1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
22 #include "btrfs_inode.h"
24 #include "check-integrity.h"
26 #include "rcu-string.h"
31 #include "block-group.h"
32 #include "compression.h"
34 #include "accessors.h"
35 #include "file-item.h"
37 #include "dev-replace.h"
39 #include "transaction.h"
41 static struct kmem_cache *extent_buffer_cache;
43 #ifdef CONFIG_BTRFS_DEBUG
44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
46 struct btrfs_fs_info *fs_info = eb->fs_info;
49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
56 struct btrfs_fs_info *fs_info = eb->fs_info;
59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 list_del(&eb->leak_list);
61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
66 struct extent_buffer *eb;
70 * If we didn't get into open_ctree our allocated_ebs will not be
71 * initialized, so just skip this.
73 if (!fs_info->allocated_ebs.next)
76 WARN_ON(!list_empty(&fs_info->allocated_ebs));
77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 while (!list_empty(&fs_info->allocated_ebs)) {
79 eb = list_first_entry(&fs_info->allocated_ebs,
80 struct extent_buffer, leak_list);
82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 btrfs_header_owner(eb));
85 list_del(&eb->leak_list);
86 kmem_cache_free(extent_buffer_cache, eb);
88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
91 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
92 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
96 * Structure to record info about the bio being assembled, and other info like
97 * how many bytes are there before stripe/ordered extent boundary.
99 struct btrfs_bio_ctrl {
100 struct btrfs_bio *bbio;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
104 btrfs_bio_end_io_t end_io_func;
105 struct writeback_control *wbc;
108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
110 struct btrfs_bio *bbio = bio_ctrl->bbio;
115 /* Caller should ensure the bio has at least some range added */
116 ASSERT(bbio->bio.bi_iter.bi_size);
118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
120 btrfs_submit_compressed_read(bbio);
122 btrfs_submit_bio(bbio, 0);
124 /* The bbio is owned by the end_io handler now */
125 bio_ctrl->bbio = NULL;
129 * Submit or fail the current bio in the bio_ctrl structure.
131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
133 struct btrfs_bio *bbio = bio_ctrl->bbio;
140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
141 /* The bio is owned by the end_io handler now */
142 bio_ctrl->bbio = NULL;
144 submit_one_bio(bio_ctrl);
148 int __init extent_buffer_init_cachep(void)
150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
151 sizeof(struct extent_buffer), 0,
152 SLAB_MEM_SPREAD, NULL);
153 if (!extent_buffer_cache)
159 void __cold extent_buffer_free_cachep(void)
162 * Make sure all delayed rcu free are flushed before we
166 kmem_cache_destroy(extent_buffer_cache);
169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
171 unsigned long index = start >> PAGE_SHIFT;
172 unsigned long end_index = end >> PAGE_SHIFT;
175 while (index <= end_index) {
176 page = find_get_page(inode->i_mapping, index);
177 BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 clear_page_dirty_for_io(page);
184 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
186 struct address_space *mapping = inode->i_mapping;
187 unsigned long index = start >> PAGE_SHIFT;
188 unsigned long end_index = end >> PAGE_SHIFT;
191 while (index <= end_index) {
192 folio = filemap_get_folio(mapping, index);
193 filemap_dirty_folio(mapping, folio);
194 folio_account_redirty(folio);
195 index += folio_nr_pages(folio);
201 * Process one page for __process_pages_contig().
203 * Return >0 if we hit @page == @locked_page.
204 * Return 0 if we updated the page status.
205 * Return -EGAIN if the we need to try again.
206 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
208 static int process_one_page(struct btrfs_fs_info *fs_info,
209 struct address_space *mapping,
210 struct page *page, struct page *locked_page,
211 unsigned long page_ops, u64 start, u64 end)
215 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
216 len = end + 1 - start;
218 if (page_ops & PAGE_SET_ORDERED)
219 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
220 if (page_ops & PAGE_START_WRITEBACK) {
221 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
222 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
224 if (page_ops & PAGE_END_WRITEBACK)
225 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
227 if (page == locked_page)
230 if (page_ops & PAGE_LOCK) {
233 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
236 if (!PageDirty(page) || page->mapping != mapping) {
237 btrfs_page_end_writer_lock(fs_info, page, start, len);
241 if (page_ops & PAGE_UNLOCK)
242 btrfs_page_end_writer_lock(fs_info, page, start, len);
246 static int __process_pages_contig(struct address_space *mapping,
247 struct page *locked_page,
248 u64 start, u64 end, unsigned long page_ops,
251 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
252 pgoff_t start_index = start >> PAGE_SHIFT;
253 pgoff_t end_index = end >> PAGE_SHIFT;
254 pgoff_t index = start_index;
255 unsigned long pages_processed = 0;
256 struct folio_batch fbatch;
260 if (page_ops & PAGE_LOCK) {
261 ASSERT(page_ops == PAGE_LOCK);
262 ASSERT(processed_end && *processed_end == start);
265 folio_batch_init(&fbatch);
266 while (index <= end_index) {
269 found_folios = filemap_get_folios_contig(mapping, &index,
272 if (found_folios == 0) {
274 * Only if we're going to lock these pages, we can find
277 ASSERT(page_ops & PAGE_LOCK);
282 for (i = 0; i < found_folios; i++) {
284 struct folio *folio = fbatch.folios[i];
285 process_ret = process_one_page(fs_info, mapping,
286 &folio->page, locked_page, page_ops,
288 if (process_ret < 0) {
290 folio_batch_release(&fbatch);
293 pages_processed += folio_nr_pages(folio);
295 folio_batch_release(&fbatch);
299 if (err && processed_end) {
301 * Update @processed_end. I know this is awful since it has
302 * two different return value patterns (inclusive vs exclusive).
304 * But the exclusive pattern is necessary if @start is 0, or we
305 * underflow and check against processed_end won't work as
309 *processed_end = min(end,
310 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
312 *processed_end = start;
317 static noinline void __unlock_for_delalloc(struct inode *inode,
318 struct page *locked_page,
321 unsigned long index = start >> PAGE_SHIFT;
322 unsigned long end_index = end >> PAGE_SHIFT;
325 if (index == locked_page->index && end_index == index)
328 __process_pages_contig(inode->i_mapping, locked_page, start, end,
332 static noinline int lock_delalloc_pages(struct inode *inode,
333 struct page *locked_page,
337 unsigned long index = delalloc_start >> PAGE_SHIFT;
338 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
339 u64 processed_end = delalloc_start;
343 if (index == locked_page->index && index == end_index)
346 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
347 delalloc_end, PAGE_LOCK, &processed_end);
348 if (ret == -EAGAIN && processed_end > delalloc_start)
349 __unlock_for_delalloc(inode, locked_page, delalloc_start,
355 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
356 * more than @max_bytes.
358 * @start: The original start bytenr to search.
359 * Will store the extent range start bytenr.
360 * @end: The original end bytenr of the search range
361 * Will store the extent range end bytenr.
363 * Return true if we find a delalloc range which starts inside the original
364 * range, and @start/@end will store the delalloc range start/end.
366 * Return false if we can't find any delalloc range which starts inside the
367 * original range, and @start/@end will be the non-delalloc range start/end.
370 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
371 struct page *locked_page, u64 *start,
374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
375 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
376 const u64 orig_start = *start;
377 const u64 orig_end = *end;
378 /* The sanity tests may not set a valid fs_info. */
379 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
383 struct extent_state *cached_state = NULL;
387 /* Caller should pass a valid @end to indicate the search range end */
388 ASSERT(orig_end > orig_start);
390 /* The range should at least cover part of the page */
391 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
392 orig_end <= page_offset(locked_page)));
394 /* step one, find a bunch of delalloc bytes starting at start */
395 delalloc_start = *start;
397 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
398 max_bytes, &cached_state);
399 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
400 *start = delalloc_start;
402 /* @delalloc_end can be -1, never go beyond @orig_end */
403 *end = min(delalloc_end, orig_end);
404 free_extent_state(cached_state);
409 * start comes from the offset of locked_page. We have to lock
410 * pages in order, so we can't process delalloc bytes before
413 if (delalloc_start < *start)
414 delalloc_start = *start;
417 * make sure to limit the number of pages we try to lock down
419 if (delalloc_end + 1 - delalloc_start > max_bytes)
420 delalloc_end = delalloc_start + max_bytes - 1;
422 /* step two, lock all the pages after the page that has start */
423 ret = lock_delalloc_pages(inode, locked_page,
424 delalloc_start, delalloc_end);
425 ASSERT(!ret || ret == -EAGAIN);
426 if (ret == -EAGAIN) {
427 /* some of the pages are gone, lets avoid looping by
428 * shortening the size of the delalloc range we're searching
430 free_extent_state(cached_state);
433 max_bytes = PAGE_SIZE;
442 /* step three, lock the state bits for the whole range */
443 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
445 /* then test to make sure it is all still delalloc */
446 ret = test_range_bit(tree, delalloc_start, delalloc_end,
447 EXTENT_DELALLOC, 1, cached_state);
449 unlock_extent(tree, delalloc_start, delalloc_end,
451 __unlock_for_delalloc(inode, locked_page,
452 delalloc_start, delalloc_end);
456 free_extent_state(cached_state);
457 *start = delalloc_start;
463 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
464 struct page *locked_page,
465 u32 clear_bits, unsigned long page_ops)
467 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
469 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
470 start, end, page_ops, NULL);
473 static bool btrfs_verify_page(struct page *page, u64 start)
475 if (!fsverity_active(page->mapping->host) ||
476 PageUptodate(page) ||
477 start >= i_size_read(page->mapping->host))
479 return fsverity_verify_page(page);
482 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
484 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
486 ASSERT(page_offset(page) <= start &&
487 start + len <= page_offset(page) + PAGE_SIZE);
489 if (uptodate && btrfs_verify_page(page, start))
490 btrfs_page_set_uptodate(fs_info, page, start, len);
492 btrfs_page_clear_uptodate(fs_info, page, start, len);
494 if (!btrfs_is_subpage(fs_info, page))
497 btrfs_subpage_end_reader(fs_info, page, start, len);
500 /* lots and lots of room for performance fixes in the end_bio funcs */
502 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
504 struct btrfs_inode *inode;
505 const bool uptodate = (err == 0);
508 ASSERT(page && page->mapping);
509 inode = BTRFS_I(page->mapping->host);
510 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
513 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
516 ASSERT(end + 1 - start <= U32_MAX);
517 len = end + 1 - start;
519 btrfs_page_clear_uptodate(fs_info, page, start, len);
520 ret = err < 0 ? err : -EIO;
521 mapping_set_error(page->mapping, ret);
526 * after a writepage IO is done, we need to:
527 * clear the uptodate bits on error
528 * clear the writeback bits in the extent tree for this IO
529 * end_page_writeback if the page has no more pending IO
531 * Scheduling is not allowed, so the extent state tree is expected
532 * to have one and only one object corresponding to this IO.
534 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
536 struct bio *bio = &bbio->bio;
537 int error = blk_status_to_errno(bio->bi_status);
538 struct bio_vec *bvec;
539 struct bvec_iter_all iter_all;
541 ASSERT(!bio_flagged(bio, BIO_CLONED));
542 bio_for_each_segment_all(bvec, bio, iter_all) {
543 struct page *page = bvec->bv_page;
544 struct inode *inode = page->mapping->host;
545 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
546 const u32 sectorsize = fs_info->sectorsize;
547 u64 start = page_offset(page) + bvec->bv_offset;
548 u32 len = bvec->bv_len;
550 /* Our read/write should always be sector aligned. */
551 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
553 "partial page write in btrfs with offset %u and length %u",
554 bvec->bv_offset, bvec->bv_len);
555 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
557 "incomplete page write with offset %u and length %u",
558 bvec->bv_offset, bvec->bv_len);
560 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
562 btrfs_page_clear_uptodate(fs_info, page, start, len);
563 mapping_set_error(page->mapping, error);
565 btrfs_page_clear_writeback(fs_info, page, start, len);
572 * Record previously processed extent range
574 * For endio_readpage_release_extent() to handle a full extent range, reducing
575 * the extent io operations.
577 struct processed_extent {
578 struct btrfs_inode *inode;
579 /* Start of the range in @inode */
581 /* End of the range in @inode */
587 * Try to release processed extent range
589 * May not release the extent range right now if the current range is
590 * contiguous to processed extent.
592 * Will release processed extent when any of @inode, @uptodate, the range is
593 * no longer contiguous to the processed range.
595 * Passing @inode == NULL will force processed extent to be released.
597 static void endio_readpage_release_extent(struct processed_extent *processed,
598 struct btrfs_inode *inode, u64 start, u64 end,
601 struct extent_state *cached = NULL;
602 struct extent_io_tree *tree;
604 /* The first extent, initialize @processed */
605 if (!processed->inode)
609 * Contiguous to processed extent, just uptodate the end.
611 * Several things to notice:
613 * - bio can be merged as long as on-disk bytenr is contiguous
614 * This means we can have page belonging to other inodes, thus need to
615 * check if the inode still matches.
616 * - bvec can contain range beyond current page for multi-page bvec
617 * Thus we need to do processed->end + 1 >= start check
619 if (processed->inode == inode && processed->uptodate == uptodate &&
620 processed->end + 1 >= start && end >= processed->end) {
621 processed->end = end;
625 tree = &processed->inode->io_tree;
627 * Now we don't have range contiguous to the processed range, release
628 * the processed range now.
