2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
38 #include "print-tree.h"
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
51 struct rb_node rb_node;
55 * transid where the defrag was added, we search for
56 * extents newer than this
63 /* last offset we were able to defrag */
66 /* if we've wrapped around back to zero once already */
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
73 if (defrag1->root > defrag2->root)
75 else if (defrag1->root < defrag2->root)
77 else if (defrag1->ino > defrag2->ino)
79 else if (defrag1->ino < defrag2->ino)
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
91 * If an existing record is found the defrag item you
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
100 struct rb_node *parent = NULL;
103 p = &root->fs_info->defrag_inodes.rb_node;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
108 ret = __compare_inode_defrag(defrag, entry);
110 p = &parent->rb_left;
112 p = &parent->rb_right;
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
131 static inline int __need_auto_defrag(struct btrfs_root *root)
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
136 if (btrfs_fs_closing(root->fs_info))
143 * insert a defrag record for this inode if auto defrag is
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
154 if (!__need_auto_defrag(root))
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
161 transid = trans->transid;
163 transid = BTRFS_I(inode)->root->last_trans;
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 ret = __btrfs_add_inode_defrag(inode, defrag);
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195 void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
198 struct btrfs_root *root = BTRFS_I(inode)->root;
201 if (!__need_auto_defrag(root))
205 * Here we don't check the IN_DEFRAG flag, because we need merge
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
219 * pick the defragable inode that we want, if it doesn't exist, we will get
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
228 struct rb_node *parent = NULL;
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
240 ret = __compare_inode_defrag(&tmp, entry);
244 p = parent->rb_right;
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 struct inode_defrag *defrag;
266 struct rb_node *node;
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
278 spin_lock(&fs_info->defrag_inodes_lock);
281 node = rb_first(&fs_info->defrag_inodes);
283 spin_unlock(&fs_info->defrag_inodes_lock);
286 #define BTRFS_DEFRAG_BATCH 1024
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
291 struct btrfs_root *inode_root;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
298 key.objectid = defrag->root;
299 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
300 key.offset = (u64)-1;
301 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
302 if (IS_ERR(inode_root)) {
303 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
304 return PTR_ERR(inode_root);
307 key.objectid = defrag->ino;
308 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
310 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
312 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
313 return PTR_ERR(inode);
316 /* do a chunk of defrag */
317 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
318 memset(&range, 0, sizeof(range));
320 range.start = defrag->last_offset;
322 sb_start_write(fs_info->sb);
323 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
325 sb_end_write(fs_info->sb);
327 * if we filled the whole defrag batch, there
328 * must be more work to do. Queue this defrag
331 if (num_defrag == BTRFS_DEFRAG_BATCH) {
332 defrag->last_offset = range.start;
333 btrfs_requeue_inode_defrag(inode, defrag);
334 } else if (defrag->last_offset && !defrag->cycled) {
336 * we didn't fill our defrag batch, but
337 * we didn't start at zero. Make sure we loop
338 * around to the start of the file.
340 defrag->last_offset = 0;
342 btrfs_requeue_inode_defrag(inode, defrag);
344 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
352 * run through the list of inodes in the FS that need
355 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
357 struct inode_defrag *defrag;
359 u64 root_objectid = 0;
361 atomic_inc(&fs_info->defrag_running);
363 if (!__need_auto_defrag(fs_info->tree_root))
366 /* find an inode to defrag */
367 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
370 if (root_objectid || first_ino) {
379 first_ino = defrag->ino + 1;
380 root_objectid = defrag->root;
382 __btrfs_run_defrag_inode(fs_info, defrag);
384 atomic_dec(&fs_info->defrag_running);
387 * during unmount, we use the transaction_wait queue to
388 * wait for the defragger to stop
390 wake_up(&fs_info->transaction_wait);
394 /* simple helper to fault in pages and copy. This should go away
395 * and be replaced with calls into generic code.
397 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
399 struct page **prepared_pages,
403 size_t total_copied = 0;
405 int offset = pos & (PAGE_CACHE_SIZE - 1);
407 while (write_bytes > 0) {
408 size_t count = min_t(size_t,
409 PAGE_CACHE_SIZE - offset, write_bytes);
410 struct page *page = prepared_pages[pg];
412 * Copy data from userspace to the current page
414 * Disable pagefault to avoid recursive lock since
415 * the pages are already locked
418 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
421 /* Flush processor's dcache for this page */
422 flush_dcache_page(page);
425 * if we get a partial write, we can end up with
426 * partially up to date pages. These add
427 * a lot of complexity, so make sure they don't
428 * happen by forcing this copy to be retried.
430 * The rest of the btrfs_file_write code will fall
431 * back to page at a time copies after we return 0.
433 if (!PageUptodate(page) && copied < count)
436 iov_iter_advance(i, copied);
437 write_bytes -= copied;
438 total_copied += copied;
440 /* Return to btrfs_file_aio_write to fault page */
441 if (unlikely(copied == 0))
444 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
455 * unlocks pages after btrfs_file_write is done with them
457 void btrfs_drop_pages(struct page **pages, size_t num_pages)
460 for (i = 0; i < num_pages; i++) {
461 /* page checked is some magic around finding pages that
462 * have been modified without going through btrfs_set_page_dirty
465 ClearPageChecked(pages[i]);
466 unlock_page(pages[i]);
467 mark_page_accessed(pages[i]);
468 page_cache_release(pages[i]);
473 * after copy_from_user, pages need to be dirtied and we need to make
474 * sure holes are created between the current EOF and the start of
475 * any next extents (if required).
477 * this also makes the decision about creating an inline extent vs
478 * doing real data extents, marking pages dirty and delalloc as required.
