Btrfs: Pass fs_info to btrfs_num_copies() instead of mapping_tree
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39         u64 start;
40         u64 end;
41         struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45         struct bio *bio;
46         struct extent_io_tree *tree;
47         get_extent_t *get_extent;
48         unsigned long bio_flags;
49
50         /* tells writepage not to lock the state bits for this range
51          * it still does the unlocking
52          */
53         unsigned int extent_locked:1;
54
55         /* tells the submit_bio code to use a WRITE_SYNC */
56         unsigned int sync_io:1;
57 };
58
59 static noinline void flush_write_bio(void *data);
60 static inline struct btrfs_fs_info *
61 tree_fs_info(struct extent_io_tree *tree)
62 {
63         return btrfs_sb(tree->mapping->host->i_sb);
64 }
65
66 int __init extent_io_init(void)
67 {
68         extent_state_cache = kmem_cache_create("btrfs_extent_state",
69                         sizeof(struct extent_state), 0,
70                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
71         if (!extent_state_cache)
72                 return -ENOMEM;
73
74         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
75                         sizeof(struct extent_buffer), 0,
76                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
77         if (!extent_buffer_cache)
78                 goto free_state_cache;
79         return 0;
80
81 free_state_cache:
82         kmem_cache_destroy(extent_state_cache);
83         return -ENOMEM;
84 }
85
86 void extent_io_exit(void)
87 {
88         struct extent_state *state;
89         struct extent_buffer *eb;
90
91         while (!list_empty(&states)) {
92                 state = list_entry(states.next, struct extent_state, leak_list);
93                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
94                        "state %lu in tree %p refs %d\n",
95                        (unsigned long long)state->start,
96                        (unsigned long long)state->end,
97                        state->state, state->tree, atomic_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100
101         }
102
103         while (!list_empty(&buffers)) {
104                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
105                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
106                        "refs %d\n", (unsigned long long)eb->start,
107                        eb->len, atomic_read(&eb->refs));
108                 list_del(&eb->leak_list);
109                 kmem_cache_free(extent_buffer_cache, eb);
110         }
111
112         /*
113          * Make sure all delayed rcu free are flushed before we
114          * destroy caches.
115          */
116         rcu_barrier();
117         if (extent_state_cache)
118                 kmem_cache_destroy(extent_state_cache);
119         if (extent_buffer_cache)
120                 kmem_cache_destroy(extent_buffer_cache);
121 }
122
123 void extent_io_tree_init(struct extent_io_tree *tree,
124                          struct address_space *mapping)
125 {
126         tree->state = RB_ROOT;
127         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
128         tree->ops = NULL;
129         tree->dirty_bytes = 0;
130         spin_lock_init(&tree->lock);
131         spin_lock_init(&tree->buffer_lock);
132         tree->mapping = mapping;
133 }
134
135 static struct extent_state *alloc_extent_state(gfp_t mask)
136 {
137         struct extent_state *state;
138 #if LEAK_DEBUG
139         unsigned long flags;
140 #endif
141
142         state = kmem_cache_alloc(extent_state_cache, mask);
143         if (!state)
144                 return state;
145         state->state = 0;
146         state->private = 0;
147         state->tree = NULL;
148 #if LEAK_DEBUG
149         spin_lock_irqsave(&leak_lock, flags);
150         list_add(&state->leak_list, &states);
151         spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153         atomic_set(&state->refs, 1);
154         init_waitqueue_head(&state->wq);
155         trace_alloc_extent_state(state, mask, _RET_IP_);
156         return state;
157 }
158
159 void free_extent_state(struct extent_state *state)
160 {
161         if (!state)
162                 return;
163         if (atomic_dec_and_test(&state->refs)) {
164 #if LEAK_DEBUG
165                 unsigned long flags;
166 #endif
167                 WARN_ON(state->tree);
168 #if LEAK_DEBUG
169                 spin_lock_irqsave(&leak_lock, flags);
170                 list_del(&state->leak_list);
171                 spin_unlock_irqrestore(&leak_lock, flags);
172 #endif
173                 trace_free_extent_state(state, _RET_IP_);
174                 kmem_cache_free(extent_state_cache, state);
175         }
176 }
177
178 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
179                                    struct rb_node *node)
180 {
181         struct rb_node **p = &root->rb_node;
182         struct rb_node *parent = NULL;
183         struct tree_entry *entry;
184
185         while (*p) {
186                 parent = *p;
187                 entry = rb_entry(parent, struct tree_entry, rb_node);
188
189                 if (offset < entry->start)
190                         p = &(*p)->rb_left;
191                 else if (offset > entry->end)
192                         p = &(*p)->rb_right;
193                 else
194                         return parent;
195         }
196
197         rb_link_node(node, parent, p);
198         rb_insert_color(node, root);
199         return NULL;
200 }
201
202 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
203                                      struct rb_node **prev_ret,
204                                      struct rb_node **next_ret)
205 {
206         struct rb_root *root = &tree->state;
207         struct rb_node *n = root->rb_node;
208         struct rb_node *prev = NULL;
209         struct rb_node *orig_prev = NULL;
210         struct tree_entry *entry;
211         struct tree_entry *prev_entry = NULL;
212
213         while (n) {
214                 entry = rb_entry(n, struct tree_entry, rb_node);
215                 prev = n;
216                 prev_entry = entry;
217
218                 if (offset < entry->start)
219                         n = n->rb_left;
220                 else if (offset > entry->end)
221                         n = n->rb_right;
222                 else
223                         return n;
224         }
225
226         if (prev_ret) {
227                 orig_prev = prev;
228                 while (prev && offset > prev_entry->end) {
229                         prev = rb_next(prev);
230                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231                 }
232                 *prev_ret = prev;
233                 prev = orig_prev;
234         }
235
236         if (next_ret) {
237                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
238                 while (prev && offset < prev_entry->start) {
239                         prev = rb_prev(prev);
240                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
241                 }
242                 *next_ret = prev;
243         }
244         return NULL;
245 }
246
247 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
248                                           u64 offset)
249 {
250         struct rb_node *prev = NULL;
251         struct rb_node *ret;
252
253         ret = __etree_search(tree, offset, &prev, NULL);
254         if (!ret)
255                 return prev;
256         return ret;
257 }
258
259 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
260                      struct extent_state *other)
261 {
262         if (tree->ops && tree->ops->merge_extent_hook)
263                 tree->ops->merge_extent_hook(tree->mapping->host, new,
264                                              other);
265 }
266
267 /*
268  * utility function to look for merge candidates inside a given range.
269  * Any extents with matching state are merged together into a single
270  * extent in the tree.  Extents with EXTENT_IO in their state field
271  * are not merged because the end_io handlers need to be able to do
272  * operations on them without sleeping (or doing allocations/splits).
273  *
274  * This should be called with the tree lock held.
275  */
276 static void merge_state(struct extent_io_tree *tree,
277                         struct extent_state *state)
278 {
279         struct extent_state *other;
280         struct rb_node *other_node;
281
282         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
283                 return;
284
285         other_node = rb_prev(&state->rb_node);
286         if (other_node) {
287                 other = rb_entry(other_node, struct extent_state, rb_node);
288                 if (other->end == state->start - 1 &&
289                     other->state == state->state) {
290                         merge_cb(tree, state, other);
291                         state->start = other->start;
292                         other->tree = NULL;
293                         rb_erase(&other->rb_node, &tree->state);
294                         free_extent_state(other);
295                 }
296         }
297         other_node = rb_next(&state->rb_node);
298         if (other_node) {
299                 other = rb_entry(other_node, struct extent_state, rb_node);
300                 if (other->start == state->end + 1 &&
301                     other->state == state->state) {
302                         merge_cb(tree, state, other);
303                         state->end = other->end;
304                         other->tree = NULL;
305                         rb_erase(&other->rb_node, &tree->state);
306                         free_extent_state(other);
307                 }
308         }
309 }
310
311 static void set_state_cb(struct extent_io_tree *tree,
312                          struct extent_state *state, int *bits)
313 {
314         if (tree->ops && tree->ops->set_bit_hook)
315                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
316 }
317
318 static void clear_state_cb(struct extent_io_tree *tree,
319                            struct extent_state *state, int *bits)
320 {
321         if (tree->ops && tree->ops->clear_bit_hook)
322                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
323 }
324
325 static void set_state_bits(struct extent_io_tree *tree,
326                            struct extent_state *state, int *bits);
327
328 /*
329  * insert an extent_state struct into the tree.  'bits' are set on the
330  * struct before it is inserted.
331  *
332  * This may return -EEXIST if the extent is already there, in which case the
333  * state struct is freed.
334  *
335  * The tree lock is not taken internally.  This is a utility function and
336  * probably isn't what you want to call (see set/clear_extent_bit).
337  */
338 static int insert_state(struct extent_io_tree *tree,
339                         struct extent_state *state, u64 start, u64 end,
340                         int *bits)
341 {
342         struct rb_node *node;
343
344         if (end < start)
345                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
346                        (unsigned long long)end,
347                        (unsigned long long)start);
348         state->start = start;
349         state->end = end;
350
351         set_state_bits(tree, state, bits);
352
353         node = tree_insert(&tree->state, end, &state->rb_node);
354         if (node) {
355                 struct extent_state *found;
356                 found = rb_entry(node, struct extent_state, rb_node);
357                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
358                        "%llu %llu\n", (unsigned long long)found->start,
359                        (unsigned long long)found->end,
360                        (unsigned long long)start, (unsigned long long)end);
361                 return -EEXIST;
362         }
363         state->tree = tree;
364         merge_state(tree, state);
365         return 0;
366 }
367
368 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
369                      u64 split)
370 {
371         if (tree->ops && tree->ops->split_extent_hook)
372                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
373 }
374
375 /*
376  * split a given extent state struct in two, inserting the preallocated
377  * struct 'prealloc' as the newly created second half.  'split' indicates an
378  * offset inside 'orig' where it should be split.
379  *
380  * Before calling,
381  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
382  * are two extent state structs in the tree:
383  * prealloc: [orig->start, split - 1]
384  * orig: [ split, orig->end ]
385  *
386  * The tree locks are not taken by this function. They need to be held
387  * by the caller.
388  */
389 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
390                        struct extent_state *prealloc, u64 split)
391 {
392         struct rb_node *node;
393
394         split_cb(tree, orig, split);
395
396         prealloc->start = orig->start;
397         prealloc->end = split - 1;
398         prealloc->state = orig->state;
399         orig->start = split;
400
401         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
402         if (node) {
403                 free_extent_state(prealloc);
404                 return -EEXIST;
405         }
406         prealloc->tree = tree;
407         return 0;
408 }
409
410 static struct extent_state *next_state(struct extent_state *state)
411 {
412         struct rb_node *next = rb_next(&state->rb_node);
413         if (next)
414                 return rb_entry(next, struct extent_state, rb_node);
415         else
416                 return NULL;
417 }
418
419 /*
420  * utility function to clear some bits in an extent state struct.
421  * it will optionally wake up any one waiting on this state (wake == 1).
422  *
423  * If no bits are set on the state struct after clearing things, the
424  * struct is freed and removed from the tree
425  */
426 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
427                                             struct extent_state *state,
428                                             int *bits, int wake)
429 {
430         struct extent_state *next;
431         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
432
433         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
434                 u64 range = state->end - state->start + 1;
435                 WARN_ON(range > tree->dirty_bytes);
436                 tree->dirty_bytes -= range;
437         }
438         clear_state_cb(tree, state, bits);
439         state->state &= ~bits_to_clear;
440         if (wake)
441                 wake_up(&state->wq);
442         if (state->state == 0) {
443                 next = next_state(state);
444                 if (state->tree) {
445                         rb_erase(&state->rb_node, &tree->state);
446                         state->tree = NULL;
447                         free_extent_state(state);
448                 } else {
449                         WARN_ON(1);
450                 }
451         } else {
452                 merge_state(tree, state);
453                 next = next_state(state);
454         }
455         return next;
456 }
457
458 static struct extent_state *
459 alloc_extent_state_atomic(struct extent_state *prealloc)
460 {
461         if (!prealloc)
462                 prealloc = alloc_extent_state(GFP_ATOMIC);
463
464         return prealloc;
465 }
466
467 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
468 {
469         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
470                     "Extent tree was modified by another "
471                     "thread while locked.");
472 }
473
474 /*
475  * clear some bits on a range in the tree.  This may require splitting
476  * or inserting elements in the tree, so the gfp mask is used to
477  * indicate which allocations or sleeping are allowed.
478  *
479  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
480  * the given range from the tree regardless of state (ie for truncate).
481  *
482  * the range [start, end] is inclusive.
483  *
484  * This takes the tree lock, and returns 0 on success and < 0 on error.
485  */
486 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
487                      int bits, int wake, int delete,
488                      struct extent_state **cached_state,
489                      gfp_t mask)
490 {
491         struct extent_state *state;
492         struct extent_state *cached;
493         struct extent_state *prealloc = NULL;
494         struct rb_node *node;
495         u64 last_end;
496         int err;
497         int clear = 0;
498
499         if (delete)
500                 bits |= ~EXTENT_CTLBITS;
501         bits |= EXTENT_FIRST_DELALLOC;
502
503         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
504                 clear = 1;
505 again:
506         if (!prealloc && (mask & __GFP_WAIT)) {
507                 prealloc = alloc_extent_state(mask);
508                 if (!prealloc)
509                         return -ENOMEM;
510         }
511
512         spin_lock(&tree->lock);
513         if (cached_state) {
514                 cached = *cached_state;
515
516                 if (clear) {
517                         *cached_state = NULL;
518                         cached_state = NULL;
519                 }
520
521                 if (cached && cached->tree && cached->start <= start &&
522                     cached->end > start) {
523                         if (clear)
524                                 atomic_dec(&cached->refs);
525                         state = cached;
526                         goto hit_next;
527                 }
528                 if (clear)
529                         free_extent_state(cached);
530         }
531         /*
532          * this search will find the extents that end after
533          * our range starts
534          */
535         node = tree_search(tree, start);
536         if (!node)
537                 goto out;
538         state = rb_entry(node, struct extent_state, rb_node);
539 hit_next:
540         if (state->start > end)
541                 goto out;
542         WARN_ON(state->end < start);
543         last_end = state->end;
544
545         /* the state doesn't have the wanted bits, go ahead */
546         if (!(state->state & bits)) {
547                 state = next_state(state);
548                 goto next;
549         }
550
551         /*
552          *     | ---- desired range ---- |
553          *  | state | or
554          *  | ------------- state -------------- |
555          *
556          * We need to split the extent we found, and may flip
557          * bits on second half.
558          *
559          * If the extent we found extends past our range, we
560          * just split and search again.  It'll get split again
561          * the next time though.
562          *
563          * If the extent we found is inside our range, we clear
564          * the desired bit on it.
