2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
51 struct rb_node rb_node;
55 * transid where the defrag was added, we search for
56 * extents newer than this
63 /* last offset we were able to defrag */
66 /* if we've wrapped around back to zero once already */
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
73 if (defrag1->root > defrag2->root)
75 else if (defrag1->root < defrag2->root)
77 else if (defrag1->ino > defrag2->ino)
79 else if (defrag1->ino < defrag2->ino)
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
91 * If an existing record is found the defrag item you
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
100 struct rb_node *parent = NULL;
103 p = &root->fs_info->defrag_inodes.rb_node;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
108 ret = __compare_inode_defrag(defrag, entry);
110 p = &parent->rb_left;
112 p = &parent->rb_right;
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
131 static inline int __need_auto_defrag(struct btrfs_root *root)
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
136 if (btrfs_fs_closing(root->fs_info))
143 * insert a defrag record for this inode if auto defrag is
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
154 if (!__need_auto_defrag(root))
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
161 transid = trans->transid;
163 transid = BTRFS_I(inode)->root->last_trans;
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 ret = __btrfs_add_inode_defrag(inode, defrag);
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195 void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
198 struct btrfs_root *root = BTRFS_I(inode)->root;
201 if (!__need_auto_defrag(root))
205 * Here we don't check the IN_DEFRAG flag, because we need merge
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
219 * pick the defragable inode that we want, if it doesn't exist, we will get
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
228 struct rb_node *parent = NULL;
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
240 ret = __compare_inode_defrag(&tmp, entry);
244 p = parent->rb_right;
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 struct inode_defrag *defrag;
266 struct rb_node *node;
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
278 spin_lock(&fs_info->defrag_inodes_lock);
281 node = rb_first(&fs_info->defrag_inodes);
283 spin_unlock(&fs_info->defrag_inodes_lock);
286 #define BTRFS_DEFRAG_BATCH 1024
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
291 struct btrfs_root *inode_root;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
304 index = srcu_read_lock(&fs_info->subvol_srcu);
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
308 ret = PTR_ERR(inode_root);
311 if (btrfs_root_refs(&inode_root->root_item) == 0) {
316 key.objectid = defrag->ino;
317 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
319 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
321 ret = PTR_ERR(inode);
324 srcu_read_unlock(&fs_info->subvol_srcu, index);
326 /* do a chunk of defrag */
327 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
328 memset(&range, 0, sizeof(range));
330 range.start = defrag->last_offset;
332 sb_start_write(fs_info->sb);
333 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
335 sb_end_write(fs_info->sb);
337 * if we filled the whole defrag batch, there
338 * must be more work to do. Queue this defrag
341 if (num_defrag == BTRFS_DEFRAG_BATCH) {
342 defrag->last_offset = range.start;
343 btrfs_requeue_inode_defrag(inode, defrag);
344 } else if (defrag->last_offset && !defrag->cycled) {
346 * we didn't fill our defrag batch, but
347 * we didn't start at zero. Make sure we loop
348 * around to the start of the file.
350 defrag->last_offset = 0;
352 btrfs_requeue_inode_defrag(inode, defrag);
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
360 srcu_read_unlock(&fs_info->subvol_srcu, index);
361 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
366 * run through the list of inodes in the FS that need
369 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
371 struct inode_defrag *defrag;
373 u64 root_objectid = 0;
375 atomic_inc(&fs_info->defrag_running);
377 /* Pause the auto defragger. */
378 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
382 if (!__need_auto_defrag(fs_info->tree_root))
385 /* find an inode to defrag */
386 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
389 if (root_objectid || first_ino) {
398 first_ino = defrag->ino + 1;
399 root_objectid = defrag->root;
401 __btrfs_run_defrag_inode(fs_info, defrag);
403 atomic_dec(&fs_info->defrag_running);
406 * during unmount, we use the transaction_wait queue to
407 * wait for the defragger to stop
409 wake_up(&fs_info->transaction_wait);
413 /* simple helper to fault in pages and copy. This should go away
414 * and be replaced with calls into generic code.
416 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
418 struct page **prepared_pages,
422 size_t total_copied = 0;
424 int offset = pos & (PAGE_CACHE_SIZE - 1);
426 while (write_bytes > 0) {
427 size_t count = min_t(size_t,
428 PAGE_CACHE_SIZE - offset, write_bytes);
429 struct page *page = prepared_pages[pg];
431 * Copy data from userspace to the current page
433 * Disable pagefault to avoid recursive lock since
434 * the pages are already locked
437 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
440 /* Flush processor's dcache for this page */
441 flush_dcache_page(page);
444 * if we get a partial write, we can end up with
445 * partially up to date pages. These add
446 * a lot of complexity, so make sure they don't
447 * happen by forcing this copy to be retried.
449 * The rest of the btrfs_file_write code will fall
450 * back to page at a time copies after we return 0.
452 if (!PageUptodate(page) && copied < count)
455 iov_iter_advance(i, copied);
456 write_bytes -= copied;
457 total_copied += copied;
459 /* Return to btrfs_file_aio_write to fault page */
460 if (unlikely(copied == 0))
463 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
474 * unlocks pages after btrfs_file_write is done with them
476 void btrfs_drop_pages(struct page **pages, size_t num_pages)
479 for (i = 0; i < num_pages; i++) {
480 /* page checked is some magic around finding pages that
481 * have been modified without going through btrfs_set_page_dirty
484 ClearPageChecked(pages[i]);
485 unlock_page(pages[i]);
486 mark_page_accessed(pages[i]);
487 page_cache_release(pages[i]);
492 * after copy_from_user, pages need to be dirtied and we need to make
493 * sure holes are created between the current EOF and the start of
494 * any next extents (if required).
496 * this also makes the decision about creating an inline extent vs
497 * doing real data extents, marking pages dirty and delalloc as required.
