1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
34 * when auto defrag is enabled we
35 * queue up these defrag structs to remember which
36 * inodes need defragging passes
39 struct rb_node rb_node;
43 * transid where the defrag was added, we search for
44 * extents newer than this
51 /* last offset we were able to defrag */
54 /* if we've wrapped around back to zero once already */
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 struct inode_defrag *defrag2)
61 if (defrag1->root > defrag2->root)
63 else if (defrag1->root < defrag2->root)
65 else if (defrag1->ino > defrag2->ino)
67 else if (defrag1->ino < defrag2->ino)
73 /* pop a record for an inode into the defrag tree. The lock
74 * must be held already
76 * If you're inserting a record for an older transid than an
77 * existing record, the transid already in the tree is lowered
79 * If an existing record is found the defrag item you
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 struct inode_defrag *defrag)
85 struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 struct inode_defrag *entry;
88 struct rb_node *parent = NULL;
91 p = &fs_info->defrag_inodes.rb_node;
94 entry = rb_entry(parent, struct inode_defrag, rb_node);
96 ret = __compare_inode_defrag(defrag, entry);
100 p = &parent->rb_right;
102 /* if we're reinserting an entry for
103 * an old defrag run, make sure to
104 * lower the transid of our existing record
106 if (defrag->transid < entry->transid)
107 entry->transid = defrag->transid;
108 if (defrag->last_offset > entry->last_offset)
109 entry->last_offset = defrag->last_offset;
113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 rb_link_node(&defrag->rb_node, parent, p);
115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
124 if (btrfs_fs_closing(fs_info))
131 * insert a defrag record for this inode if auto defrag is
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 struct btrfs_inode *inode)
137 struct btrfs_root *root = inode->root;
138 struct btrfs_fs_info *fs_info = root->fs_info;
139 struct inode_defrag *defrag;
143 if (!__need_auto_defrag(fs_info))
146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
150 transid = trans->transid;
152 transid = inode->root->last_trans;
154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
158 defrag->ino = btrfs_ino(inode);
159 defrag->transid = transid;
160 defrag->root = root->root_key.objectid;
162 spin_lock(&fs_info->defrag_inodes_lock);
163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
165 * If we set IN_DEFRAG flag and evict the inode from memory,
166 * and then re-read this inode, this new inode doesn't have
167 * IN_DEFRAG flag. At the case, we may find the existed defrag.
169 ret = __btrfs_add_inode_defrag(inode, defrag);
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
175 spin_unlock(&fs_info->defrag_inodes_lock);
180 * Requeue the defrag object. If there is a defrag object that points to
181 * the same inode in the tree, we will merge them together (by
182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 struct inode_defrag *defrag)
187 struct btrfs_fs_info *fs_info = inode->root->fs_info;
190 if (!__need_auto_defrag(fs_info))
194 * Here we don't check the IN_DEFRAG flag, because we need merge
197 spin_lock(&fs_info->defrag_inodes_lock);
198 ret = __btrfs_add_inode_defrag(inode, defrag);
199 spin_unlock(&fs_info->defrag_inodes_lock);
204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
208 * pick the defragable inode that we want, if it doesn't exist, we will get
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
214 struct inode_defrag *entry = NULL;
215 struct inode_defrag tmp;
217 struct rb_node *parent = NULL;
223 spin_lock(&fs_info->defrag_inodes_lock);
224 p = fs_info->defrag_inodes.rb_node;
227 entry = rb_entry(parent, struct inode_defrag, rb_node);
229 ret = __compare_inode_defrag(&tmp, entry);
233 p = parent->rb_right;
238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 parent = rb_next(parent);
241 entry = rb_entry(parent, struct inode_defrag, rb_node);
247 rb_erase(parent, &fs_info->defrag_inodes);
248 spin_unlock(&fs_info->defrag_inodes_lock);
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
254 struct inode_defrag *defrag;
255 struct rb_node *node;
257 spin_lock(&fs_info->defrag_inodes_lock);
258 node = rb_first(&fs_info->defrag_inodes);
260 rb_erase(node, &fs_info->defrag_inodes);
261 defrag = rb_entry(node, struct inode_defrag, rb_node);
262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
264 cond_resched_lock(&fs_info->defrag_inodes_lock);
266 node = rb_first(&fs_info->defrag_inodes);
268 spin_unlock(&fs_info->defrag_inodes_lock);
271 #define BTRFS_DEFRAG_BATCH 1024
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 struct inode_defrag *defrag)
276 struct btrfs_root *inode_root;
278 struct btrfs_ioctl_defrag_range_args range;
283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 if (IS_ERR(inode_root)) {
285 ret = PTR_ERR(inode_root);
289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 btrfs_put_root(inode_root);
292 ret = PTR_ERR(inode);
296 /* do a chunk of defrag */
297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 memset(&range, 0, sizeof(range));
300 range.start = defrag->last_offset;
302 sb_start_write(fs_info->sb);
303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
305 sb_end_write(fs_info->sb);
307 * if we filled the whole defrag batch, there
308 * must be more work to do. Queue this defrag
311 if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 defrag->last_offset = range.start;
313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 } else if (defrag->last_offset && !defrag->cycled) {
316 * we didn't fill our defrag batch, but
317 * we didn't start at zero. Make sure we loop
318 * around to the start of the file.
320 defrag->last_offset = 0;
322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
335 * run through the list of inodes in the FS that need
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
340 struct inode_defrag *defrag;
342 u64 root_objectid = 0;
344 atomic_inc(&fs_info->defrag_running);
346 /* Pause the auto defragger. */
347 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
351 if (!__need_auto_defrag(fs_info))
354 /* find an inode to defrag */
355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358 if (root_objectid || first_ino) {
367 first_ino = defrag->ino + 1;
368 root_objectid = defrag->root;
370 __btrfs_run_defrag_inode(fs_info, defrag);
372 atomic_dec(&fs_info->defrag_running);
375 * during unmount, we use the transaction_wait queue to
376 * wait for the defragger to stop
378 wake_up(&fs_info->transaction_wait);
382 /* simple helper to fault in pages and copy. This should go away
383 * and be replaced with calls into generic code.
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 struct page **prepared_pages,
390 size_t total_copied = 0;
392 int offset = offset_in_page(pos);
394 while (write_bytes > 0) {
395 size_t count = min_t(size_t,
396 PAGE_SIZE - offset, write_bytes);
397 struct page *page = prepared_pages[pg];
399 * Copy data from userspace to the current page
401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
403 /* Flush processor's dcache for this page */
404 flush_dcache_page(page);
407 * if we get a partial write, we can end up with
408 * partially up to date pages. These add
409 * a lot of complexity, so make sure they don't
410 * happen by forcing this copy to be retried.
412 * The rest of the btrfs_file_write code will fall
413 * back to page at a time copies after we return 0.
415 if (!PageUptodate(page) && copied < count)
418 iov_iter_advance(i, copied);
419 write_bytes -= copied;
420 total_copied += copied;
422 /* Return to btrfs_file_write_iter to fault page */
423 if (unlikely(copied == 0))
426 if (copied < PAGE_SIZE - offset) {
437 * unlocks pages after btrfs_file_write is done with them
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
442 for (i = 0; i < num_pages; i++) {
443 /* page checked is some magic around finding pages that
444 * have been modified without going through btrfs_set_page_dirty
445 * clear it here. There should be no need to mark the pages
446 * accessed as prepare_pages should have marked them accessed
447 * in prepare_pages via find_or_create_page()
449 ClearPageChecked(pages[i]);
450 unlock_page(pages[i]);
455 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
458 struct extent_state **cached_state)
460 u64 search_start = start;
461 const u64 end = start + len - 1;
463 while (search_start < end) {
464 const u64 search_len = end - search_start + 1;
465 struct extent_map *em;
469 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
473 if (em->block_start != EXTENT_MAP_HOLE)
477 if (em->start < search_start)
478 em_len -= search_start - em->start;
479 if (em_len > search_len)
482 ret = set_extent_bit(&inode->io_tree, search_start,
483 search_start + em_len - 1,
485 NULL, cached_state, GFP_NOFS);
487 search_start = extent_map_end(em);
496 * after copy_from_user, pages need to be dirtied and we need to make
497 * sure holes are created between the current EOF and the start of
498 * any next extents (if required).
500 * this also makes the decision about creating an inline extent vs
501 * doing real data extents, marking pages dirty and delalloc as required.
503 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
504 size_t num_pages, loff_t pos, size_t write_bytes,
505 struct extent_state **cached)
507 struct btrfs_fs_info *fs_info = inode->root->fs_info;
512 u64 end_of_last_block;
513 u64 end_pos = pos + write_bytes;
514 loff_t isize = i_size_read(&inode->vfs_inode);
515 unsigned int extra_bits = 0;
517 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
518 num_bytes = round_up(write_bytes + pos - start_pos,
519 fs_info->sectorsize);
521 end_of_last_block = start_pos + num_bytes - 1;
524 * The pages may have already been dirty, clear out old accounting so
525 * we can set things up properly
527 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
528 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
531 if (!btrfs_is_free_space_inode(inode)) {
532 if (start_pos >= isize &&
533 !(inode->flags & BTRFS_INODE_PREALLOC)) {
535 * There can't be any extents following eof in this case
536 * so just set the delalloc new bit for the range
539 extra_bits |= EXTENT_DELALLOC_NEW;
541 err = btrfs_find_new_delalloc_bytes(inode, start_pos,
548 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
553 for (i = 0; i < num_pages; i++) {
554 struct page *p = pages[i];
561 * we've only changed i_size in ram, and we haven't updated
562 * the disk i_size. There is no need to log the inode
566 i_size_write(&inode->vfs_inode, end_pos);
571 * this drops all the extents in the cache that intersect the range
572 * [start, end]. Existing extents are split as required.