630 unlock_extent(tree, processed->start, processed->end, &cached);
633 /* Update processed to current range */
634 processed->inode = inode;
635 processed->start = start;
636 processed->end = end;
637 processed->uptodate = uptodate;
640 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
642 ASSERT(PageLocked(page));
643 if (!btrfs_is_subpage(fs_info, page))
646 ASSERT(PagePrivate(page));
647 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
651 * after a readpage IO is done, we need to:
652 * clear the uptodate bits on error
653 * set the uptodate bits if things worked
654 * set the page up to date if all extents in the tree are uptodate
655 * clear the lock bit in the extent tree
656 * unlock the page if there are no other extents locked for it
658 * Scheduling is not allowed, so the extent state tree is expected
659 * to have one and only one object corresponding to this IO.
661 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
663 struct bio *bio = &bbio->bio;
664 struct bio_vec *bvec;
665 struct processed_extent processed = { 0 };
667 * The offset to the beginning of a bio, since one bio can never be
668 * larger than UINT_MAX, u32 here is enough.
671 struct bvec_iter_all iter_all;
673 ASSERT(!bio_flagged(bio, BIO_CLONED));
674 bio_for_each_segment_all(bvec, bio, iter_all) {
675 bool uptodate = !bio->bi_status;
676 struct page *page = bvec->bv_page;
677 struct inode *inode = page->mapping->host;
678 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
679 const u32 sectorsize = fs_info->sectorsize;
685 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
686 bio->bi_iter.bi_sector, bio->bi_status,
690 * We always issue full-sector reads, but if some block in a
691 * page fails to read, blk_update_request() will advance
692 * bv_offset and adjust bv_len to compensate. Print a warning
693 * for unaligned offsets, and an error if they don't add up to
696 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
698 "partial page read in btrfs with offset %u and length %u",
699 bvec->bv_offset, bvec->bv_len);
700 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
703 "incomplete page read with offset %u and length %u",
704 bvec->bv_offset, bvec->bv_len);
706 start = page_offset(page) + bvec->bv_offset;
707 end = start + bvec->bv_len - 1;
710 if (likely(uptodate)) {
711 loff_t i_size = i_size_read(inode);
712 pgoff_t end_index = i_size >> PAGE_SHIFT;
715 * Zero out the remaining part if this range straddles
718 * Here we should only zero the range inside the bvec,
719 * not touch anything else.
721 * NOTE: i_size is exclusive while end is inclusive.
723 if (page->index == end_index && i_size <= end) {
724 u32 zero_start = max(offset_in_page(i_size),
725 offset_in_page(start));
727 zero_user_segment(page, zero_start,
728 offset_in_page(end) + 1);
732 /* Update page status and unlock. */
733 end_page_read(page, uptodate, start, len);
734 endio_readpage_release_extent(&processed, BTRFS_I(inode),
735 start, end, uptodate);
737 ASSERT(bio_offset + len > bio_offset);
741 /* Release the last extent */
742 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
747 * Populate every free slot in a provided array with pages.
749 * @nr_pages: number of pages to allocate
750 * @page_array: the array to fill with pages; any existing non-null entries in
751 * the array will be skipped
753 * Return: 0 if all pages were able to be allocated;
754 * -ENOMEM otherwise, and the caller is responsible for freeing all
755 * non-null page pointers in the array.
757 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
759 unsigned int allocated;
761 for (allocated = 0; allocated < nr_pages;) {
762 unsigned int last = allocated;
764 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
766 if (allocated == nr_pages)
770 * During this iteration, no page could be allocated, even
771 * though alloc_pages_bulk_array() falls back to alloc_page()
772 * if it could not bulk-allocate. So we must be out of memory.
774 if (allocated == last)
777 memalloc_retry_wait(GFP_NOFS);
782 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
783 struct page *page, u64 disk_bytenr,
784 unsigned int pg_offset)
786 struct bio *bio = &bio_ctrl->bbio->bio;
787 struct bio_vec *bvec = bio_last_bvec_all(bio);
788 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
790 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
792 * For compression, all IO should have its logical bytenr set
793 * to the starting bytenr of the compressed extent.
795 return bio->bi_iter.bi_sector == sector;
799 * The contig check requires the following conditions to be met:
801 * 1) The pages are belonging to the same inode
802 * This is implied by the call chain.
804 * 2) The range has adjacent logical bytenr
806 * 3) The range has adjacent file offset
807 * This is required for the usage of btrfs_bio->file_offset.
809 return bio_end_sector(bio) == sector &&
810 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
811 page_offset(page) + pg_offset;
814 static void alloc_new_bio(struct btrfs_inode *inode,
815 struct btrfs_bio_ctrl *bio_ctrl,
816 u64 disk_bytenr, u64 file_offset)
818 struct btrfs_fs_info *fs_info = inode->root->fs_info;
819 struct btrfs_bio *bbio;
821 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
822 bio_ctrl->end_io_func, NULL);
823 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
825 bbio->file_offset = file_offset;
826 bio_ctrl->bbio = bbio;
827 bio_ctrl->len_to_oe_boundary = U32_MAX;
829 /* Limit data write bios to the ordered boundary. */
831 struct btrfs_ordered_extent *ordered;
833 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
835 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
836 ordered->file_offset +
837 ordered->disk_num_bytes - file_offset);
838 bbio->ordered = ordered;
842 * Pick the last added device to support cgroup writeback. For
843 * multi-device file systems this means blk-cgroup policies have
844 * to always be set on the last added/replaced device.
845 * This is a bit odd but has been like that for a long time.
847 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
848 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
853 * @disk_bytenr: logical bytenr where the write will be
854 * @page: page to add to the bio
855 * @size: portion of page that we want to write to
856 * @pg_offset: offset of the new bio or to check whether we are adding
857 * a contiguous page to the previous one
859 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
860 * new one in @bio_ctrl->bbio.
861 * The mirror number for this IO should already be initizlied in
862 * @bio_ctrl->mirror_num.
864 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
865 u64 disk_bytenr, struct page *page,
866 size_t size, unsigned long pg_offset)
868 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
870 ASSERT(pg_offset + size <= PAGE_SIZE);
871 ASSERT(bio_ctrl->end_io_func);
873 if (bio_ctrl->bbio &&
874 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
875 submit_one_bio(bio_ctrl);
880 /* Allocate new bio if needed */
881 if (!bio_ctrl->bbio) {
882 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
883 page_offset(page) + pg_offset);
886 /* Cap to the current ordered extent boundary if there is one. */
887 if (len > bio_ctrl->len_to_oe_boundary) {
888 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
889 ASSERT(is_data_inode(&inode->vfs_inode));
890 len = bio_ctrl->len_to_oe_boundary;
893 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
894 /* bio full: move on to a new one */
895 submit_one_bio(bio_ctrl);
900 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
905 bio_ctrl->len_to_oe_boundary -= len;
907 /* Ordered extent boundary: move on to a new bio. */
908 if (bio_ctrl->len_to_oe_boundary == 0)
909 submit_one_bio(bio_ctrl);
913 static int attach_extent_buffer_page(struct extent_buffer *eb,
915 struct btrfs_subpage *prealloc)
917 struct btrfs_fs_info *fs_info = eb->fs_info;
921 * If the page is mapped to btree inode, we should hold the private
922 * lock to prevent race.
923 * For cloned or dummy extent buffers, their pages are not mapped and
924 * will not race with any other ebs.
927 lockdep_assert_held(&page->mapping->private_lock);
929 if (fs_info->nodesize >= PAGE_SIZE) {
930 if (!PagePrivate(page))
931 attach_page_private(page, eb);
933 WARN_ON(page->private != (unsigned long)eb);
937 /* Already mapped, just free prealloc */
938 if (PagePrivate(page)) {
939 btrfs_free_subpage(prealloc);
944 /* Has preallocated memory for subpage */
945 attach_page_private(page, prealloc);
947 /* Do new allocation to attach subpage */
948 ret = btrfs_attach_subpage(fs_info, page,
949 BTRFS_SUBPAGE_METADATA);
953 int set_page_extent_mapped(struct page *page)
955 struct btrfs_fs_info *fs_info;
957 ASSERT(page->mapping);
959 if (PagePrivate(page))
962 fs_info = btrfs_sb(page->mapping->host->i_sb);
964 if (btrfs_is_subpage(fs_info, page))
965 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
967 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
971 void clear_page_extent_mapped(struct page *page)
973 struct btrfs_fs_info *fs_info;
975 ASSERT(page->mapping);
977 if (!PagePrivate(page))
980 fs_info = btrfs_sb(page->mapping->host->i_sb);
981 if (btrfs_is_subpage(fs_info, page))
982 return btrfs_detach_subpage(fs_info, page);
984 detach_page_private(page);
987 static struct extent_map *
988 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
989 u64 start, u64 len, struct extent_map **em_cached)
991 struct extent_map *em;
993 if (em_cached && *em_cached) {
995 if (extent_map_in_tree(em) && start >= em->start &&
996 start < extent_map_end(em)) {
997 refcount_inc(&em->refs);
1001 free_extent_map(em);
1005 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
1006 if (em_cached && !IS_ERR(em)) {
1008 refcount_inc(&em->refs);
1014 * basic readpage implementation. Locked extent state structs are inserted
1015 * into the tree that are removed when the IO is done (by the end_io
1017 * XXX JDM: This needs looking at to ensure proper page locking
1018 * return 0 on success, otherwise return error
1020 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1021 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
1023 struct inode *inode = page->mapping->host;
1024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1025 u64 start = page_offset(page);
1026 const u64 end = start + PAGE_SIZE - 1;
1029 u64 last_byte = i_size_read(inode);
1031 struct extent_map *em;
1033 size_t pg_offset = 0;
1035 size_t blocksize = inode->i_sb->s_blocksize;
1036 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1038 ret = set_page_extent_mapped(page);
1040 unlock_extent(tree, start, end, NULL);
1045 if (page->index == last_byte >> PAGE_SHIFT) {
1046 size_t zero_offset = offset_in_page(last_byte);
1049 iosize = PAGE_SIZE - zero_offset;
1050 memzero_page(page, zero_offset, iosize);
1053 bio_ctrl->end_io_func = end_bio_extent_readpage;
1054 begin_page_read(fs_info, page);
1055 while (cur <= end) {
1056 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1057 bool force_bio_submit = false;
1060 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1061 if (cur >= last_byte) {
1062 iosize = PAGE_SIZE - pg_offset;
1063 memzero_page(page, pg_offset, iosize);
1064 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1065 end_page_read(page, true, cur, iosize);
1068 em = __get_extent_map(inode, page, pg_offset, cur,
1069 end - cur + 1, em_cached);
1071 unlock_extent(tree, cur, end, NULL);
1072 end_page_read(page, false, cur, end + 1 - cur);
1075 extent_offset = cur - em->start;
1076 BUG_ON(extent_map_end(em) <= cur);
1079 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1080 compress_type = em->compress_type;
1082 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1083 iosize = ALIGN(iosize, blocksize);
1084 if (compress_type != BTRFS_COMPRESS_NONE)
1085 disk_bytenr = em->block_start;
1087 disk_bytenr = em->block_start + extent_offset;
1088 block_start = em->block_start;
1089 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1090 block_start = EXTENT_MAP_HOLE;
1093 * If we have a file range that points to a compressed extent
1094 * and it's followed by a consecutive file range that points
1095 * to the same compressed extent (possibly with a different
1096 * offset and/or length, so it either points to the whole extent
1097 * or only part of it), we must make sure we do not submit a
1098 * single bio to populate the pages for the 2 ranges because
1099 * this makes the compressed extent read zero out the pages
1100 * belonging to the 2nd range. Imagine the following scenario:
1103 * [0 - 8K] [8K - 24K]
1106 * points to extent X, points to extent X,
1107 * offset 4K, length of 8K offset 0, length 16K
1109 * [extent X, compressed length = 4K uncompressed length = 16K]
1111 * If the bio to read the compressed extent covers both ranges,
1112 * it will decompress extent X into the pages belonging to the
1113 * first range and then it will stop, zeroing out the remaining
1114 * pages that belong to the other range that points to extent X.
1115 * So here we make sure we submit 2 bios, one for the first
1116 * range and another one for the third range. Both will target
1117 * the same physical extent from disk, but we can't currently
1118 * make the compressed bio endio callback populate the pages
1119 * for both ranges because each compressed bio is tightly
1120 * coupled with a single extent map, and each range can have
1121 * an extent map with a different offset value relative to the
1122 * uncompressed data of our extent and different lengths. This
1123 * is a corner case so we prioritize correctness over
1124 * non-optimal behavior (submitting 2 bios for the same extent).
1126 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1127 prev_em_start && *prev_em_start != (u64)-1 &&
1128 *prev_em_start != em->start)
1129 force_bio_submit = true;
1132 *prev_em_start = em->start;
1134 free_extent_map(em);
1137 /* we've found a hole, just zero and go on */
1138 if (block_start == EXTENT_MAP_HOLE) {
1139 memzero_page(page, pg_offset, iosize);
1141 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1142 end_page_read(page, true, cur, iosize);
1144 pg_offset += iosize;
1147 /* the get_extent function already copied into the page */
1148 if (block_start == EXTENT_MAP_INLINE) {
1149 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1150 end_page_read(page, true, cur, iosize);
1152 pg_offset += iosize;
1156 if (bio_ctrl->compress_type != compress_type) {
1157 submit_one_bio(bio_ctrl);
1158 bio_ctrl->compress_type = compress_type;
1161 if (force_bio_submit)
1162 submit_one_bio(bio_ctrl);
1163 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1166 pg_offset += iosize;
1172 int btrfs_read_folio(struct file *file, struct folio *folio)
1174 struct page *page = &folio->page;
1175 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1176 u64 start = page_offset(page);
1177 u64 end = start + PAGE_SIZE - 1;
1178 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1181 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1183 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1185 * If btrfs_do_readpage() failed we will want to submit the assembled
1186 * bio to do the cleanup.