565          */
566
567         if (state->start < start) {
568                 prealloc = alloc_extent_state_atomic(prealloc);
569                 BUG_ON(!prealloc);
570                 err = split_state(tree, state, prealloc, start);
571                 if (err)
572                         extent_io_tree_panic(tree, err);
573
574                 prealloc = NULL;
575                 if (err)
576                         goto out;
577                 if (state->end <= end) {
578                         state = clear_state_bit(tree, state, &bits, wake);
579                         goto next;
580                 }
581                 goto search_again;
582         }
583         /*
584          * | ---- desired range ---- |
585          *                        | state |
586          * We need to split the extent, and clear the bit
587          * on the first half
588          */
589         if (state->start <= end && state->end > end) {
590                 prealloc = alloc_extent_state_atomic(prealloc);
591                 BUG_ON(!prealloc);
592                 err = split_state(tree, state, prealloc, end + 1);
593                 if (err)
594                         extent_io_tree_panic(tree, err);
595
596                 if (wake)
597                         wake_up(&state->wq);
598
599                 clear_state_bit(tree, prealloc, &bits, wake);
600
601                 prealloc = NULL;
602                 goto out;
603         }
604
605         state = clear_state_bit(tree, state, &bits, wake);
606 next:
607         if (last_end == (u64)-1)
608                 goto out;
609         start = last_end + 1;
610         if (start <= end && state && !need_resched())
611                 goto hit_next;
612         goto search_again;
613
614 out:
615         spin_unlock(&tree->lock);
616         if (prealloc)
617                 free_extent_state(prealloc);
618
619         return 0;
620
621 search_again:
622         if (start > end)
623                 goto out;
624         spin_unlock(&tree->lock);
625         if (mask & __GFP_WAIT)
626                 cond_resched();
627         goto again;
628 }
629
630 static void wait_on_state(struct extent_io_tree *tree,
631                           struct extent_state *state)
632                 __releases(tree->lock)
633                 __acquires(tree->lock)
634 {
635         DEFINE_WAIT(wait);
636         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
637         spin_unlock(&tree->lock);
638         schedule();
639         spin_lock(&tree->lock);
640         finish_wait(&state->wq, &wait);
641 }
642
643 /*
644  * waits for one or more bits to clear on a range in the state tree.
645  * The range [start, end] is inclusive.
646  * The tree lock is taken by this function
647  */
648 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
649 {
650         struct extent_state *state;
651         struct rb_node *node;
652
653         spin_lock(&tree->lock);
654 again:
655         while (1) {
656                 /*
657                  * this search will find all the extents that end after
658                  * our range starts
659                  */
660                 node = tree_search(tree, start);
661                 if (!node)
662                         break;
663
664                 state = rb_entry(node, struct extent_state, rb_node);
665
666                 if (state->start > end)
667                         goto out;
668
669                 if (state->state & bits) {
670                         start = state->start;
671                         atomic_inc(&state->refs);
672                         wait_on_state(tree, state);
673                         free_extent_state(state);
674                         goto again;
675                 }
676                 start = state->end + 1;
677
678                 if (start > end)
679                         break;
680
681                 cond_resched_lock(&tree->lock);
682         }
683 out:
684         spin_unlock(&tree->lock);
685 }
686
687 static void set_state_bits(struct extent_io_tree *tree,
688                            struct extent_state *state,
689                            int *bits)
690 {
691         int bits_to_set = *bits & ~EXTENT_CTLBITS;
692
693         set_state_cb(tree, state, bits);
694         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
695                 u64 range = state->end - state->start + 1;
696                 tree->dirty_bytes += range;
697         }
698         state->state |= bits_to_set;
699 }
700
701 static void cache_state(struct extent_state *state,
702                         struct extent_state **cached_ptr)
703 {
704         if (cached_ptr && !(*cached_ptr)) {
705                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
706                         *cached_ptr = state;
707                         atomic_inc(&state->refs);
708                 }
709         }
710 }
711
712 static void uncache_state(struct extent_state **cached_ptr)
713 {
714         if (cached_ptr && (*cached_ptr)) {
715                 struct extent_state *state = *cached_ptr;
716                 *cached_ptr = NULL;
717                 free_extent_state(state);
718         }
719 }
720
721 /*
722  * set some bits on a range in the tree.  This may require allocations or
723  * sleeping, so the gfp mask is used to indicate what is allowed.
724  *
725  * If any of the exclusive bits are set, this will fail with -EEXIST if some
726  * part of the range already has the desired bits set.  The start of the
727  * existing range is returned in failed_start in this case.
728  *
729  * [start, end] is inclusive This takes the tree lock.
730  */
731
732 static int __must_check
733 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
734                  int bits, int exclusive_bits, u64 *failed_start,
735                  struct extent_state **cached_state, gfp_t mask)
736 {
737         struct extent_state *state;
738         struct extent_state *prealloc = NULL;
739         struct rb_node *node;
740         int err = 0;
741         u64 last_start;
742         u64 last_end;
743
744         bits |= EXTENT_FIRST_DELALLOC;
745 again:
746         if (!prealloc && (mask & __GFP_WAIT)) {
747                 prealloc = alloc_extent_state(mask);
748                 BUG_ON(!prealloc);
749         }
750
751         spin_lock(&tree->lock);
752         if (cached_state && *cached_state) {
753                 state = *cached_state;
754                 if (state->start <= start && state->end > start &&
755                     state->tree) {
756                         node = &state->rb_node;
757                         goto hit_next;
758                 }
759         }
760         /*
761          * this search will find all the extents that end after
762          * our range starts.
763          */
764         node = tree_search(tree, start);
765         if (!node) {
766                 prealloc = alloc_extent_state_atomic(prealloc);
767                 BUG_ON(!prealloc);
768                 err = insert_state(tree, prealloc, start, end, &bits);
769                 if (err)
770                         extent_io_tree_panic(tree, err);
771
772                 prealloc = NULL;
773                 goto out;
774         }
775         state = rb_entry(node, struct extent_state, rb_node);
776 hit_next:
777         last_start = state->start;
778         last_end = state->end;
779
780         /*
781          * | ---- desired range ---- |
782          * | state |
783          *
784          * Just lock what we found and keep going
785          */
786         if (state->start == start && state->end <= end) {
787                 if (state->state & exclusive_bits) {
788                         *failed_start = state->start;
789                         err = -EEXIST;
790                         goto out;
791                 }
792
793                 set_state_bits(tree, state, &bits);
794                 cache_state(state, cached_state);
795                 merge_state(tree, state);
796                 if (last_end == (u64)-1)
797                         goto out;
798                 start = last_end + 1;
799                 state = next_state(state);
800                 if (start < end && state && state->start == start &&
801                     !need_resched())
802                         goto hit_next;
803                 goto search_again;
804         }
805
806         /*
807          *     | ---- desired range ---- |
808          * | state |
809          *   or
810          * | ------------- state -------------- |
811          *
812          * We need to split the extent we found, and may flip bits on
813          * second half.
814          *
815          * If the extent we found extends past our
816          * range, we just split and search again.  It'll get split
817          * again the next time though.
818          *
819          * If the extent we found is inside our range, we set the
820          * desired bit on it.
821          */
822         if (state->start < start) {
823                 if (state->state & exclusive_bits) {
824                         *failed_start = start;
825                         err = -EEXIST;
826                         goto out;
827                 }
828
829                 prealloc = alloc_extent_state_atomic(prealloc);
830                 BUG_ON(!prealloc);
831                 err = split_state(tree, state, prealloc, start);
832                 if (err)
833                         extent_io_tree_panic(tree, err);
834
835                 prealloc = NULL;
836                 if (err)
837                         goto out;
838                 if (state->end <= end) {
839                         set_state_bits(tree, state, &bits);
840                         cache_state(state, cached_state);
841                         merge_state(tree, state);
842                         if (last_end == (u64)-1)
843                                 goto out;
844                         start = last_end + 1;
845                         state = next_state(state);
846                         if (start < end && state && state->start == start &&
847                             !need_resched())
848                                 goto hit_next;
849                 }
850                 goto search_again;
851         }
852         /*
853          * | ---- desired range ---- |
854          *     | state | or               | state |
855          *
856          * There's a hole, we need to insert something in it and
857          * ignore the extent we found.
858          */
859         if (state->start > start) {
860                 u64 this_end;
861                 if (end < last_start)
862                         this_end = end;
863                 else
864                         this_end = last_start - 1;
865
866                 prealloc = alloc_extent_state_atomic(prealloc);
867                 BUG_ON(!prealloc);
868
869                 /*
870                  * Avoid to free 'prealloc' if it can be merged with
871                  * the later extent.
872                  */
873                 err = insert_state(tree, prealloc, start, this_end,
874                                    &bits);
875                 if (err)
876                         extent_io_tree_panic(tree, err);
877
878                 cache_state(prealloc, cached_state);
879                 prealloc = NULL;
880                 start = this_end + 1;
881                 goto search_again;
882         }
883         /*
884          * | ---- desired range ---- |
885          *                        | state |
886          * We need to split the extent, and set the bit
887          * on the first half
888          */
889         if (state->start <= end && state->end > end) {
890                 if (state->state & exclusive_bits) {
891                         *failed_start = start;
892                         err = -EEXIST;
893                         goto out;
894                 }
895
896                 prealloc = alloc_extent_state_atomic(prealloc);
897                 BUG_ON(!prealloc);
898                 err = split_state(tree, state, prealloc, end + 1);
899                 if (err)
900                         extent_io_tree_panic(tree, err);
901
902                 set_state_bits(tree, prealloc, &bits);
903                 cache_state(prealloc, cached_state);
904                 merge_state(tree, prealloc);
905                 prealloc = NULL;
906                 goto out;
907         }
908
909         goto search_again;
910
911 out:
912         spin_unlock(&tree->lock);
913         if (prealloc)
914                 free_extent_state(prealloc);
915
916         return err;
917
918 search_again:
919         if (start > end)
920                 goto out;
921         spin_unlock(&tree->lock);
922         if (mask & __GFP_WAIT)
923                 cond_resched();
924         goto again;
925 }
926
927 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
928                    u64 *failed_start, struct extent_state **cached_state,
929                    gfp_t mask)
930 {
931         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
932                                 cached_state, mask);
933 }
934
935
936 /**
937  * convert_extent_bit - convert all bits in a given range from one bit to
938  *                      another
939  * @tree:       the io tree to search
940  * @start:      the start offset in bytes
941  * @end:        the end offset in bytes (inclusive)
942  * @bits:       the bits to set in this range
943  * @clear_bits: the bits to clear in this range
944  * @cached_state:       state that we're going to cache
945  * @mask:       the allocation mask
946  *
947  * This will go through and set bits for the given range.  If any states exist
948  * already in this range they are set with the given bit and cleared of the
949  * clear_bits.  This is only meant to be used by things that are mergeable, ie
950  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
951  * boundary bits like LOCK.
952  */
953 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
954                        int bits, int clear_bits,
955                        struct extent_state **cached_state, gfp_t mask)
956 {
957         struct extent_state *state;
958         struct extent_state *prealloc = NULL;
959         struct rb_node *node;
960         int err = 0;
961         u64 last_start;
962         u64 last_end;
963
964 again:
965         if (!prealloc && (mask & __GFP_WAIT)) {
966                 prealloc = alloc_extent_state(mask);
967                 if (!prealloc)
968                         return -ENOMEM;
969         }
970
971         spin_lock(&tree->lock);
972         if (cached_state && *cached_state) {
973                 state = *cached_state;
974                 if (state->start <= start && state->end > start &&
975                     state->tree) {
976                         node = &state->rb_node;
977                         goto hit_next;
978                 }
979         }
980
981         /*
982          * this search will find all the extents that end after
983          * our range starts.
984          */
985         node = tree_search(tree, start);
986         if (!node) {
987                 prealloc = alloc_extent_state_atomic(prealloc);
988                 if (!prealloc) {
989                         err = -ENOMEM;
990                         goto out;
991                 }
992                 err = insert_state(tree, prealloc, start, end, &bits);
993                 prealloc = NULL;
994                 if (err)
995                         extent_io_tree_panic(tree, err);
996                 goto out;
997         }
998         state = rb_entry(node, struct extent_state, rb_node);
999 hit_next:
1000         last_start = state->start;
1001         last_end = state->end;
1002
1003         /*
1004          * | ---- desired range ---- |
1005          * | state |
1006          *
1007          * Just lock what we found and keep going
1008          */
1009         if (state->start == start && state->end <= end) {
1010                 set_state_bits(tree, state, &bits);
1011                 cache_state(state, cached_state);
1012                 state = clear_state_bit(tree, state, &clear_bits, 0);
1013                 if (last_end == (u64)-1)
1014                         goto out;
1015                 start = last_end + 1;
1016                 if (start < end && state && state->start == start &&
1017                     !need_resched())
1018                         goto hit_next;
1019                 goto search_again;
1020         }
1021
1022         /*
1023          *     | ---- desired range ---- |
1024          * | state |
1025          *   or
1026          * | ------------- state -------------- |
1027          *
1028          * We need to split the extent we found, and may flip bits on
1029          * second half.
1030          *
1031          * If the extent we found extends past our
1032          * range, we just split and search again.  It'll get split
1033          * again the next time though.
1034          *
1035          * If the extent we found is inside our range, we set the
1036          * desired bit on it.
1037          */
1038         if (state->start < start) {
1039                 prealloc = alloc_extent_state_atomic(prealloc);
1040                 if (!prealloc) {
1041                         err = -ENOMEM;
1042                         goto out;
1043                 }
1044                 err = split_state(tree, state, prealloc, start);
1045                 if (err)
1046                         extent_io_tree_panic(tree, err);
1047                 prealloc = NULL;
1048                 if (err)
1049                         goto out;
1050                 if (state->end <= end) {
1051                         set_state_bits(tree, state, &bits);
1052                         cache_state(state, cached_state);
1053                         state = clear_state_bit(tree, state, &clear_bits, 0);
1054                         if (last_end == (u64)-1)
1055                                 goto out;
1056                         start = last_end + 1;
1057                         if (start < end && state && state->start == start &&
1058                             !need_resched())
1059                                 goto hit_next;
1060                 }
1061                 goto search_again;
1062         }
1063         /*
1064          * | ---- desired range ---- |
1065          *     | state | or               | state |
1066          *
1067          * There's a hole, we need to insert something in it and
1068          * ignore the extent we found.
1069          */
1070         if (state->start > start) {
1071                 u64 this_end;
1072                 if (end < last_start)
1073                         this_end = end;
1074                 else
1075                         this_end = last_start - 1;
1076
1077                 prealloc = alloc_extent_state_atomic(prealloc);
1078                 if (!prealloc) {
1079                         err = -ENOMEM;
1080                         goto out;
1081                 }
1082
1083                 /*
1084                  * Avoid to free 'prealloc' if it can be merged with
1085                  * the later extent.
