Merge tag 'hwlock-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc...
[platform/kernel/linux-starfive.git] / fs / btrfs / file-item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "bio.h"
18 #include "print-tree.h"
19 #include "compression.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "file-item.h"
23 #include "super.h"
24
25 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26                                    sizeof(struct btrfs_item) * 2) / \
27                                   size) - 1))
28
29 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30                                        PAGE_SIZE))
31
32 /*
33  * Set inode's size according to filesystem options.
34  *
35  * @inode:      inode we want to update the disk_i_size for
36  * @new_i_size: i_size we want to set to, 0 if we use i_size
37  *
38  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39  * returns as it is perfectly fine with a file that has holes without hole file
40  * extent items.
41  *
42  * However without NO_HOLES we need to only return the area that is contiguous
43  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
44  * to an extent that has a gap in between.
45  *
46  * Finally new_i_size should only be set in the case of truncate where we're not
47  * ready to use i_size_read() as the limiter yet.
48  */
49 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50 {
51         struct btrfs_fs_info *fs_info = inode->root->fs_info;
52         u64 start, end, i_size;
53         int ret;
54
55         spin_lock(&inode->lock);
56         i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
57         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
58                 inode->disk_i_size = i_size;
59                 goto out_unlock;
60         }
61
62         ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
63                                          &end, EXTENT_DIRTY);
64         if (!ret && start == 0)
65                 i_size = min(i_size, end + 1);
66         else
67                 i_size = 0;
68         inode->disk_i_size = i_size;
69 out_unlock:
70         spin_unlock(&inode->lock);
71 }
72
73 /*
74  * Mark range within a file as having a new extent inserted.
75  *
76  * @inode: inode being modified
77  * @start: start file offset of the file extent we've inserted
78  * @len:   logical length of the file extent item
79  *
80  * Call when we are inserting a new file extent where there was none before.
81  * Does not need to call this in the case where we're replacing an existing file
82  * extent, however if not sure it's fine to call this multiple times.
83  *
84  * The start and len must match the file extent item, so thus must be sectorsize
85  * aligned.
86  */
87 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
88                                       u64 len)
89 {
90         if (len == 0)
91                 return 0;
92
93         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
94
95         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
96                 return 0;
97         return set_extent_bit(&inode->file_extent_tree, start, start + len - 1,
98                               EXTENT_DIRTY, NULL);
99 }
100
101 /*
102  * Mark an inode range as not having a backing extent.
103  *
104  * @inode: inode being modified
105  * @start: start file offset of the file extent we've inserted
106  * @len:   logical length of the file extent item
107  *
108  * Called when we drop a file extent, for example when we truncate.  Doesn't
109  * need to be called for cases where we're replacing a file extent, like when
110  * we've COWed a file extent.
111  *
112  * The start and len must match the file extent item, so thus must be sectorsize
113  * aligned.
114  */
115 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
116                                         u64 len)
117 {
118         if (len == 0)
119                 return 0;
120
121         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122                len == (u64)-1);
123
124         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
125                 return 0;
126         return clear_extent_bit(&inode->file_extent_tree, start,
127                                 start + len - 1, EXTENT_DIRTY, NULL);
128 }
129
130 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
131 {
132         ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
133
134         return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
135 }
136
137 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
138 {
139         ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
140
141         return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
142 }
143
144 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
145 {
146         u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
147                                        fs_info->csum_size);
148
149         return csum_size_to_bytes(fs_info, max_csum_size);
150 }
151
152 /*
153  * Calculate the total size needed to allocate for an ordered sum structure
154  * spanning @bytes in the file.
155  */
156 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
157 {
158         return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
159 }
160
161 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
162                              struct btrfs_root *root,
163                              u64 objectid, u64 pos, u64 num_bytes)
164 {
165         int ret = 0;
166         struct btrfs_file_extent_item *item;
167         struct btrfs_key file_key;
168         struct btrfs_path *path;
169         struct extent_buffer *leaf;
170
171         path = btrfs_alloc_path();
172         if (!path)
173                 return -ENOMEM;
174         file_key.objectid = objectid;
175         file_key.offset = pos;
176         file_key.type = BTRFS_EXTENT_DATA_KEY;
177
178         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
179                                       sizeof(*item));
180         if (ret < 0)
181                 goto out;
182         BUG_ON(ret); /* Can't happen */
183         leaf = path->nodes[0];
184         item = btrfs_item_ptr(leaf, path->slots[0],
185                               struct btrfs_file_extent_item);
186         btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
187         btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
188         btrfs_set_file_extent_offset(leaf, item, 0);
189         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
190         btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
191         btrfs_set_file_extent_generation(leaf, item, trans->transid);
192         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
193         btrfs_set_file_extent_compression(leaf, item, 0);
194         btrfs_set_file_extent_encryption(leaf, item, 0);
195         btrfs_set_file_extent_other_encoding(leaf, item, 0);
196
197         btrfs_mark_buffer_dirty(leaf);
