Merge tag 'kvmarm-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm...
[platform/kernel/linux-starfive.git] / fs / btrfs / file-item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "bio.h"
18 #include "print-tree.h"
19 #include "compression.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "file-item.h"
23 #include "super.h"
24
25 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26                                    sizeof(struct btrfs_item) * 2) / \
27                                   size) - 1))
28
29 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30                                        PAGE_SIZE))
31
32 /*
33  * Set inode's size according to filesystem options.
34  *
35  * @inode:      inode we want to update the disk_i_size for
36  * @new_i_size: i_size we want to set to, 0 if we use i_size
37  *
38  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39  * returns as it is perfectly fine with a file that has holes without hole file
40  * extent items.
41  *
42  * However without NO_HOLES we need to only return the area that is contiguous
43  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
44  * to an extent that has a gap in between.
45  *
46  * Finally new_i_size should only be set in the case of truncate where we're not
47  * ready to use i_size_read() as the limiter yet.
48  */
49 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50 {
51         struct btrfs_fs_info *fs_info = inode->root->fs_info;
52         u64 start, end, i_size;
53         int ret;
54
55         spin_lock(&inode->lock);
56         i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
57         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
58                 inode->disk_i_size = i_size;
59                 goto out_unlock;
60         }
61
62         ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
63                                          &end, EXTENT_DIRTY);
64         if (!ret && start == 0)
65                 i_size = min(i_size, end + 1);
66         else
67                 i_size = 0;
68         inode->disk_i_size = i_size;
69 out_unlock:
70         spin_unlock(&inode->lock);
71 }
72
73 /*
74  * Mark range within a file as having a new extent inserted.
75  *
76  * @inode: inode being modified
77  * @start: start file offset of the file extent we've inserted
78  * @len:   logical length of the file extent item
79  *
80  * Call when we are inserting a new file extent where there was none before.
81  * Does not need to call this in the case where we're replacing an existing file
82  * extent, however if not sure it's fine to call this multiple times.
83  *
84  * The start and len must match the file extent item, so thus must be sectorsize
85  * aligned.
86  */
87 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
88                                       u64 len)
89 {
90         if (len == 0)
91                 return 0;
92
93         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
94
95         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
96                 return 0;
97         return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
98                                EXTENT_DIRTY);
99 }
100
101 /*
102  * Mark an inode range as not having a backing extent.
103  *
104  * @inode: inode being modified
105  * @start: start file offset of the file extent we've inserted
106  * @len:   logical length of the file extent item
107  *
108  * Called when we drop a file extent, for example when we truncate.  Doesn't
109  * need to be called for cases where we're replacing a file extent, like when
110  * we've COWed a file extent.
111  *
112  * The start and len must match the file extent item, so thus must be sectorsize
113  * aligned.
114  */
115 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
116                                         u64 len)
117 {
118         if (len == 0)
119                 return 0;
120
121         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122                len == (u64)-1);
123
124         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
125                 return 0;
126         return clear_extent_bit(&inode->file_extent_tree, start,
127                                 start + len - 1, EXTENT_DIRTY, NULL);
128 }
129
130 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
131 {
132         ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
133
134         return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
135 }
136
137 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
138 {
139         ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
140
141         return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
142 }
143
144 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
145 {
146         u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
147                                        fs_info->csum_size);
148
149         return csum_size_to_bytes(fs_info, max_csum_size);
150 }
151
152 /*
153  * Calculate the total size needed to allocate for an ordered sum structure
154  * spanning @bytes in the file.
155  */
156 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
157 {
158         return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
159 }
160
161 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
162                              struct btrfs_root *root,
163                              u64 objectid, u64 pos, u64 num_bytes)
164 {
165         int ret = 0;
166         struct btrfs_file_extent_item *item;
167         struct btrfs_key file_key;
168         struct btrfs_path *path;
169         struct extent_buffer *leaf;
170
171         path = btrfs_alloc_path();
172         if (!path)
173                 return -ENOMEM;
174         file_key.objectid = objectid;
175         file_key.offset = pos;
176         file_key.type = BTRFS_EXTENT_DATA_KEY;
177
178         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
179                                       sizeof(*item));
180         if (ret < 0)
181                 goto out;
182         BUG_ON(ret); /* Can't happen */
183         leaf = path->nodes[0];
184         item = btrfs_item_ptr(leaf, path->slots[0],
185                               struct btrfs_file_extent_item);
186         btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
187         btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
188         btrfs_set_file_extent_offset(leaf, item, 0);
189         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
190         btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
191         btrfs_set_file_extent_generation(leaf, item, trans->transid);
192         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
193         btrfs_set_file_extent_compression(leaf, item, 0);
194         btrfs_set_file_extent_encryption(leaf, item, 0);
195         btrfs_set_file_extent_other_encoding(leaf, item, 0);
196
197         btrfs_mark_buffer_dirty(leaf);
198 out:
199         btrfs_free_path(path);
200         return ret;
201 }
202
203 static struct btrfs_csum_item *
204 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
205                   struct btrfs_root *root,
206                   struct btrfs_path *path,
207                   u64 bytenr, int cow)
208 {
209         struct btrfs_fs_info *fs_info = root->fs_info;
