Merge tag 'usb-3.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51         struct rb_node rb_node;
52         /* objectid */
53         u64 ino;
54         /*
55          * transid where the defrag was added, we search for
56          * extents newer than this
57          */
58         u64 transid;
59
60         /* root objectid */
61         u64 root;
62
63         /* last offset we were able to defrag */
64         u64 last_offset;
65
66         /* if we've wrapped around back to zero once already */
67         int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71                                   struct inode_defrag *defrag2)
72 {
73         if (defrag1->root > defrag2->root)
74                 return 1;
75         else if (defrag1->root < defrag2->root)
76                 return -1;
77         else if (defrag1->ino > defrag2->ino)
78                 return 1;
79         else if (defrag1->ino < defrag2->ino)
80                 return -1;
81         else
82                 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95                                     struct inode_defrag *defrag)
96 {
97         struct btrfs_root *root = BTRFS_I(inode)->root;
98         struct inode_defrag *entry;
99         struct rb_node **p;
100         struct rb_node *parent = NULL;
101         int ret;
102
103         p = &root->fs_info->defrag_inodes.rb_node;
104         while (*p) {
105                 parent = *p;
106                 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108                 ret = __compare_inode_defrag(defrag, entry);
109                 if (ret < 0)
110                         p = &parent->rb_left;
111                 else if (ret > 0)
112                         p = &parent->rb_right;
113                 else {
114                         /* if we're reinserting an entry for
115                          * an old defrag run, make sure to
116                          * lower the transid of our existing record
117                          */
118                         if (defrag->transid < entry->transid)
119                                 entry->transid = defrag->transid;
120                         if (defrag->last_offset > entry->last_offset)
121                                 entry->last_offset = defrag->last_offset;
122                         return -EEXIST;
123                 }
124         }
125         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126         rb_link_node(&defrag->rb_node, parent, p);
127         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128         return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133         if (!btrfs_test_opt(root, AUTO_DEFRAG))
134                 return 0;
135
136         if (btrfs_fs_closing(root->fs_info))
137                 return 0;
138
139         return 1;
140 }
141
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147                            struct inode *inode)
148 {
149         struct btrfs_root *root = BTRFS_I(inode)->root;
150         struct inode_defrag *defrag;
151         u64 transid;
152         int ret;
153
154         if (!__need_auto_defrag(root))
155                 return 0;
156
157         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158                 return 0;
159
160         if (trans)
161                 transid = trans->transid;
162         else
163                 transid = BTRFS_I(inode)->root->last_trans;
164
165         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166         if (!defrag)
167                 return -ENOMEM;
168
169         defrag->ino = btrfs_ino(inode);
170         defrag->transid = transid;
171         defrag->root = root->root_key.objectid;
172
173         spin_lock(&root->fs_info->defrag_inodes_lock);
174         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175                 /*
176                  * If we set IN_DEFRAG flag and evict the inode from memory,
177                  * and then re-read this inode, this new inode doesn't have
178                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
179                  */
180                 ret = __btrfs_add_inode_defrag(inode, defrag);
181                 if (ret)
182                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183         } else {
184                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         }
186         spin_unlock(&root->fs_info->defrag_inodes_lock);
187         return 0;
188 }
189
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196                                        struct inode_defrag *defrag)
197 {
198         struct btrfs_root *root = BTRFS_I(inode)->root;
199         int ret;
200
201         if (!__need_auto_defrag(root))
202                 goto out;
203
204         /*
205          * Here we don't check the IN_DEFRAG flag, because we need merge
206          * them together.
207          */
208         spin_lock(&root->fs_info->defrag_inodes_lock);
209         ret = __btrfs_add_inode_defrag(inode, defrag);
210         spin_unlock(&root->fs_info->defrag_inodes_lock);
211         if (ret)
212                 goto out;
213         return;
214 out:
215         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225         struct inode_defrag *entry = NULL;
226         struct inode_defrag tmp;
227         struct rb_node *p;
228         struct rb_node *parent = NULL;
229         int ret;
230
231         tmp.ino = ino;
232         tmp.root = root;
233
234         spin_lock(&fs_info->defrag_inodes_lock);
235         p = fs_info->defrag_inodes.rb_node;
236         while (p) {
237                 parent = p;
238                 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240                 ret = __compare_inode_defrag(&tmp, entry);
241                 if (ret < 0)
242                         p = parent->rb_left;
243                 else if (ret > 0)
244                         p = parent->rb_right;
245                 else
246                         goto out;
247         }
248
249         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250                 parent = rb_next(parent);
251                 if (parent)
252                         entry = rb_entry(parent, struct inode_defrag, rb_node);
253                 else
254                         entry = NULL;
255         }
256 out:
257         if (entry)
258                 rb_erase(parent, &fs_info->defrag_inodes);
259         spin_unlock(&fs_info->defrag_inodes_lock);
260         return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265         struct inode_defrag *defrag;
266         struct rb_node *node;
267
268         spin_lock(&fs_info->defrag_inodes_lock);
269         node = rb_first(&fs_info->defrag_inodes);
270         while (node) {
271                 rb_erase(node, &fs_info->defrag_inodes);
272                 defrag = rb_entry(node, struct inode_defrag, rb_node);
273                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275                 if (need_resched()) {
276                         spin_unlock(&fs_info->defrag_inodes_lock);
277                         cond_resched();
278                         spin_lock(&fs_info->defrag_inodes_lock);
279                 }
280
281                 node = rb_first(&fs_info->defrag_inodes);
282         }
283         spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH      1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289                                     struct inode_defrag *defrag)
290 {
291         struct btrfs_root *inode_root;
292         struct inode *inode;
293         struct btrfs_key key;
294         struct btrfs_ioctl_defrag_range_args range;
295         int num_defrag;
296         int index;
297         int ret;
298
299         /* get the inode */
300         key.objectid = defrag->root;
301         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302         key.offset = (u64)-1;
303
304         index = srcu_read_lock(&fs_info->subvol_srcu);
305
306         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307         if (IS_ERR(inode_root)) {
308                 ret = PTR_ERR(inode_root);
309                 goto cleanup;
310         }
311
312         key.objectid = defrag->ino;
313         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314         key.offset = 0;
315         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316         if (IS_ERR(inode)) {
317                 ret = PTR_ERR(inode);
318                 goto cleanup;
319         }
320         srcu_read_unlock(&fs_info->subvol_srcu, index);
321
322         /* do a chunk of defrag */
323         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324         memset(&range, 0, sizeof(range));
325         range.len = (u64)-1;
326         range.start = defrag->last_offset;
327
328         sb_start_write(fs_info->sb);
329         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330                                        BTRFS_DEFRAG_BATCH);
331         sb_end_write(fs_info->sb);
332         /*
333          * if we filled the whole defrag batch, there
334          * must be more work to do.  Queue this defrag
335          * again
336          */
337         if (num_defrag == BTRFS_DEFRAG_BATCH) {
338                 defrag->last_offset = range.start;
339                 btrfs_requeue_inode_defrag(inode, defrag);
340         } else if (defrag->last_offset && !defrag->cycled) {
341                 /*
342                  * we didn't fill our defrag batch, but
343                  * we didn't start at zero.  Make sure we loop
344                  * around to the start of the file.
345                  */
346                 defrag->last_offset = 0;
347                 defrag->cycled = 1;
348                 btrfs_requeue_inode_defrag(inode, defrag);
349         } else {
350                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351         }
352
353         iput(inode);
354         return 0;
355 cleanup:
356         srcu_read_unlock(&fs_info->subvol_srcu, index);
357         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358         return ret;
359 }
360
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367         struct inode_defrag *defrag;
368         u64 first_ino = 0;
369         u64 root_objectid = 0;
370
371         atomic_inc(&fs_info->defrag_running);
372         while (1) {
373                 /* Pause the auto defragger. */
374                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375                              &fs_info->fs_state))
376                         break;
377
378                 if (!__need_auto_defrag(fs_info->tree_root))
379                         break;
380
381                 /* find an inode to defrag */
382                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383                                                  first_ino);
384                 if (!defrag) {
385                         if (root_objectid || first_ino) {
386                                 root_objectid = 0;
387                                 first_ino = 0;
388                                 continue;
389                         } else {
390                                 break;
391                         }
392                 }
393
394                 first_ino = defrag->ino + 1;
395                 root_objectid = defrag->root;
396
397                 __btrfs_run_defrag_inode(fs_info, defrag);
398         }
399         atomic_dec(&fs_info->defrag_running);
400
401         /*
402          * during unmount, we use the transaction_wait queue to
403          * wait for the defragger to stop
404          */
405         wake_up(&fs_info->transaction_wait);
406         return 0;
407 }
408
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413                                          size_t write_bytes,
414                                          struct page **prepared_pages,
415                                          struct iov_iter *i)
416 {
417         size_t copied = 0;
418         size_t total_copied = 0;
419         int pg = 0;
420         int offset = pos & (PAGE_CACHE_SIZE - 1);
421
422         while (write_bytes > 0) {
423                 size_t count = min_t(size_t,
424                                      PAGE_CACHE_SIZE - offset, write_bytes);
425                 struct page *page = prepared_pages[pg];
426                 /*
427                  * Copy data from userspace to the current page
428                  *
429                  * Disable pagefault to avoid recursive lock since
430                  * the pages are already locked
431                  */
432                 pagefault_disable();
433                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
434                 pagefault_enable();
435
436                 /* Flush processor's dcache for this page */
437                 flush_dcache_page(page);
438
439                 /*
440                  * if we get a partial write, we can end up with
441                  * partially up to date pages.  These add
442                  * a lot of complexity, so make sure they don't
443                  * happen by forcing this copy to be retried.
444                  *
445                  * The rest of the btrfs_file_write code will fall
446                  * back to page at a time copies after we return 0.