499 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
500 struct page **pages, size_t num_pages,
501 loff_t pos, size_t write_bytes,
502 struct extent_state **cached)
508 u64 end_of_last_block;
509 u64 end_pos = pos + write_bytes;
510 loff_t isize = i_size_read(inode);
512 start_pos = pos & ~((u64)root->sectorsize - 1);
513 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
515 end_of_last_block = start_pos + num_bytes - 1;
516 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
521 for (i = 0; i < num_pages; i++) {
522 struct page *p = pages[i];
529 * we've only changed i_size in ram, and we haven't updated
530 * the disk i_size. There is no need to log the inode
534 i_size_write(inode, end_pos);
539 * this drops all the extents in the cache that intersect the range
540 * [start, end]. Existing extents are split as required.
542 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
545 struct extent_map *em;
546 struct extent_map *split = NULL;
547 struct extent_map *split2 = NULL;
548 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
549 u64 len = end - start + 1;
556 WARN_ON(end < start);
557 if (end == (u64)-1) {
565 split = alloc_extent_map();
567 split2 = alloc_extent_map();
568 if (!split || !split2)
571 write_lock(&em_tree->lock);
572 em = lookup_extent_mapping(em_tree, start, len);
574 write_unlock(&em_tree->lock);
578 gen = em->generation;
579 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
580 if (testend && em->start + em->len >= start + len) {
582 write_unlock(&em_tree->lock);
585 start = em->start + em->len;
587 len = start + len - (em->start + em->len);
589 write_unlock(&em_tree->lock);
592 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
593 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
594 remove_extent_mapping(em_tree, em);
598 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
600 split->start = em->start;
601 split->len = start - em->start;
602 split->orig_start = em->orig_start;
603 split->block_start = em->block_start;
606 split->block_len = em->block_len;
608 split->block_len = split->len;
609 split->orig_block_len = max(split->block_len,
611 split->generation = gen;
612 split->bdev = em->bdev;
613 split->flags = flags;
614 split->compress_type = em->compress_type;
615 ret = add_extent_mapping(em_tree, split);
616 BUG_ON(ret); /* Logic error */
617 list_move(&split->list, &em_tree->modified_extents);
618 free_extent_map(split);
622 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
623 testend && em->start + em->len > start + len) {
624 u64 diff = start + len - em->start;
626 split->start = start + len;
627 split->len = em->start + em->len - (start + len);
628 split->bdev = em->bdev;
629 split->flags = flags;
630 split->compress_type = em->compress_type;
631 split->generation = gen;
632 split->orig_block_len = max(em->block_len,
636 split->block_len = em->block_len;
637 split->block_start = em->block_start;
638 split->orig_start = em->orig_start;
640 split->block_len = split->len;
641 split->block_start = em->block_start + diff;
642 split->orig_start = em->orig_start;
645 ret = add_extent_mapping(em_tree, split);
646 BUG_ON(ret); /* Logic error */
647 list_move(&split->list, &em_tree->modified_extents);
648 free_extent_map(split);
652 write_unlock(&em_tree->lock);
656 /* once for the tree*/
660 free_extent_map(split);
662 free_extent_map(split2);
666 * this is very complex, but the basic idea is to drop all extents
667 * in the range start - end. hint_block is filled in with a block number
668 * that would be a good hint to the block allocator for this file.
670 * If an extent intersects the range but is not entirely inside the range
671 * it is either truncated or split. Anything entirely inside the range
672 * is deleted from the tree.
674 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
675 struct btrfs_root *root, struct inode *inode,
676 struct btrfs_path *path, u64 start, u64 end,
677 u64 *drop_end, int drop_cache)
679 struct extent_buffer *leaf;
680 struct btrfs_file_extent_item *fi;
681 struct btrfs_key key;
682 struct btrfs_key new_key;
683 u64 ino = btrfs_ino(inode);
684 u64 search_start = start;
687 u64 extent_offset = 0;
694 int modify_tree = -1;
695 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
699 btrfs_drop_extent_cache(inode, start, end - 1, 0);
701 if (start >= BTRFS_I(inode)->disk_i_size)
706 ret = btrfs_lookup_file_extent(trans, root, path, ino,
707 search_start, modify_tree);
710 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
711 leaf = path->nodes[0];
712 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
713 if (key.objectid == ino &&
714 key.type == BTRFS_EXTENT_DATA_KEY)
719 leaf = path->nodes[0];
720 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
722 ret = btrfs_next_leaf(root, path);
729 leaf = path->nodes[0];
733 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
734 if (key.objectid > ino ||
735 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
738 fi = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_file_extent_item);
740 extent_type = btrfs_file_extent_type(leaf, fi);
742 if (extent_type == BTRFS_FILE_EXTENT_REG ||
743 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
744 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
745 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
746 extent_offset = btrfs_file_extent_offset(leaf, fi);
747 extent_end = key.offset +
748 btrfs_file_extent_num_bytes(leaf, fi);
749 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
750 extent_end = key.offset +
751 btrfs_file_extent_inline_len(leaf, fi);
754 extent_end = search_start;
757 if (extent_end <= search_start) {
763 search_start = max(key.offset, start);
764 if (recow || !modify_tree) {
766 btrfs_release_path(path);
771 * | - range to drop - |
772 * | -------- extent -------- |
774 if (start > key.offset && end < extent_end) {
776 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
778 memcpy(&new_key, &key, sizeof(new_key));
779 new_key.offset = start;
780 ret = btrfs_duplicate_item(trans, root, path,
782 if (ret == -EAGAIN) {
783 btrfs_release_path(path);
789 leaf = path->nodes[0];
790 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
791 struct btrfs_file_extent_item);
792 btrfs_set_file_extent_num_bytes(leaf, fi,
795 fi = btrfs_item_ptr(leaf, path->slots[0],
796 struct btrfs_file_extent_item);