198 out:
199         btrfs_free_path(path);
200         return ret;
201 }
202
203 static struct btrfs_csum_item *
204 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
205                   struct btrfs_root *root,
206                   struct btrfs_path *path,
207                   u64 bytenr, int cow)
208 {
209         struct btrfs_fs_info *fs_info = root->fs_info;
210         int ret;
211         struct btrfs_key file_key;
212         struct btrfs_key found_key;
213         struct btrfs_csum_item *item;
214         struct extent_buffer *leaf;
215         u64 csum_offset = 0;
216         const u32 csum_size = fs_info->csum_size;
217         int csums_in_item;
218
219         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
220         file_key.offset = bytenr;
221         file_key.type = BTRFS_EXTENT_CSUM_KEY;
222         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
223         if (ret < 0)
224                 goto fail;
225         leaf = path->nodes[0];
226         if (ret > 0) {
227                 ret = 1;
228                 if (path->slots[0] == 0)
229                         goto fail;
230                 path->slots[0]--;
231                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
232                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
233                         goto fail;
234
235                 csum_offset = (bytenr - found_key.offset) >>
236                                 fs_info->sectorsize_bits;
237                 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
238                 csums_in_item /= csum_size;
239
240                 if (csum_offset == csums_in_item) {
241                         ret = -EFBIG;
242                         goto fail;
243                 } else if (csum_offset > csums_in_item) {
244                         goto fail;
245                 }
246         }
247         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
248         item = (struct btrfs_csum_item *)((unsigned char *)item +
249                                           csum_offset * csum_size);
250         return item;
251 fail:
252         if (ret > 0)
253                 ret = -ENOENT;
254         return ERR_PTR(ret);
255 }
256
257 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
258                              struct btrfs_root *root,
259                              struct btrfs_path *path, u64 objectid,
260                              u64 offset, int mod)
261 {
262         struct btrfs_key file_key;
263         int ins_len = mod < 0 ? -1 : 0;
264         int cow = mod != 0;
265
266         file_key.objectid = objectid;
267         file_key.offset = offset;
268         file_key.type = BTRFS_EXTENT_DATA_KEY;
269
270         return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
271 }
272
273 /*
274  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
275  * store the result to @dst.
276  *
277  * Return >0 for the number of sectors we found.
278  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
279  * for it. Caller may want to try next sector until one range is hit.
280  * Return <0 for fatal error.
281  */
282 static int search_csum_tree(struct btrfs_fs_info *fs_info,
283                             struct btrfs_path *path, u64 disk_bytenr,
284                             u64 len, u8 *dst)
285 {
286         struct btrfs_root *csum_root;
287         struct btrfs_csum_item *item = NULL;
288         struct btrfs_key key;
289         const u32 sectorsize = fs_info->sectorsize;
290         const u32 csum_size = fs_info->csum_size;
291         u32 itemsize;
292         int ret;
293         u64 csum_start;
294         u64 csum_len;
295
296         ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
297                IS_ALIGNED(len, sectorsize));
298
299         /* Check if the current csum item covers disk_bytenr */
300         if (path->nodes[0]) {
301                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
302                                       struct btrfs_csum_item);
303                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
304                 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
305
306                 csum_start = key.offset;
307                 csum_len = (itemsize / csum_size) * sectorsize;
308
309                 if (in_range(disk_bytenr, csum_start, csum_len))
310                         goto found;
311         }
312
313         /* Current item doesn't contain the desired range, search again */
314         btrfs_release_path(path);
315         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
316         item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
317         if (IS_ERR(item)) {
318                 ret = PTR_ERR(item);
319                 goto out;
320         }
321         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
322         itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
323
324         csum_start = key.offset;
325         csum_len = (itemsize / csum_size) * sectorsize;
326         ASSERT(in_range(disk_bytenr, csum_start, csum_len));
327
328 found:
329         ret = (min(csum_start + csum_len, disk_bytenr + len) -
330                    disk_bytenr) >> fs_info->sectorsize_bits;
331         read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
332                         ret * csum_size);
333 out:
334         if (ret == -ENOENT || ret == -EFBIG)
335                 ret = 0;
336         return ret;
337 }
338
339 /*
340  * Lookup the checksum for the read bio in csum tree.
341  *
342  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
343  */
344 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
345 {
346         struct btrfs_inode *inode = bbio->inode;
347         struct btrfs_fs_info *fs_info = inode->root->fs_info;
348         struct bio *bio = &bbio->bio;
349         struct btrfs_path *path;
350         const u32 sectorsize = fs_info->sectorsize;
351         const u32 csum_size = fs_info->csum_size;
352         u32 orig_len = bio->bi_iter.bi_size;
353         u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
354         const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
355         blk_status_t ret = BLK_STS_OK;
356         u32 bio_offset = 0;
357
358         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
359             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
360                 return BLK_STS_OK;
361
362         /*
363          * This function is only called for read bio.
364          *
365          * This means two things:
366          * - All our csums should only be in csum tree
367          *   No ordered extents csums, as ordered extents are only for write
368          *   path.
369          * - No need to bother any other info from bvec
370          *   Since we're looking up csums, the only important info is the
371          *   disk_bytenr and the length, which can be extracted from bi_iter
372          *   directly.
