2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
51 struct rb_node rb_node;
55 * transid where the defrag was added, we search for
56 * extents newer than this
63 /* last offset we were able to defrag */
66 /* if we've wrapped around back to zero once already */
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
73 if (defrag1->root > defrag2->root)
75 else if (defrag1->root < defrag2->root)
77 else if (defrag1->ino > defrag2->ino)
79 else if (defrag1->ino < defrag2->ino)
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
91 * If an existing record is found the defrag item you
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
100 struct rb_node *parent = NULL;
103 p = &root->fs_info->defrag_inodes.rb_node;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
108 ret = __compare_inode_defrag(defrag, entry);
110 p = &parent->rb_left;
112 p = &parent->rb_right;
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
131 static inline int __need_auto_defrag(struct btrfs_root *root)
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
136 if (btrfs_fs_closing(root->fs_info))
143 * insert a defrag record for this inode if auto defrag is
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
154 if (!__need_auto_defrag(root))
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
161 transid = trans->transid;
163 transid = BTRFS_I(inode)->root->last_trans;
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 ret = __btrfs_add_inode_defrag(inode, defrag);
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
198 struct btrfs_root *root = BTRFS_I(inode)->root;
201 if (!__need_auto_defrag(root))
205 * Here we don't check the IN_DEFRAG flag, because we need merge
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
219 * pick the defragable inode that we want, if it doesn't exist, we will get
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
228 struct rb_node *parent = NULL;
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
240 ret = __compare_inode_defrag(&tmp, entry);
244 p = parent->rb_right;
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 struct inode_defrag *defrag;
266 struct rb_node *node;
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
278 spin_lock(&fs_info->defrag_inodes_lock);
281 node = rb_first(&fs_info->defrag_inodes);
283 spin_unlock(&fs_info->defrag_inodes_lock);
286 #define BTRFS_DEFRAG_BATCH 1024
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
291 struct btrfs_root *inode_root;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
304 index = srcu_read_lock(&fs_info->subvol_srcu);
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
308 ret = PTR_ERR(inode_root);
312 key.objectid = defrag->ino;
313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317 ret = PTR_ERR(inode);
320 srcu_read_unlock(&fs_info->subvol_srcu, index);
322 /* do a chunk of defrag */
323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324 memset(&range, 0, sizeof(range));
326 range.start = defrag->last_offset;
328 sb_start_write(fs_info->sb);
329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331 sb_end_write(fs_info->sb);
333 * if we filled the whole defrag batch, there
334 * must be more work to do. Queue this defrag
337 if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 defrag->last_offset = range.start;
339 btrfs_requeue_inode_defrag(inode, defrag);
340 } else if (defrag->last_offset && !defrag->cycled) {
342 * we didn't fill our defrag batch, but
343 * we didn't start at zero. Make sure we loop
344 * around to the start of the file.
346 defrag->last_offset = 0;
348 btrfs_requeue_inode_defrag(inode, defrag);
350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 srcu_read_unlock(&fs_info->subvol_srcu, index);
357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
362 * run through the list of inodes in the FS that need
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
367 struct inode_defrag *defrag;
369 u64 root_objectid = 0;
371 atomic_inc(&fs_info->defrag_running);
373 /* Pause the auto defragger. */
374 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
378 if (!__need_auto_defrag(fs_info->tree_root))
381 /* find an inode to defrag */
382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
385 if (root_objectid || first_ino) {
394 first_ino = defrag->ino + 1;
395 root_objectid = defrag->root;
397 __btrfs_run_defrag_inode(fs_info, defrag);
399 atomic_dec(&fs_info->defrag_running);
402 * during unmount, we use the transaction_wait queue to
403 * wait for the defragger to stop
405 wake_up(&fs_info->transaction_wait);
409 /* simple helper to fault in pages and copy. This should go away
410 * and be replaced with calls into generic code.
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
414 struct page **prepared_pages,
418 size_t total_copied = 0;
420 int offset = pos & (PAGE_CACHE_SIZE - 1);
422 while (write_bytes > 0) {
423 size_t count = min_t(size_t,
424 PAGE_CACHE_SIZE - offset, write_bytes);
425 struct page *page = prepared_pages[pg];
427 * Copy data from userspace to the current page
429 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
431 /* Flush processor's dcache for this page */
432 flush_dcache_page(page);
435 * if we get a partial write, we can end up with
436 * partially up to date pages. These add
437 * a lot of complexity, so make sure they don't
438 * happen by forcing this copy to be retried.
440 * The rest of the btrfs_file_write code will fall
441 * back to page at a time copies after we return 0.
443 if (!PageUptodate(page) && copied < count)
446 iov_iter_advance(i, copied);
447 write_bytes -= copied;
448 total_copied += copied;
450 /* Return to btrfs_file_aio_write to fault page */
451 if (unlikely(copied == 0))
454 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
465 * unlocks pages after btrfs_file_write is done with them
467 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
470 for (i = 0; i < num_pages; i++) {
471 /* page checked is some magic around finding pages that
472 * have been modified without going through btrfs_set_page_dirty
475 ClearPageChecked(pages[i]);
476 unlock_page(pages[i]);
477 mark_page_accessed(pages[i]);
478 page_cache_release(pages[i]);
483 * after copy_from_user, pages need to be dirtied and we need to make
484 * sure holes are created between the current EOF and the start of
485 * any next extents (if required).
487 * this also makes the decision about creating an inline extent vs
488 * doing real data extents, marking pages dirty and delalloc as required.
490 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
491 struct page **pages, size_t num_pages,
492 loff_t pos, size_t write_bytes,
493 struct extent_state **cached)
499 u64 end_of_last_block;
500 u64 end_pos = pos + write_bytes;
501 loff_t isize = i_size_read(inode);
503 start_pos = pos & ~((u64)root->sectorsize - 1);
504 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
506 end_of_last_block = start_pos + num_bytes - 1;
507 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
512 for (i = 0; i < num_pages; i++) {
513 struct page *p = pages[i];
520 * we've only changed i_size in ram, and we haven't updated
521 * the disk i_size. There is no need to log the inode
525 i_size_write(inode, end_pos);
530 * this drops all the extents in the cache that intersect the range
531 * [start, end]. Existing extents are split as required.
