btrfs: fix RWF_NOWAIT write not failling when we need to cow
[platform/kernel/linux-rpi.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39         struct rb_node rb_node;
40         /* objectid */
41         u64 ino;
42         /*
43          * transid where the defrag was added, we search for
44          * extents newer than this
45          */
46         u64 transid;
47
48         /* root objectid */
49         u64 root;
50
51         /* last offset we were able to defrag */
52         u64 last_offset;
53
54         /* if we've wrapped around back to zero once already */
55         int cycled;
56 };
57
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59                                   struct inode_defrag *defrag2)
60 {
61         if (defrag1->root > defrag2->root)
62                 return 1;
63         else if (defrag1->root < defrag2->root)
64                 return -1;
65         else if (defrag1->ino > defrag2->ino)
66                 return 1;
67         else if (defrag1->ino < defrag2->ino)
68                 return -1;
69         else
70                 return 0;
71 }
72
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83                                     struct inode_defrag *defrag)
84 {
85         struct btrfs_fs_info *fs_info = inode->root->fs_info;
86         struct inode_defrag *entry;
87         struct rb_node **p;
88         struct rb_node *parent = NULL;
89         int ret;
90
91         p = &fs_info->defrag_inodes.rb_node;
92         while (*p) {
93                 parent = *p;
94                 entry = rb_entry(parent, struct inode_defrag, rb_node);
95
96                 ret = __compare_inode_defrag(defrag, entry);
97                 if (ret < 0)
98                         p = &parent->rb_left;
99                 else if (ret > 0)
100                         p = &parent->rb_right;
101                 else {
102                         /* if we're reinserting an entry for
103                          * an old defrag run, make sure to
104                          * lower the transid of our existing record
105                          */
106                         if (defrag->transid < entry->transid)
107                                 entry->transid = defrag->transid;
108                         if (defrag->last_offset > entry->last_offset)
109                                 entry->last_offset = defrag->last_offset;
110                         return -EEXIST;
111                 }
112         }
113         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114         rb_link_node(&defrag->rb_node, parent, p);
115         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116         return 0;
117 }
118
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122                 return 0;
123
124         if (btrfs_fs_closing(fs_info))
125                 return 0;
126
127         return 1;
128 }
129
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135                            struct btrfs_inode *inode)
136 {
137         struct btrfs_root *root = inode->root;
138         struct btrfs_fs_info *fs_info = root->fs_info;
139         struct inode_defrag *defrag;
140         u64 transid;
141         int ret;
142
143         if (!__need_auto_defrag(fs_info))
144                 return 0;
145
146         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147                 return 0;
148
149         if (trans)
150                 transid = trans->transid;
151         else
152                 transid = inode->root->last_trans;
153
154         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155         if (!defrag)
156                 return -ENOMEM;
157
158         defrag->ino = btrfs_ino(inode);
159         defrag->transid = transid;
160         defrag->root = root->root_key.objectid;
161
162         spin_lock(&fs_info->defrag_inodes_lock);
163         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164                 /*
165                  * If we set IN_DEFRAG flag and evict the inode from memory,
166                  * and then re-read this inode, this new inode doesn't have
167                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
168                  */
169                 ret = __btrfs_add_inode_defrag(inode, defrag);
170                 if (ret)
171                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172         } else {
173                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174         }
175         spin_unlock(&fs_info->defrag_inodes_lock);
176         return 0;
177 }
178
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185                                        struct inode_defrag *defrag)
186 {
187         struct btrfs_fs_info *fs_info = inode->root->fs_info;
188         int ret;
189
190         if (!__need_auto_defrag(fs_info))
191                 goto out;
192
193         /*
194          * Here we don't check the IN_DEFRAG flag, because we need merge
195          * them together.
196          */
197         spin_lock(&fs_info->defrag_inodes_lock);
198         ret = __btrfs_add_inode_defrag(inode, defrag);
199         spin_unlock(&fs_info->defrag_inodes_lock);
200         if (ret)
201                 goto out;
202         return;
203 out:
204         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214         struct inode_defrag *entry = NULL;
215         struct inode_defrag tmp;
216         struct rb_node *p;
217         struct rb_node *parent = NULL;
218         int ret;
219
220         tmp.ino = ino;
221         tmp.root = root;
222
223         spin_lock(&fs_info->defrag_inodes_lock);
224         p = fs_info->defrag_inodes.rb_node;
225         while (p) {
226                 parent = p;
227                 entry = rb_entry(parent, struct inode_defrag, rb_node);
228
229                 ret = __compare_inode_defrag(&tmp, entry);
230                 if (ret < 0)
231                         p = parent->rb_left;
232                 else if (ret > 0)
233                         p = parent->rb_right;
234                 else
235                         goto out;
236         }
237
238         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239                 parent = rb_next(parent);
240                 if (parent)
241                         entry = rb_entry(parent, struct inode_defrag, rb_node);
242                 else
243                         entry = NULL;
244         }
245 out:
246         if (entry)
247                 rb_erase(parent, &fs_info->defrag_inodes);
248         spin_unlock(&fs_info->defrag_inodes_lock);
249         return entry;
250 }
251
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254         struct inode_defrag *defrag;
255         struct rb_node *node;
256
257         spin_lock(&fs_info->defrag_inodes_lock);
258         node = rb_first(&fs_info->defrag_inodes);
259         while (node) {
260                 rb_erase(node, &fs_info->defrag_inodes);
261                 defrag = rb_entry(node, struct inode_defrag, rb_node);
262                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263
264                 cond_resched_lock(&fs_info->defrag_inodes_lock);
265
266                 node = rb_first(&fs_info->defrag_inodes);
267         }
268         spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270
271 #define BTRFS_DEFRAG_BATCH      1024
272
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274                                     struct inode_defrag *defrag)
275 {
276         struct btrfs_root *inode_root;
277         struct inode *inode;
278         struct btrfs_ioctl_defrag_range_args range;
279         int num_defrag;
280         int ret;
281
282         /* get the inode */
283         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284         if (IS_ERR(inode_root)) {
285                 ret = PTR_ERR(inode_root);
286                 goto cleanup;
287         }
288
289         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290         btrfs_put_root(inode_root);
291         if (IS_ERR(inode)) {
292                 ret = PTR_ERR(inode);
293                 goto cleanup;
294         }
295
296         /* do a chunk of defrag */
297         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298         memset(&range, 0, sizeof(range));
299         range.len = (u64)-1;
300         range.start = defrag->last_offset;
301
302         sb_start_write(fs_info->sb);
303         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304                                        BTRFS_DEFRAG_BATCH);
305         sb_end_write(fs_info->sb);
306         /*
307          * if we filled the whole defrag batch, there
308          * must be more work to do.  Queue this defrag
309          * again
310          */
311         if (num_defrag == BTRFS_DEFRAG_BATCH) {
312                 defrag->last_offset = range.start;
313                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314         } else if (defrag->last_offset && !defrag->cycled) {
315                 /*
316                  * we didn't fill our defrag batch, but
317                  * we didn't start at zero.  Make sure we loop
318                  * around to the start of the file.
319                  */
320                 defrag->last_offset = 0;
321                 defrag->cycled = 1;
322                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323         } else {
324                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325         }
326
327         iput(inode);
328         return 0;
329 cleanup:
330         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331         return ret;
332 }
333
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340         struct inode_defrag *defrag;
341         u64 first_ino = 0;
342         u64 root_objectid = 0;
343
344         atomic_inc(&fs_info->defrag_running);
345         while (1) {
346                 /* Pause the auto defragger. */
347                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348                              &fs_info->fs_state))
349                         break;
350
351                 if (!__need_auto_defrag(fs_info))
352                         break;
353
354                 /* find an inode to defrag */
355                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356                                                  first_ino);
357                 if (!defrag) {
358                         if (root_objectid || first_ino) {
359                                 root_objectid = 0;
360                                 first_ino = 0;
361                                 continue;
362                         } else {
363                                 break;
364                         }
365                 }
366
367                 first_ino = defrag->ino + 1;
368                 root_objectid = defrag->root;
369
370                 __btrfs_run_defrag_inode(fs_info, defrag);
371         }
372         atomic_dec(&fs_info->defrag_running);
373
374         /*
375          * during unmount, we use the transaction_wait queue to
376          * wait for the defragger to stop
377          */
378         wake_up(&fs_info->transaction_wait);
379         return 0;
380 }
381
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386                                          struct page **prepared_pages,
387                                          struct iov_iter *i)
388 {
389         size_t copied = 0;
390         size_t total_copied = 0;
391         int pg = 0;
392         int offset = offset_in_page(pos);
393
394         while (write_bytes > 0) {
395                 size_t count = min_t(size_t,
396                                      PAGE_SIZE - offset, write_bytes);
397                 struct page *page = prepared_pages[pg];
398                 /*
399                  * Copy data from userspace to the current page
400                  */
401                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402
403                 /* Flush processor's dcache for this page */
404                 flush_dcache_page(page);
405
406                 /*
407                  * if we get a partial write, we can end up with
408                  * partially up to date pages.  These add
409                  * a lot of complexity, so make sure they don't
410                  * happen by forcing this copy to be retried.
411                  *
412                  * The rest of the btrfs_file_write code will fall
413                  * back to page at a time copies after we return 0.
414                  */
415                 if (!PageUptodate(page) && copied < count)
416                         copied = 0;
417
418                 iov_iter_advance(i, copied);
419                 write_bytes -= copied;
420                 total_copied += copied;
421
422                 /* Return to btrfs_file_write_iter to fault page */
423                 if (unlikely(copied == 0))
424                         break;
425
426                 if (copied < PAGE_SIZE - offset) {
427                         offset += copied;
428                 } else {
429                         pg++;
430                         offset = 0;
431                 }
432         }
433         return total_copied;
434 }
435
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441         size_t i;
442         for (i = 0; i < num_pages; i++) {
443                 /* page checked is some magic around finding pages that
444                  * have been modified without going through btrfs_set_page_dirty
445                  * clear it here. There should be no need to mark the pages
446                  * accessed as prepare_pages should have marked them accessed
447                  * in prepare_pages via find_or_create_page()
448                  */
449                 ClearPageChecked(pages[i]);
450                 unlock_page(pages[i]);
451                 put_page(pages[i]);
452         }
453 }
454
455 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
456                                          const u64 start,
457                                          const u64 len,
458                                          struct extent_state **cached_state)
459 {
460         u64 search_start = start;
461         const u64 end = start + len - 1;
462
463         while (search_start < end) {
464                 const u64 search_len = end - search_start + 1;
465                 struct extent_map *em;
466                 u64 em_len;
467                 int ret = 0;
468
469                 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
470                 if (IS_ERR(em))
471                         return PTR_ERR(em);
472
473                 if (em->block_start != EXTENT_MAP_HOLE)
474                         goto next;
475
476                 em_len = em->len;
477                 if (em->start < search_start)
478                         em_len -= search_start - em->start;
479                 if (em_len > search_len)
480                         em_len = search_len;
481
482                 ret = set_extent_bit(&inode->io_tree, search_start,
483                                      search_start + em_len - 1,
484                                      EXTENT_DELALLOC_NEW,
485                                      NULL, cached_state, GFP_NOFS);
486 next:
487                 search_start = extent_map_end(em);
488                 free_extent_map(em);
489                 if (ret)
490                         return ret;
491         }
492         return 0;
493 }
494
495 /*
496  * after copy_from_user, pages need to be dirtied and we need to make
497  * sure holes are created between the current EOF and the start of
498  * any next extents (if required).
499  *
500  * this also makes the decision about creating an inline extent vs
501  * doing real data extents, marking pages dirty and delalloc as required.
502  */
503 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
504                       size_t num_pages, loff_t pos, size_t write_bytes,
505                       struct extent_state **cached)
506 {
507         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
508         int err = 0;
509         int i;
510         u64 num_bytes;
511         u64 start_pos;
512         u64 end_of_last_block;
513         u64 end_pos = pos + write_bytes;
514         loff_t isize = i_size_read(inode);
515         unsigned int extra_bits = 0;
516
517         start_pos = pos & ~((u64) fs_info->sectorsize - 1);
518         num_bytes = round_up(write_bytes + pos - start_pos,
519                              fs_info->sectorsize);
520
521         end_of_last_block = start_pos + num_bytes - 1;
522
523         /*
524          * The pages may have already been dirty, clear out old accounting so
525          * we can set things up properly
526          */
527         clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
528                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
529                          0, 0, cached);
530
531         if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
532                 if (start_pos >= isize &&
533                     !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
534                         /*
535                          * There can't be any extents following eof in this case
536                          * so just set the delalloc new bit for the range
537                          * directly.
538                          */
539                         extra_bits |= EXTENT_DELALLOC_NEW;
540                 } else {
541                         err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
542                                                             start_pos,
543                                                             num_bytes, cached);
544                         if (err)
545                                 return err;
546                 }
547         }
548
549         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
550                                         extra_bits, cached);
551         if (err)
552                 return err;
553
554         for (i = 0; i < num_pages; i++) {
555                 struct page *p = pages[i];
556                 SetPageUptodate(p);
557                 ClearPageChecked(p);
558                 set_page_dirty(p);
559         }
560
561         /*
562          * we've only changed i_size in ram, and we haven't updated
563          * the disk i_size.  There is no need to log the inode
564          * at this time.
565          */
566         if (end_pos > isize)
567                 i_size_write(inode, end_pos);
568         return 0;
569 }
570
571 /*
572  * this drops all the extents in the cache that intersect the range
573  * [start, end].  Existing extents are split as required.