447                  */
448                 if (!PageUptodate(page) && copied < count)
449                         copied = 0;
450
451                 iov_iter_advance(i, copied);
452                 write_bytes -= copied;
453                 total_copied += copied;
454
455                 /* Return to btrfs_file_aio_write to fault page */
456                 if (unlikely(copied == 0))
457                         break;
458
459                 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
460                         offset += copied;
461                 } else {
462                         pg++;
463                         offset = 0;
464                 }
465         }
466         return total_copied;
467 }
468
469 /*
470  * unlocks pages after btrfs_file_write is done with them
471  */
472 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
473 {
474         size_t i;
475         for (i = 0; i < num_pages; i++) {
476                 /* page checked is some magic around finding pages that
477                  * have been modified without going through btrfs_set_page_dirty
478                  * clear it here
479                  */
480                 ClearPageChecked(pages[i]);
481                 unlock_page(pages[i]);
482                 mark_page_accessed(pages[i]);
483                 page_cache_release(pages[i]);
484         }
485 }
486
487 /*
488  * after copy_from_user, pages need to be dirtied and we need to make
489  * sure holes are created between the current EOF and the start of
490  * any next extents (if required).
491  *
492  * this also makes the decision about creating an inline extent vs
493  * doing real data extents, marking pages dirty and delalloc as required.
494  */
495 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
496                              struct page **pages, size_t num_pages,
497                              loff_t pos, size_t write_bytes,
498                              struct extent_state **cached)
499 {
500         int err = 0;
501         int i;
502         u64 num_bytes;
503         u64 start_pos;
504         u64 end_of_last_block;
505         u64 end_pos = pos + write_bytes;
506         loff_t isize = i_size_read(inode);
507
508         start_pos = pos & ~((u64)root->sectorsize - 1);
509         num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
510
511         end_of_last_block = start_pos + num_bytes - 1;
512         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
513                                         cached);
514         if (err)
515                 return err;
516
517         for (i = 0; i < num_pages; i++) {
518                 struct page *p = pages[i];
519                 SetPageUptodate(p);
520                 ClearPageChecked(p);
521                 set_page_dirty(p);
522         }
523
524         /*
525          * we've only changed i_size in ram, and we haven't updated
526          * the disk i_size.  There is no need to log the inode
527          * at this time.
528          */
529         if (end_pos > isize)
530                 i_size_write(inode, end_pos);
531         return 0;
532 }
533
534 /*
535  * this drops all the extents in the cache that intersect the range
536  * [start, end].  Existing extents are split as required.
537  */
538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
539                              int skip_pinned)
540 {
541         struct extent_map *em;
542         struct extent_map *split = NULL;
543         struct extent_map *split2 = NULL;
544         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545         u64 len = end - start + 1;
546         u64 gen;
547         int ret;
548         int testend = 1;
549         unsigned long flags;
550         int compressed = 0;
551         bool modified;
552
553         WARN_ON(end < start);
554         if (end == (u64)-1) {
555                 len = (u64)-1;
556                 testend = 0;
557         }
558         while (1) {
559                 int no_splits = 0;
560
561                 modified = false;
562                 if (!split)
563                         split = alloc_extent_map();
564                 if (!split2)
565                         split2 = alloc_extent_map();
566                 if (!split || !split2)
567                         no_splits = 1;
568
569                 write_lock(&em_tree->lock);
570                 em = lookup_extent_mapping(em_tree, start, len);
571                 if (!em) {
572                         write_unlock(&em_tree->lock);
573                         break;
574                 }
575                 flags = em->flags;
576                 gen = em->generation;
577                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
578                         if (testend && em->start + em->len >= start + len) {
579                                 free_extent_map(em);
580                                 write_unlock(&em_tree->lock);
581                                 break;
582                         }
583                         start = em->start + em->len;
584                         if (testend)
585                                 len = start + len - (em->start + em->len);
586                         free_extent_map(em);
587                         write_unlock(&em_tree->lock);
588                         continue;
589                 }
590                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
591                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
592                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
593                 modified = !list_empty(&em->list);
594                 remove_extent_mapping(em_tree, em);
595                 if (no_splits)
596                         goto next;
597
598                 if (em->start < start) {
599                         split->start = em->start;
600                         split->len = start - em->start;
601
602                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
603                                 split->orig_start = em->orig_start;
604                                 split->block_start = em->block_start;
605
606                                 if (compressed)
607                                         split->block_len = em->block_len;
608                                 else
609                                         split->block_len = split->len;
610                                 split->orig_block_len = max(split->block_len,
611                                                 em->orig_block_len);
612                                 split->ram_bytes = em->ram_bytes;
613                         } else {
614                                 split->orig_start = split->start;
615                                 split->block_len = 0;
616                                 split->block_start = em->block_start;
617                                 split->orig_block_len = 0;
618                                 split->ram_bytes = split->len;
619                         }
620
621                         split->generation = gen;
622                         split->bdev = em->bdev;
623                         split->flags = flags;
624                         split->compress_type = em->compress_type;
625                         ret = add_extent_mapping(em_tree, split, modified);
626                         BUG_ON(ret); /* Logic error */
627                         free_extent_map(split);
628                         split = split2;
629                         split2 = NULL;
630                 }
631                 if (testend && em->start + em->len > start + len) {
632                         u64 diff = start + len - em->start;
633
634                         split->start = start + len;
635                         split->len = em->start + em->len - (start + len);
636                         split->bdev = em->bdev;
637                         split->flags = flags;
638                         split->compress_type = em->compress_type;
639                         split->generation = gen;
640
641                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
642                                 split->orig_block_len = max(em->block_len,
643                                                     em->orig_block_len);
644
645                                 split->ram_bytes = em->ram_bytes;
646                                 if (compressed) {
647                                         split->block_len = em->block_len;
648                                         split->block_start = em->block_start;
649                                         split->orig_start = em->orig_start;
650                                 } else {
651                                         split->block_len = split->len;
652                                         split->block_start = em->block_start
653                                                 + diff;
654                                         split->orig_start = em->orig_start;
655                                 }
656                         } else {
657                                 split->ram_bytes = split->len;
658                                 split->orig_start = split->start;
659                                 split->block_len = 0;
660                                 split->block_start = em->block_start;
661                                 split->orig_block_len = 0;
662                         }
663
664                         ret = add_extent_mapping(em_tree, split, modified);
665                         BUG_ON(ret); /* Logic error */
666                         free_extent_map(split);
667                         split = NULL;
668                 }
669 next:
670                 write_unlock(&em_tree->lock);
671
672                 /* once for us */
673                 free_extent_map(em);
674                 /* once for the tree*/
675                 free_extent_map(em);
676         }
677         if (split)
678                 free_extent_map(split);
679         if (split2)
680                 free_extent_map(split2);
681 }
682
683 /*
684  * this is very complex, but the basic idea is to drop all extents
685  * in the range start - end.  hint_block is filled in with a block number
686  * that would be a good hint to the block allocator for this file.
687  *
688  * If an extent intersects the range but is not entirely inside the range
689  * it is either truncated or split.  Anything entirely inside the range
690  * is deleted from the tree.