533 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
536 struct extent_map *em;
537 struct extent_map *split = NULL;
538 struct extent_map *split2 = NULL;
539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 u64 len = end - start + 1;
548 WARN_ON(end < start);
549 if (end == (u64)-1) {
558 split = alloc_extent_map();
560 split2 = alloc_extent_map();
561 if (!split || !split2)
564 write_lock(&em_tree->lock);
565 em = lookup_extent_mapping(em_tree, start, len);
567 write_unlock(&em_tree->lock);
571 gen = em->generation;
572 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
573 if (testend && em->start + em->len >= start + len) {
575 write_unlock(&em_tree->lock);
578 start = em->start + em->len;
580 len = start + len - (em->start + em->len);
582 write_unlock(&em_tree->lock);
585 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
586 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
587 clear_bit(EXTENT_FLAG_LOGGING, &flags);
588 modified = !list_empty(&em->list);
592 if (em->start < start) {
593 split->start = em->start;
594 split->len = start - em->start;
596 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
597 split->orig_start = em->orig_start;
598 split->block_start = em->block_start;
601 split->block_len = em->block_len;
603 split->block_len = split->len;
604 split->orig_block_len = max(split->block_len,
606 split->ram_bytes = em->ram_bytes;
608 split->orig_start = split->start;
609 split->block_len = 0;
610 split->block_start = em->block_start;
611 split->orig_block_len = 0;
612 split->ram_bytes = split->len;
615 split->generation = gen;
616 split->bdev = em->bdev;
617 split->flags = flags;
618 split->compress_type = em->compress_type;
619 replace_extent_mapping(em_tree, em, split, modified);
620 free_extent_map(split);
624 if (testend && em->start + em->len > start + len) {
625 u64 diff = start + len - em->start;
627 split->start = start + len;
628 split->len = em->start + em->len - (start + len);
629 split->bdev = em->bdev;
630 split->flags = flags;
631 split->compress_type = em->compress_type;
632 split->generation = gen;
634 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
635 split->orig_block_len = max(em->block_len,
638 split->ram_bytes = em->ram_bytes;
640 split->block_len = em->block_len;
641 split->block_start = em->block_start;
642 split->orig_start = em->orig_start;
644 split->block_len = split->len;
645 split->block_start = em->block_start
647 split->orig_start = em->orig_start;
650 split->ram_bytes = split->len;
651 split->orig_start = split->start;
652 split->block_len = 0;
653 split->block_start = em->block_start;
654 split->orig_block_len = 0;
657 if (extent_map_in_tree(em)) {
658 replace_extent_mapping(em_tree, em, split,
661 ret = add_extent_mapping(em_tree, split,
663 ASSERT(ret == 0); /* Logic error */
665 free_extent_map(split);
669 if (extent_map_in_tree(em))
670 remove_extent_mapping(em_tree, em);
671 write_unlock(&em_tree->lock);
675 /* once for the tree*/
679 free_extent_map(split);
681 free_extent_map(split2);
685 * this is very complex, but the basic idea is to drop all extents
686 * in the range start - end. hint_block is filled in with a block number
687 * that would be a good hint to the block allocator for this file.
689 * If an extent intersects the range but is not entirely inside the range
690 * it is either truncated or split. Anything entirely inside the range
691 * is deleted from the tree.
693 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694 struct btrfs_root *root, struct inode *inode,
695 struct btrfs_path *path, u64 start, u64 end,
696 u64 *drop_end, int drop_cache,
698 u32 extent_item_size,
701 struct extent_buffer *leaf;
702 struct btrfs_file_extent_item *fi;
703 struct btrfs_key key;
704 struct btrfs_key new_key;
705 u64 ino = btrfs_ino(inode);
706 u64 search_start = start;
709 u64 extent_offset = 0;
716 int modify_tree = -1;
717 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
719 int leafs_visited = 0;
722 btrfs_drop_extent_cache(inode, start, end - 1, 0);
724 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
746 ret = btrfs_next_leaf(root, path);
754 leaf = path->nodes[0];
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 if (key.objectid > ino ||
760 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
763 fi = btrfs_item_ptr(leaf, path->slots[0],
764 struct btrfs_file_extent_item);
765 extent_type = btrfs_file_extent_type(leaf, fi);
767 if (extent_type == BTRFS_FILE_EXTENT_REG ||
768 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
769 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
770 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
771 extent_offset = btrfs_file_extent_offset(leaf, fi);
772 extent_end = key.offset +
773 btrfs_file_extent_num_bytes(leaf, fi);
774 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
775 extent_end = key.offset +
776 btrfs_file_extent_inline_len(leaf,
780 extent_end = search_start;
783 if (extent_end <= search_start) {
789 search_start = max(key.offset, start);
790 if (recow || !modify_tree) {
792 btrfs_release_path(path);
797 * | - range to drop - |
798 * | -------- extent -------- |
800 if (start > key.offset && end < extent_end) {
802 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
807 memcpy(&new_key, &key, sizeof(new_key));
808 new_key.offset = start;
809 ret = btrfs_duplicate_item(trans, root, path,
811 if (ret == -EAGAIN) {
812 btrfs_release_path(path);
818 leaf = path->nodes[0];
819 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
820 struct btrfs_file_extent_item);
821 btrfs_set_file_extent_num_bytes(leaf, fi,
824 fi = btrfs_item_ptr(leaf, path->slots[0],
825 struct btrfs_file_extent_item);
827 extent_offset += start - key.offset;
828 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
829 btrfs_set_file_extent_num_bytes(leaf, fi,
831 btrfs_mark_buffer_dirty(leaf);
833 if (update_refs && disk_bytenr > 0) {
834 ret = btrfs_inc_extent_ref(trans, root,
835 disk_bytenr, num_bytes, 0,
836 root->root_key.objectid,
838 start - extent_offset, 0);
839 BUG_ON(ret); /* -ENOMEM */
844 * | ---- range to drop ----- |
845 * | -------- extent -------- |
847 if (start <= key.offset && end < extent_end) {
848 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
853 memcpy(&new_key, &key, sizeof(new_key));
854 new_key.offset = end;
855 btrfs_set_item_key_safe(root, path, &new_key);
857 extent_offset += end - key.offset;
858 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
859 btrfs_set_file_extent_num_bytes(leaf, fi,
861 btrfs_mark_buffer_dirty(leaf);
862 if (update_refs && disk_bytenr > 0)
863 inode_sub_bytes(inode, end - key.offset);
867 search_start = extent_end;
869 * | ---- range to drop ----- |
870 * | -------- extent -------- |
872 if (start > key.offset && end >= extent_end) {
874 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
879 btrfs_set_file_extent_num_bytes(leaf, fi,
881 btrfs_mark_buffer_dirty(leaf);
882 if (update_refs && disk_bytenr > 0)
883 inode_sub_bytes(inode, extent_end - start);
884 if (end == extent_end)
892 * | ---- range to drop ----- |
893 * | ------ extent ------ |
895 if (start <= key.offset && end >= extent_end) {
897 del_slot = path->slots[0];
900 BUG_ON(del_slot + del_nr != path->slots[0]);
905 extent_type == BTRFS_FILE_EXTENT_INLINE) {
906 inode_sub_bytes(inode,
907 extent_end - key.offset);
908 extent_end = ALIGN(extent_end,
910 } else if (update_refs && disk_bytenr > 0) {
911 ret = btrfs_free_extent(trans, root,
912 disk_bytenr, num_bytes, 0,
913 root->root_key.objectid,
914 key.objectid, key.offset -
916 BUG_ON(ret); /* -ENOMEM */
917 inode_sub_bytes(inode,
918 extent_end - key.offset);
921 if (end == extent_end)
924 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
929 ret = btrfs_del_items(trans, root, path, del_slot,
932 btrfs_abort_transaction(trans, root, ret);
939 btrfs_release_path(path);
946 if (!ret && del_nr > 0) {
948 * Set path->slots[0] to first slot, so that after the delete
949 * if items are move off from our leaf to its immediate left or
950 * right neighbor leafs, we end up with a correct and adjusted
951 * path->slots[0] for our insertion (if replace_extent != 0).