574  */
575 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
576                              int skip_pinned)
577 {
578         struct extent_map *em;
579         struct extent_map *split = NULL;
580         struct extent_map *split2 = NULL;
581         struct extent_map_tree *em_tree = &inode->extent_tree;
582         u64 len = end - start + 1;
583         u64 gen;
584         int ret;
585         int testend = 1;
586         unsigned long flags;
587         int compressed = 0;
588         bool modified;
589
590         WARN_ON(end < start);
591         if (end == (u64)-1) {
592                 len = (u64)-1;
593                 testend = 0;
594         }
595         while (1) {
596                 int no_splits = 0;
597
598                 modified = false;
599                 if (!split)
600                         split = alloc_extent_map();
601                 if (!split2)
602                         split2 = alloc_extent_map();
603                 if (!split || !split2)
604                         no_splits = 1;
605
606                 write_lock(&em_tree->lock);
607                 em = lookup_extent_mapping(em_tree, start, len);
608                 if (!em) {
609                         write_unlock(&em_tree->lock);
610                         break;
611                 }
612                 flags = em->flags;
613                 gen = em->generation;
614                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
615                         if (testend && em->start + em->len >= start + len) {
616                                 free_extent_map(em);
617                                 write_unlock(&em_tree->lock);
618                                 break;
619                         }
620                         start = em->start + em->len;
621                         if (testend)
622                                 len = start + len - (em->start + em->len);
623                         free_extent_map(em);
624                         write_unlock(&em_tree->lock);
625                         continue;
626                 }
627                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
628                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
629                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
630                 modified = !list_empty(&em->list);
631                 if (no_splits)
632                         goto next;
633
634                 if (em->start < start) {
635                         split->start = em->start;
636                         split->len = start - em->start;
637
638                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
639                                 split->orig_start = em->orig_start;
640                                 split->block_start = em->block_start;
641
642                                 if (compressed)
643                                         split->block_len = em->block_len;
644                                 else
645                                         split->block_len = split->len;
646                                 split->orig_block_len = max(split->block_len,
647                                                 em->orig_block_len);
648                                 split->ram_bytes = em->ram_bytes;
649                         } else {
650                                 split->orig_start = split->start;
651                                 split->block_len = 0;
652                                 split->block_start = em->block_start;
653                                 split->orig_block_len = 0;
654                                 split->ram_bytes = split->len;
655                         }
656
657                         split->generation = gen;
658                         split->flags = flags;
659                         split->compress_type = em->compress_type;
660                         replace_extent_mapping(em_tree, em, split, modified);
661                         free_extent_map(split);
662                         split = split2;
663                         split2 = NULL;
664                 }
665                 if (testend && em->start + em->len > start + len) {
666                         u64 diff = start + len - em->start;
667
668                         split->start = start + len;
669                         split->len = em->start + em->len - (start + len);
670                         split->flags = flags;
671                         split->compress_type = em->compress_type;
672                         split->generation = gen;
673
674                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
675                                 split->orig_block_len = max(em->block_len,
676                                                     em->orig_block_len);
677
678                                 split->ram_bytes = em->ram_bytes;
679                                 if (compressed) {
680                                         split->block_len = em->block_len;
681                                         split->block_start = em->block_start;
682                                         split->orig_start = em->orig_start;
683                                 } else {
684                                         split->block_len = split->len;
685                                         split->block_start = em->block_start
686                                                 + diff;
687                                         split->orig_start = em->orig_start;
688                                 }
689                         } else {
690                                 split->ram_bytes = split->len;
691                                 split->orig_start = split->start;
692                                 split->block_len = 0;
693                                 split->block_start = em->block_start;
694                                 split->orig_block_len = 0;
695                         }
696
697                         if (extent_map_in_tree(em)) {
698                                 replace_extent_mapping(em_tree, em, split,
699                                                        modified);
700                         } else {
701                                 ret = add_extent_mapping(em_tree, split,
702                                                          modified);
703                                 ASSERT(ret == 0); /* Logic error */
704                         }
705                         free_extent_map(split);
706                         split = NULL;
707                 }
708 next:
709                 if (extent_map_in_tree(em))
710                         remove_extent_mapping(em_tree, em);
711                 write_unlock(&em_tree->lock);
712
713                 /* once for us */
714                 free_extent_map(em);
715                 /* once for the tree*/
716                 free_extent_map(em);
717         }
718         if (split)
719                 free_extent_map(split);
720         if (split2)
721                 free_extent_map(split2);
722 }
723
724 /*
725  * this is very complex, but the basic idea is to drop all extents
726  * in the range start - end.  hint_block is filled in with a block number
727  * that would be a good hint to the block allocator for this file.
728  *
729  * If an extent intersects the range but is not entirely inside the range
730  * it is either truncated or split.  Anything entirely inside the range
731  * is deleted from the tree.
732  */
733 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
734                          struct btrfs_root *root, struct inode *inode,
735                          struct btrfs_path *path, u64 start, u64 end,
736                          u64 *drop_end, int drop_cache,
737                          int replace_extent,
738                          u32 extent_item_size,
739                          int *key_inserted)
740 {
741         struct btrfs_fs_info *fs_info = root->fs_info;
742         struct extent_buffer *leaf;
743         struct btrfs_file_extent_item *fi;
744         struct btrfs_ref ref = { 0 };
745         struct btrfs_key key;
746         struct btrfs_key new_key;
747         u64 ino = btrfs_ino(BTRFS_I(inode));
748         u64 search_start = start;
749         u64 disk_bytenr = 0;
750         u64 num_bytes = 0;
751         u64 extent_offset = 0;
752         u64 extent_end = 0;
753         u64 last_end = start;
754         int del_nr = 0;
755         int del_slot = 0;
756         int extent_type;
757         int recow;
758         int ret;
759         int modify_tree = -1;
760         int update_refs;
761         int found = 0;
762         int leafs_visited = 0;
763
764         if (drop_cache)
765                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
766
767         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
768                 modify_tree = 0;
769
770         update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
771                        root == fs_info->tree_root);
772         while (1) {
773                 recow = 0;
774                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
775                                                search_start, modify_tree);
776                 if (ret < 0)
777                         break;
778                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
779                         leaf = path->nodes[0];
780                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
781                         if (key.objectid == ino &&
782                             key.type == BTRFS_EXTENT_DATA_KEY)
783                                 path->slots[0]--;
784                 }
785                 ret = 0;
786                 leafs_visited++;
787 next_slot:
788                 leaf = path->nodes[0];
789                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
790                         BUG_ON(del_nr > 0);
791                         ret = btrfs_next_leaf(root, path);
792                         if (ret < 0)
793                                 break;
794                         if (ret > 0) {
795                                 ret = 0;
796                                 break;
797                         }
798                         leafs_visited++;
799                         leaf = path->nodes[0];
800                         recow = 1;
801                 }
802
803                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
804
805                 if (key.objectid > ino)
806                         break;
807                 if (WARN_ON_ONCE(key.objectid < ino) ||
808                     key.type < BTRFS_EXTENT_DATA_KEY) {
809                         ASSERT(del_nr == 0);
810                         path->slots[0]++;
811                         goto next_slot;
812                 }
813                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
814                         break;
815
816                 fi = btrfs_item_ptr(leaf, path->slots[0],
817                                     struct btrfs_file_extent_item);
818                 extent_type = btrfs_file_extent_type(leaf, fi);
819
820                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
821                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
822                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
823                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
824                         extent_offset = btrfs_file_extent_offset(leaf, fi);
825                         extent_end = key.offset +
826                                 btrfs_file_extent_num_bytes(leaf, fi);
827                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828                         extent_end = key.offset +
829                                 btrfs_file_extent_ram_bytes(leaf, fi);
830                 } else {
831                         /* can't happen */
832                         BUG();
833                 }
834
835                 /*
836                  * Don't skip extent items representing 0 byte lengths. They
837                  * used to be created (bug) if while punching holes we hit
838                  * -ENOSPC condition. So if we find one here, just ensure we
839                  * delete it, otherwise we would insert a new file extent item
840                  * with the same key (offset) as that 0 bytes length file
841                  * extent item in the call to setup_items_for_insert() later
842                  * in this function.
843                  */
844                 if (extent_end == key.offset && extent_end >= search_start) {
845                         last_end = extent_end;
846                         goto delete_extent_item;
847                 }
848
849                 if (extent_end <= search_start) {
850                         path->slots[0]++;
851                         goto next_slot;
852                 }
853
854                 found = 1;
855                 search_start = max(key.offset, start);
856                 if (recow || !modify_tree) {
857                         modify_tree = -1;
858                         btrfs_release_path(path);
859                         continue;
860                 }
861
862                 /*
863                  *     | - range to drop - |
864                  *  | -------- extent -------- |
865                  */
866                 if (start > key.offset && end < extent_end) {
867                         BUG_ON(del_nr > 0);
868                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869                                 ret = -EOPNOTSUPP;
870                                 break;
871                         }
872
873                         memcpy(&new_key, &key, sizeof(new_key));
874                         new_key.offset = start;
875                         ret = btrfs_duplicate_item(trans, root, path,
876                                                    &new_key);
877                         if (ret == -EAGAIN) {
878                                 btrfs_release_path(path);
879                                 continue;
880                         }
881                         if (ret < 0)
882                                 break;
883
884                         leaf = path->nodes[0];
885                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
886                                             struct btrfs_file_extent_item);
887                         btrfs_set_file_extent_num_bytes(leaf, fi,
888                                                         start - key.offset);
889
890                         fi = btrfs_item_ptr(leaf, path->slots[0],
891                                             struct btrfs_file_extent_item);
892
893                         extent_offset += start - key.offset;
894                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
895                         btrfs_set_file_extent_num_bytes(leaf, fi,
896                                                         extent_end - start);
897                         btrfs_mark_buffer_dirty(leaf);
898
899                         if (update_refs && disk_bytenr > 0) {
900                                 btrfs_init_generic_ref(&ref,
901                                                 BTRFS_ADD_DELAYED_REF,
902                                                 disk_bytenr, num_bytes, 0);
903                                 btrfs_init_data_ref(&ref,
904                                                 root->root_key.objectid,
905                                                 new_key.objectid,
906                                                 start - extent_offset);
907                                 ret = btrfs_inc_extent_ref(trans, &ref);
908                                 BUG_ON(ret); /* -ENOMEM */
909                         }
910                         key.offset = start;
911                 }
912                 /*
913                  * From here on out we will have actually dropped something, so
914                  * last_end can be updated.
915                  */
916                 last_end = extent_end;
917
918                 /*
919                  *  | ---- range to drop ----- |
920                  *      | -------- extent -------- |
921                  */
922                 if (start <= key.offset && end < extent_end) {
923                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
924                                 ret = -EOPNOTSUPP;
925                                 break;
926                         }
927
928                         memcpy(&new_key, &key, sizeof(new_key));
929                         new_key.offset = end;
930                         btrfs_set_item_key_safe(fs_info, path, &new_key);
931
932                         extent_offset += end - key.offset;
933                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
934                         btrfs_set_file_extent_num_bytes(leaf, fi,
935                                                         extent_end - end);
936                         btrfs_mark_buffer_dirty(leaf);
937                         if (update_refs && disk_bytenr > 0)
938                                 inode_sub_bytes(inode, end - key.offset);
939                         break;
940                 }
941
942                 search_start = extent_end;
943                 /*
944                  *       | ---- range to drop ----- |
945                  *  | -------- extent -------- |
946                  */
947                 if (start > key.offset && end >= extent_end) {
948                         BUG_ON(del_nr > 0);
949                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
950                                 ret = -EOPNOTSUPP;
951                                 break;
952                         }
953
954                         btrfs_set_file_extent_num_bytes(leaf, fi,
955                                                         start - key.offset);
956                         btrfs_mark_buffer_dirty(leaf);
957                         if (update_refs && disk_bytenr > 0)
958                                 inode_sub_bytes(inode, extent_end - start);
959                         if (end == extent_end)
960                                 break;
961
962                         path->slots[0]++;
963                         goto next_slot;
964                 }
965
966                 /*
967                  *  | ---- range to drop ----- |
968                  *    | ------ extent ------ |
969                  */
970                 if (start <= key.offset && end >= extent_end) {
971 delete_extent_item:
972                         if (del_nr == 0) {
973                                 del_slot = path->slots[0];
974                                 del_nr = 1;
975                         } else {
976                                 BUG_ON(del_slot + del_nr != path->slots[0]);
977                                 del_nr++;
978                         }
979
980                         if (update_refs &&
981                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
982                                 inode_sub_bytes(inode,
983                                                 extent_end - key.offset);
984                                 extent_end = ALIGN(extent_end,
985                                                    fs_info->sectorsize);
986                         } else if (update_refs && disk_bytenr > 0) {
987                                 btrfs_init_generic_ref(&ref,
988                                                 BTRFS_DROP_DELAYED_REF,
989                                                 disk_bytenr, num_bytes, 0);
990                                 btrfs_init_data_ref(&ref,
991                                                 root->root_key.objectid,
992                                                 key.objectid,
993                                                 key.offset - extent_offset);
994                                 ret = btrfs_free_extent(trans, &ref);
995                                 BUG_ON(ret); /* -ENOMEM */
996                                 inode_sub_bytes(inode,
997                                                 extent_end - key.offset);
998                         }
999
1000                         if (end == extent_end)
1001                                 break;
1002
1003                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1004                                 path->slots[0]++;
1005                                 goto next_slot;
1006                         }
1007
1008                         ret = btrfs_del_items(trans, root, path, del_slot,
1009                                               del_nr);
1010                         if (ret) {
1011                                 btrfs_abort_transaction(trans, ret);
1012                                 break;
1013                         }
1014
1015                         del_nr = 0;
1016                         del_slot = 0;
1017
1018                         btrfs_release_path(path);
1019                         continue;
1020                 }
1021
1022                 BUG();
1023         }
1024
1025         if (!ret && del_nr > 0) {
1026                 /*
1027                  * Set path->slots[0] to first slot, so that after the delete
1028                  * if items are move off from our leaf to its immediate left or
1029                  * right neighbor leafs, we end up with a correct and adjusted
1030                  * path->slots[0] for our insertion (if replace_extent != 0).