1086                  */
1087                 err = insert_state(tree, prealloc, start, this_end,
1088                                    &bits);
1089                 if (err)
1090                         extent_io_tree_panic(tree, err);
1091                 cache_state(prealloc, cached_state);
1092                 prealloc = NULL;
1093                 start = this_end + 1;
1094                 goto search_again;
1095         }
1096         /*
1097          * | ---- desired range ---- |
1098          *                        | state |
1099          * We need to split the extent, and set the bit
1100          * on the first half
1101          */
1102         if (state->start <= end && state->end > end) {
1103                 prealloc = alloc_extent_state_atomic(prealloc);
1104                 if (!prealloc) {
1105                         err = -ENOMEM;
1106                         goto out;
1107                 }
1108
1109                 err = split_state(tree, state, prealloc, end + 1);
1110                 if (err)
1111                         extent_io_tree_panic(tree, err);
1112
1113                 set_state_bits(tree, prealloc, &bits);
1114                 cache_state(prealloc, cached_state);
1115                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1116                 prealloc = NULL;
1117                 goto out;
1118         }
1119
1120         goto search_again;
1121
1122 out:
1123         spin_unlock(&tree->lock);
1124         if (prealloc)
1125                 free_extent_state(prealloc);
1126
1127         return err;
1128
1129 search_again:
1130         if (start > end)
1131                 goto out;
1132         spin_unlock(&tree->lock);
1133         if (mask & __GFP_WAIT)
1134                 cond_resched();
1135         goto again;
1136 }
1137
1138 /* wrappers around set/clear extent bit */
1139 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1140                      gfp_t mask)
1141 {
1142         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1143                               NULL, mask);
1144 }
1145
1146 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1147                     int bits, gfp_t mask)
1148 {
1149         return set_extent_bit(tree, start, end, bits, NULL,
1150                               NULL, mask);
1151 }
1152
1153 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1154                       int bits, gfp_t mask)
1155 {
1156         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1157 }
1158
1159 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1160                         struct extent_state **cached_state, gfp_t mask)
1161 {
1162         return set_extent_bit(tree, start, end,
1163                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1164                               NULL, cached_state, mask);
1165 }
1166
1167 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1168                       struct extent_state **cached_state, gfp_t mask)
1169 {
1170         return set_extent_bit(tree, start, end,
1171                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1172                               NULL, cached_state, mask);
1173 }
1174
1175 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1176                        gfp_t mask)
1177 {
1178         return clear_extent_bit(tree, start, end,
1179                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1180                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1181 }
1182
1183 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1184                      gfp_t mask)
1185 {
1186         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1187                               NULL, mask);
1188 }
1189
1190 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1191                         struct extent_state **cached_state, gfp_t mask)
1192 {
1193         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1194                               cached_state, mask);
1195 }
1196
1197 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1198                           struct extent_state **cached_state, gfp_t mask)
1199 {
1200         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1201                                 cached_state, mask);
1202 }
1203
1204 /*
1205  * either insert or lock state struct between start and end use mask to tell
1206  * us if waiting is desired.
1207  */
1208 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1209                      int bits, struct extent_state **cached_state)
1210 {
1211         int err;
1212         u64 failed_start;
1213         while (1) {
1214                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1215                                        EXTENT_LOCKED, &failed_start,
1216                                        cached_state, GFP_NOFS);
1217                 if (err == -EEXIST) {
1218                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1219                         start = failed_start;
1220                 } else
1221                         break;
1222                 WARN_ON(start > end);
1223         }
1224         return err;
1225 }
1226
1227 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1228 {
1229         return lock_extent_bits(tree, start, end, 0, NULL);
1230 }
1231
1232 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1233 {
1234         int err;
1235         u64 failed_start;
1236
1237         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1238                                &failed_start, NULL, GFP_NOFS);
1239         if (err == -EEXIST) {
1240                 if (failed_start > start)
1241                         clear_extent_bit(tree, start, failed_start - 1,
1242                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1243                 return 0;
1244         }
1245         return 1;
1246 }
1247
1248 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1249                          struct extent_state **cached, gfp_t mask)
1250 {
1251         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1252                                 mask);
1253 }
1254
1255 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1256 {
1257         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1258                                 GFP_NOFS);
1259 }
1260
1261 /*
1262  * helper function to set both pages and extents in the tree writeback
1263  */
1264 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1265 {
1266         unsigned long index = start >> PAGE_CACHE_SHIFT;
1267         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1268         struct page *page;
1269
1270         while (index <= end_index) {
1271                 page = find_get_page(tree->mapping, index);
1272                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1273                 set_page_writeback(page);
1274                 page_cache_release(page);
1275                 index++;
1276         }
1277         return 0;
1278 }
1279
1280 /* find the first state struct with 'bits' set after 'start', and
1281  * return it.  tree->lock must be held.  NULL will returned if
1282  * nothing was found after 'start'
1283  */
1284 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1285                                                  u64 start, int bits)
1286 {
1287         struct rb_node *node;
1288         struct extent_state *state;
1289
1290         /*
1291          * this search will find all the extents that end after
1292          * our range starts.
1293          */
1294         node = tree_search(tree, start);
1295         if (!node)
1296                 goto out;
1297
1298         while (1) {
1299                 state = rb_entry(node, struct extent_state, rb_node);
1300                 if (state->end >= start && (state->state & bits))
1301                         return state;
1302
1303                 node = rb_next(node);
1304                 if (!node)
1305                         break;
1306         }
1307 out:
1308         return NULL;
1309 }
1310
1311 /*
1312  * find the first offset in the io tree with 'bits' set. zero is
1313  * returned if we find something, and *start_ret and *end_ret are
1314  * set to reflect the state struct that was found.
1315  *
1316  * If nothing was found, 1 is returned. If found something, return 0.
1317  */
1318 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1319                           u64 *start_ret, u64 *end_ret, int bits,
1320                           struct extent_state **cached_state)
1321 {
1322         struct extent_state *state;
1323         struct rb_node *n;
1324         int ret = 1;
1325
1326         spin_lock(&tree->lock);
1327         if (cached_state && *cached_state) {
1328                 state = *cached_state;
1329                 if (state->end == start - 1 && state->tree) {
1330                         n = rb_next(&state->rb_node);
1331                         while (n) {
1332                                 state = rb_entry(n, struct extent_state,
1333                                                  rb_node);
1334                                 if (state->state & bits)
1335                                         goto got_it;
1336                                 n = rb_next(n);
1337                         }
1338                         free_extent_state(*cached_state);
1339                         *cached_state = NULL;
1340                         goto out;
1341                 }
1342                 free_extent_state(*cached_state);
1343                 *cached_state = NULL;
1344         }
1345
1346         state = find_first_extent_bit_state(tree, start, bits);
1347 got_it:
1348         if (state) {
1349                 cache_state(state, cached_state);
1350                 *start_ret = state->start;
1351                 *end_ret = state->end;
1352                 ret = 0;
1353         }
1354 out:
1355         spin_unlock(&tree->lock);
1356         return ret;
1357 }
1358
1359 /*
1360  * find a contiguous range of bytes in the file marked as delalloc, not
1361  * more than 'max_bytes'.  start and end are used to return the range,
1362  *
1363  * 1 is returned if we find something, 0 if nothing was in the tree
1364  */
1365 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1366                                         u64 *start, u64 *end, u64 max_bytes,
1367                                         struct extent_state **cached_state)
1368 {
1369         struct rb_node *node;
1370         struct extent_state *state;
1371         u64 cur_start = *start;
1372         u64 found = 0;
1373         u64 total_bytes = 0;
1374
1375         spin_lock(&tree->lock);
1376
1377         /*
1378          * this search will find all the extents that end after
1379          * our range starts.
1380          */
1381         node = tree_search(tree, cur_start);
1382         if (!node) {
1383                 if (!found)
1384                         *end = (u64)-1;
1385                 goto out;
1386         }
1387
1388         while (1) {
1389                 state = rb_entry(node, struct extent_state, rb_node);
1390                 if (found && (state->start != cur_start ||
1391                               (state->state & EXTENT_BOUNDARY))) {
1392                         goto out;
1393                 }
1394                 if (!(state->state & EXTENT_DELALLOC)) {
1395                         if (!found)
1396                                 *end = state->end;
1397                         goto out;
1398                 }
1399                 if (!found) {
1400                         *start = state->start;
1401                         *cached_state = state;
1402                         atomic_inc(&state->refs);
1403                 }
1404                 found++;
1405                 *end = state->end;
1406                 cur_start = state->end + 1;
1407                 node = rb_next(node);
1408                 if (!node)
1409                         break;
1410                 total_bytes += state->end - state->start + 1;
1411                 if (total_bytes >= max_bytes)
1412                         break;
1413         }
1414 out:
1415         spin_unlock(&tree->lock);
1416         return found;
1417 }
1418
1419 static noinline void __unlock_for_delalloc(struct inode *inode,
1420                                            struct page *locked_page,
1421                                            u64 start, u64 end)
1422 {
1423         int ret;
1424         struct page *pages[16];
1425         unsigned long index = start >> PAGE_CACHE_SHIFT;
1426         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1427         unsigned long nr_pages = end_index - index + 1;
1428         int i;
1429
1430         if (index == locked_page->index && end_index == index)
1431                 return;
1432
1433         while (nr_pages > 0) {
1434                 ret = find_get_pages_contig(inode->i_mapping, index,
1435                                      min_t(unsigned long, nr_pages,
1436                                      ARRAY_SIZE(pages)), pages);
1437                 for (i = 0; i < ret; i++) {
1438                         if (pages[i] != locked_page)
1439                                 unlock_page(pages[i]);
1440                         page_cache_release(pages[i]);
1441                 }
1442                 nr_pages -= ret;
1443                 index += ret;
1444                 cond_resched();
1445         }
1446 }
1447
1448 static noinline int lock_delalloc_pages(struct inode *inode,
1449                                         struct page *locked_page,
1450                                         u64 delalloc_start,
1451                                         u64 delalloc_end)
1452 {
1453         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1454         unsigned long start_index = index;
1455         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1456         unsigned long pages_locked = 0;
1457         struct page *pages[16];
1458         unsigned long nrpages;
1459         int ret;
1460         int i;
1461
1462         /* the caller is responsible for locking the start index */
1463         if (index == locked_page->index && index == end_index)
1464                 return 0;
1465
1466         /* skip the page at the start index */
1467         nrpages = end_index - index + 1;
1468         while (nrpages > 0) {
1469                 ret = find_get_pages_contig(inode->i_mapping, index,
1470                                      min_t(unsigned long,
1471                                      nrpages, ARRAY_SIZE(pages)), pages);
1472                 if (ret == 0) {
1473                         ret = -EAGAIN;
1474                         goto done;
1475                 }
1476                 /* now we have an array of pages, lock them all */
1477                 for (i = 0; i < ret; i++) {
1478                         /*
1479                          * the caller is taking responsibility for
1480                          * locked_page
1481                          */
1482                         if (pages[i] != locked_page) {
1483                                 lock_page(pages[i]);
1484                                 if (!PageDirty(pages[i]) ||
1485                                     pages[i]->mapping != inode->i_mapping) {
1486                                         ret = -EAGAIN;
1487                                         unlock_page(pages[i]);
1488                                         page_cache_release(pages[i]);
1489                                         goto done;
1490                                 }
1491                         }
1492                         page_cache_release(pages[i]);
1493                         pages_locked++;
1494                 }
1495                 nrpages -= ret;
1496                 index += ret;
1497                 cond_resched();
1498         }
1499         ret = 0;
1500 done:
1501         if (ret && pages_locked) {
1502                 __unlock_for_delalloc(inode, locked_page,
1503                               delalloc_start,
1504                               ((u64)(start_index + pages_locked - 1)) <<
1505                               PAGE_CACHE_SHIFT);
1506         }
1507         return ret;
1508 }
1509
1510 /*
1511  * find a contiguous range of bytes in the file marked as delalloc, not
1512  * more than 'max_bytes'.  start and end are used to return the range,
1513  *
1514  * 1 is returned if we find something, 0 if nothing was in the tree
1515  */
1516 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1517                                              struct extent_io_tree *tree,
1518                                              struct page *locked_page,
1519                                              u64 *start, u64 *end,
1520                                              u64 max_bytes)
1521 {
1522         u64 delalloc_start;
1523         u64 delalloc_end;
1524         u64 found;
1525         struct extent_state *cached_state = NULL;
1526         int ret;
1527         int loops = 0;
1528
1529 again:
1530         /* step one, find a bunch of delalloc bytes starting at start */
1531         delalloc_start = *start;
1532         delalloc_end = 0;
1533         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1534                                     max_bytes, &cached_state);
1535         if (!found || delalloc_end <= *start) {
1536                 *start = delalloc_start;
1537                 *end = delalloc_end;
1538                 free_extent_state(cached_state);
1539                 return found;
1540         }
1541
1542         /*
1543          * start comes from the offset of locked_page.  We have to lock
1544          * pages in order, so we can't process delalloc bytes before
1545          * locked_page
1546          */
1547         if (delalloc_start < *start)
1548                 delalloc_start = *start;
1549
1550         /*
1551          * make sure to limit the number of pages we try to lock down
1552          * if we're looping.
