btrfs: fix race between quota disable and quota assign ioctls
[platform/kernel/linux-rpi.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36  * when auto defrag is enabled we
37  * queue up these defrag structs to remember which
38  * inodes need defragging passes
39  */
40 struct inode_defrag {
41         struct rb_node rb_node;
42         /* objectid */
43         u64 ino;
44         /*
45          * transid where the defrag was added, we search for
46          * extents newer than this
47          */
48         u64 transid;
49
50         /* root objectid */
51         u64 root;
52
53         /* last offset we were able to defrag */
54         u64 last_offset;
55
56         /* if we've wrapped around back to zero once already */
57         int cycled;
58 };
59
60 static int __compare_inode_defrag(struct inode_defrag *defrag1,
61                                   struct inode_defrag *defrag2)
62 {
63         if (defrag1->root > defrag2->root)
64                 return 1;
65         else if (defrag1->root < defrag2->root)
66                 return -1;
67         else if (defrag1->ino > defrag2->ino)
68                 return 1;
69         else if (defrag1->ino < defrag2->ino)
70                 return -1;
71         else
72                 return 0;
73 }
74
75 /* pop a record for an inode into the defrag tree.  The lock
76  * must be held already
77  *
78  * If you're inserting a record for an older transid than an
79  * existing record, the transid already in the tree is lowered
80  *
81  * If an existing record is found the defrag item you
82  * pass in is freed
83  */
84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
85                                     struct inode_defrag *defrag)
86 {
87         struct btrfs_fs_info *fs_info = inode->root->fs_info;
88         struct inode_defrag *entry;
89         struct rb_node **p;
90         struct rb_node *parent = NULL;
91         int ret;
92
93         p = &fs_info->defrag_inodes.rb_node;
94         while (*p) {
95                 parent = *p;
96                 entry = rb_entry(parent, struct inode_defrag, rb_node);
97
98                 ret = __compare_inode_defrag(defrag, entry);
99                 if (ret < 0)
100                         p = &parent->rb_left;
101                 else if (ret > 0)
102                         p = &parent->rb_right;
103                 else {
104                         /* if we're reinserting an entry for
105                          * an old defrag run, make sure to
106                          * lower the transid of our existing record
107                          */
108                         if (defrag->transid < entry->transid)
109                                 entry->transid = defrag->transid;
110                         if (defrag->last_offset > entry->last_offset)
111                                 entry->last_offset = defrag->last_offset;
112                         return -EEXIST;
113                 }
114         }
115         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
116         rb_link_node(&defrag->rb_node, parent, p);
117         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
118         return 0;
119 }
120
121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 {
123         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
124                 return 0;
125
126         if (btrfs_fs_closing(fs_info))
127                 return 0;
128
129         return 1;
130 }
131
132 /*
133  * insert a defrag record for this inode if auto defrag is
134  * enabled
135  */
136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
137                            struct btrfs_inode *inode)
138 {
139         struct btrfs_root *root = inode->root;
140         struct btrfs_fs_info *fs_info = root->fs_info;
141         struct inode_defrag *defrag;
142         u64 transid;
143         int ret;
144
145         if (!__need_auto_defrag(fs_info))
146                 return 0;
147
148         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
149                 return 0;
150
151         if (trans)
152                 transid = trans->transid;
153         else
154                 transid = inode->root->last_trans;
155
156         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
157         if (!defrag)
158                 return -ENOMEM;
159
160         defrag->ino = btrfs_ino(inode);
161         defrag->transid = transid;
162         defrag->root = root->root_key.objectid;
163
164         spin_lock(&fs_info->defrag_inodes_lock);
165         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166                 /*
167                  * If we set IN_DEFRAG flag and evict the inode from memory,
168                  * and then re-read this inode, this new inode doesn't have
169                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
170                  */
171                 ret = __btrfs_add_inode_defrag(inode, defrag);
172                 if (ret)
173                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174         } else {
175                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176         }
177         spin_unlock(&fs_info->defrag_inodes_lock);
178         return 0;
179 }
180
181 /*
182  * Requeue the defrag object. If there is a defrag object that points to
183  * the same inode in the tree, we will merge them together (by
184  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185  */
186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
187                                        struct inode_defrag *defrag)
188 {
189         struct btrfs_fs_info *fs_info = inode->root->fs_info;
190         int ret;
191
192         if (!__need_auto_defrag(fs_info))
193                 goto out;
194
195         /*
196          * Here we don't check the IN_DEFRAG flag, because we need merge
197          * them together.
198          */
199         spin_lock(&fs_info->defrag_inodes_lock);
200         ret = __btrfs_add_inode_defrag(inode, defrag);
201         spin_unlock(&fs_info->defrag_inodes_lock);
202         if (ret)
203                 goto out;
204         return;
205 out:
206         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
207 }
208
209 /*
210  * pick the defragable inode that we want, if it doesn't exist, we will get
211  * the next one.
212  */
213 static struct inode_defrag *
214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 {
216         struct inode_defrag *entry = NULL;
217         struct inode_defrag tmp;
218         struct rb_node *p;
219         struct rb_node *parent = NULL;
220         int ret;
221
222         tmp.ino = ino;
223         tmp.root = root;
224
225         spin_lock(&fs_info->defrag_inodes_lock);
226         p = fs_info->defrag_inodes.rb_node;
227         while (p) {
228                 parent = p;
229                 entry = rb_entry(parent, struct inode_defrag, rb_node);
230
231                 ret = __compare_inode_defrag(&tmp, entry);
232                 if (ret < 0)
233                         p = parent->rb_left;
234                 else if (ret > 0)
235                         p = parent->rb_right;
236                 else
237                         goto out;
238         }
239
240         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
241                 parent = rb_next(parent);
242                 if (parent)
243                         entry = rb_entry(parent, struct inode_defrag, rb_node);
244                 else
245                         entry = NULL;
246         }
247 out:
248         if (entry)
249                 rb_erase(parent, &fs_info->defrag_inodes);
250         spin_unlock(&fs_info->defrag_inodes_lock);
251         return entry;
252 }
253
254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 {
256         struct inode_defrag *defrag;
257         struct rb_node *node;
258
259         spin_lock(&fs_info->defrag_inodes_lock);
260         node = rb_first(&fs_info->defrag_inodes);
261         while (node) {
262                 rb_erase(node, &fs_info->defrag_inodes);
263                 defrag = rb_entry(node, struct inode_defrag, rb_node);
264                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265
266                 cond_resched_lock(&fs_info->defrag_inodes_lock);
267
268                 node = rb_first(&fs_info->defrag_inodes);
269         }
270         spin_unlock(&fs_info->defrag_inodes_lock);
271 }
272
273 #define BTRFS_DEFRAG_BATCH      1024
274
275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
276                                     struct inode_defrag *defrag)
277 {
278         struct btrfs_root *inode_root;
279         struct inode *inode;
280         struct btrfs_ioctl_defrag_range_args range;
281         int num_defrag;
282         int ret;
283
284         /* get the inode */
285         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
286         if (IS_ERR(inode_root)) {
287                 ret = PTR_ERR(inode_root);
288                 goto cleanup;
289         }
290
291         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
292         btrfs_put_root(inode_root);
293         if (IS_ERR(inode)) {
294                 ret = PTR_ERR(inode);
295                 goto cleanup;
296         }
297
298         /* do a chunk of defrag */
299         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
300         memset(&range, 0, sizeof(range));
301         range.len = (u64)-1;
302         range.start = defrag->last_offset;
303
304         sb_start_write(fs_info->sb);
305         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306                                        BTRFS_DEFRAG_BATCH);
307         sb_end_write(fs_info->sb);
308         /*
309          * if we filled the whole defrag batch, there
310          * must be more work to do.  Queue this defrag
311          * again
312          */
313         if (num_defrag == BTRFS_DEFRAG_BATCH) {
314                 defrag->last_offset = range.start;
315                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
316         } else if (defrag->last_offset && !defrag->cycled) {
317                 /*
318                  * we didn't fill our defrag batch, but
319                  * we didn't start at zero.  Make sure we loop
320                  * around to the start of the file.
321                  */
322                 defrag->last_offset = 0;
323                 defrag->cycled = 1;
324                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
325         } else {
326                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
327         }
328
329         iput(inode);
330         return 0;
331 cleanup:
332         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333         return ret;
334 }
335
336 /*
337  * run through the list of inodes in the FS that need
338  * defragging
339  */
340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341 {
342         struct inode_defrag *defrag;
343         u64 first_ino = 0;
344         u64 root_objectid = 0;
345
346         atomic_inc(&fs_info->defrag_running);
347         while (1) {
348                 /* Pause the auto defragger. */
349                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
350                              &fs_info->fs_state))
351                         break;
352
353                 if (!__need_auto_defrag(fs_info))
354                         break;
355
356                 /* find an inode to defrag */
357                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358                                                  first_ino);
359                 if (!defrag) {
360                         if (root_objectid || first_ino) {
361                                 root_objectid = 0;
362                                 first_ino = 0;
363                                 continue;
364                         } else {
365                                 break;
366                         }
367                 }
368
369                 first_ino = defrag->ino + 1;
370                 root_objectid = defrag->root;
371
372                 __btrfs_run_defrag_inode(fs_info, defrag);
373         }
374         atomic_dec(&fs_info->defrag_running);
375
376         /*
377          * during unmount, we use the transaction_wait queue to
378          * wait for the defragger to stop
379          */
380         wake_up(&fs_info->transaction_wait);
381         return 0;
382 }
383
384 /* simple helper to fault in pages and copy.  This should go away
385  * and be replaced with calls into generic code.
386  */
387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
388                                          struct page **prepared_pages,
389                                          struct iov_iter *i)
390 {
391         size_t copied = 0;
392         size_t total_copied = 0;
393         int pg = 0;
394         int offset = offset_in_page(pos);
395
396         while (write_bytes > 0) {
397                 size_t count = min_t(size_t,
398                                      PAGE_SIZE - offset, write_bytes);
399                 struct page *page = prepared_pages[pg];
400                 /*
401                  * Copy data from userspace to the current page
402                  */
403                 copied = copy_page_from_iter_atomic(page, offset, count, i);
404
405                 /* Flush processor's dcache for this page */
406                 flush_dcache_page(page);
407
408                 /*
409                  * if we get a partial write, we can end up with
410                  * partially up to date pages.  These add
411                  * a lot of complexity, so make sure they don't
412                  * happen by forcing this copy to be retried.
413                  *
414                  * The rest of the btrfs_file_write code will fall
415                  * back to page at a time copies after we return 0.
416                  */
417                 if (unlikely(copied < count)) {
418                         if (!PageUptodate(page)) {
419                                 iov_iter_revert(i, copied);
420                                 copied = 0;
421                         }
422                         if (!copied)
423                                 break;
424                 }
425
426                 write_bytes -= copied;
427                 total_copied += copied;
428                 offset += copied;
429                 if (offset == PAGE_SIZE) {
430                         pg++;
431                         offset = 0;
432                 }
433         }
434         return total_copied;
435 }
436
437 /*
438  * unlocks pages after btrfs_file_write is done with them
439  */
440 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
441 {
442         size_t i;
443         for (i = 0; i < num_pages; i++) {
444                 /* page checked is some magic around finding pages that
445                  * have been modified without going through btrfs_set_page_dirty
446                  * clear it here. There should be no need to mark the pages
447                  * accessed as prepare_pages should have marked them accessed
448                  * in prepare_pages via find_or_create_page()
449                  */
450                 ClearPageChecked(pages[i]);
451                 unlock_page(pages[i]);
452                 put_page(pages[i]);
453         }
454 }
455
456 /*
457  * After btrfs_copy_from_user(), update the following things for delalloc:
458  * - Mark newly dirtied pages as DELALLOC in the io tree.
459  *   Used to advise which range is to be written back.
460  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
461  * - Update inode size for past EOF write
462  */
463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464                       size_t num_pages, loff_t pos, size_t write_bytes,
465                       struct extent_state **cached, bool noreserve)
466 {
467         struct btrfs_fs_info *fs_info = inode->root->fs_info;
468         int err = 0;
469         int i;
470         u64 num_bytes;
471         u64 start_pos;
472         u64 end_of_last_block;
473         u64 end_pos = pos + write_bytes;
474         loff_t isize = i_size_read(&inode->vfs_inode);
475         unsigned int extra_bits = 0;
476
477         if (write_bytes == 0)
478                 return 0;
479
480         if (noreserve)
481                 extra_bits |= EXTENT_NORESERVE;
482
483         start_pos = round_down(pos, fs_info->sectorsize);
484         num_bytes = round_up(write_bytes + pos - start_pos,
485                              fs_info->sectorsize);
486         ASSERT(num_bytes <= U32_MAX);
487
488         end_of_last_block = start_pos + num_bytes - 1;
489
490         /*
491          * The pages may have already been dirty, clear out old accounting so
492          * we can set things up properly
493          */
494         clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
495                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
496                          0, 0, cached);
497
498         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
499                                         extra_bits, cached);
500         if (err)
501                 return err;
502
503         for (i = 0; i < num_pages; i++) {
504                 struct page *p = pages[i];
505
506                 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
507                 ClearPageChecked(p);
508                 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
509         }
510
511         /*
512          * we've only changed i_size in ram, and we haven't updated
513          * the disk i_size.  There is no need to log the inode
514          * at this time.
515          */
516         if (end_pos > isize)
517                 i_size_write(&inode->vfs_inode, end_pos);
518         return 0;
519 }
520
521 /*
522  * this drops all the extents in the cache that intersect the range
523  * [start, end].  Existing extents are split as required.