1031                  */
1032                 path->slots[0] = del_slot;
1033                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1034                 if (ret)
1035                         btrfs_abort_transaction(trans, ret);
1036         }
1037
1038         leaf = path->nodes[0];
1039         /*
1040          * If btrfs_del_items() was called, it might have deleted a leaf, in
1041          * which case it unlocked our path, so check path->locks[0] matches a
1042          * write lock.
1043          */
1044         if (!ret && replace_extent && leafs_visited == 1 &&
1045             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046              path->locks[0] == BTRFS_WRITE_LOCK) &&
1047             btrfs_leaf_free_space(leaf) >=
1048             sizeof(struct btrfs_item) + extent_item_size) {
1049
1050                 key.objectid = ino;
1051                 key.type = BTRFS_EXTENT_DATA_KEY;
1052                 key.offset = start;
1053                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054                         struct btrfs_key slot_key;
1055
1056                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1058                                 path->slots[0]++;
1059                 }
1060                 setup_items_for_insert(root, path, &key,
1061                                        &extent_item_size,
1062                                        extent_item_size,
1063                                        sizeof(struct btrfs_item) +
1064                                        extent_item_size, 1);
1065                 *key_inserted = 1;
1066         }
1067
1068         if (!replace_extent || !(*key_inserted))
1069                 btrfs_release_path(path);
1070         if (drop_end)
1071                 *drop_end = found ? min(end, last_end) : end;
1072         return ret;
1073 }
1074
1075 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1076                        struct btrfs_root *root, struct inode *inode, u64 start,
1077                        u64 end, int drop_cache)
1078 {
1079         struct btrfs_path *path;
1080         int ret;
1081
1082         path = btrfs_alloc_path();
1083         if (!path)
1084                 return -ENOMEM;
1085         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1086                                    drop_cache, 0, 0, NULL);
1087         btrfs_free_path(path);
1088         return ret;
1089 }
1090
1091 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1092                             u64 objectid, u64 bytenr, u64 orig_offset,
1093                             u64 *start, u64 *end)
1094 {
1095         struct btrfs_file_extent_item *fi;
1096         struct btrfs_key key;
1097         u64 extent_end;
1098
1099         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1100                 return 0;
1101
1102         btrfs_item_key_to_cpu(leaf, &key, slot);
1103         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1104                 return 0;
1105
1106         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1107         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1108             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1109             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1110             btrfs_file_extent_compression(leaf, fi) ||
1111             btrfs_file_extent_encryption(leaf, fi) ||
1112             btrfs_file_extent_other_encoding(leaf, fi))
1113                 return 0;
1114
1115         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1116         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1117                 return 0;
1118
1119         *start = key.offset;
1120         *end = extent_end;
1121         return 1;
1122 }
1123
1124 /*
1125  * Mark extent in the range start - end as written.
1126  *
1127  * This changes extent type from 'pre-allocated' to 'regular'. If only
1128  * part of extent is marked as written, the extent will be split into
1129  * two or three.
1130  */
1131 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1132                               struct btrfs_inode *inode, u64 start, u64 end)
1133 {
1134         struct btrfs_fs_info *fs_info = trans->fs_info;
1135         struct btrfs_root *root = inode->root;
1136         struct extent_buffer *leaf;
1137         struct btrfs_path *path;
1138         struct btrfs_file_extent_item *fi;
1139         struct btrfs_ref ref = { 0 };
1140         struct btrfs_key key;
1141         struct btrfs_key new_key;
1142         u64 bytenr;
1143         u64 num_bytes;
1144         u64 extent_end;
1145         u64 orig_offset;
1146         u64 other_start;
1147         u64 other_end;
1148         u64 split;
1149         int del_nr = 0;
1150         int del_slot = 0;
1151         int recow;
1152         int ret;
1153         u64 ino = btrfs_ino(inode);
1154
1155         path = btrfs_alloc_path();
1156         if (!path)
1157                 return -ENOMEM;
1158 again:
1159         recow = 0;
1160         split = start;
1161         key.objectid = ino;
1162         key.type = BTRFS_EXTENT_DATA_KEY;
1163         key.offset = split;
1164
1165         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1166         if (ret < 0)
1167                 goto out;
1168         if (ret > 0 && path->slots[0] > 0)
1169                 path->slots[0]--;
1170
1171         leaf = path->nodes[0];
1172         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1173         if (key.objectid != ino ||
1174             key.type != BTRFS_EXTENT_DATA_KEY) {
1175                 ret = -EINVAL;
1176                 btrfs_abort_transaction(trans, ret);
1177                 goto out;
1178         }
1179         fi = btrfs_item_ptr(leaf, path->slots[0],
1180                             struct btrfs_file_extent_item);
1181         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1182                 ret = -EINVAL;
1183                 btrfs_abort_transaction(trans, ret);
1184                 goto out;
1185         }
1186         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1187         if (key.offset > start || extent_end < end) {
1188                 ret = -EINVAL;
1189                 btrfs_abort_transaction(trans, ret);
1190                 goto out;
1191         }
1192
1193         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1194         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1195         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1196         memcpy(&new_key, &key, sizeof(new_key));
1197
1198         if (start == key.offset && end < extent_end) {
1199                 other_start = 0;
1200                 other_end = start;
1201                 if (extent_mergeable(leaf, path->slots[0] - 1,
1202                                      ino, bytenr, orig_offset,
1203                                      &other_start, &other_end)) {
1204                         new_key.offset = end;
1205                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1206                         fi = btrfs_item_ptr(leaf, path->slots[0],
1207                                             struct btrfs_file_extent_item);
1208                         btrfs_set_file_extent_generation(leaf, fi,
1209                                                          trans->transid);
1210                         btrfs_set_file_extent_num_bytes(leaf, fi,
1211                                                         extent_end - end);
1212                         btrfs_set_file_extent_offset(leaf, fi,
1213                                                      end - orig_offset);
1214                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1215                                             struct btrfs_file_extent_item);
1216                         btrfs_set_file_extent_generation(leaf, fi,
1217                                                          trans->transid);
1218                         btrfs_set_file_extent_num_bytes(leaf, fi,
1219                                                         end - other_start);
1220                         btrfs_mark_buffer_dirty(leaf);
1221                         goto out;
1222                 }
1223         }
1224
1225         if (start > key.offset && end == extent_end) {
1226                 other_start = end;
1227                 other_end = 0;
1228                 if (extent_mergeable(leaf, path->slots[0] + 1,
1229                                      ino, bytenr, orig_offset,
1230                                      &other_start, &other_end)) {
1231                         fi = btrfs_item_ptr(leaf, path->slots[0],
1232                                             struct btrfs_file_extent_item);
1233                         btrfs_set_file_extent_num_bytes(leaf, fi,
1234                                                         start - key.offset);
1235                         btrfs_set_file_extent_generation(leaf, fi,
1236                                                          trans->transid);
1237                         path->slots[0]++;
1238                         new_key.offset = start;
1239                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1240
1241                         fi = btrfs_item_ptr(leaf, path->slots[0],
1242                                             struct btrfs_file_extent_item);
1243                         btrfs_set_file_extent_generation(leaf, fi,
1244                                                          trans->transid);
1245                         btrfs_set_file_extent_num_bytes(leaf, fi,
1246                                                         other_end - start);
1247                         btrfs_set_file_extent_offset(leaf, fi,
1248                                                      start - orig_offset);
1249                         btrfs_mark_buffer_dirty(leaf);
1250                         goto out;
1251                 }
1252         }
1253
1254         while (start > key.offset || end < extent_end) {
1255                 if (key.offset == start)
1256                         split = end;
1257
1258                 new_key.offset = split;
1259                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1260                 if (ret == -EAGAIN) {
1261                         btrfs_release_path(path);
1262                         goto again;
1263                 }
1264                 if (ret < 0) {
1265                         btrfs_abort_transaction(trans, ret);
1266                         goto out;
1267                 }
1268
1269                 leaf = path->nodes[0];
1270                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1271                                     struct btrfs_file_extent_item);
1272                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1273                 btrfs_set_file_extent_num_bytes(leaf, fi,
1274                                                 split - key.offset);
1275
1276                 fi = btrfs_item_ptr(leaf, path->slots[0],
1277                                     struct btrfs_file_extent_item);
1278
1279                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1280                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1281                 btrfs_set_file_extent_num_bytes(leaf, fi,
1282                                                 extent_end - split);
1283                 btrfs_mark_buffer_dirty(leaf);
1284
1285                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1286                                        num_bytes, 0);
1287                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1288                                     orig_offset);
1289                 ret = btrfs_inc_extent_ref(trans, &ref);
1290                 if (ret) {
1291                         btrfs_abort_transaction(trans, ret);
1292                         goto out;
1293                 }
1294
1295                 if (split == start) {
1296                         key.offset = start;
1297                 } else {
1298                         if (start != key.offset) {
1299                                 ret = -EINVAL;
1300                                 btrfs_abort_transaction(trans, ret);
1301                                 goto out;
1302                         }
1303                         path->slots[0]--;
1304                         extent_end = end;
1305                 }
1306                 recow = 1;
1307         }
1308
1309         other_start = end;
1310         other_end = 0;
1311         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1312                                num_bytes, 0);
1313         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1314         if (extent_mergeable(leaf, path->slots[0] + 1,
1315                              ino, bytenr, orig_offset,
1316                              &other_start, &other_end)) {
1317                 if (recow) {
1318                         btrfs_release_path(path);
1319                         goto again;
1320                 }
1321                 extent_end = other_end;
1322                 del_slot = path->slots[0] + 1;
1323                 del_nr++;
1324                 ret = btrfs_free_extent(trans, &ref);
1325                 if (ret) {
1326                         btrfs_abort_transaction(trans, ret);
1327                         goto out;
1328                 }
1329         }
1330         other_start = 0;
1331         other_end = start;
1332         if (extent_mergeable(leaf, path->slots[0] - 1,
1333                              ino, bytenr, orig_offset,
1334                              &other_start, &other_end)) {
1335                 if (recow) {
1336                         btrfs_release_path(path);
1337                         goto again;
1338                 }
1339                 key.offset = other_start;
1340                 del_slot = path->slots[0];
1341                 del_nr++;
1342                 ret = btrfs_free_extent(trans, &ref);
1343                 if (ret) {
1344                         btrfs_abort_transaction(trans, ret);
1345                         goto out;
1346                 }
1347         }
1348         if (del_nr == 0) {
1349                 fi = btrfs_item_ptr(leaf, path->slots[0],
1350                            struct btrfs_file_extent_item);
1351                 btrfs_set_file_extent_type(leaf, fi,
1352                                            BTRFS_FILE_EXTENT_REG);
1353                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354                 btrfs_mark_buffer_dirty(leaf);
1355         } else {
1356                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1357                            struct btrfs_file_extent_item);
1358                 btrfs_set_file_extent_type(leaf, fi,
1359                                            BTRFS_FILE_EXTENT_REG);
1360                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361                 btrfs_set_file_extent_num_bytes(leaf, fi,
1362                                                 extent_end - key.offset);
1363                 btrfs_mark_buffer_dirty(leaf);
1364
1365                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1366                 if (ret < 0) {
1367                         btrfs_abort_transaction(trans, ret);
1368                         goto out;
1369                 }
1370         }
1371 out:
1372         btrfs_free_path(path);
1373         return 0;
1374 }
1375
1376 /*
1377  * on error we return an unlocked page and the error value
1378  * on success we return a locked page and 0
1379  */
1380 static int prepare_uptodate_page(struct inode *inode,
1381                                  struct page *page, u64 pos,
1382                                  bool force_uptodate)
1383 {
1384         int ret = 0;
1385
1386         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387             !PageUptodate(page)) {
1388                 ret = btrfs_readpage(NULL, page);
1389                 if (ret)
1390                         return ret;
1391                 lock_page(page);
1392                 if (!PageUptodate(page)) {
1393                         unlock_page(page);
1394                         return -EIO;
1395                 }
1396                 if (page->mapping != inode->i_mapping) {
1397                         unlock_page(page);
1398                         return -EAGAIN;
1399                 }
1400         }
1401         return 0;
1402 }
1403
1404 /*
1405  * this just gets pages into the page cache and locks them down.
1406  */
1407 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408                                   size_t num_pages, loff_t pos,
1409                                   size_t write_bytes, bool force_uptodate)
1410 {
1411         int i;
1412         unsigned long index = pos >> PAGE_SHIFT;
1413         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1414         int err = 0;
1415         int faili;
1416
1417         for (i = 0; i < num_pages; i++) {
1418 again:
1419                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420                                                mask | __GFP_WRITE);
1421                 if (!pages[i]) {
1422                         faili = i - 1;
1423                         err = -ENOMEM;
1424                         goto fail;
1425                 }
1426
1427                 if (i == 0)
1428                         err = prepare_uptodate_page(inode, pages[i], pos,
1429                                                     force_uptodate);
1430                 if (!err && i == num_pages - 1)
1431                         err = prepare_uptodate_page(inode, pages[i],
1432                                                     pos + write_bytes, false);
1433                 if (err) {
1434                         put_page(pages[i]);
1435                         if (err == -EAGAIN) {
1436                                 err = 0;
1437                                 goto again;
1438                         }
1439                         faili = i - 1;
1440                         goto fail;
1441                 }
1442                 wait_on_page_writeback(pages[i]);
1443         }
1444
1445         return 0;
1446 fail:
1447         while (faili >= 0) {
1448                 unlock_page(pages[faili]);
1449                 put_page(pages[faili]);
1450                 faili--;
1451         }
1452         return err;
1453
1454 }
1455
1456 /*
1457  * This function locks the extent and properly waits for data=ordered extents
1458  * to finish before allowing the pages to be modified if need.