1553          */
1554         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1555                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1556
1557         /* step two, lock all the pages after the page that has start */
1558         ret = lock_delalloc_pages(inode, locked_page,
1559                                   delalloc_start, delalloc_end);
1560         if (ret == -EAGAIN) {
1561                 /* some of the pages are gone, lets avoid looping by
1562                  * shortening the size of the delalloc range we're searching
1563                  */
1564                 free_extent_state(cached_state);
1565                 if (!loops) {
1566                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1567                         max_bytes = PAGE_CACHE_SIZE - offset;
1568                         loops = 1;
1569                         goto again;
1570                 } else {
1571                         found = 0;
1572                         goto out_failed;
1573                 }
1574         }
1575         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1576
1577         /* step three, lock the state bits for the whole range */
1578         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1579
1580         /* then test to make sure it is all still delalloc */
1581         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1582                              EXTENT_DELALLOC, 1, cached_state);
1583         if (!ret) {
1584                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1585                                      &cached_state, GFP_NOFS);
1586                 __unlock_for_delalloc(inode, locked_page,
1587                               delalloc_start, delalloc_end);
1588                 cond_resched();
1589                 goto again;
1590         }
1591         free_extent_state(cached_state);
1592         *start = delalloc_start;
1593         *end = delalloc_end;
1594 out_failed:
1595         return found;
1596 }
1597
1598 int extent_clear_unlock_delalloc(struct inode *inode,
1599                                 struct extent_io_tree *tree,
1600                                 u64 start, u64 end, struct page *locked_page,
1601                                 unsigned long op)
1602 {
1603         int ret;
1604         struct page *pages[16];
1605         unsigned long index = start >> PAGE_CACHE_SHIFT;
1606         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1607         unsigned long nr_pages = end_index - index + 1;
1608         int i;
1609         int clear_bits = 0;
1610
1611         if (op & EXTENT_CLEAR_UNLOCK)
1612                 clear_bits |= EXTENT_LOCKED;
1613         if (op & EXTENT_CLEAR_DIRTY)
1614                 clear_bits |= EXTENT_DIRTY;
1615
1616         if (op & EXTENT_CLEAR_DELALLOC)
1617                 clear_bits |= EXTENT_DELALLOC;
1618
1619         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1620         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1621                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1622                     EXTENT_SET_PRIVATE2)))
1623                 return 0;
1624
1625         while (nr_pages > 0) {
1626                 ret = find_get_pages_contig(inode->i_mapping, index,
1627                                      min_t(unsigned long,
1628                                      nr_pages, ARRAY_SIZE(pages)), pages);
1629                 for (i = 0; i < ret; i++) {
1630
1631                         if (op & EXTENT_SET_PRIVATE2)
1632                                 SetPagePrivate2(pages[i]);
1633
1634                         if (pages[i] == locked_page) {
1635                                 page_cache_release(pages[i]);
1636                                 continue;
1637                         }
1638                         if (op & EXTENT_CLEAR_DIRTY)
1639                                 clear_page_dirty_for_io(pages[i]);
1640                         if (op & EXTENT_SET_WRITEBACK)
1641                                 set_page_writeback(pages[i]);
1642                         if (op & EXTENT_END_WRITEBACK)
1643                                 end_page_writeback(pages[i]);
1644                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1645                                 unlock_page(pages[i]);
1646                         page_cache_release(pages[i]);
1647                 }
1648                 nr_pages -= ret;
1649                 index += ret;
1650                 cond_resched();
1651         }
1652         return 0;
1653 }
1654
1655 /*
1656  * count the number of bytes in the tree that have a given bit(s)
1657  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1658  * cached.  The total number found is returned.
1659  */
1660 u64 count_range_bits(struct extent_io_tree *tree,
1661                      u64 *start, u64 search_end, u64 max_bytes,
1662                      unsigned long bits, int contig)
1663 {
1664         struct rb_node *node;
1665         struct extent_state *state;
1666         u64 cur_start = *start;
1667         u64 total_bytes = 0;
1668         u64 last = 0;
1669         int found = 0;
1670
1671         if (search_end <= cur_start) {
1672                 WARN_ON(1);
1673                 return 0;
1674         }
1675
1676         spin_lock(&tree->lock);
1677         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1678                 total_bytes = tree->dirty_bytes;
1679                 goto out;
1680         }
1681         /*
1682          * this search will find all the extents that end after
1683          * our range starts.
1684          */
1685         node = tree_search(tree, cur_start);
1686         if (!node)
1687                 goto out;
1688
1689         while (1) {
1690                 state = rb_entry(node, struct extent_state, rb_node);
1691                 if (state->start > search_end)
1692                         break;
1693                 if (contig && found && state->start > last + 1)
1694                         break;
1695                 if (state->end >= cur_start && (state->state & bits) == bits) {
1696                         total_bytes += min(search_end, state->end) + 1 -
1697                                        max(cur_start, state->start);
1698                         if (total_bytes >= max_bytes)
1699                                 break;
1700                         if (!found) {
1701                                 *start = max(cur_start, state->start);
1702                                 found = 1;
1703                         }
1704                         last = state->end;
1705                 } else if (contig && found) {
1706                         break;
1707                 }
1708                 node = rb_next(node);
1709                 if (!node)
1710                         break;
1711         }
1712 out:
1713         spin_unlock(&tree->lock);
1714         return total_bytes;
1715 }
1716
1717 /*
1718  * set the private field for a given byte offset in the tree.  If there isn't
1719  * an extent_state there already, this does nothing.
1720  */
1721 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1722 {
1723         struct rb_node *node;
1724         struct extent_state *state;
1725         int ret = 0;
1726
1727         spin_lock(&tree->lock);
1728         /*
1729          * this search will find all the extents that end after
1730          * our range starts.
1731          */
1732         node = tree_search(tree, start);
1733         if (!node) {
1734                 ret = -ENOENT;
1735                 goto out;
1736         }
1737         state = rb_entry(node, struct extent_state, rb_node);
1738         if (state->start != start) {
1739                 ret = -ENOENT;
1740                 goto out;
1741         }
1742         state->private = private;
1743 out:
1744         spin_unlock(&tree->lock);
1745         return ret;
1746 }
1747
1748 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1749 {
1750         struct rb_node *node;
1751         struct extent_state *state;
1752         int ret = 0;
1753
1754         spin_lock(&tree->lock);
1755         /*
1756          * this search will find all the extents that end after
1757          * our range starts.
1758          */
1759         node = tree_search(tree, start);
1760         if (!node) {
1761                 ret = -ENOENT;
1762                 goto out;
1763         }
1764         state = rb_entry(node, struct extent_state, rb_node);
1765         if (state->start != start) {
1766                 ret = -ENOENT;
1767                 goto out;
1768         }
1769         *private = state->private;
1770 out:
1771         spin_unlock(&tree->lock);
1772         return ret;
1773 }
1774
1775 /*
1776  * searches a range in the state tree for a given mask.
1777  * If 'filled' == 1, this returns 1 only if every extent in the tree
1778  * has the bits set.  Otherwise, 1 is returned if any bit in the
1779  * range is found set.
1780  */
1781 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1782                    int bits, int filled, struct extent_state *cached)
1783 {
1784         struct extent_state *state = NULL;
1785         struct rb_node *node;
1786         int bitset = 0;
1787
1788         spin_lock(&tree->lock);
1789         if (cached && cached->tree && cached->start <= start &&
1790             cached->end > start)
1791                 node = &cached->rb_node;
1792         else
1793                 node = tree_search(tree, start);
1794         while (node && start <= end) {
1795                 state = rb_entry(node, struct extent_state, rb_node);
1796
1797                 if (filled && state->start > start) {
1798                         bitset = 0;
1799                         break;
1800                 }
1801
1802                 if (state->start > end)
1803                         break;
1804
1805                 if (state->state & bits) {
1806                         bitset = 1;
1807                         if (!filled)
1808                                 break;
1809                 } else if (filled) {
1810                         bitset = 0;
1811                         break;
1812                 }
1813
1814                 if (state->end == (u64)-1)
1815                         break;
1816
1817                 start = state->end + 1;
1818                 if (start > end)
1819                         break;
1820                 node = rb_next(node);
1821                 if (!node) {
1822                         if (filled)
1823                                 bitset = 0;
1824                         break;
1825                 }
1826         }
1827         spin_unlock(&tree->lock);
1828         return bitset;
1829 }
1830
1831 /*
1832  * helper function to set a given page up to date if all the
1833  * extents in the tree for that page are up to date
1834  */
1835 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1836 {
1837         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1838         u64 end = start + PAGE_CACHE_SIZE - 1;
1839         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1840                 SetPageUptodate(page);
1841 }
1842
1843 /*
1844  * helper function to unlock a page if all the extents in the tree
1845  * for that page are unlocked
1846  */
1847 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1848 {
1849         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1850         u64 end = start + PAGE_CACHE_SIZE - 1;
1851         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1852                 unlock_page(page);
1853 }
1854
1855 /*
1856  * helper function to end page writeback if all the extents
1857  * in the tree for that page are done with writeback
1858  */
1859 static void check_page_writeback(struct extent_io_tree *tree,
1860                                  struct page *page)
1861 {
1862         end_page_writeback(page);
1863 }
1864
1865 /*
1866  * When IO fails, either with EIO or csum verification fails, we
1867  * try other mirrors that might have a good copy of the data.  This
1868  * io_failure_record is used to record state as we go through all the
1869  * mirrors.  If another mirror has good data, the page is set up to date
1870  * and things continue.  If a good mirror can't be found, the original
1871  * bio end_io callback is called to indicate things have failed.
1872  */
1873 struct io_failure_record {
1874         struct page *page;
1875         u64 start;
1876         u64 len;
1877         u64 logical;
1878         unsigned long bio_flags;
1879         int this_mirror;
1880         int failed_mirror;
1881         int in_validation;
1882 };
1883
1884 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1885                                 int did_repair)
1886 {
1887         int ret;
1888         int err = 0;
1889         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1890
1891         set_state_private(failure_tree, rec->start, 0);
1892         ret = clear_extent_bits(failure_tree, rec->start,
1893                                 rec->start + rec->len - 1,
1894                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1895         if (ret)
1896                 err = ret;
1897
1898         if (did_repair) {
1899                 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1900                                         rec->start + rec->len - 1,
1901                                         EXTENT_DAMAGED, GFP_NOFS);
1902                 if (ret && !err)
1903                         err = ret;
1904         }
1905
1906         kfree(rec);
1907         return err;
1908 }
1909
1910 static void repair_io_failure_callback(struct bio *bio, int err)
1911 {
1912         complete(bio->bi_private);
1913 }
1914
1915 /*
1916  * this bypasses the standard btrfs submit functions deliberately, as
1917  * the standard behavior is to write all copies in a raid setup. here we only
1918  * want to write the one bad copy. so we do the mapping for ourselves and issue
1919  * submit_bio directly.
1920  * to avoid any synchonization issues, wait for the data after writing, which
1921  * actually prevents the read that triggered the error from finishing.
1922  * currently, there can be no more than two copies of every data bit. thus,
1923  * exactly one rewrite is required.
1924  */
1925 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1926                         u64 length, u64 logical, struct page *page,
1927                         int mirror_num)
1928 {
1929         struct bio *bio;
1930         struct btrfs_device *dev;
1931         DECLARE_COMPLETION_ONSTACK(compl);
1932         u64 map_length = 0;
1933         u64 sector;
1934         struct btrfs_bio *bbio = NULL;
1935         int ret;
1936
1937         BUG_ON(!mirror_num);
1938
1939         bio = bio_alloc(GFP_NOFS, 1);
1940         if (!bio)
1941                 return -EIO;
1942         bio->bi_private = &compl;
1943         bio->bi_end_io = repair_io_failure_callback;
1944         bio->bi_size = 0;
1945         map_length = length;
1946
1947         ret = btrfs_map_block(map_tree, WRITE, logical,
1948                               &map_length, &bbio, mirror_num);
1949         if (ret) {
1950                 bio_put(bio);
1951                 return -EIO;
1952         }
1953         BUG_ON(mirror_num != bbio->mirror_num);
1954         sector = bbio->stripes[mirror_num-1].physical >> 9;
1955         bio->bi_sector = sector;
1956         dev = bbio->stripes[mirror_num-1].dev;
1957         kfree(bbio);
1958         if (!dev || !dev->bdev || !dev->writeable) {
1959                 bio_put(bio);
1960                 return -EIO;
1961         }
1962         bio->bi_bdev = dev->bdev;
1963         bio_add_page(bio, page, length, start-page_offset(page));
1964         btrfsic_submit_bio(WRITE_SYNC, bio);
1965         wait_for_completion(&compl);
1966
1967         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1968                 /* try to remap that extent elsewhere? */
1969                 bio_put(bio);
1970                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1971                 return -EIO;
1972         }
1973
1974         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1975                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1976                       start, rcu_str_deref(dev->name), sector);
1977
1978         bio_put(bio);
1979         return 0;
1980 }
1981
1982 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1983                          int mirror_num)
1984 {
1985         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1986         u64 start = eb->start;
1987         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1988         int ret = 0;
1989
1990         for (i = 0; i < num_pages; i++) {
1991                 struct page *p = extent_buffer_page(eb, i);
1992                 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1993                                         start, p, mirror_num);
1994                 if (ret)
1995                         break;
1996                 start += PAGE_CACHE_SIZE;
1997         }
1998
1999         return ret;
2000 }
2001
2002 /*
2003  * each time an IO finishes, we do a fast check in the IO failure tree
2004  * to see if we need to process or clean up an io_failure_record
2005  */
2006 static int clean_io_failure(u64 start, struct page *page)
2007 {
2008         u64 private;
2009         u64 private_failure;
2010         struct io_failure_record *failrec;
2011         struct btrfs_mapping_tree *map_tree;
2012         struct extent_state *state;
2013         int num_copies;
2014         int did_repair = 0;
2015         int ret;
2016         struct inode *inode = page->mapping->host;
2017
2018         private = 0;
2019         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2020                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2021         if (!ret)
2022                 return 0;
2023
2024         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2025                                 &private_failure);
2026         if (ret)
2027                 return 0;
2028
2029         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2030         BUG_ON(!failrec->this_mirror);
2031
2032         if (failrec->in_validation) {
2033                 /* there was no real error, just free the record */
2034                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2035                          failrec->start);
2036                 did_repair = 1;
2037                 goto out;
2038         }
2039
2040         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2041         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2042                                             failrec->start,
2043                                             EXTENT_LOCKED);
2044         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2045
2046         if (state && state->start == failrec->start) {
2047                 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2048                                               failrec->logical, failrec->len);
2049                 if (num_copies > 1)  {
2050                         map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2051                         ret = repair_io_failure(map_tree, start, failrec->len,
2052                                                 failrec->logical, page,
2053                                                 failrec->failed_mirror);
2054                         did_repair = !ret;
2055                 }
2056         }
2057
2058 out:
2059         if (!ret)
2060                 ret = free_io_failure(inode, failrec, did_repair);
2061
2062         return ret;
2063 }
2064
2065 /*
2066  * this is a generic handler for readpage errors (default
2067  * readpage_io_failed_hook). if other copies exist, read those and write back
2068  * good data to the failed position. does not investigate in remapping the
2069  * failed extent elsewhere, hoping the device will be smart enough to do this as
2070  * needed
2071  */
2072
2073 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2074                                 u64 start, u64 end, int failed_mirror,
2075                                 struct extent_state *state)
2076 {
2077         struct io_failure_record *failrec = NULL;
2078         u64 private;
2079         struct extent_map *em;
2080         struct inode *inode = page->mapping->host;
2081         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2082         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2083         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2084         struct bio *bio;
2085         int num_copies;
2086         int ret;
2087         int read_mode;
2088         u64 logical;
2089
2090         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2091
2092         ret = get_state_private(failure_tree, start, &private);
2093         if (ret) {
2094                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2095                 if (!failrec)
2096                         return -ENOMEM;
2097                 failrec->start = start;
2098                 failrec->len = end - start + 1;
2099                 failrec->this_mirror = 0;
2100                 failrec->bio_flags = 0;
2101                 failrec->in_validation = 0;
2102
2103                 read_lock(&em_tree->lock);
2104                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2105                 if (!em) {
2106                         read_unlock(&em_tree->lock);
2107                         kfree(failrec);
2108                         return -EIO;
2109                 }
2110
2111                 if (em->start > start || em->start + em->len < start) {
2112                         free_extent_map(em);
2113                         em = NULL;
2114                 }
2115                 read_unlock(&em_tree->lock);
2116
2117                 if (!em) {
2118                         kfree(failrec);
2119                         return -EIO;
2120                 }
2121                 logical = start - em->start;
2122                 logical = em->block_start + logical;
2123                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2124                         logical = em->block_start;
2125                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2126                         extent_set_compress_type(&failrec->bio_flags,
2127                                                  em->compress_type);
2128                 }
2129                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2130                          "len=%llu\n", logical, start, failrec->len);
2131                 failrec->logical = logical;
2132                 free_extent_map(em);
2133
2134                 /* set the bits in the private failure tree */
2135                 ret = set_extent_bits(failure_tree, start, end,
2136                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2137                 if (ret >= 0)
2138                         ret = set_state_private(failure_tree, start,
2139                                                 (u64)(unsigned long)failrec);
2140                 /* set the bits in the inode's tree */
2141                 if (ret >= 0)
2142                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2143                                                 GFP_NOFS);
2144                 if (ret < 0) {
2145                         kfree(failrec);
2146                         return ret;
2147                 }
2148         } else {
2149                 failrec = (struct io_failure_record *)(unsigned long)private;
2150                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2151                          "start=%llu, len=%llu, validation=%d\n",
2152                          failrec->logical, failrec->start, failrec->len,
2153                          failrec->in_validation);
2154                 /*
2155                  * when data can be on disk more than twice, add to failrec here
2156                  * (e.g. with a list for failed_mirror) to make
2157                  * clean_io_failure() clean all those errors at once.