691  */
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693                          struct btrfs_root *root, struct inode *inode,
694                          struct btrfs_path *path, u64 start, u64 end,
695                          u64 *drop_end, int drop_cache,
696                          int replace_extent,
697                          u32 extent_item_size,
698                          int *key_inserted)
699 {
700         struct extent_buffer *leaf;
701         struct btrfs_file_extent_item *fi;
702         struct btrfs_key key;
703         struct btrfs_key new_key;
704         u64 ino = btrfs_ino(inode);
705         u64 search_start = start;
706         u64 disk_bytenr = 0;
707         u64 num_bytes = 0;
708         u64 extent_offset = 0;
709         u64 extent_end = 0;
710         int del_nr = 0;
711         int del_slot = 0;
712         int extent_type;
713         int recow;
714         int ret;
715         int modify_tree = -1;
716         int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
717         int found = 0;
718         int leafs_visited = 0;
719
720         if (drop_cache)
721                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
722
723         if (start >= BTRFS_I(inode)->disk_i_size)
724                 modify_tree = 0;
725
726         while (1) {
727                 recow = 0;
728                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
729                                                search_start, modify_tree);
730                 if (ret < 0)
731                         break;
732                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
733                         leaf = path->nodes[0];
734                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
735                         if (key.objectid == ino &&
736                             key.type == BTRFS_EXTENT_DATA_KEY)
737                                 path->slots[0]--;
738                 }
739                 ret = 0;
740                 leafs_visited++;
741 next_slot:
742                 leaf = path->nodes[0];
743                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
744                         BUG_ON(del_nr > 0);
745                         ret = btrfs_next_leaf(root, path);
746                         if (ret < 0)
747                                 break;
748                         if (ret > 0) {
749                                 ret = 0;
750                                 break;
751                         }
752                         leafs_visited++;
753                         leaf = path->nodes[0];
754                         recow = 1;
755                 }
756
757                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
758                 if (key.objectid > ino ||
759                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
760                         break;
761
762                 fi = btrfs_item_ptr(leaf, path->slots[0],
763                                     struct btrfs_file_extent_item);
764                 extent_type = btrfs_file_extent_type(leaf, fi);
765
766                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
767                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
768                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
769                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
770                         extent_offset = btrfs_file_extent_offset(leaf, fi);
771                         extent_end = key.offset +
772                                 btrfs_file_extent_num_bytes(leaf, fi);
773                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
774                         extent_end = key.offset +
775                                 btrfs_file_extent_inline_len(leaf,
776                                                      path->slots[0], fi);
777                 } else {
778                         WARN_ON(1);
779                         extent_end = search_start;
780                 }
781
782                 if (extent_end <= search_start) {
783                         path->slots[0]++;
784                         goto next_slot;
785                 }
786
787                 found = 1;
788                 search_start = max(key.offset, start);
789                 if (recow || !modify_tree) {
790                         modify_tree = -1;
791                         btrfs_release_path(path);
792                         continue;
793                 }
794
795                 /*
796                  *     | - range to drop - |
797                  *  | -------- extent -------- |
798                  */
799                 if (start > key.offset && end < extent_end) {
800                         BUG_ON(del_nr > 0);
801                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
802
803                         memcpy(&new_key, &key, sizeof(new_key));
804                         new_key.offset = start;
805                         ret = btrfs_duplicate_item(trans, root, path,
806                                                    &new_key);
807                         if (ret == -EAGAIN) {
808                                 btrfs_release_path(path);
809                                 continue;
810                         }
811                         if (ret < 0)
812                                 break;
813
814                         leaf = path->nodes[0];
815                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
816                                             struct btrfs_file_extent_item);
817                         btrfs_set_file_extent_num_bytes(leaf, fi,
818                                                         start - key.offset);
819
820                         fi = btrfs_item_ptr(leaf, path->slots[0],
821                                             struct btrfs_file_extent_item);
822
823                         extent_offset += start - key.offset;
824                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
825                         btrfs_set_file_extent_num_bytes(leaf, fi,
826                                                         extent_end - start);
827                         btrfs_mark_buffer_dirty(leaf);
828
829                         if (update_refs && disk_bytenr > 0) {
830                                 ret = btrfs_inc_extent_ref(trans, root,
831                                                 disk_bytenr, num_bytes, 0,
832                                                 root->root_key.objectid,
833                                                 new_key.objectid,
834                                                 start - extent_offset, 0);
835                                 BUG_ON(ret); /* -ENOMEM */
836                         }
837                         key.offset = start;
838                 }
839                 /*
840                  *  | ---- range to drop ----- |
841                  *      | -------- extent -------- |
842                  */
843                 if (start <= key.offset && end < extent_end) {
844                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
845
846                         memcpy(&new_key, &key, sizeof(new_key));
847                         new_key.offset = end;
848                         btrfs_set_item_key_safe(root, path, &new_key);
849
850                         extent_offset += end - key.offset;
851                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
852                         btrfs_set_file_extent_num_bytes(leaf, fi,
853                                                         extent_end - end);
854                         btrfs_mark_buffer_dirty(leaf);
855                         if (update_refs && disk_bytenr > 0)
856                                 inode_sub_bytes(inode, end - key.offset);
857                         break;
858                 }
859
860                 search_start = extent_end;
861                 /*
862                  *       | ---- range to drop ----- |
863                  *  | -------- extent -------- |
864                  */
865                 if (start > key.offset && end >= extent_end) {
866                         BUG_ON(del_nr > 0);
867                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
868
869                         btrfs_set_file_extent_num_bytes(leaf, fi,
870                                                         start - key.offset);
871                         btrfs_mark_buffer_dirty(leaf);
872                         if (update_refs && disk_bytenr > 0)
873                                 inode_sub_bytes(inode, extent_end - start);
874                         if (end == extent_end)
875                                 break;
876
877                         path->slots[0]++;
878                         goto next_slot;
879                 }
880
881                 /*
882                  *  | ---- range to drop ----- |
883                  *    | ------ extent ------ |
884                  */
885                 if (start <= key.offset && end >= extent_end) {
886                         if (del_nr == 0) {
887                                 del_slot = path->slots[0];
888                                 del_nr = 1;
889                         } else {
890                                 BUG_ON(del_slot + del_nr != path->slots[0]);
891                                 del_nr++;
892                         }
893
894                         if (update_refs &&
895                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
896                                 inode_sub_bytes(inode,
897                                                 extent_end - key.offset);
898                                 extent_end = ALIGN(extent_end,
899                                                    root->sectorsize);
900                         } else if (update_refs && disk_bytenr > 0) {
901                                 ret = btrfs_free_extent(trans, root,
902                                                 disk_bytenr, num_bytes, 0,
903                                                 root->root_key.objectid,
904                                                 key.objectid, key.offset -
905                                                 extent_offset, 0);
906                                 BUG_ON(ret); /* -ENOMEM */
907                                 inode_sub_bytes(inode,
908                                                 extent_end - key.offset);
909                         }
910
911                         if (end == extent_end)
912                                 break;
913
914                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
915                                 path->slots[0]++;
916                                 goto next_slot;
917                         }
918
919                         ret = btrfs_del_items(trans, root, path, del_slot,
920                                               del_nr);
921                         if (ret) {
922                                 btrfs_abort_transaction(trans, root, ret);
923                                 break;
924                         }
925
926                         del_nr = 0;
927                         del_slot = 0;
928
929                         btrfs_release_path(path);
930                         continue;
931                 }
932
933                 BUG_ON(1);
934         }
935
936         if (!ret && del_nr > 0) {
937                 /*
938                  * Set path->slots[0] to first slot, so that after the delete
939                  * if items are move off from our leaf to its immediate left or
940                  * right neighbor leafs, we end up with a correct and adjusted
941                  * path->slots[0] for our insertion.
942                  */
943                 path->slots[0] = del_slot;
944                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
945                 if (ret)
946                         btrfs_abort_transaction(trans, root, ret);
947
948                 leaf = path->nodes[0];
949                 /*
950                  * leaf eb has flag EXTENT_BUFFER_STALE if it was deleted (that
951                  * is, its contents got pushed to its neighbors), in which case
952                  * it means path->locks[0] == 0
953                  */
954                 if (!ret && replace_extent && leafs_visited == 1 &&
955                     path->locks[0] &&
956                     btrfs_leaf_free_space(root, leaf) >=
957                     sizeof(struct btrfs_item) + extent_item_size) {
958
959                         key.objectid = ino;
960                         key.type = BTRFS_EXTENT_DATA_KEY;
961                         key.offset = start;
962                         setup_items_for_insert(root, path, &key,
963                                                &extent_item_size,
964                                                extent_item_size,
965                                                sizeof(struct btrfs_item) +
966                                                extent_item_size, 1);
967                         *key_inserted = 1;
968                 }
969         }
970
971         if (!replace_extent || !(*key_inserted))
972                 btrfs_release_path(path);
973         if (drop_end)
974                 *drop_end = found ? min(end, extent_end) : end;
975         return ret;
976 }
977
978 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
979                        struct btrfs_root *root, struct inode *inode, u64 start,
980                        u64 end, int drop_cache)
981 {
982         struct btrfs_path *path;
983         int ret;
984
985         path = btrfs_alloc_path();
986         if (!path)
987                 return -ENOMEM;
988         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
989                                    drop_cache, 0, 0, NULL);
990         btrfs_free_path(path);
991         return ret;
992 }
993
994 static int extent_mergeable(struct extent_buffer *leaf, int slot,
995                             u64 objectid, u64 bytenr, u64 orig_offset,
996                             u64 *start, u64 *end)
997 {
998         struct btrfs_file_extent_item *fi;
999         struct btrfs_key key;
1000         u64 extent_end;
1001
1002         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1003                 return 0;
1004
1005         btrfs_item_key_to_cpu(leaf, &key, slot);
1006         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1007                 return 0;
1008
1009         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1010         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1011             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1012             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1013             btrfs_file_extent_compression(leaf, fi) ||
1014             btrfs_file_extent_encryption(leaf, fi) ||
1015             btrfs_file_extent_other_encoding(leaf, fi))
1016                 return 0;
1017
1018         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1019         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1020                 return 0;
1021
1022         *start = key.offset;
1023         *end = extent_end;
1024         return 1;
1025 }
1026
1027 /*
1028  * Mark extent in the range start - end as written.
1029  *
1030  * This changes extent type from 'pre-allocated' to 'regular'. If only
1031  * part of extent is marked as written, the extent will be split into
1032  * two or three.