1459  *
1460  * The return value:
1461  * 1 - the extent is locked
1462  * 0 - the extent is not locked, and everything is OK
1463  * -EAGAIN - need re-prepare the pages
1464  * the other < 0 number - Something wrong happens
1465  */
1466 static noinline int
1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468                                 size_t num_pages, loff_t pos,
1469                                 size_t write_bytes,
1470                                 u64 *lockstart, u64 *lockend,
1471                                 struct extent_state **cached_state)
1472 {
1473         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1474         u64 start_pos;
1475         u64 last_pos;
1476         int i;
1477         int ret = 0;
1478
1479         start_pos = round_down(pos, fs_info->sectorsize);
1480         last_pos = start_pos
1481                 + round_up(pos + write_bytes - start_pos,
1482                            fs_info->sectorsize) - 1;
1483
1484         if (start_pos < inode->vfs_inode.i_size) {
1485                 struct btrfs_ordered_extent *ordered;
1486
1487                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1488                                 cached_state);
1489                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490                                                      last_pos - start_pos + 1);
1491                 if (ordered &&
1492                     ordered->file_offset + ordered->num_bytes > start_pos &&
1493                     ordered->file_offset <= last_pos) {
1494                         unlock_extent_cached(&inode->io_tree, start_pos,
1495                                         last_pos, cached_state);
1496                         for (i = 0; i < num_pages; i++) {
1497                                 unlock_page(pages[i]);
1498                                 put_page(pages[i]);
1499                         }
1500                         btrfs_start_ordered_extent(&inode->vfs_inode,
1501                                         ordered, 1);
1502                         btrfs_put_ordered_extent(ordered);
1503                         return -EAGAIN;
1504                 }
1505                 if (ordered)
1506                         btrfs_put_ordered_extent(ordered);
1507
1508                 *lockstart = start_pos;
1509                 *lockend = last_pos;
1510                 ret = 1;
1511         }
1512
1513         /*
1514          * It's possible the pages are dirty right now, but we don't want
1515          * to clean them yet because copy_from_user may catch a page fault
1516          * and we might have to fall back to one page at a time.  If that
1517          * happens, we'll unlock these pages and we'd have a window where
1518          * reclaim could sneak in and drop the once-dirty page on the floor
1519          * without writing it.
1520          *
1521          * We have the pages locked and the extent range locked, so there's
1522          * no way someone can start IO on any dirty pages in this range.
1523          *
1524          * We'll call btrfs_dirty_pages() later on, and that will flip around
1525          * delalloc bits and dirty the pages as required.
1526          */
1527         for (i = 0; i < num_pages; i++) {
1528                 set_page_extent_mapped(pages[i]);
1529                 WARN_ON(!PageLocked(pages[i]));
1530         }
1531
1532         return ret;
1533 }
1534
1535 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1536                                     size_t *write_bytes)
1537 {
1538         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1539         struct btrfs_root *root = inode->root;
1540         u64 lockstart, lockend;
1541         u64 num_bytes;
1542         int ret;
1543
1544         if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1545                 return -EAGAIN;
1546
1547         lockstart = round_down(pos, fs_info->sectorsize);
1548         lockend = round_up(pos + *write_bytes,
1549                            fs_info->sectorsize) - 1;
1550
1551         btrfs_lock_and_flush_ordered_range(inode, lockstart,
1552                                            lockend, NULL);
1553
1554         num_bytes = lockend - lockstart + 1;
1555         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1556                         NULL, NULL, NULL);
1557         if (ret <= 0) {
1558                 ret = 0;
1559                 btrfs_drew_write_unlock(&root->snapshot_lock);
1560         } else {
1561                 *write_bytes = min_t(size_t, *write_bytes ,
1562                                      num_bytes - pos + lockstart);
1563         }
1564
1565         unlock_extent(&inode->io_tree, lockstart, lockend);
1566
1567         return ret;
1568 }
1569
1570 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1571                                                struct iov_iter *i)
1572 {
1573         struct file *file = iocb->ki_filp;
1574         loff_t pos = iocb->ki_pos;
1575         struct inode *inode = file_inode(file);
1576         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1577         struct btrfs_root *root = BTRFS_I(inode)->root;
1578         struct page **pages = NULL;
1579         struct extent_changeset *data_reserved = NULL;
1580         u64 release_bytes = 0;
1581         u64 lockstart;
1582         u64 lockend;
1583         size_t num_written = 0;
1584         int nrptrs;
1585         int ret = 0;
1586         bool only_release_metadata = false;
1587         bool force_page_uptodate = false;
1588
1589         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1590                         PAGE_SIZE / (sizeof(struct page *)));
1591         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1592         nrptrs = max(nrptrs, 8);
1593         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1594         if (!pages)
1595                 return -ENOMEM;
1596
1597         while (iov_iter_count(i) > 0) {
1598                 struct extent_state *cached_state = NULL;
1599                 size_t offset = offset_in_page(pos);
1600                 size_t sector_offset;
1601                 size_t write_bytes = min(iov_iter_count(i),
1602                                          nrptrs * (size_t)PAGE_SIZE -
1603                                          offset);
1604                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1605                                                 PAGE_SIZE);
1606                 size_t reserve_bytes;
1607                 size_t dirty_pages;
1608                 size_t copied;
1609                 size_t dirty_sectors;
1610                 size_t num_sectors;
1611                 int extents_locked;
1612
1613                 WARN_ON(num_pages > nrptrs);
1614
1615                 /*
1616                  * Fault pages before locking them in prepare_pages
1617                  * to avoid recursive lock
1618                  */
1619                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1620                         ret = -EFAULT;
1621                         break;
1622                 }
1623
1624                 only_release_metadata = false;
1625                 sector_offset = pos & (fs_info->sectorsize - 1);
1626                 reserve_bytes = round_up(write_bytes + sector_offset,
1627                                 fs_info->sectorsize);
1628
1629                 extent_changeset_release(data_reserved);
1630                 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1631                                                   write_bytes);
1632                 if (ret < 0) {
1633                         if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1634                                                       BTRFS_INODE_PREALLOC)) &&
1635                             check_can_nocow(BTRFS_I(inode), pos,
1636                                         &write_bytes) > 0) {
1637                                 /*
1638                                  * For nodata cow case, no need to reserve
1639                                  * data space.
1640                                  */
1641                                 only_release_metadata = true;
1642                                 /*
1643                                  * our prealloc extent may be smaller than
1644                                  * write_bytes, so scale down.
1645                                  */
1646                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1647                                                          PAGE_SIZE);
1648                                 reserve_bytes = round_up(write_bytes +
1649                                                          sector_offset,
1650                                                          fs_info->sectorsize);
1651                         } else {
1652                                 break;
1653                         }
1654                 }
1655
1656                 WARN_ON(reserve_bytes == 0);
1657                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1658                                 reserve_bytes);
1659                 if (ret) {
1660                         if (!only_release_metadata)
1661                                 btrfs_free_reserved_data_space(inode,
1662                                                 data_reserved, pos,
1663                                                 write_bytes);
1664                         else
1665                                 btrfs_drew_write_unlock(&root->snapshot_lock);
1666                         break;
1667                 }
1668
1669                 release_bytes = reserve_bytes;
1670 again:
1671                 /*
1672                  * This is going to setup the pages array with the number of
1673                  * pages we want, so we don't really need to worry about the
1674                  * contents of pages from loop to loop
1675                  */
1676                 ret = prepare_pages(inode, pages, num_pages,
1677                                     pos, write_bytes,
1678                                     force_page_uptodate);
1679                 if (ret) {
1680                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1681                                                        reserve_bytes);
1682                         break;
1683                 }
1684
1685                 extents_locked = lock_and_cleanup_extent_if_need(
1686                                 BTRFS_I(inode), pages,
1687                                 num_pages, pos, write_bytes, &lockstart,
1688                                 &lockend, &cached_state);
1689                 if (extents_locked < 0) {
1690                         if (extents_locked == -EAGAIN)
1691                                 goto again;
1692                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1693                                                        reserve_bytes);
1694                         ret = extents_locked;
1695                         break;
1696                 }
1697
1698                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1699
1700                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1701                 dirty_sectors = round_up(copied + sector_offset,
1702                                         fs_info->sectorsize);
1703                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1704
1705                 /*
1706                  * if we have trouble faulting in the pages, fall
1707                  * back to one page at a time
1708                  */
1709                 if (copied < write_bytes)
1710                         nrptrs = 1;
1711
1712                 if (copied == 0) {
1713                         force_page_uptodate = true;
1714                         dirty_sectors = 0;
1715                         dirty_pages = 0;
1716                 } else {
1717                         force_page_uptodate = false;
1718                         dirty_pages = DIV_ROUND_UP(copied + offset,
1719                                                    PAGE_SIZE);
1720                 }
1721
1722                 if (num_sectors > dirty_sectors) {
1723                         /* release everything except the sectors we dirtied */
1724                         release_bytes -= dirty_sectors <<
1725                                                 fs_info->sb->s_blocksize_bits;
1726                         if (only_release_metadata) {
1727                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1728                                                         release_bytes, true);
1729                         } else {
1730                                 u64 __pos;
1731
1732                                 __pos = round_down(pos,
1733                                                    fs_info->sectorsize) +
1734                                         (dirty_pages << PAGE_SHIFT);
1735                                 btrfs_delalloc_release_space(inode,
1736                                                 data_reserved, __pos,
1737                                                 release_bytes, true);
1738                         }
1739                 }
1740
1741                 release_bytes = round_up(copied + sector_offset,
1742                                         fs_info->sectorsize);
1743
1744                 if (copied > 0)
1745                         ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1746                                                 pos, copied, &cached_state);
1747
1748                 /*
1749                  * If we have not locked the extent range, because the range's
1750                  * start offset is >= i_size, we might still have a non-NULL
1751                  * cached extent state, acquired while marking the extent range
1752                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1753                  * possible cached extent state to avoid a memory leak.
1754                  */
1755                 if (extents_locked)
1756                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1757                                              lockstart, lockend, &cached_state);
1758                 else
1759                         free_extent_state(cached_state);
1760
1761                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1762                 if (ret) {
1763                         btrfs_drop_pages(pages, num_pages);
1764                         break;
1765                 }
1766
1767                 release_bytes = 0;
1768                 if (only_release_metadata)
1769                         btrfs_drew_write_unlock(&root->snapshot_lock);
1770
1771                 if (only_release_metadata && copied > 0) {
1772                         lockstart = round_down(pos,
1773                                                fs_info->sectorsize);
1774                         lockend = round_up(pos + copied,
1775                                            fs_info->sectorsize) - 1;
1776
1777                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1778                                        lockend, EXTENT_NORESERVE, NULL,
1779                                        NULL, GFP_NOFS);
1780                 }
1781
1782                 btrfs_drop_pages(pages, num_pages);
1783
1784                 cond_resched();
1785
1786                 balance_dirty_pages_ratelimited(inode->i_mapping);
1787                 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1788                         btrfs_btree_balance_dirty(fs_info);
1789
1790                 pos += copied;
1791                 num_written += copied;
1792         }
1793
1794         kfree(pages);
1795
1796         if (release_bytes) {
1797                 if (only_release_metadata) {
1798                         btrfs_drew_write_unlock(&root->snapshot_lock);
1799                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1800                                         release_bytes, true);
1801                 } else {
1802                         btrfs_delalloc_release_space(inode, data_reserved,
1803                                         round_down(pos, fs_info->sectorsize),
1804                                         release_bytes, true);
1805                 }
1806         }
1807
1808         extent_changeset_free(data_reserved);
1809         return num_written ? num_written : ret;
1810 }
1811
1812 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1813 {
1814         struct file *file = iocb->ki_filp;
1815         struct inode *inode = file_inode(file);
1816         loff_t pos;
1817         ssize_t written;
1818         ssize_t written_buffered;
1819         loff_t endbyte;
1820         int err;
1821
1822         written = generic_file_direct_write(iocb, from);
1823
1824         if (written < 0 || !iov_iter_count(from))
1825                 return written;
1826
1827         pos = iocb->ki_pos;
1828         written_buffered = btrfs_buffered_write(iocb, from);
1829         if (written_buffered < 0) {
1830                 err = written_buffered;
1831                 goto out;
1832         }
1833         /*
1834          * Ensure all data is persisted. We want the next direct IO read to be
1835          * able to read what was just written.