480 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
481 struct page **pages, size_t num_pages,
482 loff_t pos, size_t write_bytes,
483 struct extent_state **cached)
489 u64 end_of_last_block;
490 u64 end_pos = pos + write_bytes;
491 loff_t isize = i_size_read(inode);
493 start_pos = pos & ~((u64)root->sectorsize - 1);
494 num_bytes = (write_bytes + pos - start_pos +
495 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
497 end_of_last_block = start_pos + num_bytes - 1;
498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
503 for (i = 0; i < num_pages; i++) {
504 struct page *p = pages[i];
511 * we've only changed i_size in ram, and we haven't updated
512 * the disk i_size. There is no need to log the inode
516 i_size_write(inode, end_pos);
521 * this drops all the extents in the cache that intersect the range
522 * [start, end]. Existing extents are split as required.
524 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
527 struct extent_map *em;
528 struct extent_map *split = NULL;
529 struct extent_map *split2 = NULL;
530 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
531 u64 len = end - start + 1;
538 WARN_ON(end < start);
539 if (end == (u64)-1) {
547 split = alloc_extent_map();
549 split2 = alloc_extent_map();
550 if (!split || !split2)
553 write_lock(&em_tree->lock);
554 em = lookup_extent_mapping(em_tree, start, len);
556 write_unlock(&em_tree->lock);
560 gen = em->generation;
561 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
562 if (testend && em->start + em->len >= start + len) {
564 write_unlock(&em_tree->lock);
567 start = em->start + em->len;
569 len = start + len - (em->start + em->len);
571 write_unlock(&em_tree->lock);
574 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
575 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
576 remove_extent_mapping(em_tree, em);
580 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
582 split->start = em->start;
583 split->len = start - em->start;
584 split->orig_start = em->orig_start;
585 split->block_start = em->block_start;
588 split->block_len = em->block_len;
590 split->block_len = split->len;
591 split->generation = gen;
592 split->bdev = em->bdev;
593 split->flags = flags;
594 split->compress_type = em->compress_type;
595 ret = add_extent_mapping(em_tree, split);
596 BUG_ON(ret); /* Logic error */
597 list_move(&split->list, &em_tree->modified_extents);
598 free_extent_map(split);
602 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
603 testend && em->start + em->len > start + len) {
604 u64 diff = start + len - em->start;
606 split->start = start + len;
607 split->len = em->start + em->len - (start + len);
608 split->bdev = em->bdev;
609 split->flags = flags;
610 split->compress_type = em->compress_type;
611 split->generation = gen;
614 split->block_len = em->block_len;
615 split->block_start = em->block_start;
616 split->orig_start = em->orig_start;
618 split->block_len = split->len;
619 split->block_start = em->block_start + diff;
620 split->orig_start = split->start;
623 ret = add_extent_mapping(em_tree, split);
624 BUG_ON(ret); /* Logic error */
625 list_move(&split->list, &em_tree->modified_extents);
626 free_extent_map(split);
630 write_unlock(&em_tree->lock);
634 /* once for the tree*/
638 free_extent_map(split);
640 free_extent_map(split2);
644 * this is very complex, but the basic idea is to drop all extents
645 * in the range start - end. hint_block is filled in with a block number
646 * that would be a good hint to the block allocator for this file.
648 * If an extent intersects the range but is not entirely inside the range
649 * it is either truncated or split. Anything entirely inside the range
650 * is deleted from the tree.
652 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
653 struct btrfs_root *root, struct inode *inode,
654 struct btrfs_path *path, u64 start, u64 end,
655 u64 *drop_end, int drop_cache)
657 struct extent_buffer *leaf;
658 struct btrfs_file_extent_item *fi;
659 struct btrfs_key key;
660 struct btrfs_key new_key;
661 u64 ino = btrfs_ino(inode);
662 u64 search_start = start;
665 u64 extent_offset = 0;
672 int modify_tree = -1;
673 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
677 btrfs_drop_extent_cache(inode, start, end - 1, 0);
679 if (start >= BTRFS_I(inode)->disk_i_size)
684 ret = btrfs_lookup_file_extent(trans, root, path, ino,
685 search_start, modify_tree);
688 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
689 leaf = path->nodes[0];
690 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
691 if (key.objectid == ino &&
692 key.type == BTRFS_EXTENT_DATA_KEY)
697 leaf = path->nodes[0];
698 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
700 ret = btrfs_next_leaf(root, path);
707 leaf = path->nodes[0];
711 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
712 if (key.objectid > ino ||
713 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
716 fi = btrfs_item_ptr(leaf, path->slots[0],
717 struct btrfs_file_extent_item);
718 extent_type = btrfs_file_extent_type(leaf, fi);
720 if (extent_type == BTRFS_FILE_EXTENT_REG ||
721 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
722 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
723 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
724 extent_offset = btrfs_file_extent_offset(leaf, fi);
725 extent_end = key.offset +
726 btrfs_file_extent_num_bytes(leaf, fi);
727 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
728 extent_end = key.offset +
729 btrfs_file_extent_inline_len(leaf, fi);
732 extent_end = search_start;
735 if (extent_end <= search_start) {
741 search_start = max(key.offset, start);
742 if (recow || !modify_tree) {
744 btrfs_release_path(path);
749 * | - range to drop - |
750 * | -------- extent -------- |
752 if (start > key.offset && end < extent_end) {
754 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
756 memcpy(&new_key, &key, sizeof(new_key));
757 new_key.offset = start;
758 ret = btrfs_duplicate_item(trans, root, path,
760 if (ret == -EAGAIN) {
761 btrfs_release_path(path);
767 leaf = path->nodes[0];