2158                  */
2159         }
2160         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2161                                       failrec->logical, failrec->len);
2162         if (num_copies == 1) {
2163                 /*
2164                  * we only have a single copy of the data, so don't bother with
2165                  * all the retry and error correction code that follows. no
2166                  * matter what the error is, it is very likely to persist.
2167                  */
2168                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2169                          "state=%p, num_copies=%d, next_mirror %d, "
2170                          "failed_mirror %d\n", state, num_copies,
2171                          failrec->this_mirror, failed_mirror);
2172                 free_io_failure(inode, failrec, 0);
2173                 return -EIO;
2174         }
2175
2176         if (!state) {
2177                 spin_lock(&tree->lock);
2178                 state = find_first_extent_bit_state(tree, failrec->start,
2179                                                     EXTENT_LOCKED);
2180                 if (state && state->start != failrec->start)
2181                         state = NULL;
2182                 spin_unlock(&tree->lock);
2183         }
2184
2185         /*
2186          * there are two premises:
2187          *      a) deliver good data to the caller
2188          *      b) correct the bad sectors on disk
2189          */
2190         if (failed_bio->bi_vcnt > 1) {
2191                 /*
2192                  * to fulfill b), we need to know the exact failing sectors, as
2193                  * we don't want to rewrite any more than the failed ones. thus,
2194                  * we need separate read requests for the failed bio
2195                  *
2196                  * if the following BUG_ON triggers, our validation request got
2197                  * merged. we need separate requests for our algorithm to work.
2198                  */
2199                 BUG_ON(failrec->in_validation);
2200                 failrec->in_validation = 1;
2201                 failrec->this_mirror = failed_mirror;
2202                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2203         } else {
2204                 /*
2205                  * we're ready to fulfill a) and b) alongside. get a good copy
2206                  * of the failed sector and if we succeed, we have setup
2207                  * everything for repair_io_failure to do the rest for us.
2208                  */
2209                 if (failrec->in_validation) {
2210                         BUG_ON(failrec->this_mirror != failed_mirror);
2211                         failrec->in_validation = 0;
2212                         failrec->this_mirror = 0;
2213                 }
2214                 failrec->failed_mirror = failed_mirror;
2215                 failrec->this_mirror++;
2216                 if (failrec->this_mirror == failed_mirror)
2217                         failrec->this_mirror++;
2218                 read_mode = READ_SYNC;
2219         }
2220
2221         if (!state || failrec->this_mirror > num_copies) {
2222                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2223                          "next_mirror %d, failed_mirror %d\n", state,
2224                          num_copies, failrec->this_mirror, failed_mirror);
2225                 free_io_failure(inode, failrec, 0);
2226                 return -EIO;
2227         }
2228
2229         bio = bio_alloc(GFP_NOFS, 1);
2230         if (!bio) {
2231                 free_io_failure(inode, failrec, 0);
2232                 return -EIO;
2233         }
2234         bio->bi_private = state;
2235         bio->bi_end_io = failed_bio->bi_end_io;
2236         bio->bi_sector = failrec->logical >> 9;
2237         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2238         bio->bi_size = 0;
2239
2240         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2241
2242         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2243                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2244                  failrec->this_mirror, num_copies, failrec->in_validation);
2245
2246         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2247                                          failrec->this_mirror,
2248                                          failrec->bio_flags, 0);
2249         return ret;
2250 }
2251
2252 /* lots and lots of room for performance fixes in the end_bio funcs */
2253
2254 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2255 {
2256         int uptodate = (err == 0);
2257         struct extent_io_tree *tree;
2258         int ret;
2259
2260         tree = &BTRFS_I(page->mapping->host)->io_tree;
2261
2262         if (tree->ops && tree->ops->writepage_end_io_hook) {
2263                 ret = tree->ops->writepage_end_io_hook(page, start,
2264                                                end, NULL, uptodate);
2265                 if (ret)
2266                         uptodate = 0;
2267         }
2268
2269         if (!uptodate) {
2270                 ClearPageUptodate(page);
2271                 SetPageError(page);
2272         }
2273         return 0;
2274 }
2275
2276 /*
2277  * after a writepage IO is done, we need to:
2278  * clear the uptodate bits on error
2279  * clear the writeback bits in the extent tree for this IO
2280  * end_page_writeback if the page has no more pending IO
2281  *
2282  * Scheduling is not allowed, so the extent state tree is expected
2283  * to have one and only one object corresponding to this IO.
2284  */
2285 static void end_bio_extent_writepage(struct bio *bio, int err)
2286 {
2287         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2288         struct extent_io_tree *tree;
2289         u64 start;
2290         u64 end;
2291         int whole_page;
2292
2293         do {
2294                 struct page *page = bvec->bv_page;
2295                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2296
2297                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2298                          bvec->bv_offset;
2299                 end = start + bvec->bv_len - 1;
2300
2301                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2302                         whole_page = 1;
2303                 else
2304                         whole_page = 0;
2305
2306                 if (--bvec >= bio->bi_io_vec)
2307                         prefetchw(&bvec->bv_page->flags);
2308
2309                 if (end_extent_writepage(page, err, start, end))
2310                         continue;
2311
2312                 if (whole_page)
2313                         end_page_writeback(page);
2314                 else
2315                         check_page_writeback(tree, page);
2316         } while (bvec >= bio->bi_io_vec);
2317
2318         bio_put(bio);
2319 }
2320
2321 /*
2322  * after a readpage IO is done, we need to:
2323  * clear the uptodate bits on error
2324  * set the uptodate bits if things worked
2325  * set the page up to date if all extents in the tree are uptodate
2326  * clear the lock bit in the extent tree
2327  * unlock the page if there are no other extents locked for it
2328  *
2329  * Scheduling is not allowed, so the extent state tree is expected
2330  * to have one and only one object corresponding to this IO.
2331  */
2332 static void end_bio_extent_readpage(struct bio *bio, int err)
2333 {
2334         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2335         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2336         struct bio_vec *bvec = bio->bi_io_vec;
2337         struct extent_io_tree *tree;
2338         u64 start;
2339         u64 end;
2340         int whole_page;
2341         int mirror;
2342         int ret;
2343
2344         if (err)
2345                 uptodate = 0;
2346
2347         do {
2348                 struct page *page = bvec->bv_page;
2349                 struct extent_state *cached = NULL;
2350                 struct extent_state *state;
2351
2352                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2353                          "mirror=%ld\n", (u64)bio->bi_sector, err,
2354                          (long int)bio->bi_bdev);
2355                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2356
2357                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2358                         bvec->bv_offset;
2359                 end = start + bvec->bv_len - 1;
2360
2361                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2362                         whole_page = 1;
2363                 else
2364                         whole_page = 0;
2365
2366                 if (++bvec <= bvec_end)
2367                         prefetchw(&bvec->bv_page->flags);
2368
2369                 spin_lock(&tree->lock);
2370                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2371                 if (state && state->start == start) {
2372                         /*
2373                          * take a reference on the state, unlock will drop
2374                          * the ref
2375                          */
2376                         cache_state(state, &cached);
2377                 }
2378                 spin_unlock(&tree->lock);
2379
2380                 mirror = (int)(unsigned long)bio->bi_bdev;
2381                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2382                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2383                                                               state, mirror);
2384                         if (ret)
2385                                 uptodate = 0;
2386                         else
2387                                 clean_io_failure(start, page);
2388                 }
2389
2390                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2391                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2392                         if (!ret && !err &&
2393                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2394                                 uptodate = 1;
2395                 } else if (!uptodate) {
2396                         /*
2397                          * The generic bio_readpage_error handles errors the
2398                          * following way: If possible, new read requests are
2399                          * created and submitted and will end up in
2400                          * end_bio_extent_readpage as well (if we're lucky, not
2401                          * in the !uptodate case). In that case it returns 0 and
2402                          * we just go on with the next page in our bio. If it
2403                          * can't handle the error it will return -EIO and we
2404                          * remain responsible for that page.
2405                          */
2406                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2407                         if (ret == 0) {
2408                                 uptodate =
2409                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2410                                 if (err)
2411                                         uptodate = 0;
2412                                 uncache_state(&cached);
2413                                 continue;
2414                         }
2415                 }
2416
2417                 if (uptodate && tree->track_uptodate) {
2418                         set_extent_uptodate(tree, start, end, &cached,
2419                                             GFP_ATOMIC);
2420                 }
2421                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2422
2423                 if (whole_page) {
2424                         if (uptodate) {
2425                                 SetPageUptodate(page);
2426                         } else {
2427                                 ClearPageUptodate(page);
2428                                 SetPageError(page);
2429                         }
2430                         unlock_page(page);
2431                 } else {
2432                         if (uptodate) {
2433                                 check_page_uptodate(tree, page);
2434                         } else {
2435                                 ClearPageUptodate(page);
2436                                 SetPageError(page);
2437                         }
2438                         check_page_locked(tree, page);
2439                 }
2440         } while (bvec <= bvec_end);
2441
2442         bio_put(bio);
2443 }
2444
2445 struct bio *
2446 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2447                 gfp_t gfp_flags)
2448 {
2449         struct bio *bio;
2450
2451         bio = bio_alloc(gfp_flags, nr_vecs);
2452
2453         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2454                 while (!bio && (nr_vecs /= 2))
2455                         bio = bio_alloc(gfp_flags, nr_vecs);
2456         }
2457
2458         if (bio) {
2459                 bio->bi_size = 0;
2460                 bio->bi_bdev = bdev;
2461                 bio->bi_sector = first_sector;
2462         }
2463         return bio;
2464 }
2465
2466 /*
2467  * Since writes are async, they will only return -ENOMEM.
2468  * Reads can return the full range of I/O error conditions.