1033  */
1034 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1035                               struct inode *inode, u64 start, u64 end)
1036 {
1037         struct btrfs_root *root = BTRFS_I(inode)->root;
1038         struct extent_buffer *leaf;
1039         struct btrfs_path *path;
1040         struct btrfs_file_extent_item *fi;
1041         struct btrfs_key key;
1042         struct btrfs_key new_key;
1043         u64 bytenr;
1044         u64 num_bytes;
1045         u64 extent_end;
1046         u64 orig_offset;
1047         u64 other_start;
1048         u64 other_end;
1049         u64 split;
1050         int del_nr = 0;
1051         int del_slot = 0;
1052         int recow;
1053         int ret;
1054         u64 ino = btrfs_ino(inode);
1055
1056         path = btrfs_alloc_path();
1057         if (!path)
1058                 return -ENOMEM;
1059 again:
1060         recow = 0;
1061         split = start;
1062         key.objectid = ino;
1063         key.type = BTRFS_EXTENT_DATA_KEY;
1064         key.offset = split;
1065
1066         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1067         if (ret < 0)
1068                 goto out;
1069         if (ret > 0 && path->slots[0] > 0)
1070                 path->slots[0]--;
1071
1072         leaf = path->nodes[0];
1073         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1074         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1075         fi = btrfs_item_ptr(leaf, path->slots[0],
1076                             struct btrfs_file_extent_item);
1077         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1078                BTRFS_FILE_EXTENT_PREALLOC);
1079         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1080         BUG_ON(key.offset > start || extent_end < end);
1081
1082         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1083         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1084         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1085         memcpy(&new_key, &key, sizeof(new_key));
1086
1087         if (start == key.offset && end < extent_end) {
1088                 other_start = 0;
1089                 other_end = start;
1090                 if (extent_mergeable(leaf, path->slots[0] - 1,
1091                                      ino, bytenr, orig_offset,
1092                                      &other_start, &other_end)) {
1093                         new_key.offset = end;
1094                         btrfs_set_item_key_safe(root, path, &new_key);
1095                         fi = btrfs_item_ptr(leaf, path->slots[0],
1096                                             struct btrfs_file_extent_item);
1097                         btrfs_set_file_extent_generation(leaf, fi,
1098                                                          trans->transid);
1099                         btrfs_set_file_extent_num_bytes(leaf, fi,
1100                                                         extent_end - end);
1101                         btrfs_set_file_extent_offset(leaf, fi,
1102                                                      end - orig_offset);
1103                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1104                                             struct btrfs_file_extent_item);
1105                         btrfs_set_file_extent_generation(leaf, fi,
1106                                                          trans->transid);
1107                         btrfs_set_file_extent_num_bytes(leaf, fi,
1108                                                         end - other_start);
1109                         btrfs_mark_buffer_dirty(leaf);
1110                         goto out;
1111                 }
1112         }
1113
1114         if (start > key.offset && end == extent_end) {
1115                 other_start = end;
1116                 other_end = 0;
1117                 if (extent_mergeable(leaf, path->slots[0] + 1,
1118                                      ino, bytenr, orig_offset,
1119                                      &other_start, &other_end)) {
1120                         fi = btrfs_item_ptr(leaf, path->slots[0],
1121                                             struct btrfs_file_extent_item);
1122                         btrfs_set_file_extent_num_bytes(leaf, fi,
1123                                                         start - key.offset);
1124                         btrfs_set_file_extent_generation(leaf, fi,
1125                                                          trans->transid);
1126                         path->slots[0]++;
1127                         new_key.offset = start;
1128                         btrfs_set_item_key_safe(root, path, &new_key);
1129
1130                         fi = btrfs_item_ptr(leaf, path->slots[0],
1131                                             struct btrfs_file_extent_item);
1132                         btrfs_set_file_extent_generation(leaf, fi,
1133                                                          trans->transid);
1134                         btrfs_set_file_extent_num_bytes(leaf, fi,
1135                                                         other_end - start);
1136                         btrfs_set_file_extent_offset(leaf, fi,
1137                                                      start - orig_offset);
1138                         btrfs_mark_buffer_dirty(leaf);
1139                         goto out;
1140                 }
1141         }
1142
1143         while (start > key.offset || end < extent_end) {
1144                 if (key.offset == start)
1145                         split = end;
1146
1147                 new_key.offset = split;
1148                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1149                 if (ret == -EAGAIN) {
1150                         btrfs_release_path(path);
1151                         goto again;
1152                 }
1153                 if (ret < 0) {
1154                         btrfs_abort_transaction(trans, root, ret);
1155                         goto out;
1156                 }
1157
1158                 leaf = path->nodes[0];
1159                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1160                                     struct btrfs_file_extent_item);
1161                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1162                 btrfs_set_file_extent_num_bytes(leaf, fi,
1163                                                 split - key.offset);
1164
1165                 fi = btrfs_item_ptr(leaf, path->slots[0],
1166                                     struct btrfs_file_extent_item);
1167
1168                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1169                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1170                 btrfs_set_file_extent_num_bytes(leaf, fi,
1171                                                 extent_end - split);
1172                 btrfs_mark_buffer_dirty(leaf);
1173
1174                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1175                                            root->root_key.objectid,
1176                                            ino, orig_offset, 0);
1177                 BUG_ON(ret); /* -ENOMEM */
1178
1179                 if (split == start) {
1180                         key.offset = start;
1181                 } else {
1182                         BUG_ON(start != key.offset);
1183                         path->slots[0]--;
1184                         extent_end = end;
1185                 }
1186                 recow = 1;
1187         }
1188
1189         other_start = end;
1190         other_end = 0;
1191         if (extent_mergeable(leaf, path->slots[0] + 1,
1192                              ino, bytenr, orig_offset,
1193                              &other_start, &other_end)) {
1194                 if (recow) {
1195                         btrfs_release_path(path);
1196                         goto again;
1197                 }
1198                 extent_end = other_end;
1199                 del_slot = path->slots[0] + 1;
1200                 del_nr++;
1201                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1202                                         0, root->root_key.objectid,
1203                                         ino, orig_offset, 0);
1204                 BUG_ON(ret); /* -ENOMEM */
1205         }
1206         other_start = 0;
1207         other_end = start;
1208         if (extent_mergeable(leaf, path->slots[0] - 1,
1209                              ino, bytenr, orig_offset,
1210                              &other_start, &other_end)) {
1211                 if (recow) {
1212                         btrfs_release_path(path);
1213                         goto again;
1214                 }
1215                 key.offset = other_start;
1216                 del_slot = path->slots[0];
1217                 del_nr++;
1218                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1219                                         0, root->root_key.objectid,
1220                                         ino, orig_offset, 0);
1221                 BUG_ON(ret); /* -ENOMEM */
1222         }
1223         if (del_nr == 0) {
1224                 fi = btrfs_item_ptr(leaf, path->slots[0],
1225                            struct btrfs_file_extent_item);
1226                 btrfs_set_file_extent_type(leaf, fi,
1227                                            BTRFS_FILE_EXTENT_REG);
1228                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1229                 btrfs_mark_buffer_dirty(leaf);
1230         } else {
1231                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1232                            struct btrfs_file_extent_item);
1233                 btrfs_set_file_extent_type(leaf, fi,
1234                                            BTRFS_FILE_EXTENT_REG);
1235                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1236                 btrfs_set_file_extent_num_bytes(leaf, fi,
1237                                                 extent_end - key.offset);
1238                 btrfs_mark_buffer_dirty(leaf);
1239
1240                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1241                 if (ret < 0) {
1242                         btrfs_abort_transaction(trans, root, ret);
1243                         goto out;
1244                 }
1245         }
1246 out:
1247         btrfs_free_path(path);
1248         return 0;
1249 }
1250
1251 /*
1252  * on error we return an unlocked page and the error value
1253  * on success we return a locked page and 0
1254  */
1255 static int prepare_uptodate_page(struct page *page, u64 pos,
1256                                  bool force_uptodate)
1257 {
1258         int ret = 0;
1259
1260         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1261             !PageUptodate(page)) {
1262                 ret = btrfs_readpage(NULL, page);
1263                 if (ret)
1264                         return ret;
1265                 lock_page(page);
1266                 if (!PageUptodate(page)) {
1267                         unlock_page(page);
1268                         return -EIO;
1269                 }
1270         }
1271         return 0;
1272 }
1273
1274 /*
1275  * this just gets pages into the page cache and locks them down.
1276  */
1277 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1278                                   size_t num_pages, loff_t pos,
1279                                   size_t write_bytes, bool force_uptodate)
1280 {
1281         int i;
1282         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1283         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1284         int err = 0;
1285         int faili;
1286
1287         for (i = 0; i < num_pages; i++) {
1288                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1289                                                mask | __GFP_WRITE);
1290                 if (!pages[i]) {
1291                         faili = i - 1;
1292                         err = -ENOMEM;
1293                         goto fail;
1294                 }
1295
1296                 if (i == 0)
1297                         err = prepare_uptodate_page(pages[i], pos,
1298                                                     force_uptodate);
1299                 if (i == num_pages - 1)
1300                         err = prepare_uptodate_page(pages[i],
1301                                                     pos + write_bytes, false);
1302                 if (err) {
1303                         page_cache_release(pages[i]);
1304                         faili = i - 1;
1305                         goto fail;
1306                 }
1307                 wait_on_page_writeback(pages[i]);
1308         }
1309
1310         return 0;
1311 fail:
1312         while (faili >= 0) {
1313                 unlock_page(pages[faili]);
1314                 page_cache_release(pages[faili]);
1315                 faili--;
1316         }
1317         return err;
1318
1319 }
1320
1321 /*
1322  * This function locks the extent and properly waits for data=ordered extents
1323  * to finish before allowing the pages to be modified if need.