210         int ret;
211         struct btrfs_key file_key;
212         struct btrfs_key found_key;
213         struct btrfs_csum_item *item;
214         struct extent_buffer *leaf;
215         u64 csum_offset = 0;
216         const u32 csum_size = fs_info->csum_size;
217         int csums_in_item;
218
219         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
220         file_key.offset = bytenr;
221         file_key.type = BTRFS_EXTENT_CSUM_KEY;
222         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
223         if (ret < 0)
224                 goto fail;
225         leaf = path->nodes[0];
226         if (ret > 0) {
227                 ret = 1;
228                 if (path->slots[0] == 0)
229                         goto fail;
230                 path->slots[0]--;
231                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
232                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
233                         goto fail;
234
235                 csum_offset = (bytenr - found_key.offset) >>
236                                 fs_info->sectorsize_bits;
237                 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
238                 csums_in_item /= csum_size;
239
240                 if (csum_offset == csums_in_item) {
241                         ret = -EFBIG;
242                         goto fail;
243                 } else if (csum_offset > csums_in_item) {
244                         goto fail;
245                 }
246         }
247         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
248         item = (struct btrfs_csum_item *)((unsigned char *)item +
249                                           csum_offset * csum_size);
250         return item;
251 fail:
252         if (ret > 0)
253                 ret = -ENOENT;
254         return ERR_PTR(ret);
255 }
256
257 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
258                              struct btrfs_root *root,
259                              struct btrfs_path *path, u64 objectid,
260                              u64 offset, int mod)
261 {
262         struct btrfs_key file_key;
263         int ins_len = mod < 0 ? -1 : 0;
264         int cow = mod != 0;
265
266         file_key.objectid = objectid;
267         file_key.offset = offset;
268         file_key.type = BTRFS_EXTENT_DATA_KEY;
269
270         return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
271 }
272
273 /*
274  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
275  * store the result to @dst.
276  *
277  * Return >0 for the number of sectors we found.
278  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
279  * for it. Caller may want to try next sector until one range is hit.
280  * Return <0 for fatal error.
281  */
282 static int search_csum_tree(struct btrfs_fs_info *fs_info,
283                             struct btrfs_path *path, u64 disk_bytenr,
284                             u64 len, u8 *dst)
285 {
286         struct btrfs_root *csum_root;
287         struct btrfs_csum_item *item = NULL;
288         struct btrfs_key key;
289         const u32 sectorsize = fs_info->sectorsize;
290         const u32 csum_size = fs_info->csum_size;
291         u32 itemsize;
292         int ret;
293         u64 csum_start;
294         u64 csum_len;
295
296         ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
297                IS_ALIGNED(len, sectorsize));
298
299         /* Check if the current csum item covers disk_bytenr */
300         if (path->nodes[0]) {
301                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
302                                       struct btrfs_csum_item);
303                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
304                 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
305
306                 csum_start = key.offset;
307                 csum_len = (itemsize / csum_size) * sectorsize;
308
309                 if (in_range(disk_bytenr, csum_start, csum_len))
310                         goto found;
311         }
312
313         /* Current item doesn't contain the desired range, search again */
314         btrfs_release_path(path);
315         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
316         item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
317         if (IS_ERR(item)) {
318                 ret = PTR_ERR(item);
319                 goto out;
320         }
321         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
322         itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
323
324         csum_start = key.offset;
325         csum_len = (itemsize / csum_size) * sectorsize;
326         ASSERT(in_range(disk_bytenr, csum_start, csum_len));
327
328 found:
329         ret = (min(csum_start + csum_len, disk_bytenr + len) -
330                    disk_bytenr) >> fs_info->sectorsize_bits;
331         read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
332                         ret * csum_size);
333 out:
334         if (ret == -ENOENT || ret == -EFBIG)
335                 ret = 0;
336         return ret;
337 }
338
339 /*
340  * Lookup the checksum for the read bio in csum tree.
341  *
342  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
343  */
344 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
345 {
346         struct btrfs_inode *inode = bbio->inode;
347         struct btrfs_fs_info *fs_info = inode->root->fs_info;
348         struct bio *bio = &bbio->bio;
349         struct btrfs_path *path;
350         const u32 sectorsize = fs_info->sectorsize;
351         const u32 csum_size = fs_info->csum_size;
352         u32 orig_len = bio->bi_iter.bi_size;
353         u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
354         const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
355         blk_status_t ret = BLK_STS_OK;
356         u32 bio_offset = 0;
357
358         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
359             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
360                 return BLK_STS_OK;
361
362         /*
363          * This function is only called for read bio.
364          *
365          * This means two things:
366          * - All our csums should only be in csum tree
367          *   No ordered extents csums, as ordered extents are only for write
368          *   path.
369          * - No need to bother any other info from bvec
370          *   Since we're looking up csums, the only important info is the
371          *   disk_bytenr and the length, which can be extracted from bi_iter
372          *   directly.
373          */
374         ASSERT(bio_op(bio) == REQ_OP_READ);
375         path = btrfs_alloc_path();
376         if (!path)
377                 return BLK_STS_RESOURCE;
378
379         if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
380                 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
381                 if (!bbio->csum) {
382                         btrfs_free_path(path);
383                         return BLK_STS_RESOURCE;
384                 }
385         } else {
386                 bbio->csum = bbio->csum_inline;
387         }
388
389         /*
390          * If requested number of sectors is larger than one leaf can contain,
391          * kick the readahead for csum tree.