768 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
769 struct btrfs_file_extent_item);
770 btrfs_set_file_extent_num_bytes(leaf, fi,
773 fi = btrfs_item_ptr(leaf, path->slots[0],
774 struct btrfs_file_extent_item);
776 extent_offset += start - key.offset;
777 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
778 btrfs_set_file_extent_num_bytes(leaf, fi,
780 btrfs_mark_buffer_dirty(leaf);
782 if (update_refs && disk_bytenr > 0) {
783 ret = btrfs_inc_extent_ref(trans, root,
784 disk_bytenr, num_bytes, 0,
785 root->root_key.objectid,
787 start - extent_offset, 0);
788 BUG_ON(ret); /* -ENOMEM */
793 * | ---- range to drop ----- |
794 * | -------- extent -------- |
796 if (start <= key.offset && end < extent_end) {
797 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
799 memcpy(&new_key, &key, sizeof(new_key));
800 new_key.offset = end;
801 btrfs_set_item_key_safe(trans, root, path, &new_key);
803 extent_offset += end - key.offset;
804 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
805 btrfs_set_file_extent_num_bytes(leaf, fi,
807 btrfs_mark_buffer_dirty(leaf);
808 if (update_refs && disk_bytenr > 0)
809 inode_sub_bytes(inode, end - key.offset);
813 search_start = extent_end;
815 * | ---- range to drop ----- |
816 * | -------- extent -------- |
818 if (start > key.offset && end >= extent_end) {
820 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
822 btrfs_set_file_extent_num_bytes(leaf, fi,
824 btrfs_mark_buffer_dirty(leaf);
825 if (update_refs && disk_bytenr > 0)
826 inode_sub_bytes(inode, extent_end - start);
827 if (end == extent_end)
835 * | ---- range to drop ----- |
836 * | ------ extent ------ |
838 if (start <= key.offset && end >= extent_end) {
840 del_slot = path->slots[0];
843 BUG_ON(del_slot + del_nr != path->slots[0]);
848 extent_type == BTRFS_FILE_EXTENT_INLINE) {
849 inode_sub_bytes(inode,
850 extent_end - key.offset);
851 extent_end = ALIGN(extent_end,
853 } else if (update_refs && disk_bytenr > 0) {
854 ret = btrfs_free_extent(trans, root,
855 disk_bytenr, num_bytes, 0,
856 root->root_key.objectid,
857 key.objectid, key.offset -
859 BUG_ON(ret); /* -ENOMEM */
860 inode_sub_bytes(inode,
861 extent_end - key.offset);
864 if (end == extent_end)
867 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
872 ret = btrfs_del_items(trans, root, path, del_slot,
875 btrfs_abort_transaction(trans, root, ret);
882 btrfs_release_path(path);
889 if (!ret && del_nr > 0) {
890 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
892 btrfs_abort_transaction(trans, root, ret);
896 *drop_end = found ? min(end, extent_end) : end;
897 btrfs_release_path(path);
901 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
902 struct btrfs_root *root, struct inode *inode, u64 start,
903 u64 end, int drop_cache)
905 struct btrfs_path *path;
908 path = btrfs_alloc_path();
911 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
913 btrfs_free_path(path);
917 static int extent_mergeable(struct extent_buffer *leaf, int slot,
918 u64 objectid, u64 bytenr, u64 orig_offset,
919 u64 *start, u64 *end)
921 struct btrfs_file_extent_item *fi;
922 struct btrfs_key key;
925 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
928 btrfs_item_key_to_cpu(leaf, &key, slot);
929 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
932 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
933 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
934 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
935 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
936 btrfs_file_extent_compression(leaf, fi) ||
937 btrfs_file_extent_encryption(leaf, fi) ||
938 btrfs_file_extent_other_encoding(leaf, fi))
941 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
942 if ((*start && *start != key.offset) || (*end && *end != extent_end))
951 * Mark extent in the range start - end as written.
953 * This changes extent type from 'pre-allocated' to 'regular'. If only
954 * part of extent is marked as written, the extent will be split into
957 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
958 struct inode *inode, u64 start, u64 end)
960 struct btrfs_root *root = BTRFS_I(inode)->root;
961 struct extent_buffer *leaf;
962 struct btrfs_path *path;
963 struct btrfs_file_extent_item *fi;
964 struct btrfs_key key;
965 struct btrfs_key new_key;
977 u64 ino = btrfs_ino(inode);
979 path = btrfs_alloc_path();
986 key.type = BTRFS_EXTENT_DATA_KEY;
989 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
992 if (ret > 0 && path->slots[0] > 0)
995 leaf = path->nodes[0];
996 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
997 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
998 fi = btrfs_item_ptr(leaf, path->slots[0],
999 struct btrfs_file_extent_item);
1000 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1001 BTRFS_FILE_EXTENT_PREALLOC);
1002 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1003 BUG_ON(key.offset > start || extent_end < end);
1005 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1006 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1007 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1008 memcpy(&new_key, &key, sizeof(new_key));
1010 if (start == key.offset && end < extent_end) {
1013 if (extent_mergeable(leaf, path->slots[0] - 1,
1014 ino, bytenr, orig_offset,
1015 &other_start, &other_end)) {
1016 new_key.offset = end;
1017 btrfs_set_item_key_safe(trans, root, path, &new_key);
1018 fi = btrfs_item_ptr(leaf, path->slots[0],
1019 struct btrfs_file_extent_item);
1020 btrfs_set_file_extent_generation(leaf, fi,
1022 btrfs_set_file_extent_num_bytes(leaf, fi,
1024 btrfs_set_file_extent_offset(leaf, fi,
1026 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1027 struct btrfs_file_extent_item);
1028 btrfs_set_file_extent_generation(leaf, fi,
1030 btrfs_set_file_extent_num_bytes(leaf, fi,
1032 btrfs_mark_buffer_dirty(leaf);
1037 if (start > key.offset && end == extent_end) {
1040 if (extent_mergeable(leaf, path->slots[0] + 1,
1041 ino, bytenr, orig_offset,
1042 &other_start, &other_end)) {
1043 fi = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_file_extent_item);
