708                                         SLAB_MEM_SPREAD,
3709                                         NULL);
3710         if (!btrfs_inode_defrag_cachep)
3711                 return -ENOMEM;
3712
3713         return 0;
3714 }
3715
3716 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3717 {
3718         int ret;
3719
3720         /*
3721          * So with compression we will find and lock a dirty page and clear the
3722          * first one as dirty, setup an async extent, and immediately return
3723          * with the entire range locked but with nobody actually marked with
3724          * writeback.  So we can't just filemap_write_and_wait_range() and
3725          * expect it to work since it will just kick off a thread to do the
3726          * actual work.  So we need to call filemap_fdatawrite_range _again_
3727          * since it will wait on the page lock, which won't be unlocked until
3728          * after the pages have been marked as writeback and so we're good to go
3729          * from there.  We have to do this otherwise we'll miss the ordered
3730          * extents and that results in badness.  Please Josef, do not think you
3731          * know better and pull this out at some point in the future, it is
3732          * right and you are wrong.
3733          */
3734         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3735         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3736                              &BTRFS_I(inode)->runtime_flags))
3737                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3738
3739         return ret;
3740 }