Merge tag 'char-misc-6.1-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[platform/kernel/linux-starfive.git] / fs / btrfs / file-item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "misc.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "print-tree.h"
18 #include "compression.h"
19
20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
21                                    sizeof(struct btrfs_item) * 2) / \
22                                   size) - 1))
23
24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
25                                        PAGE_SIZE))
26
27 /**
28  * Set inode's size according to filesystem options
29  *
30  * @inode:      inode we want to update the disk_i_size for
31  * @new_i_size: i_size we want to set to, 0 if we use i_size
32  *
33  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
34  * returns as it is perfectly fine with a file that has holes without hole file
35  * extent items.
36  *
37  * However without NO_HOLES we need to only return the area that is contiguous
38  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
39  * to an extent that has a gap in between.
40  *
41  * Finally new_i_size should only be set in the case of truncate where we're not
42  * ready to use i_size_read() as the limiter yet.
43  */
44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
45 {
46         struct btrfs_fs_info *fs_info = inode->root->fs_info;
47         u64 start, end, i_size;
48         int ret;
49
50         i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
51         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
52                 inode->disk_i_size = i_size;
53                 return;
54         }
55
56         spin_lock(&inode->lock);
57         ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
58                                          &end, EXTENT_DIRTY);
59         if (!ret && start == 0)
60                 i_size = min(i_size, end + 1);
61         else
62                 i_size = 0;
63         inode->disk_i_size = i_size;
64         spin_unlock(&inode->lock);
65 }
66
67 /**
68  * Mark range within a file as having a new extent inserted
69  *
70  * @inode: inode being modified
71  * @start: start file offset of the file extent we've inserted
72  * @len:   logical length of the file extent item
73  *
74  * Call when we are inserting a new file extent where there was none before.
75  * Does not need to call this in the case where we're replacing an existing file
76  * extent, however if not sure it's fine to call this multiple times.
77  *
78  * The start and len must match the file extent item, so thus must be sectorsize
79  * aligned.
80  */
81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
82                                       u64 len)
83 {
84         if (len == 0)
85                 return 0;
86
87         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
88
89         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
90                 return 0;
91         return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
92                                EXTENT_DIRTY);
93 }
94
95 /**
96  * Marks an inode range as not having a backing extent
97  *
98  * @inode: inode being modified
99  * @start: start file offset of the file extent we've inserted
100  * @len:   logical length of the file extent item
101  *
102  * Called when we drop a file extent, for example when we truncate.  Doesn't
103  * need to be called for cases where we're replacing a file extent, like when
104  * we've COWed a file extent.
105  *
106  * The start and len must match the file extent item, so thus must be sectorsize
107  * aligned.
108  */
109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
110                                         u64 len)
111 {
112         if (len == 0)
113                 return 0;
114
115         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
116                len == (u64)-1);
117
118         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
119                 return 0;
120         return clear_extent_bit(&inode->file_extent_tree, start,
121                                 start + len - 1, EXTENT_DIRTY, NULL);
122 }
123
124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
125                                         u16 csum_size)
126 {
127         u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
128
129         return ncsums * fs_info->sectorsize;
130 }
131
132 /*
133  * Calculate the total size needed to allocate for an ordered sum structure
134  * spanning @bytes in the file.
135  */
136 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
137 {
138         int num_sectors = (int)DIV_ROUND_UP(bytes, fs_info->sectorsize);
139
140         return sizeof(struct btrfs_ordered_sum) + num_sectors * fs_info->csum_size;
141 }
142
143 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
144                              struct btrfs_root *root,
145                              u64 objectid, u64 pos, u64 num_bytes)
146 {
147         int ret = 0;
148         struct btrfs_file_extent_item *item;
149         struct btrfs_key file_key;
150         struct btrfs_path *path;
151         struct extent_buffer *leaf;
152
153         path = btrfs_alloc_path();
154         if (!path)
155                 return -ENOMEM;
156         file_key.objectid = objectid;
157         file_key.offset = pos;
158         file_key.type = BTRFS_EXTENT_DATA_KEY;
159
160         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
161                                       sizeof(*item));
162         if (ret < 0)
163                 goto out;
164         BUG_ON(ret); /* Can't happen */
165         leaf = path->nodes[0];
166         item = btrfs_item_ptr(leaf, path->slots[0],
167                               struct btrfs_file_extent_item);
168         btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
169         btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
170         btrfs_set_file_extent_offset(leaf, item, 0);
171         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
172         btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
173         btrfs_set_file_extent_generation(leaf, item, trans->transid);
174         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
175         btrfs_set_file_extent_compression(leaf, item, 0);
176         btrfs_set_file_extent_encryption(leaf, item, 0);
177         btrfs_set_file_extent_other_encoding(leaf, item, 0);
178
179         btrfs_mark_buffer_dirty(leaf);
180 out:
181         btrfs_free_path(path);
182         return ret;
183 }
184
185 static struct btrfs_csum_item *
186 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
187                   struct btrfs_root *root,
188                   struct btrfs_path *path,
189                   u64 bytenr, int cow)
190 {
191         struct btrfs_fs_info *fs_info = root->fs_info;