373          */
374         ASSERT(bio_op(bio) == REQ_OP_READ);
375         path = btrfs_alloc_path();
376         if (!path)
377                 return BLK_STS_RESOURCE;
378
379         if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
380                 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
381                 if (!bbio->csum) {
382                         btrfs_free_path(path);
383                         return BLK_STS_RESOURCE;
384                 }
385         } else {
386                 bbio->csum = bbio->csum_inline;
387         }
388
389         /*
390          * If requested number of sectors is larger than one leaf can contain,
391          * kick the readahead for csum tree.
392          */
393         if (nblocks > fs_info->csums_per_leaf)
394                 path->reada = READA_FORWARD;
395
396         /*
397          * the free space stuff is only read when it hasn't been
398          * updated in the current transaction.  So, we can safely
399          * read from the commit root and sidestep a nasty deadlock
400          * between reading the free space cache and updating the csum tree.
401          */
402         if (btrfs_is_free_space_inode(inode)) {
403                 path->search_commit_root = 1;
404                 path->skip_locking = 1;
405         }
406
407         while (bio_offset < orig_len) {
408                 int count;
409                 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
410                 u8 *csum_dst = bbio->csum +
411                         (bio_offset >> fs_info->sectorsize_bits) * csum_size;
412
413                 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
414                                          orig_len - bio_offset, csum_dst);
415                 if (count < 0) {
416                         ret = errno_to_blk_status(count);
417                         if (bbio->csum != bbio->csum_inline)
418                                 kfree(bbio->csum);
419                         bbio->csum = NULL;
420                         break;
421                 }
422
423                 /*
424                  * We didn't find a csum for this range.  We need to make sure
425                  * we complain loudly about this, because we are not NODATASUM.
426                  *
427                  * However for the DATA_RELOC inode we could potentially be
428                  * relocating data extents for a NODATASUM inode, so the inode
429                  * itself won't be marked with NODATASUM, but the extent we're
430                  * copying is in fact NODATASUM.  If we don't find a csum we
431                  * assume this is the case.
432                  */
433                 if (count == 0) {
434                         memset(csum_dst, 0, csum_size);
435                         count = 1;
436
437                         if (inode->root->root_key.objectid ==
438                             BTRFS_DATA_RELOC_TREE_OBJECTID) {
439                                 u64 file_offset = bbio->file_offset + bio_offset;
440
441                                 set_extent_bit(&inode->io_tree, file_offset,
442                                                file_offset + sectorsize - 1,
443                                                EXTENT_NODATASUM, NULL);
444                         } else {
445                                 btrfs_warn_rl(fs_info,
446                         "csum hole found for disk bytenr range [%llu, %llu)",
447                                 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
448                         }
449                 }
450                 bio_offset += count * sectorsize;
451         }
452
453         btrfs_free_path(path);
454         return ret;
455 }
456
457 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
458                             struct list_head *list, int search_commit,
459                             bool nowait)
460 {
461         struct btrfs_fs_info *fs_info = root->fs_info;
462         struct btrfs_key key;
463         struct btrfs_path *path;
464         struct extent_buffer *leaf;
465         struct btrfs_ordered_sum *sums;
466         struct btrfs_csum_item *item;
467         LIST_HEAD(tmplist);
468         int ret;
469
470         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
471                IS_ALIGNED(end + 1, fs_info->sectorsize));
472
473         path = btrfs_alloc_path();
474         if (!path)
475                 return -ENOMEM;
476
477         path->nowait = nowait;
478         if (search_commit) {
479                 path->skip_locking = 1;
480                 path->reada = READA_FORWARD;
481                 path->search_commit_root = 1;
482         }
483
484         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
485         key.offset = start;
486         key.type = BTRFS_EXTENT_CSUM_KEY;
487
488         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
489         if (ret < 0)
490                 goto fail;
491         if (ret > 0 && path->slots[0] > 0) {
492                 leaf = path->nodes[0];
493                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
494
495                 /*
496                  * There are two cases we can hit here for the previous csum
497                  * item:
498                  *
499                  *              |<- search range ->|
500                  *      |<- csum item ->|
501                  *
502                  * Or
503                  *                              |<- search range ->|
504                  *      |<- csum item ->|
505                  *
506                  * Check if the previous csum item covers the leading part of
507                  * the search range.  If so we have to start from previous csum
508                  * item.