1045 btrfs_set_file_extent_num_bytes(leaf, fi,
1046 start - key.offset);
1047 btrfs_set_file_extent_generation(leaf, fi,
1050 new_key.offset = start;
1051 btrfs_set_item_key_safe(trans, root, path, &new_key);
1053 fi = btrfs_item_ptr(leaf, path->slots[0],
1054 struct btrfs_file_extent_item);
1055 btrfs_set_file_extent_generation(leaf, fi,
1057 btrfs_set_file_extent_num_bytes(leaf, fi,
1059 btrfs_set_file_extent_offset(leaf, fi,
1060 start - orig_offset);
1061 btrfs_mark_buffer_dirty(leaf);
1066 while (start > key.offset || end < extent_end) {
1067 if (key.offset == start)
1070 new_key.offset = split;
1071 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1072 if (ret == -EAGAIN) {
1073 btrfs_release_path(path);
1077 btrfs_abort_transaction(trans, root, ret);
1081 leaf = path->nodes[0];
1082 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1083 struct btrfs_file_extent_item);
1084 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1085 btrfs_set_file_extent_num_bytes(leaf, fi,
1086 split - key.offset);
1088 fi = btrfs_item_ptr(leaf, path->slots[0],
1089 struct btrfs_file_extent_item);
1091 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1092 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1093 btrfs_set_file_extent_num_bytes(leaf, fi,
1094 extent_end - split);
1095 btrfs_mark_buffer_dirty(leaf);
1097 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1098 root->root_key.objectid,
1099 ino, orig_offset, 0);
1100 BUG_ON(ret); /* -ENOMEM */
1102 if (split == start) {
1105 BUG_ON(start != key.offset);
1114 if (extent_mergeable(leaf, path->slots[0] + 1,
1115 ino, bytenr, orig_offset,
1116 &other_start, &other_end)) {
1118 btrfs_release_path(path);
1121 extent_end = other_end;
1122 del_slot = path->slots[0] + 1;
1124 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1125 0, root->root_key.objectid,
1126 ino, orig_offset, 0);
1127 BUG_ON(ret); /* -ENOMEM */
1131 if (extent_mergeable(leaf, path->slots[0] - 1,
1132 ino, bytenr, orig_offset,
1133 &other_start, &other_end)) {
1135 btrfs_release_path(path);
1138 key.offset = other_start;
1139 del_slot = path->slots[0];
1141 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1142 0, root->root_key.objectid,
1143 ino, orig_offset, 0);
1144 BUG_ON(ret); /* -ENOMEM */
1147 fi = btrfs_item_ptr(leaf, path->slots[0],
1148 struct btrfs_file_extent_item);
1149 btrfs_set_file_extent_type(leaf, fi,
1150 BTRFS_FILE_EXTENT_REG);
1151 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1152 btrfs_mark_buffer_dirty(leaf);
1154 fi = btrfs_item_ptr(leaf, del_slot - 1,
1155 struct btrfs_file_extent_item);
1156 btrfs_set_file_extent_type(leaf, fi,
1157 BTRFS_FILE_EXTENT_REG);
1158 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1159 btrfs_set_file_extent_num_bytes(leaf, fi,
1160 extent_end - key.offset);
1161 btrfs_mark_buffer_dirty(leaf);
1163 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1165 btrfs_abort_transaction(trans, root, ret);
1170 btrfs_free_path(path);
1175 * on error we return an unlocked page and the error value
1176 * on success we return a locked page and 0
1178 static int prepare_uptodate_page(struct page *page, u64 pos,
1179 bool force_uptodate)
1183 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1184 !PageUptodate(page)) {
1185 ret = btrfs_readpage(NULL, page);
1189 if (!PageUptodate(page)) {
1198 * this gets pages into the page cache and locks them down, it also properly
1199 * waits for data=ordered extents to finish before allowing the pages to be
1202 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1203 struct page **pages, size_t num_pages,
1204 loff_t pos, unsigned long first_index,
1205 size_t write_bytes, bool force_uptodate)
1207 struct extent_state *cached_state = NULL;
1209 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1210 struct inode *inode = fdentry(file)->d_inode;
1211 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1217 start_pos = pos & ~((u64)root->sectorsize - 1);
1218 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1221 for (i = 0; i < num_pages; i++) {
1222 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1223 mask | __GFP_WRITE);
1231 err = prepare_uptodate_page(pages[i], pos,
1233 if (i == num_pages - 1)
1234 err = prepare_uptodate_page(pages[i],
1235 pos + write_bytes, false);
1237 page_cache_release(pages[i]);
1241 wait_on_page_writeback(pages[i]);
1244 if (start_pos < inode->i_size) {
1245 struct btrfs_ordered_extent *ordered;
1246 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1247 start_pos, last_pos - 1, 0, &cached_state);
1248 ordered = btrfs_lookup_first_ordered_extent(inode,
1251 ordered->file_offset + ordered->len > start_pos &&
1252 ordered->file_offset < last_pos) {
1253 btrfs_put_ordered_extent(ordered);
1254 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1255 start_pos, last_pos - 1,
1256 &cached_state, GFP_NOFS);
1257 for (i = 0; i < num_pages; i++) {
1258 unlock_page(pages[i]);
1259 page_cache_release(pages[i]);
1261 btrfs_wait_ordered_range(inode, start_pos,
1262 last_pos - start_pos);
1266 btrfs_put_ordered_extent(ordered);
1268 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1269 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1270 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1271 0, 0, &cached_state, GFP_NOFS);
1272 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1273 start_pos, last_pos - 1, &cached_state,
1276 for (i = 0; i < num_pages; i++) {
1277 if (clear_page_dirty_for_io(pages[i]))
1278 account_page_redirty(pages[i]);
1279 set_page_extent_mapped(pages[i]);
1280 WARN_ON(!PageLocked(pages[i]));
1284 while (faili >= 0) {
1285 unlock_page(pages[faili]);
1286 page_cache_release(pages[faili]);
1293 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1297 struct inode *inode = fdentry(file)->d_inode;
1298 struct btrfs_root *root = BTRFS_I(inode)->root;
1299 struct page **pages = NULL;
1300 unsigned long first_index;
1301 size_t num_written = 0;
1304 bool force_page_uptodate = false;
1306 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1307 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1308 (sizeof(struct page *)));