953 path->slots[0] = del_slot;
954 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
956 btrfs_abort_transaction(trans, root, ret);
959 leaf = path->nodes[0];
961 * If btrfs_del_items() was called, it might have deleted a leaf, in
962 * which case it unlocked our path, so check path->locks[0] matches a
965 if (!ret && replace_extent && leafs_visited == 1 &&
966 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
967 path->locks[0] == BTRFS_WRITE_LOCK) &&
968 btrfs_leaf_free_space(root, leaf) >=
969 sizeof(struct btrfs_item) + extent_item_size) {
972 key.type = BTRFS_EXTENT_DATA_KEY;
974 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
975 struct btrfs_key slot_key;
977 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
978 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
981 setup_items_for_insert(root, path, &key,
984 sizeof(struct btrfs_item) +
985 extent_item_size, 1);
989 if (!replace_extent || !(*key_inserted))
990 btrfs_release_path(path);
992 *drop_end = found ? min(end, extent_end) : end;
996 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
997 struct btrfs_root *root, struct inode *inode, u64 start,
998 u64 end, int drop_cache)
1000 struct btrfs_path *path;
1003 path = btrfs_alloc_path();
1006 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1007 drop_cache, 0, 0, NULL);
1008 btrfs_free_path(path);
1012 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1013 u64 objectid, u64 bytenr, u64 orig_offset,
1014 u64 *start, u64 *end)
1016 struct btrfs_file_extent_item *fi;
1017 struct btrfs_key key;
1020 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1023 btrfs_item_key_to_cpu(leaf, &key, slot);
1024 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1027 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1028 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1029 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1030 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1031 btrfs_file_extent_compression(leaf, fi) ||
1032 btrfs_file_extent_encryption(leaf, fi) ||
1033 btrfs_file_extent_other_encoding(leaf, fi))
1036 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1037 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1040 *start = key.offset;
1046 * Mark extent in the range start - end as written.
1048 * This changes extent type from 'pre-allocated' to 'regular'. If only
1049 * part of extent is marked as written, the extent will be split into
1052 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1053 struct inode *inode, u64 start, u64 end)
1055 struct btrfs_root *root = BTRFS_I(inode)->root;
1056 struct extent_buffer *leaf;
1057 struct btrfs_path *path;
1058 struct btrfs_file_extent_item *fi;
1059 struct btrfs_key key;
1060 struct btrfs_key new_key;
1072 u64 ino = btrfs_ino(inode);
1074 path = btrfs_alloc_path();
1081 key.type = BTRFS_EXTENT_DATA_KEY;
1084 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1087 if (ret > 0 && path->slots[0] > 0)
1090 leaf = path->nodes[0];
1091 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1092 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1093 fi = btrfs_item_ptr(leaf, path->slots[0],
1094 struct btrfs_file_extent_item);
1095 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1096 BTRFS_FILE_EXTENT_PREALLOC);
1097 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1098 BUG_ON(key.offset > start || extent_end < end);
1100 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1101 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1102 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1103 memcpy(&new_key, &key, sizeof(new_key));
1105 if (start == key.offset && end < extent_end) {
1108 if (extent_mergeable(leaf, path->slots[0] - 1,
1109 ino, bytenr, orig_offset,
1110 &other_start, &other_end)) {
1111 new_key.offset = end;
1112 btrfs_set_item_key_safe(root, path, &new_key);
1113 fi = btrfs_item_ptr(leaf, path->slots[0],
1114 struct btrfs_file_extent_item);
1115 btrfs_set_file_extent_generation(leaf, fi,
1117 btrfs_set_file_extent_num_bytes(leaf, fi,
1119 btrfs_set_file_extent_offset(leaf, fi,
1121 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1122 struct btrfs_file_extent_item);
1123 btrfs_set_file_extent_generation(leaf, fi,
1125 btrfs_set_file_extent_num_bytes(leaf, fi,
1127 btrfs_mark_buffer_dirty(leaf);
1132 if (start > key.offset && end == extent_end) {
1135 if (extent_mergeable(leaf, path->slots[0] + 1,
1136 ino, bytenr, orig_offset,
1137 &other_start, &other_end)) {
1138 fi = btrfs_item_ptr(leaf, path->slots[0],
1139 struct btrfs_file_extent_item);
1140 btrfs_set_file_extent_num_bytes(leaf, fi,
1141 start - key.offset);
1142 btrfs_set_file_extent_generation(leaf, fi,
1145 new_key.offset = start;
1146 btrfs_set_item_key_safe(root, path, &new_key);
1148 fi = btrfs_item_ptr(leaf, path->slots[0],
1149 struct btrfs_file_extent_item);
1150 btrfs_set_file_extent_generation(leaf, fi,
1152 btrfs_set_file_extent_num_bytes(leaf, fi,
1154 btrfs_set_file_extent_offset(leaf, fi,
1155 start - orig_offset);
1156 btrfs_mark_buffer_dirty(leaf);
1161 while (start > key.offset || end < extent_end) {
1162 if (key.offset == start)
1165 new_key.offset = split;
1166 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1167 if (ret == -EAGAIN) {
1168 btrfs_release_path(path);
1172 btrfs_abort_transaction(trans, root, ret);
1176 leaf = path->nodes[0];
1177 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1178 struct btrfs_file_extent_item);
1179 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1180 btrfs_set_file_extent_num_bytes(leaf, fi,
1181 split - key.offset);
1183 fi = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_file_extent_item);
1186 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1187 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1188 btrfs_set_file_extent_num_bytes(leaf, fi,
1189 extent_end - split);
1190 btrfs_mark_buffer_dirty(leaf);
1192 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1193 root->root_key.objectid,
1194 ino, orig_offset, 0);
1195 BUG_ON(ret); /* -ENOMEM */
1197 if (split == start) {
1200 BUG_ON(start != key.offset);
1209 if (extent_mergeable(leaf, path->slots[0] + 1,
1210 ino, bytenr, orig_offset,
1211 &other_start, &other_end)) {
1213 btrfs_release_path(path);
1216 extent_end = other_end;
1217 del_slot = path->slots[0] + 1;
1219 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1220 0, root->root_key.objectid,
1221 ino, orig_offset, 0);
1222 BUG_ON(ret); /* -ENOMEM */
1226 if (extent_mergeable(leaf, path->slots[0] - 1,