192         int ret;
193         struct btrfs_key file_key;
194         struct btrfs_key found_key;
195         struct btrfs_csum_item *item;
196         struct extent_buffer *leaf;
197         u64 csum_offset = 0;
198         const u32 csum_size = fs_info->csum_size;
199         int csums_in_item;
200
201         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
202         file_key.offset = bytenr;
203         file_key.type = BTRFS_EXTENT_CSUM_KEY;
204         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
205         if (ret < 0)
206                 goto fail;
207         leaf = path->nodes[0];
208         if (ret > 0) {
209                 ret = 1;
210                 if (path->slots[0] == 0)
211                         goto fail;
212                 path->slots[0]--;
213                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
214                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
215                         goto fail;
216
217                 csum_offset = (bytenr - found_key.offset) >>
218                                 fs_info->sectorsize_bits;
219                 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
220                 csums_in_item /= csum_size;
221
222                 if (csum_offset == csums_in_item) {
223                         ret = -EFBIG;
224                         goto fail;
225                 } else if (csum_offset > csums_in_item) {
226                         goto fail;
227                 }
228         }
229         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
230         item = (struct btrfs_csum_item *)((unsigned char *)item +
231                                           csum_offset * csum_size);
232         return item;
233 fail:
234         if (ret > 0)
235                 ret = -ENOENT;
236         return ERR_PTR(ret);
237 }
238
239 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
240                              struct btrfs_root *root,
241                              struct btrfs_path *path, u64 objectid,
242                              u64 offset, int mod)
243 {
244         struct btrfs_key file_key;
245         int ins_len = mod < 0 ? -1 : 0;
246         int cow = mod != 0;
247
248         file_key.objectid = objectid;
249         file_key.offset = offset;
250         file_key.type = BTRFS_EXTENT_DATA_KEY;
251
252         return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
253 }
254
255 /*
256  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
257  * estore the result to @dst.
258  *
259  * Return >0 for the number of sectors we found.
260  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
261  * for it. Caller may want to try next sector until one range is hit.
262  * Return <0 for fatal error.
263  */
264 static int search_csum_tree(struct btrfs_fs_info *fs_info,
265                             struct btrfs_path *path, u64 disk_bytenr,
266                             u64 len, u8 *dst)
267 {
268         struct btrfs_root *csum_root;
269         struct btrfs_csum_item *item = NULL;
270         struct btrfs_key key;
271         const u32 sectorsize = fs_info->sectorsize;
272         const u32 csum_size = fs_info->csum_size;
273         u32 itemsize;
274         int ret;
275         u64 csum_start;
276         u64 csum_len;
277
278         ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
279                IS_ALIGNED(len, sectorsize));
280
281         /* Check if the current csum item covers disk_bytenr */
282         if (path->nodes[0]) {
283                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
284                                       struct btrfs_csum_item);
285                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
286                 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
287
288                 csum_start = key.offset;
289                 csum_len = (itemsize / csum_size) * sectorsize;
290
291                 if (in_range(disk_bytenr, csum_start, csum_len))
292                         goto found;
293         }
294
295         /* Current item doesn't contain the desired range, search again */
296         btrfs_release_path(path);
297         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
298         item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
299         if (IS_ERR(item)) {
300                 ret = PTR_ERR(item);
301                 goto out;
302         }
303         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
304         itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
305
306         csum_start = key.offset;
307         csum_len = (itemsize / csum_size) * sectorsize;
308         ASSERT(in_range(disk_bytenr, csum_start, csum_len));
309
310 found:
311         ret = (min(csum_start + csum_len, disk_bytenr + len) -
312                    disk_bytenr) >> fs_info->sectorsize_bits;
313         read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
314                         ret * csum_size);
315 out:
316         if (ret == -ENOENT || ret == -EFBIG)
317                 ret = 0;
318         return ret;
319 }
320
321 /*
322  * Locate the file_offset of @cur_disk_bytenr of a @bio.
323  *
324  * Bio of btrfs represents read range of
325  * [bi_sector << 9, bi_sector << 9 + bi_size).
326  * Knowing this, we can iterate through each bvec to locate the page belong to
327  * @cur_disk_bytenr and get the file offset.
328  *
329  * @inode is used to determine if the bvec page really belongs to @inode.
330  *
331  * Return 0 if we can't find the file offset
332  * Return >0 if we find the file offset and restore it to @file_offset_ret
333  */
334 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
335                                      u64 disk_bytenr, u64 *file_offset_ret)
336 {
337         struct bvec_iter iter;
338         struct bio_vec bvec;
339         u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
340         int ret = 0;
341
342         bio_for_each_segment(bvec, bio, iter) {
343                 struct page *page = bvec.bv_page;
344
345                 if (cur > disk_bytenr)
346                         break;
347                 if (cur + bvec.bv_len <= disk_bytenr) {
348                         cur += bvec.bv_len;
349                         continue;
350                 }
351                 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
352                 if (page->mapping && page->mapping->host &&
353                     page->mapping->host == inode) {
354                         ret = 1;
355                         *file_offset_ret = page_offset(page) + bvec.bv_offset +
356                                            disk_bytenr - cur;
357                         break;
358                 }
359         }
360         return ret;
361 }
362
363 /**
364  * Lookup the checksum for the read bio in csum tree.