2469  */
2470 static int __must_check submit_one_bio(int rw, struct bio *bio,
2471                                        int mirror_num, unsigned long bio_flags)
2472 {
2473         int ret = 0;
2474         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2475         struct page *page = bvec->bv_page;
2476         struct extent_io_tree *tree = bio->bi_private;
2477         u64 start;
2478
2479         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2480
2481         bio->bi_private = NULL;
2482
2483         bio_get(bio);
2484
2485         if (tree->ops && tree->ops->submit_bio_hook)
2486                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2487                                            mirror_num, bio_flags, start);
2488         else
2489                 btrfsic_submit_bio(rw, bio);
2490
2491         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2492                 ret = -EOPNOTSUPP;
2493         bio_put(bio);
2494         return ret;
2495 }
2496
2497 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2498                      unsigned long offset, size_t size, struct bio *bio,
2499                      unsigned long bio_flags)
2500 {
2501         int ret = 0;
2502         if (tree->ops && tree->ops->merge_bio_hook)
2503                 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2504                                                 bio_flags);
2505         BUG_ON(ret < 0);
2506         return ret;
2507
2508 }
2509
2510 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2511                               struct page *page, sector_t sector,
2512                               size_t size, unsigned long offset,
2513                               struct block_device *bdev,
2514                               struct bio **bio_ret,
2515                               unsigned long max_pages,
2516                               bio_end_io_t end_io_func,
2517                               int mirror_num,
2518                               unsigned long prev_bio_flags,
2519                               unsigned long bio_flags)
2520 {
2521         int ret = 0;
2522         struct bio *bio;
2523         int nr;
2524         int contig = 0;
2525         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2526         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2527         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2528
2529         if (bio_ret && *bio_ret) {
2530                 bio = *bio_ret;
2531                 if (old_compressed)
2532                         contig = bio->bi_sector == sector;
2533                 else
2534                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2535                                 sector;
2536
2537                 if (prev_bio_flags != bio_flags || !contig ||
2538                     merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2539                     bio_add_page(bio, page, page_size, offset) < page_size) {
2540                         ret = submit_one_bio(rw, bio, mirror_num,
2541                                              prev_bio_flags);
2542                         if (ret < 0)
2543                                 return ret;
2544                         bio = NULL;
2545                 } else {
2546                         return 0;
2547                 }
2548         }
2549         if (this_compressed)
2550                 nr = BIO_MAX_PAGES;
2551         else
2552                 nr = bio_get_nr_vecs(bdev);
2553
2554         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2555         if (!bio)
2556                 return -ENOMEM;
2557
2558         bio_add_page(bio, page, page_size, offset);
2559         bio->bi_end_io = end_io_func;
2560         bio->bi_private = tree;
2561
2562         if (bio_ret)
2563                 *bio_ret = bio;
2564         else
2565                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2566
2567         return ret;
2568 }
2569
2570 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2571 {
2572         if (!PagePrivate(page)) {
2573                 SetPagePrivate(page);
2574                 page_cache_get(page);
2575                 set_page_private(page, (unsigned long)eb);
2576         } else {
2577                 WARN_ON(page->private != (unsigned long)eb);
2578         }
2579 }
2580
2581 void set_page_extent_mapped(struct page *page)
2582 {
2583         if (!PagePrivate(page)) {
2584                 SetPagePrivate(page);
2585                 page_cache_get(page);
2586                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2587         }
2588 }
2589
2590 /*
2591  * basic readpage implementation.  Locked extent state structs are inserted
2592  * into the tree that are removed when the IO is done (by the end_io
2593  * handlers)
2594  * XXX JDM: This needs looking at to ensure proper page locking
2595  */
2596 static int __extent_read_full_page(struct extent_io_tree *tree,
2597                                    struct page *page,
2598                                    get_extent_t *get_extent,
2599                                    struct bio **bio, int mirror_num,
2600                                    unsigned long *bio_flags)
2601 {
2602         struct inode *inode = page->mapping->host;
2603         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2604         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2605         u64 end;
2606         u64 cur = start;
2607         u64 extent_offset;
2608         u64 last_byte = i_size_read(inode);
2609         u64 block_start;
2610         u64 cur_end;
2611         sector_t sector;
2612         struct extent_map *em;
2613         struct block_device *bdev;
2614         struct btrfs_ordered_extent *ordered;
2615         int ret;
2616         int nr = 0;
2617         size_t pg_offset = 0;
2618         size_t iosize;
2619         size_t disk_io_size;
2620         size_t blocksize = inode->i_sb->s_blocksize;
2621         unsigned long this_bio_flag = 0;
2622
2623         set_page_extent_mapped(page);
2624
2625         if (!PageUptodate(page)) {
2626                 if (cleancache_get_page(page) == 0) {
2627                         BUG_ON(blocksize != PAGE_SIZE);
2628                         goto out;
2629                 }
2630         }
2631
2632         end = page_end;
2633         while (1) {
2634                 lock_extent(tree, start, end);
2635                 ordered = btrfs_lookup_ordered_extent(inode, start);
2636                 if (!ordered)
2637                         break;
2638                 unlock_extent(tree, start, end);
2639                 btrfs_start_ordered_extent(inode, ordered, 1);
2640                 btrfs_put_ordered_extent(ordered);
2641         }
2642
2643         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2644                 char *userpage;
2645                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2646
2647                 if (zero_offset) {
2648                         iosize = PAGE_CACHE_SIZE - zero_offset;
2649                         userpage = kmap_atomic(page);
2650                         memset(userpage + zero_offset, 0, iosize);
2651                         flush_dcache_page(page);
2652                         kunmap_atomic(userpage);
2653                 }
2654         }
2655         while (cur <= end) {
2656                 if (cur >= last_byte) {
2657                         char *userpage;
2658                         struct extent_state *cached = NULL;
2659
2660                         iosize = PAGE_CACHE_SIZE - pg_offset;
2661                         userpage = kmap_atomic(page);
2662                         memset(userpage + pg_offset, 0, iosize);
2663                         flush_dcache_page(page);
2664                         kunmap_atomic(userpage);
2665                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2666                                             &cached, GFP_NOFS);
2667                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2668                                              &cached, GFP_NOFS);
2669                         break;
2670                 }
2671                 em = get_extent(inode, page, pg_offset, cur,
2672                                 end - cur + 1, 0);
2673                 if (IS_ERR_OR_NULL(em)) {
2674                         SetPageError(page);
2675                         unlock_extent(tree, cur, end);
2676                         break;
2677                 }
2678                 extent_offset = cur - em->start;
2679                 BUG_ON(extent_map_end(em) <= cur);
2680                 BUG_ON(end < cur);
2681
2682                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2683                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2684                         extent_set_compress_type(&this_bio_flag,
2685                                                  em->compress_type);
2686                 }
2687
2688                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2689                 cur_end = min(extent_map_end(em) - 1, end);
2690                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2691                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2692                         disk_io_size = em->block_len;
2693                         sector = em->block_start >> 9;
2694                 } else {
2695                         sector = (em->block_start + extent_offset) >> 9;
2696                         disk_io_size = iosize;
2697                 }
2698                 bdev = em->bdev;
2699                 block_start = em->block_start;
2700                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2701                         block_start = EXTENT_MAP_HOLE;
2702                 free_extent_map(em);
2703                 em = NULL;
2704
2705                 /* we've found a hole, just zero and go on */
2706                 if (block_start == EXTENT_MAP_HOLE) {
2707                         char *userpage;
2708                         struct extent_state *cached = NULL;
2709
2710                         userpage = kmap_atomic(page);
2711                         memset(userpage + pg_offset, 0, iosize);
2712                         flush_dcache_page(page);
2713                         kunmap_atomic(userpage);
2714
2715                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2716                                             &cached, GFP_NOFS);
2717                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2718                                              &cached, GFP_NOFS);
2719                         cur = cur + iosize;
2720                         pg_offset += iosize;
2721                         continue;
2722                 }
2723                 /* the get_extent function already copied into the page */
2724                 if (test_range_bit(tree, cur, cur_end,
2725                                    EXTENT_UPTODATE, 1, NULL)) {
2726                         check_page_uptodate(tree, page);
2727                         unlock_extent(tree, cur, cur + iosize - 1);
2728                         cur = cur + iosize;
2729                         pg_offset += iosize;
2730                         continue;
2731                 }
2732                 /* we have an inline extent but it didn't get marked up
2733                  * to date.  Error out
2734                  */
2735                 if (block_start == EXTENT_MAP_INLINE) {
2736                         SetPageError(page);
2737                         unlock_extent(tree, cur, cur + iosize - 1);
2738                         cur = cur + iosize;
2739                         pg_offset += iosize;
2740                         continue;
2741                 }
2742
2743                 ret = 0;
2744                 if (tree->ops && tree->ops->readpage_io_hook) {
2745                         ret = tree->ops->readpage_io_hook(page, cur,
2746                                                           cur + iosize - 1);
2747                 }
2748                 if (!ret) {
2749                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2750                         pnr -= page->index;
2751                         ret = submit_extent_page(READ, tree, page,
2752                                          sector, disk_io_size, pg_offset,
2753                                          bdev, bio, pnr,
2754                                          end_bio_extent_readpage, mirror_num,
2755                                          *bio_flags,
2756                                          this_bio_flag);
2757                         if (!ret) {
2758                                 nr++;
2759                                 *bio_flags = this_bio_flag;
2760                         }
2761                 }
2762                 if (ret) {
2763                         SetPageError(page);
2764                         unlock_extent(tree, cur, cur + iosize - 1);
2765                 }
2766                 cur = cur + iosize;
2767                 pg_offset += iosize;
2768         }
2769 out:
2770         if (!nr) {
2771                 if (!PageError(page))
2772                         SetPageUptodate(page);
2773                 unlock_page(page);
2774         }
2775         return 0;
2776 }
2777
2778 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2779                             get_extent_t *get_extent, int mirror_num)
2780 {
2781         struct bio *bio = NULL;
2782         unsigned long bio_flags = 0;
2783         int ret;
2784
2785         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2786                                       &bio_flags);
2787         if (bio)
2788                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2789         return ret;
2790 }
2791
2792 static noinline void update_nr_written(struct page *page,
2793                                       struct writeback_control *wbc,
2794                                       unsigned long nr_written)
2795 {
2796         wbc->nr_to_write -= nr_written;
2797         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2798             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2799                 page->mapping->writeback_index = page->index + nr_written;
2800 }
2801
2802 /*
2803  * the writepage semantics are similar to regular writepage.  extent
2804  * records are inserted to lock ranges in the tree, and as dirty areas
2805  * are found, they are marked writeback.  Then the lock bits are removed
2806  * and the end_io handler clears the writeback ranges
2807  */
2808 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2809                               void *data)
2810 {
2811         struct inode *inode = page->mapping->host;
2812         struct extent_page_data *epd = data;
2813         struct extent_io_tree *tree = epd->tree;
2814         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2815         u64 delalloc_start;
2816         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2817         u64 end;
2818         u64 cur = start;
2819         u64 extent_offset;
2820         u64 last_byte = i_size_read(inode);
2821         u64 block_start;
2822         u64 iosize;
2823         sector_t sector;
2824         struct extent_state *cached_state = NULL;
2825         struct extent_map *em;
2826         struct block_device *bdev;
2827         int ret;
2828         int nr = 0;
2829         size_t pg_offset = 0;
2830         size_t blocksize;
2831         loff_t i_size = i_size_read(inode);
2832         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2833         u64 nr_delalloc;
2834         u64 delalloc_end;
2835         int page_started;
2836         int compressed;
2837         int write_flags;
2838         unsigned long nr_written = 0;
2839         bool fill_delalloc = true;
2840
2841         if (wbc->sync_mode == WB_SYNC_ALL)
2842                 write_flags = WRITE_SYNC;
2843         else
2844                 write_flags = WRITE;
2845
2846         trace___extent_writepage(page, inode, wbc);
2847
2848         WARN_ON(!PageLocked(page));
2849
2850         ClearPageError(page);
2851
2852         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2853         if (page->index > end_index ||
2854            (page->index == end_index && !pg_offset)) {
2855                 page->mapping->a_ops->invalidatepage(page, 0);
2856                 unlock_page(page);
2857                 return 0;
2858         }
2859
2860         if (page->index == end_index) {
2861                 char *userpage;
2862
2863                 userpage = kmap_atomic(page);
2864                 memset(userpage + pg_offset, 0,
2865                        PAGE_CACHE_SIZE - pg_offset);
2866                 kunmap_atomic(userpage);
2867                 flush_dcache_page(page);
2868         }
2869         pg_offset = 0;
2870
2871         set_page_extent_mapped(page);
2872
2873         if (!tree->ops || !tree->ops->fill_delalloc)
2874                 fill_delalloc = false;
2875
2876         delalloc_start = start;
2877         delalloc_end = 0;
2878         page_started = 0;
2879         if (!epd->extent_locked && fill_delalloc) {
2880                 u64 delalloc_to_write = 0;
2881                 /*
2882                  * make sure the wbc mapping index is at least updated
2883                  * to this page.
2884                  */
2885                 update_nr_written(page, wbc, 0);
2886
2887                 while (delalloc_end < page_end) {
2888                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2889                                                        page,
2890                                                        &delalloc_start,
2891                                                        &delalloc_end,
2892                                                        128 * 1024 * 1024);
2893                         if (nr_delalloc == 0) {
2894                                 delalloc_start = delalloc_end + 1;
2895                                 continue;
2896                         }
2897                         ret = tree->ops->fill_delalloc(inode, page,
2898                                                        delalloc_start,
2899                                                        delalloc_end,
2900                                                        &page_started,
2901                                                        &nr_written);
2902                         /* File system has been set read-only */
2903                         if (ret) {
2904                                 SetPageError(page);
2905                                 goto done;
2906                         }
2907                         /*
2908                          * delalloc_end is already one less than the total
2909                          * length, so we don't subtract one from
2910                          * PAGE_CACHE_SIZE
2911                          */
2912                         delalloc_to_write += (delalloc_end - delalloc_start +
2913                                               PAGE_CACHE_SIZE) >>
2914                                               PAGE_CACHE_SHIFT;
2915                         delalloc_start = delalloc_end + 1;
2916                 }
2917                 if (wbc->nr_to_write < delalloc_to_write) {
2918                         int thresh = 8192;
2919
2920                         if (delalloc_to_write < thresh * 2)
2921                                 thresh = delalloc_to_write;
2922                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2923                                                  thresh);
2924                 }
2925
2926                 /* did the fill delalloc function already unlock and start
2927                  * the IO?
2928                  */
2929                 if (page_started) {
2930                         ret = 0;
2931                         /*
2932                          * we've unlocked the page, so we can't update
2933                          * the mapping's writeback index, just update
2934                          * nr_to_write.
2935                          */
2936                         wbc->nr_to_write -= nr_written;
2937                         goto done_unlocked;
2938                 }
2939         }
2940         if (tree->ops && tree->ops->writepage_start_hook) {
2941                 ret = tree->ops->writepage_start_hook(page, start,
2942                                                       page_end);
2943                 if (ret) {
2944                         /* Fixup worker will requeue */
2945                         if (ret == -EBUSY)
2946                                 wbc->pages_skipped++;
2947                         else
2948                                 redirty_page_for_writepage(wbc, page);
2949                         update_nr_written(page, wbc, nr_written);
2950                         unlock_page(page);
2951                         ret = 0;
2952                         goto done_unlocked;
2953                 }
2954         }
2955
2956         /*
2957          * we don't want to touch the inode after unlocking the page,
2958          * so we update the mapping writeback index now
2959          */
2960         update_nr_written(page, wbc, nr_written + 1);
2961
2962         end = page_end;
2963         if (last_byte <= start) {
2964                 if (tree->ops && tree->ops->writepage_end_io_hook)
2965                         tree->ops->writepage_end_io_hook(page, start,
2966                                                          page_end, NULL, 1);
2967                 goto done;
2968         }
2969
2970         blocksize = inode->i_sb->s_blocksize;
2971
2972         while (cur <= end) {
2973                 if (cur >= last_byte) {
2974                         if (tree->ops && tree->ops->writepage_end_io_hook)
2975                                 tree->ops->writepage_end_io_hook(page, cur,
2976                                                          page_end, NULL, 1);
2977                         break;
2978                 }
2979                 em = epd->get_extent(inode, page, pg_offset, cur,
2980                                      end - cur + 1, 1);
2981                 if (IS_ERR_OR_NULL(em)) {
2982                         SetPageError(page);
2983                         break;
2984                 }
2985
2986                 extent_offset = cur - em->start;
2987                 BUG_ON(extent_map_end(em) <= cur);
2988                 BUG_ON(end < cur);
2989                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2990                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2991                 sector = (em->block_start + extent_offset) >> 9;
2992                 bdev = em->bdev;
2993                 block_start = em->block_start;
2994                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2995                 free_extent_map(em);
2996                 em = NULL;
2997
2998                 /*
2999                  * compressed and inline extents are written through other
3000                  * paths in the FS
3001                  */
3002                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3003                     block_start == EXTENT_MAP_INLINE) {
3004                         /*
3005                          * end_io notification does not happen here for
3006                          * compressed extents
3007                          */
3008                         if (!compressed && tree->ops &&
3009                             tree->ops->writepage_end_io_hook)
3010                                 tree->ops->writepage_end_io_hook(page, cur,
3011                                                          cur + iosize - 1,
3012                                                          NULL, 1);
3013                         else if (compressed) {
3014                                 /* we don't want to end_page_writeback on
3015                                  * a compressed extent.  this happens
3016                                  * elsewhere
3017                                  */
3018                                 nr++;
3019                         }
3020
3021                         cur += iosize;
3022                         pg_offset += iosize;
3023                         continue;
3024                 }
3025                 /* leave this out until we have a page_mkwrite call */
3026                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3027                                    EXTENT_DIRTY, 0, NULL)) {
3028                         cur = cur + iosize;
3029                         pg_offset += iosize;
3030                         continue;
3031                 }
3032
3033                 if (tree->ops && tree->ops->writepage_io_hook) {
3034                         ret = tree->ops->writepage_io_hook(page, cur,
3035                                                 cur + iosize - 1);
3036                 } else {
3037                         ret = 0;
3038                 }
3039                 if (ret) {
3040                         SetPageError(page);
3041                 } else {
3042                         unsigned long max_nr = end_index + 1;
3043
3044                         set_range_writeback(tree, cur, cur + iosize - 1);
3045                         if (!PageWriteback(page)) {
3046                                 printk(KERN_ERR "btrfs warning page %lu not "
3047                                        "writeback, cur %llu end %llu\n",
3048                                        page->index, (unsigned long long)cur,
3049                                        (unsigned long long)end);
3050                         }
3051
3052                         ret = submit_extent_page(write_flags, tree, page,
3053                                                  sector, iosize, pg_offset,
3054                                                  bdev, &epd->bio, max_nr,
3055                                                  end_bio_extent_writepage,
3056                                                  0, 0, 0);
3057                         if (ret)
3058                                 SetPageError(page);
3059                 }
3060                 cur = cur + iosize;
3061                 pg_offset += iosize;
3062                 nr++;
3063         }
3064 done:
3065         if (nr == 0) {
3066                 /* make sure the mapping tag for page dirty gets cleared */
3067                 set_page_writeback(page);
3068                 end_page_writeback(page);
3069         }
3070         unlock_page(page);
3071
3072 done_unlocked:
3073
3074         /* drop our reference on any cached states */
3075         free_extent_state(cached_state);
3076         return 0;
3077 }
3078
3079 static int eb_wait(void *word)
3080 {
3081         io_schedule();
3082         return 0;
3083 }
3084
3085 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3086 {
3087         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3088                     TASK_UNINTERRUPTIBLE);
3089 }
3090
3091 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3092                                      struct btrfs_fs_info *fs_info,
3093                                      struct extent_page_data *epd)
3094 {
3095         unsigned long i, num_pages;
3096         int flush = 0;
3097         int ret = 0;
3098
3099         if (!btrfs_try_tree_write_lock(eb)) {
3100                 flush = 1;
3101                 flush_write_bio(epd);
3102                 btrfs_tree_lock(eb);
3103         }
3104
3105         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3106                 btrfs_tree_unlock(eb);
3107                 if (!epd->sync_io)
3108                         return 0;
3109                 if (!flush) {
3110                         flush_write_bio(epd);
3111                         flush = 1;
3112                 }
3113                 while (1) {
3114                         wait_on_extent_buffer_writeback(eb);
3115                         btrfs_tree_lock(eb);
3116                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3117                                 break;
3118                         btrfs_tree_unlock(eb);
3119                 }
3120         }
3121
3122         /*
3123          * We need to do this to prevent races in people who check if the eb is
3124          * under IO since we can end up having no IO bits set for a short period
3125          * of time.