574 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
577 struct extent_map *em;
578 struct extent_map *split = NULL;
579 struct extent_map *split2 = NULL;
580 struct extent_map_tree *em_tree = &inode->extent_tree;
581 u64 len = end - start + 1;
589 WARN_ON(end < start);
590 if (end == (u64)-1) {
599 split = alloc_extent_map();
601 split2 = alloc_extent_map();
602 if (!split || !split2)
605 write_lock(&em_tree->lock);
606 em = lookup_extent_mapping(em_tree, start, len);
608 write_unlock(&em_tree->lock);
612 gen = em->generation;
613 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
614 if (testend && em->start + em->len >= start + len) {
616 write_unlock(&em_tree->lock);
619 start = em->start + em->len;
621 len = start + len - (em->start + em->len);
623 write_unlock(&em_tree->lock);
626 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
627 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
628 clear_bit(EXTENT_FLAG_LOGGING, &flags);
629 modified = !list_empty(&em->list);
633 if (em->start < start) {
634 split->start = em->start;
635 split->len = start - em->start;
637 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
638 split->orig_start = em->orig_start;
639 split->block_start = em->block_start;
642 split->block_len = em->block_len;
644 split->block_len = split->len;
645 split->orig_block_len = max(split->block_len,
647 split->ram_bytes = em->ram_bytes;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
653 split->ram_bytes = split->len;
656 split->generation = gen;
657 split->flags = flags;
658 split->compress_type = em->compress_type;
659 replace_extent_mapping(em_tree, em, split, modified);
660 free_extent_map(split);
664 if (testend && em->start + em->len > start + len) {
665 u64 diff = start + len - em->start;
667 split->start = start + len;
668 split->len = em->start + em->len - (start + len);
669 split->flags = flags;
670 split->compress_type = em->compress_type;
671 split->generation = gen;
673 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
674 split->orig_block_len = max(em->block_len,
677 split->ram_bytes = em->ram_bytes;
679 split->block_len = em->block_len;
680 split->block_start = em->block_start;
681 split->orig_start = em->orig_start;
683 split->block_len = split->len;
684 split->block_start = em->block_start
686 split->orig_start = em->orig_start;
689 split->ram_bytes = split->len;
690 split->orig_start = split->start;
691 split->block_len = 0;
692 split->block_start = em->block_start;
693 split->orig_block_len = 0;
696 if (extent_map_in_tree(em)) {
697 replace_extent_mapping(em_tree, em, split,
700 ret = add_extent_mapping(em_tree, split,
702 ASSERT(ret == 0); /* Logic error */
704 free_extent_map(split);
708 if (extent_map_in_tree(em))
709 remove_extent_mapping(em_tree, em);
710 write_unlock(&em_tree->lock);
714 /* once for the tree*/
718 free_extent_map(split);
720 free_extent_map(split2);
724 * this is very complex, but the basic idea is to drop all extents
725 * in the range start - end. hint_block is filled in with a block number
726 * that would be a good hint to the block allocator for this file.
728 * If an extent intersects the range but is not entirely inside the range
729 * it is either truncated or split. Anything entirely inside the range
730 * is deleted from the tree.
732 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
733 struct btrfs_root *root, struct btrfs_inode *inode,
734 struct btrfs_path *path, u64 start, u64 end,
735 u64 *drop_end, int drop_cache,
737 u32 extent_item_size,
740 struct btrfs_fs_info *fs_info = root->fs_info;
741 struct extent_buffer *leaf;
742 struct btrfs_file_extent_item *fi;
743 struct btrfs_ref ref = { 0 };
744 struct btrfs_key key;
745 struct btrfs_key new_key;
746 struct inode *vfs_inode = &inode->vfs_inode;
747 u64 ino = btrfs_ino(inode);
748 u64 search_start = start;
751 u64 extent_offset = 0;
753 u64 last_end = start;
759 int modify_tree = -1;
762 int leafs_visited = 0;
765 btrfs_drop_extent_cache(inode, start, end - 1, 0);
767 if (start >= inode->disk_i_size && !replace_extent)
770 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
771 root == fs_info->tree_root);
774 ret = btrfs_lookup_file_extent(trans, root, path, ino,
775 search_start, modify_tree);
778 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
779 leaf = path->nodes[0];
780 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
781 if (key.objectid == ino &&
782 key.type == BTRFS_EXTENT_DATA_KEY)
788 leaf = path->nodes[0];
789 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
791 ret = btrfs_next_leaf(root, path);
799 leaf = path->nodes[0];
803 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
805 if (key.objectid > ino)
807 if (WARN_ON_ONCE(key.objectid < ino) ||
808 key.type < BTRFS_EXTENT_DATA_KEY) {
813 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
816 fi = btrfs_item_ptr(leaf, path->slots[0],
817 struct btrfs_file_extent_item);
818 extent_type = btrfs_file_extent_type(leaf, fi);
820 if (extent_type == BTRFS_FILE_EXTENT_REG ||
821 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
822 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
823 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
824 extent_offset = btrfs_file_extent_offset(leaf, fi);
825 extent_end = key.offset +
826 btrfs_file_extent_num_bytes(leaf, fi);
827 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828 extent_end = key.offset +
829 btrfs_file_extent_ram_bytes(leaf, fi);
836 * Don't skip extent items representing 0 byte lengths. They
837 * used to be created (bug) if while punching holes we hit
838 * -ENOSPC condition. So if we find one here, just ensure we
839 * delete it, otherwise we would insert a new file extent item
840 * with the same key (offset) as that 0 bytes length file
841 * extent item in the call to setup_items_for_insert() later
844 if (extent_end == key.offset && extent_end >= search_start) {
845 last_end = extent_end;
846 goto delete_extent_item;
849 if (extent_end <= search_start) {
855 search_start = max(key.offset, start);
856 if (recow || !modify_tree) {
858 btrfs_release_path(path);
863 * | - range to drop - |
864 * | -------- extent -------- |
866 if (start > key.offset && end < extent_end) {
868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = start;
875 ret = btrfs_duplicate_item(trans, root, path,
877 if (ret == -EAGAIN) {
878 btrfs_release_path(path);
884 leaf = path->nodes[0];
885 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
886 struct btrfs_file_extent_item);
887 btrfs_set_file_extent_num_bytes(leaf, fi,
890 fi = btrfs_item_ptr(leaf, path->slots[0],
891 struct btrfs_file_extent_item);
893 extent_offset += start - key.offset;
894 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
895 btrfs_set_file_extent_num_bytes(leaf, fi,
897 btrfs_mark_buffer_dirty(leaf);
899 if (update_refs && disk_bytenr > 0) {
900 btrfs_init_generic_ref(&ref,
901 BTRFS_ADD_DELAYED_REF,
902 disk_bytenr, num_bytes, 0);
903 btrfs_init_data_ref(&ref,
904 root->root_key.objectid,
906 start - extent_offset);
907 ret = btrfs_inc_extent_ref(trans, &ref);
908 BUG_ON(ret); /* -ENOMEM */
913 * From here on out we will have actually dropped something, so
914 * last_end can be updated.
916 last_end = extent_end;
919 * | ---- range to drop ----- |
920 * | -------- extent -------- |
922 if (start <= key.offset && end < extent_end) {
923 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
928 memcpy(&new_key, &key, sizeof(new_key));
929 new_key.offset = end;
930 btrfs_set_item_key_safe(fs_info, path, &new_key);
932 extent_offset += end - key.offset;
933 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
934 btrfs_set_file_extent_num_bytes(leaf, fi,
936 btrfs_mark_buffer_dirty(leaf);
937 if (update_refs && disk_bytenr > 0)
938 inode_sub_bytes(vfs_inode, end - key.offset);
942 search_start = extent_end;
944 * | ---- range to drop ----- |
945 * | -------- extent -------- |
947 if (start > key.offset && end >= extent_end) {
949 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
954 btrfs_set_file_extent_num_bytes(leaf, fi,
956 btrfs_mark_buffer_dirty(leaf);
957 if (update_refs && disk_bytenr > 0)
958 inode_sub_bytes(vfs_inode, extent_end - start);
959 if (end == extent_end)
967 * | ---- range to drop ----- |
968 * | ------ extent ------ |
970 if (start <= key.offset && end >= extent_end) {
973 del_slot = path->slots[0];
976 BUG_ON(del_slot + del_nr != path->slots[0]);
981 extent_type == BTRFS_FILE_EXTENT_INLINE) {
982 inode_sub_bytes(vfs_inode,
983 extent_end - key.offset);
984 extent_end = ALIGN(extent_end,
985 fs_info->sectorsize);
986 } else if (update_refs && disk_bytenr > 0) {
987 btrfs_init_generic_ref(&ref,
988 BTRFS_DROP_DELAYED_REF,
989 disk_bytenr, num_bytes, 0);
990 btrfs_init_data_ref(&ref,
991 root->root_key.objectid,
993 key.offset - extent_offset);
994 ret = btrfs_free_extent(trans, &ref);
995 BUG_ON(ret); /* -ENOMEM */
996 inode_sub_bytes(vfs_inode,
997 extent_end - key.offset);
1000 if (end == extent_end)
1003 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1008 ret = btrfs_del_items(trans, root, path, del_slot,
1011 btrfs_abort_transaction(trans, ret);
1018 btrfs_release_path(path);
1025 if (!ret && del_nr > 0) {
1027 * Set path->slots[0] to first slot, so that after the delete
1028 * if items are move off from our leaf to its immediate left or
1029 * right neighbor leafs, we end up with a correct and adjusted
1030 * path->slots[0] for our insertion (if replace_extent != 0).