1836          */
1837         endbyte = pos + written_buffered - 1;
1838         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1839         if (err)
1840                 goto out;
1841         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1842         if (err)
1843                 goto out;
1844         written += written_buffered;
1845         iocb->ki_pos = pos + written_buffered;
1846         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1847                                  endbyte >> PAGE_SHIFT);
1848 out:
1849         return written ? written : err;
1850 }
1851
1852 static void update_time_for_write(struct inode *inode)
1853 {
1854         struct timespec64 now;
1855
1856         if (IS_NOCMTIME(inode))
1857                 return;
1858
1859         now = current_time(inode);
1860         if (!timespec64_equal(&inode->i_mtime, &now))
1861                 inode->i_mtime = now;
1862
1863         if (!timespec64_equal(&inode->i_ctime, &now))
1864                 inode->i_ctime = now;
1865
1866         if (IS_I_VERSION(inode))
1867                 inode_inc_iversion(inode);
1868 }
1869
1870 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1871                                     struct iov_iter *from)
1872 {
1873         struct file *file = iocb->ki_filp;
1874         struct inode *inode = file_inode(file);
1875         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1876         struct btrfs_root *root = BTRFS_I(inode)->root;
1877         u64 start_pos;
1878         u64 end_pos;
1879         ssize_t num_written = 0;
1880         const bool sync = iocb->ki_flags & IOCB_DSYNC;
1881         ssize_t err;
1882         loff_t pos;
1883         size_t count;
1884         loff_t oldsize;
1885         int clean_page = 0;
1886
1887         if (!(iocb->ki_flags & IOCB_DIRECT) &&
1888             (iocb->ki_flags & IOCB_NOWAIT))
1889                 return -EOPNOTSUPP;
1890
1891         if (iocb->ki_flags & IOCB_NOWAIT) {
1892                 if (!inode_trylock(inode))
1893                         return -EAGAIN;
1894         } else {
1895                 inode_lock(inode);
1896         }
1897
1898         err = generic_write_checks(iocb, from);
1899         if (err <= 0) {
1900                 inode_unlock(inode);
1901                 return err;
1902         }
1903
1904         pos = iocb->ki_pos;
1905         count = iov_iter_count(from);
1906         if (iocb->ki_flags & IOCB_NOWAIT) {
1907                 size_t nocow_bytes = count;
1908
1909                 /*
1910                  * We will allocate space in case nodatacow is not set,
1911                  * so bail
1912                  */
1913                 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1914                                               BTRFS_INODE_PREALLOC)) ||
1915                     check_can_nocow(BTRFS_I(inode), pos, &nocow_bytes) <= 0) {
1916                         inode_unlock(inode);
1917                         return -EAGAIN;
1918                 }
1919                 /* check_can_nocow() locks the snapshot lock on success */
1920                 btrfs_drew_write_unlock(&root->snapshot_lock);
1921                 /*
1922                  * There are holes in the range or parts of the range that must
1923                  * be COWed (shared extents, RO block groups, etc), so just bail
1924                  * out.
1925                  */
1926                 if (nocow_bytes < count) {
1927                         inode_unlock(inode);
1928                         return -EAGAIN;
1929                 }
1930         }
1931
1932         current->backing_dev_info = inode_to_bdi(inode);
1933         err = file_remove_privs(file);
1934         if (err) {
1935                 inode_unlock(inode);
1936                 goto out;
1937         }
1938
1939         /*
1940          * If BTRFS flips readonly due to some impossible error
1941          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1942          * although we have opened a file as writable, we have
1943          * to stop this write operation to ensure FS consistency.
1944          */
1945         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1946                 inode_unlock(inode);
1947                 err = -EROFS;
1948                 goto out;
1949         }
1950
1951         /*
1952          * We reserve space for updating the inode when we reserve space for the
1953          * extent we are going to write, so we will enospc out there.  We don't
1954          * need to start yet another transaction to update the inode as we will
1955          * update the inode when we finish writing whatever data we write.
1956          */
1957         update_time_for_write(inode);
1958
1959         start_pos = round_down(pos, fs_info->sectorsize);
1960         oldsize = i_size_read(inode);
1961         if (start_pos > oldsize) {
1962                 /* Expand hole size to cover write data, preventing empty gap */
1963                 end_pos = round_up(pos + count,
1964                                    fs_info->sectorsize);
1965                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1966                 if (err) {
1967                         inode_unlock(inode);
1968                         goto out;
1969                 }
1970                 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1971                         clean_page = 1;
1972         }
1973
1974         if (sync)
1975                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1976
1977         if (iocb->ki_flags & IOCB_DIRECT) {
1978                 num_written = __btrfs_direct_write(iocb, from);
1979         } else {
1980                 num_written = btrfs_buffered_write(iocb, from);
1981                 if (num_written > 0)
1982                         iocb->ki_pos = pos + num_written;
1983                 if (clean_page)
1984                         pagecache_isize_extended(inode, oldsize,
1985                                                 i_size_read(inode));
1986         }
1987
1988         inode_unlock(inode);
1989
1990         /*
1991          * We also have to set last_sub_trans to the current log transid,
1992          * otherwise subsequent syncs to a file that's been synced in this
1993          * transaction will appear to have already occurred.
1994          */
1995         spin_lock(&BTRFS_I(inode)->lock);
1996         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1997         spin_unlock(&BTRFS_I(inode)->lock);
1998         if (num_written > 0)
1999                 num_written = generic_write_sync(iocb, num_written);
2000
2001         if (sync)
2002                 atomic_dec(&BTRFS_I(inode)->sync_writers);
2003 out:
2004         current->backing_dev_info = NULL;
2005         return num_written ? num_written : err;
2006 }
2007
2008 int btrfs_release_file(struct inode *inode, struct file *filp)
2009 {
2010         struct btrfs_file_private *private = filp->private_data;
2011
2012         if (private && private->filldir_buf)
2013                 kfree(private->filldir_buf);
2014         kfree(private);
2015         filp->private_data = NULL;
2016
2017         /*
2018          * ordered_data_close is set by setattr when we are about to truncate
2019          * a file from a non-zero size to a zero size.  This tries to
2020          * flush down new bytes that may have been written if the
2021          * application were using truncate to replace a file in place.
2022          */
2023         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2024                                &BTRFS_I(inode)->runtime_flags))
2025                         filemap_flush(inode->i_mapping);
2026         return 0;
2027 }
2028
2029 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2030 {
2031         int ret;
2032         struct blk_plug plug;
2033
2034         /*
2035          * This is only called in fsync, which would do synchronous writes, so
2036          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2037          * multiple disks using raid profile, a large IO can be split to
2038          * several segments of stripe length (currently 64K).
2039          */
2040         blk_start_plug(&plug);
2041         atomic_inc(&BTRFS_I(inode)->sync_writers);
2042         ret = btrfs_fdatawrite_range(inode, start, end);
2043         atomic_dec(&BTRFS_I(inode)->sync_writers);
2044         blk_finish_plug(&plug);
2045
2046         return ret;
2047 }
2048
2049 /*
2050  * fsync call for both files and directories.  This logs the inode into
2051  * the tree log instead of forcing full commits whenever possible.
2052  *
2053  * It needs to call filemap_fdatawait so that all ordered extent updates are
2054  * in the metadata btree are up to date for copying to the log.
2055  *
2056  * It drops the inode mutex before doing the tree log commit.  This is an
2057  * important optimization for directories because holding the mutex prevents
2058  * new operations on the dir while we write to disk.
2059  */
2060 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2061 {
2062         struct dentry *dentry = file_dentry(file);
2063         struct inode *inode = d_inode(dentry);
2064         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2065         struct btrfs_root *root = BTRFS_I(inode)->root;
2066         struct btrfs_trans_handle *trans;
2067         struct btrfs_log_ctx ctx;
2068         int ret = 0, err;
2069
2070         trace_btrfs_sync_file(file, datasync);
2071
2072         btrfs_init_log_ctx(&ctx, inode);
2073
2074         /*
2075          * Set the range to full if the NO_HOLES feature is not enabled.
2076          * This is to avoid missing file extent items representing holes after
2077          * replaying the log.
2078          */
2079         if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
2080                 start = 0;
2081                 end = LLONG_MAX;
2082         }
2083
2084         /*
2085          * We write the dirty pages in the range and wait until they complete
2086          * out of the ->i_mutex. If so, we can flush the dirty pages by
2087          * multi-task, and make the performance up.  See
2088          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2089          */
2090         ret = start_ordered_ops(inode, start, end);
2091         if (ret)
2092                 goto out;
2093
2094         inode_lock(inode);
2095
2096         /*
2097          * We take the dio_sem here because the tree log stuff can race with
2098          * lockless dio writes and get an extent map logged for an extent we
2099          * never waited on.  We need it this high up for lockdep reasons.
2100          */
2101         down_write(&BTRFS_I(inode)->dio_sem);
2102
2103         atomic_inc(&root->log_batch);
2104
2105         /*
2106          * If the inode needs a full sync, make sure we use a full range to
2107          * avoid log tree corruption, due to hole detection racing with ordered
2108          * extent completion for adjacent ranges and races between logging and
2109          * completion of ordered extents for adjancent ranges - both races
2110          * could lead to file extent items in the log with overlapping ranges.
2111          * Do this while holding the inode lock, to avoid races with other
2112          * tasks.
2113          */
2114         if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2115                      &BTRFS_I(inode)->runtime_flags)) {
2116                 start = 0;
2117                 end = LLONG_MAX;
2118         }
2119
2120         /*
2121          * Before we acquired the inode's lock, someone may have dirtied more
2122          * pages in the target range. We need to make sure that writeback for
2123          * any such pages does not start while we are logging the inode, because
2124          * if it does, any of the following might happen when we are not doing a
2125          * full inode sync:
2126          *
2127          * 1) We log an extent after its writeback finishes but before its
2128          *    checksums are added to the csum tree, leading to -EIO errors
2129          *    when attempting to read the extent after a log replay.
2130          *
2131          * 2) We can end up logging an extent before its writeback finishes.
2132          *    Therefore after the log replay we will have a file extent item
2133          *    pointing to an unwritten extent (and no data checksums as well).
2134          *
2135          * So trigger writeback for any eventual new dirty pages and then we
2136          * wait for all ordered extents to complete below.
2137          */
2138         ret = start_ordered_ops(inode, start, end);
2139         if (ret) {
2140                 up_write(&BTRFS_I(inode)->dio_sem);
2141                 inode_unlock(inode);
2142                 goto out;
2143         }
2144
2145         /*
2146          * We have to do this here to avoid the priority inversion of waiting on
2147          * IO of a lower priority task while holding a transaction open.
2148          *
2149          * Also, the range length can be represented by u64, we have to do the
2150          * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2151          */
2152         ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2153         if (ret) {
2154                 up_write(&BTRFS_I(inode)->dio_sem);
2155                 inode_unlock(inode);
2156                 goto out;
2157         }
2158         atomic_inc(&root->log_batch);
2159
2160         smp_mb();
2161         if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2162             BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2163                 /*
2164                  * We've had everything committed since the last time we were
2165                  * modified so clear this flag in case it was set for whatever
2166                  * reason, it's no longer relevant.
2167                  */
2168                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2169                           &BTRFS_I(inode)->runtime_flags);
2170                 /*
2171                  * An ordered extent might have started before and completed
2172                  * already with io errors, in which case the inode was not
2173                  * updated and we end up here. So check the inode's mapping
2174                  * for any errors that might have happened since we last
2175                  * checked called fsync.
2176                  */
2177                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2178                 up_write(&BTRFS_I(inode)->dio_sem);
2179                 inode_unlock(inode);
2180                 goto out;
2181         }
2182
2183         /*
2184          * We use start here because we will need to wait on the IO to complete
2185          * in btrfs_sync_log, which could require joining a transaction (for
2186          * example checking cross references in the nocow path).  If we use join
2187          * here we could get into a situation where we're waiting on IO to
2188          * happen that is blocked on a transaction trying to commit.  With start
2189          * we inc the extwriter counter, so we wait for all extwriters to exit
2190          * before we start blocking joiners.  This comment is to keep somebody
2191          * from thinking they are super smart and changing this to
2192          * btrfs_join_transaction *cough*Josef*cough*.
2193          */
2194         trans = btrfs_start_transaction(root, 0);
2195         if (IS_ERR(trans)) {
2196                 ret = PTR_ERR(trans);
2197                 up_write(&BTRFS_I(inode)->dio_sem);
2198                 inode_unlock(inode);
2199                 goto out;
2200         }
2201
2202         ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2203         if (ret < 0) {
2204                 /* Fallthrough and commit/free transaction. */
2205                 ret = 1;
2206         }
2207
2208         /* we've logged all the items and now have a consistent
2209          * version of the file in the log.  It is possible that
2210          * someone will come in and modify the file, but that's
2211          * fine because the log is consistent on disk, and we
2212          * have references to all of the file's extents
2213          *
2214          * It is possible that someone will come in and log the
2215          * file again, but that will end up using the synchronization
2216          * inside btrfs_sync_log to keep things safe.