1309 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1310 nrptrs = max(nrptrs, 8);
1311 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1315 first_index = pos >> PAGE_CACHE_SHIFT;
1317 while (iov_iter_count(i) > 0) {
1318 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1319 size_t write_bytes = min(iov_iter_count(i),
1320 nrptrs * (size_t)PAGE_CACHE_SIZE -
1322 size_t num_pages = (write_bytes + offset +
1323 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1327 WARN_ON(num_pages > nrptrs);
1330 * Fault pages before locking them in prepare_pages
1331 * to avoid recursive lock
1333 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1338 ret = btrfs_delalloc_reserve_space(inode,
1339 num_pages << PAGE_CACHE_SHIFT);
1344 * This is going to setup the pages array with the number of
1345 * pages we want, so we don't really need to worry about the
1346 * contents of pages from loop to loop
1348 ret = prepare_pages(root, file, pages, num_pages,
1349 pos, first_index, write_bytes,
1350 force_page_uptodate);
1352 btrfs_delalloc_release_space(inode,
1353 num_pages << PAGE_CACHE_SHIFT);
1357 copied = btrfs_copy_from_user(pos, num_pages,
1358 write_bytes, pages, i);
1361 * if we have trouble faulting in the pages, fall
1362 * back to one page at a time
1364 if (copied < write_bytes)
1368 force_page_uptodate = true;
1371 force_page_uptodate = false;
1372 dirty_pages = (copied + offset +
1373 PAGE_CACHE_SIZE - 1) >>
1378 * If we had a short copy we need to release the excess delaloc
1379 * bytes we reserved. We need to increment outstanding_extents
1380 * because btrfs_delalloc_release_space will decrement it, but
1381 * we still have an outstanding extent for the chunk we actually
1384 if (num_pages > dirty_pages) {
1386 spin_lock(&BTRFS_I(inode)->lock);
1387 BTRFS_I(inode)->outstanding_extents++;
1388 spin_unlock(&BTRFS_I(inode)->lock);
1390 btrfs_delalloc_release_space(inode,
1391 (num_pages - dirty_pages) <<
1396 ret = btrfs_dirty_pages(root, inode, pages,
1397 dirty_pages, pos, copied,
1400 btrfs_delalloc_release_space(inode,
1401 dirty_pages << PAGE_CACHE_SHIFT);
1402 btrfs_drop_pages(pages, num_pages);
1407 btrfs_drop_pages(pages, num_pages);
1411 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1413 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1414 btrfs_btree_balance_dirty(root);
1417 num_written += copied;
1422 return num_written ? num_written : ret;
1425 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1426 const struct iovec *iov,
1427 unsigned long nr_segs, loff_t pos,
1428 loff_t *ppos, size_t count, size_t ocount)
1430 struct file *file = iocb->ki_filp;
1433 ssize_t written_buffered;
1437 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1440 if (written < 0 || written == count)
1445 iov_iter_init(&i, iov, nr_segs, count, written);
1446 written_buffered = __btrfs_buffered_write(file, &i, pos);
1447 if (written_buffered < 0) {
1448 err = written_buffered;
1451 endbyte = pos + written_buffered - 1;
1452 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1455 written += written_buffered;
1456 *ppos = pos + written_buffered;
1457 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1458 endbyte >> PAGE_CACHE_SHIFT);
1460 return written ? written : err;
1463 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1464 const struct iovec *iov,
1465 unsigned long nr_segs, loff_t pos)
1467 struct file *file = iocb->ki_filp;
1468 struct inode *inode = fdentry(file)->d_inode;
1469 struct btrfs_root *root = BTRFS_I(inode)->root;
1470 loff_t *ppos = &iocb->ki_pos;
1472 ssize_t num_written = 0;
1474 size_t count, ocount;
1476 sb_start_write(inode->i_sb);
1478 mutex_lock(&inode->i_mutex);
1480 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1482 mutex_unlock(&inode->i_mutex);
1487 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1488 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1490 mutex_unlock(&inode->i_mutex);
1495 mutex_unlock(&inode->i_mutex);
1499 err = file_remove_suid(file);
1501 mutex_unlock(&inode->i_mutex);
1506 * If BTRFS flips readonly due to some impossible error
1507 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1508 * although we have opened a file as writable, we have
1509 * to stop this write operation to ensure FS consistency.
1511 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1512 mutex_unlock(&inode->i_mutex);
1517 err = file_update_time(file);
1519 mutex_unlock(&inode->i_mutex);
1523 start_pos = round_down(pos, root->sectorsize);
1524 if (start_pos > i_size_read(inode)) {
1525 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1527 mutex_unlock(&inode->i_mutex);
1532 if (unlikely(file->f_flags & O_DIRECT)) {
1533 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1534 pos, ppos, count, ocount);
1538 iov_iter_init(&i, iov, nr_segs, count, num_written);
1540 num_written = __btrfs_buffered_write(file, &i, pos);
1541 if (num_written > 0)
1542 *ppos = pos + num_written;
1545 mutex_unlock(&inode->i_mutex);
1548 * we want to make sure fsync finds this change
1549 * but we haven't joined a transaction running right now.
1551 * Later on, someone is sure to update the inode and get the
1552 * real transid recorded.
1554 * We set last_trans now to the fs_info generation + 1,
1555 * this will either be one more than the running transaction
1556 * or the generation used for the next transaction if there isn't
1557 * one running right now.
1559 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1560 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1561 err = generic_write_sync(file, pos, num_written);
1562 if (err < 0 && num_written > 0)
1566 sb_end_write(inode->i_sb);
1567 current->backing_dev_info = NULL;
1568 return num_written ? num_written : err;
1571 int btrfs_release_file(struct inode *inode, struct file *filp)
1574 * ordered_data_close is set by settattr when we are about to truncate
1575 * a file from a non-zero size to a zero size. This tries to
1576 * flush down new bytes that may have been written if the
1577 * application were using truncate to replace a file in place.