1188 submit_one_bio(&bio_ctrl);
1192 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1194 struct extent_map **em_cached,
1195 struct btrfs_bio_ctrl *bio_ctrl,
1198 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1201 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1203 for (index = 0; index < nr_pages; index++) {
1204 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1206 put_page(pages[index]);
1211 * helper for __extent_writepage, doing all of the delayed allocation setup.
1213 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1214 * to write the page (copy into inline extent). In this case the IO has
1215 * been started and the page is already unlocked.
1217 * This returns 0 if all went well (page still locked)
1218 * This returns < 0 if there were errors (page still locked)
1220 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1221 struct page *page, struct writeback_control *wbc)
1223 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
1224 u64 delalloc_start = page_offset(page);
1225 u64 delalloc_to_write = 0;
1226 /* How many pages are started by btrfs_run_delalloc_range() */
1227 unsigned long nr_written = 0;
1229 int page_started = 0;
1231 while (delalloc_start < page_end) {
1232 u64 delalloc_end = page_end;
1235 found = find_lock_delalloc_range(&inode->vfs_inode, page,
1239 delalloc_start = delalloc_end + 1;
1242 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1243 delalloc_end, &page_started, &nr_written, wbc);
1248 * delalloc_end is already one less than the total length, so
1249 * we don't subtract one from PAGE_SIZE
1251 delalloc_to_write += (delalloc_end - delalloc_start +
1252 PAGE_SIZE) >> PAGE_SHIFT;
1253 delalloc_start = delalloc_end + 1;
1255 if (wbc->nr_to_write < delalloc_to_write) {
1258 if (delalloc_to_write < thresh * 2)
1259 thresh = delalloc_to_write;
1260 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1264 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
1267 * We've unlocked the page, so we can't update the mapping's
1268 * writeback index, just update nr_to_write.
1270 wbc->nr_to_write -= nr_written;
1278 * Find the first byte we need to write.
1280 * For subpage, one page can contain several sectors, and
1281 * __extent_writepage_io() will just grab all extent maps in the page
1282 * range and try to submit all non-inline/non-compressed extents.
1284 * This is a big problem for subpage, we shouldn't re-submit already written
1286 * This function will lookup subpage dirty bit to find which range we really
1289 * Return the next dirty range in [@start, @end).
1290 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1292 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1293 struct page *page, u64 *start, u64 *end)
1295 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1296 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1297 u64 orig_start = *start;
1298 /* Declare as unsigned long so we can use bitmap ops */
1299 unsigned long flags;
1300 int range_start_bit;
1304 * For regular sector size == page size case, since one page only
1305 * contains one sector, we return the page offset directly.
1307 if (!btrfs_is_subpage(fs_info, page)) {
1308 *start = page_offset(page);
1309 *end = page_offset(page) + PAGE_SIZE;
1313 range_start_bit = spi->dirty_offset +
1314 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1316 /* We should have the page locked, but just in case */
1317 spin_lock_irqsave(&subpage->lock, flags);
1318 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1319 spi->dirty_offset + spi->bitmap_nr_bits);
1320 spin_unlock_irqrestore(&subpage->lock, flags);
1322 range_start_bit -= spi->dirty_offset;
1323 range_end_bit -= spi->dirty_offset;
1325 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1326 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1330 * helper for __extent_writepage. This calls the writepage start hooks,
1331 * and does the loop to map the page into extents and bios.
1333 * We return 1 if the IO is started and the page is unlocked,
1334 * 0 if all went well (page still locked)
1335 * < 0 if there were errors (page still locked)
1337 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1339 struct btrfs_bio_ctrl *bio_ctrl,
1343 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1344 u64 cur = page_offset(page);
1345 u64 end = cur + PAGE_SIZE - 1;
1348 struct extent_map *em;
1352 ret = btrfs_writepage_cow_fixup(page);
1354 /* Fixup worker will requeue */
1355 redirty_page_for_writepage(bio_ctrl->wbc, page);
1360 bio_ctrl->end_io_func = end_bio_extent_writepage;
1361 while (cur <= end) {
1364 u64 dirty_range_start = cur;
1365 u64 dirty_range_end;
1368 if (cur >= i_size) {
1369 btrfs_writepage_endio_finish_ordered(inode, page, cur,
1372 * This range is beyond i_size, thus we don't need to
1373 * bother writing back.
1374 * But we still need to clear the dirty subpage bit, or
1375 * the next time the page gets dirtied, we will try to
1376 * writeback the sectors with subpage dirty bits,
1377 * causing writeback without ordered extent.
1379 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
1383 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1385 if (cur < dirty_range_start) {
1386 cur = dirty_range_start;
1390 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
1392 ret = PTR_ERR_OR_ZERO(em);
1396 extent_offset = cur - em->start;
1397 em_end = extent_map_end(em);
1398 ASSERT(cur <= em_end);
1400 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1401 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1403 block_start = em->block_start;
1404 disk_bytenr = em->block_start + extent_offset;
1406 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1407 ASSERT(block_start != EXTENT_MAP_HOLE);
1408 ASSERT(block_start != EXTENT_MAP_INLINE);
1411 * Note that em_end from extent_map_end() and dirty_range_end from
1412 * find_next_dirty_byte() are all exclusive
1414 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1415 free_extent_map(em);
1418 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1419 if (!PageWriteback(page)) {
1420 btrfs_err(inode->root->fs_info,
1421 "page %lu not writeback, cur %llu end %llu",
1422 page->index, cur, end);
1426 * Although the PageDirty bit is cleared before entering this
1427 * function, subpage dirty bit is not cleared.
1428 * So clear subpage dirty bit here so next time we won't submit
1429 * page for range already written to disk.
1431 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1433 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1434 cur - page_offset(page));
1439 btrfs_page_assert_not_dirty(fs_info, page);
1445 * If we finish without problem, we should not only clear page dirty,
1446 * but also empty subpage dirty bits
1453 * the writepage semantics are similar to regular writepage. extent
1454 * records are inserted to lock ranges in the tree, and as dirty areas
1455 * are found, they are marked writeback. Then the lock bits are removed
1456 * and the end_io handler clears the writeback ranges
1458 * Return 0 if everything goes well.
1459 * Return <0 for error.
1461 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1463 struct folio *folio = page_folio(page);
1464 struct inode *inode = page->mapping->host;
1465 const u64 page_start = page_offset(page);
1466 const u64 page_end = page_start + PAGE_SIZE - 1;
1470 loff_t i_size = i_size_read(inode);
1471 unsigned long end_index = i_size >> PAGE_SHIFT;
1473 trace___extent_writepage(page, inode, bio_ctrl->wbc);
1475 WARN_ON(!PageLocked(page));
1477 pg_offset = offset_in_page(i_size);
1478 if (page->index > end_index ||
1479 (page->index == end_index && !pg_offset)) {
1480 folio_invalidate(folio, 0, folio_size(folio));
1481 folio_unlock(folio);
1485 if (page->index == end_index)
1486 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1488 ret = set_page_extent_mapped(page);
1492 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1498 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1502 bio_ctrl->wbc->nr_to_write--;
1506 /* make sure the mapping tag for page dirty gets cleared */
1507 set_page_writeback(page);
1508 end_page_writeback(page);
1511 end_extent_writepage(page, ret, page_start, page_end);
1517 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1519 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1520 TASK_UNINTERRUPTIBLE);
1524 * Lock extent buffer status and pages for writeback.
1526 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1527 * extent buffer is not dirty)
1528 * Return %true is the extent buffer is submitted to bio.
1530 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1531 struct writeback_control *wbc)
1533 struct btrfs_fs_info *fs_info = eb->fs_info;
1536 btrfs_tree_lock(eb);
1537 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1538 btrfs_tree_unlock(eb);
1539 if (wbc->sync_mode != WB_SYNC_ALL)
1541 wait_on_extent_buffer_writeback(eb);
1542 btrfs_tree_lock(eb);
1546 * We need to do this to prevent races in people who check if the eb is
1547 * under IO since we can end up having no IO bits set for a short period
1550 spin_lock(&eb->refs_lock);
1551 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1552 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1553 spin_unlock(&eb->refs_lock);
1554 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1555 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1557 fs_info->dirty_metadata_batch);
1560 spin_unlock(&eb->refs_lock);
1562 btrfs_tree_unlock(eb);
1566 static void set_btree_ioerr(struct extent_buffer *eb)
1568 struct btrfs_fs_info *fs_info = eb->fs_info;
1570 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1573 * A read may stumble upon this buffer later, make sure that it gets an
1574 * error and knows there was an error.
1576 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1579 * We need to set the mapping with the io error as well because a write
1580 * error will flip the file system readonly, and then syncfs() will
1581 * return a 0 because we are readonly if we don't modify the err seq for
1584 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1587 * If writeback for a btree extent that doesn't belong to a log tree
1588 * failed, increment the counter transaction->eb_write_errors.
1589 * We do this because while the transaction is running and before it's
1590 * committing (when we call filemap_fdata[write|wait]_range against
1591 * the btree inode), we might have
1592 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1593 * returns an error or an error happens during writeback, when we're
1594 * committing the transaction we wouldn't know about it, since the pages
1595 * can be no longer dirty nor marked anymore for writeback (if a
1596 * subsequent modification to the extent buffer didn't happen before the
1597 * transaction commit), which makes filemap_fdata[write|wait]_range not
1598 * able to find the pages tagged with SetPageError at transaction
1599 * commit time. So if this happens we must abort the transaction,
1600 * otherwise we commit a super block with btree roots that point to
1601 * btree nodes/leafs whose content on disk is invalid - either garbage
1602 * or the content of some node/leaf from a past generation that got
1603 * cowed or deleted and is no longer valid.
1605 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1606 * not be enough - we need to distinguish between log tree extents vs
1607 * non-log tree extents, and the next filemap_fdatawait_range() call
1608 * will catch and clear such errors in the mapping - and that call might
1609 * be from a log sync and not from a transaction commit. Also, checking
1610 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1611 * not done and would not be reliable - the eb might have been released
1612 * from memory and reading it back again means that flag would not be
1613 * set (since it's a runtime flag, not persisted on disk).
1615 * Using the flags below in the btree inode also makes us achieve the
1616 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1617 * writeback for all dirty pages and before filemap_fdatawait_range()
1618 * is called, the writeback for all dirty pages had already finished
1619 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1620 * filemap_fdatawait_range() would return success, as it could not know
1621 * that writeback errors happened (the pages were no longer tagged for
1624 switch (eb->log_index) {
1626 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1629 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1632 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1635 BUG(); /* unexpected, logic error */
1640 * The endio specific version which won't touch any unsafe spinlock in endio
1643 static struct extent_buffer *find_extent_buffer_nolock(
1644 struct btrfs_fs_info *fs_info, u64 start)
1646 struct extent_buffer *eb;
1649 eb = radix_tree_lookup(&fs_info->buffer_radix,
1650 start >> fs_info->sectorsize_bits);
1651 if (eb && atomic_inc_not_zero(&eb->refs)) {
1659 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1661 struct extent_buffer *eb = bbio->private;
1662 struct btrfs_fs_info *fs_info = eb->fs_info;
1663 bool uptodate = !bbio->bio.bi_status;
1664 struct bvec_iter_all iter_all;
1665 struct bio_vec *bvec;
1669 set_btree_ioerr(eb);
1671 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1672 u64 start = eb->start + bio_offset;
1673 struct page *page = bvec->bv_page;
1674 u32 len = bvec->bv_len;
1677 btrfs_page_clear_uptodate(fs_info, page, start, len);
1678 btrfs_page_clear_writeback(fs_info, page, start, len);
1682 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1683 smp_mb__after_atomic();
1684 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1686 bio_put(&bbio->bio);
1689 static void prepare_eb_write(struct extent_buffer *eb)
1692 unsigned long start;
1695 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1697 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1698 nritems = btrfs_header_nritems(eb);
1699 if (btrfs_header_level(eb) > 0) {
1700 end = btrfs_node_key_ptr_offset(eb, nritems);
1701 memzero_extent_buffer(eb, end, eb->len - end);
1705 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1707 start = btrfs_item_nr_offset(eb, nritems);
1708 end = btrfs_item_nr_offset(eb, 0);
1710 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1712 end += btrfs_item_offset(eb, nritems - 1);
1713 memzero_extent_buffer(eb, start, end - start);
1717 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1718 struct writeback_control *wbc)
1720 struct btrfs_fs_info *fs_info = eb->fs_info;
1721 struct btrfs_bio *bbio;
1723 prepare_eb_write(eb);
1725 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1726 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1727 eb->fs_info, extent_buffer_write_end_io, eb);
1728 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1729 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1730 wbc_init_bio(wbc, &bbio->bio);
1731 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1732 bbio->file_offset = eb->start;
1733 if (fs_info->nodesize < PAGE_SIZE) {
1734 struct page *p = eb->pages[0];
1737 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1738 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1740 clear_page_dirty_for_io(p);
1743 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1744 wbc_account_cgroup_owner(wbc, p, eb->len);
1747 for (int i = 0; i < num_extent_pages(eb); i++) {
1748 struct page *p = eb->pages[i];
1751 clear_page_dirty_for_io(p);
1752 set_page_writeback(p);
1753 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1754 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1759 btrfs_submit_bio(bbio, 0);
1763 * Submit one subpage btree page.