524  */
525 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
526                              int skip_pinned)
527 {
528         struct extent_map *em;
529         struct extent_map *split = NULL;
530         struct extent_map *split2 = NULL;
531         struct extent_map_tree *em_tree = &inode->extent_tree;
532         u64 len = end - start + 1;
533         u64 gen;
534         int ret;
535         int testend = 1;
536         unsigned long flags;
537         int compressed = 0;
538         bool modified;
539
540         WARN_ON(end < start);
541         if (end == (u64)-1) {
542                 len = (u64)-1;
543                 testend = 0;
544         }
545         while (1) {
546                 int no_splits = 0;
547
548                 modified = false;
549                 if (!split)
550                         split = alloc_extent_map();
551                 if (!split2)
552                         split2 = alloc_extent_map();
553                 if (!split || !split2)
554                         no_splits = 1;
555
556                 write_lock(&em_tree->lock);
557                 em = lookup_extent_mapping(em_tree, start, len);
558                 if (!em) {
559                         write_unlock(&em_tree->lock);
560                         break;
561                 }
562                 flags = em->flags;
563                 gen = em->generation;
564                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
565                         if (testend && em->start + em->len >= start + len) {
566                                 free_extent_map(em);
567                                 write_unlock(&em_tree->lock);
568                                 break;
569                         }
570                         start = em->start + em->len;
571                         if (testend)
572                                 len = start + len - (em->start + em->len);
573                         free_extent_map(em);
574                         write_unlock(&em_tree->lock);
575                         continue;
576                 }
577                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
578                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
579                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
580                 modified = !list_empty(&em->list);
581                 if (no_splits)
582                         goto next;
583
584                 if (em->start < start) {
585                         split->start = em->start;
586                         split->len = start - em->start;
587
588                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
589                                 split->orig_start = em->orig_start;
590                                 split->block_start = em->block_start;
591
592                                 if (compressed)
593                                         split->block_len = em->block_len;
594                                 else
595                                         split->block_len = split->len;
596                                 split->orig_block_len = max(split->block_len,
597                                                 em->orig_block_len);
598                                 split->ram_bytes = em->ram_bytes;
599                         } else {
600                                 split->orig_start = split->start;
601                                 split->block_len = 0;
602                                 split->block_start = em->block_start;
603                                 split->orig_block_len = 0;
604                                 split->ram_bytes = split->len;
605                         }
606
607                         split->generation = gen;
608                         split->flags = flags;
609                         split->compress_type = em->compress_type;
610                         replace_extent_mapping(em_tree, em, split, modified);
611                         free_extent_map(split);
612                         split = split2;
613                         split2 = NULL;
614                 }
615                 if (testend && em->start + em->len > start + len) {
616                         u64 diff = start + len - em->start;
617
618                         split->start = start + len;
619                         split->len = em->start + em->len - (start + len);
620                         split->flags = flags;
621                         split->compress_type = em->compress_type;
622                         split->generation = gen;
623
624                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
625                                 split->orig_block_len = max(em->block_len,
626                                                     em->orig_block_len);
627
628                                 split->ram_bytes = em->ram_bytes;
629                                 if (compressed) {
630                                         split->block_len = em->block_len;
631                                         split->block_start = em->block_start;
632                                         split->orig_start = em->orig_start;
633                                 } else {
634                                         split->block_len = split->len;
635                                         split->block_start = em->block_start
636                                                 + diff;
637                                         split->orig_start = em->orig_start;
638                                 }
639                         } else {
640                                 split->ram_bytes = split->len;
641                                 split->orig_start = split->start;
642                                 split->block_len = 0;
643                                 split->block_start = em->block_start;
644                                 split->orig_block_len = 0;
645                         }
646
647                         if (extent_map_in_tree(em)) {
648                                 replace_extent_mapping(em_tree, em, split,
649                                                        modified);
650                         } else {
651                                 ret = add_extent_mapping(em_tree, split,
652                                                          modified);
653                                 ASSERT(ret == 0); /* Logic error */
654                         }
655                         free_extent_map(split);
656                         split = NULL;
657                 }
658 next:
659                 if (extent_map_in_tree(em))
660                         remove_extent_mapping(em_tree, em);
661                 write_unlock(&em_tree->lock);
662
663                 /* once for us */
664                 free_extent_map(em);
665                 /* once for the tree*/
666                 free_extent_map(em);
667         }
668         if (split)
669                 free_extent_map(split);
670         if (split2)
671                 free_extent_map(split2);
672 }
673
674 /*
675  * this is very complex, but the basic idea is to drop all extents
676  * in the range start - end.  hint_block is filled in with a block number
677  * that would be a good hint to the block allocator for this file.
678  *
679  * If an extent intersects the range but is not entirely inside the range
680  * it is either truncated or split.  Anything entirely inside the range
681  * is deleted from the tree.
682  *
683  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
684  * to deal with that. We set the field 'bytes_found' of the arguments structure
685  * with the number of allocated bytes found in the target range, so that the
686  * caller can update the inode's number of bytes in an atomic way when
687  * replacing extents in a range to avoid races with stat(2).
688  */
689 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
690                        struct btrfs_root *root, struct btrfs_inode *inode,
691                        struct btrfs_drop_extents_args *args)
692 {
693         struct btrfs_fs_info *fs_info = root->fs_info;
694         struct extent_buffer *leaf;
695         struct btrfs_file_extent_item *fi;
696         struct btrfs_ref ref = { 0 };
697         struct btrfs_key key;
698         struct btrfs_key new_key;
699         u64 ino = btrfs_ino(inode);
700         u64 search_start = args->start;
701         u64 disk_bytenr = 0;
702         u64 num_bytes = 0;
703         u64 extent_offset = 0;
704         u64 extent_end = 0;
705         u64 last_end = args->start;
706         int del_nr = 0;
707         int del_slot = 0;
708         int extent_type;
709         int recow;
710         int ret;
711         int modify_tree = -1;
712         int update_refs;
713         int found = 0;
714         int leafs_visited = 0;
715         struct btrfs_path *path = args->path;
716
717         args->bytes_found = 0;
718         args->extent_inserted = false;
719
720         /* Must always have a path if ->replace_extent is true */
721         ASSERT(!(args->replace_extent && !args->path));
722
723         if (!path) {
724                 path = btrfs_alloc_path();
725                 if (!path) {
726                         ret = -ENOMEM;
727                         goto out;
728                 }
729         }
730
731         if (args->drop_cache)
732                 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
733
734         if (args->start >= inode->disk_i_size && !args->replace_extent)
735                 modify_tree = 0;
736
737         update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
738         while (1) {
739                 recow = 0;
740                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
741                                                search_start, modify_tree);
742                 if (ret < 0)
743                         break;
744                 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
745                         leaf = path->nodes[0];
746                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
747                         if (key.objectid == ino &&
748                             key.type == BTRFS_EXTENT_DATA_KEY)
749                                 path->slots[0]--;
750                 }
751                 ret = 0;
752                 leafs_visited++;
753 next_slot:
754                 leaf = path->nodes[0];
755                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
756                         BUG_ON(del_nr > 0);
757                         ret = btrfs_next_leaf(root, path);
758                         if (ret < 0)
759                                 break;
760                         if (ret > 0) {
761                                 ret = 0;
762                                 break;
763                         }
764                         leafs_visited++;
765                         leaf = path->nodes[0];
766                         recow = 1;
767                 }
768
769                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
770
771                 if (key.objectid > ino)
772                         break;
773                 if (WARN_ON_ONCE(key.objectid < ino) ||
774                     key.type < BTRFS_EXTENT_DATA_KEY) {
775                         ASSERT(del_nr == 0);
776                         path->slots[0]++;
777                         goto next_slot;
778                 }
779                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
780                         break;
781
782                 fi = btrfs_item_ptr(leaf, path->slots[0],
783                                     struct btrfs_file_extent_item);
784                 extent_type = btrfs_file_extent_type(leaf, fi);
785
786                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
787                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
788                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
789                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
790                         extent_offset = btrfs_file_extent_offset(leaf, fi);
791                         extent_end = key.offset +
792                                 btrfs_file_extent_num_bytes(leaf, fi);
793                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
794                         extent_end = key.offset +
795                                 btrfs_file_extent_ram_bytes(leaf, fi);
796                 } else {
797                         /* can't happen */
798                         BUG();
799                 }
800
801                 /*
802                  * Don't skip extent items representing 0 byte lengths. They
803                  * used to be created (bug) if while punching holes we hit
804                  * -ENOSPC condition. So if we find one here, just ensure we
805                  * delete it, otherwise we would insert a new file extent item
806                  * with the same key (offset) as that 0 bytes length file
807                  * extent item in the call to setup_items_for_insert() later
808                  * in this function.
809                  */
810                 if (extent_end == key.offset && extent_end >= search_start) {
811                         last_end = extent_end;
812                         goto delete_extent_item;
813                 }
814
815                 if (extent_end <= search_start) {
816                         path->slots[0]++;
817                         goto next_slot;
818                 }
819
820                 found = 1;
821                 search_start = max(key.offset, args->start);
822                 if (recow || !modify_tree) {
823                         modify_tree = -1;
824                         btrfs_release_path(path);
825                         continue;
826                 }
827
828                 /*
829                  *     | - range to drop - |
830                  *  | -------- extent -------- |
831                  */
832                 if (args->start > key.offset && args->end < extent_end) {
833                         BUG_ON(del_nr > 0);
834                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
835                                 ret = -EOPNOTSUPP;
836                                 break;
837                         }
838
839                         memcpy(&new_key, &key, sizeof(new_key));
840                         new_key.offset = args->start;
841                         ret = btrfs_duplicate_item(trans, root, path,
842                                                    &new_key);
843                         if (ret == -EAGAIN) {
844                                 btrfs_release_path(path);
845                                 continue;
846                         }
847                         if (ret < 0)
848                                 break;
849
850                         leaf = path->nodes[0];
851                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
852                                             struct btrfs_file_extent_item);
853                         btrfs_set_file_extent_num_bytes(leaf, fi,
854                                                         args->start - key.offset);
855
856                         fi = btrfs_item_ptr(leaf, path->slots[0],
857                                             struct btrfs_file_extent_item);
858
859                         extent_offset += args->start - key.offset;
860                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
861                         btrfs_set_file_extent_num_bytes(leaf, fi,
862                                                         extent_end - args->start);
863                         btrfs_mark_buffer_dirty(leaf);
864
865                         if (update_refs && disk_bytenr > 0) {
866                                 btrfs_init_generic_ref(&ref,
867                                                 BTRFS_ADD_DELAYED_REF,
868                                                 disk_bytenr, num_bytes, 0);
869                                 btrfs_init_data_ref(&ref,
870                                                 root->root_key.objectid,
871                                                 new_key.objectid,
872                                                 args->start - extent_offset,
873                                                 0, false);
874                                 ret = btrfs_inc_extent_ref(trans, &ref);
875                                 if (ret) {
876                                         btrfs_abort_transaction(trans, ret);
877                                         break;
878                                 }
879                         }
880                         key.offset = args->start;
881                 }
882                 /*
883                  * From here on out we will have actually dropped something, so
884                  * last_end can be updated.
885                  */
886                 last_end = extent_end;
887
888                 /*
889                  *  | ---- range to drop ----- |
890                  *      | -------- extent -------- |
891                  */
892                 if (args->start <= key.offset && args->end < extent_end) {
893                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
894                                 ret = -EOPNOTSUPP;
895                                 break;
896                         }
897
898                         memcpy(&new_key, &key, sizeof(new_key));
899                         new_key.offset = args->end;
900                         btrfs_set_item_key_safe(fs_info, path, &new_key);
901
902                         extent_offset += args->end - key.offset;
903                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
904                         btrfs_set_file_extent_num_bytes(leaf, fi,
905                                                         extent_end - args->end);
906                         btrfs_mark_buffer_dirty(leaf);
907                         if (update_refs && disk_bytenr > 0)
908                                 args->bytes_found += args->end - key.offset;
909                         break;
910                 }
911
912                 search_start = extent_end;
913                 /*
914                  *       | ---- range to drop ----- |
915                  *  | -------- extent -------- |
916                  */
917                 if (args->start > key.offset && args->end >= extent_end) {
918                         BUG_ON(del_nr > 0);
919                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
920                                 ret = -EOPNOTSUPP;
921                                 break;
922                         }
923
924                         btrfs_set_file_extent_num_bytes(leaf, fi,
925                                                         args->start - key.offset);
926                         btrfs_mark_buffer_dirty(leaf);
927                         if (update_refs && disk_bytenr > 0)
928                                 args->bytes_found += extent_end - args->start;
929                         if (args->end == extent_end)
930                                 break;
931
932                         path->slots[0]++;
933                         goto next_slot;
934                 }
935
936                 /*
937                  *  | ---- range to drop ----- |
938                  *    | ------ extent ------ |
939                  */
940                 if (args->start <= key.offset && args->end >= extent_end) {
941 delete_extent_item:
942                         if (del_nr == 0) {
943                                 del_slot = path->slots[0];
944                                 del_nr = 1;
945                         } else {
946                                 BUG_ON(del_slot + del_nr != path->slots[0]);
947                                 del_nr++;
948                         }
949
950                         if (update_refs &&
951                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
952                                 args->bytes_found += extent_end - key.offset;
953                                 extent_end = ALIGN(extent_end,
954                                                    fs_info->sectorsize);
955                         } else if (update_refs && disk_bytenr > 0) {
956                                 btrfs_init_generic_ref(&ref,
957                                                 BTRFS_DROP_DELAYED_REF,
958                                                 disk_bytenr, num_bytes, 0);
959                                 btrfs_init_data_ref(&ref,
960                                                 root->root_key.objectid,
961                                                 key.objectid,
962                                                 key.offset - extent_offset, 0,
963                                                 false);
964                                 ret = btrfs_free_extent(trans, &ref);
965                                 if (ret) {
966                                         btrfs_abort_transaction(trans, ret);
967                                         break;
968                                 }
969                                 args->bytes_found += extent_end - key.offset;
970                         }
971
972                         if (args->end == extent_end)
973                                 break;
974
975                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
976                                 path->slots[0]++;
977                                 goto next_slot;
978                         }
979
980                         ret = btrfs_del_items(trans, root, path, del_slot,
981                                               del_nr);
982                         if (ret) {
983                                 btrfs_abort_transaction(trans, ret);
984                                 break;
985                         }
986
987                         del_nr = 0;
988                         del_slot = 0;
989
990                         btrfs_release_path(path);
991                         continue;
992                 }
993
994                 BUG();
995         }
996
997         if (!ret && del_nr > 0) {
998                 /*
999                  * Set path->slots[0] to first slot, so that after the delete
1000                  * if items are move off from our leaf to its immediate left or
1001                  * right neighbor leafs, we end up with a correct and adjusted
1002                  * path->slots[0] for our insertion (if args->replace_extent).
1003                  */
1004                 path->slots[0] = del_slot;
1005                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1006                 if (ret)
1007                         btrfs_abort_transaction(trans, ret);
1008         }
1009
1010         leaf = path->nodes[0];
1011         /*
1012          * If btrfs_del_items() was called, it might have deleted a leaf, in
1013          * which case it unlocked our path, so check path->locks[0] matches a
1014          * write lock.
1015          */
1016         if (!ret && args->replace_extent && leafs_visited == 1 &&
1017             path->locks[0] == BTRFS_WRITE_LOCK &&
1018             btrfs_leaf_free_space(leaf) >=
1019             sizeof(struct btrfs_item) + args->extent_item_size) {
1020
1021                 key.objectid = ino;
1022                 key.type = BTRFS_EXTENT_DATA_KEY;
1023                 key.offset = args->start;
1024                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1025                         struct btrfs_key slot_key;
1026
1027                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1028                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1029                                 path->slots[0]++;
1030                 }
1031                 setup_items_for_insert(root, path, &key,
1032                                        &args->extent_item_size, 1);
1033                 args->extent_inserted = true;
1034         }
1035
1036         if (!args->path)
1037                 btrfs_free_path(path);
1038         else if (!args->extent_inserted)
1039                 btrfs_release_path(path);
1040 out:
1041         args->drop_end = found ? min(args->end, last_end) : args->end;
1042
1043         return ret;
1044 }
1045
1046 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1047                             u64 objectid, u64 bytenr, u64 orig_offset,
1048                             u64 *start, u64 *end)
1049 {
1050         struct btrfs_file_extent_item *fi;
1051         struct btrfs_key key;
1052         u64 extent_end;
1053
1054         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1055                 return 0;
1056
1057         btrfs_item_key_to_cpu(leaf, &key, slot);
1058         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1059                 return 0;
1060
1061         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1062         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1063             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1064             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1065             btrfs_file_extent_compression(leaf, fi) ||
1066             btrfs_file_extent_encryption(leaf, fi) ||
1067             btrfs_file_extent_other_encoding(leaf, fi))
1068                 return 0;
1069
1070         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1071         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1072                 return 0;
1073
1074         *start = key.offset;
1075         *end = extent_end;
1076         return 1;
1077 }
1078
1079 /*
1080  * Mark extent in the range start - end as written.