3126          */
3127         spin_lock(&eb->refs_lock);
3128         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3129                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3130                 spin_unlock(&eb->refs_lock);
3131                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3132                 spin_lock(&fs_info->delalloc_lock);
3133                 if (fs_info->dirty_metadata_bytes >= eb->len)
3134                         fs_info->dirty_metadata_bytes -= eb->len;
3135                 else
3136                         WARN_ON(1);
3137                 spin_unlock(&fs_info->delalloc_lock);
3138                 ret = 1;
3139         } else {
3140                 spin_unlock(&eb->refs_lock);
3141         }
3142
3143         btrfs_tree_unlock(eb);
3144
3145         if (!ret)
3146                 return ret;
3147
3148         num_pages = num_extent_pages(eb->start, eb->len);
3149         for (i = 0; i < num_pages; i++) {
3150                 struct page *p = extent_buffer_page(eb, i);
3151
3152                 if (!trylock_page(p)) {
3153                         if (!flush) {
3154                                 flush_write_bio(epd);
3155                                 flush = 1;
3156                         }
3157                         lock_page(p);
3158                 }
3159         }
3160
3161         return ret;
3162 }
3163
3164 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3165 {
3166         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3167         smp_mb__after_clear_bit();
3168         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3169 }
3170
3171 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3172 {
3173         int uptodate = err == 0;
3174         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3175         struct extent_buffer *eb;
3176         int done;
3177
3178         do {
3179                 struct page *page = bvec->bv_page;
3180
3181                 bvec--;
3182                 eb = (struct extent_buffer *)page->private;
3183                 BUG_ON(!eb);
3184                 done = atomic_dec_and_test(&eb->io_pages);
3185
3186                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3187                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3188                         ClearPageUptodate(page);
3189                         SetPageError(page);
3190                 }
3191
3192                 end_page_writeback(page);
3193
3194                 if (!done)
3195                         continue;
3196
3197                 end_extent_buffer_writeback(eb);
3198         } while (bvec >= bio->bi_io_vec);
3199
3200         bio_put(bio);
3201
3202 }
3203
3204 static int write_one_eb(struct extent_buffer *eb,
3205                         struct btrfs_fs_info *fs_info,
3206                         struct writeback_control *wbc,
3207                         struct extent_page_data *epd)
3208 {
3209         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3210         u64 offset = eb->start;
3211         unsigned long i, num_pages;
3212         unsigned long bio_flags = 0;
3213         int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3214         int ret = 0;
3215
3216         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3217         num_pages = num_extent_pages(eb->start, eb->len);
3218         atomic_set(&eb->io_pages, num_pages);
3219         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3220                 bio_flags = EXTENT_BIO_TREE_LOG;
3221
3222         for (i = 0; i < num_pages; i++) {
3223                 struct page *p = extent_buffer_page(eb, i);
3224
3225                 clear_page_dirty_for_io(p);
3226                 set_page_writeback(p);
3227                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3228                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3229                                          -1, end_bio_extent_buffer_writepage,
3230                                          0, epd->bio_flags, bio_flags);
3231                 epd->bio_flags = bio_flags;
3232                 if (ret) {
3233                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3234                         SetPageError(p);
3235                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3236                                 end_extent_buffer_writeback(eb);
3237                         ret = -EIO;
3238                         break;
3239                 }
3240                 offset += PAGE_CACHE_SIZE;
3241                 update_nr_written(p, wbc, 1);
3242                 unlock_page(p);
3243         }
3244
3245         if (unlikely(ret)) {
3246                 for (; i < num_pages; i++) {
3247                         struct page *p = extent_buffer_page(eb, i);
3248                         unlock_page(p);
3249                 }
3250         }
3251
3252         return ret;
3253 }
3254
3255 int btree_write_cache_pages(struct address_space *mapping,
3256                                    struct writeback_control *wbc)
3257 {
3258         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3259         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3260         struct extent_buffer *eb, *prev_eb = NULL;
3261         struct extent_page_data epd = {
3262                 .bio = NULL,
3263                 .tree = tree,
3264                 .extent_locked = 0,
3265                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3266                 .bio_flags = 0,
3267         };
3268         int ret = 0;
3269         int done = 0;
3270         int nr_to_write_done = 0;
3271         struct pagevec pvec;
3272         int nr_pages;
3273         pgoff_t index;
3274         pgoff_t end;            /* Inclusive */
3275         int scanned = 0;
3276         int tag;
3277
3278         pagevec_init(&pvec, 0);
3279         if (wbc->range_cyclic) {
3280                 index = mapping->writeback_index; /* Start from prev offset */
3281                 end = -1;
3282         } else {
3283                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3284                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3285                 scanned = 1;
3286         }
3287         if (wbc->sync_mode == WB_SYNC_ALL)
3288                 tag = PAGECACHE_TAG_TOWRITE;
3289         else
3290                 tag = PAGECACHE_TAG_DIRTY;
3291 retry:
3292         if (wbc->sync_mode == WB_SYNC_ALL)
3293                 tag_pages_for_writeback(mapping, index, end);
3294         while (!done && !nr_to_write_done && (index <= end) &&
3295                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3296                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3297                 unsigned i;
3298
3299                 scanned = 1;
3300                 for (i = 0; i < nr_pages; i++) {
3301                         struct page *page = pvec.pages[i];
3302
3303                         if (!PagePrivate(page))
3304                                 continue;
3305
3306                         if (!wbc->range_cyclic && page->index > end) {
3307                                 done = 1;
3308                                 break;
3309                         }
3310
3311                         spin_lock(&mapping->private_lock);
3312                         if (!PagePrivate(page)) {
3313                                 spin_unlock(&mapping->private_lock);
3314                                 continue;
3315                         }
3316
3317                         eb = (struct extent_buffer *)page->private;
3318
3319                         /*
3320                          * Shouldn't happen and normally this would be a BUG_ON
3321                          * but no sense in crashing the users box for something
3322                          * we can survive anyway.
3323                          */
3324                         if (!eb) {
3325                                 spin_unlock(&mapping->private_lock);
3326                                 WARN_ON(1);
3327                                 continue;
3328                         }
3329
3330                         if (eb == prev_eb) {
3331                                 spin_unlock(&mapping->private_lock);
3332                                 continue;
3333                         }
3334
3335                         ret = atomic_inc_not_zero(&eb->refs);
3336                         spin_unlock(&mapping->private_lock);
3337                         if (!ret)
3338                                 continue;
3339
3340                         prev_eb = eb;
3341                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3342                         if (!ret) {
3343                                 free_extent_buffer(eb);
3344                                 continue;
3345                         }
3346
3347                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3348                         if (ret) {
3349                                 done = 1;
3350                                 free_extent_buffer(eb);
3351                                 break;
3352                         }
3353                         free_extent_buffer(eb);
3354
3355                         /*
3356                          * the filesystem may choose to bump up nr_to_write.
3357                          * We have to make sure to honor the new nr_to_write
3358                          * at any time
3359                          */
3360                         nr_to_write_done = wbc->nr_to_write <= 0;
3361                 }
3362                 pagevec_release(&pvec);
3363                 cond_resched();
3364         }
3365         if (!scanned && !done) {
3366                 /*
3367                  * We hit the last page and there is more work to be done: wrap
3368                  * back to the start of the file
3369                  */
3370                 scanned = 1;
3371                 index = 0;
3372                 goto retry;
3373         }
3374         flush_write_bio(&epd);
3375         return ret;
3376 }
3377
3378 /**
3379  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3380  * @mapping: address space structure to write
3381  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3382  * @writepage: function called for each page
3383  * @data: data passed to writepage function
3384  *
3385  * If a page is already under I/O, write_cache_pages() skips it, even
3386  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3387  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3388  * and msync() need to guarantee that all the data which was dirty at the time
3389  * the call was made get new I/O started against them.  If wbc->sync_mode is
3390  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3391  * existing IO to complete.
3392  */
3393 static int extent_write_cache_pages(struct extent_io_tree *tree,
3394                              struct address_space *mapping,
3395                              struct writeback_control *wbc,
3396                              writepage_t writepage, void *data,
3397                              void (*flush_fn)(void *))
3398 {
3399         struct inode *inode = mapping->host;
3400         int ret = 0;
3401         int done = 0;
3402         int nr_to_write_done = 0;
3403         struct pagevec pvec;
3404         int nr_pages;
3405         pgoff_t index;
3406         pgoff_t end;            /* Inclusive */
3407         int scanned = 0;
3408         int tag;
3409
3410         /*
3411          * We have to hold onto the inode so that ordered extents can do their
3412          * work when the IO finishes.  The alternative to this is failing to add
3413          * an ordered extent if the igrab() fails there and that is a huge pain
3414          * to deal with, so instead just hold onto the inode throughout the
3415          * writepages operation.  If it fails here we are freeing up the inode
3416          * anyway and we'd rather not waste our time writing out stuff that is
3417          * going to be truncated anyway.
3418          */
3419         if (!igrab(inode))
3420                 return 0;
3421
3422         pagevec_init(&pvec, 0);
3423         if (wbc->range_cyclic) {
3424                 index = mapping->writeback_index; /* Start from prev offset */
3425                 end = -1;
3426         } else {
3427                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3428                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3429                 scanned = 1;
3430         }
3431         if (wbc->sync_mode == WB_SYNC_ALL)
3432                 tag = PAGECACHE_TAG_TOWRITE;
3433         else
3434                 tag = PAGECACHE_TAG_DIRTY;
3435 retry:
3436         if (wbc->sync_mode == WB_SYNC_ALL)
3437                 tag_pages_for_writeback(mapping, index, end);
3438         while (!done && !nr_to_write_done && (index <= end) &&
3439                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3440                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3441                 unsigned i;
3442
3443                 scanned = 1;
3444                 for (i = 0; i < nr_pages; i++) {
3445                         struct page *page = pvec.pages[i];
3446
3447                         /*
3448                          * At this point we hold neither mapping->tree_lock nor
3449                          * lock on the page itself: the page may be truncated or
3450                          * invalidated (changing page->mapping to NULL), or even
3451                          * swizzled back from swapper_space to tmpfs file
3452                          * mapping
3453                          */
3454                         if (tree->ops &&
3455                             tree->ops->write_cache_pages_lock_hook) {
3456                                 tree->ops->write_cache_pages_lock_hook(page,
3457                                                                data, flush_fn);
3458                         } else {
3459                                 if (!trylock_page(page)) {
3460                                         flush_fn(data);
3461                                         lock_page(page);
3462                                 }
3463                         }
3464
3465                         if (unlikely(page->mapping != mapping)) {
3466                                 unlock_page(page);
3467                                 continue;
3468                         }
3469
3470                         if (!wbc->range_cyclic && page->index > end) {
3471                                 done = 1;
3472                                 unlock_page(page);
3473                                 continue;
3474                         }
3475
3476                         if (wbc->sync_mode != WB_SYNC_NONE) {
3477                                 if (PageWriteback(page))
3478                                         flush_fn(data);
3479                                 wait_on_page_writeback(page);
3480                         }
3481
3482                         if (PageWriteback(page) ||
3483                             !clear_page_dirty_for_io(page)) {
3484                                 unlock_page(page);
3485                                 continue;
3486                         }
3487
3488                         ret = (*writepage)(page, wbc, data);
3489
3490                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3491                                 unlock_page(page);
3492                                 ret = 0;
3493                         }
3494                         if (ret)
3495                                 done = 1;
3496
3497                         /*
3498                          * the filesystem may choose to bump up nr_to_write.