798 extent_offset += start - key.offset;
799 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
800 btrfs_set_file_extent_num_bytes(leaf, fi,
802 btrfs_mark_buffer_dirty(leaf);
804 if (update_refs && disk_bytenr > 0) {
805 ret = btrfs_inc_extent_ref(trans, root,
806 disk_bytenr, num_bytes, 0,
807 root->root_key.objectid,
809 start - extent_offset, 0);
810 BUG_ON(ret); /* -ENOMEM */
815 * | ---- range to drop ----- |
816 * | -------- extent -------- |
818 if (start <= key.offset && end < extent_end) {
819 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
821 memcpy(&new_key, &key, sizeof(new_key));
822 new_key.offset = end;
823 btrfs_set_item_key_safe(trans, root, path, &new_key);
825 extent_offset += end - key.offset;
826 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
827 btrfs_set_file_extent_num_bytes(leaf, fi,
829 btrfs_mark_buffer_dirty(leaf);
830 if (update_refs && disk_bytenr > 0)
831 inode_sub_bytes(inode, end - key.offset);
835 search_start = extent_end;
837 * | ---- range to drop ----- |
838 * | -------- extent -------- |
840 if (start > key.offset && end >= extent_end) {
842 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
844 btrfs_set_file_extent_num_bytes(leaf, fi,
846 btrfs_mark_buffer_dirty(leaf);
847 if (update_refs && disk_bytenr > 0)
848 inode_sub_bytes(inode, extent_end - start);
849 if (end == extent_end)
857 * | ---- range to drop ----- |
858 * | ------ extent ------ |
860 if (start <= key.offset && end >= extent_end) {
862 del_slot = path->slots[0];
865 BUG_ON(del_slot + del_nr != path->slots[0]);
870 extent_type == BTRFS_FILE_EXTENT_INLINE) {
871 inode_sub_bytes(inode,
872 extent_end - key.offset);
873 extent_end = ALIGN(extent_end,
875 } else if (update_refs && disk_bytenr > 0) {
876 ret = btrfs_free_extent(trans, root,
877 disk_bytenr, num_bytes, 0,
878 root->root_key.objectid,
879 key.objectid, key.offset -
881 BUG_ON(ret); /* -ENOMEM */
882 inode_sub_bytes(inode,
883 extent_end - key.offset);
886 if (end == extent_end)
889 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
894 ret = btrfs_del_items(trans, root, path, del_slot,
897 btrfs_abort_transaction(trans, root, ret);
904 btrfs_release_path(path);
911 if (!ret && del_nr > 0) {
912 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
914 btrfs_abort_transaction(trans, root, ret);
918 *drop_end = found ? min(end, extent_end) : end;
919 btrfs_release_path(path);
923 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root, struct inode *inode, u64 start,
925 u64 end, int drop_cache)
927 struct btrfs_path *path;
930 path = btrfs_alloc_path();
933 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
935 btrfs_free_path(path);
939 static int extent_mergeable(struct extent_buffer *leaf, int slot,
940 u64 objectid, u64 bytenr, u64 orig_offset,
941 u64 *start, u64 *end)
943 struct btrfs_file_extent_item *fi;
944 struct btrfs_key key;
947 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
950 btrfs_item_key_to_cpu(leaf, &key, slot);
951 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
954 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
955 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
956 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
957 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
958 btrfs_file_extent_compression(leaf, fi) ||
959 btrfs_file_extent_encryption(leaf, fi) ||
960 btrfs_file_extent_other_encoding(leaf, fi))
963 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
964 if ((*start && *start != key.offset) || (*end && *end != extent_end))
973 * Mark extent in the range start - end as written.
975 * This changes extent type from 'pre-allocated' to 'regular'. If only
976 * part of extent is marked as written, the extent will be split into
979 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
980 struct inode *inode, u64 start, u64 end)
982 struct btrfs_root *root = BTRFS_I(inode)->root;
983 struct extent_buffer *leaf;
984 struct btrfs_path *path;
985 struct btrfs_file_extent_item *fi;
986 struct btrfs_key key;
987 struct btrfs_key new_key;
999 u64 ino = btrfs_ino(inode);
1001 path = btrfs_alloc_path();
1008 key.type = BTRFS_EXTENT_DATA_KEY;
1011 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1014 if (ret > 0 && path->slots[0] > 0)
1017 leaf = path->nodes[0];
1018 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1019 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1020 fi = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_file_extent_item);
1022 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1023 BTRFS_FILE_EXTENT_PREALLOC);
1024 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1025 BUG_ON(key.offset > start || extent_end < end);
1027 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1028 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1029 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1030 memcpy(&new_key, &key, sizeof(new_key));
1032 if (start == key.offset && end < extent_end) {
1035 if (extent_mergeable(leaf, path->slots[0] - 1,
1036 ino, bytenr, orig_offset,
1037 &other_start, &other_end)) {
1038 new_key.offset = end;
1039 btrfs_set_item_key_safe(trans, root, path, &new_key);
1040 fi = btrfs_item_ptr(leaf, path->slots[0],
1041 struct btrfs_file_extent_item);
1042 btrfs_set_file_extent_generation(leaf, fi,
1044 btrfs_set_file_extent_num_bytes(leaf, fi,
1046 btrfs_set_file_extent_offset(leaf, fi,
1048 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1049 struct btrfs_file_extent_item);
1050 btrfs_set_file_extent_generation(leaf, fi,
1052 btrfs_set_file_extent_num_bytes(leaf, fi,
1054 btrfs_mark_buffer_dirty(leaf);
1059 if (start > key.offset && end == extent_end) {
1062 if (extent_mergeable(leaf, path->slots[0] + 1,
1063 ino, bytenr, orig_offset,
1064 &other_start, &other_end)) {
1065 fi = btrfs_item_ptr(leaf, path->slots[0],
1066 struct btrfs_file_extent_item);
1067 btrfs_set_file_extent_num_bytes(leaf, fi,
1068 start - key.offset);
1069 btrfs_set_file_extent_generation(leaf, fi,
1072 new_key.offset = start;
1073 btrfs_set_item_key_safe(trans, root, path, &new_key);
1075 fi = btrfs_item_ptr(leaf, path->slots[0],
1076 struct btrfs_file_extent_item);
1077 btrfs_set_file_extent_generation(leaf, fi,
1079 btrfs_set_file_extent_num_bytes(leaf, fi,
1081 btrfs_set_file_extent_offset(leaf, fi,
1082 start - orig_offset);
1083 btrfs_mark_buffer_dirty(leaf);