1032 path->slots[0] = del_slot;
1033 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1035 btrfs_abort_transaction(trans, ret);
1038 leaf = path->nodes[0];
1040 * If btrfs_del_items() was called, it might have deleted a leaf, in
1041 * which case it unlocked our path, so check path->locks[0] matches a
1044 if (!ret && replace_extent && leafs_visited == 1 &&
1045 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046 path->locks[0] == BTRFS_WRITE_LOCK) &&
1047 btrfs_leaf_free_space(leaf) >=
1048 sizeof(struct btrfs_item) + extent_item_size) {
1051 key.type = BTRFS_EXTENT_DATA_KEY;
1053 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054 struct btrfs_key slot_key;
1056 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1060 setup_items_for_insert(root, path, &key, &extent_item_size, 1);
1064 if (!replace_extent || !(*key_inserted))
1065 btrfs_release_path(path);
1067 *drop_end = found ? min(end, last_end) : end;
1071 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root, struct inode *inode, u64 start,
1073 u64 end, int drop_cache)
1075 struct btrfs_path *path;
1078 path = btrfs_alloc_path();
1081 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1082 end, NULL, drop_cache, 0, 0, NULL);
1083 btrfs_free_path(path);
1087 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1088 u64 objectid, u64 bytenr, u64 orig_offset,
1089 u64 *start, u64 *end)
1091 struct btrfs_file_extent_item *fi;
1092 struct btrfs_key key;
1095 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1098 btrfs_item_key_to_cpu(leaf, &key, slot);
1099 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1102 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1103 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1104 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1105 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1106 btrfs_file_extent_compression(leaf, fi) ||
1107 btrfs_file_extent_encryption(leaf, fi) ||
1108 btrfs_file_extent_other_encoding(leaf, fi))
1111 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1112 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1115 *start = key.offset;
1121 * Mark extent in the range start - end as written.
1123 * This changes extent type from 'pre-allocated' to 'regular'. If only
1124 * part of extent is marked as written, the extent will be split into
1127 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1128 struct btrfs_inode *inode, u64 start, u64 end)
1130 struct btrfs_fs_info *fs_info = trans->fs_info;
1131 struct btrfs_root *root = inode->root;
1132 struct extent_buffer *leaf;
1133 struct btrfs_path *path;
1134 struct btrfs_file_extent_item *fi;
1135 struct btrfs_ref ref = { 0 };
1136 struct btrfs_key key;
1137 struct btrfs_key new_key;
1149 u64 ino = btrfs_ino(inode);
1151 path = btrfs_alloc_path();
1158 key.type = BTRFS_EXTENT_DATA_KEY;
1161 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1164 if (ret > 0 && path->slots[0] > 0)
1167 leaf = path->nodes[0];
1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 if (key.objectid != ino ||
1170 key.type != BTRFS_EXTENT_DATA_KEY) {
1172 btrfs_abort_transaction(trans, ret);
1175 fi = btrfs_item_ptr(leaf, path->slots[0],
1176 struct btrfs_file_extent_item);
1177 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1179 btrfs_abort_transaction(trans, ret);
1182 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1183 if (key.offset > start || extent_end < end) {
1185 btrfs_abort_transaction(trans, ret);
1189 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1190 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1191 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1192 memcpy(&new_key, &key, sizeof(new_key));
1194 if (start == key.offset && end < extent_end) {
1197 if (extent_mergeable(leaf, path->slots[0] - 1,
1198 ino, bytenr, orig_offset,
1199 &other_start, &other_end)) {
1200 new_key.offset = end;
1201 btrfs_set_item_key_safe(fs_info, path, &new_key);
1202 fi = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_file_extent_item);
1204 btrfs_set_file_extent_generation(leaf, fi,
1206 btrfs_set_file_extent_num_bytes(leaf, fi,
1208 btrfs_set_file_extent_offset(leaf, fi,
1210 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1211 struct btrfs_file_extent_item);
1212 btrfs_set_file_extent_generation(leaf, fi,
1214 btrfs_set_file_extent_num_bytes(leaf, fi,
1216 btrfs_mark_buffer_dirty(leaf);
1221 if (start > key.offset && end == extent_end) {
1224 if (extent_mergeable(leaf, path->slots[0] + 1,
1225 ino, bytenr, orig_offset,
1226 &other_start, &other_end)) {
1227 fi = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_file_extent_item);
1229 btrfs_set_file_extent_num_bytes(leaf, fi,
1230 start - key.offset);
1231 btrfs_set_file_extent_generation(leaf, fi,
1234 new_key.offset = start;
1235 btrfs_set_item_key_safe(fs_info, path, &new_key);
1237 fi = btrfs_item_ptr(leaf, path->slots[0],
1238 struct btrfs_file_extent_item);
1239 btrfs_set_file_extent_generation(leaf, fi,
1241 btrfs_set_file_extent_num_bytes(leaf, fi,
1243 btrfs_set_file_extent_offset(leaf, fi,
1244 start - orig_offset);
1245 btrfs_mark_buffer_dirty(leaf);
1250 while (start > key.offset || end < extent_end) {
1251 if (key.offset == start)
1254 new_key.offset = split;
1255 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1256 if (ret == -EAGAIN) {
1257 btrfs_release_path(path);
1261 btrfs_abort_transaction(trans, ret);
1265 leaf = path->nodes[0];
1266 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1267 struct btrfs_file_extent_item);
1268 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1269 btrfs_set_file_extent_num_bytes(leaf, fi,
1270 split - key.offset);
1272 fi = btrfs_item_ptr(leaf, path->slots[0],
1273 struct btrfs_file_extent_item);
1275 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1276 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1277 btrfs_set_file_extent_num_bytes(leaf, fi,
1278 extent_end - split);
1279 btrfs_mark_buffer_dirty(leaf);
1281 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1283 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1285 ret = btrfs_inc_extent_ref(trans, &ref);
1287 btrfs_abort_transaction(trans, ret);
1291 if (split == start) {
1294 if (start != key.offset) {
1296 btrfs_abort_transaction(trans, ret);
1307 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1309 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1310 if (extent_mergeable(leaf, path->slots[0] + 1,
1311 ino, bytenr, orig_offset,
1312 &other_start, &other_end)) {
1314 btrfs_release_path(path);
1317 extent_end = other_end;
1318 del_slot = path->slots[0] + 1;
1320 ret = btrfs_free_extent(trans, &ref);
1322 btrfs_abort_transaction(trans, ret);
1328 if (extent_mergeable(leaf, path->slots[0] - 1,
1329 ino, bytenr, orig_offset,
1330 &other_start, &other_end)) {
1332 btrfs_release_path(path);
1335 key.offset = other_start;
1336 del_slot = path->slots[0];
1338 ret = btrfs_free_extent(trans, &ref);
1340 btrfs_abort_transaction(trans, ret);
1345 fi = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_file_extent_item);
1347 btrfs_set_file_extent_type(leaf, fi,
1348 BTRFS_FILE_EXTENT_REG);
1349 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1350 btrfs_mark_buffer_dirty(leaf);
1352 fi = btrfs_item_ptr(leaf, del_slot - 1,
1353 struct btrfs_file_extent_item);
1354 btrfs_set_file_extent_type(leaf, fi,
1355 BTRFS_FILE_EXTENT_REG);
1356 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1357 btrfs_set_file_extent_num_bytes(leaf, fi,
1358 extent_end - key.offset);
1359 btrfs_mark_buffer_dirty(leaf);
1361 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1363 btrfs_abort_transaction(trans, ret);
1368 btrfs_free_path(path);
1373 * on error we return an unlocked page and the error value
1374 * on success we return a locked page and 0
1376 static int prepare_uptodate_page(struct inode *inode,
1377 struct page *page, u64 pos,
1378 bool force_uptodate)
1382 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1383 !PageUptodate(page)) {
1384 ret = btrfs_readpage(NULL, page);
1388 if (!PageUptodate(page)) {
1392 if (page->mapping != inode->i_mapping) {
1401 * this just gets pages into the page cache and locks them down.
1403 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1404 size_t num_pages, loff_t pos,
1405 size_t write_bytes, bool force_uptodate)
1408 unsigned long index = pos >> PAGE_SHIFT;
1409 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1413 for (i = 0; i < num_pages; i++) {
1415 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1416 mask | __GFP_WRITE);
1424 err = prepare_uptodate_page(inode, pages[i], pos,
1426 if (!err && i == num_pages - 1)
1427 err = prepare_uptodate_page(inode, pages[i],
1428 pos + write_bytes, false);
1431 if (err == -EAGAIN) {
1438 wait_on_page_writeback(pages[i]);
1443 while (faili >= 0) {
1444 unlock_page(pages[faili]);
1445 put_page(pages[faili]);
1453 * This function locks the extent and properly waits for data=ordered extents
1454 * to finish before allowing the pages to be modified if need.
1457 * 1 - the extent is locked
1458 * 0 - the extent is not locked, and everything is OK
1459 * -EAGAIN - need re-prepare the pages
1460 * the other < 0 number - Something wrong happens
1463 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1464 size_t num_pages, loff_t pos,
1466 u64 *lockstart, u64 *lockend,
1467 struct extent_state **cached_state)
1469 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1475 start_pos = round_down(pos, fs_info->sectorsize);
1476 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1478 if (start_pos < inode->vfs_inode.i_size) {
1479 struct btrfs_ordered_extent *ordered;
1481 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1483 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1484 last_pos - start_pos + 1);
1486 ordered->file_offset + ordered->num_bytes > start_pos &&
1487 ordered->file_offset <= last_pos) {
1488 unlock_extent_cached(&inode->io_tree, start_pos,
1489 last_pos, cached_state);
1490 for (i = 0; i < num_pages; i++) {
1491 unlock_page(pages[i]);
1494 btrfs_start_ordered_extent(ordered, 1);
1495 btrfs_put_ordered_extent(ordered);
1499 btrfs_put_ordered_extent(ordered);
1501 *lockstart = start_pos;
1502 *lockend = last_pos;
1507 * It's possible the pages are dirty right now, but we don't want
1508 * to clean them yet because copy_from_user may catch a page fault
1509 * and we might have to fall back to one page at a time. If that
1510 * happens, we'll unlock these pages and we'd have a window where
1511 * reclaim could sneak in and drop the once-dirty page on the floor
1512 * without writing it.
1514 * We have the pages locked and the extent range locked, so there's
1515 * no way someone can start IO on any dirty pages in this range.
1517 * We'll call btrfs_dirty_pages() later on, and that will flip around
1518 * delalloc bits and dirty the pages as required.