1081  *
1082  * This changes extent type from 'pre-allocated' to 'regular'. If only
1083  * part of extent is marked as written, the extent will be split into
1084  * two or three.
1085  */
1086 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1087                               struct btrfs_inode *inode, u64 start, u64 end)
1088 {
1089         struct btrfs_fs_info *fs_info = trans->fs_info;
1090         struct btrfs_root *root = inode->root;
1091         struct extent_buffer *leaf;
1092         struct btrfs_path *path;
1093         struct btrfs_file_extent_item *fi;
1094         struct btrfs_ref ref = { 0 };
1095         struct btrfs_key key;
1096         struct btrfs_key new_key;
1097         u64 bytenr;
1098         u64 num_bytes;
1099         u64 extent_end;
1100         u64 orig_offset;
1101         u64 other_start;
1102         u64 other_end;
1103         u64 split;
1104         int del_nr = 0;
1105         int del_slot = 0;
1106         int recow;
1107         int ret = 0;
1108         u64 ino = btrfs_ino(inode);
1109
1110         path = btrfs_alloc_path();
1111         if (!path)
1112                 return -ENOMEM;
1113 again:
1114         recow = 0;
1115         split = start;
1116         key.objectid = ino;
1117         key.type = BTRFS_EXTENT_DATA_KEY;
1118         key.offset = split;
1119
1120         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1121         if (ret < 0)
1122                 goto out;
1123         if (ret > 0 && path->slots[0] > 0)
1124                 path->slots[0]--;
1125
1126         leaf = path->nodes[0];
1127         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1128         if (key.objectid != ino ||
1129             key.type != BTRFS_EXTENT_DATA_KEY) {
1130                 ret = -EINVAL;
1131                 btrfs_abort_transaction(trans, ret);
1132                 goto out;
1133         }
1134         fi = btrfs_item_ptr(leaf, path->slots[0],
1135                             struct btrfs_file_extent_item);
1136         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1137                 ret = -EINVAL;
1138                 btrfs_abort_transaction(trans, ret);
1139                 goto out;
1140         }
1141         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1142         if (key.offset > start || extent_end < end) {
1143                 ret = -EINVAL;
1144                 btrfs_abort_transaction(trans, ret);
1145                 goto out;
1146         }
1147
1148         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1149         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1150         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1151         memcpy(&new_key, &key, sizeof(new_key));
1152
1153         if (start == key.offset && end < extent_end) {
1154                 other_start = 0;
1155                 other_end = start;
1156                 if (extent_mergeable(leaf, path->slots[0] - 1,
1157                                      ino, bytenr, orig_offset,
1158                                      &other_start, &other_end)) {
1159                         new_key.offset = end;
1160                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1161                         fi = btrfs_item_ptr(leaf, path->slots[0],
1162                                             struct btrfs_file_extent_item);
1163                         btrfs_set_file_extent_generation(leaf, fi,
1164                                                          trans->transid);
1165                         btrfs_set_file_extent_num_bytes(leaf, fi,
1166                                                         extent_end - end);
1167                         btrfs_set_file_extent_offset(leaf, fi,
1168                                                      end - orig_offset);
1169                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1170                                             struct btrfs_file_extent_item);
1171                         btrfs_set_file_extent_generation(leaf, fi,
1172                                                          trans->transid);
1173                         btrfs_set_file_extent_num_bytes(leaf, fi,
1174                                                         end - other_start);
1175                         btrfs_mark_buffer_dirty(leaf);
1176                         goto out;
1177                 }
1178         }
1179
1180         if (start > key.offset && end == extent_end) {
1181                 other_start = end;
1182                 other_end = 0;
1183                 if (extent_mergeable(leaf, path->slots[0] + 1,
1184                                      ino, bytenr, orig_offset,
1185                                      &other_start, &other_end)) {
1186                         fi = btrfs_item_ptr(leaf, path->slots[0],
1187                                             struct btrfs_file_extent_item);
1188                         btrfs_set_file_extent_num_bytes(leaf, fi,
1189                                                         start - key.offset);
1190                         btrfs_set_file_extent_generation(leaf, fi,
1191                                                          trans->transid);
1192                         path->slots[0]++;
1193                         new_key.offset = start;
1194                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1195
1196                         fi = btrfs_item_ptr(leaf, path->slots[0],
1197                                             struct btrfs_file_extent_item);
1198                         btrfs_set_file_extent_generation(leaf, fi,
1199                                                          trans->transid);
1200                         btrfs_set_file_extent_num_bytes(leaf, fi,
1201                                                         other_end - start);
1202                         btrfs_set_file_extent_offset(leaf, fi,
1203                                                      start - orig_offset);
1204                         btrfs_mark_buffer_dirty(leaf);
1205                         goto out;
1206                 }
1207         }
1208
1209         while (start > key.offset || end < extent_end) {
1210                 if (key.offset == start)
1211                         split = end;
1212
1213                 new_key.offset = split;
1214                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1215                 if (ret == -EAGAIN) {
1216                         btrfs_release_path(path);
1217                         goto again;
1218                 }
1219                 if (ret < 0) {
1220                         btrfs_abort_transaction(trans, ret);
1221                         goto out;
1222                 }
1223
1224                 leaf = path->nodes[0];
1225                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1226                                     struct btrfs_file_extent_item);
1227                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1228                 btrfs_set_file_extent_num_bytes(leaf, fi,
1229                                                 split - key.offset);
1230
1231                 fi = btrfs_item_ptr(leaf, path->slots[0],
1232                                     struct btrfs_file_extent_item);
1233
1234                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1235                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1236                 btrfs_set_file_extent_num_bytes(leaf, fi,
1237                                                 extent_end - split);
1238                 btrfs_mark_buffer_dirty(leaf);
1239
1240                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1241                                        num_bytes, 0);
1242                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1243                                     orig_offset, 0, false);
1244                 ret = btrfs_inc_extent_ref(trans, &ref);
1245                 if (ret) {
1246                         btrfs_abort_transaction(trans, ret);
1247                         goto out;
1248                 }
1249
1250                 if (split == start) {
1251                         key.offset = start;
1252                 } else {
1253                         if (start != key.offset) {
1254                                 ret = -EINVAL;
1255                                 btrfs_abort_transaction(trans, ret);
1256                                 goto out;
1257                         }
1258                         path->slots[0]--;
1259                         extent_end = end;
1260                 }
1261                 recow = 1;
1262         }
1263
1264         other_start = end;
1265         other_end = 0;
1266         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1267                                num_bytes, 0);
1268         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1269                             0, false);
1270         if (extent_mergeable(leaf, path->slots[0] + 1,
1271                              ino, bytenr, orig_offset,
1272                              &other_start, &other_end)) {
1273                 if (recow) {
1274                         btrfs_release_path(path);
1275                         goto again;
1276                 }
1277                 extent_end = other_end;
1278                 del_slot = path->slots[0] + 1;
1279                 del_nr++;
1280                 ret = btrfs_free_extent(trans, &ref);
1281                 if (ret) {
1282                         btrfs_abort_transaction(trans, ret);
1283                         goto out;
1284                 }
1285         }
1286         other_start = 0;
1287         other_end = start;
1288         if (extent_mergeable(leaf, path->slots[0] - 1,
1289                              ino, bytenr, orig_offset,
1290                              &other_start, &other_end)) {
1291                 if (recow) {
1292                         btrfs_release_path(path);
1293                         goto again;
1294                 }
1295                 key.offset = other_start;
1296                 del_slot = path->slots[0];
1297                 del_nr++;
1298                 ret = btrfs_free_extent(trans, &ref);
1299                 if (ret) {
1300                         btrfs_abort_transaction(trans, ret);
1301                         goto out;
1302                 }
1303         }
1304         if (del_nr == 0) {
1305                 fi = btrfs_item_ptr(leaf, path->slots[0],
1306                            struct btrfs_file_extent_item);
1307                 btrfs_set_file_extent_type(leaf, fi,
1308                                            BTRFS_FILE_EXTENT_REG);
1309                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1310                 btrfs_mark_buffer_dirty(leaf);
1311         } else {
1312                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1313                            struct btrfs_file_extent_item);
1314                 btrfs_set_file_extent_type(leaf, fi,
1315                                            BTRFS_FILE_EXTENT_REG);
1316                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1317                 btrfs_set_file_extent_num_bytes(leaf, fi,
1318                                                 extent_end - key.offset);
1319                 btrfs_mark_buffer_dirty(leaf);
1320
1321                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1322                 if (ret < 0) {
1323                         btrfs_abort_transaction(trans, ret);
1324                         goto out;
1325                 }
1326         }
1327 out:
1328         btrfs_free_path(path);
1329         return ret;
1330 }
1331
1332 /*
1333  * on error we return an unlocked page and the error value
1334  * on success we return a locked page and 0
1335  */
1336 static int prepare_uptodate_page(struct inode *inode,
1337                                  struct page *page, u64 pos,
1338                                  bool force_uptodate)
1339 {
1340         int ret = 0;
1341
1342         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1343             !PageUptodate(page)) {
1344                 ret = btrfs_readpage(NULL, page);
1345                 if (ret)
1346                         return ret;
1347                 lock_page(page);
1348                 if (!PageUptodate(page)) {
1349                         unlock_page(page);
1350                         return -EIO;
1351                 }
1352
1353                 /*
1354                  * Since btrfs_readpage() will unlock the page before it
1355                  * returns, there is a window where btrfs_releasepage() can be
1356                  * called to release the page.  Here we check both inode
1357                  * mapping and PagePrivate() to make sure the page was not
1358                  * released.
1359                  *
1360                  * The private flag check is essential for subpage as we need
1361                  * to store extra bitmap using page->private.
1362                  */
1363                 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1364                         unlock_page(page);
1365                         return -EAGAIN;
1366                 }
1367         }
1368         return 0;
1369 }
1370
1371 /*
1372  * this just gets pages into the page cache and locks them down.
1373  */
1374 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1375                                   size_t num_pages, loff_t pos,
1376                                   size_t write_bytes, bool force_uptodate)
1377 {
1378         int i;
1379         unsigned long index = pos >> PAGE_SHIFT;
1380         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1381         int err = 0;
1382         int faili;
1383
1384         for (i = 0; i < num_pages; i++) {
1385 again:
1386                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1387                                                mask | __GFP_WRITE);
1388                 if (!pages[i]) {
1389                         faili = i - 1;
1390                         err = -ENOMEM;
1391                         goto fail;
1392                 }
1393
1394                 err = set_page_extent_mapped(pages[i]);
1395                 if (err < 0) {
1396                         faili = i;
1397                         goto fail;
1398                 }
1399
1400                 if (i == 0)
1401                         err = prepare_uptodate_page(inode, pages[i], pos,
1402                                                     force_uptodate);
1403                 if (!err && i == num_pages - 1)
1404                         err = prepare_uptodate_page(inode, pages[i],
1405                                                     pos + write_bytes, false);
1406                 if (err) {
1407                         put_page(pages[i]);
1408                         if (err == -EAGAIN) {
1409                                 err = 0;
1410                                 goto again;
1411                         }
1412                         faili = i - 1;
1413                         goto fail;
1414                 }
1415                 wait_on_page_writeback(pages[i]);
1416         }
1417
1418         return 0;
1419 fail:
1420         while (faili >= 0) {
1421                 unlock_page(pages[faili]);
1422                 put_page(pages[faili]);
1423                 faili--;
1424         }
1425         return err;
1426
1427 }
1428
1429 /*
1430  * This function locks the extent and properly waits for data=ordered extents
1431  * to finish before allowing the pages to be modified if need.
1432  *
1433  * The return value:
1434  * 1 - the extent is locked
1435  * 0 - the extent is not locked, and everything is OK
1436  * -EAGAIN - need re-prepare the pages
1437  * the other < 0 number - Something wrong happens
1438  */
1439 static noinline int
1440 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1441                                 size_t num_pages, loff_t pos,
1442                                 size_t write_bytes,
1443                                 u64 *lockstart, u64 *lockend,
1444                                 struct extent_state **cached_state)
1445 {
1446         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1447         u64 start_pos;
1448         u64 last_pos;
1449         int i;
1450         int ret = 0;
1451
1452         start_pos = round_down(pos, fs_info->sectorsize);
1453         last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1454
1455         if (start_pos < inode->vfs_inode.i_size) {
1456                 struct btrfs_ordered_extent *ordered;
1457
1458                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1459                                 cached_state);
1460                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1461                                                      last_pos - start_pos + 1);
1462                 if (ordered &&
1463                     ordered->file_offset + ordered->num_bytes > start_pos &&
1464                     ordered->file_offset <= last_pos) {
1465                         unlock_extent_cached(&inode->io_tree, start_pos,
1466                                         last_pos, cached_state);
1467                         for (i = 0; i < num_pages; i++) {
1468                                 unlock_page(pages[i]);
1469                                 put_page(pages[i]);
1470                         }
1471                         btrfs_start_ordered_extent(ordered, 1);
1472                         btrfs_put_ordered_extent(ordered);
1473                         return -EAGAIN;
1474                 }
1475                 if (ordered)
1476                         btrfs_put_ordered_extent(ordered);
1477
1478                 *lockstart = start_pos;
1479                 *lockend = last_pos;
1480                 ret = 1;
1481         }
1482
1483         /*
1484          * We should be called after prepare_pages() which should have locked
1485          * all pages in the range.
1486          */
1487         for (i = 0; i < num_pages; i++)
1488                 WARN_ON(!PageLocked(pages[i]));
1489
1490         return ret;
1491 }
1492
1493 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1494                            size_t *write_bytes, bool nowait)
1495 {
1496         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1497         struct btrfs_root *root = inode->root;
1498         u64 lockstart, lockend;
1499         u64 num_bytes;
1500         int ret;
1501
1502         if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1503                 return 0;
1504
1505         if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1506                 return -EAGAIN;
1507
1508         lockstart = round_down(pos, fs_info->sectorsize);
1509         lockend = round_up(pos + *write_bytes,
1510                            fs_info->sectorsize) - 1;
1511         num_bytes = lockend - lockstart + 1;
1512
1513         if (nowait) {
1514                 struct btrfs_ordered_extent *ordered;
1515
1516                 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1517                         return -EAGAIN;
1518
1519                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1520                                                      num_bytes);
1521                 if (ordered) {
1522                         btrfs_put_ordered_extent(ordered);
1523                         ret = -EAGAIN;
1524                         goto out_unlock;
1525                 }
1526         } else {
1527                 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1528                                                    lockend, NULL);
1529         }
1530
1531         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1532                         NULL, NULL, NULL, false);
1533         if (ret <= 0) {
1534                 ret = 0;
1535                 if (!nowait)
1536                         btrfs_drew_write_unlock(&root->snapshot_lock);
1537         } else {
1538                 *write_bytes = min_t(size_t, *write_bytes ,
1539                                      num_bytes - pos + lockstart);
1540         }
1541 out_unlock:
1542         unlock_extent(&inode->io_tree, lockstart, lockend);
1543
1544         return ret;
1545 }
1546
1547 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1548                               size_t *write_bytes)
1549 {
1550         return check_can_nocow(inode, pos, write_bytes, true);
1551 }
1552
1553 /*
1554  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1555  *
1556  * @pos:         File offset
1557  * @write_bytes: The length to write, will be updated to the nocow writeable
1558  *               range
1559  *
1560  * This function will flush ordered extents in the range to ensure proper
1561  * nocow checks.