1579 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1580 &BTRFS_I(inode)->runtime_flags)) {
1581 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1582 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1583 filemap_flush(inode->i_mapping);
1585 if (filp->private_data)
1586 btrfs_ioctl_trans_end(filp);
1591 * fsync call for both files and directories. This logs the inode into
1592 * the tree log instead of forcing full commits whenever possible.
1594 * It needs to call filemap_fdatawait so that all ordered extent updates are
1595 * in the metadata btree are up to date for copying to the log.
1597 * It drops the inode mutex before doing the tree log commit. This is an
1598 * important optimization for directories because holding the mutex prevents
1599 * new operations on the dir while we write to disk.
1601 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1603 struct dentry *dentry = file->f_path.dentry;
1604 struct inode *inode = dentry->d_inode;
1605 struct btrfs_root *root = BTRFS_I(inode)->root;
1607 struct btrfs_trans_handle *trans;
1609 trace_btrfs_sync_file(file, datasync);
1612 * We write the dirty pages in the range and wait until they complete
1613 * out of the ->i_mutex. If so, we can flush the dirty pages by
1614 * multi-task, and make the performance up.
1616 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1620 mutex_lock(&inode->i_mutex);
1623 * We flush the dirty pages again to avoid some dirty pages in the
1626 atomic_inc(&root->log_batch);
1627 btrfs_wait_ordered_range(inode, start, end - start + 1);
1628 atomic_inc(&root->log_batch);
1631 * check the transaction that last modified this inode
1632 * and see if its already been committed
1634 if (!BTRFS_I(inode)->last_trans) {
1635 mutex_unlock(&inode->i_mutex);
1640 * if the last transaction that changed this file was before
1641 * the current transaction, we can bail out now without any
1645 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1646 BTRFS_I(inode)->last_trans <=
1647 root->fs_info->last_trans_committed) {
1648 BTRFS_I(inode)->last_trans = 0;
1651 * We'v had everything committed since the last time we were
1652 * modified so clear this flag in case it was set for whatever
1653 * reason, it's no longer relevant.
1655 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1656 &BTRFS_I(inode)->runtime_flags);
1657 mutex_unlock(&inode->i_mutex);
1662 * ok we haven't committed the transaction yet, lets do a commit
1664 if (file->private_data)
1665 btrfs_ioctl_trans_end(file);
1667 trans = btrfs_start_transaction(root, 0);
1668 if (IS_ERR(trans)) {
1669 ret = PTR_ERR(trans);
1670 mutex_unlock(&inode->i_mutex);
1674 ret = btrfs_log_dentry_safe(trans, root, dentry);
1676 mutex_unlock(&inode->i_mutex);
1680 /* we've logged all the items and now have a consistent
1681 * version of the file in the log. It is possible that
1682 * someone will come in and modify the file, but that's
1683 * fine because the log is consistent on disk, and we
1684 * have references to all of the file's extents
1686 * It is possible that someone will come in and log the
1687 * file again, but that will end up using the synchronization
1688 * inside btrfs_sync_log to keep things safe.
1690 mutex_unlock(&inode->i_mutex);
1692 if (ret != BTRFS_NO_LOG_SYNC) {
1694 ret = btrfs_commit_transaction(trans, root);
1696 ret = btrfs_sync_log(trans, root);
1698 ret = btrfs_end_transaction(trans, root);
1700 ret = btrfs_commit_transaction(trans, root);
1703 ret = btrfs_end_transaction(trans, root);
1706 return ret > 0 ? -EIO : ret;
1709 static const struct vm_operations_struct btrfs_file_vm_ops = {
1710 .fault = filemap_fault,
1711 .page_mkwrite = btrfs_page_mkwrite,
1712 .remap_pages = generic_file_remap_pages,
1715 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1717 struct address_space *mapping = filp->f_mapping;
1719 if (!mapping->a_ops->readpage)
1722 file_accessed(filp);
1723 vma->vm_ops = &btrfs_file_vm_ops;
1728 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1729 int slot, u64 start, u64 end)
1731 struct btrfs_file_extent_item *fi;
1732 struct btrfs_key key;
1734 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1737 btrfs_item_key_to_cpu(leaf, &key, slot);
1738 if (key.objectid != btrfs_ino(inode) ||
1739 key.type != BTRFS_EXTENT_DATA_KEY)
1742 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1744 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1747 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1750 if (key.offset == end)
1752 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1757 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1758 struct btrfs_path *path, u64 offset, u64 end)
1760 struct btrfs_root *root = BTRFS_I(inode)->root;
1761 struct extent_buffer *leaf;
1762 struct btrfs_file_extent_item *fi;
1763 struct extent_map *hole_em;
1764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1765 struct btrfs_key key;
1768 key.objectid = btrfs_ino(inode);
1769 key.type = BTRFS_EXTENT_DATA_KEY;
1770 key.offset = offset;
1773 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1778 leaf = path->nodes[0];
1779 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1783 fi = btrfs_item_ptr(leaf, path->slots[0],
1784 struct btrfs_file_extent_item);
1785 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1787 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1788 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1789 btrfs_set_file_extent_offset(leaf, fi, 0);
1790 btrfs_mark_buffer_dirty(leaf);
1794 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1798 key.offset = offset;
1799 btrfs_set_item_key_safe(trans, root, path, &key);
1800 fi = btrfs_item_ptr(leaf, path->slots[0],
1801 struct btrfs_file_extent_item);
1802 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1804 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1805 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1806 btrfs_set_file_extent_offset(leaf, fi, 0);