2217          */
2218         up_write(&BTRFS_I(inode)->dio_sem);
2219         inode_unlock(inode);
2220
2221         if (ret != BTRFS_NO_LOG_SYNC) {
2222                 if (!ret) {
2223                         ret = btrfs_sync_log(trans, root, &ctx);
2224                         if (!ret) {
2225                                 ret = btrfs_end_transaction(trans);
2226                                 goto out;
2227                         }
2228                 }
2229                 ret = btrfs_commit_transaction(trans);
2230         } else {
2231                 ret = btrfs_end_transaction(trans);
2232         }
2233 out:
2234         ASSERT(list_empty(&ctx.list));
2235         err = file_check_and_advance_wb_err(file);
2236         if (!ret)
2237                 ret = err;
2238         return ret > 0 ? -EIO : ret;
2239 }
2240
2241 static const struct vm_operations_struct btrfs_file_vm_ops = {
2242         .fault          = filemap_fault,
2243         .map_pages      = filemap_map_pages,
2244         .page_mkwrite   = btrfs_page_mkwrite,
2245 };
2246
2247 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2248 {
2249         struct address_space *mapping = filp->f_mapping;
2250
2251         if (!mapping->a_ops->readpage)
2252                 return -ENOEXEC;
2253
2254         file_accessed(filp);
2255         vma->vm_ops = &btrfs_file_vm_ops;
2256
2257         return 0;
2258 }
2259
2260 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2261                           int slot, u64 start, u64 end)
2262 {
2263         struct btrfs_file_extent_item *fi;
2264         struct btrfs_key key;
2265
2266         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2267                 return 0;
2268
2269         btrfs_item_key_to_cpu(leaf, &key, slot);
2270         if (key.objectid != btrfs_ino(inode) ||
2271             key.type != BTRFS_EXTENT_DATA_KEY)
2272                 return 0;
2273
2274         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2275
2276         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2277                 return 0;
2278
2279         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2280                 return 0;
2281
2282         if (key.offset == end)
2283                 return 1;
2284         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2285                 return 1;
2286         return 0;
2287 }
2288
2289 static int fill_holes(struct btrfs_trans_handle *trans,
2290                 struct btrfs_inode *inode,
2291                 struct btrfs_path *path, u64 offset, u64 end)
2292 {
2293         struct btrfs_fs_info *fs_info = trans->fs_info;
2294         struct btrfs_root *root = inode->root;
2295         struct extent_buffer *leaf;
2296         struct btrfs_file_extent_item *fi;
2297         struct extent_map *hole_em;
2298         struct extent_map_tree *em_tree = &inode->extent_tree;
2299         struct btrfs_key key;
2300         int ret;
2301
2302         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2303                 goto out;
2304
2305         key.objectid = btrfs_ino(inode);
2306         key.type = BTRFS_EXTENT_DATA_KEY;
2307         key.offset = offset;
2308
2309         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2310         if (ret <= 0) {
2311                 /*
2312                  * We should have dropped this offset, so if we find it then
2313                  * something has gone horribly wrong.
2314                  */
2315                 if (ret == 0)
2316                         ret = -EINVAL;
2317                 return ret;
2318         }
2319
2320         leaf = path->nodes[0];
2321         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2322                 u64 num_bytes;
2323
2324                 path->slots[0]--;
2325                 fi = btrfs_item_ptr(leaf, path->slots[0],
2326                                     struct btrfs_file_extent_item);
2327                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2328                         end - offset;
2329                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2330                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2331                 btrfs_set_file_extent_offset(leaf, fi, 0);
2332                 btrfs_mark_buffer_dirty(leaf);
2333                 goto out;
2334         }
2335
2336         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2337                 u64 num_bytes;
2338
2339                 key.offset = offset;
2340                 btrfs_set_item_key_safe(fs_info, path, &key);
2341                 fi = btrfs_item_ptr(leaf, path->slots[0],
2342                                     struct btrfs_file_extent_item);
2343                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2344                         offset;
2345                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2346                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2347                 btrfs_set_file_extent_offset(leaf, fi, 0);
2348                 btrfs_mark_buffer_dirty(leaf);
2349                 goto out;
2350         }
2351         btrfs_release_path(path);
2352
2353         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2354                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2355         if (ret)
2356                 return ret;
2357
2358 out:
2359         btrfs_release_path(path);
2360
2361         hole_em = alloc_extent_map();
2362         if (!hole_em) {
2363                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2364                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2365         } else {
2366                 hole_em->start = offset;
2367                 hole_em->len = end - offset;
2368                 hole_em->ram_bytes = hole_em->len;
2369                 hole_em->orig_start = offset;
2370
2371                 hole_em->block_start = EXTENT_MAP_HOLE;
2372                 hole_em->block_len = 0;
2373                 hole_em->orig_block_len = 0;
2374                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2375                 hole_em->generation = trans->transid;
2376
2377                 do {
2378                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2379                         write_lock(&em_tree->lock);
2380                         ret = add_extent_mapping(em_tree, hole_em, 1);
2381                         write_unlock(&em_tree->lock);
2382                 } while (ret == -EEXIST);
2383                 free_extent_map(hole_em);
2384                 if (ret)
2385                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2386                                         &inode->runtime_flags);
2387         }
2388
2389         return 0;
2390 }
2391
2392 /*
2393  * Find a hole extent on given inode and change start/len to the end of hole
2394  * extent.(hole/vacuum extent whose em->start <= start &&
2395  *         em->start + em->len > start)
2396  * When a hole extent is found, return 1 and modify start/len.
2397  */
2398 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2399 {
2400         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2401         struct extent_map *em;
2402         int ret = 0;
2403
2404         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2405                               round_down(*start, fs_info->sectorsize),
2406                               round_up(*len, fs_info->sectorsize));
2407         if (IS_ERR(em))
2408                 return PTR_ERR(em);
2409
2410         /* Hole or vacuum extent(only exists in no-hole mode) */
2411         if (em->block_start == EXTENT_MAP_HOLE) {
2412                 ret = 1;
2413                 *len = em->start + em->len > *start + *len ?
2414                        0 : *start + *len - em->start - em->len;
2415                 *start = em->start + em->len;
2416         }
2417         free_extent_map(em);
2418         return ret;
2419 }
2420
2421 static int btrfs_punch_hole_lock_range(struct inode *inode,
2422                                        const u64 lockstart,
2423                                        const u64 lockend,
2424                                        struct extent_state **cached_state)
2425 {
2426         while (1) {
2427                 struct btrfs_ordered_extent *ordered;
2428                 int ret;
2429
2430                 truncate_pagecache_range(inode, lockstart, lockend);
2431
2432                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2433                                  cached_state);
2434                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2435
2436                 /*
2437                  * We need to make sure we have no ordered extents in this range
2438                  * and nobody raced in and read a page in this range, if we did
2439                  * we need to try again.
2440                  */
2441                 if ((!ordered ||
2442                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2443                      ordered->file_offset > lockend)) &&
2444                      !filemap_range_has_page(inode->i_mapping,
2445                                              lockstart, lockend)) {
2446                         if (ordered)
2447                                 btrfs_put_ordered_extent(ordered);
2448                         break;
2449                 }
2450                 if (ordered)
2451                         btrfs_put_ordered_extent(ordered);
2452                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2453                                      lockend, cached_state);
2454                 ret = btrfs_wait_ordered_range(inode, lockstart,
2455                                                lockend - lockstart + 1);
2456                 if (ret)
2457                         return ret;
2458         }
2459         return 0;
2460 }
2461
2462 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2463                                      struct inode *inode,
2464                                      struct btrfs_path *path,
2465                                      struct btrfs_clone_extent_info *clone_info,
2466                                      const u64 clone_len)
2467 {
2468         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2469         struct btrfs_root *root = BTRFS_I(inode)->root;
2470         struct btrfs_file_extent_item *extent;
2471         struct extent_buffer *leaf;
2472         struct btrfs_key key;
2473         int slot;
2474         struct btrfs_ref ref = { 0 };
2475         u64 ref_offset;
2476         int ret;
2477
2478         if (clone_len == 0)
2479                 return 0;
2480
2481         if (clone_info->disk_offset == 0 &&
2482             btrfs_fs_incompat(fs_info, NO_HOLES))
2483                 return 0;
2484
2485         key.objectid = btrfs_ino(BTRFS_I(inode));
2486         key.type = BTRFS_EXTENT_DATA_KEY;
2487         key.offset = clone_info->file_offset;
2488         ret = btrfs_insert_empty_item(trans, root, path, &key,
2489                                       clone_info->item_size);
2490         if (ret)
2491                 return ret;
2492         leaf = path->nodes[0];
2493         slot = path->slots[0];
2494         write_extent_buffer(leaf, clone_info->extent_buf,
2495                             btrfs_item_ptr_offset(leaf, slot),
2496                             clone_info->item_size);
2497         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2498         btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2499         btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2500         btrfs_mark_buffer_dirty(leaf);
2501         btrfs_release_path(path);
2502
2503         ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2504                         clone_info->file_offset, clone_len);
2505         if (ret)
2506                 return ret;
2507
2508         /* If it's a hole, nothing more needs to be done. */
2509         if (clone_info->disk_offset == 0)
2510                 return 0;
2511
2512         inode_add_bytes(inode, clone_len);
2513         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2514                                clone_info->disk_offset,
2515                                clone_info->disk_len, 0);
2516         ref_offset = clone_info->file_offset - clone_info->data_offset;
2517         btrfs_init_data_ref(&ref, root->root_key.objectid,
2518                             btrfs_ino(BTRFS_I(inode)), ref_offset);
2519         ret = btrfs_inc_extent_ref(trans, &ref);
2520
2521         return ret;
2522 }
2523
2524 /*
2525  * The respective range must have been previously locked, as well as the inode.
2526  * The end offset is inclusive (last byte of the range).
2527  * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2528  * cloning.
2529  * When cloning, we don't want to end up in a state where we dropped extents
2530  * without inserting a new one, so we must abort the transaction to avoid a
2531  * corruption.
2532  */
2533 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2534                            const u64 start, const u64 end,
2535                            struct btrfs_clone_extent_info *clone_info,
2536                            struct btrfs_trans_handle **trans_out)
2537 {
2538         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2539         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2540         u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2541         struct btrfs_root *root = BTRFS_I(inode)->root;
2542         struct btrfs_trans_handle *trans = NULL;
2543         struct btrfs_block_rsv *rsv;
2544         unsigned int rsv_count;
2545         u64 cur_offset;
2546         u64 drop_end;
2547         u64 len = end - start;
2548         int ret = 0;
2549
2550         if (end <= start)
2551                 return -EINVAL;
2552
2553         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2554         if (!rsv) {
2555                 ret = -ENOMEM;
2556                 goto out;
2557         }
2558         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2559         rsv->failfast = 1;
2560
2561         /*
2562          * 1 - update the inode
2563          * 1 - removing the extents in the range
2564          * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2565          *     an extent
2566          */
2567         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2568                 rsv_count = 3;
2569         else
2570                 rsv_count = 2;
2571
2572         trans = btrfs_start_transaction(root, rsv_count);
2573         if (IS_ERR(trans)) {
2574                 ret = PTR_ERR(trans);
2575                 trans = NULL;
2576                 goto out_free;
2577         }
2578
2579         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2580                                       min_size, false);
2581         BUG_ON(ret);
2582         trans->block_rsv = rsv;
2583
2584         cur_offset = start;
2585         while (cur_offset < end) {
2586                 ret = __btrfs_drop_extents(trans, root, inode, path,
2587                                            cur_offset, end + 1, &drop_end,
2588                                            1, 0, 0, NULL);
2589                 if (ret != -ENOSPC) {
2590                         /*
2591                          * When cloning we want to avoid transaction aborts when
2592                          * nothing was done and we are attempting to clone parts
2593                          * of inline extents, in such cases -EOPNOTSUPP is
2594                          * returned by __btrfs_drop_extents() without having
2595                          * changed anything in the file.
2596                          */
2597                         if (clone_info && ret && ret != -EOPNOTSUPP)
2598                                 btrfs_abort_transaction(trans, ret);
2599                         break;
2600                 }
2601
2602                 trans->block_rsv = &fs_info->trans_block_rsv;
2603
2604                 if (!clone_info && cur_offset < drop_end &&
2605                     cur_offset < ino_size) {
2606                         ret = fill_holes(trans, BTRFS_I(inode), path,
2607                                         cur_offset, drop_end);
2608                         if (ret) {
2609                                 /*
2610                                  * If we failed then we didn't insert our hole
2611                                  * entries for the area we dropped, so now the
2612                                  * fs is corrupted, so we must abort the
2613                                  * transaction.
2614                                  */
2615                                 btrfs_abort_transaction(trans, ret);
2616                                 break;
2617                         }
2618                 } else if (!clone_info && cur_offset < drop_end) {
2619                         /*
2620                          * We are past the i_size here, but since we didn't
2621                          * insert holes we need to clear the mapped area so we
2622                          * know to not set disk_i_size in this area until a new
2623                          * file extent is inserted here.
2624                          */
2625                         ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2626                                         cur_offset, drop_end - cur_offset);
2627                         if (ret) {
2628                                 /*
2629                                  * We couldn't clear our area, so we could
2630                                  * presumably adjust up and corrupt the fs, so
2631                                  * we need to abort.
2632                                  */
2633                                 btrfs_abort_transaction(trans, ret);
2634                                 break;
2635                         }
2636                 }
2637
2638                 if (clone_info && drop_end > clone_info->file_offset) {
2639                         u64 clone_len = drop_end - clone_info->file_offset;
2640
2641                         ret = btrfs_insert_clone_extent(trans, inode, path,
2642                                                         clone_info, clone_len);
2643                         if (ret) {
2644                                 btrfs_abort_transaction(trans, ret);
2645                                 break;
2646                         }
2647                         clone_info->data_len -= clone_len;
2648                         clone_info->data_offset += clone_len;
2649                         clone_info->file_offset += clone_len;
2650                 }
2651
2652                 cur_offset = drop_end;
2653
2654                 ret = btrfs_update_inode(trans, root, inode);
2655                 if (ret)
2656                         break;
2657
2658                 btrfs_end_transaction(trans);
2659                 btrfs_btree_balance_dirty(fs_info);
2660
2661                 trans = btrfs_start_transaction(root, rsv_count);
2662                 if (IS_ERR(trans)) {
2663                         ret = PTR_ERR(trans);
2664                         trans = NULL;
2665                         break;
2666                 }
2667
2668                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2669                                               rsv, min_size, false);
2670                 BUG_ON(ret);    /* shouldn't happen */
2671                 trans->block_rsv = rsv;
2672
2673                 if (!clone_info) {
2674                         ret = find_first_non_hole(inode, &cur_offset, &len);
2675                         if (unlikely(ret < 0))
2676                                 break;
2677                         if (ret && !len) {
2678                                 ret = 0;
2679                                 break;
2680                         }
2681                 }
2682         }
2683
2684         /*
2685          * If we were cloning, force the next fsync to be a full one since we
2686          * we replaced (or just dropped in the case of cloning holes when
2687          * NO_HOLES is enabled) extents and extent maps.