1562  *
1563  * Return:
1564  * >0           and update @write_bytes if we can do nocow write
1565  *  0           if we can't do nocow write
1566  * -EAGAIN      if we can't get the needed lock or there are ordered extents
1567  *              for * (nowait == true) case
1568  * <0           if other error happened
1569  *
1570  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1571  */
1572 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1573                            size_t *write_bytes)
1574 {
1575         return check_can_nocow(inode, pos, write_bytes, false);
1576 }
1577
1578 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1579 {
1580         btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1581 }
1582
1583 static void update_time_for_write(struct inode *inode)
1584 {
1585         struct timespec64 now;
1586
1587         if (IS_NOCMTIME(inode))
1588                 return;
1589
1590         now = current_time(inode);
1591         if (!timespec64_equal(&inode->i_mtime, &now))
1592                 inode->i_mtime = now;
1593
1594         if (!timespec64_equal(&inode->i_ctime, &now))
1595                 inode->i_ctime = now;
1596
1597         if (IS_I_VERSION(inode))
1598                 inode_inc_iversion(inode);
1599 }
1600
1601 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1602                              size_t count)
1603 {
1604         struct file *file = iocb->ki_filp;
1605         struct inode *inode = file_inode(file);
1606         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1607         loff_t pos = iocb->ki_pos;
1608         int ret;
1609         loff_t oldsize;
1610         loff_t start_pos;
1611
1612         if (iocb->ki_flags & IOCB_NOWAIT) {
1613                 size_t nocow_bytes = count;
1614
1615                 /* We will allocate space in case nodatacow is not set, so bail */
1616                 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1617                         return -EAGAIN;
1618                 /*
1619                  * There are holes in the range or parts of the range that must
1620                  * be COWed (shared extents, RO block groups, etc), so just bail
1621                  * out.
1622                  */
1623                 if (nocow_bytes < count)
1624                         return -EAGAIN;
1625         }
1626
1627         current->backing_dev_info = inode_to_bdi(inode);
1628         ret = file_remove_privs(file);
1629         if (ret)
1630                 return ret;
1631
1632         /*
1633          * We reserve space for updating the inode when we reserve space for the
1634          * extent we are going to write, so we will enospc out there.  We don't
1635          * need to start yet another transaction to update the inode as we will
1636          * update the inode when we finish writing whatever data we write.
1637          */
1638         update_time_for_write(inode);
1639
1640         start_pos = round_down(pos, fs_info->sectorsize);
1641         oldsize = i_size_read(inode);
1642         if (start_pos > oldsize) {
1643                 /* Expand hole size to cover write data, preventing empty gap */
1644                 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1645
1646                 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1647                 if (ret) {
1648                         current->backing_dev_info = NULL;
1649                         return ret;
1650                 }
1651         }
1652
1653         return 0;
1654 }
1655
1656 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1657                                                struct iov_iter *i)
1658 {
1659         struct file *file = iocb->ki_filp;
1660         loff_t pos;
1661         struct inode *inode = file_inode(file);
1662         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1663         struct page **pages = NULL;
1664         struct extent_changeset *data_reserved = NULL;
1665         u64 release_bytes = 0;
1666         u64 lockstart;
1667         u64 lockend;
1668         size_t num_written = 0;
1669         int nrptrs;
1670         ssize_t ret;
1671         bool only_release_metadata = false;
1672         bool force_page_uptodate = false;
1673         loff_t old_isize = i_size_read(inode);
1674         unsigned int ilock_flags = 0;
1675
1676         if (iocb->ki_flags & IOCB_NOWAIT)
1677                 ilock_flags |= BTRFS_ILOCK_TRY;
1678
1679         ret = btrfs_inode_lock(inode, ilock_flags);
1680         if (ret < 0)
1681                 return ret;
1682
1683         ret = generic_write_checks(iocb, i);
1684         if (ret <= 0)
1685                 goto out;
1686
1687         ret = btrfs_write_check(iocb, i, ret);
1688         if (ret < 0)
1689                 goto out;
1690
1691         pos = iocb->ki_pos;
1692         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1693                         PAGE_SIZE / (sizeof(struct page *)));
1694         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1695         nrptrs = max(nrptrs, 8);
1696         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1697         if (!pages) {
1698                 ret = -ENOMEM;
1699                 goto out;
1700         }
1701
1702         while (iov_iter_count(i) > 0) {
1703                 struct extent_state *cached_state = NULL;
1704                 size_t offset = offset_in_page(pos);
1705                 size_t sector_offset;
1706                 size_t write_bytes = min(iov_iter_count(i),
1707                                          nrptrs * (size_t)PAGE_SIZE -
1708                                          offset);
1709                 size_t num_pages;
1710                 size_t reserve_bytes;
1711                 size_t dirty_pages;
1712                 size_t copied;
1713                 size_t dirty_sectors;
1714                 size_t num_sectors;
1715                 int extents_locked;
1716
1717                 /*
1718                  * Fault pages before locking them in prepare_pages
1719                  * to avoid recursive lock
1720                  */
1721                 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1722                         ret = -EFAULT;
1723                         break;
1724                 }
1725
1726                 only_release_metadata = false;
1727                 sector_offset = pos & (fs_info->sectorsize - 1);
1728
1729                 extent_changeset_release(data_reserved);
1730                 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1731                                                   &data_reserved, pos,
1732                                                   write_bytes);
1733                 if (ret < 0) {
1734                         /*
1735                          * If we don't have to COW at the offset, reserve
1736                          * metadata only. write_bytes may get smaller than
1737                          * requested here.
1738                          */
1739                         if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1740                                                    &write_bytes) > 0)
1741                                 only_release_metadata = true;
1742                         else
1743                                 break;
1744                 }
1745
1746                 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1747                 WARN_ON(num_pages > nrptrs);
1748                 reserve_bytes = round_up(write_bytes + sector_offset,
1749                                          fs_info->sectorsize);
1750                 WARN_ON(reserve_bytes == 0);
1751                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1752                                 reserve_bytes);
1753                 if (ret) {
1754                         if (!only_release_metadata)
1755                                 btrfs_free_reserved_data_space(BTRFS_I(inode),
1756                                                 data_reserved, pos,
1757                                                 write_bytes);
1758                         else
1759                                 btrfs_check_nocow_unlock(BTRFS_I(inode));
1760                         break;
1761                 }
1762
1763                 release_bytes = reserve_bytes;
1764 again:
1765                 /*
1766                  * This is going to setup the pages array with the number of
1767                  * pages we want, so we don't really need to worry about the
1768                  * contents of pages from loop to loop
1769                  */
1770                 ret = prepare_pages(inode, pages, num_pages,
1771                                     pos, write_bytes,
1772                                     force_page_uptodate);
1773                 if (ret) {
1774                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1775                                                        reserve_bytes);
1776                         break;
1777                 }
1778
1779                 extents_locked = lock_and_cleanup_extent_if_need(
1780                                 BTRFS_I(inode), pages,
1781                                 num_pages, pos, write_bytes, &lockstart,
1782                                 &lockend, &cached_state);
1783                 if (extents_locked < 0) {
1784                         if (extents_locked == -EAGAIN)
1785                                 goto again;
1786                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1787                                                        reserve_bytes);
1788                         ret = extents_locked;
1789                         break;
1790                 }
1791
1792                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1793
1794                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1795                 dirty_sectors = round_up(copied + sector_offset,
1796                                         fs_info->sectorsize);
1797                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1798
1799                 /*
1800                  * if we have trouble faulting in the pages, fall
1801                  * back to one page at a time
1802                  */
1803                 if (copied < write_bytes)
1804                         nrptrs = 1;
1805
1806                 if (copied == 0) {
1807                         force_page_uptodate = true;
1808                         dirty_sectors = 0;
1809                         dirty_pages = 0;
1810                 } else {
1811                         force_page_uptodate = false;
1812                         dirty_pages = DIV_ROUND_UP(copied + offset,
1813                                                    PAGE_SIZE);
1814                 }
1815
1816                 if (num_sectors > dirty_sectors) {
1817                         /* release everything except the sectors we dirtied */
1818                         release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1819                         if (only_release_metadata) {
1820                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1821                                                         release_bytes, true);
1822                         } else {
1823                                 u64 __pos;
1824
1825                                 __pos = round_down(pos,
1826                                                    fs_info->sectorsize) +
1827                                         (dirty_pages << PAGE_SHIFT);
1828                                 btrfs_delalloc_release_space(BTRFS_I(inode),
1829                                                 data_reserved, __pos,
1830                                                 release_bytes, true);
1831                         }
1832                 }
1833
1834                 release_bytes = round_up(copied + sector_offset,
1835                                         fs_info->sectorsize);
1836
1837                 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1838                                         dirty_pages, pos, copied,
1839                                         &cached_state, only_release_metadata);
1840
1841                 /*
1842                  * If we have not locked the extent range, because the range's
1843                  * start offset is >= i_size, we might still have a non-NULL
1844                  * cached extent state, acquired while marking the extent range
1845                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1846                  * possible cached extent state to avoid a memory leak.
1847                  */
1848                 if (extents_locked)
1849                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1850                                              lockstart, lockend, &cached_state);
1851                 else
1852                         free_extent_state(cached_state);
1853
1854                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1855                 if (ret) {
1856                         btrfs_drop_pages(pages, num_pages);
1857                         break;
1858                 }
1859
1860                 release_bytes = 0;
1861                 if (only_release_metadata)
1862                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1863
1864                 btrfs_drop_pages(pages, num_pages);
1865
1866                 cond_resched();
1867
1868                 balance_dirty_pages_ratelimited(inode->i_mapping);
1869
1870                 pos += copied;
1871                 num_written += copied;
1872         }
1873
1874         kfree(pages);
1875
1876         if (release_bytes) {
1877                 if (only_release_metadata) {
1878                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1879                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1880                                         release_bytes, true);
1881                 } else {
1882                         btrfs_delalloc_release_space(BTRFS_I(inode),
1883                                         data_reserved,
1884                                         round_down(pos, fs_info->sectorsize),
1885                                         release_bytes, true);
1886                 }
1887         }
1888
1889         extent_changeset_free(data_reserved);
1890         if (num_written > 0) {
1891                 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1892                 iocb->ki_pos += num_written;
1893         }
1894 out:
1895         btrfs_inode_unlock(inode, ilock_flags);
1896         return num_written ? num_written : ret;
1897 }
1898
1899 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1900                                const struct iov_iter *iter, loff_t offset)
1901 {
1902         const u32 blocksize_mask = fs_info->sectorsize - 1;
1903
1904         if (offset & blocksize_mask)
1905                 return -EINVAL;
1906
1907         if (iov_iter_alignment(iter) & blocksize_mask)
1908                 return -EINVAL;
1909
1910         return 0;
1911 }
1912
1913 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1914 {
1915         struct file *file = iocb->ki_filp;
1916         struct inode *inode = file_inode(file);
1917         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1918         loff_t pos;
1919         ssize_t written = 0;
1920         ssize_t written_buffered;
1921         size_t prev_left = 0;
1922         loff_t endbyte;
1923         ssize_t err;
1924         unsigned int ilock_flags = 0;
1925         struct iomap_dio *dio;
1926
1927         if (iocb->ki_flags & IOCB_NOWAIT)
1928                 ilock_flags |= BTRFS_ILOCK_TRY;
1929
1930         /* If the write DIO is within EOF, use a shared lock */
1931         if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1932                 ilock_flags |= BTRFS_ILOCK_SHARED;
1933
1934 relock:
1935         err = btrfs_inode_lock(inode, ilock_flags);
1936         if (err < 0)
1937                 return err;
1938
1939         err = generic_write_checks(iocb, from);
1940         if (err <= 0) {
1941                 btrfs_inode_unlock(inode, ilock_flags);
1942                 return err;
1943         }
1944
1945         err = btrfs_write_check(iocb, from, err);
1946         if (err < 0) {
1947                 btrfs_inode_unlock(inode, ilock_flags);
1948                 goto out;
1949         }
1950
1951         pos = iocb->ki_pos;
1952         /*
1953          * Re-check since file size may have changed just before taking the
1954          * lock or pos may have changed because of O_APPEND in generic_write_check()
1955          */
1956         if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1957             pos + iov_iter_count(from) > i_size_read(inode)) {
1958                 btrfs_inode_unlock(inode, ilock_flags);
1959                 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1960                 goto relock;
1961         }
1962
1963         if (check_direct_IO(fs_info, from, pos)) {
1964                 btrfs_inode_unlock(inode, ilock_flags);
1965                 goto buffered;
1966         }
1967
1968         /*
1969          * The iov_iter can be mapped to the same file range we are writing to.
1970          * If that's the case, then we will deadlock in the iomap code, because
1971          * it first calls our callback btrfs_dio_iomap_begin(), which will create
1972          * an ordered extent, and after that it will fault in the pages that the
1973          * iov_iter refers to. During the fault in we end up in the readahead
1974          * pages code (starting at btrfs_readahead()), which will lock the range,
1975          * find that ordered extent and then wait for it to complete (at
1976          * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1977          * obviously the ordered extent can never complete as we didn't submit
1978          * yet the respective bio(s). This always happens when the buffer is
1979          * memory mapped to the same file range, since the iomap DIO code always
1980          * invalidates pages in the target file range (after starting and waiting
1981          * for any writeback).
1982          *
1983          * So here we disable page faults in the iov_iter and then retry if we
1984          * got -EFAULT, faulting in the pages before the retry.
1985          */
1986         from->nofault = true;
1987         dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1988                              IOMAP_DIO_PARTIAL, written);
1989         from->nofault = false;
1990
1991         /*
1992          * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1993          * iocb, and that needs to lock the inode. So unlock it before calling
1994          * iomap_dio_complete() to avoid a deadlock.
1995          */
1996         btrfs_inode_unlock(inode, ilock_flags);
1997
1998         if (IS_ERR_OR_NULL(dio))
1999                 err = PTR_ERR_OR_ZERO(dio);
2000         else
2001                 err = iomap_dio_complete(dio);
2002
2003         /* No increment (+=) because iomap returns a cumulative value. */
2004         if (err > 0)
2005                 written = err;
2006
2007         if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
2008                 const size_t left = iov_iter_count(from);
2009                 /*
2010                  * We have more data left to write. Try to fault in as many as
2011                  * possible of the remainder pages and retry. We do this without
2012                  * releasing and locking again the inode, to prevent races with
2013                  * truncate.