1088 while (start > key.offset || end < extent_end) {
1089 if (key.offset == start)
1092 new_key.offset = split;
1093 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1094 if (ret == -EAGAIN) {
1095 btrfs_release_path(path);
1099 btrfs_abort_transaction(trans, root, ret);
1103 leaf = path->nodes[0];
1104 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1105 struct btrfs_file_extent_item);
1106 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1107 btrfs_set_file_extent_num_bytes(leaf, fi,
1108 split - key.offset);
1110 fi = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_file_extent_item);
1113 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1114 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1115 btrfs_set_file_extent_num_bytes(leaf, fi,
1116 extent_end - split);
1117 btrfs_mark_buffer_dirty(leaf);
1119 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1120 root->root_key.objectid,
1121 ino, orig_offset, 0);
1122 BUG_ON(ret); /* -ENOMEM */
1124 if (split == start) {
1127 BUG_ON(start != key.offset);
1136 if (extent_mergeable(leaf, path->slots[0] + 1,
1137 ino, bytenr, orig_offset,
1138 &other_start, &other_end)) {
1140 btrfs_release_path(path);
1143 extent_end = other_end;
1144 del_slot = path->slots[0] + 1;
1146 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1147 0, root->root_key.objectid,
1148 ino, orig_offset, 0);
1149 BUG_ON(ret); /* -ENOMEM */
1153 if (extent_mergeable(leaf, path->slots[0] - 1,
1154 ino, bytenr, orig_offset,
1155 &other_start, &other_end)) {
1157 btrfs_release_path(path);
1160 key.offset = other_start;
1161 del_slot = path->slots[0];
1163 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1164 0, root->root_key.objectid,
1165 ino, orig_offset, 0);
1166 BUG_ON(ret); /* -ENOMEM */
1169 fi = btrfs_item_ptr(leaf, path->slots[0],
1170 struct btrfs_file_extent_item);
1171 btrfs_set_file_extent_type(leaf, fi,
1172 BTRFS_FILE_EXTENT_REG);
1173 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1174 btrfs_mark_buffer_dirty(leaf);
1176 fi = btrfs_item_ptr(leaf, del_slot - 1,
1177 struct btrfs_file_extent_item);
1178 btrfs_set_file_extent_type(leaf, fi,
1179 BTRFS_FILE_EXTENT_REG);
1180 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1181 btrfs_set_file_extent_num_bytes(leaf, fi,
1182 extent_end - key.offset);
1183 btrfs_mark_buffer_dirty(leaf);
1185 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1187 btrfs_abort_transaction(trans, root, ret);
1192 btrfs_free_path(path);
1197 * on error we return an unlocked page and the error value
1198 * on success we return a locked page and 0
1200 static int prepare_uptodate_page(struct page *page, u64 pos,
1201 bool force_uptodate)
1205 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1206 !PageUptodate(page)) {
1207 ret = btrfs_readpage(NULL, page);
1211 if (!PageUptodate(page)) {
1220 * this gets pages into the page cache and locks them down, it also properly
1221 * waits for data=ordered extents to finish before allowing the pages to be
1224 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1225 struct page **pages, size_t num_pages,
1226 loff_t pos, unsigned long first_index,
1227 size_t write_bytes, bool force_uptodate)
1229 struct extent_state *cached_state = NULL;
1231 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1232 struct inode *inode = file_inode(file);
1233 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1239 start_pos = pos & ~((u64)root->sectorsize - 1);
1240 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1243 for (i = 0; i < num_pages; i++) {
1244 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1245 mask | __GFP_WRITE);
1253 err = prepare_uptodate_page(pages[i], pos,
1255 if (i == num_pages - 1)
1256 err = prepare_uptodate_page(pages[i],
1257 pos + write_bytes, false);
1259 page_cache_release(pages[i]);
1263 wait_on_page_writeback(pages[i]);
1266 if (start_pos < inode->i_size) {
1267 struct btrfs_ordered_extent *ordered;
1268 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1269 start_pos, last_pos - 1, 0, &cached_state);
1270 ordered = btrfs_lookup_first_ordered_extent(inode,
1273 ordered->file_offset + ordered->len > start_pos &&
1274 ordered->file_offset < last_pos) {
1275 btrfs_put_ordered_extent(ordered);
1276 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1277 start_pos, last_pos - 1,
1278 &cached_state, GFP_NOFS);
1279 for (i = 0; i < num_pages; i++) {
1280 unlock_page(pages[i]);
1281 page_cache_release(pages[i]);
1283 btrfs_wait_ordered_range(inode, start_pos,
1284 last_pos - start_pos);
1288 btrfs_put_ordered_extent(ordered);
1290 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1291 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1292 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1293 0, 0, &cached_state, GFP_NOFS);
1294 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1295 start_pos, last_pos - 1, &cached_state,
1298 for (i = 0; i < num_pages; i++) {
1299 if (clear_page_dirty_for_io(pages[i]))
1300 account_page_redirty(pages[i]);
1301 set_page_extent_mapped(pages[i]);
1302 WARN_ON(!PageLocked(pages[i]));
1306 while (faili >= 0) {
1307 unlock_page(pages[faili]);
1308 page_cache_release(pages[faili]);
1315 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1319 struct inode *inode = file_inode(file);
1320 struct btrfs_root *root = BTRFS_I(inode)->root;
1321 struct page **pages = NULL;
1322 unsigned long first_index;
1323 size_t num_written = 0;
1326 bool force_page_uptodate = false;
1328 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1329 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1330 (sizeof(struct page *)));
1331 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1332 nrptrs = max(nrptrs, 8);
1333 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1337 first_index = pos >> PAGE_CACHE_SHIFT;
1339 while (iov_iter_count(i) > 0) {
1340 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1341 size_t write_bytes = min(iov_iter_count(i),
1342 nrptrs * (size_t)PAGE_CACHE_SIZE -
1344 size_t num_pages = (write_bytes + offset +
1345 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1349 WARN_ON(num_pages > nrptrs);
1352 * Fault pages before locking them in prepare_pages
1353 * to avoid recursive lock
1355 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1360 ret = btrfs_delalloc_reserve_space(inode,
1361 num_pages << PAGE_CACHE_SHIFT);