392          */
393         if (nblocks > fs_info->csums_per_leaf)
394                 path->reada = READA_FORWARD;
395
396         /*
397          * the free space stuff is only read when it hasn't been
398          * updated in the current transaction.  So, we can safely
399          * read from the commit root and sidestep a nasty deadlock
400          * between reading the free space cache and updating the csum tree.
401          */
402         if (btrfs_is_free_space_inode(inode)) {
403                 path->search_commit_root = 1;
404                 path->skip_locking = 1;
405         }
406
407         while (bio_offset < orig_len) {
408                 int count;
409                 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
410                 u8 *csum_dst = bbio->csum +
411                         (bio_offset >> fs_info->sectorsize_bits) * csum_size;
412
413                 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
414                                          orig_len - bio_offset, csum_dst);
415                 if (count < 0) {
416                         ret = errno_to_blk_status(count);
417                         if (bbio->csum != bbio->csum_inline)
418                                 kfree(bbio->csum);
419                         bbio->csum = NULL;
420                         break;
421                 }
422
423                 /*
424                  * We didn't find a csum for this range.  We need to make sure
425                  * we complain loudly about this, because we are not NODATASUM.
426                  *
427                  * However for the DATA_RELOC inode we could potentially be
428                  * relocating data extents for a NODATASUM inode, so the inode
429                  * itself won't be marked with NODATASUM, but the extent we're
430                  * copying is in fact NODATASUM.  If we don't find a csum we
431                  * assume this is the case.
432                  */
433                 if (count == 0) {
434                         memset(csum_dst, 0, csum_size);
435                         count = 1;
436
437                         if (inode->root->root_key.objectid ==
438                             BTRFS_DATA_RELOC_TREE_OBJECTID) {
439                                 u64 file_offset = bbio->file_offset + bio_offset;
440
441                                 set_extent_bits(&inode->io_tree, file_offset,
442                                                 file_offset + sectorsize - 1,
443                                                 EXTENT_NODATASUM);
444                         } else {
445                                 btrfs_warn_rl(fs_info,
446                         "csum hole found for disk bytenr range [%llu, %llu)",
447                                 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
448                         }
449                 }
450                 bio_offset += count * sectorsize;
451         }
452
453         btrfs_free_path(path);
454         return ret;
455 }
456
457 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
458                             struct list_head *list, int search_commit,
459                             bool nowait)
460 {
461         struct btrfs_fs_info *fs_info = root->fs_info;
462         struct btrfs_key key;
463         struct btrfs_path *path;
464         struct extent_buffer *leaf;
465         struct btrfs_ordered_sum *sums;
466         struct btrfs_csum_item *item;
467         LIST_HEAD(tmplist);
468         int ret;
469
470         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
471                IS_ALIGNED(end + 1, fs_info->sectorsize));
472
473         path = btrfs_alloc_path();
474         if (!path)
475                 return -ENOMEM;
476
477         path->nowait = nowait;
478         if (search_commit) {
479                 path->skip_locking = 1;
480                 path->reada = READA_FORWARD;
481                 path->search_commit_root = 1;
482         }
483
484         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
485         key.offset = start;
486         key.type = BTRFS_EXTENT_CSUM_KEY;
487
488         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
489         if (ret < 0)
490                 goto fail;
491         if (ret > 0 && path->slots[0] > 0) {
492                 leaf = path->nodes[0];
493                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
494
495                 /*
496                  * There are two cases we can hit here for the previous csum
497                  * item:
498                  *
499                  *              |<- search range ->|
500                  *      |<- csum item ->|
501                  *
502                  * Or
503                  *                              |<- search range ->|
504                  *      |<- csum item ->|
505                  *
506                  * Check if the previous csum item covers the leading part of
507                  * the search range.  If so we have to start from previous csum
508                  * item.
509                  */
510                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
511                     key.type == BTRFS_EXTENT_CSUM_KEY) {
512                         if (bytes_to_csum_size(fs_info, start - key.offset) <
513                             btrfs_item_size(leaf, path->slots[0] - 1))
514                                 path->slots[0]--;
515                 }
516         }
517
518         while (start <= end) {
519                 u64 csum_end;
520
521                 leaf = path->nodes[0];
522                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
523                         ret = btrfs_next_leaf(root, path);
524                         if (ret < 0)
525                                 goto fail;
526                         if (ret > 0)
527                                 break;
528                         leaf = path->nodes[0];
529                 }
530
531                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
532                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
533                     key.type != BTRFS_EXTENT_CSUM_KEY ||
534                     key.offset > end)
535                         break;
536
537                 if (key.offset > start)
538                         start = key.offset;
539
540                 csum_end = key.offset + csum_size_to_bytes(fs_info,
541                                         btrfs_item_size(leaf, path->slots[0]));
542                 if (csum_end <= start) {
543                         path->slots[0]++;
544                         continue;
545                 }
546
547                 csum_end = min(csum_end, end + 1);
548                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
549                                       struct btrfs_csum_item);
550                 while (start < csum_end) {
551                         unsigned long offset;
552                         size_t size;
553
554                         size = min_t(size_t, csum_end - start,
555                                      max_ordered_sum_bytes(fs_info));
556                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
557                                        GFP_NOFS);
558                         if (!sums) {
559                                 ret = -ENOMEM;
560                                 goto fail;
561                         }
562
563                         sums->bytenr = start;
564                         sums->len = (int)size;
565
566                         offset = bytes_to_csum_size(fs_info, start - key.offset);
567
568                         read_extent_buffer(path->nodes[0],
569                                            sums->sums,
570                                            ((unsigned long)item) + offset,
571                                            bytes_to_csum_size(fs_info, size));
572
573                         start += size;
574                         list_add_tail(&sums->list, &tmplist);
575                 }
576                 path->slots[0]++;
577         }
578         ret = 0;
579 fail:
580         while (ret < 0 && !list_empty(&tmplist)) {
581                 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
582                 list_del(&sums->list);
583                 kfree(sums);
584         }
585         list_splice_tail(&tmplist, list);
586
587         btrfs_free_path(path);
588         return ret;
589 }
590
591 /*
592  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
593  * we return the result.