1765 * The main difference to submit_eb_page() is:
1767 * For subpage, we don't rely on page locking at all.
1770 * We only flush bio if we may be unable to fit current extent buffers into
1773 * Return >=0 for the number of submitted extent buffers.
1774 * Return <0 for fatal error.
1776 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1778 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1780 u64 page_start = page_offset(page);
1782 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1784 /* Lock and write each dirty extent buffers in the range */
1785 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1786 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1787 struct extent_buffer *eb;
1788 unsigned long flags;
1792 * Take private lock to ensure the subpage won't be detached
1795 spin_lock(&page->mapping->private_lock);
1796 if (!PagePrivate(page)) {
1797 spin_unlock(&page->mapping->private_lock);
1800 spin_lock_irqsave(&subpage->lock, flags);
1801 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1802 subpage->bitmaps)) {
1803 spin_unlock_irqrestore(&subpage->lock, flags);
1804 spin_unlock(&page->mapping->private_lock);
1809 start = page_start + bit_start * fs_info->sectorsize;
1810 bit_start += sectors_per_node;
1813 * Here we just want to grab the eb without touching extra
1814 * spin locks, so call find_extent_buffer_nolock().
1816 eb = find_extent_buffer_nolock(fs_info, start);
1817 spin_unlock_irqrestore(&subpage->lock, flags);
1818 spin_unlock(&page->mapping->private_lock);
1821 * The eb has already reached 0 refs thus find_extent_buffer()
1822 * doesn't return it. We don't need to write back such eb
1828 if (lock_extent_buffer_for_io(eb, wbc)) {
1829 write_one_eb(eb, wbc);
1832 free_extent_buffer(eb);
1838 * Submit all page(s) of one extent buffer.
1840 * @page: the page of one extent buffer
1841 * @eb_context: to determine if we need to submit this page, if current page
1842 * belongs to this eb, we don't need to submit
1844 * The caller should pass each page in their bytenr order, and here we use
1845 * @eb_context to determine if we have submitted pages of one extent buffer.
1847 * If we have, we just skip until we hit a new page that doesn't belong to
1848 * current @eb_context.
1850 * If not, we submit all the page(s) of the extent buffer.
1852 * Return >0 if we have submitted the extent buffer successfully.
1853 * Return 0 if we don't need to submit the page, as it's already submitted by
1855 * Return <0 for fatal error.
1857 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
1858 struct extent_buffer **eb_context)
1860 struct address_space *mapping = page->mapping;
1861 struct btrfs_block_group *cache = NULL;
1862 struct extent_buffer *eb;
1865 if (!PagePrivate(page))
1868 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1869 return submit_eb_subpage(page, wbc);
1871 spin_lock(&mapping->private_lock);
1872 if (!PagePrivate(page)) {
1873 spin_unlock(&mapping->private_lock);
1877 eb = (struct extent_buffer *)page->private;
1880 * Shouldn't happen and normally this would be a BUG_ON but no point
1881 * crashing the machine for something we can survive anyway.
1884 spin_unlock(&mapping->private_lock);
1888 if (eb == *eb_context) {
1889 spin_unlock(&mapping->private_lock);
1892 ret = atomic_inc_not_zero(&eb->refs);
1893 spin_unlock(&mapping->private_lock);
1897 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
1899 * If for_sync, this hole will be filled with
1900 * trasnsaction commit.
1902 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1906 free_extent_buffer(eb);
1912 if (!lock_extent_buffer_for_io(eb, wbc)) {
1913 btrfs_revert_meta_write_pointer(cache, eb);
1915 btrfs_put_block_group(cache);
1916 free_extent_buffer(eb);
1921 * Implies write in zoned mode. Mark the last eb in a block group.
1923 btrfs_schedule_zone_finish_bg(cache, eb);
1924 btrfs_put_block_group(cache);
1926 write_one_eb(eb, wbc);
1927 free_extent_buffer(eb);
1931 int btree_write_cache_pages(struct address_space *mapping,
1932 struct writeback_control *wbc)
1934 struct extent_buffer *eb_context = NULL;
1935 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1938 int nr_to_write_done = 0;
1939 struct folio_batch fbatch;
1940 unsigned int nr_folios;
1942 pgoff_t end; /* Inclusive */
1946 folio_batch_init(&fbatch);
1947 if (wbc->range_cyclic) {
1948 index = mapping->writeback_index; /* Start from prev offset */
1951 * Start from the beginning does not need to cycle over the
1952 * range, mark it as scanned.
1954 scanned = (index == 0);
1956 index = wbc->range_start >> PAGE_SHIFT;
1957 end = wbc->range_end >> PAGE_SHIFT;
1960 if (wbc->sync_mode == WB_SYNC_ALL)
1961 tag = PAGECACHE_TAG_TOWRITE;
1963 tag = PAGECACHE_TAG_DIRTY;
1964 btrfs_zoned_meta_io_lock(fs_info);
1966 if (wbc->sync_mode == WB_SYNC_ALL)
1967 tag_pages_for_writeback(mapping, index, end);
1968 while (!done && !nr_to_write_done && (index <= end) &&
1969 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1973 for (i = 0; i < nr_folios; i++) {
1974 struct folio *folio = fbatch.folios[i];
1976 ret = submit_eb_page(&folio->page, wbc, &eb_context);
1985 * the filesystem may choose to bump up nr_to_write.
1986 * We have to make sure to honor the new nr_to_write
1989 nr_to_write_done = wbc->nr_to_write <= 0;
1991 folio_batch_release(&fbatch);
1994 if (!scanned && !done) {
1996 * We hit the last page and there is more work to be done: wrap
1997 * back to the start of the file
2004 * If something went wrong, don't allow any metadata write bio to be
2007 * This would prevent use-after-free if we had dirty pages not
2008 * cleaned up, which can still happen by fuzzed images.
2011 * Allowing existing tree block to be allocated for other trees.
2013 * - Log tree operations
2014 * Exiting tree blocks get allocated to log tree, bumps its
2015 * generation, then get cleaned in tree re-balance.
2016 * Such tree block will not be written back, since it's clean,
2017 * thus no WRITTEN flag set.
2018 * And after log writes back, this tree block is not traced by
2019 * any dirty extent_io_tree.
2021 * - Offending tree block gets re-dirtied from its original owner
2022 * Since it has bumped generation, no WRITTEN flag, it can be
2023 * reused without COWing. This tree block will not be traced
2024 * by btrfs_transaction::dirty_pages.
2026 * Now such dirty tree block will not be cleaned by any dirty
2027 * extent io tree. Thus we don't want to submit such wild eb
2028 * if the fs already has error.
2030 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2031 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2035 if (!ret && BTRFS_FS_ERROR(fs_info))
2037 btrfs_zoned_meta_io_unlock(fs_info);
2042 * Walk the list of dirty pages of the given address space and write all of them.
2044 * @mapping: address space structure to write
2045 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2046 * @bio_ctrl: holds context for the write, namely the bio
2048 * If a page is already under I/O, write_cache_pages() skips it, even
2049 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2050 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2051 * and msync() need to guarantee that all the data which was dirty at the time
2052 * the call was made get new I/O started against them. If wbc->sync_mode is
2053 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2054 * existing IO to complete.
2056 static int extent_write_cache_pages(struct address_space *mapping,
2057 struct btrfs_bio_ctrl *bio_ctrl)
2059 struct writeback_control *wbc = bio_ctrl->wbc;
2060 struct inode *inode = mapping->host;
2063 int nr_to_write_done = 0;
2064 struct folio_batch fbatch;
2065 unsigned int nr_folios;
2067 pgoff_t end; /* Inclusive */
2069 int range_whole = 0;
2074 * We have to hold onto the inode so that ordered extents can do their
2075 * work when the IO finishes. The alternative to this is failing to add
2076 * an ordered extent if the igrab() fails there and that is a huge pain
2077 * to deal with, so instead just hold onto the inode throughout the
2078 * writepages operation. If it fails here we are freeing up the inode
2079 * anyway and we'd rather not waste our time writing out stuff that is
2080 * going to be truncated anyway.
2085 folio_batch_init(&fbatch);
2086 if (wbc->range_cyclic) {
2087 index = mapping->writeback_index; /* Start from prev offset */
2090 * Start from the beginning does not need to cycle over the
2091 * range, mark it as scanned.
2093 scanned = (index == 0);
2095 index = wbc->range_start >> PAGE_SHIFT;
2096 end = wbc->range_end >> PAGE_SHIFT;
2097 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2103 * We do the tagged writepage as long as the snapshot flush bit is set
2104 * and we are the first one who do the filemap_flush() on this inode.
2106 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2107 * not race in and drop the bit.
2109 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2110 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2111 &BTRFS_I(inode)->runtime_flags))
2112 wbc->tagged_writepages = 1;
2114 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2115 tag = PAGECACHE_TAG_TOWRITE;
2117 tag = PAGECACHE_TAG_DIRTY;
2119 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2120 tag_pages_for_writeback(mapping, index, end);
2122 while (!done && !nr_to_write_done && (index <= end) &&
2123 (nr_folios = filemap_get_folios_tag(mapping, &index,
2124 end, tag, &fbatch))) {
2127 for (i = 0; i < nr_folios; i++) {
2128 struct folio *folio = fbatch.folios[i];
2130 done_index = folio->index + folio_nr_pages(folio);
2132 * At this point we hold neither the i_pages lock nor
2133 * the page lock: the page may be truncated or
2134 * invalidated (changing page->mapping to NULL),
2135 * or even swizzled back from swapper_space to
2136 * tmpfs file mapping
2138 if (!folio_trylock(folio)) {
2139 submit_write_bio(bio_ctrl, 0);
2143 if (unlikely(folio->mapping != mapping)) {
2144 folio_unlock(folio);
2148 if (wbc->sync_mode != WB_SYNC_NONE) {
2149 if (folio_test_writeback(folio))
2150 submit_write_bio(bio_ctrl, 0);
2151 folio_wait_writeback(folio);
2154 if (folio_test_writeback(folio) ||
2155 !folio_clear_dirty_for_io(folio)) {
2156 folio_unlock(folio);
2160 ret = __extent_writepage(&folio->page, bio_ctrl);
2167 * the filesystem may choose to bump up nr_to_write.
2168 * We have to make sure to honor the new nr_to_write
2171 nr_to_write_done = wbc->nr_to_write <= 0;
2173 folio_batch_release(&fbatch);
2176 if (!scanned && !done) {
2178 * We hit the last page and there is more work to be done: wrap
2179 * back to the start of the file
2185 * If we're looping we could run into a page that is locked by a
2186 * writer and that writer could be waiting on writeback for a
2187 * page in our current bio, and thus deadlock, so flush the
2190 submit_write_bio(bio_ctrl, 0);
2194 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2195 mapping->writeback_index = done_index;
2197 btrfs_add_delayed_iput(BTRFS_I(inode));
2202 * Submit the pages in the range to bio for call sites which delalloc range has
2203 * already been ran (aka, ordered extent inserted) and all pages are still
2206 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
2207 struct writeback_control *wbc)
2209 bool found_error = false;
2210 int first_error = 0;
2212 struct address_space *mapping = inode->i_mapping;
2213 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2214 const u32 sectorsize = fs_info->sectorsize;
2215 loff_t i_size = i_size_read(inode);
2217 struct btrfs_bio_ctrl bio_ctrl = {
2219 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2222 if (wbc->no_cgroup_owner)
2223 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2225 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2227 while (cur <= end) {
2228 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2232 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2234 * All pages in the range are locked since
2235 * btrfs_run_delalloc_range(), thus there is no way to clear
2236 * the page dirty flag.
2238 ASSERT(PageLocked(page));
2239 ASSERT(PageDirty(page));
2240 clear_page_dirty_for_io(page);
2242 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2247 /* Make sure the mapping tag for page dirty gets cleared. */
2249 set_page_writeback(page);
2250 end_page_writeback(page);
2253 end_extent_writepage(page, ret, cur, cur_end);
2254 btrfs_page_unlock_writer(fs_info, page, cur, cur_end + 1 - cur);
2264 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2271 int extent_writepages(struct address_space *mapping,
2272 struct writeback_control *wbc)
2274 struct inode *inode = mapping->host;
2276 struct btrfs_bio_ctrl bio_ctrl = {
2278 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2282 * Allow only a single thread to do the reloc work in zoned mode to
2283 * protect the write pointer updates.