1366 * This is going to setup the pages array with the number of
1367 * pages we want, so we don't really need to worry about the
1368 * contents of pages from loop to loop
1370 ret = prepare_pages(root, file, pages, num_pages,
1371 pos, first_index, write_bytes,
1372 force_page_uptodate);
1374 btrfs_delalloc_release_space(inode,
1375 num_pages << PAGE_CACHE_SHIFT);
1379 copied = btrfs_copy_from_user(pos, num_pages,
1380 write_bytes, pages, i);
1383 * if we have trouble faulting in the pages, fall
1384 * back to one page at a time
1386 if (copied < write_bytes)
1390 force_page_uptodate = true;
1393 force_page_uptodate = false;
1394 dirty_pages = (copied + offset +
1395 PAGE_CACHE_SIZE - 1) >>
1400 * If we had a short copy we need to release the excess delaloc
1401 * bytes we reserved. We need to increment outstanding_extents
1402 * because btrfs_delalloc_release_space will decrement it, but
1403 * we still have an outstanding extent for the chunk we actually
1406 if (num_pages > dirty_pages) {
1408 spin_lock(&BTRFS_I(inode)->lock);
1409 BTRFS_I(inode)->outstanding_extents++;
1410 spin_unlock(&BTRFS_I(inode)->lock);
1412 btrfs_delalloc_release_space(inode,
1413 (num_pages - dirty_pages) <<
1418 ret = btrfs_dirty_pages(root, inode, pages,
1419 dirty_pages, pos, copied,
1422 btrfs_delalloc_release_space(inode,
1423 dirty_pages << PAGE_CACHE_SHIFT);
1424 btrfs_drop_pages(pages, num_pages);
1429 btrfs_drop_pages(pages, num_pages);
1433 balance_dirty_pages_ratelimited(inode->i_mapping);
1434 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1435 btrfs_btree_balance_dirty(root);
1438 num_written += copied;
1443 return num_written ? num_written : ret;
1446 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1447 const struct iovec *iov,
1448 unsigned long nr_segs, loff_t pos,
1449 loff_t *ppos, size_t count, size_t ocount)
1451 struct file *file = iocb->ki_filp;
1454 ssize_t written_buffered;
1458 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1461 if (written < 0 || written == count)
1466 iov_iter_init(&i, iov, nr_segs, count, written);
1467 written_buffered = __btrfs_buffered_write(file, &i, pos);
1468 if (written_buffered < 0) {
1469 err = written_buffered;
1472 endbyte = pos + written_buffered - 1;
1473 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1476 written += written_buffered;
1477 *ppos = pos + written_buffered;
1478 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1479 endbyte >> PAGE_CACHE_SHIFT);
1481 return written ? written : err;
1484 static void update_time_for_write(struct inode *inode)
1486 struct timespec now;
1488 if (IS_NOCMTIME(inode))
1491 now = current_fs_time(inode->i_sb);
1492 if (!timespec_equal(&inode->i_mtime, &now))
1493 inode->i_mtime = now;
1495 if (!timespec_equal(&inode->i_ctime, &now))
1496 inode->i_ctime = now;
1498 if (IS_I_VERSION(inode))
1499 inode_inc_iversion(inode);
1502 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1503 const struct iovec *iov,
1504 unsigned long nr_segs, loff_t pos)
1506 struct file *file = iocb->ki_filp;
1507 struct inode *inode = file_inode(file);
1508 struct btrfs_root *root = BTRFS_I(inode)->root;
1509 loff_t *ppos = &iocb->ki_pos;
1511 ssize_t num_written = 0;
1513 size_t count, ocount;
1514 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1516 sb_start_write(inode->i_sb);
1518 mutex_lock(&inode->i_mutex);
1520 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1522 mutex_unlock(&inode->i_mutex);
1527 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1528 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1530 mutex_unlock(&inode->i_mutex);
1535 mutex_unlock(&inode->i_mutex);
1539 err = file_remove_suid(file);
1541 mutex_unlock(&inode->i_mutex);
1546 * If BTRFS flips readonly due to some impossible error
1547 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1548 * although we have opened a file as writable, we have
1549 * to stop this write operation to ensure FS consistency.
1551 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1552 mutex_unlock(&inode->i_mutex);
1558 * We reserve space for updating the inode when we reserve space for the
1559 * extent we are going to write, so we will enospc out there. We don't
1560 * need to start yet another transaction to update the inode as we will
1561 * update the inode when we finish writing whatever data we write.
1563 update_time_for_write(inode);
1565 start_pos = round_down(pos, root->sectorsize);
1566 if (start_pos > i_size_read(inode)) {
1567 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1569 mutex_unlock(&inode->i_mutex);
1575 atomic_inc(&BTRFS_I(inode)->sync_writers);
1577 if (unlikely(file->f_flags & O_DIRECT)) {
1578 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1579 pos, ppos, count, ocount);
1583 iov_iter_init(&i, iov, nr_segs, count, num_written);
1585 num_written = __btrfs_buffered_write(file, &i, pos);
1586 if (num_written > 0)
1587 *ppos = pos + num_written;
1590 mutex_unlock(&inode->i_mutex);
1593 * we want to make sure fsync finds this change
1594 * but we haven't joined a transaction running right now.
1596 * Later on, someone is sure to update the inode and get the
1597 * real transid recorded.
1599 * We set last_trans now to the fs_info generation + 1,
1600 * this will either be one more than the running transaction
1601 * or the generation used for the next transaction if there isn't
1602 * one running right now.
1604 * We also have to set last_sub_trans to the current log transid,
1605 * otherwise subsequent syncs to a file that's been synced in this
1606 * transaction will appear to have already occured.
1608 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1609 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1610 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1611 err = generic_write_sync(file, pos, num_written);
1612 if (err < 0 && num_written > 0)
1617 atomic_dec(&BTRFS_I(inode)->sync_writers);
1619 sb_end_write(inode->i_sb);
1620 current->backing_dev_info = NULL;
1621 return num_written ? num_written : err;
1624 int btrfs_release_file(struct inode *inode, struct file *filp)
1627 * ordered_data_close is set by settattr when we are about to truncate
1628 * a file from a non-zero size to a zero size. This tries to
1629 * flush down new bytes that may have been written if the
1630 * application were using truncate to replace a file in place.