509                  */
510                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
511                     key.type == BTRFS_EXTENT_CSUM_KEY) {
512                         if (bytes_to_csum_size(fs_info, start - key.offset) <
513                             btrfs_item_size(leaf, path->slots[0] - 1))
514                                 path->slots[0]--;
515                 }
516         }
517
518         while (start <= end) {
519                 u64 csum_end;
520
521                 leaf = path->nodes[0];
522                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
523                         ret = btrfs_next_leaf(root, path);
524                         if (ret < 0)
525                                 goto fail;
526                         if (ret > 0)
527                                 break;
528                         leaf = path->nodes[0];
529                 }
530
531                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
532                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
533                     key.type != BTRFS_EXTENT_CSUM_KEY ||
534                     key.offset > end)
535                         break;
536
537                 if (key.offset > start)
538                         start = key.offset;
539
540                 csum_end = key.offset + csum_size_to_bytes(fs_info,
541                                         btrfs_item_size(leaf, path->slots[0]));
542                 if (csum_end <= start) {
543                         path->slots[0]++;
544                         continue;
545                 }
546
547                 csum_end = min(csum_end, end + 1);
548                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
549                                       struct btrfs_csum_item);
550                 while (start < csum_end) {
551                         unsigned long offset;
552                         size_t size;
553
554                         size = min_t(size_t, csum_end - start,
555                                      max_ordered_sum_bytes(fs_info));
556                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
557                                        GFP_NOFS);
558                         if (!sums) {
559                                 ret = -ENOMEM;
560                                 goto fail;
561                         }
562
563                         sums->logical = start;
564                         sums->len = size;
565
566                         offset = bytes_to_csum_size(fs_info, start - key.offset);
567
568                         read_extent_buffer(path->nodes[0],
569                                            sums->sums,
570                                            ((unsigned long)item) + offset,
571                                            bytes_to_csum_size(fs_info, size));
572
573                         start += size;
574                         list_add_tail(&sums->list, &tmplist);
575                 }
576                 path->slots[0]++;
577         }
578         ret = 0;
579 fail:
580         while (ret < 0 && !list_empty(&tmplist)) {
581                 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
582                 list_del(&sums->list);
583                 kfree(sums);
584         }
585         list_splice_tail(&tmplist, list);
586
587         btrfs_free_path(path);
588         return ret;
589 }
590
591 /*
592  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
593  * we return the result.
594  *
595  * This version will set the corresponding bits in @csum_bitmap to represent
596  * that there is a csum found.
597  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
598  * in is large enough to contain all csums.
599  */
600 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
601                               u64 start, u64 end, u8 *csum_buf,
602                               unsigned long *csum_bitmap)
603 {
604         struct btrfs_fs_info *fs_info = root->fs_info;
605         struct btrfs_key key;
606         struct extent_buffer *leaf;
607         struct btrfs_csum_item *item;
608         const u64 orig_start = start;
609         bool free_path = false;
610         int ret;
611
612         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
613                IS_ALIGNED(end + 1, fs_info->sectorsize));
614
615         if (!path) {
616                 path = btrfs_alloc_path();
617                 if (!path)
618                         return -ENOMEM;
619                 free_path = true;
620         }
621
622         /* Check if we can reuse the previous path. */
623         if (path->nodes[0]) {
624                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
625
626                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
627                     key.type == BTRFS_EXTENT_CSUM_KEY &&
628                     key.offset <= start)
629                         goto search_forward;
630                 btrfs_release_path(path);
631         }
632
633         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
634         key.type = BTRFS_EXTENT_CSUM_KEY;
635         key.offset = start;
636
637         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
638         if (ret < 0)
639                 goto fail;
640         if (ret > 0 && path->slots[0] > 0) {
641                 leaf = path->nodes[0];
642                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
643
644                 /*
645                  * There are two cases we can hit here for the previous csum
646                  * item:
647                  *
648                  *              |<- search range ->|
649                  *      |<- csum item ->|
650                  *
651                  * Or
652                  *                              |<- search range ->|
653                  *      |<- csum item ->|
654                  *
655                  * Check if the previous csum item covers the leading part of
656                  * the search range.  If so we have to start from previous csum
657                  * item.
658                  */
659                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
660                     key.type == BTRFS_EXTENT_CSUM_KEY) {
661                         if (bytes_to_csum_size(fs_info, start - key.offset) <
662                             btrfs_item_size(leaf, path->slots[0] - 1))
663                                 path->slots[0]--;
664                 }
665         }
666
667 search_forward:
668         while (start <= end) {
669                 u64 csum_end;
670
671                 leaf = path->nodes[0];
672                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
673                         ret = btrfs_next_leaf(root, path);
674                         if (ret < 0)
675                                 goto fail;
676                         if (ret > 0)
677                                 break;
678                         leaf = path->nodes[0];
679                 }
680
681                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
682                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
683                     key.type != BTRFS_EXTENT_CSUM_KEY ||
684                     key.offset > end)
685                         break;
686
687                 if (key.offset > start)
688                         start = key.offset;
689
690                 csum_end = key.offset + csum_size_to_bytes(fs_info,
691                                         btrfs_item_size(leaf, path->slots[0]));
692                 if (csum_end <= start) {
693                         path->slots[0]++;
694                         continue;
695                 }
696
697                 csum_end = min(csum_end, end + 1);
698                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
699                                       struct btrfs_csum_item);
700                 while (start < csum_end) {
701                         unsigned long offset;
702                         size_t size;
703                         u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
704                                                 start - orig_start);
705
706                         size = min_t(size_t, csum_end - start, end + 1 - start);
707
708                         offset = bytes_to_csum_size(fs_info, start - key.offset);
709
710                         read_extent_buffer(path->nodes[0], csum_dest,
711                                            ((unsigned long)item) + offset,
712                                            bytes_to_csum_size(fs_info, size));
713
714                         bitmap_set(csum_bitmap,
715                                 (start - orig_start) >> fs_info->sectorsize_bits,
716                                 size >> fs_info->sectorsize_bits);
717
718                         start += size;
719                 }
720                 path->slots[0]++;
721         }
722         ret = 0;
723 fail:
724         if (free_path)
725                 btrfs_free_path(path);
726         return ret;
727 }
728
729 /*
730  * Calculate checksums of the data contained inside a bio.