365  *
366  * @inode: inode that the bio is for.
367  * @bio: bio to look up.
368  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
369  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
370  *       NULL, the checksum buffer is allocated and returned in
371  *       btrfs_bio(bio)->csum instead.
372  *
373  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
374  */
375 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
376 {
377         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
378         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
379         struct btrfs_bio *bbio = NULL;
380         struct btrfs_path *path;
381         const u32 sectorsize = fs_info->sectorsize;
382         const u32 csum_size = fs_info->csum_size;
383         u32 orig_len = bio->bi_iter.bi_size;
384         u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
385         u64 cur_disk_bytenr;
386         u8 *csum;
387         const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
388         int count = 0;
389         blk_status_t ret = BLK_STS_OK;
390
391         if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
392             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
393                 return BLK_STS_OK;
394
395         /*
396          * This function is only called for read bio.
397          *
398          * This means two things:
399          * - All our csums should only be in csum tree
400          *   No ordered extents csums, as ordered extents are only for write
401          *   path.
402          * - No need to bother any other info from bvec
403          *   Since we're looking up csums, the only important info is the
404          *   disk_bytenr and the length, which can be extracted from bi_iter
405          *   directly.
406          */
407         ASSERT(bio_op(bio) == REQ_OP_READ);
408         path = btrfs_alloc_path();
409         if (!path)
410                 return BLK_STS_RESOURCE;
411
412         if (!dst) {
413                 bbio = btrfs_bio(bio);
414
415                 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
416                         bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
417                         if (!bbio->csum) {
418                                 btrfs_free_path(path);
419                                 return BLK_STS_RESOURCE;
420                         }
421                 } else {
422                         bbio->csum = bbio->csum_inline;
423                 }
424                 csum = bbio->csum;
425         } else {
426                 csum = dst;
427         }
428
429         /*
430          * If requested number of sectors is larger than one leaf can contain,
431          * kick the readahead for csum tree.
432          */
433         if (nblocks > fs_info->csums_per_leaf)
434                 path->reada = READA_FORWARD;
435
436         /*
437          * the free space stuff is only read when it hasn't been
438          * updated in the current transaction.  So, we can safely
439          * read from the commit root and sidestep a nasty deadlock
440          * between reading the free space cache and updating the csum tree.
441          */
442         if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
443                 path->search_commit_root = 1;
444                 path->skip_locking = 1;
445         }
446
447         for (cur_disk_bytenr = orig_disk_bytenr;
448              cur_disk_bytenr < orig_disk_bytenr + orig_len;
449              cur_disk_bytenr += (count * sectorsize)) {
450                 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
451                 unsigned int sector_offset;
452                 u8 *csum_dst;
453
454                 /*
455                  * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
456                  * we're calculating the offset to the bio start.
457                  *
458                  * Bio size is limited to UINT_MAX, thus unsigned int is large
459                  * enough to contain the raw result, not to mention the right
460                  * shifted result.
461                  */
462                 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
463                 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
464                                 fs_info->sectorsize_bits;
465                 csum_dst = csum + sector_offset * csum_size;
466
467                 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
468                                          search_len, csum_dst);
469                 if (count < 0) {
470                         ret = errno_to_blk_status(count);
471                         if (bbio)
472                                 btrfs_bio_free_csum(bbio);
473                         break;
474                 }
475
476                 /*
477                  * We didn't find a csum for this range.  We need to make sure
478                  * we complain loudly about this, because we are not NODATASUM.
479                  *
480                  * However for the DATA_RELOC inode we could potentially be
481                  * relocating data extents for a NODATASUM inode, so the inode
482                  * itself won't be marked with NODATASUM, but the extent we're
483                  * copying is in fact NODATASUM.  If we don't find a csum we
484                  * assume this is the case.