1807 btrfs_mark_buffer_dirty(leaf);
1810 btrfs_release_path(path);
1812 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1813 0, 0, end - offset, 0, end - offset,
1819 btrfs_release_path(path);
1821 hole_em = alloc_extent_map();
1823 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1824 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1825 &BTRFS_I(inode)->runtime_flags);
1827 hole_em->start = offset;
1828 hole_em->len = end - offset;
1829 hole_em->orig_start = offset;
1831 hole_em->block_start = EXTENT_MAP_HOLE;
1832 hole_em->block_len = 0;
1833 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1834 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1835 hole_em->generation = trans->transid;
1838 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1839 write_lock(&em_tree->lock);
1840 ret = add_extent_mapping(em_tree, hole_em);
1842 list_move(&hole_em->list,
1843 &em_tree->modified_extents);
1844 write_unlock(&em_tree->lock);
1845 } while (ret == -EEXIST);
1846 free_extent_map(hole_em);
1848 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1849 &BTRFS_I(inode)->runtime_flags);
1855 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1857 struct btrfs_root *root = BTRFS_I(inode)->root;
1858 struct extent_state *cached_state = NULL;
1859 struct btrfs_path *path;
1860 struct btrfs_block_rsv *rsv;
1861 struct btrfs_trans_handle *trans;
1862 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1863 u64 lockstart = (offset + mask) & ~mask;
1864 u64 lockend = ((offset + len) & ~mask) - 1;
1865 u64 cur_offset = lockstart;
1866 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1870 bool same_page = (offset >> PAGE_CACHE_SHIFT) ==
1871 ((offset + len) >> PAGE_CACHE_SHIFT);
1873 btrfs_wait_ordered_range(inode, offset, len);
1875 mutex_lock(&inode->i_mutex);
1876 if (offset >= inode->i_size) {
1877 mutex_unlock(&inode->i_mutex);
1882 * Only do this if we are in the same page and we aren't doing the
1885 if (same_page && len < PAGE_CACHE_SIZE) {
1886 ret = btrfs_truncate_page(inode, offset, len, 0);
1887 mutex_unlock(&inode->i_mutex);
1891 /* zero back part of the first page */
1892 ret = btrfs_truncate_page(inode, offset, 0, 0);
1894 mutex_unlock(&inode->i_mutex);
1898 /* zero the front end of the last page */
1899 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1901 mutex_unlock(&inode->i_mutex);
1905 if (lockend < lockstart) {
1906 mutex_unlock(&inode->i_mutex);
1911 struct btrfs_ordered_extent *ordered;
1913 truncate_pagecache_range(inode, lockstart, lockend);
1915 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1917 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
1920 * We need to make sure we have no ordered extents in this range
1921 * and nobody raced in and read a page in this range, if we did
1922 * we need to try again.
1925 (ordered->file_offset + ordered->len < lockstart ||
1926 ordered->file_offset > lockend)) &&
1927 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
1928 lockend, EXTENT_UPTODATE, 0,
1931 btrfs_put_ordered_extent(ordered);
1935 btrfs_put_ordered_extent(ordered);
1936 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
1937 lockend, &cached_state, GFP_NOFS);
1938 btrfs_wait_ordered_range(inode, lockstart,
1939 lockend - lockstart + 1);
1942 path = btrfs_alloc_path();
1948 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
1953 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
1957 * 1 - update the inode
1958 * 1 - removing the extents in the range
1959 * 1 - adding the hole extent
1961 trans = btrfs_start_transaction(root, 3);
1962 if (IS_ERR(trans)) {
1963 err = PTR_ERR(trans);
1967 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
1970 trans->block_rsv = rsv;
1972 while (cur_offset < lockend) {
1973 ret = __btrfs_drop_extents(trans, root, inode, path,
1974 cur_offset, lockend + 1,
1979 trans->block_rsv = &root->fs_info->trans_block_rsv;
1981 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
1987 cur_offset = drop_end;
1989 ret = btrfs_update_inode(trans, root, inode);
1995 btrfs_end_transaction(trans, root);
1996 btrfs_btree_balance_dirty(root);
1998 trans = btrfs_start_transaction(root, 3);
1999 if (IS_ERR(trans)) {
2000 ret = PTR_ERR(trans);
2005 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2007 BUG_ON(ret); /* shouldn't happen */
2008 trans->block_rsv = rsv;
2016 trans->block_rsv = &root->fs_info->trans_block_rsv;
2017 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2027 inode_inc_iversion(inode);
2028 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2030 trans->block_rsv = &root->fs_info->trans_block_rsv;
2031 ret = btrfs_update_inode(trans, root, inode);
2032 btrfs_end_transaction(trans, root);
2033 btrfs_btree_balance_dirty(root);
2035 btrfs_free_path(path);
2036 btrfs_free_block_rsv(root, rsv);
2038 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2039 &cached_state, GFP_NOFS);
2040 mutex_unlock(&inode->i_mutex);
2046 static long btrfs_fallocate(struct file *file, int mode,
2047 loff_t offset, loff_t len)
2049 struct inode *inode = file->f_path.dentry->d_inode;
2050 struct extent_state *cached_state = NULL;
2057 struct extent_map *em;
2058 int blocksize = BTRFS_I(inode)->root->sectorsize;
2061 alloc_start = round_down(offset, blocksize);
2062 alloc_end = round_up(offset + len, blocksize);
2064 /* Make sure we aren't being give some crap mode */
2065 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2068 if (mode & FALLOC_FL_PUNCH_HOLE)
2069 return btrfs_punch_hole(inode, offset, len);
2072 * Make sure we have enough space before we do the
2075 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start + 1);
2080 * wait for ordered IO before we have any locks. We'll loop again
2081 * below with the locks held.