731  */
732 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
733 {
734         struct btrfs_ordered_extent *ordered = bbio->ordered;
735         struct btrfs_inode *inode = bbio->inode;
736         struct btrfs_fs_info *fs_info = inode->root->fs_info;
737         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
738         struct bio *bio = &bbio->bio;
739         struct btrfs_ordered_sum *sums;
740         char *data;
741         struct bvec_iter iter;
742         struct bio_vec bvec;
743         int index;
744         unsigned int blockcount;
745         int i;
746         unsigned nofs_flag;
747
748         nofs_flag = memalloc_nofs_save();
749         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
750                        GFP_KERNEL);
751         memalloc_nofs_restore(nofs_flag);
752
753         if (!sums)
754                 return BLK_STS_RESOURCE;
755
756         sums->len = bio->bi_iter.bi_size;
757         INIT_LIST_HEAD(&sums->list);
758
759         sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
760         index = 0;
761
762         shash->tfm = fs_info->csum_shash;
763
764         bio_for_each_segment(bvec, bio, iter) {
765                 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
766                                                  bvec.bv_len + fs_info->sectorsize
767                                                  - 1);
768
769                 for (i = 0; i < blockcount; i++) {
770                         data = bvec_kmap_local(&bvec);
771                         crypto_shash_digest(shash,
772                                             data + (i * fs_info->sectorsize),
773                                             fs_info->sectorsize,
774                                             sums->sums + index);
775                         kunmap_local(data);
776                         index += fs_info->csum_size;
777                 }
778
779         }
780
781         bbio->sums = sums;
782         btrfs_add_ordered_sum(ordered, sums);
783         return 0;
784 }
785
786 /*
787  * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
788  * record the updated logical address on Zone Append completion.
789  * Allocate just the structure with an empty sums array here for that case.
790  */
791 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
792 {
793         bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
794         if (!bbio->sums)
795                 return BLK_STS_RESOURCE;
796         bbio->sums->len = bbio->bio.bi_iter.bi_size;
797         bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
798         btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
799         return 0;
800 }
801
802 /*
803  * Remove one checksum overlapping a range.
804  *
805  * This expects the key to describe the csum pointed to by the path, and it
806  * expects the csum to overlap the range [bytenr, len]
807  *
808  * The csum should not be entirely contained in the range and the range should
809  * not be entirely contained in the csum.
810  *
811  * This calls btrfs_truncate_item with the correct args based on the overlap,
812  * and fixes up the key as required.
813  */
814 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
815                                        struct btrfs_path *path,
816                                        struct btrfs_key *key,
817                                        u64 bytenr, u64 len)
818 {
819         struct extent_buffer *leaf;
820         const u32 csum_size = fs_info->csum_size;
821         u64 csum_end;
822         u64 end_byte = bytenr + len;
823         u32 blocksize_bits = fs_info->sectorsize_bits;
824
825         leaf = path->nodes[0];
826         csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
827         csum_end <<= blocksize_bits;
828         csum_end += key->offset;
829
830         if (key->offset < bytenr && csum_end <= end_byte) {
831                 /*
832                  *         [ bytenr - len ]
833                  *         [   ]
834                  *   [csum     ]
835                  *   A simple truncate off the end of the item
836                  */
837                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
838                 new_size *= csum_size;
839                 btrfs_truncate_item(path, new_size, 1);
840         } else if (key->offset >= bytenr && csum_end > end_byte &&
841                    end_byte > key->offset) {
842                 /*
843                  *         [ bytenr - len ]
844                  *                 [ ]
845                  *                 [csum     ]
846                  * we need to truncate from the beginning of the csum
847                  */
848                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
849                 new_size *= csum_size;
850
851                 btrfs_truncate_item(path, new_size, 0);
852
853                 key->offset = end_byte;
854                 btrfs_set_item_key_safe(fs_info, path, key);
855         } else {
856                 BUG();
857         }
858 }
859
860 /*
861  * Delete the csum items from the csum tree for a given range of bytes.
862  */
863 int btrfs_del_csums(struct btrfs_trans_handle *trans,
864                     struct btrfs_root *root, u64 bytenr, u64 len)
865 {
866         struct btrfs_fs_info *fs_info = trans->fs_info;
867         struct btrfs_path *path;
868         struct btrfs_key key;
869         u64 end_byte = bytenr + len;
870         u64 csum_end;
871         struct extent_buffer *leaf;
872         int ret = 0;
873         const u32 csum_size = fs_info->csum_size;
874         u32 blocksize_bits = fs_info->sectorsize_bits;
875
876         ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
877                root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
878
879         path = btrfs_alloc_path();
880         if (!path)
881                 return -ENOMEM;
882
883         while (1) {
884                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
885                 key.offset = end_byte - 1;
886                 key.type = BTRFS_EXTENT_CSUM_KEY;
887
888                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
889                 if (ret > 0) {
890                         ret = 0;
891                         if (path->slots[0] == 0)
892                                 break;
893                         path->slots[0]--;
894                 } else if (ret < 0) {
895                         break;
896                 }
897
898                 leaf = path->nodes[0];
899                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
900
901                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
902                     key.type != BTRFS_EXTENT_CSUM_KEY) {
903                         break;
904                 }
905
906                 if (key.offset >= end_byte)
907                         break;
908
909                 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
910                 csum_end <<= blocksize_bits;
911                 csum_end += key.offset;
912
913                 /* this csum ends before we start, we're done */
914                 if (csum_end <= bytenr)
915                         break;
916
917                 /* delete the entire item, it is inside our range */
918                 if (key.offset >= bytenr && csum_end <= end_byte) {
919                         int del_nr = 1;
920
921                         /*
922                          * Check how many csum items preceding this one in this
923                          * leaf correspond to our range and then delete them all
924                          * at once.