1632 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1633 &BTRFS_I(inode)->runtime_flags)) {
1634 struct btrfs_trans_handle *trans;
1635 struct btrfs_root *root = BTRFS_I(inode)->root;
1638 * We need to block on a committing transaction to keep us from
1639 * throwing a ordered operation on to the list and causing
1640 * something like sync to deadlock trying to flush out this
1643 trans = btrfs_start_transaction(root, 0);
1645 return PTR_ERR(trans);
1646 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1647 btrfs_end_transaction(trans, root);
1648 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1649 filemap_flush(inode->i_mapping);
1651 if (filp->private_data)
1652 btrfs_ioctl_trans_end(filp);
1657 * fsync call for both files and directories. This logs the inode into
1658 * the tree log instead of forcing full commits whenever possible.
1660 * It needs to call filemap_fdatawait so that all ordered extent updates are
1661 * in the metadata btree are up to date for copying to the log.
1663 * It drops the inode mutex before doing the tree log commit. This is an
1664 * important optimization for directories because holding the mutex prevents
1665 * new operations on the dir while we write to disk.
1667 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1669 struct dentry *dentry = file->f_path.dentry;
1670 struct inode *inode = dentry->d_inode;
1671 struct btrfs_root *root = BTRFS_I(inode)->root;
1673 struct btrfs_trans_handle *trans;
1676 trace_btrfs_sync_file(file, datasync);
1679 * We write the dirty pages in the range and wait until they complete
1680 * out of the ->i_mutex. If so, we can flush the dirty pages by
1681 * multi-task, and make the performance up. See
1682 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1684 atomic_inc(&BTRFS_I(inode)->sync_writers);
1685 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1686 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1687 &BTRFS_I(inode)->runtime_flags))
1688 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1689 atomic_dec(&BTRFS_I(inode)->sync_writers);
1693 mutex_lock(&inode->i_mutex);
1696 * We flush the dirty pages again to avoid some dirty pages in the
1699 atomic_inc(&root->log_batch);
1700 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1701 &BTRFS_I(inode)->runtime_flags);
1703 btrfs_wait_ordered_range(inode, start, end - start + 1);
1704 atomic_inc(&root->log_batch);
1707 * check the transaction that last modified this inode
1708 * and see if its already been committed
1710 if (!BTRFS_I(inode)->last_trans) {
1711 mutex_unlock(&inode->i_mutex);
1716 * if the last transaction that changed this file was before
1717 * the current transaction, we can bail out now without any
1721 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1722 BTRFS_I(inode)->last_trans <=
1723 root->fs_info->last_trans_committed) {
1724 BTRFS_I(inode)->last_trans = 0;
1727 * We'v had everything committed since the last time we were
1728 * modified so clear this flag in case it was set for whatever
1729 * reason, it's no longer relevant.
1731 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1732 &BTRFS_I(inode)->runtime_flags);
1733 mutex_unlock(&inode->i_mutex);
1738 * ok we haven't committed the transaction yet, lets do a commit
1740 if (file->private_data)
1741 btrfs_ioctl_trans_end(file);
1743 trans = btrfs_start_transaction(root, 0);
1744 if (IS_ERR(trans)) {
1745 ret = PTR_ERR(trans);
1746 mutex_unlock(&inode->i_mutex);
1750 ret = btrfs_log_dentry_safe(trans, root, dentry);
1752 mutex_unlock(&inode->i_mutex);
1756 /* we've logged all the items and now have a consistent
1757 * version of the file in the log. It is possible that
1758 * someone will come in and modify the file, but that's
1759 * fine because the log is consistent on disk, and we
1760 * have references to all of the file's extents
1762 * It is possible that someone will come in and log the
1763 * file again, but that will end up using the synchronization
1764 * inside btrfs_sync_log to keep things safe.
1766 mutex_unlock(&inode->i_mutex);
1768 if (ret != BTRFS_NO_LOG_SYNC) {
1771 * If we didn't already wait for ordered extents we need
1775 btrfs_wait_ordered_range(inode, start,
1777 ret = btrfs_commit_transaction(trans, root);
1779 ret = btrfs_sync_log(trans, root);
1781 ret = btrfs_end_transaction(trans, root);
1784 btrfs_wait_ordered_range(inode, start,
1787 ret = btrfs_commit_transaction(trans, root);
1791 ret = btrfs_end_transaction(trans, root);
1794 return ret > 0 ? -EIO : ret;
1797 static const struct vm_operations_struct btrfs_file_vm_ops = {
1798 .fault = filemap_fault,
1799 .page_mkwrite = btrfs_page_mkwrite,
1800 .remap_pages = generic_file_remap_pages,
1803 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1805 struct address_space *mapping = filp->f_mapping;
1807 if (!mapping->a_ops->readpage)
1810 file_accessed(filp);
1811 vma->vm_ops = &btrfs_file_vm_ops;
1816 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1817 int slot, u64 start, u64 end)
1819 struct btrfs_file_extent_item *fi;
1820 struct btrfs_key key;
1822 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1825 btrfs_item_key_to_cpu(leaf, &key, slot);
1826 if (key.objectid != btrfs_ino(inode) ||
1827 key.type != BTRFS_EXTENT_DATA_KEY)
1830 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1832 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1835 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1838 if (key.offset == end)
1840 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1845 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1846 struct btrfs_path *path, u64 offset, u64 end)
1848 struct btrfs_root *root = BTRFS_I(inode)->root;
1849 struct extent_buffer *leaf;
1850 struct btrfs_file_extent_item *fi;
1851 struct extent_map *hole_em;
1852 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1853 struct btrfs_key key;
1856 key.objectid = btrfs_ino(inode);
1857 key.type = BTRFS_EXTENT_DATA_KEY;
1858 key.offset = offset;
1861 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1866 leaf = path->nodes[0];
1867 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1871 fi = btrfs_item_ptr(leaf, path->slots[0],
1872 struct btrfs_file_extent_item);
1873 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1875 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1876 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1877 btrfs_set_file_extent_offset(leaf, fi, 0);