1520 for (i = 0; i < num_pages; i++) {
1521 set_page_extent_mapped(pages[i]);
1522 WARN_ON(!PageLocked(pages[i]));
1528 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1529 size_t *write_bytes, bool nowait)
1531 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1532 struct btrfs_root *root = inode->root;
1533 u64 lockstart, lockend;
1537 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1540 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1543 lockstart = round_down(pos, fs_info->sectorsize);
1544 lockend = round_up(pos + *write_bytes,
1545 fs_info->sectorsize) - 1;
1546 num_bytes = lockend - lockstart + 1;
1549 struct btrfs_ordered_extent *ordered;
1551 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1554 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1557 btrfs_put_ordered_extent(ordered);
1562 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1566 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1567 NULL, NULL, NULL, false);
1571 btrfs_drew_write_unlock(&root->snapshot_lock);
1573 *write_bytes = min_t(size_t, *write_bytes ,
1574 num_bytes - pos + lockstart);
1577 unlock_extent(&inode->io_tree, lockstart, lockend);
1582 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1583 size_t *write_bytes)
1585 return check_can_nocow(inode, pos, write_bytes, true);
1589 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1592 * @write_bytes: The length to write, will be updated to the nocow writeable
1595 * This function will flush ordered extents in the range to ensure proper
1599 * >0 and update @write_bytes if we can do nocow write
1600 * 0 if we can't do nocow write
1601 * -EAGAIN if we can't get the needed lock or there are ordered extents
1602 * for * (nowait == true) case
1603 * <0 if other error happened
1605 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1607 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1608 size_t *write_bytes)
1610 return check_can_nocow(inode, pos, write_bytes, false);
1613 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1615 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1618 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1621 struct file *file = iocb->ki_filp;
1622 loff_t pos = iocb->ki_pos;
1623 struct inode *inode = file_inode(file);
1624 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1625 struct page **pages = NULL;
1626 struct extent_changeset *data_reserved = NULL;
1627 u64 release_bytes = 0;
1630 size_t num_written = 0;
1633 bool only_release_metadata = false;
1634 bool force_page_uptodate = false;
1636 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1637 PAGE_SIZE / (sizeof(struct page *)));
1638 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1639 nrptrs = max(nrptrs, 8);
1640 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1644 while (iov_iter_count(i) > 0) {
1645 struct extent_state *cached_state = NULL;
1646 size_t offset = offset_in_page(pos);
1647 size_t sector_offset;
1648 size_t write_bytes = min(iov_iter_count(i),
1649 nrptrs * (size_t)PAGE_SIZE -
1651 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1653 size_t reserve_bytes;
1656 size_t dirty_sectors;
1660 WARN_ON(num_pages > nrptrs);
1663 * Fault pages before locking them in prepare_pages
1664 * to avoid recursive lock
1666 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1671 only_release_metadata = false;
1672 sector_offset = pos & (fs_info->sectorsize - 1);
1673 reserve_bytes = round_up(write_bytes + sector_offset,
1674 fs_info->sectorsize);
1676 extent_changeset_release(data_reserved);
1677 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1678 &data_reserved, pos,
1681 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1682 &write_bytes) > 0) {
1684 * For nodata cow case, no need to reserve
1687 only_release_metadata = true;
1689 * our prealloc extent may be smaller than
1690 * write_bytes, so scale down.
1692 num_pages = DIV_ROUND_UP(write_bytes + offset,
1694 reserve_bytes = round_up(write_bytes +
1696 fs_info->sectorsize);
1702 WARN_ON(reserve_bytes == 0);
1703 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1706 if (!only_release_metadata)
1707 btrfs_free_reserved_data_space(BTRFS_I(inode),
1711 btrfs_check_nocow_unlock(BTRFS_I(inode));
1715 release_bytes = reserve_bytes;
1718 * This is going to setup the pages array with the number of
1719 * pages we want, so we don't really need to worry about the
1720 * contents of pages from loop to loop
1722 ret = prepare_pages(inode, pages, num_pages,
1724 force_page_uptodate);
1726 btrfs_delalloc_release_extents(BTRFS_I(inode),
1731 extents_locked = lock_and_cleanup_extent_if_need(
1732 BTRFS_I(inode), pages,
1733 num_pages, pos, write_bytes, &lockstart,
1734 &lockend, &cached_state);
1735 if (extents_locked < 0) {
1736 if (extents_locked == -EAGAIN)
1738 btrfs_delalloc_release_extents(BTRFS_I(inode),
1740 ret = extents_locked;
1744 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1746 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1747 dirty_sectors = round_up(copied + sector_offset,
1748 fs_info->sectorsize);
1749 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1752 * if we have trouble faulting in the pages, fall
1753 * back to one page at a time
1755 if (copied < write_bytes)
1759 force_page_uptodate = true;
1763 force_page_uptodate = false;
1764 dirty_pages = DIV_ROUND_UP(copied + offset,
1768 if (num_sectors > dirty_sectors) {
1769 /* release everything except the sectors we dirtied */
1770 release_bytes -= dirty_sectors <<
1771 fs_info->sb->s_blocksize_bits;
1772 if (only_release_metadata) {
1773 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1774 release_bytes, true);
1778 __pos = round_down(pos,
1779 fs_info->sectorsize) +
1780 (dirty_pages << PAGE_SHIFT);
1781 btrfs_delalloc_release_space(BTRFS_I(inode),
1782 data_reserved, __pos,
1783 release_bytes, true);
1787 release_bytes = round_up(copied + sector_offset,
1788 fs_info->sectorsize);
1791 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1792 dirty_pages, pos, copied,
1796 * If we have not locked the extent range, because the range's
1797 * start offset is >= i_size, we might still have a non-NULL
1798 * cached extent state, acquired while marking the extent range
1799 * as delalloc through btrfs_dirty_pages(). Therefore free any
1800 * possible cached extent state to avoid a memory leak.
1803 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1804 lockstart, lockend, &cached_state);
1806 free_extent_state(cached_state);
1808 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1810 btrfs_drop_pages(pages, num_pages);
1815 if (only_release_metadata)
1816 btrfs_check_nocow_unlock(BTRFS_I(inode));
1818 if (only_release_metadata && copied > 0) {
1819 lockstart = round_down(pos,
1820 fs_info->sectorsize);
1821 lockend = round_up(pos + copied,
1822 fs_info->sectorsize) - 1;
1824 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1825 lockend, EXTENT_NORESERVE, NULL,
1829 btrfs_drop_pages(pages, num_pages);
1833 balance_dirty_pages_ratelimited(inode->i_mapping);
1836 num_written += copied;
1841 if (release_bytes) {
1842 if (only_release_metadata) {
1843 btrfs_check_nocow_unlock(BTRFS_I(inode));
1844 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1845 release_bytes, true);
1847 btrfs_delalloc_release_space(BTRFS_I(inode),
1849 round_down(pos, fs_info->sectorsize),
1850 release_bytes, true);
1854 extent_changeset_free(data_reserved);
1855 return num_written ? num_written : ret;
1858 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1860 struct file *file = iocb->ki_filp;
1861 struct inode *inode = file_inode(file);
1864 ssize_t written_buffered;
1868 written = btrfs_direct_IO(iocb, from);
1870 if (written < 0 || !iov_iter_count(from))
1874 written_buffered = btrfs_buffered_write(iocb, from);
1875 if (written_buffered < 0) {
1876 err = written_buffered;
1880 * Ensure all data is persisted. We want the next direct IO read to be
1881 * able to read what was just written.
1883 endbyte = pos + written_buffered - 1;
1884 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1887 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1890 written += written_buffered;
1891 iocb->ki_pos = pos + written_buffered;
1892 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1893 endbyte >> PAGE_SHIFT);
1895 return written ? written : err;
1898 static void update_time_for_write(struct inode *inode)
1900 struct timespec64 now;
1902 if (IS_NOCMTIME(inode))
1905 now = current_time(inode);
1906 if (!timespec64_equal(&inode->i_mtime, &now))
1907 inode->i_mtime = now;
1909 if (!timespec64_equal(&inode->i_ctime, &now))
1910 inode->i_ctime = now;
1912 if (IS_I_VERSION(inode))
1913 inode_inc_iversion(inode);
1916 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1917 struct iov_iter *from)
1919 struct file *file = iocb->ki_filp;
1920 struct inode *inode = file_inode(file);
1921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1922 struct btrfs_root *root = BTRFS_I(inode)->root;
1925 ssize_t num_written = 0;
1926 const bool sync = iocb->ki_flags & IOCB_DSYNC;
1933 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1934 (iocb->ki_flags & IOCB_NOWAIT))
1937 if (iocb->ki_flags & IOCB_NOWAIT) {
1938 if (!inode_trylock(inode))
1944 err = generic_write_checks(iocb, from);
1946 inode_unlock(inode);
1951 count = iov_iter_count(from);
1952 if (iocb->ki_flags & IOCB_NOWAIT) {
1953 size_t nocow_bytes = count;
1956 * We will allocate space in case nodatacow is not set,
1959 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1961 inode_unlock(inode);
1965 * There are holes in the range or parts of the range that must
1966 * be COWed (shared extents, RO block groups, etc), so just bail
1969 if (nocow_bytes < count) {
1970 inode_unlock(inode);
1975 current->backing_dev_info = inode_to_bdi(inode);
1976 err = file_remove_privs(file);
1978 inode_unlock(inode);
1983 * If BTRFS flips readonly due to some impossible error
1984 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1985 * although we have opened a file as writable, we have
1986 * to stop this write operation to ensure FS consistency.
1988 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1989 inode_unlock(inode);
1995 * We reserve space for updating the inode when we reserve space for the
1996 * extent we are going to write, so we will enospc out there. We don't
1997 * need to start yet another transaction to update the inode as we will
1998 * update the inode when we finish writing whatever data we write.
2000 update_time_for_write(inode);
2002 start_pos = round_down(pos, fs_info->sectorsize);
2003 oldsize = i_size_read(inode);
2004 if (start_pos > oldsize) {
2005 /* Expand hole size to cover write data, preventing empty gap */
2006 end_pos = round_up(pos + count,
2007 fs_info->sectorsize);
2008 err = btrfs_cont_expand(inode, oldsize, end_pos);
2010 inode_unlock(inode);
2013 if (start_pos > round_up(oldsize, fs_info->sectorsize))
2018 atomic_inc(&BTRFS_I(inode)->sync_writers);
2020 if (iocb->ki_flags & IOCB_DIRECT) {
2022 * 1. We must always clear IOCB_DSYNC in order to not deadlock
2023 * in iomap, as it calls generic_write_sync() in this case.