925                          */
926                         if (key.offset > bytenr && path->slots[0] > 0) {
927                                 int slot = path->slots[0] - 1;
928
929                                 while (slot >= 0) {
930                                         struct btrfs_key pk;
931
932                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
933                                         if (pk.offset < bytenr ||
934                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
935                                             pk.objectid !=
936                                             BTRFS_EXTENT_CSUM_OBJECTID)
937                                                 break;
938                                         path->slots[0] = slot;
939                                         del_nr++;
940                                         key.offset = pk.offset;
941                                         slot--;
942                                 }
943                         }
944                         ret = btrfs_del_items(trans, root, path,
945                                               path->slots[0], del_nr);
946                         if (ret)
947                                 break;
948                         if (key.offset == bytenr)
949                                 break;
950                 } else if (key.offset < bytenr && csum_end > end_byte) {
951                         unsigned long offset;
952                         unsigned long shift_len;
953                         unsigned long item_offset;
954                         /*
955                          *        [ bytenr - len ]
956                          *     [csum                ]
957                          *
958                          * Our bytes are in the middle of the csum,
959                          * we need to split this item and insert a new one.
960                          *
961                          * But we can't drop the path because the
962                          * csum could change, get removed, extended etc.
963                          *
964                          * The trick here is the max size of a csum item leaves
965                          * enough room in the tree block for a single
966                          * item header.  So, we split the item in place,
967                          * adding a new header pointing to the existing
968                          * bytes.  Then we loop around again and we have
969                          * a nicely formed csum item that we can neatly
970                          * truncate.
971                          */
972                         offset = (bytenr - key.offset) >> blocksize_bits;
973                         offset *= csum_size;
974
975                         shift_len = (len >> blocksize_bits) * csum_size;
976
977                         item_offset = btrfs_item_ptr_offset(leaf,
978                                                             path->slots[0]);
979
980                         memzero_extent_buffer(leaf, item_offset + offset,
981                                              shift_len);
982                         key.offset = bytenr;
983
984                         /*
985                          * btrfs_split_item returns -EAGAIN when the
986                          * item changed size or key
987                          */
988                         ret = btrfs_split_item(trans, root, path, &key, offset);
989                         if (ret && ret != -EAGAIN) {
990                                 btrfs_abort_transaction(trans, ret);
991                                 break;
992                         }
993                         ret = 0;
994
995                         key.offset = end_byte - 1;
996                 } else {
997                         truncate_one_csum(fs_info, path, &key, bytenr, len);
998                         if (key.offset < bytenr)
999                                 break;
1000                 }
1001                 btrfs_release_path(path);
1002         }
1003         btrfs_free_path(path);
1004         return ret;
1005 }
1006
1007 static int find_next_csum_offset(struct btrfs_root *root,
1008                                  struct btrfs_path *path,
1009                                  u64 *next_offset)
1010 {
1011         const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1012         struct btrfs_key found_key;
1013         int slot = path->slots[0] + 1;
1014         int ret;
1015
1016         if (nritems == 0 || slot >= nritems) {
1017                 ret = btrfs_next_leaf(root, path);
1018                 if (ret < 0) {
1019                         return ret;
1020                 } else if (ret > 0) {
1021                         *next_offset = (u64)-1;
1022                         return 0;
1023                 }
1024                 slot = path->slots[0];
1025         }
1026
1027         btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1028
1029         if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1030             found_key.type != BTRFS_EXTENT_CSUM_KEY)
1031                 *next_offset = (u64)-1;
1032         else
1033                 *next_offset = found_key.offset;
1034
1035         return 0;
1036 }
1037
1038 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1039                            struct btrfs_root *root,
1040                            struct btrfs_ordered_sum *sums)
1041 {
1042         struct btrfs_fs_info *fs_info = root->fs_info;
1043         struct btrfs_key file_key;
1044         struct btrfs_key found_key;
1045         struct btrfs_path *path;
1046         struct btrfs_csum_item *item;
1047         struct btrfs_csum_item *item_end;
1048         struct extent_buffer *leaf = NULL;
1049         u64 next_offset;
1050         u64 total_bytes = 0;