1227 ino, bytenr, orig_offset,
1228 &other_start, &other_end)) {
1230 btrfs_release_path(path);
1233 key.offset = other_start;
1234 del_slot = path->slots[0];
1236 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1237 0, root->root_key.objectid,
1238 ino, orig_offset, 0);
1239 BUG_ON(ret); /* -ENOMEM */
1242 fi = btrfs_item_ptr(leaf, path->slots[0],
1243 struct btrfs_file_extent_item);
1244 btrfs_set_file_extent_type(leaf, fi,
1245 BTRFS_FILE_EXTENT_REG);
1246 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1247 btrfs_mark_buffer_dirty(leaf);
1249 fi = btrfs_item_ptr(leaf, del_slot - 1,
1250 struct btrfs_file_extent_item);
1251 btrfs_set_file_extent_type(leaf, fi,
1252 BTRFS_FILE_EXTENT_REG);
1253 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1254 btrfs_set_file_extent_num_bytes(leaf, fi,
1255 extent_end - key.offset);
1256 btrfs_mark_buffer_dirty(leaf);
1258 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1260 btrfs_abort_transaction(trans, root, ret);
1265 btrfs_free_path(path);
1270 * on error we return an unlocked page and the error value
1271 * on success we return a locked page and 0
1273 static int prepare_uptodate_page(struct page *page, u64 pos,
1274 bool force_uptodate)
1278 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1279 !PageUptodate(page)) {
1280 ret = btrfs_readpage(NULL, page);
1284 if (!PageUptodate(page)) {
1293 * this just gets pages into the page cache and locks them down.
1295 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1296 size_t num_pages, loff_t pos,
1297 size_t write_bytes, bool force_uptodate)
1300 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1301 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1305 for (i = 0; i < num_pages; i++) {
1306 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1307 mask | __GFP_WRITE);
1315 err = prepare_uptodate_page(pages[i], pos,
1317 if (i == num_pages - 1)
1318 err = prepare_uptodate_page(pages[i],
1319 pos + write_bytes, false);
1321 page_cache_release(pages[i]);
1325 wait_on_page_writeback(pages[i]);
1330 while (faili >= 0) {
1331 unlock_page(pages[faili]);
1332 page_cache_release(pages[faili]);
1340 * This function locks the extent and properly waits for data=ordered extents
1341 * to finish before allowing the pages to be modified if need.
1344 * 1 - the extent is locked
1345 * 0 - the extent is not locked, and everything is OK
1346 * -EAGAIN - need re-prepare the pages
1347 * the other < 0 number - Something wrong happens
1350 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1351 size_t num_pages, loff_t pos,
1352 u64 *lockstart, u64 *lockend,
1353 struct extent_state **cached_state)
1360 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1361 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1363 if (start_pos < inode->i_size) {
1364 struct btrfs_ordered_extent *ordered;
1365 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1366 start_pos, last_pos, 0, cached_state);
1367 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1368 last_pos - start_pos + 1);
1370 ordered->file_offset + ordered->len > start_pos &&
1371 ordered->file_offset <= last_pos) {
1372 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1373 start_pos, last_pos,
1374 cached_state, GFP_NOFS);
1375 for (i = 0; i < num_pages; i++) {
1376 unlock_page(pages[i]);
1377 page_cache_release(pages[i]);
1379 btrfs_start_ordered_extent(inode, ordered, 1);
1380 btrfs_put_ordered_extent(ordered);
1384 btrfs_put_ordered_extent(ordered);
1386 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1387 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1388 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1389 0, 0, cached_state, GFP_NOFS);
1390 *lockstart = start_pos;
1391 *lockend = last_pos;
1395 for (i = 0; i < num_pages; i++) {
1396 if (clear_page_dirty_for_io(pages[i]))
1397 account_page_redirty(pages[i]);
1398 set_page_extent_mapped(pages[i]);
1399 WARN_ON(!PageLocked(pages[i]));
1405 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1406 size_t *write_bytes)
1408 struct btrfs_root *root = BTRFS_I(inode)->root;
1409 struct btrfs_ordered_extent *ordered;
1410 u64 lockstart, lockend;
1414 ret = btrfs_start_nocow_write(root);
1418 lockstart = round_down(pos, root->sectorsize);
1419 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1422 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1423 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1424 lockend - lockstart + 1);
1428 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1429 btrfs_start_ordered_extent(inode, ordered, 1);
1430 btrfs_put_ordered_extent(ordered);
1433 num_bytes = lockend - lockstart + 1;
1434 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1437 btrfs_end_nocow_write(root);
1439 *write_bytes = min_t(size_t, *write_bytes ,
1440 num_bytes - pos + lockstart);
1443 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1448 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1452 struct inode *inode = file_inode(file);
1453 struct btrfs_root *root = BTRFS_I(inode)->root;
1454 struct page **pages = NULL;
1455 struct extent_state *cached_state = NULL;
1456 u64 release_bytes = 0;
1459 unsigned long first_index;
1460 size_t num_written = 0;
1463 bool only_release_metadata = false;
1464 bool force_page_uptodate = false;
1467 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1468 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1469 (sizeof(struct page *)));
1470 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1471 nrptrs = max(nrptrs, 8);
1472 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1476 first_index = pos >> PAGE_CACHE_SHIFT;
1478 while (iov_iter_count(i) > 0) {
1479 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1480 size_t write_bytes = min(iov_iter_count(i),
1481 nrptrs * (size_t)PAGE_CACHE_SIZE -
1483 size_t num_pages = (write_bytes + offset +
1484 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1485 size_t reserve_bytes;
1489 WARN_ON(num_pages > nrptrs);
1492 * Fault pages before locking them in prepare_pages
1493 * to avoid recursive lock
1495 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1500 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1501 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1502 if (ret == -ENOSPC &&
1503 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1504 BTRFS_INODE_PREALLOC))) {
1505 ret = check_can_nocow(inode, pos, &write_bytes);
1507 only_release_metadata = true;
1509 * our prealloc extent may be smaller than
1510 * write_bytes, so scale down.