2014                  *
2015                  * Also, in case the iov refers to pages in the file range of the
2016                  * file we want to write to (due to a mmap), we could enter an
2017                  * infinite loop if we retry after faulting the pages in, since
2018                  * iomap will invalidate any pages in the range early on, before
2019                  * it tries to fault in the pages of the iov. So we keep track of
2020                  * how much was left of iov in the previous EFAULT and fallback
2021                  * to buffered IO in case we haven't made any progress.
2022                  */
2023                 if (left == prev_left) {
2024                         err = -ENOTBLK;
2025                 } else {
2026                         fault_in_iov_iter_readable(from, left);
2027                         prev_left = left;
2028                         goto relock;
2029                 }
2030         }
2031
2032         /* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */
2033         if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
2034                 goto out;
2035
2036 buffered:
2037         pos = iocb->ki_pos;
2038         written_buffered = btrfs_buffered_write(iocb, from);
2039         if (written_buffered < 0) {
2040                 err = written_buffered;
2041                 goto out;
2042         }
2043         /*
2044          * Ensure all data is persisted. We want the next direct IO read to be
2045          * able to read what was just written.
2046          */
2047         endbyte = pos + written_buffered - 1;
2048         err = btrfs_fdatawrite_range(inode, pos, endbyte);
2049         if (err)
2050                 goto out;
2051         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
2052         if (err)
2053                 goto out;
2054         written += written_buffered;
2055         iocb->ki_pos = pos + written_buffered;
2056         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
2057                                  endbyte >> PAGE_SHIFT);
2058 out:
2059         return err < 0 ? err : written;
2060 }
2061
2062 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2063                                     struct iov_iter *from)
2064 {
2065         struct file *file = iocb->ki_filp;
2066         struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2067         ssize_t num_written = 0;
2068         const bool sync = iocb->ki_flags & IOCB_DSYNC;
2069
2070         /*
2071          * If the fs flips readonly due to some impossible error, although we
2072          * have opened a file as writable, we have to stop this write operation
2073          * to ensure consistency.
2074          */
2075         if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2076                 return -EROFS;
2077
2078         if (!(iocb->ki_flags & IOCB_DIRECT) &&
2079             (iocb->ki_flags & IOCB_NOWAIT))
2080                 return -EOPNOTSUPP;
2081
2082         if (sync)
2083                 atomic_inc(&inode->sync_writers);
2084
2085         if (iocb->ki_flags & IOCB_DIRECT)
2086                 num_written = btrfs_direct_write(iocb, from);
2087         else
2088                 num_written = btrfs_buffered_write(iocb, from);
2089
2090         btrfs_set_inode_last_sub_trans(inode);
2091
2092         if (num_written > 0)
2093                 num_written = generic_write_sync(iocb, num_written);
2094
2095         if (sync)
2096                 atomic_dec(&inode->sync_writers);
2097
2098         current->backing_dev_info = NULL;
2099         return num_written;
2100 }
2101
2102 int btrfs_release_file(struct inode *inode, struct file *filp)
2103 {
2104         struct btrfs_file_private *private = filp->private_data;
2105
2106         if (private && private->filldir_buf)
2107                 kfree(private->filldir_buf);
2108         kfree(private);
2109         filp->private_data = NULL;
2110
2111         /*
2112          * Set by setattr when we are about to truncate a file from a non-zero
2113          * size to a zero size.  This tries to flush down new bytes that may
2114          * have been written if the application were using truncate to replace
2115          * a file in place.
2116          */
2117         if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2118                                &BTRFS_I(inode)->runtime_flags))
2119                         filemap_flush(inode->i_mapping);
2120         return 0;
2121 }
2122
2123 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2124 {
2125         int ret;
2126         struct blk_plug plug;
2127
2128         /*
2129          * This is only called in fsync, which would do synchronous writes, so
2130          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2131          * multiple disks using raid profile, a large IO can be split to
2132          * several segments of stripe length (currently 64K).
2133          */
2134         blk_start_plug(&plug);
2135         atomic_inc(&BTRFS_I(inode)->sync_writers);
2136         ret = btrfs_fdatawrite_range(inode, start, end);
2137         atomic_dec(&BTRFS_I(inode)->sync_writers);
2138         blk_finish_plug(&plug);
2139
2140         return ret;
2141 }
2142
2143 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2144 {
2145         struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2146         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2147
2148         if (btrfs_inode_in_log(inode, fs_info->generation) &&
2149             list_empty(&ctx->ordered_extents))
2150                 return true;
2151
2152         /*
2153          * If we are doing a fast fsync we can not bail out if the inode's
2154          * last_trans is <= then the last committed transaction, because we only
2155          * update the last_trans of the inode during ordered extent completion,
2156          * and for a fast fsync we don't wait for that, we only wait for the
2157          * writeback to complete.
2158          */
2159         if (inode->last_trans <= fs_info->last_trans_committed &&
2160             (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2161              list_empty(&ctx->ordered_extents)))
2162                 return true;
2163
2164         return false;
2165 }
2166
2167 /*
2168  * fsync call for both files and directories.  This logs the inode into
2169  * the tree log instead of forcing full commits whenever possible.
2170  *
2171  * It needs to call filemap_fdatawait so that all ordered extent updates are
2172  * in the metadata btree are up to date for copying to the log.
2173  *
2174  * It drops the inode mutex before doing the tree log commit.  This is an
2175  * important optimization for directories because holding the mutex prevents
2176  * new operations on the dir while we write to disk.
2177  */
2178 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2179 {
2180         struct dentry *dentry = file_dentry(file);
2181         struct inode *inode = d_inode(dentry);
2182         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2183         struct btrfs_root *root = BTRFS_I(inode)->root;
2184         struct btrfs_trans_handle *trans;
2185         struct btrfs_log_ctx ctx;
2186         int ret = 0, err;
2187         u64 len;
2188         bool full_sync;
2189
2190         trace_btrfs_sync_file(file, datasync);
2191
2192         btrfs_init_log_ctx(&ctx, inode);
2193
2194         /*
2195          * Always set the range to a full range, otherwise we can get into
2196          * several problems, from missing file extent items to represent holes
2197          * when not using the NO_HOLES feature, to log tree corruption due to
2198          * races between hole detection during logging and completion of ordered
2199          * extents outside the range, to missing checksums due to ordered extents
2200          * for which we flushed only a subset of their pages.
2201          */
2202         start = 0;
2203         end = LLONG_MAX;
2204         len = (u64)LLONG_MAX + 1;
2205
2206         /*
2207          * We write the dirty pages in the range and wait until they complete
2208          * out of the ->i_mutex. If so, we can flush the dirty pages by
2209          * multi-task, and make the performance up.  See
2210          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2211          */
2212         ret = start_ordered_ops(inode, start, end);
2213         if (ret)
2214                 goto out;
2215
2216         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2217
2218         atomic_inc(&root->log_batch);
2219
2220         /*
2221          * Always check for the full sync flag while holding the inode's lock,
2222          * to avoid races with other tasks. The flag must be either set all the
2223          * time during logging or always off all the time while logging.
2224          */
2225         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2226                              &BTRFS_I(inode)->runtime_flags);
2227
2228         /*
2229          * Before we acquired the inode's lock and the mmap lock, someone may
2230          * have dirtied more pages in the target range. We need to make sure
2231          * that writeback for any such pages does not start while we are logging
2232          * the inode, because if it does, any of the following might happen when
2233          * we are not doing a full inode sync:
2234          *
2235          * 1) We log an extent after its writeback finishes but before its
2236          *    checksums are added to the csum tree, leading to -EIO errors
2237          *    when attempting to read the extent after a log replay.
2238          *
2239          * 2) We can end up logging an extent before its writeback finishes.
2240          *    Therefore after the log replay we will have a file extent item
2241          *    pointing to an unwritten extent (and no data checksums as well).
2242          *
2243          * So trigger writeback for any eventual new dirty pages and then we
2244          * wait for all ordered extents to complete below.
2245          */
2246         ret = start_ordered_ops(inode, start, end);
2247         if (ret) {
2248                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2249                 goto out;
2250         }
2251
2252         /*
2253          * We have to do this here to avoid the priority inversion of waiting on
2254          * IO of a lower priority task while holding a transaction open.
2255          *
2256          * For a full fsync we wait for the ordered extents to complete while
2257          * for a fast fsync we wait just for writeback to complete, and then
2258          * attach the ordered extents to the transaction so that a transaction
2259          * commit waits for their completion, to avoid data loss if we fsync,
2260          * the current transaction commits before the ordered extents complete
2261          * and a power failure happens right after that.
2262          *
2263          * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2264          * logical address recorded in the ordered extent may change. We need
2265          * to wait for the IO to stabilize the logical address.
2266          */
2267         if (full_sync || btrfs_is_zoned(fs_info)) {
2268                 ret = btrfs_wait_ordered_range(inode, start, len);
2269         } else {
2270                 /*
2271                  * Get our ordered extents as soon as possible to avoid doing
2272                  * checksum lookups in the csum tree, and use instead the
2273                  * checksums attached to the ordered extents.
2274                  */
2275                 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2276                                                       &ctx.ordered_extents);
2277                 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2278         }
2279
2280         if (ret)
2281                 goto out_release_extents;
2282
2283         atomic_inc(&root->log_batch);
2284
2285         smp_mb();
2286         if (skip_inode_logging(&ctx)) {
2287                 /*
2288                  * We've had everything committed since the last time we were
2289                  * modified so clear this flag in case it was set for whatever
2290                  * reason, it's no longer relevant.
2291                  */
2292                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2293                           &BTRFS_I(inode)->runtime_flags);
2294                 /*
2295                  * An ordered extent might have started before and completed
2296                  * already with io errors, in which case the inode was not
2297                  * updated and we end up here. So check the inode's mapping
2298                  * for any errors that might have happened since we last
2299                  * checked called fsync.
2300                  */
2301                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2302                 goto out_release_extents;
2303         }
2304
2305         /*
2306          * We use start here because we will need to wait on the IO to complete
2307          * in btrfs_sync_log, which could require joining a transaction (for
2308          * example checking cross references in the nocow path).  If we use join
2309          * here we could get into a situation where we're waiting on IO to
2310          * happen that is blocked on a transaction trying to commit.  With start
2311          * we inc the extwriter counter, so we wait for all extwriters to exit
2312          * before we start blocking joiners.  This comment is to keep somebody
2313          * from thinking they are super smart and changing this to
2314          * btrfs_join_transaction *cough*Josef*cough*.
2315          */
2316         trans = btrfs_start_transaction(root, 0);
2317         if (IS_ERR(trans)) {
2318                 ret = PTR_ERR(trans);
2319                 goto out_release_extents;
2320         }
2321         trans->in_fsync = true;
2322
2323         ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2324         btrfs_release_log_ctx_extents(&ctx);
2325         if (ret < 0) {
2326                 /* Fallthrough and commit/free transaction. */
2327                 ret = 1;
2328         }
2329
2330         /* we've logged all the items and now have a consistent
2331          * version of the file in the log.  It is possible that
2332          * someone will come in and modify the file, but that's
2333          * fine because the log is consistent on disk, and we
2334          * have references to all of the file's extents
2335          *
2336          * It is possible that someone will come in and log the
2337          * file again, but that will end up using the synchronization
2338          * inside btrfs_sync_log to keep things safe.
2339          */
2340         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2341
2342         if (ret == BTRFS_NO_LOG_SYNC) {
2343                 ret = btrfs_end_transaction(trans);
2344                 goto out;
2345         }
2346
2347         /* We successfully logged the inode, attempt to sync the log. */
2348         if (!ret) {
2349                 ret = btrfs_sync_log(trans, root, &ctx);
2350                 if (!ret) {
2351                         ret = btrfs_end_transaction(trans);
2352                         goto out;
2353                 }
2354         }
2355
2356         /*
2357          * At this point we need to commit the transaction because we had
2358          * btrfs_need_log_full_commit() or some other error.
2359          *
2360          * If we didn't do a full sync we have to stop the trans handle, wait on
2361          * the ordered extents, start it again and commit the transaction.  If
2362          * we attempt to wait on the ordered extents here we could deadlock with
2363          * something like fallocate() that is holding the extent lock trying to
2364          * start a transaction while some other thread is trying to commit the
2365          * transaction while we (fsync) are currently holding the transaction
2366          * open.
2367          */
2368         if (!full_sync) {
2369                 ret = btrfs_end_transaction(trans);
2370                 if (ret)
2371                         goto out;
2372                 ret = btrfs_wait_ordered_range(inode, start, len);
2373                 if (ret)
2374                         goto out;
2375
2376                 /*
2377                  * This is safe to use here because we're only interested in
2378                  * making sure the transaction that had the ordered extents is
2379                  * committed.  We aren't waiting on anything past this point,
2380                  * we're purely getting the transaction and committing it.
2381                  */
2382                 trans = btrfs_attach_transaction_barrier(root);
2383                 if (IS_ERR(trans)) {
2384                         ret = PTR_ERR(trans);
2385
2386                         /*
2387                          * We committed the transaction and there's no currently
2388                          * running transaction, this means everything we care
2389                          * about made it to disk and we are done.
2390                          */
2391                         if (ret == -ENOENT)
2392                                 ret = 0;
2393                         goto out;
2394                 }
2395         }
2396
2397         ret = btrfs_commit_transaction(trans);
2398 out:
2399         ASSERT(list_empty(&ctx.list));
2400         err = file_check_and_advance_wb_err(file);
2401         if (!ret)
2402                 ret = err;
2403         return ret > 0 ? -EIO : ret;
2404
2405 out_release_extents:
2406         btrfs_release_log_ctx_extents(&ctx);
2407         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2408         goto out;
2409 }
2410
2411 static const struct vm_operations_struct btrfs_file_vm_ops = {
2412         .fault          = filemap_fault,
2413         .map_pages      = filemap_map_pages,
2414         .page_mkwrite   = btrfs_page_mkwrite,
2415 };
2416
2417 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2418 {
2419         struct address_space *mapping = filp->f_mapping;
2420
2421         if (!mapping->a_ops->readpage)
2422                 return -ENOEXEC;
2423
2424         file_accessed(filp);
2425         vma->vm_ops = &btrfs_file_vm_ops;
2426
2427         return 0;
2428 }
2429
2430 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2431                           int slot, u64 start, u64 end)
2432 {
2433         struct btrfs_file_extent_item *fi;
2434         struct btrfs_key key;
2435
2436         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2437                 return 0;
2438
2439         btrfs_item_key_to_cpu(leaf, &key, slot);
2440         if (key.objectid != btrfs_ino(inode) ||
2441             key.type != BTRFS_EXTENT_DATA_KEY)
2442                 return 0;
2443
2444         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2445
2446         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2447                 return 0;
2448
2449         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2450                 return 0;
2451
2452         if (key.offset == end)
2453                 return 1;
2454         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2455                 return 1;
2456         return 0;
2457 }
2458
2459 static int fill_holes(struct btrfs_trans_handle *trans,
2460                 struct btrfs_inode *inode,
2461                 struct btrfs_path *path, u64 offset, u64 end)
2462 {
2463         struct btrfs_fs_info *fs_info = trans->fs_info;
2464         struct btrfs_root *root = inode->root;
2465         struct extent_buffer *leaf;
2466         struct btrfs_file_extent_item *fi;
2467         struct extent_map *hole_em;
2468         struct extent_map_tree *em_tree = &inode->extent_tree;
2469         struct btrfs_key key;
2470         int ret;
2471
2472         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2473                 goto out;
2474
2475         key.objectid = btrfs_ino(inode);
2476         key.type = BTRFS_EXTENT_DATA_KEY;
2477         key.offset = offset;
2478
2479         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2480         if (ret <= 0) {
2481                 /*
2482                  * We should have dropped this offset, so if we find it then
2483                  * something has gone horribly wrong.