1324  *
1325  * The return value:
1326  * 1 - the extent is locked
1327  * 0 - the extent is not locked, and everything is OK
1328  * -EAGAIN - need re-prepare the pages
1329  * the other < 0 number - Something wrong happens
1330  */
1331 static noinline int
1332 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1333                                 size_t num_pages, loff_t pos,
1334                                 u64 *lockstart, u64 *lockend,
1335                                 struct extent_state **cached_state)
1336 {
1337         u64 start_pos;
1338         u64 last_pos;
1339         int i;
1340         int ret = 0;
1341
1342         start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1343         last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1344
1345         if (start_pos < inode->i_size) {
1346                 struct btrfs_ordered_extent *ordered;
1347                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1348                                  start_pos, last_pos, 0, cached_state);
1349                 ordered = btrfs_lookup_first_ordered_extent(inode, last_pos);
1350                 if (ordered &&
1351                     ordered->file_offset + ordered->len > start_pos &&
1352                     ordered->file_offset <= last_pos) {
1353                         btrfs_put_ordered_extent(ordered);
1354                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1355                                              start_pos, last_pos,
1356                                              cached_state, GFP_NOFS);
1357                         for (i = 0; i < num_pages; i++) {
1358                                 unlock_page(pages[i]);
1359                                 page_cache_release(pages[i]);
1360                         }
1361                         ret = btrfs_wait_ordered_range(inode, start_pos,
1362                                                 last_pos - start_pos + 1);
1363                         if (ret)
1364                                 return ret;
1365                         else
1366                                 return -EAGAIN;
1367                 }
1368                 if (ordered)
1369                         btrfs_put_ordered_extent(ordered);
1370
1371                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1372                                   last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1373                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1374                                   0, 0, cached_state, GFP_NOFS);
1375                 *lockstart = start_pos;
1376                 *lockend = last_pos;
1377                 ret = 1;
1378         }
1379
1380         for (i = 0; i < num_pages; i++) {
1381                 if (clear_page_dirty_for_io(pages[i]))
1382                         account_page_redirty(pages[i]);
1383                 set_page_extent_mapped(pages[i]);
1384                 WARN_ON(!PageLocked(pages[i]));
1385         }
1386
1387         return ret;
1388 }
1389
1390 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1391                                     size_t *write_bytes)
1392 {
1393         struct btrfs_root *root = BTRFS_I(inode)->root;
1394         struct btrfs_ordered_extent *ordered;
1395         u64 lockstart, lockend;
1396         u64 num_bytes;
1397         int ret;
1398
1399         lockstart = round_down(pos, root->sectorsize);
1400         lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1401
1402         while (1) {
1403                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1404                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1405                                                      lockend - lockstart + 1);
1406                 if (!ordered) {
1407                         break;
1408                 }
1409                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1410                 btrfs_start_ordered_extent(inode, ordered, 1);
1411                 btrfs_put_ordered_extent(ordered);
1412         }
1413
1414         num_bytes = lockend - lockstart + 1;
1415         ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1416         if (ret <= 0) {
1417                 ret = 0;
1418         } else {
1419                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1420                                  EXTENT_DIRTY | EXTENT_DELALLOC |
1421                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1422                                  NULL, GFP_NOFS);
1423                 *write_bytes = min_t(size_t, *write_bytes, num_bytes);
1424         }
1425
1426         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1427
1428         return ret;
1429 }
1430
1431 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1432                                                struct iov_iter *i,
1433                                                loff_t pos)
1434 {
1435         struct inode *inode = file_inode(file);
1436         struct btrfs_root *root = BTRFS_I(inode)->root;
1437         struct page **pages = NULL;
1438         struct extent_state *cached_state = NULL;
1439         u64 release_bytes = 0;
1440         u64 lockstart;
1441         u64 lockend;
1442         unsigned long first_index;
1443         size_t num_written = 0;
1444         int nrptrs;
1445         int ret = 0;
1446         bool only_release_metadata = false;
1447         bool force_page_uptodate = false;
1448         bool need_unlock;
1449
1450         nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1451                      PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1452                      (sizeof(struct page *)));
1453         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1454         nrptrs = max(nrptrs, 8);
1455         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1456         if (!pages)
1457                 return -ENOMEM;
1458
1459         first_index = pos >> PAGE_CACHE_SHIFT;
1460
1461         while (iov_iter_count(i) > 0) {
1462                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1463                 size_t write_bytes = min(iov_iter_count(i),
1464                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1465                                          offset);
1466                 size_t num_pages = (write_bytes + offset +
1467                                     PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1468                 size_t reserve_bytes;
1469                 size_t dirty_pages;
1470                 size_t copied;
1471
1472                 WARN_ON(num_pages > nrptrs);
1473
1474                 /*
1475                  * Fault pages before locking them in prepare_pages
1476                  * to avoid recursive lock
1477                  */
1478                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1479                         ret = -EFAULT;
1480                         break;
1481                 }
1482
1483                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1484                 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1485                 if (ret == -ENOSPC &&
1486                     (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1487                                               BTRFS_INODE_PREALLOC))) {
1488                         ret = check_can_nocow(inode, pos, &write_bytes);
1489                         if (ret > 0) {
1490                                 only_release_metadata = true;
1491                                 /*
1492                                  * our prealloc extent may be smaller than
1493                                  * write_bytes, so scale down.
1494                                  */
1495                                 num_pages = (write_bytes + offset +
1496                                              PAGE_CACHE_SIZE - 1) >>
1497                                         PAGE_CACHE_SHIFT;
1498                                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1499                                 ret = 0;
1500                         } else {
1501                                 ret = -ENOSPC;
1502                         }
1503                 }
1504
1505                 if (ret)
1506                         break;
1507
1508                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1509                 if (ret) {
1510                         if (!only_release_metadata)
1511                                 btrfs_free_reserved_data_space(inode,
1512                                                                reserve_bytes);
1513                         break;
1514                 }
1515
1516                 release_bytes = reserve_bytes;
1517                 need_unlock = false;
1518 again:
1519                 /*
1520                  * This is going to setup the pages array with the number of
1521                  * pages we want, so we don't really need to worry about the
1522                  * contents of pages from loop to loop
1523                  */
1524                 ret = prepare_pages(inode, pages, num_pages,
1525                                     pos, write_bytes,
1526                                     force_page_uptodate);
1527                 if (ret)
1528                         break;
1529
1530                 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1531                                                       pos, &lockstart, &lockend,
1532                                                       &cached_state);
1533                 if (ret < 0) {
1534                         if (ret == -EAGAIN)
1535                                 goto again;
1536                         break;
1537                 } else if (ret > 0) {
1538                         need_unlock = true;
1539                         ret = 0;
1540                 }
1541
1542                 copied = btrfs_copy_from_user(pos, num_pages,
1543                                            write_bytes, pages, i);
1544
1545                 /*
1546                  * if we have trouble faulting in the pages, fall
1547                  * back to one page at a time
1548                  */
1549                 if (copied < write_bytes)
1550                         nrptrs = 1;
1551
1552                 if (copied == 0) {
1553                         force_page_uptodate = true;
1554                         dirty_pages = 0;
1555                 } else {
1556                         force_page_uptodate = false;
1557                         dirty_pages = (copied + offset +
1558                                        PAGE_CACHE_SIZE - 1) >>
1559                                        PAGE_CACHE_SHIFT;
1560                 }
1561
1562                 /*
1563                  * If we had a short copy we need to release the excess delaloc
1564                  * bytes we reserved.  We need to increment outstanding_extents
1565                  * because btrfs_delalloc_release_space will decrement it, but
1566                  * we still have an outstanding extent for the chunk we actually
1567                  * managed to copy.
1568                  */
1569                 if (num_pages > dirty_pages) {
1570                         release_bytes = (num_pages - dirty_pages) <<
1571                                 PAGE_CACHE_SHIFT;
1572                         if (copied > 0) {
1573                                 spin_lock(&BTRFS_I(inode)->lock);
1574                                 BTRFS_I(inode)->outstanding_extents++;
1575                                 spin_unlock(&BTRFS_I(inode)->lock);
1576                         }
1577                         if (only_release_metadata)
1578                                 btrfs_delalloc_release_metadata(inode,
1579                                                                 release_bytes);
1580                         else
1581                                 btrfs_delalloc_release_space(inode,
1582                                                              release_bytes);
1583                 }
1584
1585                 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1586
1587                 if (copied > 0)
1588                         ret = btrfs_dirty_pages(root, inode, pages,
1589                                                 dirty_pages, pos, copied,
1590                                                 NULL);
1591                 if (need_unlock)
1592                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1593                                              lockstart, lockend, &cached_state,
1594                                              GFP_NOFS);
1595                 if (ret) {
1596                         btrfs_drop_pages(pages, num_pages);
1597                         break;
1598                 }
1599
1600                 release_bytes = 0;
1601                 if (only_release_metadata && copied > 0) {
1602                         u64 lockstart = round_down(pos, root->sectorsize);
1603                         u64 lockend = lockstart +
1604                                 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1605
1606                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1607                                        lockend, EXTENT_NORESERVE, NULL,
1608                                        NULL, GFP_NOFS);
1609                         only_release_metadata = false;
1610                 }
1611
1612                 btrfs_drop_pages(pages, num_pages);
1613
1614                 cond_resched();
1615
1616                 balance_dirty_pages_ratelimited(inode->i_mapping);
1617                 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1618                         btrfs_btree_balance_dirty(root);
1619
1620                 pos += copied;
1621                 num_written += copied;
1622         }
1623
1624         kfree(pages);
1625
1626         if (release_bytes) {
1627                 if (only_release_metadata)
1628                         btrfs_delalloc_release_metadata(inode, release_bytes);
1629                 else
1630                         btrfs_delalloc_release_space(inode, release_bytes);
1631         }
1632
1633         return num_written ? num_written : ret;
1634 }
1635
1636 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1637                                     const struct iovec *iov,
1638                                     unsigned long nr_segs, loff_t pos,
1639                                     loff_t *ppos, size_t count, size_t ocount)
1640 {
1641         struct file *file = iocb->ki_filp;
1642         struct iov_iter i;
1643         ssize_t written;
1644         ssize_t written_buffered;
1645         loff_t endbyte;
1646         int err;
1647
1648         written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1649                                             count, ocount);
1650
1651         if (written < 0 || written == count)
1652                 return written;
1653
1654         pos += written;
1655         count -= written;
1656         iov_iter_init(&i, iov, nr_segs, count, written);
1657         written_buffered = __btrfs_buffered_write(file, &i, pos);
1658         if (written_buffered < 0) {
1659                 err = written_buffered;
1660                 goto out;
1661         }
1662         endbyte = pos + written_buffered - 1;
1663         err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1664         if (err)
1665                 goto out;
1666         written += written_buffered;
1667         *ppos = pos + written_buffered;
1668         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1669                                  endbyte >> PAGE_CACHE_SHIFT);
1670 out:
1671         return written ? written : err;
1672 }
1673
1674 static void update_time_for_write(struct inode *inode)
1675 {
1676         struct timespec now;
1677
1678         if (IS_NOCMTIME(inode))
1679                 return;
1680
1681         now = current_fs_time(inode->i_sb);
1682         if (!timespec_equal(&inode->i_mtime, &now))
1683                 inode->i_mtime = now;
1684
1685         if (!timespec_equal(&inode->i_ctime, &now))
1686                 inode->i_ctime = now;
1687
1688         if (IS_I_VERSION(inode))
1689                 inode_inc_iversion(inode);
1690 }
1691
1692 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1693                                     const struct iovec *iov,
1694                                     unsigned long nr_segs, loff_t pos)
1695 {
1696         struct file *file = iocb->ki_filp;
1697         struct inode *inode = file_inode(file);
1698         struct btrfs_root *root = BTRFS_I(inode)->root;
1699         loff_t *ppos = &iocb->ki_pos;
1700         u64 start_pos;
1701         ssize_t num_written = 0;
1702         ssize_t err = 0;
1703         size_t count, ocount;
1704         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1705
1706         mutex_lock(&inode->i_mutex);
1707
1708         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1709         if (err) {
1710                 mutex_unlock(&inode->i_mutex);
1711                 goto out;
1712         }
1713         count = ocount;
1714
1715         current->backing_dev_info = inode->i_mapping->backing_dev_info;
1716         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1717         if (err) {
1718                 mutex_unlock(&inode->i_mutex);
1719                 goto out;
1720         }
1721
1722         if (count == 0) {
1723                 mutex_unlock(&inode->i_mutex);
1724                 goto out;
1725         }
1726
1727         err = file_remove_suid(file);
1728         if (err) {
1729                 mutex_unlock(&inode->i_mutex);
1730                 goto out;
1731         }
1732
1733         /*
1734          * If BTRFS flips readonly due to some impossible error
1735          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1736          * although we have opened a file as writable, we have
1737          * to stop this write operation to ensure FS consistency.