1878 btrfs_mark_buffer_dirty(leaf);
1882 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1886 key.offset = offset;
1887 btrfs_set_item_key_safe(trans, root, path, &key);
1888 fi = btrfs_item_ptr(leaf, path->slots[0],
1889 struct btrfs_file_extent_item);
1890 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1892 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1893 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1894 btrfs_set_file_extent_offset(leaf, fi, 0);
1895 btrfs_mark_buffer_dirty(leaf);
1898 btrfs_release_path(path);
1900 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1901 0, 0, end - offset, 0, end - offset,
1907 btrfs_release_path(path);
1909 hole_em = alloc_extent_map();
1911 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1912 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1913 &BTRFS_I(inode)->runtime_flags);
1915 hole_em->start = offset;
1916 hole_em->len = end - offset;
1917 hole_em->orig_start = offset;
1919 hole_em->block_start = EXTENT_MAP_HOLE;
1920 hole_em->block_len = 0;
1921 hole_em->orig_block_len = 0;
1922 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1923 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1924 hole_em->generation = trans->transid;
1927 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1928 write_lock(&em_tree->lock);
1929 ret = add_extent_mapping(em_tree, hole_em);
1931 list_move(&hole_em->list,
1932 &em_tree->modified_extents);
1933 write_unlock(&em_tree->lock);
1934 } while (ret == -EEXIST);
1935 free_extent_map(hole_em);
1937 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1938 &BTRFS_I(inode)->runtime_flags);
1944 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1946 struct btrfs_root *root = BTRFS_I(inode)->root;
1947 struct extent_state *cached_state = NULL;
1948 struct btrfs_path *path;
1949 struct btrfs_block_rsv *rsv;
1950 struct btrfs_trans_handle *trans;
1951 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1952 u64 lockend = round_down(offset + len,
1953 BTRFS_I(inode)->root->sectorsize) - 1;
1954 u64 cur_offset = lockstart;
1955 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1959 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1960 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
1962 btrfs_wait_ordered_range(inode, offset, len);
1964 mutex_lock(&inode->i_mutex);
1966 * We needn't truncate any page which is beyond the end of the file
1967 * because we are sure there is no data there.
1970 * Only do this if we are in the same page and we aren't doing the
1973 if (same_page && len < PAGE_CACHE_SIZE) {
1974 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
1975 ret = btrfs_truncate_page(inode, offset, len, 0);
1976 mutex_unlock(&inode->i_mutex);
1980 /* zero back part of the first page */
1981 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1982 ret = btrfs_truncate_page(inode, offset, 0, 0);
1984 mutex_unlock(&inode->i_mutex);
1989 /* zero the front end of the last page */
1990 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1991 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1993 mutex_unlock(&inode->i_mutex);
1998 if (lockend < lockstart) {
1999 mutex_unlock(&inode->i_mutex);
2004 struct btrfs_ordered_extent *ordered;
2006 truncate_pagecache_range(inode, lockstart, lockend);
2008 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2010 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2013 * We need to make sure we have no ordered extents in this range
2014 * and nobody raced in and read a page in this range, if we did
2015 * we need to try again.
2018 (ordered->file_offset + ordered->len < lockstart ||
2019 ordered->file_offset > lockend)) &&
2020 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2021 lockend, EXTENT_UPTODATE, 0,
2024 btrfs_put_ordered_extent(ordered);
2028 btrfs_put_ordered_extent(ordered);
2029 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2030 lockend, &cached_state, GFP_NOFS);
2031 btrfs_wait_ordered_range(inode, lockstart,
2032 lockend - lockstart + 1);
2035 path = btrfs_alloc_path();
2041 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2046 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2050 * 1 - update the inode
2051 * 1 - removing the extents in the range
2052 * 1 - adding the hole extent
2054 trans = btrfs_start_transaction(root, 3);
2055 if (IS_ERR(trans)) {
2056 err = PTR_ERR(trans);
2060 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2063 trans->block_rsv = rsv;
2065 while (cur_offset < lockend) {
2066 ret = __btrfs_drop_extents(trans, root, inode, path,
2067 cur_offset, lockend + 1,
2072 trans->block_rsv = &root->fs_info->trans_block_rsv;
2074 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2080 cur_offset = drop_end;
2082 ret = btrfs_update_inode(trans, root, inode);
2088 btrfs_end_transaction(trans, root);
2089 btrfs_btree_balance_dirty(root);
2091 trans = btrfs_start_transaction(root, 3);
2092 if (IS_ERR(trans)) {
2093 ret = PTR_ERR(trans);
2098 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2100 BUG_ON(ret); /* shouldn't happen */
2101 trans->block_rsv = rsv;
2109 trans->block_rsv = &root->fs_info->trans_block_rsv;
2110 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2120 inode_inc_iversion(inode);
2121 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2123 trans->block_rsv = &root->fs_info->trans_block_rsv;
2124 ret = btrfs_update_inode(trans, root, inode);
2125 btrfs_end_transaction(trans, root);
2126 btrfs_btree_balance_dirty(root);
2128 btrfs_free_path(path);
2129 btrfs_free_block_rsv(root, rsv);
2131 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2132 &cached_state, GFP_NOFS);
2133 mutex_unlock(&inode->i_mutex);
2139 static long btrfs_fallocate(struct file *file, int mode,
2140 loff_t offset, loff_t len)
2142 struct inode *inode = file_inode(file);
2143 struct extent_state *cached_state = NULL;
2150 struct extent_map *em;
2151 int blocksize = BTRFS_I(inode)->root->sectorsize;
2154 alloc_start = round_down(offset, blocksize);
2155 alloc_end = round_up(offset + len, blocksize);
2157 /* Make sure we aren't being give some crap mode */
2158 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2161 if (mode & FALLOC_FL_PUNCH_HOLE)
2162 return btrfs_punch_hole(inode, offset, len);
2165 * Make sure we have enough space before we do the
2168 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2173 * wait for ordered IO before we have any locks. We'll loop again
2174 * below with the locks held.