594  *
595  * This version will set the corresponding bits in @csum_bitmap to represent
596  * that there is a csum found.
597  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
598  * in is large enough to contain all csums.
599  */
600 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end,
601                               u8 *csum_buf, unsigned long *csum_bitmap,
602                               bool search_commit)
603 {
604         struct btrfs_fs_info *fs_info = root->fs_info;
605         struct btrfs_key key;
606         struct btrfs_path *path;
607         struct extent_buffer *leaf;
608         struct btrfs_csum_item *item;
609         const u64 orig_start = start;
610         int ret;
611
612         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
613                IS_ALIGNED(end + 1, fs_info->sectorsize));
614
615         path = btrfs_alloc_path();
616         if (!path)
617                 return -ENOMEM;
618
619         if (search_commit) {
620                 path->skip_locking = 1;
621                 path->reada = READA_FORWARD;
622                 path->search_commit_root = 1;
623         }
624
625         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
626         key.type = BTRFS_EXTENT_CSUM_KEY;
627         key.offset = start;
628
629         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
630         if (ret < 0)
631                 goto fail;
632         if (ret > 0 && path->slots[0] > 0) {
633                 leaf = path->nodes[0];
634                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
635
636                 /*
637                  * There are two cases we can hit here for the previous csum
638                  * item:
639                  *
640                  *              |<- search range ->|
641                  *      |<- csum item ->|
642                  *
643                  * Or
644                  *                              |<- search range ->|
645                  *      |<- csum item ->|
646                  *
647                  * Check if the previous csum item covers the leading part of
648                  * the search range.  If so we have to start from previous csum
649                  * item.
650                  */
651                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
652                     key.type == BTRFS_EXTENT_CSUM_KEY) {
653                         if (bytes_to_csum_size(fs_info, start - key.offset) <
654                             btrfs_item_size(leaf, path->slots[0] - 1))
655                                 path->slots[0]--;
656                 }
657         }
658
659         while (start <= end) {
660                 u64 csum_end;
661
662                 leaf = path->nodes[0];
663                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
664                         ret = btrfs_next_leaf(root, path);
665                         if (ret < 0)
666                                 goto fail;
667                         if (ret > 0)
668                                 break;
669                         leaf = path->nodes[0];
670                 }
671
672                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
673                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
674                     key.type != BTRFS_EXTENT_CSUM_KEY ||
675                     key.offset > end)
676                         break;
677
678                 if (key.offset > start)
679                         start = key.offset;
680
681                 csum_end = key.offset + csum_size_to_bytes(fs_info,
682                                         btrfs_item_size(leaf, path->slots[0]));
683                 if (csum_end <= start) {
684                         path->slots[0]++;
685                         continue;
686                 }
687
688                 csum_end = min(csum_end, end + 1);
689                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
690                                       struct btrfs_csum_item);
691                 while (start < csum_end) {
692                         unsigned long offset;
693                         size_t size;
694                         u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
695                                                 start - orig_start);
696
697                         size = min_t(size_t, csum_end - start, end + 1 - start);
698
699                         offset = bytes_to_csum_size(fs_info, start - key.offset);
700
701                         read_extent_buffer(path->nodes[0], csum_dest,
702                                            ((unsigned long)item) + offset,
703                                            bytes_to_csum_size(fs_info, size));
704
705                         bitmap_set(csum_bitmap,
706                                 (start - orig_start) >> fs_info->sectorsize_bits,
707                                 size >> fs_info->sectorsize_bits);
708
709                         start += size;
710                 }
711                 path->slots[0]++;
712         }
713         ret = 0;
714 fail:
715         btrfs_free_path(path);
716         return ret;
717 }
718
719 /*
720  * Calculate checksums of the data contained inside a bio.
721  */
722 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
723 {
724         struct btrfs_inode *inode = bbio->inode;
725         struct btrfs_fs_info *fs_info = inode->root->fs_info;
726         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
727         struct bio *bio = &bbio->bio;
728         u64 offset = bbio->file_offset;
729         struct btrfs_ordered_sum *sums;
730         struct btrfs_ordered_extent *ordered = NULL;
731         char *data;
732         struct bvec_iter iter;
733         struct bio_vec bvec;
734         int index;
735         unsigned int blockcount;
736         unsigned long total_bytes = 0;
737         unsigned long this_sum_bytes = 0;
738         int i;
739         unsigned nofs_flag;
740
741         nofs_flag = memalloc_nofs_save();
742         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
743                        GFP_KERNEL);
744         memalloc_nofs_restore(nofs_flag);
745
746         if (!sums)
747                 return BLK_STS_RESOURCE;
748
749         sums->len = bio->bi_iter.bi_size;
750         INIT_LIST_HEAD(&sums->list);
751
752         sums->bytenr = bio->bi_iter.bi_sector << 9;
753         index = 0;
754
755         shash->tfm = fs_info->csum_shash;
756
757         bio_for_each_segment(bvec, bio, iter) {
758                 if (!ordered) {
759                         ordered = btrfs_lookup_ordered_extent(inode, offset);
760                         /*
761                          * The bio range is not covered by any ordered extent,
762                          * must be a code logic error.