485                  */
486                 if (count == 0) {
487                         memset(csum_dst, 0, csum_size);
488                         count = 1;
489
490                         if (BTRFS_I(inode)->root->root_key.objectid ==
491                             BTRFS_DATA_RELOC_TREE_OBJECTID) {
492                                 u64 file_offset;
493                                 int ret;
494
495                                 ret = search_file_offset_in_bio(bio, inode,
496                                                 cur_disk_bytenr, &file_offset);
497                                 if (ret)
498                                         set_extent_bits(io_tree, file_offset,
499                                                 file_offset + sectorsize - 1,
500                                                 EXTENT_NODATASUM);
501                         } else {
502                                 btrfs_warn_rl(fs_info,
503                         "csum hole found for disk bytenr range [%llu, %llu)",
504                                 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
505                         }
506                 }
507         }
508
509         btrfs_free_path(path);
510         return ret;
511 }
512
513 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
514                              struct list_head *list, int search_commit,
515                              bool nowait)
516 {
517         struct btrfs_fs_info *fs_info = root->fs_info;
518         struct btrfs_key key;
519         struct btrfs_path *path;
520         struct extent_buffer *leaf;
521         struct btrfs_ordered_sum *sums;
522         struct btrfs_csum_item *item;
523         LIST_HEAD(tmplist);
524         unsigned long offset;
525         int ret;
526         size_t size;
527         u64 csum_end;
528         const u32 csum_size = fs_info->csum_size;
529
530         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
531                IS_ALIGNED(end + 1, fs_info->sectorsize));
532
533         path = btrfs_alloc_path();
534         if (!path)
535                 return -ENOMEM;
536
537         path->nowait = nowait;
538         if (search_commit) {
539                 path->skip_locking = 1;
540                 path->reada = READA_FORWARD;
541                 path->search_commit_root = 1;
542         }
543
544         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
545         key.offset = start;
546         key.type = BTRFS_EXTENT_CSUM_KEY;
547
548         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
549         if (ret < 0)
550                 goto fail;
551         if (ret > 0 && path->slots[0] > 0) {
552                 leaf = path->nodes[0];
553                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
554                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
555                     key.type == BTRFS_EXTENT_CSUM_KEY) {
556                         offset = (start - key.offset) >> fs_info->sectorsize_bits;
557                         if (offset * csum_size <
558                             btrfs_item_size(leaf, path->slots[0] - 1))
559                                 path->slots[0]--;
560                 }
561         }
562
563         while (start <= end) {
564                 leaf = path->nodes[0];
565                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
566                         ret = btrfs_next_leaf(root, path);
567                         if (ret < 0)
568                                 goto fail;
569                         if (ret > 0)
570                                 break;
571                         leaf = path->nodes[0];
572                 }
573
574                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
575                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
576                     key.type != BTRFS_EXTENT_CSUM_KEY ||
577                     key.offset > end)
578                         break;
579
580                 if (key.offset > start)
581                         start = key.offset;
582
583                 size = btrfs_item_size(leaf, path->slots[0]);
584                 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
585                 if (csum_end <= start) {
586                         path->slots[0]++;
587                         continue;
588                 }
589
590                 csum_end = min(csum_end, end + 1);
591                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
592                                       struct btrfs_csum_item);
593                 while (start < csum_end) {
594                         size = min_t(size_t, csum_end - start,
595                                      max_ordered_sum_bytes(fs_info, csum_size));
596                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
597                                        GFP_NOFS);
598                         if (!sums) {
599                                 ret = -ENOMEM;
600                                 goto fail;
601                         }
602
603                         sums->bytenr = start;
604                         sums->len = (int)size;
605
606                         offset = (start - key.offset) >> fs_info->sectorsize_bits;
607                         offset *= csum_size;
608                         size >>= fs_info->sectorsize_bits;
609
610                         read_extent_buffer(path->nodes[0],
611                                            sums->sums,
612                                            ((unsigned long)item) + offset,
613                                            csum_size * size);
614
615                         start += fs_info->sectorsize * size;
616                         list_add_tail(&sums->list, &tmplist);
617                 }
618                 path->slots[0]++;
619         }
620         ret = 0;
621 fail:
622         while (ret < 0 && !list_empty(&tmplist)) {
623                 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
624                 list_del(&sums->list);
625                 kfree(sums);
626         }
627         list_splice_tail(&tmplist, list);
628
629         btrfs_free_path(path);
630         return ret;
631 }
632
633 /**
634  * Calculate checksums of the data contained inside a bio
635  *
636  * @inode:       Owner of the data inside the bio
637  * @bio:         Contains the data to be checksummed
638  * @offset:      If (u64)-1, @bio may contain discontiguous bio vecs, so the
639  *               file offsets are determined from the page offsets in the bio.
640  *               Otherwise, this is the starting file offset of the bio vecs in
641  *               @bio, which must be contiguous.
642  * @one_ordered: If true, @bio only refers to one ordered extent.
643  */
644 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
645                                 u64 offset, bool one_ordered)
646 {
647         struct btrfs_fs_info *fs_info = inode->root->fs_info;
648         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
649         struct btrfs_ordered_sum *sums;
650         struct btrfs_ordered_extent *ordered = NULL;
651         const bool use_page_offsets = (offset == (u64)-1);
652         char *data;
653         struct bvec_iter iter;
654         struct bio_vec bvec;
655         int index;
656         unsigned int blockcount;
657         unsigned long total_bytes = 0;
658         unsigned long this_sum_bytes = 0;
659         int i;
660         unsigned nofs_flag;
661
662         nofs_flag = memalloc_nofs_save();
663         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
664                        GFP_KERNEL);
665         memalloc_nofs_restore(nofs_flag);
666
667         if (!sums)
668                 return BLK_STS_RESOURCE;
669
670         sums->len = bio->bi_iter.bi_size;
671         INIT_LIST_HEAD(&sums->list);
672
673         sums->bytenr = bio->bi_iter.bi_sector << 9;
674         index = 0;
675
676         shash->tfm = fs_info->csum_shash;
677
678         bio_for_each_segment(bvec, bio, iter) {
679                 if (use_page_offsets)
680                         offset = page_offset(bvec.bv_page) + bvec.bv_offset;
681
682                 if (!ordered) {
683                         ordered = btrfs_lookup_ordered_extent(inode, offset);
684                         /*
685                          * The bio range is not covered by any ordered extent,
686                          * must be a code logic error.