1512 num_pages = (write_bytes + offset +
1513 PAGE_CACHE_SIZE - 1) >>
1515 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1525 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1527 if (!only_release_metadata)
1528 btrfs_free_reserved_data_space(inode,
1531 btrfs_end_nocow_write(root);
1535 release_bytes = reserve_bytes;
1536 need_unlock = false;
1539 * This is going to setup the pages array with the number of
1540 * pages we want, so we don't really need to worry about the
1541 * contents of pages from loop to loop
1543 ret = prepare_pages(inode, pages, num_pages,
1545 force_page_uptodate);
1549 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1550 pos, &lockstart, &lockend,
1556 } else if (ret > 0) {
1561 copied = btrfs_copy_from_user(pos, num_pages,
1562 write_bytes, pages, i);
1565 * if we have trouble faulting in the pages, fall
1566 * back to one page at a time
1568 if (copied < write_bytes)
1572 force_page_uptodate = true;
1575 force_page_uptodate = false;
1576 dirty_pages = (copied + offset +
1577 PAGE_CACHE_SIZE - 1) >>
1582 * If we had a short copy we need to release the excess delaloc
1583 * bytes we reserved. We need to increment outstanding_extents
1584 * because btrfs_delalloc_release_space will decrement it, but
1585 * we still have an outstanding extent for the chunk we actually
1588 if (num_pages > dirty_pages) {
1589 release_bytes = (num_pages - dirty_pages) <<
1592 spin_lock(&BTRFS_I(inode)->lock);
1593 BTRFS_I(inode)->outstanding_extents++;
1594 spin_unlock(&BTRFS_I(inode)->lock);
1596 if (only_release_metadata)
1597 btrfs_delalloc_release_metadata(inode,
1600 btrfs_delalloc_release_space(inode,
1604 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1607 ret = btrfs_dirty_pages(root, inode, pages,
1608 dirty_pages, pos, copied,
1611 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1612 lockstart, lockend, &cached_state,
1615 btrfs_drop_pages(pages, num_pages);
1620 if (only_release_metadata)
1621 btrfs_end_nocow_write(root);
1623 if (only_release_metadata && copied > 0) {
1624 u64 lockstart = round_down(pos, root->sectorsize);
1625 u64 lockend = lockstart +
1626 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1628 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1629 lockend, EXTENT_NORESERVE, NULL,
1631 only_release_metadata = false;
1634 btrfs_drop_pages(pages, num_pages);
1638 balance_dirty_pages_ratelimited(inode->i_mapping);
1639 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1640 btrfs_btree_balance_dirty(root);
1643 num_written += copied;
1648 if (release_bytes) {
1649 if (only_release_metadata) {
1650 btrfs_end_nocow_write(root);
1651 btrfs_delalloc_release_metadata(inode, release_bytes);
1653 btrfs_delalloc_release_space(inode, release_bytes);
1657 return num_written ? num_written : ret;
1660 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1661 const struct iovec *iov,
1662 unsigned long nr_segs, loff_t pos,
1663 size_t count, size_t ocount)
1665 struct file *file = iocb->ki_filp;
1668 ssize_t written_buffered;
1672 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
1675 if (written < 0 || written == count)
1680 iov_iter_init(&i, iov, nr_segs, count, written);
1681 written_buffered = __btrfs_buffered_write(file, &i, pos);
1682 if (written_buffered < 0) {
1683 err = written_buffered;
1686 endbyte = pos + written_buffered - 1;
1687 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1690 written += written_buffered;
1691 iocb->ki_pos = pos + written_buffered;
1692 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1693 endbyte >> PAGE_CACHE_SHIFT);
1695 return written ? written : err;
1698 static void update_time_for_write(struct inode *inode)
1700 struct timespec now;
1702 if (IS_NOCMTIME(inode))
1705 now = current_fs_time(inode->i_sb);
1706 if (!timespec_equal(&inode->i_mtime, &now))
1707 inode->i_mtime = now;
1709 if (!timespec_equal(&inode->i_ctime, &now))
1710 inode->i_ctime = now;
1712 if (IS_I_VERSION(inode))
1713 inode_inc_iversion(inode);
1716 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1717 const struct iovec *iov,
1718 unsigned long nr_segs, loff_t pos)
1720 struct file *file = iocb->ki_filp;
1721 struct inode *inode = file_inode(file);
1722 struct btrfs_root *root = BTRFS_I(inode)->root;
1725 ssize_t num_written = 0;
1727 size_t count, ocount;
1728 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1730 mutex_lock(&inode->i_mutex);
1732 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1734 mutex_unlock(&inode->i_mutex);
1739 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1740 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1742 mutex_unlock(&inode->i_mutex);
1747 mutex_unlock(&inode->i_mutex);
1751 err = file_remove_suid(file);
1753 mutex_unlock(&inode->i_mutex);
1758 * If BTRFS flips readonly due to some impossible error
1759 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1760 * although we have opened a file as writable, we have
1761 * to stop this write operation to ensure FS consistency.
1763 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1764 mutex_unlock(&inode->i_mutex);
1770 * We reserve space for updating the inode when we reserve space for the
1771 * extent we are going to write, so we will enospc out there. We don't
1772 * need to start yet another transaction to update the inode as we will
1773 * update the inode when we finish writing whatever data we write.
1775 update_time_for_write(inode);
1777 start_pos = round_down(pos, root->sectorsize);
1778 if (start_pos > i_size_read(inode)) {
1779 /* Expand hole size to cover write data, preventing empty gap */
1780 end_pos = round_up(pos + count, root->sectorsize);
1781 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1783 mutex_unlock(&inode->i_mutex);
1789 atomic_inc(&BTRFS_I(inode)->sync_writers);
1791 if (unlikely(file->f_flags & O_DIRECT)) {
1792 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1793 pos, count, ocount);
1797 iov_iter_init(&i, iov, nr_segs, count, num_written);
1799 num_written = __btrfs_buffered_write(file, &i, pos);
1800 if (num_written > 0)
1801 iocb->ki_pos = pos + num_written;
1804 mutex_unlock(&inode->i_mutex);
1807 * we want to make sure fsync finds this change
1808 * but we haven't joined a transaction running right now.