2024 * 2. If we are async, we can call iomap_dio_complete() either
2027 * 2.1. A worker thread from the last bio completed. In this
2028 * case we need to mark the btrfs_dio_data that it is
2029 * async in order to call generic_write_sync() properly.
2030 * This is handled by setting BTRFS_DIO_SYNC_STUB in the
2031 * current->journal_info.
2032 * 2.2 The submitter context, because all IO completed
2033 * before we exited iomap_dio_rw(). In this case we can
2034 * just re-set the IOCB_DSYNC on the iocb and we'll do
2035 * the sync below. If our ->end_io() gets called and
2036 * current->journal_info is set, then we know we're in
2037 * our current context and we will clear
2038 * current->journal_info to indicate that we need to
2042 ASSERT(current->journal_info == NULL);
2043 iocb->ki_flags &= ~IOCB_DSYNC;
2044 current->journal_info = BTRFS_DIO_SYNC_STUB;
2046 num_written = __btrfs_direct_write(iocb, from);
2049 * As stated above, we cleared journal_info, so we need to do
2050 * the sync ourselves.
2052 if (sync && current->journal_info == NULL)
2053 iocb->ki_flags |= IOCB_DSYNC;
2054 current->journal_info = NULL;
2056 num_written = btrfs_buffered_write(iocb, from);
2057 if (num_written > 0)
2058 iocb->ki_pos = pos + num_written;
2060 pagecache_isize_extended(inode, oldsize,
2061 i_size_read(inode));
2064 inode_unlock(inode);
2067 * We also have to set last_sub_trans to the current log transid,
2068 * otherwise subsequent syncs to a file that's been synced in this
2069 * transaction will appear to have already occurred.
2071 spin_lock(&BTRFS_I(inode)->lock);
2072 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2073 spin_unlock(&BTRFS_I(inode)->lock);
2074 if (num_written > 0)
2075 num_written = generic_write_sync(iocb, num_written);
2078 atomic_dec(&BTRFS_I(inode)->sync_writers);
2080 current->backing_dev_info = NULL;
2081 return num_written ? num_written : err;
2084 int btrfs_release_file(struct inode *inode, struct file *filp)
2086 struct btrfs_file_private *private = filp->private_data;
2088 if (private && private->filldir_buf)
2089 kfree(private->filldir_buf);
2091 filp->private_data = NULL;
2094 * Set by setattr when we are about to truncate a file from a non-zero
2095 * size to a zero size. This tries to flush down new bytes that may
2096 * have been written if the application were using truncate to replace
2099 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2100 &BTRFS_I(inode)->runtime_flags))
2101 filemap_flush(inode->i_mapping);
2105 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2108 struct blk_plug plug;
2111 * This is only called in fsync, which would do synchronous writes, so
2112 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2113 * multiple disks using raid profile, a large IO can be split to
2114 * several segments of stripe length (currently 64K).
2116 blk_start_plug(&plug);
2117 atomic_inc(&BTRFS_I(inode)->sync_writers);
2118 ret = btrfs_fdatawrite_range(inode, start, end);
2119 atomic_dec(&BTRFS_I(inode)->sync_writers);
2120 blk_finish_plug(&plug);
2126 * fsync call for both files and directories. This logs the inode into
2127 * the tree log instead of forcing full commits whenever possible.
2129 * It needs to call filemap_fdatawait so that all ordered extent updates are
2130 * in the metadata btree are up to date for copying to the log.
2132 * It drops the inode mutex before doing the tree log commit. This is an
2133 * important optimization for directories because holding the mutex prevents
2134 * new operations on the dir while we write to disk.
2136 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2138 struct dentry *dentry = file_dentry(file);
2139 struct inode *inode = d_inode(dentry);
2140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2141 struct btrfs_root *root = BTRFS_I(inode)->root;
2142 struct btrfs_trans_handle *trans;
2143 struct btrfs_log_ctx ctx;
2148 trace_btrfs_sync_file(file, datasync);
2150 btrfs_init_log_ctx(&ctx, inode);
2153 * Always set the range to a full range, otherwise we can get into
2154 * several problems, from missing file extent items to represent holes
2155 * when not using the NO_HOLES feature, to log tree corruption due to
2156 * races between hole detection during logging and completion of ordered
2157 * extents outside the range, to missing checksums due to ordered extents
2158 * for which we flushed only a subset of their pages.
2162 len = (u64)LLONG_MAX + 1;
2165 * We write the dirty pages in the range and wait until they complete
2166 * out of the ->i_mutex. If so, we can flush the dirty pages by
2167 * multi-task, and make the performance up. See
2168 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2170 ret = start_ordered_ops(inode, start, end);
2177 * We take the dio_sem here because the tree log stuff can race with
2178 * lockless dio writes and get an extent map logged for an extent we
2179 * never waited on. We need it this high up for lockdep reasons.
2181 down_write(&BTRFS_I(inode)->dio_sem);
2183 atomic_inc(&root->log_batch);
2186 * Always check for the full sync flag while holding the inode's lock,
2187 * to avoid races with other tasks. The flag must be either set all the
2188 * time during logging or always off all the time while logging.
2190 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2191 &BTRFS_I(inode)->runtime_flags);
2194 * Before we acquired the inode's lock, someone may have dirtied more
2195 * pages in the target range. We need to make sure that writeback for
2196 * any such pages does not start while we are logging the inode, because
2197 * if it does, any of the following might happen when we are not doing a
2200 * 1) We log an extent after its writeback finishes but before its
2201 * checksums are added to the csum tree, leading to -EIO errors
2202 * when attempting to read the extent after a log replay.
2204 * 2) We can end up logging an extent before its writeback finishes.
2205 * Therefore after the log replay we will have a file extent item
2206 * pointing to an unwritten extent (and no data checksums as well).
2208 * So trigger writeback for any eventual new dirty pages and then we
2209 * wait for all ordered extents to complete below.
2211 ret = start_ordered_ops(inode, start, end);
2213 up_write(&BTRFS_I(inode)->dio_sem);
2214 inode_unlock(inode);
2219 * We have to do this here to avoid the priority inversion of waiting on
2220 * IO of a lower priority task while holding a transaction open.
2222 * For a full fsync we wait for the ordered extents to complete while
2223 * for a fast fsync we wait just for writeback to complete, and then
2224 * attach the ordered extents to the transaction so that a transaction
2225 * commit waits for their completion, to avoid data loss if we fsync,
2226 * the current transaction commits before the ordered extents complete
2227 * and a power failure happens right after that.
2230 ret = btrfs_wait_ordered_range(inode, start, len);
2233 * Get our ordered extents as soon as possible to avoid doing
2234 * checksum lookups in the csum tree, and use instead the
2235 * checksums attached to the ordered extents.
2237 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2238 &ctx.ordered_extents);
2239 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2243 goto out_release_extents;
2245 atomic_inc(&root->log_batch);
2248 * If we are doing a fast fsync we can not bail out if the inode's
2249 * last_trans is <= then the last committed transaction, because we only
2250 * update the last_trans of the inode during ordered extent completion,
2251 * and for a fast fsync we don't wait for that, we only wait for the
2252 * writeback to complete.
2255 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2256 (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2257 (full_sync || list_empty(&ctx.ordered_extents)))) {
2259 * We've had everything committed since the last time we were
2260 * modified so clear this flag in case it was set for whatever
2261 * reason, it's no longer relevant.
2263 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2264 &BTRFS_I(inode)->runtime_flags);
2266 * An ordered extent might have started before and completed
2267 * already with io errors, in which case the inode was not
2268 * updated and we end up here. So check the inode's mapping
2269 * for any errors that might have happened since we last
2270 * checked called fsync.
2272 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2273 goto out_release_extents;
2277 * We use start here because we will need to wait on the IO to complete
2278 * in btrfs_sync_log, which could require joining a transaction (for
2279 * example checking cross references in the nocow path). If we use join
2280 * here we could get into a situation where we're waiting on IO to
2281 * happen that is blocked on a transaction trying to commit. With start
2282 * we inc the extwriter counter, so we wait for all extwriters to exit
2283 * before we start blocking joiners. This comment is to keep somebody
2284 * from thinking they are super smart and changing this to
2285 * btrfs_join_transaction *cough*Josef*cough*.
2287 trans = btrfs_start_transaction(root, 0);
2288 if (IS_ERR(trans)) {
2289 ret = PTR_ERR(trans);
2290 goto out_release_extents;
2293 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2294 btrfs_release_log_ctx_extents(&ctx);
2296 /* Fallthrough and commit/free transaction. */
2300 /* we've logged all the items and now have a consistent
2301 * version of the file in the log. It is possible that
2302 * someone will come in and modify the file, but that's
2303 * fine because the log is consistent on disk, and we
2304 * have references to all of the file's extents
2306 * It is possible that someone will come in and log the
2307 * file again, but that will end up using the synchronization
2308 * inside btrfs_sync_log to keep things safe.