2083 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2085 mutex_lock(&inode->i_mutex);
2086 ret = inode_newsize_ok(inode, alloc_end);
2090 if (alloc_start > inode->i_size) {
2091 ret = btrfs_cont_expand(inode, i_size_read(inode),
2097 locked_end = alloc_end - 1;
2099 struct btrfs_ordered_extent *ordered;
2101 /* the extent lock is ordered inside the running
2104 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2105 locked_end, 0, &cached_state);
2106 ordered = btrfs_lookup_first_ordered_extent(inode,
2109 ordered->file_offset + ordered->len > alloc_start &&
2110 ordered->file_offset < alloc_end) {
2111 btrfs_put_ordered_extent(ordered);
2112 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2113 alloc_start, locked_end,
2114 &cached_state, GFP_NOFS);
2116 * we can't wait on the range with the transaction
2117 * running or with the extent lock held
2119 btrfs_wait_ordered_range(inode, alloc_start,
2120 alloc_end - alloc_start);
2123 btrfs_put_ordered_extent(ordered);
2128 cur_offset = alloc_start;
2132 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2133 alloc_end - cur_offset, 0);
2134 if (IS_ERR_OR_NULL(em)) {
2141 last_byte = min(extent_map_end(em), alloc_end);
2142 actual_end = min_t(u64, extent_map_end(em), offset + len);
2143 last_byte = ALIGN(last_byte, blocksize);
2145 if (em->block_start == EXTENT_MAP_HOLE ||
2146 (cur_offset >= inode->i_size &&
2147 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2148 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2149 last_byte - cur_offset,
2150 1 << inode->i_blkbits,
2155 free_extent_map(em);
2158 } else if (actual_end > inode->i_size &&
2159 !(mode & FALLOC_FL_KEEP_SIZE)) {
2161 * We didn't need to allocate any more space, but we
2162 * still extended the size of the file so we need to
2165 inode->i_ctime = CURRENT_TIME;
2166 i_size_write(inode, actual_end);
2167 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2169 free_extent_map(em);
2171 cur_offset = last_byte;
2172 if (cur_offset >= alloc_end) {
2177 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2178 &cached_state, GFP_NOFS);
2180 mutex_unlock(&inode->i_mutex);
2181 /* Let go of our reservation. */
2182 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start + 1);
2186 static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
2188 struct btrfs_root *root = BTRFS_I(inode)->root;
2189 struct extent_map *em;
2190 struct extent_state *cached_state = NULL;
2191 u64 lockstart = *offset;
2192 u64 lockend = i_size_read(inode);
2193 u64 start = *offset;
2194 u64 orig_start = *offset;
2195 u64 len = i_size_read(inode);
2199 lockend = max_t(u64, root->sectorsize, lockend);
2200 if (lockend <= lockstart)
2201 lockend = lockstart + root->sectorsize;
2203 len = lockend - lockstart + 1;
2205 len = max_t(u64, len, root->sectorsize);
2206 if (inode->i_size == 0)
2209 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2213 * Delalloc is such a pain. If we have a hole and we have pending
2214 * delalloc for a portion of the hole we will get back a hole that
2215 * exists for the entire range since it hasn't been actually written
2216 * yet. So to take care of this case we need to look for an extent just
2217 * before the position we want in case there is outstanding delalloc
2220 if (origin == SEEK_HOLE && start != 0) {
2221 if (start <= root->sectorsize)
2222 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2223 root->sectorsize, 0);
2225 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2226 start - root->sectorsize,
2227 root->sectorsize, 0);
2232 last_end = em->start + em->len;
2233 if (em->block_start == EXTENT_MAP_DELALLOC)
2234 last_end = min_t(u64, last_end, inode->i_size);
2235 free_extent_map(em);
2239 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2245 if (em->block_start == EXTENT_MAP_HOLE) {
2246 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2247 if (last_end <= orig_start) {
2248 free_extent_map(em);
2254 if (origin == SEEK_HOLE) {
2256 free_extent_map(em);
2260 if (origin == SEEK_DATA) {
2261 if (em->block_start == EXTENT_MAP_DELALLOC) {
2262 if (start >= inode->i_size) {
2263 free_extent_map(em);
2270 free_extent_map(em);
2275 start = em->start + em->len;
2276 last_end = em->start + em->len;
2278 if (em->block_start == EXTENT_MAP_DELALLOC)
2279 last_end = min_t(u64, last_end, inode->i_size);
2281 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2282 free_extent_map(em);
2286 free_extent_map(em);
2290 *offset = min(*offset, inode->i_size);
2292 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2293 &cached_state, GFP_NOFS);
2297 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
2299 struct inode *inode = file->f_mapping->host;
2302 mutex_lock(&inode->i_mutex);
2306 offset = generic_file_llseek(file, offset, origin);
2310 if (offset >= i_size_read(inode)) {
2311 mutex_unlock(&inode->i_mutex);
2315 ret = find_desired_extent(inode, &offset, origin);
2317 mutex_unlock(&inode->i_mutex);
2322 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2326 if (offset > inode->i_sb->s_maxbytes) {
2331 /* Special lock needed here? */
2332 if (offset != file->f_pos) {
2333 file->f_pos = offset;
2334 file->f_version = 0;
2337 mutex_unlock(&inode->i_mutex);
2341 const struct file_operations btrfs_file_operations = {
2342 .llseek = btrfs_file_llseek,
2343 .read = do_sync_read,
2344 .write = do_sync_write,
2345 .aio_read = generic_file_aio_read,
2346 .splice_read = generic_file_splice_read,
2347 .aio_write = btrfs_file_aio_write,
2348 .mmap = btrfs_file_mmap,
2349 .open = generic_file_open,
2350 .release = btrfs_release_file,
2351 .fsync = btrfs_sync_file,
2352 .fallocate = btrfs_fallocate,
2353 .unlocked_ioctl = btrfs_ioctl,
2354 #ifdef CONFIG_COMPAT
2355 .compat_ioctl = btrfs_ioctl,
2359 void btrfs_auto_defrag_exit(void)
2361 if (btrfs_inode_defrag_cachep)
2362 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2365 int btrfs_auto_defrag_init(void)
2367 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2368 sizeof(struct inode_defrag), 0,
2369 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2371 if (!btrfs_inode_defrag_cachep)