2285 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2286 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2287 submit_write_bio(&bio_ctrl, ret);
2288 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2292 void extent_readahead(struct readahead_control *rac)
2294 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2295 struct page *pagepool[16];
2296 struct extent_map *em_cached = NULL;
2297 u64 prev_em_start = (u64)-1;
2300 while ((nr = readahead_page_batch(rac, pagepool))) {
2301 u64 contig_start = readahead_pos(rac);
2302 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2304 contiguous_readpages(pagepool, nr, contig_start, contig_end,
2305 &em_cached, &bio_ctrl, &prev_em_start);
2309 free_extent_map(em_cached);
2310 submit_one_bio(&bio_ctrl);
2314 * basic invalidate_folio code, this waits on any locked or writeback
2315 * ranges corresponding to the folio, and then deletes any extent state
2316 * records from the tree
2318 int extent_invalidate_folio(struct extent_io_tree *tree,
2319 struct folio *folio, size_t offset)
2321 struct extent_state *cached_state = NULL;
2322 u64 start = folio_pos(folio);
2323 u64 end = start + folio_size(folio) - 1;
2324 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2326 /* This function is only called for the btree inode */
2327 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2329 start += ALIGN(offset, blocksize);
2333 lock_extent(tree, start, end, &cached_state);
2334 folio_wait_writeback(folio);
2337 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2338 * so here we only need to unlock the extent range to free any
2339 * existing extent state.
2341 unlock_extent(tree, start, end, &cached_state);
2346 * a helper for release_folio, this tests for areas of the page that
2347 * are locked or under IO and drops the related state bits if it is safe
2350 static int try_release_extent_state(struct extent_io_tree *tree,
2351 struct page *page, gfp_t mask)
2353 u64 start = page_offset(page);
2354 u64 end = start + PAGE_SIZE - 1;
2357 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2360 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2361 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
2364 * At this point we can safely clear everything except the
2365 * locked bit, the nodatasum bit and the delalloc new bit.
2366 * The delalloc new bit will be cleared by ordered extent
2369 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2371 /* if clear_extent_bit failed for enomem reasons,
2372 * we can't allow the release to continue.
2383 * a helper for release_folio. As long as there are no locked extents
2384 * in the range corresponding to the page, both state records and extent
2385 * map records are removed
2387 int try_release_extent_mapping(struct page *page, gfp_t mask)
2389 struct extent_map *em;
2390 u64 start = page_offset(page);
2391 u64 end = start + PAGE_SIZE - 1;
2392 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2393 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2394 struct extent_map_tree *map = &btrfs_inode->extent_tree;
2396 if (gfpflags_allow_blocking(mask) &&
2397 page->mapping->host->i_size > SZ_16M) {
2399 while (start <= end) {
2400 struct btrfs_fs_info *fs_info;
2403 len = end - start + 1;
2404 write_lock(&map->lock);
2405 em = lookup_extent_mapping(map, start, len);
2407 write_unlock(&map->lock);
2410 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2411 em->start != start) {
2412 write_unlock(&map->lock);
2413 free_extent_map(em);
2416 if (test_range_bit(tree, em->start,
2417 extent_map_end(em) - 1,
2418 EXTENT_LOCKED, 0, NULL))
2421 * If it's not in the list of modified extents, used
2422 * by a fast fsync, we can remove it. If it's being
2423 * logged we can safely remove it since fsync took an
2424 * extra reference on the em.
2426 if (list_empty(&em->list) ||
2427 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2430 * If it's in the list of modified extents, remove it
2431 * only if its generation is older then the current one,
2432 * in which case we don't need it for a fast fsync.
2433 * Otherwise don't remove it, we could be racing with an
2434 * ongoing fast fsync that could miss the new extent.
2436 fs_info = btrfs_inode->root->fs_info;
2437 spin_lock(&fs_info->trans_lock);
2438 cur_gen = fs_info->generation;
2439 spin_unlock(&fs_info->trans_lock);
2440 if (em->generation >= cur_gen)
2444 * We only remove extent maps that are not in the list of
2445 * modified extents or that are in the list but with a
2446 * generation lower then the current generation, so there
2447 * is no need to set the full fsync flag on the inode (it
2448 * hurts the fsync performance for workloads with a data
2449 * size that exceeds or is close to the system's memory).
2451 remove_extent_mapping(map, em);
2452 /* once for the rb tree */
2453 free_extent_map(em);
2455 start = extent_map_end(em);
2456 write_unlock(&map->lock);
2459 free_extent_map(em);
2461 cond_resched(); /* Allow large-extent preemption. */
2464 return try_release_extent_state(tree, page, mask);
2468 * To cache previous fiemap extent
2470 * Will be used for merging fiemap extent
2472 struct fiemap_cache {
2481 * Helper to submit fiemap extent.
2483 * Will try to merge current fiemap extent specified by @offset, @phys,
2484 * @len and @flags with cached one.
2485 * And only when we fails to merge, cached one will be submitted as
2488 * Return value is the same as fiemap_fill_next_extent().
2490 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2491 struct fiemap_cache *cache,
2492 u64 offset, u64 phys, u64 len, u32 flags)
2496 /* Set at the end of extent_fiemap(). */
2497 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2503 * Sanity check, extent_fiemap() should have ensured that new
2504 * fiemap extent won't overlap with cached one.
2507 * NOTE: Physical address can overlap, due to compression
2509 if (cache->offset + cache->len > offset) {
2515 * Only merges fiemap extents if
2516 * 1) Their logical addresses are continuous
2518 * 2) Their physical addresses are continuous
2519 * So truly compressed (physical size smaller than logical size)
2520 * extents won't get merged with each other
2522 * 3) Share same flags
2524 if (cache->offset + cache->len == offset &&
2525 cache->phys + cache->len == phys &&
2526 cache->flags == flags) {
2531 /* Not mergeable, need to submit cached one */
2532 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2533 cache->len, cache->flags);
2534 cache->cached = false;
2538 cache->cached = true;
2539 cache->offset = offset;
2542 cache->flags = flags;
2548 * Emit last fiemap cache
2550 * The last fiemap cache may still be cached in the following case:
2552 * |<- Fiemap range ->|
2553 * |<------------ First extent ----------->|
2555 * In this case, the first extent range will be cached but not emitted.
2556 * So we must emit it before ending extent_fiemap().
2558 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2559 struct fiemap_cache *cache)
2566 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2567 cache->len, cache->flags);
2568 cache->cached = false;
2574 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2576 struct extent_buffer *clone;
2577 struct btrfs_key key;
2582 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2585 ret = btrfs_next_leaf(inode->root, path);
2590 * Don't bother with cloning if there are no more file extent items for
2593 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2594 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2597 /* See the comment at fiemap_search_slot() about why we clone. */
2598 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2602 slot = path->slots[0];
2603 btrfs_release_path(path);
2604 path->nodes[0] = clone;
2605 path->slots[0] = slot;
2611 * Search for the first file extent item that starts at a given file offset or
2612 * the one that starts immediately before that offset.
2613 * Returns: 0 on success, < 0 on error, 1 if not found.
2615 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2618 const u64 ino = btrfs_ino(inode);
2619 struct btrfs_root *root = inode->root;
2620 struct extent_buffer *clone;
2621 struct btrfs_key key;
2626 key.type = BTRFS_EXTENT_DATA_KEY;
2627 key.offset = file_offset;
2629 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2633 if (ret > 0 && path->slots[0] > 0) {
2634 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2635 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2639 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2640 ret = btrfs_next_leaf(root, path);
2644 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2645 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2650 * We clone the leaf and use it during fiemap. This is because while
2651 * using the leaf we do expensive things like checking if an extent is
2652 * shared, which can take a long time. In order to prevent blocking
2653 * other tasks for too long, we use a clone of the leaf. We have locked
2654 * the file range in the inode's io tree, so we know none of our file
2655 * extent items can change. This way we avoid blocking other tasks that
2656 * want to insert items for other inodes in the same leaf or b+tree
2657 * rebalance operations (triggered for example when someone is trying
2658 * to push items into this leaf when trying to insert an item in a
2660 * We also need the private clone because holding a read lock on an
2661 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2662 * when we call fiemap_fill_next_extent(), because that may cause a page
2663 * fault when filling the user space buffer with fiemap data.
2665 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2669 slot = path->slots[0];
2670 btrfs_release_path(path);
2671 path->nodes[0] = clone;
2672 path->slots[0] = slot;
2678 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2679 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2680 * extent. The end offset (@end) is inclusive.
2682 static int fiemap_process_hole(struct btrfs_inode *inode,
2683 struct fiemap_extent_info *fieinfo,
2684 struct fiemap_cache *cache,
2685 struct extent_state **delalloc_cached_state,
2686 struct btrfs_backref_share_check_ctx *backref_ctx,
2687 u64 disk_bytenr, u64 extent_offset,
2691 const u64 i_size = i_size_read(&inode->vfs_inode);
2692 u64 cur_offset = start;
2693 u64 last_delalloc_end = 0;
2694 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2695 bool checked_extent_shared = false;
2699 * There can be no delalloc past i_size, so don't waste time looking for
2702 while (cur_offset < end && cur_offset < i_size) {
2706 u64 prealloc_len = 0;
2709 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2710 delalloc_cached_state,
2717 * If this is a prealloc extent we have to report every section
2718 * of it that has no delalloc.
2720 if (disk_bytenr != 0) {
2721 if (last_delalloc_end == 0) {
2722 prealloc_start = start;
2723 prealloc_len = delalloc_start - start;
2725 prealloc_start = last_delalloc_end + 1;
2726 prealloc_len = delalloc_start - prealloc_start;
2730 if (prealloc_len > 0) {
2731 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2732 ret = btrfs_is_data_extent_shared(inode,
2739 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2741 checked_extent_shared = true;
2743 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2744 disk_bytenr + extent_offset,
2745 prealloc_len, prealloc_flags);
2748 extent_offset += prealloc_len;
2751 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2752 delalloc_end + 1 - delalloc_start,
2753 FIEMAP_EXTENT_DELALLOC |
2754 FIEMAP_EXTENT_UNKNOWN);
2758 last_delalloc_end = delalloc_end;
2759 cur_offset = delalloc_end + 1;
2760 extent_offset += cur_offset - delalloc_start;
2765 * Either we found no delalloc for the whole prealloc extent or we have
2766 * a prealloc extent that spans i_size or starts at or after i_size.
2768 if (disk_bytenr != 0 && last_delalloc_end < end) {
2772 if (last_delalloc_end == 0) {
2773 prealloc_start = start;
2774 prealloc_len = end + 1 - start;
2776 prealloc_start = last_delalloc_end + 1;
2777 prealloc_len = end + 1 - prealloc_start;
2780 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2781 ret = btrfs_is_data_extent_shared(inode,
2788 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2790 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2791 disk_bytenr + extent_offset,
2792 prealloc_len, prealloc_flags);
2800 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2801 struct btrfs_path *path,
2802 u64 *last_extent_end_ret)
2804 const u64 ino = btrfs_ino(inode);
2805 struct btrfs_root *root = inode->root;
2806 struct extent_buffer *leaf;
2807 struct btrfs_file_extent_item *ei;
2808 struct btrfs_key key;
2813 * Lookup the last file extent. We're not using i_size here because
2814 * there might be preallocation past i_size.
2816 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2817 /* There can't be a file extent item at offset (u64)-1 */
2823 * For a non-existing key, btrfs_search_slot() always leaves us at a
2824 * slot > 0, except if the btree is empty, which is impossible because
2825 * at least it has the inode item for this inode and all the items for
2826 * the root inode 256.
2828 ASSERT(path->slots[0] > 0);
2830 leaf = path->nodes[0];
2831 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2832 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2833 /* No file extent items in the subvolume tree. */
2834 *last_extent_end_ret = 0;
2839 * For an inline extent, the disk_bytenr is where inline data starts at,
2840 * so first check if we have an inline extent item before checking if we
2841 * have an implicit hole (disk_bytenr == 0).
2843 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2844 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2845 *last_extent_end_ret = btrfs_file_extent_end(path);
2850 * Find the last file extent item that is not a hole (when NO_HOLES is
2851 * not enabled). This should take at most 2 iterations in the worst
2852 * case: we have one hole file extent item at slot 0 of a leaf and
2853 * another hole file extent item as the last item in the previous leaf.
2854 * This is because we merge file extent items that represent holes.
2856 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2857 while (disk_bytenr == 0) {
2858 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2861 } else if (ret > 0) {
2862 /* No file extent items that are not holes. */
2863 *last_extent_end_ret = 0;
2866 leaf = path->nodes[0];
2867 ei = btrfs_item_ptr(leaf, path->slots[0],
2868 struct btrfs_file_extent_item);
2869 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2872 *last_extent_end_ret = btrfs_file_extent_end(path);
2876 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2879 const u64 ino = btrfs_ino(inode);
2880 struct extent_state *cached_state = NULL;
2881 struct extent_state *delalloc_cached_state = NULL;
2882 struct btrfs_path *path;
2883 struct fiemap_cache cache = { 0 };
2884 struct btrfs_backref_share_check_ctx *backref_ctx;
2885 u64 last_extent_end;
2886 u64 prev_extent_end;
2889 bool stopped = false;
2892 backref_ctx = btrfs_alloc_backref_share_check_ctx();
2893 path = btrfs_alloc_path();
2894 if (!backref_ctx || !path) {
2899 lockstart = round_down(start, inode->root->fs_info->sectorsize);
2900 lockend = round_up(start + len, inode->root->fs_info->sectorsize);
2901 prev_extent_end = lockstart;
2903 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2904 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2906 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2909 btrfs_release_path(path);
2911 path->reada = READA_FORWARD;
2912 ret = fiemap_search_slot(inode, path, lockstart);
2915 } else if (ret > 0) {
2917 * No file extent item found, but we may have delalloc between
2918 * the current offset and i_size. So check for that.