2688          * This is for the sake of simplicity, and cloning into files larger
2689          * than 16Mb would force the full fsync any way (when
2690          * try_release_extent_mapping() is invoked during page cache truncation.
2691          */
2692         if (clone_info)
2693                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2694                         &BTRFS_I(inode)->runtime_flags);
2695
2696         if (ret)
2697                 goto out_trans;
2698
2699         trans->block_rsv = &fs_info->trans_block_rsv;
2700         /*
2701          * If we are using the NO_HOLES feature we might have had already an
2702          * hole that overlaps a part of the region [lockstart, lockend] and
2703          * ends at (or beyond) lockend. Since we have no file extent items to
2704          * represent holes, drop_end can be less than lockend and so we must
2705          * make sure we have an extent map representing the existing hole (the
2706          * call to __btrfs_drop_extents() might have dropped the existing extent
2707          * map representing the existing hole), otherwise the fast fsync path
2708          * will not record the existence of the hole region
2709          * [existing_hole_start, lockend].
2710          */
2711         if (drop_end <= end)
2712                 drop_end = end + 1;
2713         /*
2714          * Don't insert file hole extent item if it's for a range beyond eof
2715          * (because it's useless) or if it represents a 0 bytes range (when
2716          * cur_offset == drop_end).
2717          */
2718         if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2719                 ret = fill_holes(trans, BTRFS_I(inode), path,
2720                                 cur_offset, drop_end);
2721                 if (ret) {
2722                         /* Same comment as above. */
2723                         btrfs_abort_transaction(trans, ret);
2724                         goto out_trans;
2725                 }
2726         } else if (!clone_info && cur_offset < drop_end) {
2727                 /* See the comment in the loop above for the reasoning here. */
2728                 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2729                                         cur_offset, drop_end - cur_offset);
2730                 if (ret) {
2731                         btrfs_abort_transaction(trans, ret);
2732                         goto out_trans;
2733                 }
2734
2735         }
2736         if (clone_info) {
2737                 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2738                                                 clone_info->data_len);
2739                 if (ret) {
2740                         btrfs_abort_transaction(trans, ret);
2741                         goto out_trans;
2742                 }
2743         }
2744
2745 out_trans:
2746         if (!trans)
2747                 goto out_free;
2748
2749         trans->block_rsv = &fs_info->trans_block_rsv;
2750         if (ret)
2751                 btrfs_end_transaction(trans);
2752         else
2753                 *trans_out = trans;
2754 out_free:
2755         btrfs_free_block_rsv(fs_info, rsv);
2756 out:
2757         return ret;
2758 }
2759
2760 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2761 {
2762         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2763         struct btrfs_root *root = BTRFS_I(inode)->root;
2764         struct extent_state *cached_state = NULL;
2765         struct btrfs_path *path;
2766         struct btrfs_trans_handle *trans = NULL;
2767         u64 lockstart;
2768         u64 lockend;
2769         u64 tail_start;
2770         u64 tail_len;
2771         u64 orig_start = offset;
2772         int ret = 0;
2773         bool same_block;
2774         u64 ino_size;
2775         bool truncated_block = false;
2776         bool updated_inode = false;
2777
2778         ret = btrfs_wait_ordered_range(inode, offset, len);
2779         if (ret)
2780                 return ret;
2781
2782         inode_lock(inode);
2783         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2784         ret = find_first_non_hole(inode, &offset, &len);
2785         if (ret < 0)
2786                 goto out_only_mutex;
2787         if (ret && !len) {
2788                 /* Already in a large hole */
2789                 ret = 0;
2790                 goto out_only_mutex;
2791         }
2792
2793         lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2794         lockend = round_down(offset + len,
2795                              btrfs_inode_sectorsize(inode)) - 1;
2796         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2797                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2798         /*
2799          * We needn't truncate any block which is beyond the end of the file
2800          * because we are sure there is no data there.
2801          */
2802         /*
2803          * Only do this if we are in the same block and we aren't doing the
2804          * entire block.
2805          */
2806         if (same_block && len < fs_info->sectorsize) {
2807                 if (offset < ino_size) {
2808                         truncated_block = true;
2809                         ret = btrfs_truncate_block(inode, offset, len, 0);
2810                 } else {
2811                         ret = 0;
2812                 }
2813                 goto out_only_mutex;
2814         }
2815
2816         /* zero back part of the first block */
2817         if (offset < ino_size) {
2818                 truncated_block = true;
2819                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2820                 if (ret) {
2821                         inode_unlock(inode);
2822                         return ret;
2823                 }
2824         }
2825
2826         /* Check the aligned pages after the first unaligned page,
2827          * if offset != orig_start, which means the first unaligned page
2828          * including several following pages are already in holes,
2829          * the extra check can be skipped */
2830         if (offset == orig_start) {
2831                 /* after truncate page, check hole again */
2832                 len = offset + len - lockstart;
2833                 offset = lockstart;
2834                 ret = find_first_non_hole(inode, &offset, &len);
2835                 if (ret < 0)
2836                         goto out_only_mutex;
2837                 if (ret && !len) {
2838                         ret = 0;
2839                         goto out_only_mutex;
2840                 }
2841                 lockstart = offset;
2842         }
2843
2844         /* Check the tail unaligned part is in a hole */
2845         tail_start = lockend + 1;
2846         tail_len = offset + len - tail_start;
2847         if (tail_len) {
2848                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2849                 if (unlikely(ret < 0))
2850                         goto out_only_mutex;
2851                 if (!ret) {
2852                         /* zero the front end of the last page */
2853                         if (tail_start + tail_len < ino_size) {
2854                                 truncated_block = true;
2855                                 ret = btrfs_truncate_block(inode,
2856                                                         tail_start + tail_len,
2857                                                         0, 1);
2858                                 if (ret)
2859                                         goto out_only_mutex;
2860                         }
2861                 }
2862         }
2863
2864         if (lockend < lockstart) {
2865                 ret = 0;
2866                 goto out_only_mutex;
2867         }
2868
2869         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2870                                           &cached_state);
2871         if (ret)
2872                 goto out_only_mutex;
2873
2874         path = btrfs_alloc_path();
2875         if (!path) {
2876                 ret = -ENOMEM;
2877                 goto out;
2878         }
2879
2880         ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2881                                      &trans);
2882         btrfs_free_path(path);
2883         if (ret)
2884                 goto out;
2885
2886         ASSERT(trans != NULL);
2887         inode_inc_iversion(inode);
2888         inode->i_mtime = inode->i_ctime = current_time(inode);
2889         ret = btrfs_update_inode(trans, root, inode);
2890         updated_inode = true;
2891         btrfs_end_transaction(trans);
2892         btrfs_btree_balance_dirty(fs_info);
2893 out:
2894         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2895                              &cached_state);
2896 out_only_mutex:
2897         if (!updated_inode && truncated_block && !ret) {
2898                 /*
2899                  * If we only end up zeroing part of a page, we still need to
2900                  * update the inode item, so that all the time fields are
2901                  * updated as well as the necessary btrfs inode in memory fields
2902                  * for detecting, at fsync time, if the inode isn't yet in the
2903                  * log tree or it's there but not up to date.
2904                  */
2905                 struct timespec64 now = current_time(inode);
2906
2907                 inode_inc_iversion(inode);
2908                 inode->i_mtime = now;
2909                 inode->i_ctime = now;
2910                 trans = btrfs_start_transaction(root, 1);
2911                 if (IS_ERR(trans)) {
2912                         ret = PTR_ERR(trans);
2913                 } else {
2914                         int ret2;
2915
2916                         ret = btrfs_update_inode(trans, root, inode);
2917                         ret2 = btrfs_end_transaction(trans);
2918                         if (!ret)
2919                                 ret = ret2;
2920                 }
2921         }
2922         inode_unlock(inode);
2923         return ret;
2924 }
2925
2926 /* Helper structure to record which range is already reserved */
2927 struct falloc_range {
2928         struct list_head list;
2929         u64 start;
2930         u64 len;
2931 };
2932
2933 /*
2934  * Helper function to add falloc range
2935  *
2936  * Caller should have locked the larger range of extent containing
2937  * [start, len)
2938  */
2939 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2940 {
2941         struct falloc_range *prev = NULL;
2942         struct falloc_range *range = NULL;
2943
2944         if (list_empty(head))
2945                 goto insert;
2946
2947         /*
2948          * As fallocate iterate by bytenr order, we only need to check
2949          * the last range.
2950          */
2951         prev = list_entry(head->prev, struct falloc_range, list);
2952         if (prev->start + prev->len == start) {
2953                 prev->len += len;
2954                 return 0;
2955         }
2956 insert:
2957         range = kmalloc(sizeof(*range), GFP_KERNEL);
2958         if (!range)
2959                 return -ENOMEM;
2960         range->start = start;
2961         range->len = len;
2962         list_add_tail(&range->list, head);
2963         return 0;
2964 }
2965
2966 static int btrfs_fallocate_update_isize(struct inode *inode,
2967                                         const u64 end,
2968                                         const int mode)
2969 {
2970         struct btrfs_trans_handle *trans;
2971         struct btrfs_root *root = BTRFS_I(inode)->root;
2972         int ret;
2973         int ret2;
2974
2975         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2976                 return 0;
2977
2978         trans = btrfs_start_transaction(root, 1);
2979         if (IS_ERR(trans))
2980                 return PTR_ERR(trans);
2981
2982         inode->i_ctime = current_time(inode);
2983         i_size_write(inode, end);
2984         btrfs_inode_safe_disk_i_size_write(inode, 0);
2985         ret = btrfs_update_inode(trans, root, inode);
2986         ret2 = btrfs_end_transaction(trans);
2987
2988         return ret ? ret : ret2;
2989 }
2990
2991 enum {
2992         RANGE_BOUNDARY_WRITTEN_EXTENT,
2993         RANGE_BOUNDARY_PREALLOC_EXTENT,
2994         RANGE_BOUNDARY_HOLE,
2995 };
2996
2997 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2998                                                  u64 offset)
2999 {
3000         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3001         struct extent_map *em;
3002         int ret;
3003
3004         offset = round_down(offset, sectorsize);
3005         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
3006         if (IS_ERR(em))
3007                 return PTR_ERR(em);
3008
3009         if (em->block_start == EXTENT_MAP_HOLE)
3010                 ret = RANGE_BOUNDARY_HOLE;
3011         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3012                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3013         else
3014                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3015
3016         free_extent_map(em);
3017         return ret;
3018 }
3019
3020 static int btrfs_zero_range(struct inode *inode,
3021                             loff_t offset,
3022                             loff_t len,
3023                             const int mode)
3024 {
3025         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3026         struct extent_map *em;
3027         struct extent_changeset *data_reserved = NULL;
3028         int ret;
3029         u64 alloc_hint = 0;
3030         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3031         u64 alloc_start = round_down(offset, sectorsize);
3032         u64 alloc_end = round_up(offset + len, sectorsize);
3033         u64 bytes_to_reserve = 0;
3034         bool space_reserved = false;
3035
3036         inode_dio_wait(inode);
3037
3038         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3039                               alloc_end - alloc_start);
3040         if (IS_ERR(em)) {
3041                 ret = PTR_ERR(em);
3042                 goto out;
3043         }
3044
3045         /*
3046          * Avoid hole punching and extent allocation for some cases. More cases
3047          * could be considered, but these are unlikely common and we keep things
3048          * as simple as possible for now. Also, intentionally, if the target
3049          * range contains one or more prealloc extents together with regular
3050          * extents and holes, we drop all the existing extents and allocate a
3051          * new prealloc extent, so that we get a larger contiguous disk extent.
3052          */
3053         if (em->start <= alloc_start &&
3054             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3055                 const u64 em_end = em->start + em->len;
3056
3057                 if (em_end >= offset + len) {
3058                         /*
3059                          * The whole range is already a prealloc extent,
3060                          * do nothing except updating the inode's i_size if
3061                          * needed.
3062                          */
3063                         free_extent_map(em);
3064                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3065                                                            mode);
3066                         goto out;
3067                 }
3068                 /*
3069                  * Part of the range is already a prealloc extent, so operate
3070                  * only on the remaining part of the range.
3071                  */
3072                 alloc_start = em_end;
3073                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3074                 len = offset + len - alloc_start;
3075                 offset = alloc_start;
3076                 alloc_hint = em->block_start + em->len;
3077         }
3078         free_extent_map(em);
3079
3080         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3081             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3082                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3083                                       sectorsize);
3084                 if (IS_ERR(em)) {
3085                         ret = PTR_ERR(em);
3086                         goto out;
3087                 }
3088
3089                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3090                         free_extent_map(em);
3091                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3092                                                            mode);
3093                         goto out;
3094                 }
3095                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3096                         free_extent_map(em);
3097                         ret = btrfs_truncate_block(inode, offset, len, 0);
3098                         if (!ret)
3099                                 ret = btrfs_fallocate_update_isize(inode,
3100                                                                    offset + len,
3101                                                                    mode);
3102                         return ret;
3103                 }
3104                 free_extent_map(em);
3105                 alloc_start = round_down(offset, sectorsize);
3106                 alloc_end = alloc_start + sectorsize;
3107                 goto reserve_space;
3108         }
3109
3110         alloc_start = round_up(offset, sectorsize);
3111         alloc_end = round_down(offset + len, sectorsize);
3112
3113         /*
3114          * For unaligned ranges, check the pages at the boundaries, they might
3115          * map to an extent, in which case we need to partially zero them, or
3116          * they might map to a hole, in which case we need our allocation range
3117          * to cover them.