2310 up_write(&BTRFS_I(inode)->dio_sem);
2311 inode_unlock(inode);
2313 if (ret != BTRFS_NO_LOG_SYNC) {
2315 ret = btrfs_sync_log(trans, root, &ctx);
2317 ret = btrfs_end_transaction(trans);
2322 ret = btrfs_wait_ordered_range(inode, start, len);
2324 btrfs_end_transaction(trans);
2328 ret = btrfs_commit_transaction(trans);
2330 ret = btrfs_end_transaction(trans);
2333 ASSERT(list_empty(&ctx.list));
2334 err = file_check_and_advance_wb_err(file);
2337 return ret > 0 ? -EIO : ret;
2339 out_release_extents:
2340 btrfs_release_log_ctx_extents(&ctx);
2341 up_write(&BTRFS_I(inode)->dio_sem);
2342 inode_unlock(inode);
2346 static const struct vm_operations_struct btrfs_file_vm_ops = {
2347 .fault = filemap_fault,
2348 .map_pages = filemap_map_pages,
2349 .page_mkwrite = btrfs_page_mkwrite,
2352 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2354 struct address_space *mapping = filp->f_mapping;
2356 if (!mapping->a_ops->readpage)
2359 file_accessed(filp);
2360 vma->vm_ops = &btrfs_file_vm_ops;
2365 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2366 int slot, u64 start, u64 end)
2368 struct btrfs_file_extent_item *fi;
2369 struct btrfs_key key;
2371 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2374 btrfs_item_key_to_cpu(leaf, &key, slot);
2375 if (key.objectid != btrfs_ino(inode) ||
2376 key.type != BTRFS_EXTENT_DATA_KEY)
2379 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2381 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2384 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2387 if (key.offset == end)
2389 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2394 static int fill_holes(struct btrfs_trans_handle *trans,
2395 struct btrfs_inode *inode,
2396 struct btrfs_path *path, u64 offset, u64 end)
2398 struct btrfs_fs_info *fs_info = trans->fs_info;
2399 struct btrfs_root *root = inode->root;
2400 struct extent_buffer *leaf;
2401 struct btrfs_file_extent_item *fi;
2402 struct extent_map *hole_em;
2403 struct extent_map_tree *em_tree = &inode->extent_tree;
2404 struct btrfs_key key;
2407 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2410 key.objectid = btrfs_ino(inode);
2411 key.type = BTRFS_EXTENT_DATA_KEY;
2412 key.offset = offset;
2414 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2417 * We should have dropped this offset, so if we find it then
2418 * something has gone horribly wrong.
2425 leaf = path->nodes[0];
2426 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2430 fi = btrfs_item_ptr(leaf, path->slots[0],
2431 struct btrfs_file_extent_item);
2432 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2434 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2435 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2436 btrfs_set_file_extent_offset(leaf, fi, 0);
2437 btrfs_mark_buffer_dirty(leaf);
2441 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2444 key.offset = offset;
2445 btrfs_set_item_key_safe(fs_info, path, &key);
2446 fi = btrfs_item_ptr(leaf, path->slots[0],
2447 struct btrfs_file_extent_item);
2448 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2450 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2451 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2452 btrfs_set_file_extent_offset(leaf, fi, 0);
2453 btrfs_mark_buffer_dirty(leaf);
2456 btrfs_release_path(path);
2458 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2459 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2464 btrfs_release_path(path);
2466 hole_em = alloc_extent_map();
2468 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2469 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2471 hole_em->start = offset;
2472 hole_em->len = end - offset;
2473 hole_em->ram_bytes = hole_em->len;
2474 hole_em->orig_start = offset;
2476 hole_em->block_start = EXTENT_MAP_HOLE;
2477 hole_em->block_len = 0;
2478 hole_em->orig_block_len = 0;
2479 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2480 hole_em->generation = trans->transid;
2483 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2484 write_lock(&em_tree->lock);
2485 ret = add_extent_mapping(em_tree, hole_em, 1);
2486 write_unlock(&em_tree->lock);
2487 } while (ret == -EEXIST);
2488 free_extent_map(hole_em);
2490 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2491 &inode->runtime_flags);
2498 * Find a hole extent on given inode and change start/len to the end of hole
2499 * extent.(hole/vacuum extent whose em->start <= start &&
2500 * em->start + em->len > start)
2501 * When a hole extent is found, return 1 and modify start/len.
2503 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2505 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2506 struct extent_map *em;
2509 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2510 round_down(*start, fs_info->sectorsize),
2511 round_up(*len, fs_info->sectorsize));
2515 /* Hole or vacuum extent(only exists in no-hole mode) */
2516 if (em->block_start == EXTENT_MAP_HOLE) {
2518 *len = em->start + em->len > *start + *len ?
2519 0 : *start + *len - em->start - em->len;
2520 *start = em->start + em->len;
2522 free_extent_map(em);
2526 static int btrfs_punch_hole_lock_range(struct inode *inode,
2527 const u64 lockstart,
2529 struct extent_state **cached_state)
2532 struct btrfs_ordered_extent *ordered;
2535 truncate_pagecache_range(inode, lockstart, lockend);
2537 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2539 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2543 * We need to make sure we have no ordered extents in this range
2544 * and nobody raced in and read a page in this range, if we did
2545 * we need to try again.
2548 (ordered->file_offset + ordered->num_bytes <= lockstart ||
2549 ordered->file_offset > lockend)) &&
2550 !filemap_range_has_page(inode->i_mapping,
2551 lockstart, lockend)) {
2553 btrfs_put_ordered_extent(ordered);
2557 btrfs_put_ordered_extent(ordered);
2558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2559 lockend, cached_state);
2560 ret = btrfs_wait_ordered_range(inode, lockstart,
2561 lockend - lockstart + 1);
2568 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2569 struct inode *inode,
2570 struct btrfs_path *path,
2571 struct btrfs_replace_extent_info *extent_info,
2572 const u64 replace_len)
2574 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2575 struct btrfs_root *root = BTRFS_I(inode)->root;
2576 struct btrfs_file_extent_item *extent;
2577 struct extent_buffer *leaf;
2578 struct btrfs_key key;
2580 struct btrfs_ref ref = { 0 };
2583 if (replace_len == 0)
2586 if (extent_info->disk_offset == 0 &&
2587 btrfs_fs_incompat(fs_info, NO_HOLES))
2590 key.objectid = btrfs_ino(BTRFS_I(inode));
2591 key.type = BTRFS_EXTENT_DATA_KEY;
2592 key.offset = extent_info->file_offset;
2593 ret = btrfs_insert_empty_item(trans, root, path, &key,
2594 sizeof(struct btrfs_file_extent_item));
2597 leaf = path->nodes[0];
2598 slot = path->slots[0];
2599 write_extent_buffer(leaf, extent_info->extent_buf,
2600 btrfs_item_ptr_offset(leaf, slot),
2601 sizeof(struct btrfs_file_extent_item));
2602 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2603 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2604 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2605 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2606 if (extent_info->is_new_extent)
2607 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2608 btrfs_mark_buffer_dirty(leaf);
2609 btrfs_release_path(path);
2611 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2612 extent_info->file_offset, replace_len);
2616 /* If it's a hole, nothing more needs to be done. */
2617 if (extent_info->disk_offset == 0)
2620 inode_add_bytes(inode, replace_len);
2622 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2623 key.objectid = extent_info->disk_offset;
2624 key.type = BTRFS_EXTENT_ITEM_KEY;
2625 key.offset = extent_info->disk_len;
2626 ret = btrfs_alloc_reserved_file_extent(trans, root,
2627 btrfs_ino(BTRFS_I(inode)),
2628 extent_info->file_offset,
2629 extent_info->qgroup_reserved,
2634 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2635 extent_info->disk_offset,
2636 extent_info->disk_len, 0);
2637 ref_offset = extent_info->file_offset - extent_info->data_offset;
2638 btrfs_init_data_ref(&ref, root->root_key.objectid,
2639 btrfs_ino(BTRFS_I(inode)), ref_offset);
2640 ret = btrfs_inc_extent_ref(trans, &ref);
2643 extent_info->insertions++;
2649 * The respective range must have been previously locked, as well as the inode.
2650 * The end offset is inclusive (last byte of the range).
2651 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2652 * the file range with an extent.
2653 * When not punching a hole, we don't want to end up in a state where we dropped
2654 * extents without inserting a new one, so we must abort the transaction to avoid
2657 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2658 const u64 start, const u64 end,
2659 struct btrfs_replace_extent_info *extent_info,
2660 struct btrfs_trans_handle **trans_out)
2662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2663 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2664 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2665 struct btrfs_root *root = BTRFS_I(inode)->root;
2666 struct btrfs_trans_handle *trans = NULL;
2667 struct btrfs_block_rsv *rsv;
2668 unsigned int rsv_count;
2671 u64 len = end - start;
2677 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2682 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2686 * 1 - update the inode
2687 * 1 - removing the extents in the range
2688 * 1 - adding the hole extent if no_holes isn't set or if we are
2689 * replacing the range with a new extent
2691 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2696 trans = btrfs_start_transaction(root, rsv_count);
2697 if (IS_ERR(trans)) {
2698 ret = PTR_ERR(trans);
2703 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2706 trans->block_rsv = rsv;
2709 while (cur_offset < end) {
2710 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2711 cur_offset, end + 1, &drop_end,
2713 if (ret != -ENOSPC) {
2715 * When cloning we want to avoid transaction aborts when
2716 * nothing was done and we are attempting to clone parts
2717 * of inline extents, in such cases -EOPNOTSUPP is
2718 * returned by __btrfs_drop_extents() without having
2719 * changed anything in the file.
2721 if (extent_info && !extent_info->is_new_extent &&
2722 ret && ret != -EOPNOTSUPP)
2723 btrfs_abort_transaction(trans, ret);
2727 trans->block_rsv = &fs_info->trans_block_rsv;
2729 if (!extent_info && cur_offset < drop_end &&
2730 cur_offset < ino_size) {
2731 ret = fill_holes(trans, BTRFS_I(inode), path,
2732 cur_offset, drop_end);
2735 * If we failed then we didn't insert our hole
2736 * entries for the area we dropped, so now the
2737 * fs is corrupted, so we must abort the
2740 btrfs_abort_transaction(trans, ret);
2743 } else if (!extent_info && cur_offset < drop_end) {
2745 * We are past the i_size here, but since we didn't
2746 * insert holes we need to clear the mapped area so we
2747 * know to not set disk_i_size in this area until a new
2748 * file extent is inserted here.