1051         u64 csum_offset;
1052         u64 bytenr;
1053         u32 ins_size;
1054         int index = 0;
1055         int found_next;
1056         int ret;
1057         const u32 csum_size = fs_info->csum_size;
1058
1059         path = btrfs_alloc_path();
1060         if (!path)
1061                 return -ENOMEM;
1062 again:
1063         next_offset = (u64)-1;
1064         found_next = 0;
1065         bytenr = sums->logical + total_bytes;
1066         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1067         file_key.offset = bytenr;
1068         file_key.type = BTRFS_EXTENT_CSUM_KEY;
1069
1070         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1071         if (!IS_ERR(item)) {
1072                 ret = 0;
1073                 leaf = path->nodes[0];
1074                 item_end = btrfs_item_ptr(leaf, path->slots[0],
1075                                           struct btrfs_csum_item);
1076                 item_end = (struct btrfs_csum_item *)((char *)item_end +
1077                            btrfs_item_size(leaf, path->slots[0]));
1078                 goto found;
1079         }
1080         ret = PTR_ERR(item);
1081         if (ret != -EFBIG && ret != -ENOENT)
1082                 goto out;
1083
1084         if (ret == -EFBIG) {
1085                 u32 item_size;
1086                 /* we found one, but it isn't big enough yet */
1087                 leaf = path->nodes[0];
1088                 item_size = btrfs_item_size(leaf, path->slots[0]);
1089                 if ((item_size / csum_size) >=
1090                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
1091                         /* already at max size, make a new one */
1092                         goto insert;
1093                 }
1094         } else {
1095                 /* We didn't find a csum item, insert one. */
1096                 ret = find_next_csum_offset(root, path, &next_offset);
1097                 if (ret < 0)
1098                         goto out;
1099                 found_next = 1;
1100                 goto insert;
1101         }
1102
1103         /*
1104          * At this point, we know the tree has a checksum item that ends at an
1105          * offset matching the start of the checksum range we want to insert.
1106          * We try to extend that item as much as possible and then add as many
1107          * checksums to it as they fit.
1108          *
1109          * First check if the leaf has enough free space for at least one
1110          * checksum. If it has go directly to the item extension code, otherwise
1111          * release the path and do a search for insertion before the extension.
1112          */
1113         if (btrfs_leaf_free_space(leaf) >= csum_size) {
1114                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115                 csum_offset = (bytenr - found_key.offset) >>
1116                         fs_info->sectorsize_bits;
1117                 goto extend_csum;
1118         }
1119
1120         btrfs_release_path(path);
1121         path->search_for_extension = 1;
1122         ret = btrfs_search_slot(trans, root, &file_key, path,
1123                                 csum_size, 1);
1124         path->search_for_extension = 0;
1125         if (ret < 0)
1126                 goto out;
1127
1128         if (ret > 0) {
1129                 if (path->slots[0] == 0)
1130                         goto insert;
1131                 path->slots[0]--;
1132         }
1133
1134         leaf = path->nodes[0];
1135         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1136         csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1137
1138         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1139             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1140             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1141                 goto insert;
1142         }
1143
1144 extend_csum:
1145         if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1146             csum_size) {
1147                 int extend_nr;
1148                 u64 tmp;
1149                 u32 diff;
1150
1151                 tmp = sums->len - total_bytes;
1152                 tmp >>= fs_info->sectorsize_bits;
1153                 WARN_ON(tmp < 1);
1154                 extend_nr = max_t(int, 1, tmp);
1155
1156                 /*
1157                  * A log tree can already have checksum items with a subset of
1158                  * the checksums we are trying to log. This can happen after
1159                  * doing a sequence of partial writes into prealloc extents and
1160                  * fsyncs in between, with a full fsync logging a larger subrange
1161                  * of an extent for which a previous fast fsync logged a smaller
1162                  * subrange. And this happens in particular due to merging file
1163                  * extent items when we complete an ordered extent for a range
1164                  * covered by a prealloc extent - this is done at
1165                  * btrfs_mark_extent_written().
1166                  *
1167                  * So if we try to extend the previous checksum item, which has
1168                  * a range that ends at the start of the range we want to insert,
1169                  * make sure we don't extend beyond the start offset of the next
1170                  * checksum item. If we are at the last item in the leaf, then
1171                  * forget the optimization of extending and add a new checksum
1172                  * item - it is not worth the complexity of releasing the path,
1173                  * getting the first key for the next leaf, repeat the btree
1174                  * search, etc, because log trees are temporary anyway and it
1175                  * would only save a few bytes of leaf space.