1738          */
1739         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1740                 mutex_unlock(&inode->i_mutex);
1741                 err = -EROFS;
1742                 goto out;
1743         }
1744
1745         /*
1746          * We reserve space for updating the inode when we reserve space for the
1747          * extent we are going to write, so we will enospc out there.  We don't
1748          * need to start yet another transaction to update the inode as we will
1749          * update the inode when we finish writing whatever data we write.
1750          */
1751         update_time_for_write(inode);
1752
1753         start_pos = round_down(pos, root->sectorsize);
1754         if (start_pos > i_size_read(inode)) {
1755                 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1756                 if (err) {
1757                         mutex_unlock(&inode->i_mutex);
1758                         goto out;
1759                 }
1760         }
1761
1762         if (sync)
1763                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1764
1765         if (unlikely(file->f_flags & O_DIRECT)) {
1766                 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1767                                                    pos, ppos, count, ocount);
1768         } else {
1769                 struct iov_iter i;
1770
1771                 iov_iter_init(&i, iov, nr_segs, count, num_written);
1772
1773                 num_written = __btrfs_buffered_write(file, &i, pos);
1774                 if (num_written > 0)
1775                         *ppos = pos + num_written;
1776         }
1777
1778         mutex_unlock(&inode->i_mutex);
1779
1780         /*
1781          * we want to make sure fsync finds this change
1782          * but we haven't joined a transaction running right now.
1783          *
1784          * Later on, someone is sure to update the inode and get the
1785          * real transid recorded.
1786          *
1787          * We set last_trans now to the fs_info generation + 1,
1788          * this will either be one more than the running transaction
1789          * or the generation used for the next transaction if there isn't
1790          * one running right now.
1791          *
1792          * We also have to set last_sub_trans to the current log transid,
1793          * otherwise subsequent syncs to a file that's been synced in this
1794          * transaction will appear to have already occured.
1795          */
1796         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1797         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1798         if (num_written > 0) {
1799                 err = generic_write_sync(file, pos, num_written);
1800                 if (err < 0 && num_written > 0)
1801                         num_written = err;
1802         }
1803
1804         if (sync)
1805                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1806 out:
1807         current->backing_dev_info = NULL;
1808         return num_written ? num_written : err;
1809 }
1810
1811 int btrfs_release_file(struct inode *inode, struct file *filp)
1812 {
1813         /*
1814          * ordered_data_close is set by settattr when we are about to truncate
1815          * a file from a non-zero size to a zero size.  This tries to
1816          * flush down new bytes that may have been written if the
1817          * application were using truncate to replace a file in place.
1818          */
1819         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1820                                &BTRFS_I(inode)->runtime_flags)) {
1821                 struct btrfs_trans_handle *trans;
1822                 struct btrfs_root *root = BTRFS_I(inode)->root;
1823
1824                 /*
1825                  * We need to block on a committing transaction to keep us from
1826                  * throwing a ordered operation on to the list and causing
1827                  * something like sync to deadlock trying to flush out this
1828                  * inode.
1829                  */
1830                 trans = btrfs_start_transaction(root, 0);
1831                 if (IS_ERR(trans))
1832                         return PTR_ERR(trans);
1833                 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1834                 btrfs_end_transaction(trans, root);
1835                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1836                         filemap_flush(inode->i_mapping);
1837         }
1838         if (filp->private_data)
1839                 btrfs_ioctl_trans_end(filp);
1840         return 0;
1841 }
1842
1843 /*
1844  * fsync call for both files and directories.  This logs the inode into
1845  * the tree log instead of forcing full commits whenever possible.
1846  *
1847  * It needs to call filemap_fdatawait so that all ordered extent updates are
1848  * in the metadata btree are up to date for copying to the log.
1849  *
1850  * It drops the inode mutex before doing the tree log commit.  This is an
1851  * important optimization for directories because holding the mutex prevents
1852  * new operations on the dir while we write to disk.
1853  */
1854 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1855 {
1856         struct dentry *dentry = file->f_path.dentry;
1857         struct inode *inode = dentry->d_inode;
1858         struct btrfs_root *root = BTRFS_I(inode)->root;
1859         int ret = 0;
1860         struct btrfs_trans_handle *trans;
1861         bool full_sync = 0;
1862
1863         trace_btrfs_sync_file(file, datasync);
1864
1865         /*
1866          * We write the dirty pages in the range and wait until they complete
1867          * out of the ->i_mutex. If so, we can flush the dirty pages by
1868          * multi-task, and make the performance up.  See
1869          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1870          */
1871         atomic_inc(&BTRFS_I(inode)->sync_writers);
1872         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1873         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1874                              &BTRFS_I(inode)->runtime_flags))
1875                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1876         atomic_dec(&BTRFS_I(inode)->sync_writers);
1877         if (ret)
1878                 return ret;
1879
1880         mutex_lock(&inode->i_mutex);
1881
1882         /*
1883          * We flush the dirty pages again to avoid some dirty pages in the
1884          * range being left.
1885          */
1886         atomic_inc(&root->log_batch);
1887         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1888                              &BTRFS_I(inode)->runtime_flags);
1889         if (full_sync) {
1890                 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1891                 if (ret) {
1892                         mutex_unlock(&inode->i_mutex);
1893                         goto out;
1894                 }
1895         }
1896         atomic_inc(&root->log_batch);
1897
1898         /*
1899          * check the transaction that last modified this inode
1900          * and see if its already been committed
1901          */
1902         if (!BTRFS_I(inode)->last_trans) {
1903                 mutex_unlock(&inode->i_mutex);
1904                 goto out;
1905         }
1906
1907         /*
1908          * if the last transaction that changed this file was before
1909          * the current transaction, we can bail out now without any
1910          * syncing
1911          */
1912         smp_mb();
1913         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1914             BTRFS_I(inode)->last_trans <=
1915             root->fs_info->last_trans_committed) {
1916                 BTRFS_I(inode)->last_trans = 0;
1917
1918                 /*
1919                  * We'v had everything committed since the last time we were
1920                  * modified so clear this flag in case it was set for whatever
1921                  * reason, it's no longer relevant.
1922                  */
1923                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1924                           &BTRFS_I(inode)->runtime_flags);
1925                 mutex_unlock(&inode->i_mutex);
1926                 goto out;
1927         }
1928
1929         /*
1930          * ok we haven't committed the transaction yet, lets do a commit
1931          */
1932         if (file->private_data)
1933                 btrfs_ioctl_trans_end(file);
1934
1935         /*
1936          * We use start here because we will need to wait on the IO to complete
1937          * in btrfs_sync_log, which could require joining a transaction (for
1938          * example checking cross references in the nocow path).  If we use join
1939          * here we could get into a situation where we're waiting on IO to
1940          * happen that is blocked on a transaction trying to commit.  With start
1941          * we inc the extwriter counter, so we wait for all extwriters to exit
1942          * before we start blocking join'ers.  This comment is to keep somebody
1943          * from thinking they are super smart and changing this to
1944          * btrfs_join_transaction *cough*Josef*cough*.
1945          */
1946         trans = btrfs_start_transaction(root, 0);
1947         if (IS_ERR(trans)) {
1948                 ret = PTR_ERR(trans);
1949                 mutex_unlock(&inode->i_mutex);
1950                 goto out;
1951         }
1952         trans->sync = true;
1953
1954         ret = btrfs_log_dentry_safe(trans, root, dentry);
1955         if (ret < 0) {
1956                 /* Fallthrough and commit/free transaction. */
1957                 ret = 1;
1958         }
1959
1960         /* we've logged all the items and now have a consistent
1961          * version of the file in the log.  It is possible that
1962          * someone will come in and modify the file, but that's
1963          * fine because the log is consistent on disk, and we
1964          * have references to all of the file's extents
1965          *
1966          * It is possible that someone will come in and log the
1967          * file again, but that will end up using the synchronization
1968          * inside btrfs_sync_log to keep things safe.