687                          */
688                         if (unlikely(!ordered)) {
689                                 WARN(1, KERN_WARNING
690                         "no ordered extent for root %llu ino %llu offset %llu\n",
691                                      inode->root->root_key.objectid,
692                                      btrfs_ino(inode), offset);
693                                 kvfree(sums);
694                                 return BLK_STS_IOERR;
695                         }
696                 }
697
698                 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
699                                                  bvec.bv_len + fs_info->sectorsize
700                                                  - 1);
701
702                 for (i = 0; i < blockcount; i++) {
703                         if (!one_ordered &&
704                             !in_range(offset, ordered->file_offset,
705                                       ordered->num_bytes)) {
706                                 unsigned long bytes_left;
707
708                                 sums->len = this_sum_bytes;
709                                 this_sum_bytes = 0;
710                                 btrfs_add_ordered_sum(ordered, sums);
711                                 btrfs_put_ordered_extent(ordered);
712
713                                 bytes_left = bio->bi_iter.bi_size - total_bytes;
714
715                                 nofs_flag = memalloc_nofs_save();
716                                 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
717                                                       bytes_left), GFP_KERNEL);
718                                 memalloc_nofs_restore(nofs_flag);
719                                 BUG_ON(!sums); /* -ENOMEM */
720                                 sums->len = bytes_left;
721                                 ordered = btrfs_lookup_ordered_extent(inode,
722                                                                 offset);
723                                 ASSERT(ordered); /* Logic error */
724                                 sums->bytenr = (bio->bi_iter.bi_sector << 9)
725                                         + total_bytes;
726                                 index = 0;
727                         }
728
729                         data = bvec_kmap_local(&bvec);
730                         crypto_shash_digest(shash,
731                                             data + (i * fs_info->sectorsize),
732                                             fs_info->sectorsize,
733                                             sums->sums + index);
734                         kunmap_local(data);
735                         index += fs_info->csum_size;
736                         offset += fs_info->sectorsize;
737                         this_sum_bytes += fs_info->sectorsize;
738                         total_bytes += fs_info->sectorsize;
739                 }
740
741         }
742         this_sum_bytes = 0;
743         btrfs_add_ordered_sum(ordered, sums);
744         btrfs_put_ordered_extent(ordered);
745         return 0;
746 }
747
748 /*
749  * helper function for csum removal, this expects the
750  * key to describe the csum pointed to by the path, and it expects
751  * the csum to overlap the range [bytenr, len]
752  *
753  * The csum should not be entirely contained in the range and the
754  * range should not be entirely contained in the csum.
755  *
756  * This calls btrfs_truncate_item with the correct args based on the
757  * overlap, and fixes up the key as required.
758  */
759 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
760                                        struct btrfs_path *path,
761                                        struct btrfs_key *key,
762                                        u64 bytenr, u64 len)
763 {
764         struct extent_buffer *leaf;
765         const u32 csum_size = fs_info->csum_size;
766         u64 csum_end;
767         u64 end_byte = bytenr + len;
768         u32 blocksize_bits = fs_info->sectorsize_bits;
769
770         leaf = path->nodes[0];
771         csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
772         csum_end <<= blocksize_bits;
773         csum_end += key->offset;
774
775         if (key->offset < bytenr && csum_end <= end_byte) {
776                 /*
777                  *         [ bytenr - len ]
778                  *         [   ]
779                  *   [csum     ]
780                  *   A simple truncate off the end of the item
781                  */
782                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
783                 new_size *= csum_size;
784                 btrfs_truncate_item(path, new_size, 1);
785         } else if (key->offset >= bytenr && csum_end > end_byte &&
786                    end_byte > key->offset) {
787                 /*
788                  *         [ bytenr - len ]
789                  *                 [ ]
790                  *                 [csum     ]
791                  * we need to truncate from the beginning of the csum
792                  */
793                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
794                 new_size *= csum_size;
795
796                 btrfs_truncate_item(path, new_size, 0);
797
798                 key->offset = end_byte;
799                 btrfs_set_item_key_safe(fs_info, path, key);
800         } else {
801                 BUG();
802         }
803 }
804
805 /*
806  * deletes the csum items from the csum tree for a given
807  * range of bytes.