763                          */
764                         if (unlikely(!ordered)) {
765                                 WARN(1, KERN_WARNING
766                         "no ordered extent for root %llu ino %llu offset %llu\n",
767                                      inode->root->root_key.objectid,
768                                      btrfs_ino(inode), offset);
769                                 kvfree(sums);
770                                 return BLK_STS_IOERR;
771                         }
772                 }
773
774                 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
775                                                  bvec.bv_len + fs_info->sectorsize
776                                                  - 1);
777
778                 for (i = 0; i < blockcount; i++) {
779                         if (!(bio->bi_opf & REQ_BTRFS_ONE_ORDERED) &&
780                             !in_range(offset, ordered->file_offset,
781                                       ordered->num_bytes)) {
782                                 unsigned long bytes_left;
783
784                                 sums->len = this_sum_bytes;
785                                 this_sum_bytes = 0;
786                                 btrfs_add_ordered_sum(ordered, sums);
787                                 btrfs_put_ordered_extent(ordered);
788
789                                 bytes_left = bio->bi_iter.bi_size - total_bytes;
790
791                                 nofs_flag = memalloc_nofs_save();
792                                 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
793                                                       bytes_left), GFP_KERNEL);
794                                 memalloc_nofs_restore(nofs_flag);
795                                 if (!sums)
796                                         return BLK_STS_RESOURCE;
797
798                                 sums->len = bytes_left;
799                                 ordered = btrfs_lookup_ordered_extent(inode,
800                                                                 offset);
801                                 ASSERT(ordered); /* Logic error */
802                                 sums->bytenr = (bio->bi_iter.bi_sector << 9)
803                                         + total_bytes;
804                                 index = 0;
805                         }
806
807                         data = bvec_kmap_local(&bvec);
808                         crypto_shash_digest(shash,
809                                             data + (i * fs_info->sectorsize),
810                                             fs_info->sectorsize,
811                                             sums->sums + index);
812                         kunmap_local(data);
813                         index += fs_info->csum_size;
814                         offset += fs_info->sectorsize;
815                         this_sum_bytes += fs_info->sectorsize;
816                         total_bytes += fs_info->sectorsize;
817                 }
818
819         }
820         this_sum_bytes = 0;
821         btrfs_add_ordered_sum(ordered, sums);
822         btrfs_put_ordered_extent(ordered);
823         return 0;
824 }
825
826 /*
827  * Remove one checksum overlapping a range.
828  *
829  * This expects the key to describe the csum pointed to by the path, and it
830  * expects the csum to overlap the range [bytenr, len]
831  *
832  * The csum should not be entirely contained in the range and the range should
833  * not be entirely contained in the csum.
834  *
835  * This calls btrfs_truncate_item with the correct args based on the overlap,
836  * and fixes up the key as required.
837  */
838 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
839                                        struct btrfs_path *path,
840                                        struct btrfs_key *key,
841                                        u64 bytenr, u64 len)
842 {
843         struct extent_buffer *leaf;
844         const u32 csum_size = fs_info->csum_size;
845         u64 csum_end;
846         u64 end_byte = bytenr + len;
847         u32 blocksize_bits = fs_info->sectorsize_bits;
848
849         leaf = path->nodes[0];
850         csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
851         csum_end <<= blocksize_bits;
852         csum_end += key->offset;
853
854         if (key->offset < bytenr && csum_end <= end_byte) {
855                 /*
856                  *         [ bytenr - len ]
857                  *         [   ]
858                  *   [csum     ]
859                  *   A simple truncate off the end of the item
860                  */
861                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
862                 new_size *= csum_size;
863                 btrfs_truncate_item(path, new_size, 1);
864         } else if (key->offset >= bytenr && csum_end > end_byte &&
865                    end_byte > key->offset) {
866                 /*
867                  *         [ bytenr - len ]
868                  *                 [ ]
869                  *                 [csum     ]
870                  * we need to truncate from the beginning of the csum
871                  */
872                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
873                 new_size *= csum_size;
874
875                 btrfs_truncate_item(path, new_size, 0);
876
877                 key->offset = end_byte;
878                 btrfs_set_item_key_safe(fs_info, path, key);
879         } else {
880                 BUG();
881         }
882 }
883
884 /*
885  * Delete the csum items from the csum tree for a given range of bytes.