2176 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2178 mutex_lock(&inode->i_mutex);
2179 ret = inode_newsize_ok(inode, alloc_end);
2183 if (alloc_start > inode->i_size) {
2184 ret = btrfs_cont_expand(inode, i_size_read(inode),
2190 locked_end = alloc_end - 1;
2192 struct btrfs_ordered_extent *ordered;
2194 /* the extent lock is ordered inside the running
2197 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2198 locked_end, 0, &cached_state);
2199 ordered = btrfs_lookup_first_ordered_extent(inode,
2202 ordered->file_offset + ordered->len > alloc_start &&
2203 ordered->file_offset < alloc_end) {
2204 btrfs_put_ordered_extent(ordered);
2205 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2206 alloc_start, locked_end,
2207 &cached_state, GFP_NOFS);
2209 * we can't wait on the range with the transaction
2210 * running or with the extent lock held
2212 btrfs_wait_ordered_range(inode, alloc_start,
2213 alloc_end - alloc_start);
2216 btrfs_put_ordered_extent(ordered);
2221 cur_offset = alloc_start;
2225 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2226 alloc_end - cur_offset, 0);
2227 if (IS_ERR_OR_NULL(em)) {
2234 last_byte = min(extent_map_end(em), alloc_end);
2235 actual_end = min_t(u64, extent_map_end(em), offset + len);
2236 last_byte = ALIGN(last_byte, blocksize);
2238 if (em->block_start == EXTENT_MAP_HOLE ||
2239 (cur_offset >= inode->i_size &&
2240 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2241 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2242 last_byte - cur_offset,
2243 1 << inode->i_blkbits,
2248 free_extent_map(em);
2251 } else if (actual_end > inode->i_size &&
2252 !(mode & FALLOC_FL_KEEP_SIZE)) {
2254 * We didn't need to allocate any more space, but we
2255 * still extended the size of the file so we need to
2258 inode->i_ctime = CURRENT_TIME;
2259 i_size_write(inode, actual_end);
2260 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2262 free_extent_map(em);
2264 cur_offset = last_byte;
2265 if (cur_offset >= alloc_end) {
2270 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2271 &cached_state, GFP_NOFS);
2273 mutex_unlock(&inode->i_mutex);
2274 /* Let go of our reservation. */
2275 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2279 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2281 struct btrfs_root *root = BTRFS_I(inode)->root;
2282 struct extent_map *em;
2283 struct extent_state *cached_state = NULL;
2284 u64 lockstart = *offset;
2285 u64 lockend = i_size_read(inode);
2286 u64 start = *offset;
2287 u64 orig_start = *offset;
2288 u64 len = i_size_read(inode);
2292 lockend = max_t(u64, root->sectorsize, lockend);
2293 if (lockend <= lockstart)
2294 lockend = lockstart + root->sectorsize;
2297 len = lockend - lockstart + 1;
2299 len = max_t(u64, len, root->sectorsize);
2300 if (inode->i_size == 0)
2303 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2307 * Delalloc is such a pain. If we have a hole and we have pending
2308 * delalloc for a portion of the hole we will get back a hole that
2309 * exists for the entire range since it hasn't been actually written
2310 * yet. So to take care of this case we need to look for an extent just
2311 * before the position we want in case there is outstanding delalloc
2314 if (whence == SEEK_HOLE && start != 0) {
2315 if (start <= root->sectorsize)
2316 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2317 root->sectorsize, 0);
2319 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2320 start - root->sectorsize,
2321 root->sectorsize, 0);
2326 last_end = em->start + em->len;
2327 if (em->block_start == EXTENT_MAP_DELALLOC)
2328 last_end = min_t(u64, last_end, inode->i_size);
2329 free_extent_map(em);
2333 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2339 if (em->block_start == EXTENT_MAP_HOLE) {
2340 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2341 if (last_end <= orig_start) {
2342 free_extent_map(em);
2348 if (whence == SEEK_HOLE) {
2350 free_extent_map(em);
2354 if (whence == SEEK_DATA) {
2355 if (em->block_start == EXTENT_MAP_DELALLOC) {
2356 if (start >= inode->i_size) {
2357 free_extent_map(em);
2363 if (!test_bit(EXTENT_FLAG_PREALLOC,
2366 free_extent_map(em);
2372 start = em->start + em->len;
2373 last_end = em->start + em->len;
2375 if (em->block_start == EXTENT_MAP_DELALLOC)
2376 last_end = min_t(u64, last_end, inode->i_size);
2378 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2379 free_extent_map(em);
2383 free_extent_map(em);
2387 *offset = min(*offset, inode->i_size);
2389 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2390 &cached_state, GFP_NOFS);
2394 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2396 struct inode *inode = file->f_mapping->host;
2399 mutex_lock(&inode->i_mutex);
2403 offset = generic_file_llseek(file, offset, whence);
2407 if (offset >= i_size_read(inode)) {
2408 mutex_unlock(&inode->i_mutex);
2412 ret = find_desired_extent(inode, &offset, whence);
2414 mutex_unlock(&inode->i_mutex);
2419 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2423 if (offset > inode->i_sb->s_maxbytes) {
2428 /* Special lock needed here? */
2429 if (offset != file->f_pos) {
2430 file->f_pos = offset;
2431 file->f_version = 0;
2434 mutex_unlock(&inode->i_mutex);
2438 const struct file_operations btrfs_file_operations = {
2439 .llseek = btrfs_file_llseek,
2440 .read = do_sync_read,
2441 .write = do_sync_write,
2442 .aio_read = generic_file_aio_read,
2443 .splice_read = generic_file_splice_read,
2444 .aio_write = btrfs_file_aio_write,
2445 .mmap = btrfs_file_mmap,
2446 .open = generic_file_open,
2447 .release = btrfs_release_file,
2448 .fsync = btrfs_sync_file,
2449 .fallocate = btrfs_fallocate,
2450 .unlocked_ioctl = btrfs_ioctl,
2451 #ifdef CONFIG_COMPAT
2452 .compat_ioctl = btrfs_ioctl,
2456 void btrfs_auto_defrag_exit(void)
2458 if (btrfs_inode_defrag_cachep)
2459 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2462 int btrfs_auto_defrag_init(void)
2464 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2465 sizeof(struct inode_defrag), 0,
2466 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2468 if (!btrfs_inode_defrag_cachep)