2484                  */
2485                 if (ret == 0)
2486                         ret = -EINVAL;
2487                 return ret;
2488         }
2489
2490         leaf = path->nodes[0];
2491         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2492                 u64 num_bytes;
2493
2494                 path->slots[0]--;
2495                 fi = btrfs_item_ptr(leaf, path->slots[0],
2496                                     struct btrfs_file_extent_item);
2497                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2498                         end - offset;
2499                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2500                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2501                 btrfs_set_file_extent_offset(leaf, fi, 0);
2502                 btrfs_mark_buffer_dirty(leaf);
2503                 goto out;
2504         }
2505
2506         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2507                 u64 num_bytes;
2508
2509                 key.offset = offset;
2510                 btrfs_set_item_key_safe(fs_info, path, &key);
2511                 fi = btrfs_item_ptr(leaf, path->slots[0],
2512                                     struct btrfs_file_extent_item);
2513                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2514                         offset;
2515                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2516                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2517                 btrfs_set_file_extent_offset(leaf, fi, 0);
2518                 btrfs_mark_buffer_dirty(leaf);
2519                 goto out;
2520         }
2521         btrfs_release_path(path);
2522
2523         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2524                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2525         if (ret)
2526                 return ret;
2527
2528 out:
2529         btrfs_release_path(path);
2530
2531         hole_em = alloc_extent_map();
2532         if (!hole_em) {
2533                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2534                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2535         } else {
2536                 hole_em->start = offset;
2537                 hole_em->len = end - offset;
2538                 hole_em->ram_bytes = hole_em->len;
2539                 hole_em->orig_start = offset;
2540
2541                 hole_em->block_start = EXTENT_MAP_HOLE;
2542                 hole_em->block_len = 0;
2543                 hole_em->orig_block_len = 0;
2544                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2545                 hole_em->generation = trans->transid;
2546
2547                 do {
2548                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2549                         write_lock(&em_tree->lock);
2550                         ret = add_extent_mapping(em_tree, hole_em, 1);
2551                         write_unlock(&em_tree->lock);
2552                 } while (ret == -EEXIST);
2553                 free_extent_map(hole_em);
2554                 if (ret)
2555                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2556                                         &inode->runtime_flags);
2557         }
2558
2559         return 0;
2560 }
2561
2562 /*
2563  * Find a hole extent on given inode and change start/len to the end of hole
2564  * extent.(hole/vacuum extent whose em->start <= start &&
2565  *         em->start + em->len > start)
2566  * When a hole extent is found, return 1 and modify start/len.
2567  */
2568 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2569 {
2570         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2571         struct extent_map *em;
2572         int ret = 0;
2573
2574         em = btrfs_get_extent(inode, NULL, 0,
2575                               round_down(*start, fs_info->sectorsize),
2576                               round_up(*len, fs_info->sectorsize));
2577         if (IS_ERR(em))
2578                 return PTR_ERR(em);
2579
2580         /* Hole or vacuum extent(only exists in no-hole mode) */
2581         if (em->block_start == EXTENT_MAP_HOLE) {
2582                 ret = 1;
2583                 *len = em->start + em->len > *start + *len ?
2584                        0 : *start + *len - em->start - em->len;
2585                 *start = em->start + em->len;
2586         }
2587         free_extent_map(em);
2588         return ret;
2589 }
2590
2591 static int btrfs_punch_hole_lock_range(struct inode *inode,
2592                                        const u64 lockstart,
2593                                        const u64 lockend,
2594                                        struct extent_state **cached_state)
2595 {
2596         /*
2597          * For subpage case, if the range is not at page boundary, we could
2598          * have pages at the leading/tailing part of the range.
2599          * This could lead to dead loop since filemap_range_has_page()
2600          * will always return true.
2601          * So here we need to do extra page alignment for
2602          * filemap_range_has_page().
2603          */
2604         const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2605         const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2606
2607         while (1) {
2608                 struct btrfs_ordered_extent *ordered;
2609                 int ret;
2610
2611                 truncate_pagecache_range(inode, lockstart, lockend);
2612
2613                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2614                                  cached_state);
2615                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2616                                                             lockend);
2617
2618                 /*
2619                  * We need to make sure we have no ordered extents in this range
2620                  * and nobody raced in and read a page in this range, if we did
2621                  * we need to try again.
2622                  */
2623                 if ((!ordered ||
2624                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2625                      ordered->file_offset > lockend)) &&
2626                      !filemap_range_has_page(inode->i_mapping,
2627                                              page_lockstart, page_lockend)) {
2628                         if (ordered)
2629                                 btrfs_put_ordered_extent(ordered);
2630                         break;
2631                 }
2632                 if (ordered)
2633                         btrfs_put_ordered_extent(ordered);
2634                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2635                                      lockend, cached_state);
2636                 ret = btrfs_wait_ordered_range(inode, lockstart,
2637                                                lockend - lockstart + 1);
2638                 if (ret)
2639                         return ret;
2640         }
2641         return 0;
2642 }
2643
2644 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2645                                      struct btrfs_inode *inode,
2646                                      struct btrfs_path *path,
2647                                      struct btrfs_replace_extent_info *extent_info,
2648                                      const u64 replace_len,
2649                                      const u64 bytes_to_drop)
2650 {
2651         struct btrfs_fs_info *fs_info = trans->fs_info;
2652         struct btrfs_root *root = inode->root;
2653         struct btrfs_file_extent_item *extent;
2654         struct extent_buffer *leaf;
2655         struct btrfs_key key;
2656         int slot;
2657         struct btrfs_ref ref = { 0 };
2658         int ret;
2659
2660         if (replace_len == 0)
2661                 return 0;
2662
2663         if (extent_info->disk_offset == 0 &&
2664             btrfs_fs_incompat(fs_info, NO_HOLES)) {
2665                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2666                 return 0;
2667         }
2668
2669         key.objectid = btrfs_ino(inode);
2670         key.type = BTRFS_EXTENT_DATA_KEY;
2671         key.offset = extent_info->file_offset;
2672         ret = btrfs_insert_empty_item(trans, root, path, &key,
2673                                       sizeof(struct btrfs_file_extent_item));
2674         if (ret)
2675                 return ret;
2676         leaf = path->nodes[0];
2677         slot = path->slots[0];
2678         write_extent_buffer(leaf, extent_info->extent_buf,
2679                             btrfs_item_ptr_offset(leaf, slot),
2680                             sizeof(struct btrfs_file_extent_item));
2681         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2682         ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2683         btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2684         btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2685         if (extent_info->is_new_extent)
2686                 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2687         btrfs_mark_buffer_dirty(leaf);
2688         btrfs_release_path(path);
2689
2690         ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2691                                                 replace_len);
2692         if (ret)
2693                 return ret;
2694
2695         /* If it's a hole, nothing more needs to be done. */
2696         if (extent_info->disk_offset == 0) {
2697                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2698                 return 0;
2699         }
2700
2701         btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2702
2703         if (extent_info->is_new_extent && extent_info->insertions == 0) {
2704                 key.objectid = extent_info->disk_offset;
2705                 key.type = BTRFS_EXTENT_ITEM_KEY;
2706                 key.offset = extent_info->disk_len;
2707                 ret = btrfs_alloc_reserved_file_extent(trans, root,
2708                                                        btrfs_ino(inode),
2709                                                        extent_info->file_offset,
2710                                                        extent_info->qgroup_reserved,
2711                                                        &key);
2712         } else {
2713                 u64 ref_offset;
2714
2715                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2716                                        extent_info->disk_offset,
2717                                        extent_info->disk_len, 0);
2718                 ref_offset = extent_info->file_offset - extent_info->data_offset;
2719                 btrfs_init_data_ref(&ref, root->root_key.objectid,
2720                                     btrfs_ino(inode), ref_offset, 0, false);
2721                 ret = btrfs_inc_extent_ref(trans, &ref);
2722         }
2723
2724         extent_info->insertions++;
2725
2726         return ret;
2727 }
2728
2729 /*
2730  * The respective range must have been previously locked, as well as the inode.
2731  * The end offset is inclusive (last byte of the range).
2732  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2733  * the file range with an extent.
2734  * When not punching a hole, we don't want to end up in a state where we dropped
2735  * extents without inserting a new one, so we must abort the transaction to avoid
2736  * a corruption.
2737  */
2738 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2739                                struct btrfs_path *path, const u64 start,
2740                                const u64 end,
2741                                struct btrfs_replace_extent_info *extent_info,
2742                                struct btrfs_trans_handle **trans_out)
2743 {
2744         struct btrfs_drop_extents_args drop_args = { 0 };
2745         struct btrfs_root *root = inode->root;
2746         struct btrfs_fs_info *fs_info = root->fs_info;
2747         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2748         u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2749         struct btrfs_trans_handle *trans = NULL;
2750         struct btrfs_block_rsv *rsv;
2751         unsigned int rsv_count;
2752         u64 cur_offset;
2753         u64 len = end - start;
2754         int ret = 0;
2755
2756         if (end <= start)
2757                 return -EINVAL;
2758
2759         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2760         if (!rsv) {
2761                 ret = -ENOMEM;
2762                 goto out;
2763         }
2764         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2765         rsv->failfast = 1;
2766
2767         /*
2768          * 1 - update the inode
2769          * 1 - removing the extents in the range
2770          * 1 - adding the hole extent if no_holes isn't set or if we are
2771          *     replacing the range with a new extent
2772          */
2773         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2774                 rsv_count = 3;
2775         else
2776                 rsv_count = 2;
2777
2778         trans = btrfs_start_transaction(root, rsv_count);
2779         if (IS_ERR(trans)) {
2780                 ret = PTR_ERR(trans);
2781                 trans = NULL;
2782                 goto out_free;
2783         }
2784
2785         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2786                                       min_size, false);
2787         BUG_ON(ret);
2788         trans->block_rsv = rsv;
2789
2790         cur_offset = start;
2791         drop_args.path = path;
2792         drop_args.end = end + 1;
2793         drop_args.drop_cache = true;
2794         while (cur_offset < end) {
2795                 drop_args.start = cur_offset;
2796                 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2797                 /* If we are punching a hole decrement the inode's byte count */
2798                 if (!extent_info)
2799                         btrfs_update_inode_bytes(inode, 0,
2800                                                  drop_args.bytes_found);
2801                 if (ret != -ENOSPC) {
2802                         /*
2803                          * The only time we don't want to abort is if we are
2804                          * attempting to clone a partial inline extent, in which
2805                          * case we'll get EOPNOTSUPP.  However if we aren't
2806                          * clone we need to abort no matter what, because if we
2807                          * got EOPNOTSUPP via prealloc then we messed up and
2808                          * need to abort.
2809                          */
2810                         if (ret &&
2811                             (ret != -EOPNOTSUPP ||
2812                              (extent_info && extent_info->is_new_extent)))
2813                                 btrfs_abort_transaction(trans, ret);
2814                         break;
2815                 }
2816
2817                 trans->block_rsv = &fs_info->trans_block_rsv;
2818
2819                 if (!extent_info && cur_offset < drop_args.drop_end &&
2820                     cur_offset < ino_size) {
2821                         ret = fill_holes(trans, inode, path, cur_offset,
2822                                          drop_args.drop_end);
2823                         if (ret) {
2824                                 /*
2825                                  * If we failed then we didn't insert our hole
2826                                  * entries for the area we dropped, so now the
2827                                  * fs is corrupted, so we must abort the
2828                                  * transaction.
2829                                  */
2830                                 btrfs_abort_transaction(trans, ret);
2831                                 break;
2832                         }
2833                 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2834                         /*
2835                          * We are past the i_size here, but since we didn't
2836                          * insert holes we need to clear the mapped area so we
2837                          * know to not set disk_i_size in this area until a new
2838                          * file extent is inserted here.
2839                          */
2840                         ret = btrfs_inode_clear_file_extent_range(inode,
2841                                         cur_offset,
2842                                         drop_args.drop_end - cur_offset);
2843                         if (ret) {
2844                                 /*
2845                                  * We couldn't clear our area, so we could
2846                                  * presumably adjust up and corrupt the fs, so
2847                                  * we need to abort.
2848                                  */
2849                                 btrfs_abort_transaction(trans, ret);
2850                                 break;
2851                         }
2852                 }
2853
2854                 if (extent_info &&
2855                     drop_args.drop_end > extent_info->file_offset) {
2856                         u64 replace_len = drop_args.drop_end -
2857                                           extent_info->file_offset;
2858
2859                         ret = btrfs_insert_replace_extent(trans, inode, path,
2860                                         extent_info, replace_len,
2861                                         drop_args.bytes_found);
2862                         if (ret) {
2863                                 btrfs_abort_transaction(trans, ret);
2864                                 break;
2865                         }
2866                         extent_info->data_len -= replace_len;
2867                         extent_info->data_offset += replace_len;
2868                         extent_info->file_offset += replace_len;
2869                 }
2870
2871                 ret = btrfs_update_inode(trans, root, inode);
2872                 if (ret)
2873                         break;
2874
2875                 btrfs_end_transaction(trans);
2876                 btrfs_btree_balance_dirty(fs_info);
2877
2878                 trans = btrfs_start_transaction(root, rsv_count);
2879                 if (IS_ERR(trans)) {
2880                         ret = PTR_ERR(trans);
2881                         trans = NULL;
2882                         break;
2883                 }
2884
2885                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2886                                               rsv, min_size, false);
2887                 BUG_ON(ret);    /* shouldn't happen */
2888                 trans->block_rsv = rsv;
2889
2890                 cur_offset = drop_args.drop_end;
2891                 len = end - cur_offset;
2892                 if (!extent_info && len) {
2893                         ret = find_first_non_hole(inode, &cur_offset, &len);
2894                         if (unlikely(ret < 0))
2895                                 break;
2896                         if (ret && !len) {
2897                                 ret = 0;
2898                                 break;
2899                         }
2900                 }
2901         }
2902
2903         /*
2904          * If we were cloning, force the next fsync to be a full one since we
2905          * we replaced (or just dropped in the case of cloning holes when
2906          * NO_HOLES is enabled) file extent items and did not setup new extent
2907          * maps for the replacement extents (or holes).