1969          */
1970         mutex_unlock(&inode->i_mutex);
1971
1972         if (ret != BTRFS_NO_LOG_SYNC) {
1973                 if (!ret) {
1974                         ret = btrfs_sync_log(trans, root);
1975                         if (!ret) {
1976                                 ret = btrfs_end_transaction(trans, root);
1977                                 goto out;
1978                         }
1979                 }
1980                 if (!full_sync) {
1981                         ret = btrfs_wait_ordered_range(inode, start,
1982                                                        end - start + 1);
1983                         if (ret)
1984                                 goto out;
1985                 }
1986                 ret = btrfs_commit_transaction(trans, root);
1987         } else {
1988                 ret = btrfs_end_transaction(trans, root);
1989         }
1990 out:
1991         return ret > 0 ? -EIO : ret;
1992 }
1993
1994 static const struct vm_operations_struct btrfs_file_vm_ops = {
1995         .fault          = filemap_fault,
1996         .page_mkwrite   = btrfs_page_mkwrite,
1997         .remap_pages    = generic_file_remap_pages,
1998 };
1999
2000 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2001 {
2002         struct address_space *mapping = filp->f_mapping;
2003
2004         if (!mapping->a_ops->readpage)
2005                 return -ENOEXEC;
2006
2007         file_accessed(filp);
2008         vma->vm_ops = &btrfs_file_vm_ops;
2009
2010         return 0;
2011 }
2012
2013 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2014                           int slot, u64 start, u64 end)
2015 {
2016         struct btrfs_file_extent_item *fi;
2017         struct btrfs_key key;
2018
2019         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2020                 return 0;
2021
2022         btrfs_item_key_to_cpu(leaf, &key, slot);
2023         if (key.objectid != btrfs_ino(inode) ||
2024             key.type != BTRFS_EXTENT_DATA_KEY)
2025                 return 0;
2026
2027         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2028
2029         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2030                 return 0;
2031
2032         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2033                 return 0;
2034
2035         if (key.offset == end)
2036                 return 1;
2037         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2038                 return 1;
2039         return 0;
2040 }
2041
2042 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2043                       struct btrfs_path *path, u64 offset, u64 end)
2044 {
2045         struct btrfs_root *root = BTRFS_I(inode)->root;
2046         struct extent_buffer *leaf;
2047         struct btrfs_file_extent_item *fi;
2048         struct extent_map *hole_em;
2049         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2050         struct btrfs_key key;
2051         int ret;
2052
2053         if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2054                 goto out;
2055
2056         key.objectid = btrfs_ino(inode);
2057         key.type = BTRFS_EXTENT_DATA_KEY;
2058         key.offset = offset;
2059
2060         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2061         if (ret < 0)
2062                 return ret;
2063         BUG_ON(!ret);
2064
2065         leaf = path->nodes[0];
2066         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2067                 u64 num_bytes;
2068
2069                 path->slots[0]--;
2070                 fi = btrfs_item_ptr(leaf, path->slots[0],
2071                                     struct btrfs_file_extent_item);
2072                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2073                         end - offset;
2074                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2075                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2076                 btrfs_set_file_extent_offset(leaf, fi, 0);
2077                 btrfs_mark_buffer_dirty(leaf);
2078                 goto out;
2079         }
2080
2081         if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2082                 u64 num_bytes;
2083
2084                 path->slots[0]++;
2085                 key.offset = offset;
2086                 btrfs_set_item_key_safe(root, path, &key);
2087                 fi = btrfs_item_ptr(leaf, path->slots[0],
2088                                     struct btrfs_file_extent_item);
2089                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2090                         offset;
2091                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2092                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2093                 btrfs_set_file_extent_offset(leaf, fi, 0);
2094                 btrfs_mark_buffer_dirty(leaf);
2095                 goto out;
2096         }
2097         btrfs_release_path(path);
2098
2099         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2100                                        0, 0, end - offset, 0, end - offset,
2101                                        0, 0, 0);
2102         if (ret)
2103                 return ret;
2104
2105 out:
2106         btrfs_release_path(path);
2107
2108         hole_em = alloc_extent_map();
2109         if (!hole_em) {
2110                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2111                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2112                         &BTRFS_I(inode)->runtime_flags);
2113         } else {
2114                 hole_em->start = offset;
2115                 hole_em->len = end - offset;
2116                 hole_em->ram_bytes = hole_em->len;
2117                 hole_em->orig_start = offset;
2118
2119                 hole_em->block_start = EXTENT_MAP_HOLE;
2120                 hole_em->block_len = 0;
2121                 hole_em->orig_block_len = 0;
2122                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2123                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2124                 hole_em->generation = trans->transid;
2125
2126                 do {
2127                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2128                         write_lock(&em_tree->lock);
2129                         ret = add_extent_mapping(em_tree, hole_em, 1);
2130                         write_unlock(&em_tree->lock);
2131                 } while (ret == -EEXIST);
2132                 free_extent_map(hole_em);
2133                 if (ret)
2134                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2135                                 &BTRFS_I(inode)->runtime_flags);
2136         }
2137
2138         return 0;
2139 }
2140
2141 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2142 {
2143         struct btrfs_root *root = BTRFS_I(inode)->root;
2144         struct extent_state *cached_state = NULL;
2145         struct btrfs_path *path;
2146         struct btrfs_block_rsv *rsv;
2147         struct btrfs_trans_handle *trans;
2148         u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2149         u64 lockend = round_down(offset + len,
2150                                  BTRFS_I(inode)->root->sectorsize) - 1;
2151         u64 cur_offset = lockstart;
2152         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2153         u64 drop_end;
2154         int ret = 0;
2155         int err = 0;
2156         int rsv_count;
2157         bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2158                           ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2159         bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2160
2161         ret = btrfs_wait_ordered_range(inode, offset, len);
2162         if (ret)
2163                 return ret;
2164
2165         mutex_lock(&inode->i_mutex);
2166         /*
2167          * We needn't truncate any page which is beyond the end of the file
2168          * because we are sure there is no data there.
2169          */
2170         /*
2171          * Only do this if we are in the same page and we aren't doing the
2172          * entire page.
2173          */
2174         if (same_page && len < PAGE_CACHE_SIZE) {
2175                 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2176                         ret = btrfs_truncate_page(inode, offset, len, 0);
2177                 mutex_unlock(&inode->i_mutex);
2178                 return ret;
2179         }
2180
2181         /* zero back part of the first page */
2182         if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2183                 ret = btrfs_truncate_page(inode, offset, 0, 0);
2184                 if (ret) {
2185                         mutex_unlock(&inode->i_mutex);
2186                         return ret;
2187                 }
2188         }
2189
2190         /* zero the front end of the last page */
2191         if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2192                 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2193                 if (ret) {
2194                         mutex_unlock(&inode->i_mutex);
2195                         return ret;
2196                 }
2197         }
2198
2199         if (lockend < lockstart) {
2200                 mutex_unlock(&inode->i_mutex);
2201                 return 0;
2202         }
2203
2204         while (1) {
2205                 struct btrfs_ordered_extent *ordered;
2206
2207                 truncate_pagecache_range(inode, lockstart, lockend);
2208
2209                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2210                                  0, &cached_state);
2211                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2212
2213                 /*
2214                  * We need to make sure we have no ordered extents in this range
2215                  * and nobody raced in and read a page in this range, if we did
2216                  * we need to try again.
2217                  */
2218                 if ((!ordered ||
2219                     (ordered->file_offset + ordered->len <= lockstart ||
2220                      ordered->file_offset > lockend)) &&
2221                      !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2222                                      lockend, EXTENT_UPTODATE, 0,
2223                                      cached_state)) {
2224                         if (ordered)
2225                                 btrfs_put_ordered_extent(ordered);
2226                         break;
2227                 }
2228                 if (ordered)
2229                         btrfs_put_ordered_extent(ordered);
2230                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2231                                      lockend, &cached_state, GFP_NOFS);
2232                 ret = btrfs_wait_ordered_range(inode, lockstart,
2233                                                lockend - lockstart + 1);
2234                 if (ret) {
2235                         mutex_unlock(&inode->i_mutex);
2236                         return ret;
2237                 }
2238         }
2239
2240         path = btrfs_alloc_path();
2241         if (!path) {
2242                 ret = -ENOMEM;
2243                 goto out;
2244         }
2245
2246         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2247         if (!rsv) {
2248                 ret = -ENOMEM;
2249                 goto out_free;
2250         }
2251         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2252         rsv->failfast = 1;
2253
2254         /*
2255          * 1 - update the inode
2256          * 1 - removing the extents in the range
2257          * 1 - adding the hole extent if no_holes isn't set
2258          */
2259         rsv_count = no_holes ? 2 : 3;
2260         trans = btrfs_start_transaction(root, rsv_count);
2261         if (IS_ERR(trans)) {
2262                 err = PTR_ERR(trans);
2263                 goto out_free;
2264         }
2265
2266         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2267                                       min_size);
2268         BUG_ON(ret);
2269         trans->block_rsv = rsv;
2270
2271         while (cur_offset < lockend) {
2272                 ret = __btrfs_drop_extents(trans, root, inode, path,
2273                                            cur_offset, lockend + 1,
2274                                            &drop_end, 1, 0, 0, NULL);
2275                 if (ret != -ENOSPC)
2276                         break;
2277
2278                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2279
2280                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2281                 if (ret) {
2282                         err = ret;
2283                         break;
2284                 }
2285
2286                 cur_offset = drop_end;
2287
2288                 ret = btrfs_update_inode(trans, root, inode);
2289                 if (ret) {
2290                         err = ret;
2291                         break;
2292                 }
2293
2294                 btrfs_end_transaction(trans, root);
2295                 btrfs_btree_balance_dirty(root);
2296
2297                 trans = btrfs_start_transaction(root, rsv_count);
2298                 if (IS_ERR(trans)) {
2299                         ret = PTR_ERR(trans);
2300                         trans = NULL;
2301                         break;
2302                 }
2303
2304                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2305                                               rsv, min_size);
2306                 BUG_ON(ret);    /* shouldn't happen */
2307                 trans->block_rsv = rsv;
2308         }
2309
2310         if (ret) {
2311                 err = ret;
2312                 goto out_trans;
2313         }
2314
2315         trans->block_rsv = &root->fs_info->trans_block_rsv;
2316         ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2317         if (ret) {
2318                 err = ret;
2319                 goto out_trans;
2320         }
2321
2322 out_trans:
2323         if (!trans)
2324                 goto out_free;
2325
2326         inode_inc_iversion(inode);
2327         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2328
2329         trans->block_rsv = &root->fs_info->trans_block_rsv;
2330         ret = btrfs_update_inode(trans, root, inode);
2331         btrfs_end_transaction(trans, root);
2332         btrfs_btree_balance_dirty(root);
2333 out_free:
2334         btrfs_free_path(path);
2335         btrfs_free_block_rsv(root, rsv);
2336 out:
2337         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2338                              &cached_state, GFP_NOFS);
2339         mutex_unlock(&inode->i_mutex);
2340         if (ret && !err)
2341                 err = ret;
2342         return err;
2343 }
2344
2345 static long btrfs_fallocate(struct file *file, int mode,
2346                             loff_t offset, loff_t len)
2347 {
2348         struct inode *inode = file_inode(file);
2349         struct extent_state *cached_state = NULL;
2350         struct btrfs_root *root = BTRFS_I(inode)->root;
2351         u64 cur_offset;
2352         u64 last_byte;
2353         u64 alloc_start;
2354         u64 alloc_end;
2355         u64 alloc_hint = 0;
2356         u64 locked_end;
2357         struct extent_map *em;
2358         int blocksize = BTRFS_I(inode)->root->sectorsize;
2359         int ret;
2360
2361         alloc_start = round_down(offset, blocksize);
2362         alloc_end = round_up(offset + len, blocksize);
2363
2364         /* Make sure we aren't being give some crap mode */
2365         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2366                 return -EOPNOTSUPP;
2367
2368         if (mode & FALLOC_FL_PUNCH_HOLE)
2369                 return btrfs_punch_hole(inode, offset, len);
2370
2371         /*
2372          * Make sure we have enough space before we do the
2373          * allocation.