808  */
809 int btrfs_del_csums(struct btrfs_trans_handle *trans,
810                     struct btrfs_root *root, u64 bytenr, u64 len)
811 {
812         struct btrfs_fs_info *fs_info = trans->fs_info;
813         struct btrfs_path *path;
814         struct btrfs_key key;
815         u64 end_byte = bytenr + len;
816         u64 csum_end;
817         struct extent_buffer *leaf;
818         int ret = 0;
819         const u32 csum_size = fs_info->csum_size;
820         u32 blocksize_bits = fs_info->sectorsize_bits;
821
822         ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
823                root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
824
825         path = btrfs_alloc_path();
826         if (!path)
827                 return -ENOMEM;
828
829         while (1) {
830                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
831                 key.offset = end_byte - 1;
832                 key.type = BTRFS_EXTENT_CSUM_KEY;
833
834                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
835                 if (ret > 0) {
836                         ret = 0;
837                         if (path->slots[0] == 0)
838                                 break;
839                         path->slots[0]--;
840                 } else if (ret < 0) {
841                         break;
842                 }
843
844                 leaf = path->nodes[0];
845                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
846
847                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
848                     key.type != BTRFS_EXTENT_CSUM_KEY) {
849                         break;
850                 }
851
852                 if (key.offset >= end_byte)
853                         break;
854
855                 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
856                 csum_end <<= blocksize_bits;
857                 csum_end += key.offset;
858
859                 /* this csum ends before we start, we're done */
860                 if (csum_end <= bytenr)
861                         break;
862
863                 /* delete the entire item, it is inside our range */
864                 if (key.offset >= bytenr && csum_end <= end_byte) {
865                         int del_nr = 1;
866
867                         /*
868                          * Check how many csum items preceding this one in this
869                          * leaf correspond to our range and then delete them all
870                          * at once.
871                          */
872                         if (key.offset > bytenr && path->slots[0] > 0) {
873                                 int slot = path->slots[0] - 1;
874
875                                 while (slot >= 0) {
876                                         struct btrfs_key pk;
877
878                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
879                                         if (pk.offset < bytenr ||
880                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
881                                             pk.objectid !=
882                                             BTRFS_EXTENT_CSUM_OBJECTID)
883                                                 break;
884                                         path->slots[0] = slot;
885                                         del_nr++;
886                                         key.offset = pk.offset;
887                                         slot--;
888                                 }
889                         }
890                         ret = btrfs_del_items(trans, root, path,
891                                               path->slots[0], del_nr);
892                         if (ret)
893                                 break;
894                         if (key.offset == bytenr)
895                                 break;
896                 } else if (key.offset < bytenr && csum_end > end_byte) {
897                         unsigned long offset;
898                         unsigned long shift_len;
899                         unsigned long item_offset;
900                         /*
901                          *        [ bytenr - len ]
902                          *     [csum                ]
903                          *
904                          * Our bytes are in the middle of the csum,
905                          * we need to split this item and insert a new one.
906                          *
907                          * But we can't drop the path because the
908                          * csum could change, get removed, extended etc.
909                          *
910                          * The trick here is the max size of a csum item leaves
911                          * enough room in the tree block for a single
912                          * item header.  So, we split the item in place,
913                          * adding a new header pointing to the existing
914                          * bytes.  Then we loop around again and we have
915                          * a nicely formed csum item that we can neatly
916                          * truncate.
917                          */
918                         offset = (bytenr - key.offset) >> blocksize_bits;
919                         offset *= csum_size;
920
921                         shift_len = (len >> blocksize_bits) * csum_size;
922
923                         item_offset = btrfs_item_ptr_offset(leaf,
924                                                             path->slots[0]);
925
926                         memzero_extent_buffer(leaf, item_offset + offset,
927                                              shift_len);
928                         key.offset = bytenr;
929
930                         /*
931                          * btrfs_split_item returns -EAGAIN when the
932                          * item changed size or key
933                          */
934                         ret = btrfs_split_item(trans, root, path, &key, offset);
935                         if (ret && ret != -EAGAIN) {
936                                 btrfs_abort_transaction(trans, ret);
937                                 break;
938                         }
939                         ret = 0;
940
941                         key.offset = end_byte - 1;
942                 } else {
943                         truncate_one_csum(fs_info, path, &key, bytenr, len);
944                         if (key.offset < bytenr)
945                                 break;
946                 }
947                 btrfs_release_path(path);
948         }
949         btrfs_free_path(path);
950         return ret;
951 }
952
953 static int find_next_csum_offset(struct btrfs_root *root,
954                                  struct btrfs_path *path,
955                                  u64 *next_offset)
956 {
957         const u32 nritems = btrfs_header_nritems(path->nodes[0]);
958         struct btrfs_key found_key;
959         int slot = path->slots[0] + 1;
960         int ret;
961
962         if (nritems == 0 || slot >= nritems) {