2908          */
2909         if (extent_info && !extent_info->is_new_extent)
2910                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2911
2912         if (ret)
2913                 goto out_trans;
2914
2915         trans->block_rsv = &fs_info->trans_block_rsv;
2916         /*
2917          * If we are using the NO_HOLES feature we might have had already an
2918          * hole that overlaps a part of the region [lockstart, lockend] and
2919          * ends at (or beyond) lockend. Since we have no file extent items to
2920          * represent holes, drop_end can be less than lockend and so we must
2921          * make sure we have an extent map representing the existing hole (the
2922          * call to __btrfs_drop_extents() might have dropped the existing extent
2923          * map representing the existing hole), otherwise the fast fsync path
2924          * will not record the existence of the hole region
2925          * [existing_hole_start, lockend].
2926          */
2927         if (drop_args.drop_end <= end)
2928                 drop_args.drop_end = end + 1;
2929         /*
2930          * Don't insert file hole extent item if it's for a range beyond eof
2931          * (because it's useless) or if it represents a 0 bytes range (when
2932          * cur_offset == drop_end).
2933          */
2934         if (!extent_info && cur_offset < ino_size &&
2935             cur_offset < drop_args.drop_end) {
2936                 ret = fill_holes(trans, inode, path, cur_offset,
2937                                  drop_args.drop_end);
2938                 if (ret) {
2939                         /* Same comment as above. */
2940                         btrfs_abort_transaction(trans, ret);
2941                         goto out_trans;
2942                 }
2943         } else if (!extent_info && cur_offset < drop_args.drop_end) {
2944                 /* See the comment in the loop above for the reasoning here. */
2945                 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2946                                         drop_args.drop_end - cur_offset);
2947                 if (ret) {
2948                         btrfs_abort_transaction(trans, ret);
2949                         goto out_trans;
2950                 }
2951
2952         }
2953         if (extent_info) {
2954                 ret = btrfs_insert_replace_extent(trans, inode, path,
2955                                 extent_info, extent_info->data_len,
2956                                 drop_args.bytes_found);
2957                 if (ret) {
2958                         btrfs_abort_transaction(trans, ret);
2959                         goto out_trans;
2960                 }
2961         }
2962
2963 out_trans:
2964         if (!trans)
2965                 goto out_free;
2966
2967         trans->block_rsv = &fs_info->trans_block_rsv;
2968         if (ret)
2969                 btrfs_end_transaction(trans);
2970         else
2971                 *trans_out = trans;
2972 out_free:
2973         btrfs_free_block_rsv(fs_info, rsv);
2974 out:
2975         return ret;
2976 }
2977
2978 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2979 {
2980         struct inode *inode = file_inode(file);
2981         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2982         struct btrfs_root *root = BTRFS_I(inode)->root;
2983         struct extent_state *cached_state = NULL;
2984         struct btrfs_path *path;
2985         struct btrfs_trans_handle *trans = NULL;
2986         u64 lockstart;
2987         u64 lockend;
2988         u64 tail_start;
2989         u64 tail_len;
2990         u64 orig_start = offset;
2991         int ret = 0;
2992         bool same_block;
2993         u64 ino_size;
2994         bool truncated_block = false;
2995         bool updated_inode = false;
2996
2997         ret = btrfs_wait_ordered_range(inode, offset, len);
2998         if (ret)
2999                 return ret;
3000
3001         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3002         ino_size = round_up(inode->i_size, fs_info->sectorsize);
3003         ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
3004         if (ret < 0)
3005                 goto out_only_mutex;
3006         if (ret && !len) {
3007                 /* Already in a large hole */
3008                 ret = 0;
3009                 goto out_only_mutex;
3010         }
3011
3012         ret = file_modified(file);
3013         if (ret)
3014                 goto out_only_mutex;
3015
3016         lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
3017         lockend = round_down(offset + len,
3018                              btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
3019         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
3020                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
3021         /*
3022          * We needn't truncate any block which is beyond the end of the file
3023          * because we are sure there is no data there.
3024          */
3025         /*
3026          * Only do this if we are in the same block and we aren't doing the
3027          * entire block.
3028          */
3029         if (same_block && len < fs_info->sectorsize) {
3030                 if (offset < ino_size) {
3031                         truncated_block = true;
3032                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3033                                                    0);
3034                 } else {
3035                         ret = 0;
3036                 }
3037                 goto out_only_mutex;
3038         }
3039
3040         /* zero back part of the first block */
3041         if (offset < ino_size) {
3042                 truncated_block = true;
3043                 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3044                 if (ret) {
3045                         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3046                         return ret;
3047                 }
3048         }
3049
3050         /* Check the aligned pages after the first unaligned page,
3051          * if offset != orig_start, which means the first unaligned page
3052          * including several following pages are already in holes,
3053          * the extra check can be skipped */
3054         if (offset == orig_start) {
3055                 /* after truncate page, check hole again */
3056                 len = offset + len - lockstart;
3057                 offset = lockstart;
3058                 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
3059                 if (ret < 0)
3060                         goto out_only_mutex;
3061                 if (ret && !len) {
3062                         ret = 0;
3063                         goto out_only_mutex;
3064                 }
3065                 lockstart = offset;
3066         }
3067
3068         /* Check the tail unaligned part is in a hole */
3069         tail_start = lockend + 1;
3070         tail_len = offset + len - tail_start;
3071         if (tail_len) {
3072                 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
3073                 if (unlikely(ret < 0))
3074                         goto out_only_mutex;
3075                 if (!ret) {
3076                         /* zero the front end of the last page */
3077                         if (tail_start + tail_len < ino_size) {
3078                                 truncated_block = true;
3079                                 ret = btrfs_truncate_block(BTRFS_I(inode),
3080                                                         tail_start + tail_len,
3081                                                         0, 1);
3082                                 if (ret)
3083                                         goto out_only_mutex;
3084                         }
3085                 }
3086         }
3087
3088         if (lockend < lockstart) {
3089                 ret = 0;
3090                 goto out_only_mutex;
3091         }
3092
3093         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3094                                           &cached_state);
3095         if (ret)
3096                 goto out_only_mutex;
3097
3098         path = btrfs_alloc_path();
3099         if (!path) {
3100                 ret = -ENOMEM;
3101                 goto out;
3102         }
3103
3104         ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3105                                          lockend, NULL, &trans);
3106         btrfs_free_path(path);
3107         if (ret)
3108                 goto out;
3109
3110         ASSERT(trans != NULL);
3111         inode_inc_iversion(inode);
3112         inode->i_mtime = inode->i_ctime = current_time(inode);
3113         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3114         updated_inode = true;
3115         btrfs_end_transaction(trans);
3116         btrfs_btree_balance_dirty(fs_info);
3117 out:
3118         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3119                              &cached_state);
3120 out_only_mutex:
3121         if (!updated_inode && truncated_block && !ret) {
3122                 /*
3123                  * If we only end up zeroing part of a page, we still need to
3124                  * update the inode item, so that all the time fields are
3125                  * updated as well as the necessary btrfs inode in memory fields
3126                  * for detecting, at fsync time, if the inode isn't yet in the
3127                  * log tree or it's there but not up to date.
3128                  */
3129                 struct timespec64 now = current_time(inode);
3130
3131                 inode_inc_iversion(inode);
3132                 inode->i_mtime = now;
3133                 inode->i_ctime = now;
3134                 trans = btrfs_start_transaction(root, 1);
3135                 if (IS_ERR(trans)) {
3136                         ret = PTR_ERR(trans);
3137                 } else {
3138                         int ret2;
3139
3140                         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3141                         ret2 = btrfs_end_transaction(trans);
3142                         if (!ret)
3143                                 ret = ret2;
3144                 }
3145         }
3146         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3147         return ret;
3148 }
3149
3150 /* Helper structure to record which range is already reserved */
3151 struct falloc_range {
3152         struct list_head list;
3153         u64 start;
3154         u64 len;
3155 };
3156
3157 /*
3158  * Helper function to add falloc range
3159  *
3160  * Caller should have locked the larger range of extent containing
3161  * [start, len)
3162  */
3163 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3164 {
3165         struct falloc_range *range = NULL;
3166
3167         if (!list_empty(head)) {
3168                 /*
3169                  * As fallocate iterates by bytenr order, we only need to check
3170                  * the last range.
3171                  */
3172                 range = list_last_entry(head, struct falloc_range, list);
3173                 if (range->start + range->len == start) {
3174                         range->len += len;
3175                         return 0;
3176                 }
3177         }
3178
3179         range = kmalloc(sizeof(*range), GFP_KERNEL);
3180         if (!range)
3181                 return -ENOMEM;
3182         range->start = start;
3183         range->len = len;
3184         list_add_tail(&range->list, head);
3185         return 0;
3186 }
3187
3188 static int btrfs_fallocate_update_isize(struct inode *inode,
3189                                         const u64 end,
3190                                         const int mode)
3191 {
3192         struct btrfs_trans_handle *trans;
3193         struct btrfs_root *root = BTRFS_I(inode)->root;
3194         int ret;
3195         int ret2;
3196
3197         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3198                 return 0;
3199
3200         trans = btrfs_start_transaction(root, 1);
3201         if (IS_ERR(trans))
3202                 return PTR_ERR(trans);
3203
3204         inode->i_ctime = current_time(inode);
3205         i_size_write(inode, end);
3206         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3207         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3208         ret2 = btrfs_end_transaction(trans);
3209
3210         return ret ? ret : ret2;
3211 }
3212
3213 enum {
3214         RANGE_BOUNDARY_WRITTEN_EXTENT,
3215         RANGE_BOUNDARY_PREALLOC_EXTENT,
3216         RANGE_BOUNDARY_HOLE,
3217 };
3218
3219 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3220                                                  u64 offset)
3221 {
3222         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3223         struct extent_map *em;
3224         int ret;
3225
3226         offset = round_down(offset, sectorsize);
3227         em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3228         if (IS_ERR(em))
3229                 return PTR_ERR(em);
3230
3231         if (em->block_start == EXTENT_MAP_HOLE)
3232                 ret = RANGE_BOUNDARY_HOLE;
3233         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3234                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3235         else
3236                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3237
3238         free_extent_map(em);
3239         return ret;
3240 }
3241
3242 static int btrfs_zero_range(struct inode *inode,
3243                             loff_t offset,
3244                             loff_t len,
3245                             const int mode)
3246 {
3247         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3248         struct extent_map *em;
3249         struct extent_changeset *data_reserved = NULL;
3250         int ret;
3251         u64 alloc_hint = 0;
3252         const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3253         u64 alloc_start = round_down(offset, sectorsize);
3254         u64 alloc_end = round_up(offset + len, sectorsize);
3255         u64 bytes_to_reserve = 0;
3256         bool space_reserved = false;
3257
3258         inode_dio_wait(inode);
3259
3260         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3261                               alloc_end - alloc_start);
3262         if (IS_ERR(em)) {
3263                 ret = PTR_ERR(em);
3264                 goto out;
3265         }
3266
3267         /*
3268          * Avoid hole punching and extent allocation for some cases. More cases
3269          * could be considered, but these are unlikely common and we keep things
3270          * as simple as possible for now. Also, intentionally, if the target
3271          * range contains one or more prealloc extents together with regular
3272          * extents and holes, we drop all the existing extents and allocate a
3273          * new prealloc extent, so that we get a larger contiguous disk extent.
3274          */
3275         if (em->start <= alloc_start &&
3276             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3277                 const u64 em_end = em->start + em->len;
3278
3279                 if (em_end >= offset + len) {
3280                         /*
3281                          * The whole range is already a prealloc extent,
3282                          * do nothing except updating the inode's i_size if
3283                          * needed.
3284                          */
3285                         free_extent_map(em);
3286                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3287                                                            mode);
3288                         goto out;
3289                 }
3290                 /*
3291                  * Part of the range is already a prealloc extent, so operate
3292                  * only on the remaining part of the range.
3293                  */
3294                 alloc_start = em_end;
3295                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3296                 len = offset + len - alloc_start;
3297                 offset = alloc_start;
3298                 alloc_hint = em->block_start + em->len;
3299         }
3300         free_extent_map(em);
3301
3302         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3303             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3304                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3305                                       sectorsize);
3306                 if (IS_ERR(em)) {
3307                         ret = PTR_ERR(em);
3308                         goto out;
3309                 }
3310
3311                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3312                         free_extent_map(em);
3313                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3314                                                            mode);
3315                         goto out;
3316                 }
3317                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3318                         free_extent_map(em);
3319                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3320                                                    0);
3321                         if (!ret)
3322                                 ret = btrfs_fallocate_update_isize(inode,
3323                                                                    offset + len,
3324                                                                    mode);
3325                         return ret;
3326                 }
3327                 free_extent_map(em);
3328                 alloc_start = round_down(offset, sectorsize);
3329                 alloc_end = alloc_start + sectorsize;
3330                 goto reserve_space;
3331         }
3332
3333         alloc_start = round_up(offset, sectorsize);
3334         alloc_end = round_down(offset + len, sectorsize);
3335
3336         /*
3337          * For unaligned ranges, check the pages at the boundaries, they might
3338          * map to an extent, in which case we need to partially zero them, or
3339          * they might map to a hole, in which case we need our allocation range
3340          * to cover them.