2374          */
2375         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2376         if (ret)
2377                 return ret;
2378         if (root->fs_info->quota_enabled) {
2379                 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2380                 if (ret)
2381                         goto out_reserve_fail;
2382         }
2383
2384         mutex_lock(&inode->i_mutex);
2385         ret = inode_newsize_ok(inode, alloc_end);
2386         if (ret)
2387                 goto out;
2388
2389         if (alloc_start > inode->i_size) {
2390                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2391                                         alloc_start);
2392                 if (ret)
2393                         goto out;
2394         } else {
2395                 /*
2396                  * If we are fallocating from the end of the file onward we
2397                  * need to zero out the end of the page if i_size lands in the
2398                  * middle of a page.
2399                  */
2400                 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2401                 if (ret)
2402                         goto out;
2403         }
2404
2405         /*
2406          * wait for ordered IO before we have any locks.  We'll loop again
2407          * below with the locks held.
2408          */
2409         ret = btrfs_wait_ordered_range(inode, alloc_start,
2410                                        alloc_end - alloc_start);
2411         if (ret)
2412                 goto out;
2413
2414         locked_end = alloc_end - 1;
2415         while (1) {
2416                 struct btrfs_ordered_extent *ordered;
2417
2418                 /* the extent lock is ordered inside the running
2419                  * transaction
2420                  */
2421                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2422                                  locked_end, 0, &cached_state);
2423                 ordered = btrfs_lookup_first_ordered_extent(inode,
2424                                                             alloc_end - 1);
2425                 if (ordered &&
2426                     ordered->file_offset + ordered->len > alloc_start &&
2427                     ordered->file_offset < alloc_end) {
2428                         btrfs_put_ordered_extent(ordered);
2429                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2430                                              alloc_start, locked_end,
2431                                              &cached_state, GFP_NOFS);
2432                         /*
2433                          * we can't wait on the range with the transaction
2434                          * running or with the extent lock held
2435                          */
2436                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2437                                                        alloc_end - alloc_start);
2438                         if (ret)
2439                                 goto out;
2440                 } else {
2441                         if (ordered)
2442                                 btrfs_put_ordered_extent(ordered);
2443                         break;
2444                 }
2445         }
2446
2447         cur_offset = alloc_start;
2448         while (1) {
2449                 u64 actual_end;
2450
2451                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2452                                       alloc_end - cur_offset, 0);
2453                 if (IS_ERR_OR_NULL(em)) {
2454                         if (!em)
2455                                 ret = -ENOMEM;
2456                         else
2457                                 ret = PTR_ERR(em);
2458                         break;
2459                 }
2460                 last_byte = min(extent_map_end(em), alloc_end);
2461                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2462                 last_byte = ALIGN(last_byte, blocksize);
2463
2464                 if (em->block_start == EXTENT_MAP_HOLE ||
2465                     (cur_offset >= inode->i_size &&
2466                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2467                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2468                                                         last_byte - cur_offset,
2469                                                         1 << inode->i_blkbits,
2470                                                         offset + len,
2471                                                         &alloc_hint);
2472
2473                         if (ret < 0) {
2474                                 free_extent_map(em);
2475                                 break;
2476                         }
2477                 } else if (actual_end > inode->i_size &&
2478                            !(mode & FALLOC_FL_KEEP_SIZE)) {
2479                         /*
2480                          * We didn't need to allocate any more space, but we
2481                          * still extended the size of the file so we need to
2482                          * update i_size.
2483                          */
2484                         inode->i_ctime = CURRENT_TIME;
2485                         i_size_write(inode, actual_end);
2486                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2487                 }
2488                 free_extent_map(em);
2489
2490                 cur_offset = last_byte;
2491                 if (cur_offset >= alloc_end) {
2492                         ret = 0;
2493                         break;
2494                 }
2495         }
2496         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2497                              &cached_state, GFP_NOFS);
2498 out:
2499         mutex_unlock(&inode->i_mutex);
2500         if (root->fs_info->quota_enabled)
2501                 btrfs_qgroup_free(root, alloc_end - alloc_start);
2502 out_reserve_fail:
2503         /* Let go of our reservation. */
2504         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2505         return ret;
2506 }
2507
2508 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2509 {
2510         struct btrfs_root *root = BTRFS_I(inode)->root;
2511         struct extent_map *em = NULL;
2512         struct extent_state *cached_state = NULL;
2513         u64 lockstart = *offset;
2514         u64 lockend = i_size_read(inode);
2515         u64 start = *offset;
2516         u64 len = i_size_read(inode);
2517         int ret = 0;
2518
2519         lockend = max_t(u64, root->sectorsize, lockend);
2520         if (lockend <= lockstart)
2521                 lockend = lockstart + root->sectorsize;
2522
2523         lockend--;
2524         len = lockend - lockstart + 1;
2525
2526         len = max_t(u64, len, root->sectorsize);
2527         if (inode->i_size == 0)
2528                 return -ENXIO;
2529
2530         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2531                          &cached_state);
2532
2533         while (start < inode->i_size) {
2534                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2535                 if (IS_ERR(em)) {
2536                         ret = PTR_ERR(em);
2537                         em = NULL;
2538                         break;
2539                 }
2540
2541                 if (whence == SEEK_HOLE &&
2542                     (em->block_start == EXTENT_MAP_HOLE ||
2543                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2544                         break;
2545                 else if (whence == SEEK_DATA &&
2546                            (em->block_start != EXTENT_MAP_HOLE &&
2547                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2548                         break;
2549
2550                 start = em->start + em->len;
2551                 free_extent_map(em);
2552                 em = NULL;
2553                 cond_resched();
2554         }
2555         free_extent_map(em);
2556         if (!ret) {
2557                 if (whence == SEEK_DATA && start >= inode->i_size)
2558                         ret = -ENXIO;
2559                 else
2560                         *offset = min_t(loff_t, start, inode->i_size);
2561         }
2562         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2563                              &cached_state, GFP_NOFS);
2564         return ret;
2565 }
2566
2567 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2568 {
2569         struct inode *inode = file->f_mapping->host;
2570         int ret;
2571
2572         mutex_lock(&inode->i_mutex);
2573         switch (whence) {
2574         case SEEK_END:
2575         case SEEK_CUR:
2576                 offset = generic_file_llseek(file, offset, whence);
2577                 goto out;
2578         case SEEK_DATA:
2579         case SEEK_HOLE:
2580                 if (offset >= i_size_read(inode)) {
2581                         mutex_unlock(&inode->i_mutex);
2582                         return -ENXIO;
2583                 }
2584
2585                 ret = find_desired_extent(inode, &offset, whence);
2586                 if (ret) {
2587                         mutex_unlock(&inode->i_mutex);
2588                         return ret;
2589                 }
2590         }
2591
2592         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2593 out:
2594         mutex_unlock(&inode->i_mutex);
2595         return offset;
2596 }
2597
2598 const struct file_operations btrfs_file_operations = {
2599         .llseek         = btrfs_file_llseek,
2600         .read           = do_sync_read,
2601         .write          = do_sync_write,
2602         .aio_read       = generic_file_aio_read,
2603         .splice_read    = generic_file_splice_read,
2604         .aio_write      = btrfs_file_aio_write,
2605         .mmap           = btrfs_file_mmap,
2606         .open           = generic_file_open,
2607         .release        = btrfs_release_file,
2608         .fsync          = btrfs_sync_file,
2609         .fallocate      = btrfs_fallocate,
2610         .unlocked_ioctl = btrfs_ioctl,
2611 #ifdef CONFIG_COMPAT
2612         .compat_ioctl   = btrfs_ioctl,
2613 #endif
2614 };
2615
2616 void btrfs_auto_defrag_exit(void)
2617 {
2618         if (btrfs_inode_defrag_cachep)
2619                 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2620 }
2621
2622 int btrfs_auto_defrag_init(void)
2623 {
2624         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2625                                         sizeof(struct inode_defrag), 0,
2626                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2627                                         NULL);
2628         if (!btrfs_inode_defrag_cachep)
2629                 return -ENOMEM;
2630
2631         return 0;
2632 }