1810 * Later on, someone is sure to update the inode and get the
1811 * real transid recorded.
1813 * We set last_trans now to the fs_info generation + 1,
1814 * this will either be one more than the running transaction
1815 * or the generation used for the next transaction if there isn't
1816 * one running right now.
1818 * We also have to set last_sub_trans to the current log transid,
1819 * otherwise subsequent syncs to a file that's been synced in this
1820 * transaction will appear to have already occured.
1822 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1823 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1824 if (num_written > 0) {
1825 err = generic_write_sync(file, pos, num_written);
1831 atomic_dec(&BTRFS_I(inode)->sync_writers);
1833 current->backing_dev_info = NULL;
1834 return num_written ? num_written : err;
1837 int btrfs_release_file(struct inode *inode, struct file *filp)
1840 * ordered_data_close is set by settattr when we are about to truncate
1841 * a file from a non-zero size to a zero size. This tries to
1842 * flush down new bytes that may have been written if the
1843 * application were using truncate to replace a file in place.
1845 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1846 &BTRFS_I(inode)->runtime_flags)) {
1847 struct btrfs_trans_handle *trans;
1848 struct btrfs_root *root = BTRFS_I(inode)->root;
1851 * We need to block on a committing transaction to keep us from
1852 * throwing a ordered operation on to the list and causing
1853 * something like sync to deadlock trying to flush out this
1856 trans = btrfs_start_transaction(root, 0);
1858 return PTR_ERR(trans);
1859 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1860 btrfs_end_transaction(trans, root);
1861 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1862 filemap_flush(inode->i_mapping);
1864 if (filp->private_data)
1865 btrfs_ioctl_trans_end(filp);
1870 * fsync call for both files and directories. This logs the inode into
1871 * the tree log instead of forcing full commits whenever possible.
1873 * It needs to call filemap_fdatawait so that all ordered extent updates are
1874 * in the metadata btree are up to date for copying to the log.
1876 * It drops the inode mutex before doing the tree log commit. This is an
1877 * important optimization for directories because holding the mutex prevents
1878 * new operations on the dir while we write to disk.
1880 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1882 struct dentry *dentry = file->f_path.dentry;
1883 struct inode *inode = dentry->d_inode;
1884 struct btrfs_root *root = BTRFS_I(inode)->root;
1885 struct btrfs_trans_handle *trans;
1886 struct btrfs_log_ctx ctx;
1890 trace_btrfs_sync_file(file, datasync);
1893 * We write the dirty pages in the range and wait until they complete
1894 * out of the ->i_mutex. If so, we can flush the dirty pages by
1895 * multi-task, and make the performance up. See
1896 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1898 atomic_inc(&BTRFS_I(inode)->sync_writers);
1899 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1900 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1901 &BTRFS_I(inode)->runtime_flags))
1902 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1903 atomic_dec(&BTRFS_I(inode)->sync_writers);
1907 mutex_lock(&inode->i_mutex);
1910 * We flush the dirty pages again to avoid some dirty pages in the
1913 atomic_inc(&root->log_batch);
1914 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1915 &BTRFS_I(inode)->runtime_flags);
1917 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1919 mutex_unlock(&inode->i_mutex);
1923 atomic_inc(&root->log_batch);
1926 * check the transaction that last modified this inode
1927 * and see if its already been committed
1929 if (!BTRFS_I(inode)->last_trans) {
1930 mutex_unlock(&inode->i_mutex);
1935 * if the last transaction that changed this file was before
1936 * the current transaction, we can bail out now without any
1940 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1941 BTRFS_I(inode)->last_trans <=
1942 root->fs_info->last_trans_committed) {
1943 BTRFS_I(inode)->last_trans = 0;
1946 * We'v had everything committed since the last time we were
1947 * modified so clear this flag in case it was set for whatever
1948 * reason, it's no longer relevant.
1950 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1951 &BTRFS_I(inode)->runtime_flags);
1952 mutex_unlock(&inode->i_mutex);
1957 * ok we haven't committed the transaction yet, lets do a commit
1959 if (file->private_data)
1960 btrfs_ioctl_trans_end(file);
1963 * We use start here because we will need to wait on the IO to complete
1964 * in btrfs_sync_log, which could require joining a transaction (for
1965 * example checking cross references in the nocow path). If we use join
1966 * here we could get into a situation where we're waiting on IO to
1967 * happen that is blocked on a transaction trying to commit. With start
1968 * we inc the extwriter counter, so we wait for all extwriters to exit
1969 * before we start blocking join'ers. This comment is to keep somebody
1970 * from thinking they are super smart and changing this to
1971 * btrfs_join_transaction *cough*Josef*cough*.
1973 trans = btrfs_start_transaction(root, 0);
1974 if (IS_ERR(trans)) {
1975 ret = PTR_ERR(trans);
1976 mutex_unlock(&inode->i_mutex);
1981 btrfs_init_log_ctx(&ctx);
1983 ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1985 /* Fallthrough and commit/free transaction. */
1989 /* we've logged all the items and now have a consistent
1990 * version of the file in the log. It is possible that
1991 * someone will come in and modify the file, but that's
1992 * fine because the log is consistent on disk, and we
1993 * have references to all of the file's extents
1995 * It is possible that someone will come in and log the
1996 * file again, but that will end up using the synchronization
1997 * inside btrfs_sync_log to keep things safe.