3341          */
3342         if (!IS_ALIGNED(offset, sectorsize)) {
3343                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3344                                                             offset);
3345                 if (ret < 0)
3346                         goto out;
3347                 if (ret == RANGE_BOUNDARY_HOLE) {
3348                         alloc_start = round_down(offset, sectorsize);
3349                         ret = 0;
3350                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3351                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3352                         if (ret)
3353                                 goto out;
3354                 } else {
3355                         ret = 0;
3356                 }
3357         }
3358
3359         if (!IS_ALIGNED(offset + len, sectorsize)) {
3360                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3361                                                             offset + len);
3362                 if (ret < 0)
3363                         goto out;
3364                 if (ret == RANGE_BOUNDARY_HOLE) {
3365                         alloc_end = round_up(offset + len, sectorsize);
3366                         ret = 0;
3367                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3368                         ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3369                                                    0, 1);
3370                         if (ret)
3371                                 goto out;
3372                 } else {
3373                         ret = 0;
3374                 }
3375         }
3376
3377 reserve_space:
3378         if (alloc_start < alloc_end) {
3379                 struct extent_state *cached_state = NULL;
3380                 const u64 lockstart = alloc_start;
3381                 const u64 lockend = alloc_end - 1;
3382
3383                 bytes_to_reserve = alloc_end - alloc_start;
3384                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3385                                                       bytes_to_reserve);
3386                 if (ret < 0)
3387                         goto out;
3388                 space_reserved = true;
3389                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3390                                                   &cached_state);
3391                 if (ret)
3392                         goto out;
3393                 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3394                                                 alloc_start, bytes_to_reserve);
3395                 if (ret) {
3396                         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3397                                              lockend, &cached_state);
3398                         goto out;
3399                 }
3400                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3401                                                 alloc_end - alloc_start,
3402                                                 i_blocksize(inode),
3403                                                 offset + len, &alloc_hint);
3404                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3405                                      lockend, &cached_state);
3406                 /* btrfs_prealloc_file_range releases reserved space on error */
3407                 if (ret) {
3408                         space_reserved = false;
3409                         goto out;
3410                 }
3411         }
3412         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3413  out:
3414         if (ret && space_reserved)
3415                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3416                                                alloc_start, bytes_to_reserve);
3417         extent_changeset_free(data_reserved);
3418
3419         return ret;
3420 }
3421
3422 static long btrfs_fallocate(struct file *file, int mode,
3423                             loff_t offset, loff_t len)
3424 {
3425         struct inode *inode = file_inode(file);
3426         struct extent_state *cached_state = NULL;
3427         struct extent_changeset *data_reserved = NULL;
3428         struct falloc_range *range;
3429         struct falloc_range *tmp;
3430         struct list_head reserve_list;
3431         u64 cur_offset;
3432         u64 last_byte;
3433         u64 alloc_start;
3434         u64 alloc_end;
3435         u64 alloc_hint = 0;
3436         u64 locked_end;
3437         u64 actual_end = 0;
3438         struct extent_map *em;
3439         int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3440         int ret;
3441
3442         /* Do not allow fallocate in ZONED mode */
3443         if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3444                 return -EOPNOTSUPP;
3445
3446         alloc_start = round_down(offset, blocksize);
3447         alloc_end = round_up(offset + len, blocksize);
3448         cur_offset = alloc_start;
3449
3450         /* Make sure we aren't being give some crap mode */
3451         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3452                      FALLOC_FL_ZERO_RANGE))
3453                 return -EOPNOTSUPP;
3454
3455         if (mode & FALLOC_FL_PUNCH_HOLE)
3456                 return btrfs_punch_hole(file, offset, len);
3457
3458         /*
3459          * Only trigger disk allocation, don't trigger qgroup reserve
3460          *
3461          * For qgroup space, it will be checked later.
3462          */
3463         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3464                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3465                                                       alloc_end - alloc_start);
3466                 if (ret < 0)
3467                         return ret;
3468         }
3469
3470         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3471
3472         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3473                 ret = inode_newsize_ok(inode, offset + len);
3474                 if (ret)
3475                         goto out;
3476         }
3477
3478         ret = file_modified(file);
3479         if (ret)
3480                 goto out;
3481
3482         /*
3483          * TODO: Move these two operations after we have checked
3484          * accurate reserved space, or fallocate can still fail but
3485          * with page truncated or size expanded.
3486          *
3487          * But that's a minor problem and won't do much harm BTW.
3488          */
3489         if (alloc_start > inode->i_size) {
3490                 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3491                                         alloc_start);
3492                 if (ret)
3493                         goto out;
3494         } else if (offset + len > inode->i_size) {
3495                 /*
3496                  * If we are fallocating from the end of the file onward we
3497                  * need to zero out the end of the block if i_size lands in the
3498                  * middle of a block.
3499                  */
3500                 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3501                 if (ret)
3502                         goto out;
3503         }
3504
3505         /*
3506          * wait for ordered IO before we have any locks.  We'll loop again
3507          * below with the locks held.
3508          */
3509         ret = btrfs_wait_ordered_range(inode, alloc_start,
3510                                        alloc_end - alloc_start);
3511         if (ret)
3512                 goto out;
3513
3514         if (mode & FALLOC_FL_ZERO_RANGE) {
3515                 ret = btrfs_zero_range(inode, offset, len, mode);
3516                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3517                 return ret;
3518         }
3519
3520         locked_end = alloc_end - 1;
3521         while (1) {
3522                 struct btrfs_ordered_extent *ordered;
3523
3524                 /* the extent lock is ordered inside the running
3525                  * transaction
3526                  */
3527                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3528                                  locked_end, &cached_state);
3529                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3530                                                             locked_end);
3531
3532                 if (ordered &&
3533                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3534                     ordered->file_offset < alloc_end) {
3535                         btrfs_put_ordered_extent(ordered);
3536                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3537                                              alloc_start, locked_end,
3538                                              &cached_state);
3539                         /*
3540                          * we can't wait on the range with the transaction
3541                          * running or with the extent lock held
3542                          */
3543                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3544                                                        alloc_end - alloc_start);
3545                         if (ret)
3546                                 goto out;
3547                 } else {
3548                         if (ordered)
3549                                 btrfs_put_ordered_extent(ordered);
3550                         break;
3551                 }
3552         }
3553
3554         /* First, check if we exceed the qgroup limit */
3555         INIT_LIST_HEAD(&reserve_list);
3556         while (cur_offset < alloc_end) {
3557                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3558                                       alloc_end - cur_offset);
3559                 if (IS_ERR(em)) {
3560                         ret = PTR_ERR(em);
3561                         break;
3562                 }
3563                 last_byte = min(extent_map_end(em), alloc_end);
3564                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3565                 last_byte = ALIGN(last_byte, blocksize);
3566                 if (em->block_start == EXTENT_MAP_HOLE ||
3567                     (cur_offset >= inode->i_size &&
3568                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3569                         ret = add_falloc_range(&reserve_list, cur_offset,
3570                                                last_byte - cur_offset);
3571                         if (ret < 0) {
3572                                 free_extent_map(em);
3573                                 break;
3574                         }
3575                         ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3576                                         &data_reserved, cur_offset,
3577                                         last_byte - cur_offset);
3578                         if (ret < 0) {
3579                                 cur_offset = last_byte;
3580                                 free_extent_map(em);
3581                                 break;
3582                         }
3583                 } else {
3584                         /*
3585                          * Do not need to reserve unwritten extent for this
3586                          * range, free reserved data space first, otherwise
3587                          * it'll result in false ENOSPC error.
3588                          */
3589                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3590                                 data_reserved, cur_offset,
3591                                 last_byte - cur_offset);
3592                 }
3593                 free_extent_map(em);
3594                 cur_offset = last_byte;
3595         }
3596
3597         /*
3598          * If ret is still 0, means we're OK to fallocate.
3599          * Or just cleanup the list and exit.
3600          */
3601         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3602                 if (!ret)
3603                         ret = btrfs_prealloc_file_range(inode, mode,
3604                                         range->start,
3605                                         range->len, i_blocksize(inode),
3606                                         offset + len, &alloc_hint);
3607                 else
3608                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3609                                         data_reserved, range->start,
3610                                         range->len);
3611                 list_del(&range->list);
3612                 kfree(range);
3613         }
3614         if (ret < 0)
3615                 goto out_unlock;
3616
3617         /*
3618          * We didn't need to allocate any more space, but we still extended the
3619          * size of the file so we need to update i_size and the inode item.
3620          */
3621         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3622 out_unlock:
3623         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3624                              &cached_state);
3625 out:
3626         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3627         /* Let go of our reservation. */
3628         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3629                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3630                                 cur_offset, alloc_end - cur_offset);
3631         extent_changeset_free(data_reserved);
3632         return ret;
3633 }
3634
3635 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3636                                   int whence)
3637 {
3638         struct btrfs_fs_info *fs_info = inode->root->fs_info;
3639         struct extent_map *em = NULL;
3640         struct extent_state *cached_state = NULL;
3641         loff_t i_size = inode->vfs_inode.i_size;
3642         u64 lockstart;
3643         u64 lockend;
3644         u64 start;
3645         u64 len;
3646         int ret = 0;
3647
3648         if (i_size == 0 || offset >= i_size)
3649                 return -ENXIO;
3650
3651         /*
3652          * offset can be negative, in this case we start finding DATA/HOLE from
3653          * the very start of the file.
3654          */
3655         start = max_t(loff_t, 0, offset);
3656
3657         lockstart = round_down(start, fs_info->sectorsize);
3658         lockend = round_up(i_size, fs_info->sectorsize);
3659         if (lockend <= lockstart)
3660                 lockend = lockstart + fs_info->sectorsize;
3661         lockend--;
3662         len = lockend - lockstart + 1;
3663
3664         lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3665
3666         while (start < i_size) {
3667                 em = btrfs_get_extent_fiemap(inode, start, len);
3668                 if (IS_ERR(em)) {
3669                         ret = PTR_ERR(em);
3670                         em = NULL;
3671                         break;
3672                 }
3673
3674                 if (whence == SEEK_HOLE &&
3675                     (em->block_start == EXTENT_MAP_HOLE ||
3676                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3677                         break;
3678                 else if (whence == SEEK_DATA &&
3679                            (em->block_start != EXTENT_MAP_HOLE &&
3680                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3681                         break;
3682
3683                 start = em->start + em->len;
3684                 free_extent_map(em);
3685                 em = NULL;
3686                 cond_resched();
3687         }
3688         free_extent_map(em);
3689         unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3690                              &cached_state);
3691         if (ret) {
3692                 offset = ret;
3693         } else {
3694                 if (whence == SEEK_DATA && start >= i_size)
3695                         offset = -ENXIO;
3696                 else
3697                         offset = min_t(loff_t, start, i_size);
3698         }
3699
3700         return offset;
3701 }
3702
3703 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3704 {
3705         struct inode *inode = file->f_mapping->host;
3706
3707         switch (whence) {
3708         default:
3709                 return generic_file_llseek(file, offset, whence);
3710         case SEEK_DATA:
3711         case SEEK_HOLE:
3712                 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3713                 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3714                 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3715                 break;
3716         }
3717
3718         if (offset < 0)
3719                 return offset;
3720
3721         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3722 }
3723
3724 static int btrfs_file_open(struct inode *inode, struct file *filp)
3725 {
3726         int ret;
3727
3728         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3729
3730         ret = fsverity_file_open(inode, filp);
3731         if (ret)
3732                 return ret;
3733         return generic_file_open(inode, filp);
3734 }
3735
3736 static int check_direct_read(struct btrfs_fs_info *fs_info,
3737                              const struct iov_iter *iter, loff_t offset)
3738 {
3739         int ret;
3740         int i, seg;
3741
3742         ret = check_direct_IO(fs_info, iter, offset);
3743         if (ret < 0)
3744                 return ret;
3745
3746         if (!iter_is_iovec(iter))
3747                 return 0;
3748
3749         for (seg = 0; seg < iter->nr_segs; seg++)
3750                 for (i = seg + 1; i < iter->nr_segs; i++)
3751                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3752                                 return -EINVAL;
3753         return 0;
3754 }
3755
3756 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3757 {
3758         struct inode *inode = file_inode(iocb->ki_filp);
3759         size_t prev_left = 0;
3760         ssize_t read = 0;
3761         ssize_t ret;
3762
3763         if (fsverity_active(inode))
3764                 return 0;
3765
3766         if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3767                 return 0;
3768
3769         btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3770 again:
3771         /*
3772          * This is similar to what we do for direct IO writes, see the comment
3773          * at btrfs_direct_write(), but we also disable page faults in addition
3774          * to disabling them only at the iov_iter level. This is because when
3775          * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3776          * which can still trigger page fault ins despite having set ->nofault
3777          * to true of our 'to' iov_iter.
3778          *
3779          * The difference to direct IO writes is that we deadlock when trying
3780          * to lock the extent range in the inode's tree during he page reads
3781          * triggered by the fault in (while for writes it is due to waiting for
3782          * our own ordered extent). This is because for direct IO reads,
3783          * btrfs_dio_iomap_begin() returns with the extent range locked, which
3784          * is only unlocked in the endio callback (end_bio_extent_readpage()).
3785          */
3786         pagefault_disable();
3787         to->nofault = true;
3788         ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
3789                            IOMAP_DIO_PARTIAL, read);
3790         to->nofault = false;
3791         pagefault_enable();
3792
3793         /* No increment (+=) because iomap returns a cumulative value. */
3794         if (ret > 0)
3795                 read = ret;
3796
3797         if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3798                 const size_t left = iov_iter_count(to);
3799
3800                 if (left == prev_left) {
3801                         /*
3802                          * We didn't make any progress since the last attempt,
3803                          * fallback to a buffered read for the remainder of the
3804                          * range. This is just to avoid any possibility of looping
3805                          * for too long.
3806                          */
3807                         ret = read;
3808                 } else {
3809                         /*
3810                          * We made some progress since the last retry or this is
3811                          * the first time we are retrying. Fault in as many pages
3812                          * as possible and retry.
3813                          */
3814                         fault_in_iov_iter_writeable(to, left);
3815                         prev_left = left;
3816                         goto again;
3817                 }
3818         }
3819         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3820         return ret < 0 ? ret : read;
3821 }
3822
3823 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3824 {
3825         ssize_t ret = 0;
3826
3827         if (iocb->ki_flags & IOCB_DIRECT) {
3828                 ret = btrfs_direct_read(iocb, to);
3829                 if (ret < 0 || !iov_iter_count(to) ||
3830                     iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3831                         return ret;
3832         }
3833
3834         return filemap_read(iocb, to, ret);
3835 }
3836
3837 const struct file_operations btrfs_file_operations = {
3838         .llseek         = btrfs_file_llseek,
3839         .read_iter      = btrfs_file_read_iter,
3840         .splice_read    = generic_file_splice_read,
3841         .write_iter     = btrfs_file_write_iter,
3842         .splice_write   = iter_file_splice_write,
3843         .mmap           = btrfs_file_mmap,
3844         .open           = btrfs_file_open,
3845         .release        = btrfs_release_file,
3846         .fsync          = btrfs_sync_file,
3847         .fallocate      = btrfs_fallocate,
3848         .unlocked_ioctl = btrfs_ioctl,
3849 #ifdef CONFIG_COMPAT
3850         .compat_ioctl   = btrfs_compat_ioctl,
3851 #endif
3852         .remap_file_range = btrfs_remap_file_range,
3853 };
3854
3855 void __cold btrfs_auto_defrag_exit(void)
3856 {
3857         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3858 }
3859
3860 int __init btrfs_auto_defrag_init(void)
3861 {
3862         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3863                                         sizeof(struct inode_defrag), 0,
3864                                         SLAB_MEM_SPREAD,
3865                                         NULL);
3866         if (!btrfs_inode_defrag_cachep)
3867                 return -ENOMEM;
3868
3869         return 0;
3870 }
3871
3872 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3873 {
3874         int ret;
3875
3876         /*
3877          * So with compression we will find and lock a dirty page and clear the
3878          * first one as dirty, setup an async extent, and immediately return
3879          * with the entire range locked but with nobody actually marked with
3880          * writeback.  So we can't just filemap_write_and_wait_range() and
3881          * expect it to work since it will just kick off a thread to do the
3882          * actual work.  So we need to call filemap_fdatawrite_range _again_
3883          * since it will wait on the page lock, which won't be unlocked until
3884          * after the pages have been marked as writeback and so we're good to go
3885          * from there.  We have to do this otherwise we'll miss the ordered
3886          * extents and that results in badness.  Please Josef, do not think you
3887          * know better and pull this out at some point in the future, it is
3888          * right and you are wrong.
3889          */
3890         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3891         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3892                              &BTRFS_I(inode)->runtime_flags))
3893                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3894
3895         return ret;
3896 }