963                 ret = btrfs_next_leaf(root, path);
964                 if (ret < 0) {
965                         return ret;
966                 } else if (ret > 0) {
967                         *next_offset = (u64)-1;
968                         return 0;
969                 }
970                 slot = path->slots[0];
971         }
972
973         btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
974
975         if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
976             found_key.type != BTRFS_EXTENT_CSUM_KEY)
977                 *next_offset = (u64)-1;
978         else
979                 *next_offset = found_key.offset;
980
981         return 0;
982 }
983
984 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
985                            struct btrfs_root *root,
986                            struct btrfs_ordered_sum *sums)
987 {
988         struct btrfs_fs_info *fs_info = root->fs_info;
989         struct btrfs_key file_key;
990         struct btrfs_key found_key;
991         struct btrfs_path *path;
992         struct btrfs_csum_item *item;
993         struct btrfs_csum_item *item_end;
994         struct extent_buffer *leaf = NULL;
995         u64 next_offset;
996         u64 total_bytes = 0;
997         u64 csum_offset;
998         u64 bytenr;
999         u32 ins_size;
1000         int index = 0;
1001         int found_next;
1002         int ret;
1003         const u32 csum_size = fs_info->csum_size;
1004
1005         path = btrfs_alloc_path();
1006         if (!path)
1007                 return -ENOMEM;
1008 again:
1009         next_offset = (u64)-1;
1010         found_next = 0;
1011         bytenr = sums->bytenr + total_bytes;
1012         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1013         file_key.offset = bytenr;
1014         file_key.type = BTRFS_EXTENT_CSUM_KEY;
1015
1016         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1017         if (!IS_ERR(item)) {
1018                 ret = 0;
1019                 leaf = path->nodes[0];
1020                 item_end = btrfs_item_ptr(leaf, path->slots[0],
1021                                           struct btrfs_csum_item);
1022                 item_end = (struct btrfs_csum_item *)((char *)item_end +
1023                            btrfs_item_size(leaf, path->slots[0]));
1024                 goto found;
1025         }
1026         ret = PTR_ERR(item);
1027         if (ret != -EFBIG && ret != -ENOENT)
1028                 goto out;
1029
1030         if (ret == -EFBIG) {
1031                 u32 item_size;
1032                 /* we found one, but it isn't big enough yet */
1033                 leaf = path->nodes[0];
1034                 item_size = btrfs_item_size(leaf, path->slots[0]);
1035                 if ((item_size / csum_size) >=
1036                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
1037                         /* already at max size, make a new one */
1038                         goto insert;
1039                 }
1040         } else {
1041                 /* We didn't find a csum item, insert one. */
1042                 ret = find_next_csum_offset(root, path, &next_offset);
1043                 if (ret < 0)
1044                         goto out;
1045                 found_next = 1;
1046                 goto insert;
1047         }
1048
1049         /*
1050          * At this point, we know the tree has a checksum item that ends at an
1051          * offset matching the start of the checksum range we want to insert.
1052          * We try to extend that item as much as possible and then add as many
1053          * checksums to it as they fit.
1054          *
1055          * First check if the leaf has enough free space for at least one
1056          * checksum. If it has go directly to the item extension code, otherwise
1057          * release the path and do a search for insertion before the extension.
1058          */
1059         if (btrfs_leaf_free_space(leaf) >= csum_size) {
1060                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1061                 csum_offset = (bytenr - found_key.offset) >>
1062                         fs_info->sectorsize_bits;
1063                 goto extend_csum;
1064         }
1065
1066         btrfs_release_path(path);
1067         path->search_for_extension = 1;
1068         ret = btrfs_search_slot(trans, root, &file_key, path,
1069                                 csum_size, 1);
1070         path->search_for_extension = 0;
1071         if (ret < 0)
1072                 goto out;
1073
1074         if (ret > 0) {
1075                 if (path->slots[0] == 0)
1076                         goto insert;
1077                 path->slots[0]--;
1078         }
1079
1080         leaf = path->nodes[0];
1081         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1082         csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1083
1084         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1085             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1086             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1087                 goto insert;
1088         }
1089
1090 extend_csum:
1091         if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1092             csum_size) {
1093                 int extend_nr;
1094                 u64 tmp;
1095                 u32 diff;
1096
1097                 tmp = sums->len - total_bytes;
1098                 tmp >>= fs_info->sectorsize_bits;
1099                 WARN_ON(tmp < 1);
1100                 extend_nr = max_t(int, 1, tmp);
1101
1102                 /*
1103                  * A log tree can already have checksum items with a subset of
1104                  * the checksums we are trying to log. This can happen after
1105                  * doing a sequence of partial writes into prealloc extents and
1106                  * fsyncs in between, with a full fsync logging a larger subrange
1107                  * of an extent for which a previous fast fsync logged a smaller
1108                  * subrange. And this happens in particular due to merging file
1109                  * extent items when we complete an ordered extent for a range
1110                  * covered by a prealloc extent - this is done at
1111                  * btrfs_mark_extent_written().
1112                  *
1113                  * So if we try to extend the previous checksum item, which has
1114                  * a range that ends at the start of the range we want to insert,
1115                  * make sure we don't extend beyond the start offset of the next
1116                  * checksum item. If we are at the last item in the leaf, then
1117                  * forget the optimization of extending and add a new checksum
1118                  * item - it is not worth the complexity of releasing the path,
1119                  * getting the first key for the next leaf, repeat the btree
1120                  * search, etc, because log trees are temporary anyway and it
1121                  * would only save a few bytes of leaf space.