1999 mutex_unlock(&inode->i_mutex);
2001 if (ret != BTRFS_NO_LOG_SYNC) {
2003 ret = btrfs_sync_log(trans, root, &ctx);
2005 ret = btrfs_end_transaction(trans, root);
2010 ret = btrfs_wait_ordered_range(inode, start,
2015 ret = btrfs_commit_transaction(trans, root);
2017 ret = btrfs_end_transaction(trans, root);
2020 return ret > 0 ? -EIO : ret;
2023 static const struct vm_operations_struct btrfs_file_vm_ops = {
2024 .fault = filemap_fault,
2025 .map_pages = filemap_map_pages,
2026 .page_mkwrite = btrfs_page_mkwrite,
2027 .remap_pages = generic_file_remap_pages,
2030 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2032 struct address_space *mapping = filp->f_mapping;
2034 if (!mapping->a_ops->readpage)
2037 file_accessed(filp);
2038 vma->vm_ops = &btrfs_file_vm_ops;
2043 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2044 int slot, u64 start, u64 end)
2046 struct btrfs_file_extent_item *fi;
2047 struct btrfs_key key;
2049 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2052 btrfs_item_key_to_cpu(leaf, &key, slot);
2053 if (key.objectid != btrfs_ino(inode) ||
2054 key.type != BTRFS_EXTENT_DATA_KEY)
2057 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2059 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2062 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2065 if (key.offset == end)
2067 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2072 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2073 struct btrfs_path *path, u64 offset, u64 end)
2075 struct btrfs_root *root = BTRFS_I(inode)->root;
2076 struct extent_buffer *leaf;
2077 struct btrfs_file_extent_item *fi;
2078 struct extent_map *hole_em;
2079 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2080 struct btrfs_key key;
2083 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2086 key.objectid = btrfs_ino(inode);
2087 key.type = BTRFS_EXTENT_DATA_KEY;
2088 key.offset = offset;
2090 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2095 leaf = path->nodes[0];
2096 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2100 fi = btrfs_item_ptr(leaf, path->slots[0],
2101 struct btrfs_file_extent_item);
2102 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2104 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2105 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2106 btrfs_set_file_extent_offset(leaf, fi, 0);
2107 btrfs_mark_buffer_dirty(leaf);
2111 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2115 key.offset = offset;
2116 btrfs_set_item_key_safe(root, path, &key);
2117 fi = btrfs_item_ptr(leaf, path->slots[0],
2118 struct btrfs_file_extent_item);
2119 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2121 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2122 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2123 btrfs_set_file_extent_offset(leaf, fi, 0);
2124 btrfs_mark_buffer_dirty(leaf);
2127 btrfs_release_path(path);
2129 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2130 0, 0, end - offset, 0, end - offset,
2136 btrfs_release_path(path);
2138 hole_em = alloc_extent_map();
2140 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2141 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2142 &BTRFS_I(inode)->runtime_flags);
2144 hole_em->start = offset;
2145 hole_em->len = end - offset;
2146 hole_em->ram_bytes = hole_em->len;
2147 hole_em->orig_start = offset;
2149 hole_em->block_start = EXTENT_MAP_HOLE;
2150 hole_em->block_len = 0;
2151 hole_em->orig_block_len = 0;
2152 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2153 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2154 hole_em->generation = trans->transid;
2157 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2158 write_lock(&em_tree->lock);
2159 ret = add_extent_mapping(em_tree, hole_em, 1);
2160 write_unlock(&em_tree->lock);
2161 } while (ret == -EEXIST);
2162 free_extent_map(hole_em);
2164 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165 &BTRFS_I(inode)->runtime_flags);
2171 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2173 struct btrfs_root *root = BTRFS_I(inode)->root;
2174 struct extent_state *cached_state = NULL;
2175 struct btrfs_path *path;
2176 struct btrfs_block_rsv *rsv;
2177 struct btrfs_trans_handle *trans;
2178 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2179 u64 lockend = round_down(offset + len,
2180 BTRFS_I(inode)->root->sectorsize) - 1;
2181 u64 cur_offset = lockstart;
2182 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2187 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2188 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2189 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2190 u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2192 ret = btrfs_wait_ordered_range(inode, offset, len);
2196 mutex_lock(&inode->i_mutex);
2198 * We needn't truncate any page which is beyond the end of the file
2199 * because we are sure there is no data there.
2202 * Only do this if we are in the same page and we aren't doing the
2205 if (same_page && len < PAGE_CACHE_SIZE) {
2206 if (offset < ino_size)
2207 ret = btrfs_truncate_page(inode, offset, len, 0);
2208 mutex_unlock(&inode->i_mutex);
2212 /* zero back part of the first page */
2213 if (offset < ino_size) {
2214 ret = btrfs_truncate_page(inode, offset, 0, 0);
2216 mutex_unlock(&inode->i_mutex);
2221 /* zero the front end of the last page */
2222 if (offset + len < ino_size) {
2223 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2225 mutex_unlock(&inode->i_mutex);
2230 if (lockend < lockstart) {
2231 mutex_unlock(&inode->i_mutex);
2236 struct btrfs_ordered_extent *ordered;
2238 truncate_pagecache_range(inode, lockstart, lockend);
2240 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2242 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2245 * We need to make sure we have no ordered extents in this range
2246 * and nobody raced in and read a page in this range, if we did
2247 * we need to try again.
2250 (ordered->file_offset + ordered->len <= lockstart ||
2251 ordered->file_offset > lockend)) &&
2252 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2253 lockend, EXTENT_UPTODATE, 0,
2256 btrfs_put_ordered_extent(ordered);
2260 btrfs_put_ordered_extent(ordered);
2261 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2262 lockend, &cached_state, GFP_NOFS);
2263 ret = btrfs_wait_ordered_range(inode, lockstart,
2264 lockend - lockstart + 1);
2266 mutex_unlock(&inode->i_mutex);
2271 path = btrfs_alloc_path();
2277 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2282 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2286 * 1 - update the inode
2287 * 1 - removing the extents in the range
2288 * 1 - adding the hole extent if no_holes isn't set
2290 rsv_count = no_holes ? 2 : 3;
2291 trans = btrfs_start_transaction(root, rsv_count);
2292 if (IS_ERR(trans)) {
2293 err = PTR_ERR(trans);
2297 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2300 trans->block_rsv = rsv;
2302 while (cur_offset < lockend) {
2303 ret = __btrfs_drop_extents(trans, root, inode, path,
2304 cur_offset, lockend + 1,
2305 &drop_end, 1, 0, 0, NULL);
2309 trans->block_rsv = &root->fs_info->trans_block_rsv;
2311 if (cur_offset < ino_size) {
2312 ret = fill_holes(trans, inode, path, cur_offset,
2320 cur_offset = drop_end;
2322 ret = btrfs_update_inode(trans, root, inode);
2328 btrfs_end_transaction(trans, root);
2329 btrfs_btree_balance_dirty(root);
2331 trans = btrfs_start_transaction(root, rsv_count);
2332 if (IS_ERR(trans)) {
2333 ret = PTR_ERR(trans);
2338 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2340 BUG_ON(ret); /* shouldn't happen */
2341 trans->block_rsv = rsv;
2349 trans->block_rsv = &root->fs_info->trans_block_rsv;
2350 if (cur_offset < ino_size) {
2351 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2362 inode_inc_iversion(inode);
2363 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2365 trans->block_rsv = &root->fs_info->trans_block_rsv;
2366 ret = btrfs_update_inode(trans, root, inode);
2367 btrfs_end_transaction(trans, root);
2368 btrfs_btree_balance_dirty(root);
2370 btrfs_free_path(path);
2371 btrfs_free_block_rsv(root, rsv);
2373 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2374 &cached_state, GFP_NOFS);
2375 mutex_unlock(&inode->i_mutex);
2381 static long btrfs_fallocate(struct file *file, int mode,
2382 loff_t offset, loff_t len)
2384 struct inode *inode = file_inode(file);
2385 struct extent_state *cached_state = NULL;
2386 struct btrfs_root *root = BTRFS_I(inode)->root;
2393 struct extent_map *em;
2394 int blocksize = BTRFS_I(inode)->root->sectorsize;
2397 alloc_start = round_down(offset, blocksize);
2398 alloc_end = round_up(offset + len, blocksize);
2400 /* Make sure we aren't being give some crap mode */
2401 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2404 if (mode & FALLOC_FL_PUNCH_HOLE)
2405 return btrfs_punch_hole(inode, offset, len);
2408 * Make sure we have enough space before we do the
2411 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2414 if (root->fs_info->quota_enabled) {
2415 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2417 goto out_reserve_fail;
2420 mutex_lock(&inode->i_mutex);
2421 ret = inode_newsize_ok(inode, alloc_end);
2425 if (alloc_start > inode->i_size) {
2426 ret = btrfs_cont_expand(inode, i_size_read(inode),
2432 * If we are fallocating from the end of the file onward we
2433 * need to zero out the end of the page if i_size lands in the
2436 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2442 * wait for ordered IO before we have any locks. We'll loop again
2443 * below with the locks held.