2921 goto check_eof_delalloc;
2924 while (prev_extent_end < lockend) {
2925 struct extent_buffer *leaf = path->nodes[0];
2926 struct btrfs_file_extent_item *ei;
2927 struct btrfs_key key;
2930 u64 extent_offset = 0;
2932 u64 disk_bytenr = 0;
2937 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2938 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2941 extent_end = btrfs_file_extent_end(path);
2944 * The first iteration can leave us at an extent item that ends
2945 * before our range's start. Move to the next item.
2947 if (extent_end <= lockstart)
2950 backref_ctx->curr_leaf_bytenr = leaf->start;
2952 /* We have in implicit hole (NO_HOLES feature enabled). */
2953 if (prev_extent_end < key.offset) {
2954 const u64 range_end = min(key.offset, lockend) - 1;
2956 ret = fiemap_process_hole(inode, fieinfo, &cache,
2957 &delalloc_cached_state,
2958 backref_ctx, 0, 0, 0,
2959 prev_extent_end, range_end);
2962 } else if (ret > 0) {
2963 /* fiemap_fill_next_extent() told us to stop. */
2968 /* We've reached the end of the fiemap range, stop. */
2969 if (key.offset >= lockend) {
2975 extent_len = extent_end - key.offset;
2976 ei = btrfs_item_ptr(leaf, path->slots[0],
2977 struct btrfs_file_extent_item);
2978 compression = btrfs_file_extent_compression(leaf, ei);
2979 extent_type = btrfs_file_extent_type(leaf, ei);
2980 extent_gen = btrfs_file_extent_generation(leaf, ei);
2982 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2983 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2984 if (compression == BTRFS_COMPRESS_NONE)
2985 extent_offset = btrfs_file_extent_offset(leaf, ei);
2988 if (compression != BTRFS_COMPRESS_NONE)
2989 flags |= FIEMAP_EXTENT_ENCODED;
2991 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2992 flags |= FIEMAP_EXTENT_DATA_INLINE;
2993 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
2994 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
2996 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2997 ret = fiemap_process_hole(inode, fieinfo, &cache,
2998 &delalloc_cached_state,
3000 disk_bytenr, extent_offset,
3001 extent_gen, key.offset,
3003 } else if (disk_bytenr == 0) {
3004 /* We have an explicit hole. */
3005 ret = fiemap_process_hole(inode, fieinfo, &cache,
3006 &delalloc_cached_state,
3007 backref_ctx, 0, 0, 0,
3008 key.offset, extent_end - 1);
3010 /* We have a regular extent. */
3011 if (fieinfo->fi_extents_max) {
3012 ret = btrfs_is_data_extent_shared(inode,
3019 flags |= FIEMAP_EXTENT_SHARED;
3022 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3023 disk_bytenr + extent_offset,
3029 } else if (ret > 0) {
3030 /* fiemap_fill_next_extent() told us to stop. */
3035 prev_extent_end = extent_end;
3037 if (fatal_signal_pending(current)) {
3042 ret = fiemap_next_leaf_item(inode, path);
3045 } else if (ret > 0) {
3046 /* No more file extent items for this inode. */
3054 * Release (and free) the path before emitting any final entries to
3055 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3056 * once we find no more file extent items exist, we may have a
3057 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3058 * faults when copying data to the user space buffer.
3060 btrfs_free_path(path);
3063 if (!stopped && prev_extent_end < lockend) {
3064 ret = fiemap_process_hole(inode, fieinfo, &cache,
3065 &delalloc_cached_state, backref_ctx,
3066 0, 0, 0, prev_extent_end, lockend - 1);
3069 prev_extent_end = lockend;
3072 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3073 const u64 i_size = i_size_read(&inode->vfs_inode);
3075 if (prev_extent_end < i_size) {
3080 delalloc = btrfs_find_delalloc_in_range(inode,
3083 &delalloc_cached_state,
3087 cache.flags |= FIEMAP_EXTENT_LAST;
3089 cache.flags |= FIEMAP_EXTENT_LAST;
3093 ret = emit_last_fiemap_cache(fieinfo, &cache);
3096 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3097 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3099 free_extent_state(delalloc_cached_state);
3100 btrfs_free_backref_share_ctx(backref_ctx);
3101 btrfs_free_path(path);
3105 static void __free_extent_buffer(struct extent_buffer *eb)
3107 kmem_cache_free(extent_buffer_cache, eb);
3110 static int extent_buffer_under_io(const struct extent_buffer *eb)
3112 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3113 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3116 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3118 struct btrfs_subpage *subpage;
3120 lockdep_assert_held(&page->mapping->private_lock);
3122 if (PagePrivate(page)) {
3123 subpage = (struct btrfs_subpage *)page->private;
3124 if (atomic_read(&subpage->eb_refs))
3127 * Even there is no eb refs here, we may still have
3128 * end_page_read() call relying on page::private.
3130 if (atomic_read(&subpage->readers))
3136 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3138 struct btrfs_fs_info *fs_info = eb->fs_info;
3139 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3142 * For mapped eb, we're going to change the page private, which should
3143 * be done under the private_lock.
3146 spin_lock(&page->mapping->private_lock);
3148 if (!PagePrivate(page)) {
3150 spin_unlock(&page->mapping->private_lock);
3154 if (fs_info->nodesize >= PAGE_SIZE) {
3156 * We do this since we'll remove the pages after we've
3157 * removed the eb from the radix tree, so we could race
3158 * and have this page now attached to the new eb. So
3159 * only clear page_private if it's still connected to
3162 if (PagePrivate(page) &&
3163 page->private == (unsigned long)eb) {
3164 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3165 BUG_ON(PageDirty(page));
3166 BUG_ON(PageWriteback(page));
3168 * We need to make sure we haven't be attached
3171 detach_page_private(page);
3174 spin_unlock(&page->mapping->private_lock);
3179 * For subpage, we can have dummy eb with page private. In this case,
3180 * we can directly detach the private as such page is only attached to
3181 * one dummy eb, no sharing.
3184 btrfs_detach_subpage(fs_info, page);
3188 btrfs_page_dec_eb_refs(fs_info, page);
3191 * We can only detach the page private if there are no other ebs in the
3192 * page range and no unfinished IO.
3194 if (!page_range_has_eb(fs_info, page))
3195 btrfs_detach_subpage(fs_info, page);
3197 spin_unlock(&page->mapping->private_lock);
3200 /* Release all pages attached to the extent buffer */
3201 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3206 ASSERT(!extent_buffer_under_io(eb));
3208 num_pages = num_extent_pages(eb);
3209 for (i = 0; i < num_pages; i++) {
3210 struct page *page = eb->pages[i];
3215 detach_extent_buffer_page(eb, page);
3217 /* One for when we allocated the page */
3223 * Helper for releasing the extent buffer.
3225 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3227 btrfs_release_extent_buffer_pages(eb);
3228 btrfs_leak_debug_del_eb(eb);
3229 __free_extent_buffer(eb);
3232 static struct extent_buffer *
3233 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3236 struct extent_buffer *eb = NULL;
3238 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3241 eb->fs_info = fs_info;
3242 init_rwsem(&eb->lock);
3244 btrfs_leak_debug_add_eb(eb);
3246 spin_lock_init(&eb->refs_lock);
3247 atomic_set(&eb->refs, 1);
3249 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3254 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3257 struct extent_buffer *new;
3258 int num_pages = num_extent_pages(src);
3261 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3266 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3267 * btrfs_release_extent_buffer() have different behavior for
3268 * UNMAPPED subpage extent buffer.
3270 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3272 ret = btrfs_alloc_page_array(num_pages, new->pages);
3274 btrfs_release_extent_buffer(new);
3278 for (i = 0; i < num_pages; i++) {
3280 struct page *p = new->pages[i];
3282 ret = attach_extent_buffer_page(new, p, NULL);
3284 btrfs_release_extent_buffer(new);
3287 WARN_ON(PageDirty(p));
3288 copy_page(page_address(p), page_address(src->pages[i]));
3290 set_extent_buffer_uptodate(new);
3295 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3296 u64 start, unsigned long len)
3298 struct extent_buffer *eb;
3303 eb = __alloc_extent_buffer(fs_info, start, len);
3307 num_pages = num_extent_pages(eb);
3308 ret = btrfs_alloc_page_array(num_pages, eb->pages);
3312 for (i = 0; i < num_pages; i++) {
3313 struct page *p = eb->pages[i];
3315 ret = attach_extent_buffer_page(eb, p, NULL);
3320 set_extent_buffer_uptodate(eb);
3321 btrfs_set_header_nritems(eb, 0);
3322 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3326 for (i = 0; i < num_pages; i++) {
3328 detach_extent_buffer_page(eb, eb->pages[i]);
3329 __free_page(eb->pages[i]);
3332 __free_extent_buffer(eb);
3336 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3339 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3342 static void check_buffer_tree_ref(struct extent_buffer *eb)
3346 * The TREE_REF bit is first set when the extent_buffer is added
3347 * to the radix tree. It is also reset, if unset, when a new reference
3348 * is created by find_extent_buffer.
3350 * It is only cleared in two cases: freeing the last non-tree
3351 * reference to the extent_buffer when its STALE bit is set or
3352 * calling release_folio when the tree reference is the only reference.
3354 * In both cases, care is taken to ensure that the extent_buffer's
3355 * pages are not under io. However, release_folio can be concurrently
3356 * called with creating new references, which is prone to race
3357 * conditions between the calls to check_buffer_tree_ref in those
3358 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3360 * The actual lifetime of the extent_buffer in the radix tree is
3361 * adequately protected by the refcount, but the TREE_REF bit and
3362 * its corresponding reference are not. To protect against this
3363 * class of races, we call check_buffer_tree_ref from the codepaths
3364 * which trigger io. Note that once io is initiated, TREE_REF can no
3365 * longer be cleared, so that is the moment at which any such race is
3368 refs = atomic_read(&eb->refs);
3369 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3372 spin_lock(&eb->refs_lock);
3373 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3374 atomic_inc(&eb->refs);
3375 spin_unlock(&eb->refs_lock);
3378 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3379 struct page *accessed)
3383 check_buffer_tree_ref(eb);
3385 num_pages = num_extent_pages(eb);
3386 for (i = 0; i < num_pages; i++) {
3387 struct page *p = eb->pages[i];
3390 mark_page_accessed(p);
3394 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3397 struct extent_buffer *eb;
3399 eb = find_extent_buffer_nolock(fs_info, start);
3403 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3404 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3405 * another task running free_extent_buffer() might have seen that flag
3406 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3407 * writeback flags not set) and it's still in the tree (flag
3408 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3409 * decrementing the extent buffer's reference count twice. So here we
3410 * could race and increment the eb's reference count, clear its stale
3411 * flag, mark it as dirty and drop our reference before the other task
3412 * finishes executing free_extent_buffer, which would later result in
3413 * an attempt to free an extent buffer that is dirty.
3415 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3416 spin_lock(&eb->refs_lock);
3417 spin_unlock(&eb->refs_lock);
3419 mark_extent_buffer_accessed(eb, NULL);
3423 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3424 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3427 struct extent_buffer *eb, *exists = NULL;
3430 eb = find_extent_buffer(fs_info, start);
3433 eb = alloc_dummy_extent_buffer(fs_info, start);
3435 return ERR_PTR(-ENOMEM);
3436 eb->fs_info = fs_info;
3438 ret = radix_tree_preload(GFP_NOFS);
3440 exists = ERR_PTR(ret);
3443 spin_lock(&fs_info->buffer_lock);
3444 ret = radix_tree_insert(&fs_info->buffer_radix,
3445 start >> fs_info->sectorsize_bits, eb);
3446 spin_unlock(&fs_info->buffer_lock);
3447 radix_tree_preload_end();
3448 if (ret == -EEXIST) {
3449 exists = find_extent_buffer(fs_info, start);
3455 check_buffer_tree_ref(eb);
3456 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3460 btrfs_release_extent_buffer(eb);
3465 static struct extent_buffer *grab_extent_buffer(
3466 struct btrfs_fs_info *fs_info, struct page *page)
3468 struct extent_buffer *exists;
3471 * For subpage case, we completely rely on radix tree to ensure we
3472 * don't try to insert two ebs for the same bytenr. So here we always
3473 * return NULL and just continue.
3475 if (fs_info->nodesize < PAGE_SIZE)
3478 /* Page not yet attached to an extent buffer */
3479 if (!PagePrivate(page))
3483 * We could have already allocated an eb for this page and attached one
3484 * so lets see if we can get a ref on the existing eb, and if we can we
3485 * know it's good and we can just return that one, else we know we can
3486 * just overwrite page->private.
3488 exists = (struct extent_buffer *)page->private;
3489 if (atomic_inc_not_zero(&exists->refs))
3492 WARN_ON(PageDirty(page));
3493 detach_page_private(page);
3497 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3499 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3500 btrfs_err(fs_info, "bad tree block start %llu", start);
3504 if (fs_info->nodesize < PAGE_SIZE &&
3505 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3507 "tree block crosses page boundary, start %llu nodesize %u",
3508 start, fs_info->nodesize);
3511 if (fs_info->nodesize >= PAGE_SIZE &&
3512 !PAGE_ALIGNED(start)) {
3514 "tree block is not page aligned, start %llu nodesize %u",
3515 start, fs_info->nodesize);
3521 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3522 u64 start, u64 owner_root, int level)
3524 unsigned long len = fs_info->nodesize;
3527 unsigned long index = start >> PAGE_SHIFT;
3528 struct extent_buffer *eb;
3529 struct extent_buffer *exists = NULL;
3531 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3532 u64 lockdep_owner = owner_root;
3536 if (check_eb_alignment(fs_info, start))
3537 return ERR_PTR(-EINVAL);
3539 #if BITS_PER_LONG == 32
3540 if (start >= MAX_LFS_FILESIZE) {
3541 btrfs_err_rl(fs_info,
3542 "extent buffer %llu is beyond 32bit page cache limit", start);
3543 btrfs_err_32bit_limit(fs_info);
3544 return ERR_PTR(-EOVERFLOW);
3546 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3547 btrfs_warn_32bit_limit(fs_info);
3550 eb = find_extent_buffer(fs_info, start);
3554 eb = __alloc_extent_buffer(fs_info, start, len);
3556 return ERR_PTR(-ENOMEM);
3559 * The reloc trees are just snapshots, so we need them to appear to be
3560 * just like any other fs tree WRT lockdep.