886  */
887 int btrfs_del_csums(struct btrfs_trans_handle *trans,
888                     struct btrfs_root *root, u64 bytenr, u64 len)
889 {
890         struct btrfs_fs_info *fs_info = trans->fs_info;
891         struct btrfs_path *path;
892         struct btrfs_key key;
893         u64 end_byte = bytenr + len;
894         u64 csum_end;
895         struct extent_buffer *leaf;
896         int ret = 0;
897         const u32 csum_size = fs_info->csum_size;
898         u32 blocksize_bits = fs_info->sectorsize_bits;
899
900         ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
901                root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
902
903         path = btrfs_alloc_path();
904         if (!path)
905                 return -ENOMEM;
906
907         while (1) {
908                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
909                 key.offset = end_byte - 1;
910                 key.type = BTRFS_EXTENT_CSUM_KEY;
911
912                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
913                 if (ret > 0) {
914                         ret = 0;
915                         if (path->slots[0] == 0)
916                                 break;
917                         path->slots[0]--;
918                 } else if (ret < 0) {
919                         break;
920                 }
921
922                 leaf = path->nodes[0];
923                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
924
925                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
926                     key.type != BTRFS_EXTENT_CSUM_KEY) {
927                         break;
928                 }
929
930                 if (key.offset >= end_byte)
931                         break;
932
933                 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
934                 csum_end <<= blocksize_bits;
935                 csum_end += key.offset;
936
937                 /* this csum ends before we start, we're done */
938                 if (csum_end <= bytenr)
939                         break;
940
941                 /* delete the entire item, it is inside our range */
942                 if (key.offset >= bytenr && csum_end <= end_byte) {
943                         int del_nr = 1;
944
945                         /*
946                          * Check how many csum items preceding this one in this
947                          * leaf correspond to our range and then delete them all
948                          * at once.
949                          */
950                         if (key.offset > bytenr && path->slots[0] > 0) {
951                                 int slot = path->slots[0] - 1;
952
953                                 while (slot >= 0) {
954                                         struct btrfs_key pk;
955
956                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
957                                         if (pk.offset < bytenr ||
958                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
959                                             pk.objectid !=
960                                             BTRFS_EXTENT_CSUM_OBJECTID)
961                                                 break;
962                                         path->slots[0] = slot;
963                                         del_nr++;
964                                         key.offset = pk.offset;
965                                         slot--;
966                                 }
967                         }
968                         ret = btrfs_del_items(trans, root, path,
969                                               path->slots[0], del_nr);
970                         if (ret)
971                                 break;
972                         if (key.offset == bytenr)
973                                 break;
974                 } else if (key.offset < bytenr && csum_end > end_byte) {
975                         unsigned long offset;
976                         unsigned long shift_len;
977                         unsigned long item_offset;
978                         /*
979                          *        [ bytenr - len ]
980                          *     [csum                ]
981                          *
982                          * Our bytes are in the middle of the csum,
983                          * we need to split this item and insert a new one.
984                          *
985                          * But we can't drop the path because the
986                          * csum could change, get removed, extended etc.
987                          *
988                          * The trick here is the max size of a csum item leaves
989                          * enough room in the tree block for a single
990                          * item header.  So, we split the item in place,
991                          * adding a new header pointing to the existing
992                          * bytes.  Then we loop around again and we have
993                          * a nicely formed csum item that we can neatly
994                          * truncate.
995                          */
996                         offset = (bytenr - key.offset) >> blocksize_bits;
997                         offset *= csum_size;
998
999                         shift_len = (len >> blocksize_bits) * csum_size;
1000
1001                         item_offset = btrfs_item_ptr_offset(leaf,
1002                                                             path->slots[0]);
1003
1004                         memzero_extent_buffer(leaf, item_offset + offset,
1005                                              shift_len);
1006                         key.offset = bytenr;
1007
1008                         /*
1009                          * btrfs_split_item returns -EAGAIN when the
1010                          * item changed size or key
1011                          */
1012                         ret = btrfs_split_item(trans, root, path, &key, offset);
1013                         if (ret && ret != -EAGAIN) {
1014                                 btrfs_abort_transaction(trans, ret);
1015                                 break;
1016                         }
1017                         ret = 0;
1018
1019                         key.offset = end_byte - 1;
1020                 } else {
1021                         truncate_one_csum(fs_info, path, &key, bytenr, len);
1022                         if (key.offset < bytenr)
1023                                 break;
1024                 }
1025                 btrfs_release_path(path);
1026         }
1027         btrfs_free_path(path);
1028         return ret;
1029 }
1030
1031 static int find_next_csum_offset(struct btrfs_root *root,
1032                                  struct btrfs_path *path,
1033                                  u64 *next_offset)
1034 {
1035         const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1036         struct btrfs_key found_key;
1037         int slot = path->slots[0] + 1;
1038         int ret;
1039
1040         if (nritems == 0 || slot >= nritems) {