1122                  */
1123                 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1124                         if (path->slots[0] + 1 >=
1125                             btrfs_header_nritems(path->nodes[0])) {
1126                                 ret = find_next_csum_offset(root, path, &next_offset);
1127                                 if (ret < 0)
1128                                         goto out;
1129                                 found_next = 1;
1130                                 goto insert;
1131                         }
1132
1133                         ret = find_next_csum_offset(root, path, &next_offset);
1134                         if (ret < 0)
1135                                 goto out;
1136
1137                         tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1138                         if (tmp <= INT_MAX)
1139                                 extend_nr = min_t(int, extend_nr, tmp);
1140                 }
1141
1142                 diff = (csum_offset + extend_nr) * csum_size;
1143                 diff = min(diff,
1144                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1145
1146                 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1147                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1148                 diff /= csum_size;
1149                 diff *= csum_size;
1150
1151                 btrfs_extend_item(path, diff);
1152                 ret = 0;
1153                 goto csum;
1154         }
1155
1156 insert:
1157         btrfs_release_path(path);
1158         csum_offset = 0;
1159         if (found_next) {
1160                 u64 tmp;
1161
1162                 tmp = sums->len - total_bytes;
1163                 tmp >>= fs_info->sectorsize_bits;
1164                 tmp = min(tmp, (next_offset - file_key.offset) >>
1165                                          fs_info->sectorsize_bits);
1166
1167                 tmp = max_t(u64, 1, tmp);
1168                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1169                 ins_size = csum_size * tmp;
1170         } else {
1171                 ins_size = csum_size;
1172         }
1173         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1174                                       ins_size);
1175         if (ret < 0)
1176                 goto out;
1177         if (WARN_ON(ret != 0))
1178                 goto out;
1179         leaf = path->nodes[0];
1180 csum:
1181         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1182         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1183                                       btrfs_item_size(leaf, path->slots[0]));
1184         item = (struct btrfs_csum_item *)((unsigned char *)item +
1185                                           csum_offset * csum_size);
1186 found:
1187         ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1188         ins_size *= csum_size;
1189         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1190                               ins_size);
1191         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1192                             ins_size);
1193
1194         index += ins_size;
1195         ins_size /= csum_size;
1196         total_bytes += ins_size * fs_info->sectorsize;
1197
1198         btrfs_mark_buffer_dirty(path->nodes[0]);
1199         if (total_bytes < sums->len) {
1200                 btrfs_release_path(path);
1201                 cond_resched();
1202                 goto again;
1203         }
1204 out:
1205         btrfs_free_path(path);
1206         return ret;
1207 }
1208
1209 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1210                                      const struct btrfs_path *path,
1211                                      struct btrfs_file_extent_item *fi,
1212                                      const bool new_inline,
1213                                      struct extent_map *em)
1214 {
1215         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1216         struct btrfs_root *root = inode->root;
1217         struct extent_buffer *leaf = path->nodes[0];
1218         const int slot = path->slots[0];
1219         struct btrfs_key key;
1220         u64 extent_start, extent_end;
1221         u64 bytenr;
1222         u8 type = btrfs_file_extent_type(leaf, fi);
1223         int compress_type = btrfs_file_extent_compression(leaf, fi);
1224
1225         btrfs_item_key_to_cpu(leaf, &key, slot);
1226         extent_start = key.offset;
1227         extent_end = btrfs_file_extent_end(path);
1228         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1229         em->generation = btrfs_file_extent_generation(leaf, fi);
1230         if (type == BTRFS_FILE_EXTENT_REG ||
1231             type == BTRFS_FILE_EXTENT_PREALLOC) {
1232                 em->start = extent_start;
1233                 em->len = extent_end - extent_start;
1234                 em->orig_start = extent_start -
1235                         btrfs_file_extent_offset(leaf, fi);
1236                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1237                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1238                 if (bytenr == 0) {
1239                         em->block_start = EXTENT_MAP_HOLE;
1240                         return;
1241                 }
1242                 if (compress_type != BTRFS_COMPRESS_NONE) {
1243                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1244                         em->compress_type = compress_type;
1245                         em->block_start = bytenr;
1246                         em->block_len = em->orig_block_len;
1247                 } else {
1248                         bytenr += btrfs_file_extent_offset(leaf, fi);
1249                         em->block_start = bytenr;
1250                         em->block_len = em->len;
1251                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1252                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1253                 }
1254         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1255                 em->block_start = EXTENT_MAP_INLINE;
1256                 em->start = extent_start;
1257                 em->len = extent_end - extent_start;
1258                 /*
1259                  * Initialize orig_start and block_len with the same values
1260                  * as in inode.c:btrfs_get_extent().
1261                  */
1262                 em->orig_start = EXTENT_MAP_HOLE;
1263                 em->block_len = (u64)-1;
1264                 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1265                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1266                         em->compress_type = compress_type;
1267                 }
1268         } else {
1269                 btrfs_err(fs_info,
1270                           "unknown file extent item type %d, inode %llu, offset %llu, "
1271                           "root %llu", type, btrfs_ino(inode), extent_start,
1272                           root->root_key.objectid);
1273         }
1274 }
1275
1276 /*
1277  * Returns the end offset (non inclusive) of the file extent item the given path
1278  * points to. If it points to an inline extent, the returned offset is rounded
1279  * up to the sector size.
1280  */
1281 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1282 {
1283         const struct extent_buffer *leaf = path->nodes[0];
1284         const int slot = path->slots[0];
1285         struct btrfs_file_extent_item *fi;
1286         struct btrfs_key key;
1287         u64 end;
1288
1289         btrfs_item_key_to_cpu(leaf, &key, slot);
1290         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1291         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1292
1293         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1294                 end = btrfs_file_extent_ram_bytes(leaf, fi);
1295                 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1296         } else {
1297                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1298         }
1299
1300         return end;
1301 }