2445 ret = btrfs_wait_ordered_range(inode, alloc_start,
2446 alloc_end - alloc_start);
2450 locked_end = alloc_end - 1;
2452 struct btrfs_ordered_extent *ordered;
2454 /* the extent lock is ordered inside the running
2457 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2458 locked_end, 0, &cached_state);
2459 ordered = btrfs_lookup_first_ordered_extent(inode,
2462 ordered->file_offset + ordered->len > alloc_start &&
2463 ordered->file_offset < alloc_end) {
2464 btrfs_put_ordered_extent(ordered);
2465 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2466 alloc_start, locked_end,
2467 &cached_state, GFP_NOFS);
2469 * we can't wait on the range with the transaction
2470 * running or with the extent lock held
2472 ret = btrfs_wait_ordered_range(inode, alloc_start,
2473 alloc_end - alloc_start);
2478 btrfs_put_ordered_extent(ordered);
2483 cur_offset = alloc_start;
2487 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2488 alloc_end - cur_offset, 0);
2489 if (IS_ERR_OR_NULL(em)) {
2496 last_byte = min(extent_map_end(em), alloc_end);
2497 actual_end = min_t(u64, extent_map_end(em), offset + len);
2498 last_byte = ALIGN(last_byte, blocksize);
2500 if (em->block_start == EXTENT_MAP_HOLE ||
2501 (cur_offset >= inode->i_size &&
2502 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2503 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2504 last_byte - cur_offset,
2505 1 << inode->i_blkbits,
2510 free_extent_map(em);
2513 } else if (actual_end > inode->i_size &&
2514 !(mode & FALLOC_FL_KEEP_SIZE)) {
2516 * We didn't need to allocate any more space, but we
2517 * still extended the size of the file so we need to
2520 inode->i_ctime = CURRENT_TIME;
2521 i_size_write(inode, actual_end);
2522 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2524 free_extent_map(em);
2526 cur_offset = last_byte;
2527 if (cur_offset >= alloc_end) {
2532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2533 &cached_state, GFP_NOFS);
2535 mutex_unlock(&inode->i_mutex);
2536 if (root->fs_info->quota_enabled)
2537 btrfs_qgroup_free(root, alloc_end - alloc_start);
2539 /* Let go of our reservation. */
2540 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2544 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2546 struct btrfs_root *root = BTRFS_I(inode)->root;
2547 struct extent_map *em = NULL;
2548 struct extent_state *cached_state = NULL;
2549 u64 lockstart = *offset;
2550 u64 lockend = i_size_read(inode);
2551 u64 start = *offset;
2552 u64 len = i_size_read(inode);
2555 lockend = max_t(u64, root->sectorsize, lockend);
2556 if (lockend <= lockstart)
2557 lockend = lockstart + root->sectorsize;
2560 len = lockend - lockstart + 1;
2562 len = max_t(u64, len, root->sectorsize);
2563 if (inode->i_size == 0)
2566 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2569 while (start < inode->i_size) {
2570 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2577 if (whence == SEEK_HOLE &&
2578 (em->block_start == EXTENT_MAP_HOLE ||
2579 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2581 else if (whence == SEEK_DATA &&
2582 (em->block_start != EXTENT_MAP_HOLE &&
2583 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2586 start = em->start + em->len;
2587 free_extent_map(em);
2591 free_extent_map(em);
2593 if (whence == SEEK_DATA && start >= inode->i_size)
2596 *offset = min_t(loff_t, start, inode->i_size);
2598 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2599 &cached_state, GFP_NOFS);
2603 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2605 struct inode *inode = file->f_mapping->host;
2608 mutex_lock(&inode->i_mutex);
2612 offset = generic_file_llseek(file, offset, whence);
2616 if (offset >= i_size_read(inode)) {
2617 mutex_unlock(&inode->i_mutex);
2621 ret = find_desired_extent(inode, &offset, whence);
2623 mutex_unlock(&inode->i_mutex);
2628 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2630 mutex_unlock(&inode->i_mutex);
2634 const struct file_operations btrfs_file_operations = {
2635 .llseek = btrfs_file_llseek,
2636 .read = do_sync_read,
2637 .write = do_sync_write,
2638 .aio_read = generic_file_aio_read,
2639 .splice_read = generic_file_splice_read,
2640 .aio_write = btrfs_file_aio_write,
2641 .mmap = btrfs_file_mmap,
2642 .open = generic_file_open,
2643 .release = btrfs_release_file,
2644 .fsync = btrfs_sync_file,
2645 .fallocate = btrfs_fallocate,
2646 .unlocked_ioctl = btrfs_ioctl,
2647 #ifdef CONFIG_COMPAT
2648 .compat_ioctl = btrfs_ioctl,
2652 void btrfs_auto_defrag_exit(void)
2654 if (btrfs_inode_defrag_cachep)
2655 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2658 int btrfs_auto_defrag_init(void)
2660 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2661 sizeof(struct inode_defrag), 0,
2662 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2664 if (!btrfs_inode_defrag_cachep)