1041                 ret = btrfs_next_leaf(root, path);
1042                 if (ret < 0) {
1043                         return ret;
1044                 } else if (ret > 0) {
1045                         *next_offset = (u64)-1;
1046                         return 0;
1047                 }
1048                 slot = path->slots[0];
1049         }
1050
1051         btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1052
1053         if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1054             found_key.type != BTRFS_EXTENT_CSUM_KEY)
1055                 *next_offset = (u64)-1;
1056         else
1057                 *next_offset = found_key.offset;
1058
1059         return 0;
1060 }
1061
1062 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1063                            struct btrfs_root *root,
1064                            struct btrfs_ordered_sum *sums)
1065 {
1066         struct btrfs_fs_info *fs_info = root->fs_info;
1067         struct btrfs_key file_key;
1068         struct btrfs_key found_key;
1069         struct btrfs_path *path;
1070         struct btrfs_csum_item *item;
1071         struct btrfs_csum_item *item_end;
1072         struct extent_buffer *leaf = NULL;
1073         u64 next_offset;
1074         u64 total_bytes = 0;
1075         u64 csum_offset;
1076         u64 bytenr;
1077         u32 ins_size;
1078         int index = 0;
1079         int found_next;
1080         int ret;
1081         const u32 csum_size = fs_info->csum_size;
1082
1083         path = btrfs_alloc_path();
1084         if (!path)
1085                 return -ENOMEM;
1086 again:
1087         next_offset = (u64)-1;
1088         found_next = 0;
1089         bytenr = sums->bytenr + total_bytes;
1090         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1091         file_key.offset = bytenr;
1092         file_key.type = BTRFS_EXTENT_CSUM_KEY;
1093
1094         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1095         if (!IS_ERR(item)) {
1096                 ret = 0;
1097                 leaf = path->nodes[0];
1098                 item_end = btrfs_item_ptr(leaf, path->slots[0],
1099                                           struct btrfs_csum_item);
1100                 item_end = (struct btrfs_csum_item *)((char *)item_end +
1101                            btrfs_item_size(leaf, path->slots[0]));
1102                 goto found;
1103         }
1104         ret = PTR_ERR(item);
1105         if (ret != -EFBIG && ret != -ENOENT)
1106                 goto out;
1107
1108         if (ret == -EFBIG) {
1109                 u32 item_size;
1110                 /* we found one, but it isn't big enough yet */
1111                 leaf = path->nodes[0];
1112                 item_size = btrfs_item_size(leaf, path->slots[0]);
1113                 if ((item_size / csum_size) >=
1114                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
1115                         /* already at max size, make a new one */
1116                         goto insert;
1117                 }
1118         } else {
1119                 /* We didn't find a csum item, insert one. */
1120                 ret = find_next_csum_offset(root, path, &next_offset);
1121                 if (ret < 0)
1122                         goto out;
1123                 found_next = 1;
1124                 goto insert;
1125         }
1126
1127         /*
1128          * At this point, we know the tree has a checksum item that ends at an
1129          * offset matching the start of the checksum range we want to insert.
1130          * We try to extend that item as much as possible and then add as many
1131          * checksums to it as they fit.
1132          *
1133          * First check if the leaf has enough free space for at least one
1134          * checksum. If it has go directly to the item extension code, otherwise
1135          * release the path and do a search for insertion before the extension.
1136          */
1137         if (btrfs_leaf_free_space(leaf) >= csum_size) {
1138                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1139                 csum_offset = (bytenr - found_key.offset) >>
1140                         fs_info->sectorsize_bits;
1141                 goto extend_csum;
1142         }
1143
1144         btrfs_release_path(path);
1145         path->search_for_extension = 1;
1146         ret = btrfs_search_slot(trans, root, &file_key, path,
1147                                 csum_size, 1);
1148         path->search_for_extension = 0;
1149         if (ret < 0)
1150                 goto out;
1151
1152         if (ret > 0) {
1153                 if (path->slots[0] == 0)
1154                         goto insert;
1155                 path->slots[0]--;
1156         }
1157
1158         leaf = path->nodes[0];
1159         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1160         csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1161
1162         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1163             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1164             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1165                 goto insert;
1166         }
1167
1168 extend_csum:
1169         if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1170             csum_size) {
1171                 int extend_nr;
1172                 u64 tmp;
1173                 u32 diff;
1174
1175                 tmp = sums->len - total_bytes;
1176                 tmp >>= fs_info->sectorsize_bits;
1177                 WARN_ON(tmp < 1);
1178                 extend_nr = max_t(int, 1, tmp);
1179
1180                 /*
1181                  * A log tree can already have checksum items with a subset of
1182                  * the checksums we are trying to log. This can happen after
1183                  * doing a sequence of partial writes into prealloc extents and
1184                  * fsyncs in between, with a full fsync logging a larger subrange
1185                  * of an extent for which a previous fast fsync logged a smaller
1186                  * subrange. And this happens in particular due to merging file
1187                  * extent items when we complete an ordered extent for a range
1188                  * covered by a prealloc extent - this is done at
1189                  * btrfs_mark_extent_written().
1190                  *
1191                  * So if we try to extend the previous checksum item, which has
1192                  * a range that ends at the start of the range we want to insert,
1193                  * make sure we don't extend beyond the start offset of the next
1194                  * checksum item. If we are at the last item in the leaf, then
1195                  * forget the optimization of extending and add a new checksum
1196                  * item - it is not worth the complexity of releasing the path,
1197                  * getting the first key for the next leaf, repeat the btree
1198                  * search, etc, because log trees are temporary anyway and it
1199                  * would only save a few bytes of leaf space.