3118          */
3119         if (!IS_ALIGNED(offset, sectorsize)) {
3120                 ret = btrfs_zero_range_check_range_boundary(inode, offset);
3121                 if (ret < 0)
3122                         goto out;
3123                 if (ret == RANGE_BOUNDARY_HOLE) {
3124                         alloc_start = round_down(offset, sectorsize);
3125                         ret = 0;
3126                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3127                         ret = btrfs_truncate_block(inode, offset, 0, 0);
3128                         if (ret)
3129                                 goto out;
3130                 } else {
3131                         ret = 0;
3132                 }
3133         }
3134
3135         if (!IS_ALIGNED(offset + len, sectorsize)) {
3136                 ret = btrfs_zero_range_check_range_boundary(inode,
3137                                                             offset + len);
3138                 if (ret < 0)
3139                         goto out;
3140                 if (ret == RANGE_BOUNDARY_HOLE) {
3141                         alloc_end = round_up(offset + len, sectorsize);
3142                         ret = 0;
3143                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3144                         ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3145                         if (ret)
3146                                 goto out;
3147                 } else {
3148                         ret = 0;
3149                 }
3150         }
3151
3152 reserve_space:
3153         if (alloc_start < alloc_end) {
3154                 struct extent_state *cached_state = NULL;
3155                 const u64 lockstart = alloc_start;
3156                 const u64 lockend = alloc_end - 1;
3157
3158                 bytes_to_reserve = alloc_end - alloc_start;
3159                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3160                                                       bytes_to_reserve);
3161                 if (ret < 0)
3162                         goto out;
3163                 space_reserved = true;
3164                 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3165                                                 alloc_start, bytes_to_reserve);
3166                 if (ret)
3167                         goto out;
3168                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3169                                                   &cached_state);
3170                 if (ret)
3171                         goto out;
3172                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3173                                                 alloc_end - alloc_start,
3174                                                 i_blocksize(inode),
3175                                                 offset + len, &alloc_hint);
3176                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3177                                      lockend, &cached_state);
3178                 /* btrfs_prealloc_file_range releases reserved space on error */
3179                 if (ret) {
3180                         space_reserved = false;
3181                         goto out;
3182                 }
3183         }
3184         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3185  out:
3186         if (ret && space_reserved)
3187                 btrfs_free_reserved_data_space(inode, data_reserved,
3188                                                alloc_start, bytes_to_reserve);
3189         extent_changeset_free(data_reserved);
3190
3191         return ret;
3192 }
3193
3194 static long btrfs_fallocate(struct file *file, int mode,
3195                             loff_t offset, loff_t len)
3196 {
3197         struct inode *inode = file_inode(file);
3198         struct extent_state *cached_state = NULL;
3199         struct extent_changeset *data_reserved = NULL;
3200         struct falloc_range *range;
3201         struct falloc_range *tmp;
3202         struct list_head reserve_list;
3203         u64 cur_offset;
3204         u64 last_byte;
3205         u64 alloc_start;
3206         u64 alloc_end;
3207         u64 alloc_hint = 0;
3208         u64 locked_end;
3209         u64 actual_end = 0;
3210         struct extent_map *em;
3211         int blocksize = btrfs_inode_sectorsize(inode);
3212         int ret;
3213
3214         alloc_start = round_down(offset, blocksize);
3215         alloc_end = round_up(offset + len, blocksize);
3216         cur_offset = alloc_start;
3217
3218         /* Make sure we aren't being give some crap mode */
3219         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3220                      FALLOC_FL_ZERO_RANGE))
3221                 return -EOPNOTSUPP;
3222
3223         if (mode & FALLOC_FL_PUNCH_HOLE)
3224                 return btrfs_punch_hole(inode, offset, len);
3225
3226         /*
3227          * Only trigger disk allocation, don't trigger qgroup reserve
3228          *
3229          * For qgroup space, it will be checked later.
3230          */
3231         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3232                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3233                                                       alloc_end - alloc_start);
3234                 if (ret < 0)
3235                         return ret;
3236         }
3237
3238         inode_lock(inode);
3239
3240         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3241                 ret = inode_newsize_ok(inode, offset + len);
3242                 if (ret)
3243                         goto out;
3244         }
3245
3246         /*
3247          * TODO: Move these two operations after we have checked
3248          * accurate reserved space, or fallocate can still fail but
3249          * with page truncated or size expanded.
3250          *
3251          * But that's a minor problem and won't do much harm BTW.
3252          */
3253         if (alloc_start > inode->i_size) {
3254                 ret = btrfs_cont_expand(inode, i_size_read(inode),
3255                                         alloc_start);
3256                 if (ret)
3257                         goto out;
3258         } else if (offset + len > inode->i_size) {
3259                 /*
3260                  * If we are fallocating from the end of the file onward we
3261                  * need to zero out the end of the block if i_size lands in the
3262                  * middle of a block.
3263                  */
3264                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3265                 if (ret)
3266                         goto out;
3267         }
3268
3269         /*
3270          * wait for ordered IO before we have any locks.  We'll loop again
3271          * below with the locks held.
3272          */
3273         ret = btrfs_wait_ordered_range(inode, alloc_start,
3274                                        alloc_end - alloc_start);
3275         if (ret)
3276                 goto out;
3277
3278         if (mode & FALLOC_FL_ZERO_RANGE) {
3279                 ret = btrfs_zero_range(inode, offset, len, mode);
3280                 inode_unlock(inode);
3281                 return ret;
3282         }
3283
3284         locked_end = alloc_end - 1;
3285         while (1) {
3286                 struct btrfs_ordered_extent *ordered;
3287
3288                 /* the extent lock is ordered inside the running
3289                  * transaction
3290                  */
3291                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3292                                  locked_end, &cached_state);
3293                 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3294
3295                 if (ordered &&
3296                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3297                     ordered->file_offset < alloc_end) {
3298                         btrfs_put_ordered_extent(ordered);
3299                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3300                                              alloc_start, locked_end,
3301                                              &cached_state);
3302                         /*
3303                          * we can't wait on the range with the transaction
3304                          * running or with the extent lock held
3305                          */
3306                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3307                                                        alloc_end - alloc_start);
3308                         if (ret)
3309                                 goto out;
3310                 } else {
3311                         if (ordered)
3312                                 btrfs_put_ordered_extent(ordered);
3313                         break;
3314                 }
3315         }
3316
3317         /* First, check if we exceed the qgroup limit */
3318         INIT_LIST_HEAD(&reserve_list);
3319         while (cur_offset < alloc_end) {
3320                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3321                                       alloc_end - cur_offset);
3322                 if (IS_ERR(em)) {
3323                         ret = PTR_ERR(em);
3324                         break;
3325                 }
3326                 last_byte = min(extent_map_end(em), alloc_end);
3327                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3328                 last_byte = ALIGN(last_byte, blocksize);
3329                 if (em->block_start == EXTENT_MAP_HOLE ||
3330                     (cur_offset >= inode->i_size &&
3331                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3332                         ret = add_falloc_range(&reserve_list, cur_offset,
3333                                                last_byte - cur_offset);
3334                         if (ret < 0) {
3335                                 free_extent_map(em);
3336                                 break;
3337                         }
3338                         ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3339                                         cur_offset, last_byte - cur_offset);
3340                         if (ret < 0) {
3341                                 cur_offset = last_byte;
3342                                 free_extent_map(em);
3343                                 break;
3344                         }
3345                 } else {
3346                         /*
3347                          * Do not need to reserve unwritten extent for this
3348                          * range, free reserved data space first, otherwise
3349                          * it'll result in false ENOSPC error.
3350                          */
3351                         btrfs_free_reserved_data_space(inode, data_reserved,
3352                                         cur_offset, last_byte - cur_offset);
3353                 }
3354                 free_extent_map(em);
3355                 cur_offset = last_byte;
3356         }
3357
3358         /*
3359          * If ret is still 0, means we're OK to fallocate.
3360          * Or just cleanup the list and exit.
3361          */
3362         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3363                 if (!ret)
3364                         ret = btrfs_prealloc_file_range(inode, mode,
3365                                         range->start,
3366                                         range->len, i_blocksize(inode),
3367                                         offset + len, &alloc_hint);
3368                 else
3369                         btrfs_free_reserved_data_space(inode,
3370                                         data_reserved, range->start,
3371                                         range->len);
3372                 list_del(&range->list);
3373                 kfree(range);
3374         }
3375         if (ret < 0)
3376                 goto out_unlock;
3377
3378         /*
3379          * We didn't need to allocate any more space, but we still extended the
3380          * size of the file so we need to update i_size and the inode item.
3381          */
3382         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3383 out_unlock:
3384         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3385                              &cached_state);
3386 out:
3387         inode_unlock(inode);
3388         /* Let go of our reservation. */
3389         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3390                 btrfs_free_reserved_data_space(inode, data_reserved,
3391                                 cur_offset, alloc_end - cur_offset);
3392         extent_changeset_free(data_reserved);
3393         return ret;
3394 }
3395
3396 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3397                                   int whence)
3398 {
3399         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3400         struct extent_map *em = NULL;
3401         struct extent_state *cached_state = NULL;
3402         loff_t i_size = inode->i_size;
3403         u64 lockstart;
3404         u64 lockend;
3405         u64 start;
3406         u64 len;
3407         int ret = 0;
3408
3409         if (i_size == 0 || offset >= i_size)
3410                 return -ENXIO;
3411
3412         /*
3413          * offset can be negative, in this case we start finding DATA/HOLE from
3414          * the very start of the file.
3415          */
3416         start = max_t(loff_t, 0, offset);
3417
3418         lockstart = round_down(start, fs_info->sectorsize);
3419         lockend = round_up(i_size, fs_info->sectorsize);
3420         if (lockend <= lockstart)
3421                 lockend = lockstart + fs_info->sectorsize;
3422         lockend--;
3423         len = lockend - lockstart + 1;
3424
3425         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3426                          &cached_state);
3427
3428         while (start < i_size) {
3429                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3430                 if (IS_ERR(em)) {
3431                         ret = PTR_ERR(em);
3432                         em = NULL;
3433                         break;
3434                 }
3435
3436                 if (whence == SEEK_HOLE &&
3437                     (em->block_start == EXTENT_MAP_HOLE ||
3438                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3439                         break;
3440                 else if (whence == SEEK_DATA &&
3441                            (em->block_start != EXTENT_MAP_HOLE &&
3442                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3443                         break;
3444
3445                 start = em->start + em->len;
3446                 free_extent_map(em);
3447                 em = NULL;
3448                 cond_resched();
3449         }
3450         free_extent_map(em);
3451         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3452                              &cached_state);
3453         if (ret) {
3454                 offset = ret;
3455         } else {
3456                 if (whence == SEEK_DATA && start >= i_size)
3457                         offset = -ENXIO;
3458                 else
3459                         offset = min_t(loff_t, start, i_size);
3460         }
3461
3462         return offset;
3463 }
3464
3465 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3466 {
3467         struct inode *inode = file->f_mapping->host;
3468
3469         switch (whence) {
3470         default:
3471                 return generic_file_llseek(file, offset, whence);
3472         case SEEK_DATA:
3473         case SEEK_HOLE:
3474                 inode_lock_shared(inode);
3475                 offset = find_desired_extent(inode, offset, whence);
3476                 inode_unlock_shared(inode);
3477                 break;
3478         }
3479
3480         if (offset < 0)
3481                 return offset;
3482
3483         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3484 }
3485
3486 static int btrfs_file_open(struct inode *inode, struct file *filp)
3487 {
3488         filp->f_mode |= FMODE_NOWAIT;
3489         return generic_file_open(inode, filp);
3490 }
3491
3492 const struct file_operations btrfs_file_operations = {
3493         .llseek         = btrfs_file_llseek,
3494         .read_iter      = generic_file_read_iter,
3495         .splice_read    = generic_file_splice_read,
3496         .write_iter     = btrfs_file_write_iter,
3497         .mmap           = btrfs_file_mmap,
3498         .open           = btrfs_file_open,
3499         .release        = btrfs_release_file,
3500         .fsync          = btrfs_sync_file,
3501         .fallocate      = btrfs_fallocate,
3502         .unlocked_ioctl = btrfs_ioctl,
3503 #ifdef CONFIG_COMPAT
3504         .compat_ioctl   = btrfs_compat_ioctl,
3505 #endif
3506         .remap_file_range = btrfs_remap_file_range,
3507 };
3508
3509 void __cold btrfs_auto_defrag_exit(void)
3510 {
3511         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3512 }
3513
3514 int __init btrfs_auto_defrag_init(void)
3515 {
3516         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3517                                         sizeof(struct inode_defrag), 0,
3518                                         SLAB_MEM_SPREAD,
3519                                         NULL);
3520         if (!btrfs_inode_defrag_cachep)
3521                 return -ENOMEM;
3522
3523         return 0;
3524 }
3525
3526 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3527 {
3528         int ret;
3529
3530         /*
3531          * So with compression we will find and lock a dirty page and clear the
3532          * first one as dirty, setup an async extent, and immediately return
3533          * with the entire range locked but with nobody actually marked with
3534          * writeback.  So we can't just filemap_write_and_wait_range() and
3535          * expect it to work since it will just kick off a thread to do the
3536          * actual work.  So we need to call filemap_fdatawrite_range _again_
3537          * since it will wait on the page lock, which won't be unlocked until
3538          * after the pages have been marked as writeback and so we're good to go
3539          * from there.  We have to do this otherwise we'll miss the ordered
3540          * extents and that results in badness.  Please Josef, do not think you
3541          * know better and pull this out at some point in the future, it is
3542          * right and you are wrong.
3543          */
3544         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3545         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3546                              &BTRFS_I(inode)->runtime_flags))
3547                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3548
3549         return ret;
3550 }