1176                  */
1177                 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1178                         if (path->slots[0] + 1 >=
1179                             btrfs_header_nritems(path->nodes[0])) {
1180                                 ret = find_next_csum_offset(root, path, &next_offset);
1181                                 if (ret < 0)
1182                                         goto out;
1183                                 found_next = 1;
1184                                 goto insert;
1185                         }
1186
1187                         ret = find_next_csum_offset(root, path, &next_offset);
1188                         if (ret < 0)
1189                                 goto out;
1190
1191                         tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1192                         if (tmp <= INT_MAX)
1193                                 extend_nr = min_t(int, extend_nr, tmp);
1194                 }
1195
1196                 diff = (csum_offset + extend_nr) * csum_size;
1197                 diff = min(diff,
1198                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1199
1200                 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1201                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1202                 diff /= csum_size;
1203                 diff *= csum_size;
1204
1205                 btrfs_extend_item(path, diff);
1206                 ret = 0;
1207                 goto csum;
1208         }
1209
1210 insert:
1211         btrfs_release_path(path);
1212         csum_offset = 0;
1213         if (found_next) {
1214                 u64 tmp;
1215
1216                 tmp = sums->len - total_bytes;
1217                 tmp >>= fs_info->sectorsize_bits;
1218                 tmp = min(tmp, (next_offset - file_key.offset) >>
1219                                          fs_info->sectorsize_bits);
1220
1221                 tmp = max_t(u64, 1, tmp);
1222                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1223                 ins_size = csum_size * tmp;
1224         } else {
1225                 ins_size = csum_size;
1226         }
1227         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1228                                       ins_size);
1229         if (ret < 0)
1230                 goto out;
1231         if (WARN_ON(ret != 0))
1232                 goto out;
1233         leaf = path->nodes[0];
1234 csum:
1235         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1236         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1237                                       btrfs_item_size(leaf, path->slots[0]));
1238         item = (struct btrfs_csum_item *)((unsigned char *)item +
1239                                           csum_offset * csum_size);
1240 found:
1241         ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1242         ins_size *= csum_size;
1243         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1244                               ins_size);
1245         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1246                             ins_size);
1247
1248         index += ins_size;
1249         ins_size /= csum_size;
1250         total_bytes += ins_size * fs_info->sectorsize;
1251
1252         btrfs_mark_buffer_dirty(path->nodes[0]);
1253         if (total_bytes < sums->len) {
1254                 btrfs_release_path(path);
1255                 cond_resched();
1256                 goto again;
1257         }
1258 out:
1259         btrfs_free_path(path);
1260         return ret;
1261 }
1262
1263 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1264                                      const struct btrfs_path *path,
1265                                      struct btrfs_file_extent_item *fi,
1266                                      struct extent_map *em)
1267 {
1268         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1269         struct btrfs_root *root = inode->root;
1270         struct extent_buffer *leaf = path->nodes[0];
1271         const int slot = path->slots[0];
1272         struct btrfs_key key;
1273         u64 extent_start, extent_end;
1274         u64 bytenr;
1275         u8 type = btrfs_file_extent_type(leaf, fi);
1276         int compress_type = btrfs_file_extent_compression(leaf, fi);
1277
1278         btrfs_item_key_to_cpu(leaf, &key, slot);
1279         extent_start = key.offset;
1280         extent_end = btrfs_file_extent_end(path);
1281         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1282         em->generation = btrfs_file_extent_generation(leaf, fi);
1283         if (type == BTRFS_FILE_EXTENT_REG ||
1284             type == BTRFS_FILE_EXTENT_PREALLOC) {
1285                 em->start = extent_start;
1286                 em->len = extent_end - extent_start;
1287                 em->orig_start = extent_start -
1288                         btrfs_file_extent_offset(leaf, fi);
1289                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1290                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1291                 if (bytenr == 0) {
1292                         em->block_start = EXTENT_MAP_HOLE;
1293                         return;
1294                 }
1295                 if (compress_type != BTRFS_COMPRESS_NONE) {
1296                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1297                         em->compress_type = compress_type;
1298                         em->block_start = bytenr;
1299                         em->block_len = em->orig_block_len;
1300                 } else {
1301                         bytenr += btrfs_file_extent_offset(leaf, fi);
1302                         em->block_start = bytenr;
1303                         em->block_len = em->len;
1304                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1305                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1306                 }
1307         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1308                 em->block_start = EXTENT_MAP_INLINE;
1309                 em->start = extent_start;
1310                 em->len = extent_end - extent_start;
1311                 /*
1312                  * Initialize orig_start and block_len with the same values
1313                  * as in inode.c:btrfs_get_extent().
1314                  */
1315                 em->orig_start = EXTENT_MAP_HOLE;
1316                 em->block_len = (u64)-1;
1317                 em->compress_type = compress_type;
1318                 if (compress_type != BTRFS_COMPRESS_NONE)
1319                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1320         } else {
1321                 btrfs_err(fs_info,
1322                           "unknown file extent item type %d, inode %llu, offset %llu, "
1323                           "root %llu", type, btrfs_ino(inode), extent_start,
1324                           root->root_key.objectid);
1325         }
1326 }
1327
1328 /*
1329  * Returns the end offset (non inclusive) of the file extent item the given path
1330  * points to. If it points to an inline extent, the returned offset is rounded
1331  * up to the sector size.
1332  */
1333 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1334 {
1335         const struct extent_buffer *leaf = path->nodes[0];
1336         const int slot = path->slots[0];
1337         struct btrfs_file_extent_item *fi;
1338         struct btrfs_key key;
1339         u64 end;
1340
1341         btrfs_item_key_to_cpu(leaf, &key, slot);
1342         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1343         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1344
1345         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1346                 end = btrfs_file_extent_ram_bytes(leaf, fi);
1347                 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1348         } else {
1349                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1350         }
1351
1352         return end;
1353 }