3562 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3563 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3565 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3567 num_pages = num_extent_pages(eb);
3568 for (i = 0; i < num_pages; i++, index++) {
3569 struct btrfs_subpage *prealloc = NULL;
3571 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3573 exists = ERR_PTR(-ENOMEM);
3578 * Preallocate page->private for subpage case, so that we won't
3579 * allocate memory with private_lock hold. The memory will be
3580 * freed by attach_extent_buffer_page() or freed manually if
3583 * Although we have ensured one subpage eb can only have one
3584 * page, but it may change in the future for 16K page size
3585 * support, so we still preallocate the memory in the loop.
3587 if (fs_info->nodesize < PAGE_SIZE) {
3588 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3589 if (IS_ERR(prealloc)) {
3590 ret = PTR_ERR(prealloc);
3593 exists = ERR_PTR(ret);
3598 spin_lock(&mapping->private_lock);
3599 exists = grab_extent_buffer(fs_info, p);
3601 spin_unlock(&mapping->private_lock);
3604 mark_extent_buffer_accessed(exists, p);
3605 btrfs_free_subpage(prealloc);
3608 /* Should not fail, as we have preallocated the memory */
3609 ret = attach_extent_buffer_page(eb, p, prealloc);
3612 * To inform we have extra eb under allocation, so that
3613 * detach_extent_buffer_page() won't release the page private
3614 * when the eb hasn't yet been inserted into radix tree.
3616 * The ref will be decreased when the eb released the page, in
3617 * detach_extent_buffer_page().
3618 * Thus needs no special handling in error path.
3620 btrfs_page_inc_eb_refs(fs_info, p);
3621 spin_unlock(&mapping->private_lock);
3623 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3625 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3629 * We can't unlock the pages just yet since the extent buffer
3630 * hasn't been properly inserted in the radix tree, this
3631 * opens a race with btree_release_folio which can free a page
3632 * while we are still filling in all pages for the buffer and
3637 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3639 ret = radix_tree_preload(GFP_NOFS);
3641 exists = ERR_PTR(ret);
3645 spin_lock(&fs_info->buffer_lock);
3646 ret = radix_tree_insert(&fs_info->buffer_radix,
3647 start >> fs_info->sectorsize_bits, eb);
3648 spin_unlock(&fs_info->buffer_lock);
3649 radix_tree_preload_end();
3650 if (ret == -EEXIST) {
3651 exists = find_extent_buffer(fs_info, start);
3657 /* add one reference for the tree */
3658 check_buffer_tree_ref(eb);
3659 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3662 * Now it's safe to unlock the pages because any calls to
3663 * btree_release_folio will correctly detect that a page belongs to a
3664 * live buffer and won't free them prematurely.
3666 for (i = 0; i < num_pages; i++)
3667 unlock_page(eb->pages[i]);
3671 WARN_ON(!atomic_dec_and_test(&eb->refs));
3672 for (i = 0; i < num_pages; i++) {
3674 unlock_page(eb->pages[i]);
3677 btrfs_release_extent_buffer(eb);
3681 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3683 struct extent_buffer *eb =
3684 container_of(head, struct extent_buffer, rcu_head);
3686 __free_extent_buffer(eb);
3689 static int release_extent_buffer(struct extent_buffer *eb)
3690 __releases(&eb->refs_lock)
3692 lockdep_assert_held(&eb->refs_lock);
3694 WARN_ON(atomic_read(&eb->refs) == 0);
3695 if (atomic_dec_and_test(&eb->refs)) {
3696 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3697 struct btrfs_fs_info *fs_info = eb->fs_info;
3699 spin_unlock(&eb->refs_lock);
3701 spin_lock(&fs_info->buffer_lock);
3702 radix_tree_delete(&fs_info->buffer_radix,
3703 eb->start >> fs_info->sectorsize_bits);
3704 spin_unlock(&fs_info->buffer_lock);
3706 spin_unlock(&eb->refs_lock);
3709 btrfs_leak_debug_del_eb(eb);
3710 /* Should be safe to release our pages at this point */
3711 btrfs_release_extent_buffer_pages(eb);
3712 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3713 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3714 __free_extent_buffer(eb);
3718 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3721 spin_unlock(&eb->refs_lock);
3726 void free_extent_buffer(struct extent_buffer *eb)
3732 refs = atomic_read(&eb->refs);
3734 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3735 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3738 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3742 spin_lock(&eb->refs_lock);
3743 if (atomic_read(&eb->refs) == 2 &&
3744 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3745 !extent_buffer_under_io(eb) &&
3746 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3747 atomic_dec(&eb->refs);
3750 * I know this is terrible, but it's temporary until we stop tracking
3751 * the uptodate bits and such for the extent buffers.
3753 release_extent_buffer(eb);
3756 void free_extent_buffer_stale(struct extent_buffer *eb)
3761 spin_lock(&eb->refs_lock);
3762 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3764 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3765 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3766 atomic_dec(&eb->refs);
3767 release_extent_buffer(eb);
3770 static void btree_clear_page_dirty(struct page *page)
3772 ASSERT(PageDirty(page));
3773 ASSERT(PageLocked(page));
3774 clear_page_dirty_for_io(page);
3775 xa_lock_irq(&page->mapping->i_pages);
3776 if (!PageDirty(page))
3777 __xa_clear_mark(&page->mapping->i_pages,
3778 page_index(page), PAGECACHE_TAG_DIRTY);
3779 xa_unlock_irq(&page->mapping->i_pages);
3782 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3784 struct btrfs_fs_info *fs_info = eb->fs_info;
3785 struct page *page = eb->pages[0];
3788 /* btree_clear_page_dirty() needs page locked */
3790 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3793 btree_clear_page_dirty(page);
3795 WARN_ON(atomic_read(&eb->refs) == 0);
3798 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3799 struct extent_buffer *eb)
3801 struct btrfs_fs_info *fs_info = eb->fs_info;
3806 btrfs_assert_tree_write_locked(eb);
3808 if (trans && btrfs_header_generation(eb) != trans->transid)
3811 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3814 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3815 fs_info->dirty_metadata_batch);
3817 if (eb->fs_info->nodesize < PAGE_SIZE)
3818 return clear_subpage_extent_buffer_dirty(eb);
3820 num_pages = num_extent_pages(eb);
3822 for (i = 0; i < num_pages; i++) {
3823 page = eb->pages[i];
3824 if (!PageDirty(page))
3827 btree_clear_page_dirty(page);
3830 WARN_ON(atomic_read(&eb->refs) == 0);
3833 void set_extent_buffer_dirty(struct extent_buffer *eb)
3839 check_buffer_tree_ref(eb);
3841 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3843 num_pages = num_extent_pages(eb);
3844 WARN_ON(atomic_read(&eb->refs) == 0);
3845 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3848 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3851 * For subpage case, we can have other extent buffers in the
3852 * same page, and in clear_subpage_extent_buffer_dirty() we
3853 * have to clear page dirty without subpage lock held.
3854 * This can cause race where our page gets dirty cleared after
3857 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3858 * its page for other reasons, we can use page lock to prevent
3862 lock_page(eb->pages[0]);
3863 for (i = 0; i < num_pages; i++)
3864 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3865 eb->start, eb->len);
3867 unlock_page(eb->pages[0]);
3868 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3870 eb->fs_info->dirty_metadata_batch);
3872 #ifdef CONFIG_BTRFS_DEBUG
3873 for (i = 0; i < num_pages; i++)
3874 ASSERT(PageDirty(eb->pages[i]));
3878 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3880 struct btrfs_fs_info *fs_info = eb->fs_info;
3885 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3886 num_pages = num_extent_pages(eb);
3887 for (i = 0; i < num_pages; i++) {
3888 page = eb->pages[i];
3893 * This is special handling for metadata subpage, as regular
3894 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3896 if (fs_info->nodesize >= PAGE_SIZE)
3897 ClearPageUptodate(page);
3899 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3904 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3906 struct btrfs_fs_info *fs_info = eb->fs_info;
3911 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3912 num_pages = num_extent_pages(eb);
3913 for (i = 0; i < num_pages; i++) {
3914 page = eb->pages[i];
3917 * This is special handling for metadata subpage, as regular
3918 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3920 if (fs_info->nodesize >= PAGE_SIZE)
3921 SetPageUptodate(page);
3923 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3928 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3930 struct extent_buffer *eb = bbio->private;
3931 struct btrfs_fs_info *fs_info = eb->fs_info;
3932 bool uptodate = !bbio->bio.bi_status;
3933 struct bvec_iter_all iter_all;
3934 struct bio_vec *bvec;
3937 eb->read_mirror = bbio->mirror_num;
3940 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3944 set_extent_buffer_uptodate(eb);
3946 clear_extent_buffer_uptodate(eb);
3947 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3950 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
3951 u64 start = eb->start + bio_offset;
3952 struct page *page = bvec->bv_page;
3953 u32 len = bvec->bv_len;
3956 btrfs_page_set_uptodate(fs_info, page, start, len);
3958 btrfs_page_clear_uptodate(fs_info, page, start, len);
3963 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3964 smp_mb__after_atomic();
3965 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3966 free_extent_buffer(eb);
3968 bio_put(&bbio->bio);
3971 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3972 struct btrfs_tree_parent_check *check)
3974 int num_pages = num_extent_pages(eb), i;
3975 struct btrfs_bio *bbio;
3977 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3981 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3982 * operation, which could potentially still be in flight. In this case
3983 * we simply want to return an error.
3985 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3988 /* Someone else is already reading the buffer, just wait for it. */
3989 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3992 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3993 eb->read_mirror = 0;
3994 check_buffer_tree_ref(eb);
3995 atomic_inc(&eb->refs);
3997 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3998 REQ_OP_READ | REQ_META, eb->fs_info,
3999 extent_buffer_read_end_io, eb);
4000 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4001 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4002 bbio->file_offset = eb->start;
4003 memcpy(&bbio->parent_check, check, sizeof(*check));
4004 if (eb->fs_info->nodesize < PAGE_SIZE) {
4005 __bio_add_page(&bbio->bio, eb->pages[0], eb->len,
4006 eb->start - page_offset(eb->pages[0]));
4008 for (i = 0; i < num_pages; i++)
4009 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
4011 btrfs_submit_bio(bbio, mirror_num);
4014 if (wait == WAIT_COMPLETE) {
4015 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4016 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4023 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4026 btrfs_warn(eb->fs_info,
4027 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
4028 eb->start, eb->len, start, len);
4029 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4035 * Check if the [start, start + len) range is valid before reading/writing
4037 * NOTE: @start and @len are offset inside the eb, not logical address.
4039 * Caller should not touch the dst/src memory if this function returns error.
4041 static inline int check_eb_range(const struct extent_buffer *eb,
4042 unsigned long start, unsigned long len)
4044 unsigned long offset;
4046 /* start, start + len should not go beyond eb->len nor overflow */
4047 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4048 return report_eb_range(eb, start, len);
4053 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4054 unsigned long start, unsigned long len)
4060 char *dst = (char *)dstv;
4061 unsigned long i = get_eb_page_index(start);
4063 if (check_eb_range(eb, start, len))
4066 offset = get_eb_offset_in_page(eb, start);
4069 page = eb->pages[i];
4071 cur = min(len, (PAGE_SIZE - offset));
4072 kaddr = page_address(page);
4073 memcpy(dst, kaddr + offset, cur);
4082 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4084 unsigned long start, unsigned long len)
4090 char __user *dst = (char __user *)dstv;
4091 unsigned long i = get_eb_page_index(start);
4094 WARN_ON(start > eb->len);
4095 WARN_ON(start + len > eb->start + eb->len);
4097 offset = get_eb_offset_in_page(eb, start);
4100 page = eb->pages[i];
4102 cur = min(len, (PAGE_SIZE - offset));
4103 kaddr = page_address(page);
4104 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4118 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4119 unsigned long start, unsigned long len)
4125 char *ptr = (char *)ptrv;
4126 unsigned long i = get_eb_page_index(start);
4129 if (check_eb_range(eb, start, len))
4132 offset = get_eb_offset_in_page(eb, start);
4135 page = eb->pages[i];
4137 cur = min(len, (PAGE_SIZE - offset));
4139 kaddr = page_address(page);
4140 ret = memcmp(ptr, kaddr + offset, cur);
4153 * Check that the extent buffer is uptodate.