2750 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2751 cur_offset, drop_end - cur_offset);
2754 * We couldn't clear our area, so we could
2755 * presumably adjust up and corrupt the fs, so
2758 btrfs_abort_transaction(trans, ret);
2763 if (extent_info && drop_end > extent_info->file_offset) {
2764 u64 replace_len = drop_end - extent_info->file_offset;
2766 ret = btrfs_insert_replace_extent(trans, inode, path,
2767 extent_info, replace_len);
2769 btrfs_abort_transaction(trans, ret);
2772 extent_info->data_len -= replace_len;
2773 extent_info->data_offset += replace_len;
2774 extent_info->file_offset += replace_len;
2777 cur_offset = drop_end;
2779 ret = btrfs_update_inode(trans, root, inode);
2783 btrfs_end_transaction(trans);
2784 btrfs_btree_balance_dirty(fs_info);
2786 trans = btrfs_start_transaction(root, rsv_count);
2787 if (IS_ERR(trans)) {
2788 ret = PTR_ERR(trans);
2793 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2794 rsv, min_size, false);
2795 BUG_ON(ret); /* shouldn't happen */
2796 trans->block_rsv = rsv;
2799 ret = find_first_non_hole(inode, &cur_offset, &len);
2800 if (unlikely(ret < 0))
2810 * If we were cloning, force the next fsync to be a full one since we
2811 * we replaced (or just dropped in the case of cloning holes when
2812 * NO_HOLES is enabled) extents and extent maps.
2813 * This is for the sake of simplicity, and cloning into files larger
2814 * than 16Mb would force the full fsync any way (when
2815 * try_release_extent_mapping() is invoked during page cache truncation.
2817 if (extent_info && !extent_info->is_new_extent)
2818 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2819 &BTRFS_I(inode)->runtime_flags);
2824 trans->block_rsv = &fs_info->trans_block_rsv;
2826 * If we are using the NO_HOLES feature we might have had already an
2827 * hole that overlaps a part of the region [lockstart, lockend] and
2828 * ends at (or beyond) lockend. Since we have no file extent items to
2829 * represent holes, drop_end can be less than lockend and so we must
2830 * make sure we have an extent map representing the existing hole (the
2831 * call to __btrfs_drop_extents() might have dropped the existing extent
2832 * map representing the existing hole), otherwise the fast fsync path
2833 * will not record the existence of the hole region
2834 * [existing_hole_start, lockend].
2836 if (drop_end <= end)
2839 * Don't insert file hole extent item if it's for a range beyond eof
2840 * (because it's useless) or if it represents a 0 bytes range (when
2841 * cur_offset == drop_end).
2843 if (!extent_info && cur_offset < ino_size && cur_offset < drop_end) {
2844 ret = fill_holes(trans, BTRFS_I(inode), path,
2845 cur_offset, drop_end);
2847 /* Same comment as above. */
2848 btrfs_abort_transaction(trans, ret);
2851 } else if (!extent_info && cur_offset < drop_end) {
2852 /* See the comment in the loop above for the reasoning here. */
2853 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2854 cur_offset, drop_end - cur_offset);
2856 btrfs_abort_transaction(trans, ret);
2862 ret = btrfs_insert_replace_extent(trans, inode, path, extent_info,
2863 extent_info->data_len);
2865 btrfs_abort_transaction(trans, ret);
2874 trans->block_rsv = &fs_info->trans_block_rsv;
2876 btrfs_end_transaction(trans);
2880 btrfs_free_block_rsv(fs_info, rsv);
2885 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2888 struct btrfs_root *root = BTRFS_I(inode)->root;
2889 struct extent_state *cached_state = NULL;
2890 struct btrfs_path *path;
2891 struct btrfs_trans_handle *trans = NULL;
2896 u64 orig_start = offset;
2900 bool truncated_block = false;
2901 bool updated_inode = false;
2903 ret = btrfs_wait_ordered_range(inode, offset, len);
2908 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2909 ret = find_first_non_hole(inode, &offset, &len);
2911 goto out_only_mutex;
2913 /* Already in a large hole */
2915 goto out_only_mutex;
2918 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2919 lockend = round_down(offset + len,
2920 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2921 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2922 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2924 * We needn't truncate any block which is beyond the end of the file
2925 * because we are sure there is no data there.
2928 * Only do this if we are in the same block and we aren't doing the
2931 if (same_block && len < fs_info->sectorsize) {
2932 if (offset < ino_size) {
2933 truncated_block = true;
2934 ret = btrfs_truncate_block(inode, offset, len, 0);
2938 goto out_only_mutex;
2941 /* zero back part of the first block */
2942 if (offset < ino_size) {
2943 truncated_block = true;
2944 ret = btrfs_truncate_block(inode, offset, 0, 0);
2946 inode_unlock(inode);
2951 /* Check the aligned pages after the first unaligned page,
2952 * if offset != orig_start, which means the first unaligned page
2953 * including several following pages are already in holes,
2954 * the extra check can be skipped */
2955 if (offset == orig_start) {
2956 /* after truncate page, check hole again */
2957 len = offset + len - lockstart;
2959 ret = find_first_non_hole(inode, &offset, &len);
2961 goto out_only_mutex;
2964 goto out_only_mutex;
2969 /* Check the tail unaligned part is in a hole */
2970 tail_start = lockend + 1;
2971 tail_len = offset + len - tail_start;
2973 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2974 if (unlikely(ret < 0))
2975 goto out_only_mutex;
2977 /* zero the front end of the last page */
2978 if (tail_start + tail_len < ino_size) {
2979 truncated_block = true;
2980 ret = btrfs_truncate_block(inode,
2981 tail_start + tail_len,
2984 goto out_only_mutex;
2989 if (lockend < lockstart) {
2991 goto out_only_mutex;
2994 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2997 goto out_only_mutex;
2999 path = btrfs_alloc_path();
3005 ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
3007 btrfs_free_path(path);
3011 ASSERT(trans != NULL);
3012 inode_inc_iversion(inode);
3013 inode->i_mtime = inode->i_ctime = current_time(inode);
3014 ret = btrfs_update_inode(trans, root, inode);
3015 updated_inode = true;
3016 btrfs_end_transaction(trans);
3017 btrfs_btree_balance_dirty(fs_info);
3019 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3022 if (!updated_inode && truncated_block && !ret) {
3024 * If we only end up zeroing part of a page, we still need to
3025 * update the inode item, so that all the time fields are
3026 * updated as well as the necessary btrfs inode in memory fields
3027 * for detecting, at fsync time, if the inode isn't yet in the
3028 * log tree or it's there but not up to date.
3030 struct timespec64 now = current_time(inode);
3032 inode_inc_iversion(inode);
3033 inode->i_mtime = now;
3034 inode->i_ctime = now;
3035 trans = btrfs_start_transaction(root, 1);
3036 if (IS_ERR(trans)) {
3037 ret = PTR_ERR(trans);
3041 ret = btrfs_update_inode(trans, root, inode);
3042 ret2 = btrfs_end_transaction(trans);
3047 inode_unlock(inode);
3051 /* Helper structure to record which range is already reserved */
3052 struct falloc_range {
3053 struct list_head list;
3059 * Helper function to add falloc range
3061 * Caller should have locked the larger range of extent containing
3064 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3066 struct falloc_range *prev = NULL;
3067 struct falloc_range *range = NULL;
3069 if (list_empty(head))
3073 * As fallocate iterate by bytenr order, we only need to check
3076 prev = list_entry(head->prev, struct falloc_range, list);
3077 if (prev->start + prev->len == start) {
3082 range = kmalloc(sizeof(*range), GFP_KERNEL);
3085 range->start = start;
3087 list_add_tail(&range->list, head);
3091 static int btrfs_fallocate_update_isize(struct inode *inode,
3095 struct btrfs_trans_handle *trans;
3096 struct btrfs_root *root = BTRFS_I(inode)->root;
3100 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3103 trans = btrfs_start_transaction(root, 1);
3105 return PTR_ERR(trans);
3107 inode->i_ctime = current_time(inode);
3108 i_size_write(inode, end);
3109 btrfs_inode_safe_disk_i_size_write(inode, 0);
3110 ret = btrfs_update_inode(trans, root, inode);
3111 ret2 = btrfs_end_transaction(trans);
3113 return ret ? ret : ret2;
3117 RANGE_BOUNDARY_WRITTEN_EXTENT,
3118 RANGE_BOUNDARY_PREALLOC_EXTENT,
3119 RANGE_BOUNDARY_HOLE,
3122 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3125 const u64 sectorsize = btrfs_inode_sectorsize(inode);
3126 struct extent_map *em;
3129 offset = round_down(offset, sectorsize);
3130 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3134 if (em->block_start == EXTENT_MAP_HOLE)
3135 ret = RANGE_BOUNDARY_HOLE;
3136 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3137 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3139 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3141 free_extent_map(em);
3145 static int btrfs_zero_range(struct inode *inode,
3150 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3151 struct extent_map *em;
3152 struct extent_changeset *data_reserved = NULL;
3155 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3156 u64 alloc_start = round_down(offset, sectorsize);
3157 u64 alloc_end = round_up(offset + len, sectorsize);
3158 u64 bytes_to_reserve = 0;
3159 bool space_reserved = false;
3161 inode_dio_wait(inode);
3163 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3164 alloc_end - alloc_start);
3171 * Avoid hole punching and extent allocation for some cases. More cases
3172 * could be considered, but these are unlikely common and we keep things
3173 * as simple as possible for now. Also, intentionally, if the target
3174 * range contains one or more prealloc extents together with regular
3175 * extents and holes, we drop all the existing extents and allocate a
3176 * new prealloc extent, so that we get a larger contiguous disk extent.
3178 if (em->start <= alloc_start &&
3179 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3180 const u64 em_end = em->start + em->len;
3182 if (em_end >= offset + len) {
3184 * The whole range is already a prealloc extent,
3185 * do nothing except updating the inode's i_size if
3188 free_extent_map(em);
3189 ret = btrfs_fallocate_update_isize(inode, offset + len,
3194 * Part of the range is already a prealloc extent, so operate
3195 * only on the remaining part of the range.