1200                  */
1201                 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1202                         if (path->slots[0] + 1 >=
1203                             btrfs_header_nritems(path->nodes[0])) {
1204                                 ret = find_next_csum_offset(root, path, &next_offset);
1205                                 if (ret < 0)
1206                                         goto out;
1207                                 found_next = 1;
1208                                 goto insert;
1209                         }
1210
1211                         ret = find_next_csum_offset(root, path, &next_offset);
1212                         if (ret < 0)
1213                                 goto out;
1214
1215                         tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1216                         if (tmp <= INT_MAX)
1217                                 extend_nr = min_t(int, extend_nr, tmp);
1218                 }
1219
1220                 diff = (csum_offset + extend_nr) * csum_size;
1221                 diff = min(diff,
1222                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1223
1224                 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1225                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1226                 diff /= csum_size;
1227                 diff *= csum_size;
1228
1229                 btrfs_extend_item(path, diff);
1230                 ret = 0;
1231                 goto csum;
1232         }
1233
1234 insert:
1235         btrfs_release_path(path);
1236         csum_offset = 0;
1237         if (found_next) {
1238                 u64 tmp;
1239
1240                 tmp = sums->len - total_bytes;
1241                 tmp >>= fs_info->sectorsize_bits;
1242                 tmp = min(tmp, (next_offset - file_key.offset) >>
1243                                          fs_info->sectorsize_bits);
1244
1245                 tmp = max_t(u64, 1, tmp);
1246                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1247                 ins_size = csum_size * tmp;
1248         } else {
1249                 ins_size = csum_size;
1250         }
1251         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1252                                       ins_size);
1253         if (ret < 0)
1254                 goto out;
1255         if (WARN_ON(ret != 0))
1256                 goto out;
1257         leaf = path->nodes[0];
1258 csum:
1259         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1260         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1261                                       btrfs_item_size(leaf, path->slots[0]));
1262         item = (struct btrfs_csum_item *)((unsigned char *)item +
1263                                           csum_offset * csum_size);
1264 found:
1265         ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1266         ins_size *= csum_size;
1267         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1268                               ins_size);
1269         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1270                             ins_size);
1271
1272         index += ins_size;
1273         ins_size /= csum_size;
1274         total_bytes += ins_size * fs_info->sectorsize;
1275
1276         btrfs_mark_buffer_dirty(path->nodes[0]);
1277         if (total_bytes < sums->len) {
1278                 btrfs_release_path(path);
1279                 cond_resched();
1280                 goto again;
1281         }
1282 out:
1283         btrfs_free_path(path);
1284         return ret;
1285 }
1286
1287 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1288                                      const struct btrfs_path *path,
1289                                      struct btrfs_file_extent_item *fi,
1290                                      struct extent_map *em)
1291 {
1292         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1293         struct btrfs_root *root = inode->root;
1294         struct extent_buffer *leaf = path->nodes[0];
1295         const int slot = path->slots[0];
1296         struct btrfs_key key;
1297         u64 extent_start, extent_end;
1298         u64 bytenr;
1299         u8 type = btrfs_file_extent_type(leaf, fi);
1300         int compress_type = btrfs_file_extent_compression(leaf, fi);
1301
1302         btrfs_item_key_to_cpu(leaf, &key, slot);
1303         extent_start = key.offset;
1304         extent_end = btrfs_file_extent_end(path);
1305         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1306         em->generation = btrfs_file_extent_generation(leaf, fi);
1307         if (type == BTRFS_FILE_EXTENT_REG ||
1308             type == BTRFS_FILE_EXTENT_PREALLOC) {
1309                 em->start = extent_start;
1310                 em->len = extent_end - extent_start;
1311                 em->orig_start = extent_start -
1312                         btrfs_file_extent_offset(leaf, fi);
1313                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1314                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1315                 if (bytenr == 0) {
1316                         em->block_start = EXTENT_MAP_HOLE;
1317                         return;
1318                 }
1319                 if (compress_type != BTRFS_COMPRESS_NONE) {
1320                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1321                         em->compress_type = compress_type;
1322                         em->block_start = bytenr;
1323                         em->block_len = em->orig_block_len;
1324                 } else {
1325                         bytenr += btrfs_file_extent_offset(leaf, fi);
1326                         em->block_start = bytenr;
1327                         em->block_len = em->len;
1328                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1329                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1330                 }
1331         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1332                 em->block_start = EXTENT_MAP_INLINE;
1333                 em->start = extent_start;
1334                 em->len = extent_end - extent_start;
1335                 /*
1336                  * Initialize orig_start and block_len with the same values
1337                  * as in inode.c:btrfs_get_extent().
1338                  */
1339                 em->orig_start = EXTENT_MAP_HOLE;
1340                 em->block_len = (u64)-1;
1341                 em->compress_type = compress_type;
1342                 if (compress_type != BTRFS_COMPRESS_NONE)
1343                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1344         } else {
1345                 btrfs_err(fs_info,
1346                           "unknown file extent item type %d, inode %llu, offset %llu, "
1347                           "root %llu", type, btrfs_ino(inode), extent_start,
1348                           root->root_key.objectid);
1349         }
1350 }
1351
1352 /*
1353  * Returns the end offset (non inclusive) of the file extent item the given path
1354  * points to. If it points to an inline extent, the returned offset is rounded
1355  * up to the sector size.
1356  */
1357 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1358 {
1359         const struct extent_buffer *leaf = path->nodes[0];
1360         const int slot = path->slots[0];
1361         struct btrfs_file_extent_item *fi;
1362         struct btrfs_key key;
1363         u64 end;
1364
1365         btrfs_item_key_to_cpu(leaf, &key, slot);
1366         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1367         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1368
1369         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1370                 end = btrfs_file_extent_ram_bytes(leaf, fi);
1371                 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1372         } else {
1373                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1374         }
1375
1376         return end;
1377 }