4155 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4156 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4158 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4161 struct btrfs_fs_info *fs_info = eb->fs_info;
4164 * If we are using the commit root we could potentially clear a page
4165 * Uptodate while we're using the extent buffer that we've previously
4166 * looked up. We don't want to complain in this case, as the page was
4167 * valid before, we just didn't write it out. Instead we want to catch
4168 * the case where we didn't actually read the block properly, which
4169 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4171 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4174 if (fs_info->nodesize < PAGE_SIZE) {
4175 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4176 eb->start, eb->len)))
4177 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4179 WARN_ON(!PageUptodate(page));
4183 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
4188 assert_eb_page_uptodate(eb, eb->pages[0]);
4189 kaddr = page_address(eb->pages[0]) +
4190 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
4192 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
4195 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
4199 assert_eb_page_uptodate(eb, eb->pages[0]);
4200 kaddr = page_address(eb->pages[0]) +
4201 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
4202 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
4205 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4206 unsigned long start, unsigned long len)
4212 char *src = (char *)srcv;
4213 unsigned long i = get_eb_page_index(start);
4215 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4217 if (check_eb_range(eb, start, len))
4220 offset = get_eb_offset_in_page(eb, start);
4223 page = eb->pages[i];
4224 assert_eb_page_uptodate(eb, page);
4226 cur = min(len, PAGE_SIZE - offset);
4227 kaddr = page_address(page);
4228 memcpy(kaddr + offset, src, cur);
4237 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4244 unsigned long i = get_eb_page_index(start);
4246 if (check_eb_range(eb, start, len))
4249 offset = get_eb_offset_in_page(eb, start);
4252 page = eb->pages[i];
4253 assert_eb_page_uptodate(eb, page);
4255 cur = min(len, PAGE_SIZE - offset);
4256 kaddr = page_address(page);
4257 memset(kaddr + offset, 0, cur);
4265 void copy_extent_buffer_full(const struct extent_buffer *dst,
4266 const struct extent_buffer *src)
4271 ASSERT(dst->len == src->len);
4273 if (dst->fs_info->nodesize >= PAGE_SIZE) {
4274 num_pages = num_extent_pages(dst);
4275 for (i = 0; i < num_pages; i++)
4276 copy_page(page_address(dst->pages[i]),
4277 page_address(src->pages[i]));
4279 size_t src_offset = get_eb_offset_in_page(src, 0);
4280 size_t dst_offset = get_eb_offset_in_page(dst, 0);
4282 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
4283 memcpy(page_address(dst->pages[0]) + dst_offset,
4284 page_address(src->pages[0]) + src_offset,
4289 void copy_extent_buffer(const struct extent_buffer *dst,
4290 const struct extent_buffer *src,
4291 unsigned long dst_offset, unsigned long src_offset,
4294 u64 dst_len = dst->len;
4299 unsigned long i = get_eb_page_index(dst_offset);
4301 if (check_eb_range(dst, dst_offset, len) ||
4302 check_eb_range(src, src_offset, len))
4305 WARN_ON(src->len != dst_len);
4307 offset = get_eb_offset_in_page(dst, dst_offset);
4310 page = dst->pages[i];
4311 assert_eb_page_uptodate(dst, page);
4313 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4315 kaddr = page_address(page);
4316 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4326 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4328 * @eb: the extent buffer
4329 * @start: offset of the bitmap item in the extent buffer
4331 * @page_index: return index of the page in the extent buffer that contains the
4333 * @page_offset: return offset into the page given by page_index
4335 * This helper hides the ugliness of finding the byte in an extent buffer which
4336 * contains a given bit.
4338 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4339 unsigned long start, unsigned long nr,
4340 unsigned long *page_index,
4341 size_t *page_offset)
4343 size_t byte_offset = BIT_BYTE(nr);
4347 * The byte we want is the offset of the extent buffer + the offset of
4348 * the bitmap item in the extent buffer + the offset of the byte in the
4351 offset = start + offset_in_page(eb->start) + byte_offset;
4353 *page_index = offset >> PAGE_SHIFT;
4354 *page_offset = offset_in_page(offset);
4358 * Determine whether a bit in a bitmap item is set.
4360 * @eb: the extent buffer
4361 * @start: offset of the bitmap item in the extent buffer
4362 * @nr: bit number to test
4364 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4372 eb_bitmap_offset(eb, start, nr, &i, &offset);
4373 page = eb->pages[i];
4374 assert_eb_page_uptodate(eb, page);
4375 kaddr = page_address(page);
4376 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4380 * Set an area of a bitmap to 1.
4382 * @eb: the extent buffer
4383 * @start: offset of the bitmap item in the extent buffer
4384 * @pos: bit number of the first bit
4385 * @len: number of bits to set
4387 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4388 unsigned long pos, unsigned long len)
4394 const unsigned int size = pos + len;
4395 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
4396 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
4398 eb_bitmap_offset(eb, start, pos, &i, &offset);
4399 page = eb->pages[i];
4400 assert_eb_page_uptodate(eb, page);
4401 kaddr = page_address(page);
4403 while (len >= bits_to_set) {
4404 kaddr[offset] |= mask_to_set;
4406 bits_to_set = BITS_PER_BYTE;
4408 if (++offset >= PAGE_SIZE && len > 0) {
4410 page = eb->pages[++i];
4411 assert_eb_page_uptodate(eb, page);
4412 kaddr = page_address(page);
4416 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
4417 kaddr[offset] |= mask_to_set;
4423 * Clear an area of a bitmap.
4425 * @eb: the extent buffer
4426 * @start: offset of the bitmap item in the extent buffer
4427 * @pos: bit number of the first bit
4428 * @len: number of bits to clear
4430 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4431 unsigned long start, unsigned long pos,
4438 const unsigned int size = pos + len;
4439 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
4440 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
4442 eb_bitmap_offset(eb, start, pos, &i, &offset);
4443 page = eb->pages[i];
4444 assert_eb_page_uptodate(eb, page);
4445 kaddr = page_address(page);
4447 while (len >= bits_to_clear) {
4448 kaddr[offset] &= ~mask_to_clear;
4449 len -= bits_to_clear;
4450 bits_to_clear = BITS_PER_BYTE;
4452 if (++offset >= PAGE_SIZE && len > 0) {
4454 page = eb->pages[++i];
4455 assert_eb_page_uptodate(eb, page);
4456 kaddr = page_address(page);
4460 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
4461 kaddr[offset] &= ~mask_to_clear;
4465 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4467 unsigned long distance = (src > dst) ? src - dst : dst - src;
4468 return distance < len;
4471 static void copy_pages(struct page *dst_page, struct page *src_page,
4472 unsigned long dst_off, unsigned long src_off,
4475 char *dst_kaddr = page_address(dst_page);
4477 int must_memmove = 0;
4479 if (dst_page != src_page) {
4480 src_kaddr = page_address(src_page);
4482 src_kaddr = dst_kaddr;
4483 if (areas_overlap(src_off, dst_off, len))
4488 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4490 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4493 void memcpy_extent_buffer(const struct extent_buffer *dst,
4494 unsigned long dst_offset, unsigned long src_offset,
4498 size_t dst_off_in_page;
4499 size_t src_off_in_page;
4500 unsigned long dst_i;
4501 unsigned long src_i;
4503 if (check_eb_range(dst, dst_offset, len) ||
4504 check_eb_range(dst, src_offset, len))
4508 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
4509 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
4511 dst_i = get_eb_page_index(dst_offset);
4512 src_i = get_eb_page_index(src_offset);
4514 cur = min(len, (unsigned long)(PAGE_SIZE -
4516 cur = min_t(unsigned long, cur,
4517 (unsigned long)(PAGE_SIZE - dst_off_in_page));
4519 copy_pages(dst->pages[dst_i], dst->pages[src_i],
4520 dst_off_in_page, src_off_in_page, cur);
4528 void memmove_extent_buffer(const struct extent_buffer *dst,
4529 unsigned long dst_offset, unsigned long src_offset,
4533 size_t dst_off_in_page;
4534 size_t src_off_in_page;
4535 unsigned long dst_end = dst_offset + len - 1;
4536 unsigned long src_end = src_offset + len - 1;
4537 unsigned long dst_i;
4538 unsigned long src_i;
4540 if (check_eb_range(dst, dst_offset, len) ||
4541 check_eb_range(dst, src_offset, len))
4543 if (dst_offset < src_offset) {
4544 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4548 dst_i = get_eb_page_index(dst_end);
4549 src_i = get_eb_page_index(src_end);
4551 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4552 src_off_in_page = get_eb_offset_in_page(dst, src_end);
4554 cur = min_t(unsigned long, len, src_off_in_page + 1);
4555 cur = min(cur, dst_off_in_page + 1);
4556 copy_pages(dst->pages[dst_i], dst->pages[src_i],
4557 dst_off_in_page - cur + 1,
4558 src_off_in_page - cur + 1, cur);
4566 #define GANG_LOOKUP_SIZE 16
4567 static struct extent_buffer *get_next_extent_buffer(
4568 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4570 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4571 struct extent_buffer *found = NULL;
4572 u64 page_start = page_offset(page);
4573 u64 cur = page_start;
4575 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4576 lockdep_assert_held(&fs_info->buffer_lock);
4578 while (cur < page_start + PAGE_SIZE) {
4582 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4583 (void **)gang, cur >> fs_info->sectorsize_bits,
4584 min_t(unsigned int, GANG_LOOKUP_SIZE,
4585 PAGE_SIZE / fs_info->nodesize));
4588 for (i = 0; i < ret; i++) {
4589 /* Already beyond page end */
4590 if (gang[i]->start >= page_start + PAGE_SIZE)
4593 if (gang[i]->start >= bytenr) {
4598 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4604 static int try_release_subpage_extent_buffer(struct page *page)
4606 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4607 u64 cur = page_offset(page);
4608 const u64 end = page_offset(page) + PAGE_SIZE;
4612 struct extent_buffer *eb = NULL;
4615 * Unlike try_release_extent_buffer() which uses page->private
4616 * to grab buffer, for subpage case we rely on radix tree, thus
4617 * we need to ensure radix tree consistency.
4619 * We also want an atomic snapshot of the radix tree, thus go
4620 * with spinlock rather than RCU.
4622 spin_lock(&fs_info->buffer_lock);
4623 eb = get_next_extent_buffer(fs_info, page, cur);
4625 /* No more eb in the page range after or at cur */
4626 spin_unlock(&fs_info->buffer_lock);
4629 cur = eb->start + eb->len;
4632 * The same as try_release_extent_buffer(), to ensure the eb
4633 * won't disappear out from under us.
4635 spin_lock(&eb->refs_lock);
4636 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4637 spin_unlock(&eb->refs_lock);
4638 spin_unlock(&fs_info->buffer_lock);
4641 spin_unlock(&fs_info->buffer_lock);
4644 * If tree ref isn't set then we know the ref on this eb is a
4645 * real ref, so just return, this eb will likely be freed soon
4648 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4649 spin_unlock(&eb->refs_lock);
4654 * Here we don't care about the return value, we will always
4655 * check the page private at the end. And
4656 * release_extent_buffer() will release the refs_lock.
4658 release_extent_buffer(eb);
4661 * Finally to check if we have cleared page private, as if we have
4662 * released all ebs in the page, the page private should be cleared now.
4664 spin_lock(&page->mapping->private_lock);
4665 if (!PagePrivate(page))
4669 spin_unlock(&page->mapping->private_lock);
4674 int try_release_extent_buffer(struct page *page)
4676 struct extent_buffer *eb;
4678 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4679 return try_release_subpage_extent_buffer(page);
4682 * We need to make sure nobody is changing page->private, as we rely on
4683 * page->private as the pointer to extent buffer.
4685 spin_lock(&page->mapping->private_lock);
4686 if (!PagePrivate(page)) {
4687 spin_unlock(&page->mapping->private_lock);
4691 eb = (struct extent_buffer *)page->private;
4695 * This is a little awful but should be ok, we need to make sure that
4696 * the eb doesn't disappear out from under us while we're looking at
4699 spin_lock(&eb->refs_lock);
4700 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4701 spin_unlock(&eb->refs_lock);
4702 spin_unlock(&page->mapping->private_lock);
4705 spin_unlock(&page->mapping->private_lock);
4708 * If tree ref isn't set then we know the ref on this eb is a real ref,
4709 * so just return, this page will likely be freed soon anyway.
4711 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4712 spin_unlock(&eb->refs_lock);
4716 return release_extent_buffer(eb);
4720 * btrfs_readahead_tree_block - attempt to readahead a child block
4721 * @fs_info: the fs_info
4722 * @bytenr: bytenr to read
4723 * @owner_root: objectid of the root that owns this eb
4724 * @gen: generation for the uptodate check, can be 0
4725 * @level: level for the eb
4727 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4728 * normal uptodate check of the eb, without checking the generation. If we have
4729 * to read the block we will not block on anything.
4731 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4732 u64 bytenr, u64 owner_root, u64 gen, int level)
4734 struct btrfs_tree_parent_check check = {
4739 struct extent_buffer *eb;
4742 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4746 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4747 free_extent_buffer(eb);
4751 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4753 free_extent_buffer_stale(eb);
4755 free_extent_buffer(eb);
4759 * btrfs_readahead_node_child - readahead a node's child block
4760 * @node: parent node we're reading from
4761 * @slot: slot in the parent node for the child we want to read
4763 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4764 * the slot in the node provided.
4766 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4768 btrfs_readahead_tree_block(node->fs_info,
4769 btrfs_node_blockptr(node, slot),
4770 btrfs_header_owner(node),
4771 btrfs_node_ptr_generation(node, slot),
4772 btrfs_header_level(node) - 1);