3197 alloc_start = em_end;
3198 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3199 len = offset + len - alloc_start;
3200 offset = alloc_start;
3201 alloc_hint = em->block_start + em->len;
3203 free_extent_map(em);
3205 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3206 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3207 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3214 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3215 free_extent_map(em);
3216 ret = btrfs_fallocate_update_isize(inode, offset + len,
3220 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3221 free_extent_map(em);
3222 ret = btrfs_truncate_block(inode, offset, len, 0);
3224 ret = btrfs_fallocate_update_isize(inode,
3229 free_extent_map(em);
3230 alloc_start = round_down(offset, sectorsize);
3231 alloc_end = alloc_start + sectorsize;
3235 alloc_start = round_up(offset, sectorsize);
3236 alloc_end = round_down(offset + len, sectorsize);
3239 * For unaligned ranges, check the pages at the boundaries, they might
3240 * map to an extent, in which case we need to partially zero them, or
3241 * they might map to a hole, in which case we need our allocation range
3244 if (!IS_ALIGNED(offset, sectorsize)) {
3245 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3249 if (ret == RANGE_BOUNDARY_HOLE) {
3250 alloc_start = round_down(offset, sectorsize);
3252 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3253 ret = btrfs_truncate_block(inode, offset, 0, 0);
3261 if (!IS_ALIGNED(offset + len, sectorsize)) {
3262 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3266 if (ret == RANGE_BOUNDARY_HOLE) {
3267 alloc_end = round_up(offset + len, sectorsize);
3269 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3270 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3279 if (alloc_start < alloc_end) {
3280 struct extent_state *cached_state = NULL;
3281 const u64 lockstart = alloc_start;
3282 const u64 lockend = alloc_end - 1;
3284 bytes_to_reserve = alloc_end - alloc_start;
3285 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3289 space_reserved = true;
3290 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3294 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3295 alloc_start, bytes_to_reserve);
3298 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3299 alloc_end - alloc_start,
3301 offset + len, &alloc_hint);
3302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3303 lockend, &cached_state);
3304 /* btrfs_prealloc_file_range releases reserved space on error */
3306 space_reserved = false;
3310 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3312 if (ret && space_reserved)
3313 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3314 alloc_start, bytes_to_reserve);
3315 extent_changeset_free(data_reserved);
3320 static long btrfs_fallocate(struct file *file, int mode,
3321 loff_t offset, loff_t len)
3323 struct inode *inode = file_inode(file);
3324 struct extent_state *cached_state = NULL;
3325 struct extent_changeset *data_reserved = NULL;
3326 struct falloc_range *range;
3327 struct falloc_range *tmp;
3328 struct list_head reserve_list;
3336 struct extent_map *em;
3337 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3340 alloc_start = round_down(offset, blocksize);
3341 alloc_end = round_up(offset + len, blocksize);
3342 cur_offset = alloc_start;
3344 /* Make sure we aren't being give some crap mode */
3345 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3346 FALLOC_FL_ZERO_RANGE))
3349 if (mode & FALLOC_FL_PUNCH_HOLE)
3350 return btrfs_punch_hole(inode, offset, len);
3353 * Only trigger disk allocation, don't trigger qgroup reserve
3355 * For qgroup space, it will be checked later.
3357 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3358 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3359 alloc_end - alloc_start);
3366 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3367 ret = inode_newsize_ok(inode, offset + len);
3373 * TODO: Move these two operations after we have checked
3374 * accurate reserved space, or fallocate can still fail but
3375 * with page truncated or size expanded.
3377 * But that's a minor problem and won't do much harm BTW.
3379 if (alloc_start > inode->i_size) {
3380 ret = btrfs_cont_expand(inode, i_size_read(inode),
3384 } else if (offset + len > inode->i_size) {
3386 * If we are fallocating from the end of the file onward we
3387 * need to zero out the end of the block if i_size lands in the
3388 * middle of a block.
3390 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3396 * wait for ordered IO before we have any locks. We'll loop again
3397 * below with the locks held.
3399 ret = btrfs_wait_ordered_range(inode, alloc_start,
3400 alloc_end - alloc_start);
3404 if (mode & FALLOC_FL_ZERO_RANGE) {
3405 ret = btrfs_zero_range(inode, offset, len, mode);
3406 inode_unlock(inode);
3410 locked_end = alloc_end - 1;
3412 struct btrfs_ordered_extent *ordered;
3414 /* the extent lock is ordered inside the running
3417 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3418 locked_end, &cached_state);
3419 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3423 ordered->file_offset + ordered->num_bytes > alloc_start &&
3424 ordered->file_offset < alloc_end) {
3425 btrfs_put_ordered_extent(ordered);
3426 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3427 alloc_start, locked_end,
3430 * we can't wait on the range with the transaction
3431 * running or with the extent lock held
3433 ret = btrfs_wait_ordered_range(inode, alloc_start,
3434 alloc_end - alloc_start);
3439 btrfs_put_ordered_extent(ordered);
3444 /* First, check if we exceed the qgroup limit */
3445 INIT_LIST_HEAD(&reserve_list);
3446 while (cur_offset < alloc_end) {
3447 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3448 alloc_end - cur_offset);
3453 last_byte = min(extent_map_end(em), alloc_end);
3454 actual_end = min_t(u64, extent_map_end(em), offset + len);
3455 last_byte = ALIGN(last_byte, blocksize);
3456 if (em->block_start == EXTENT_MAP_HOLE ||
3457 (cur_offset >= inode->i_size &&
3458 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3459 ret = add_falloc_range(&reserve_list, cur_offset,
3460 last_byte - cur_offset);
3462 free_extent_map(em);
3465 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3466 &data_reserved, cur_offset,
3467 last_byte - cur_offset);
3469 cur_offset = last_byte;
3470 free_extent_map(em);
3475 * Do not need to reserve unwritten extent for this
3476 * range, free reserved data space first, otherwise
3477 * it'll result in false ENOSPC error.
3479 btrfs_free_reserved_data_space(BTRFS_I(inode),
3480 data_reserved, cur_offset,
3481 last_byte - cur_offset);
3483 free_extent_map(em);
3484 cur_offset = last_byte;
3488 * If ret is still 0, means we're OK to fallocate.
3489 * Or just cleanup the list and exit.
3491 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3493 ret = btrfs_prealloc_file_range(inode, mode,
3495 range->len, i_blocksize(inode),
3496 offset + len, &alloc_hint);
3498 btrfs_free_reserved_data_space(BTRFS_I(inode),
3499 data_reserved, range->start,
3501 list_del(&range->list);
3508 * We didn't need to allocate any more space, but we still extended the
3509 * size of the file so we need to update i_size and the inode item.
3511 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3513 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3516 inode_unlock(inode);
3517 /* Let go of our reservation. */
3518 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3519 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3520 cur_offset, alloc_end - cur_offset);
3521 extent_changeset_free(data_reserved);
3525 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3529 struct extent_map *em = NULL;
3530 struct extent_state *cached_state = NULL;
3531 loff_t i_size = inode->i_size;
3538 if (i_size == 0 || offset >= i_size)
3542 * offset can be negative, in this case we start finding DATA/HOLE from
3543 * the very start of the file.
3545 start = max_t(loff_t, 0, offset);
3547 lockstart = round_down(start, fs_info->sectorsize);
3548 lockend = round_up(i_size, fs_info->sectorsize);
3549 if (lockend <= lockstart)
3550 lockend = lockstart + fs_info->sectorsize;
3552 len = lockend - lockstart + 1;
3554 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3557 while (start < i_size) {
3558 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3565 if (whence == SEEK_HOLE &&
3566 (em->block_start == EXTENT_MAP_HOLE ||
3567 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3569 else if (whence == SEEK_DATA &&
3570 (em->block_start != EXTENT_MAP_HOLE &&
3571 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3574 start = em->start + em->len;
3575 free_extent_map(em);
3579 free_extent_map(em);
3580 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3585 if (whence == SEEK_DATA && start >= i_size)
3588 offset = min_t(loff_t, start, i_size);
3594 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3596 struct inode *inode = file->f_mapping->host;
3600 return generic_file_llseek(file, offset, whence);
3603 inode_lock_shared(inode);
3604 offset = find_desired_extent(inode, offset, whence);
3605 inode_unlock_shared(inode);
3612 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3615 static int btrfs_file_open(struct inode *inode, struct file *filp)
3617 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3618 return generic_file_open(inode, filp);
3621 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3625 if (iocb->ki_flags & IOCB_DIRECT) {
3626 struct inode *inode = file_inode(iocb->ki_filp);
3628 inode_lock_shared(inode);
3629 ret = btrfs_direct_IO(iocb, to);
3630 inode_unlock_shared(inode);
3631 if (ret < 0 || !iov_iter_count(to) ||
3632 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3636 return generic_file_buffered_read(iocb, to, ret);
3639 const struct file_operations btrfs_file_operations = {
3640 .llseek = btrfs_file_llseek,
3641 .read_iter = btrfs_file_read_iter,
3642 .splice_read = generic_file_splice_read,
3643 .write_iter = btrfs_file_write_iter,
3644 .splice_write = iter_file_splice_write,
3645 .mmap = btrfs_file_mmap,
3646 .open = btrfs_file_open,
3647 .release = btrfs_release_file,
3648 .fsync = btrfs_sync_file,
3649 .fallocate = btrfs_fallocate,
3650 .unlocked_ioctl = btrfs_ioctl,
3651 #ifdef CONFIG_COMPAT
3652 .compat_ioctl = btrfs_compat_ioctl,
3654 .remap_file_range = btrfs_remap_file_range,
3657 void __cold btrfs_auto_defrag_exit(void)
3659 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3662 int __init btrfs_auto_defrag_init(void)
3664 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3665 sizeof(struct inode_defrag), 0,
3668 if (!btrfs_inode_defrag_cachep)
3674 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3679 * So with compression we will find and lock a dirty page and clear the
3680 * first one as dirty, setup an async extent, and immediately return
3681 * with the entire range locked but with nobody actually marked with
3682 * writeback. So we can't just filemap_write_and_wait_range() and
3683 * expect it to work since it will just kick off a thread to do the
3684 * actual work. So we need to call filemap_fdatawrite_range _again_
3685 * since it will wait on the page lock, which won't be unlocked until
3686 * after the pages have been marked as writeback and so we're good to go
3687 * from there. We have to do this otherwise we'll miss the ordered
3688 * extents and that results in badness. Please Josef, do not think you
3689 * know better and pull this out at some point in the future, it is
3690 * right and you are wrong.
3692 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3693 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3694 &BTRFS_I(inode)->runtime_flags))
3695 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);