3499                          * We have to make sure to honor the new nr_to_write
3500                          * at any time
3501                          */
3502                         nr_to_write_done = wbc->nr_to_write <= 0;
3503                 }
3504                 pagevec_release(&pvec);
3505                 cond_resched();
3506         }
3507         if (!scanned && !done) {
3508                 /*
3509                  * We hit the last page and there is more work to be done: wrap
3510                  * back to the start of the file
3511                  */
3512                 scanned = 1;
3513                 index = 0;
3514                 goto retry;
3515         }
3516         btrfs_add_delayed_iput(inode);
3517         return ret;
3518 }
3519
3520 static void flush_epd_write_bio(struct extent_page_data *epd)
3521 {
3522         if (epd->bio) {
3523                 int rw = WRITE;
3524                 int ret;
3525
3526                 if (epd->sync_io)
3527                         rw = WRITE_SYNC;
3528
3529                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3530                 BUG_ON(ret < 0); /* -ENOMEM */
3531                 epd->bio = NULL;
3532         }
3533 }
3534
3535 static noinline void flush_write_bio(void *data)
3536 {
3537         struct extent_page_data *epd = data;
3538         flush_epd_write_bio(epd);
3539 }
3540
3541 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3542                           get_extent_t *get_extent,
3543                           struct writeback_control *wbc)
3544 {
3545         int ret;
3546         struct extent_page_data epd = {
3547                 .bio = NULL,
3548                 .tree = tree,
3549                 .get_extent = get_extent,
3550                 .extent_locked = 0,
3551                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3552                 .bio_flags = 0,
3553         };
3554
3555         ret = __extent_writepage(page, wbc, &epd);
3556
3557         flush_epd_write_bio(&epd);
3558         return ret;
3559 }
3560
3561 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3562                               u64 start, u64 end, get_extent_t *get_extent,
3563                               int mode)
3564 {
3565         int ret = 0;
3566         struct address_space *mapping = inode->i_mapping;
3567         struct page *page;
3568         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3569                 PAGE_CACHE_SHIFT;
3570
3571         struct extent_page_data epd = {
3572                 .bio = NULL,
3573                 .tree = tree,
3574                 .get_extent = get_extent,
3575                 .extent_locked = 1,
3576                 .sync_io = mode == WB_SYNC_ALL,
3577                 .bio_flags = 0,
3578         };
3579         struct writeback_control wbc_writepages = {
3580                 .sync_mode      = mode,
3581                 .nr_to_write    = nr_pages * 2,
3582                 .range_start    = start,
3583                 .range_end      = end + 1,
3584         };
3585
3586         while (start <= end) {
3587                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3588                 if (clear_page_dirty_for_io(page))
3589                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3590                 else {
3591                         if (tree->ops && tree->ops->writepage_end_io_hook)
3592                                 tree->ops->writepage_end_io_hook(page, start,
3593                                                  start + PAGE_CACHE_SIZE - 1,
3594                                                  NULL, 1);
3595                         unlock_page(page);
3596                 }
3597                 page_cache_release(page);
3598                 start += PAGE_CACHE_SIZE;
3599         }
3600
3601         flush_epd_write_bio(&epd);
3602         return ret;
3603 }
3604
3605 int extent_writepages(struct extent_io_tree *tree,
3606                       struct address_space *mapping,
3607                       get_extent_t *get_extent,
3608                       struct writeback_control *wbc)
3609 {
3610         int ret = 0;
3611         struct extent_page_data epd = {
3612                 .bio = NULL,
3613                 .tree = tree,
3614                 .get_extent = get_extent,
3615                 .extent_locked = 0,
3616                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3617                 .bio_flags = 0,
3618         };
3619
3620         ret = extent_write_cache_pages(tree, mapping, wbc,
3621                                        __extent_writepage, &epd,
3622                                        flush_write_bio);
3623         flush_epd_write_bio(&epd);
3624         return ret;
3625 }
3626
3627 int extent_readpages(struct extent_io_tree *tree,
3628                      struct address_space *mapping,
3629                      struct list_head *pages, unsigned nr_pages,
3630                      get_extent_t get_extent)
3631 {
3632         struct bio *bio = NULL;
3633         unsigned page_idx;
3634         unsigned long bio_flags = 0;
3635         struct page *pagepool[16];
3636         struct page *page;
3637         int i = 0;
3638         int nr = 0;
3639
3640         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3641                 page = list_entry(pages->prev, struct page, lru);
3642
3643                 prefetchw(&page->flags);
3644                 list_del(&page->lru);
3645                 if (add_to_page_cache_lru(page, mapping,
3646                                         page->index, GFP_NOFS)) {
3647                         page_cache_release(page);
3648                         continue;
3649                 }
3650
3651                 pagepool[nr++] = page;
3652                 if (nr < ARRAY_SIZE(pagepool))
3653                         continue;
3654                 for (i = 0; i < nr; i++) {
3655                         __extent_read_full_page(tree, pagepool[i], get_extent,
3656                                         &bio, 0, &bio_flags);
3657                         page_cache_release(pagepool[i]);
3658                 }
3659                 nr = 0;
3660         }
3661         for (i = 0; i < nr; i++) {
3662                 __extent_read_full_page(tree, pagepool[i], get_extent,
3663                                         &bio, 0, &bio_flags);
3664                 page_cache_release(pagepool[i]);
3665         }
3666
3667         BUG_ON(!list_empty(pages));
3668         if (bio)
3669                 return submit_one_bio(READ, bio, 0, bio_flags);
3670         return 0;
3671 }
3672
3673 /*
3674  * basic invalidatepage code, this waits on any locked or writeback
3675  * ranges corresponding to the page, and then deletes any extent state
3676  * records from the tree
3677  */
3678 int extent_invalidatepage(struct extent_io_tree *tree,
3679                           struct page *page, unsigned long offset)
3680 {
3681         struct extent_state *cached_state = NULL;
3682         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3683         u64 end = start + PAGE_CACHE_SIZE - 1;
3684         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3685
3686         start += (offset + blocksize - 1) & ~(blocksize - 1);
3687         if (start > end)
3688                 return 0;
3689
3690         lock_extent_bits(tree, start, end, 0, &cached_state);
3691         wait_on_page_writeback(page);
3692         clear_extent_bit(tree, start, end,
3693                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3694                          EXTENT_DO_ACCOUNTING,
3695                          1, 1, &cached_state, GFP_NOFS);
3696         return 0;
3697 }
3698
3699 /*
3700  * a helper for releasepage, this tests for areas of the page that
3701  * are locked or under IO and drops the related state bits if it is safe
3702  * to drop the page.
3703  */
3704 int try_release_extent_state(struct extent_map_tree *map,
3705                              struct extent_io_tree *tree, struct page *page,
3706                              gfp_t mask)
3707 {
3708         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3709         u64 end = start + PAGE_CACHE_SIZE - 1;
3710         int ret = 1;
3711
3712         if (test_range_bit(tree, start, end,
3713                            EXTENT_IOBITS, 0, NULL))
3714                 ret = 0;
3715         else {
3716                 if ((mask & GFP_NOFS) == GFP_NOFS)
3717                         mask = GFP_NOFS;
3718                 /*
3719                  * at this point we can safely clear everything except the
3720                  * locked bit and the nodatasum bit
3721                  */
3722                 ret = clear_extent_bit(tree, start, end,
3723                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3724                                  0, 0, NULL, mask);
3725
3726                 /* if clear_extent_bit failed for enomem reasons,
3727                  * we can't allow the release to continue.
3728                  */
3729                 if (ret < 0)
3730                         ret = 0;
3731                 else
3732                         ret = 1;
3733         }
3734         return ret;
3735 }
3736
3737 /*
3738  * a helper for releasepage.  As long as there are no locked extents
3739  * in the range corresponding to the page, both state records and extent
3740  * map records are removed
3741  */
3742 int try_release_extent_mapping(struct extent_map_tree *map,
3743                                struct extent_io_tree *tree, struct page *page,
3744                                gfp_t mask)
3745 {
3746         struct extent_map *em;
3747         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3748         u64 end = start + PAGE_CACHE_SIZE - 1;
3749
3750         if ((mask & __GFP_WAIT) &&
3751             page->mapping->host->i_size > 16 * 1024 * 1024) {
3752                 u64 len;
3753                 while (start <= end) {
3754                         len = end - start + 1;
3755                         write_lock(&map->lock);
3756                         em = lookup_extent_mapping(map, start, len);
3757                         if (!em) {
3758                                 write_unlock(&map->lock);
3759                                 break;
3760                         }
3761                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3762                             em->start != start) {
3763                                 write_unlock(&map->lock);
3764                                 free_extent_map(em);
3765                                 break;
3766                         }
3767                         if (!test_range_bit(tree, em->start,
3768                                             extent_map_end(em) - 1,
3769                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3770                                             0, NULL)) {
3771                                 remove_extent_mapping(map, em);
3772                                 /* once for the rb tree */
3773                                 free_extent_map(em);
3774                         }
3775                         start = extent_map_end(em);
3776                         write_unlock(&map->lock);
3777
3778                         /* once for us */
3779                         free_extent_map(em);
3780                 }
3781         }
3782         return try_release_extent_state(map, tree, page, mask);
3783 }
3784
3785 /*
3786  * helper function for fiemap, which doesn't want to see any holes.
3787  * This maps until we find something past 'last'
3788  */
3789 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3790                                                 u64 offset,
3791                                                 u64 last,
3792                                                 get_extent_t *get_extent)
3793 {
3794         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3795         struct extent_map *em;
3796         u64 len;
3797
3798         if (offset >= last)
3799                 return NULL;
3800
3801         while(1) {
3802                 len = last - offset;
3803                 if (len == 0)
3804                         break;
3805                 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3806                 em = get_extent(inode, NULL, 0, offset, len, 0);
3807                 if (IS_ERR_OR_NULL(em))
3808                         return em;
3809
3810                 /* if this isn't a hole return it */
3811                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3812                     em->block_start != EXTENT_MAP_HOLE) {
3813                         return em;
3814                 }
3815
3816                 /* this is a hole, advance to the next extent */
3817                 offset = extent_map_end(em);
3818                 free_extent_map(em);
3819                 if (offset >= last)
3820                         break;
3821         }
3822         return NULL;
3823 }
3824
3825 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3826                 __u64 start, __u64 len, get_extent_t *get_extent)
3827 {
3828         int ret = 0;
3829         u64 off = start;
3830         u64 max = start + len;
3831         u32 flags = 0;
3832         u32 found_type;
3833         u64 last;
3834         u64 last_for_get_extent = 0;
3835         u64 disko = 0;
3836         u64 isize = i_size_read(inode);
3837         struct btrfs_key found_key;
3838         struct extent_map *em = NULL;
3839         struct extent_state *cached_state = NULL;
3840         struct btrfs_path *path;
3841         struct btrfs_file_extent_item *item;
3842         int end = 0;
3843         u64 em_start = 0;
3844         u64 em_len = 0;
3845         u64 em_end = 0;
3846         unsigned long emflags;
3847
3848         if (len == 0)
3849                 return -EINVAL;
3850
3851         path = btrfs_alloc_path();
3852         if (!path)
3853                 return -ENOMEM;
3854         path->leave_spinning = 1;
3855
3856         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3857         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3858
3859         /*
3860          * lookup the last file extent.  We're not using i_size here
3861          * because there might be preallocation past i_size
3862          */
3863         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3864                                        path, btrfs_ino(inode), -1, 0);
3865         if (ret < 0) {
3866                 btrfs_free_path(path);
3867                 return ret;
3868         }
3869         WARN_ON(!ret);
3870         path->slots[0]--;
3871         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3872                               struct btrfs_file_extent_item);
3873         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3874         found_type = btrfs_key_type(&found_key);
3875
3876         /* No extents, but there might be delalloc bits */
3877         if (found_key.objectid != btrfs_ino(inode) ||
3878             found_type != BTRFS_EXTENT_DATA_KEY) {
3879                 /* have to trust i_size as the end */
3880                 last = (u64)-1;
3881                 last_for_get_extent = isize;
3882         } else {
3883                 /*
3884                  * remember the start of the last extent.  There are a
3885                  * bunch of different factors that go into the length of the
3886                  * extent, so its much less complex to remember where it started
3887                  */
3888                 last = found_key.offset;
3889                 last_for_get_extent = last + 1;
3890         }
3891         btrfs_free_path(path);
3892
3893         /*
3894          * we might have some extents allocated but more delalloc past those
3895          * extents.  so, we trust isize unless the start of the last extent is
3896          * beyond isize
3897          */
3898         if (last < isize) {
3899                 last = (u64)-1;
3900                 last_for_get_extent = isize;
3901         }
3902
3903         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3904                          &cached_state);
3905
3906         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3907                                    get_extent);
3908         if (!em)
3909                 goto out;
3910         if (IS_ERR(em)) {
3911                 ret = PTR_ERR(em);
3912                 goto out;
3913         }
3914
3915         while (!end) {
3916                 u64 offset_in_extent;
3917
3918                 /* break if the extent we found is outside the range */
3919                 if (em->start >= max || extent_map_end(em) < off)
3920                         break;
3921
3922                 /*
3923                  * get_extent may return an extent that starts before our
3924                  * requested range.  We have to make sure the ranges
3925                  * we return to fiemap always move forward and don't
3926                  * overlap, so adjust the offsets here
3927                  */
3928                 em_start = max(em->start, off);
3929
3930                 /*
3931                  * record the offset from the start of the extent
3932                  * for adjusting the disk offset below
3933                  */
3934                 offset_in_extent = em_start - em->start;
3935                 em_end = extent_map_end(em);
3936                 em_len = em_end - em_start;
3937                 emflags = em->flags;
3938                 disko = 0;
3939                 flags = 0;
3940
3941                 /*
3942                  * bump off for our next call to get_extent
3943                  */
3944                 off = extent_map_end(em);
3945                 if (off >= max)
3946                         end = 1;
3947
3948                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3949                         end = 1;
3950                         flags |= FIEMAP_EXTENT_LAST;
3951                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3952                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3953                                   FIEMAP_EXTENT_NOT_ALIGNED);
3954                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3955                         flags |= (FIEMAP_EXTENT_DELALLOC |
3956                                   FIEMAP_EXTENT_UNKNOWN);
3957                 } else {
3958                         disko = em->block_start + offset_in_extent;
3959                 }
3960                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3961                         flags |= FIEMAP_EXTENT_ENCODED;
3962
3963                 free_extent_map(em);
3964                 em = NULL;
3965                 if ((em_start >= last) || em_len == (u64)-1 ||
3966                    (last == (u64)-1 && isize <= em_end)) {
3967                         flags |= FIEMAP_EXTENT_LAST;
3968                         end = 1;
3969                 }
3970
3971                 /* now scan forward to see if this is really the last extent. */
3972                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3973                                            get_extent);
3974                 if (IS_ERR(em)) {
3975                         ret = PTR_ERR(em);
3976                         goto out;
3977                 }
3978                 if (!em) {
3979                         flags |= FIEMAP_EXTENT_LAST;
3980                         end = 1;
3981                 }
3982                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3983                                               em_len, flags);
3984                 if (ret)
3985                         goto out_free;
3986         }
3987 out_free:
3988         free_extent_map(em);
3989 out:
3990         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3991                              &cached_state, GFP_NOFS);
3992         return ret;
3993 }
3994
3995 static void __free_extent_buffer(struct extent_buffer *eb)
3996 {
3997 #if LEAK_DEBUG
3998         unsigned long flags;
3999         spin_lock_irqsave(&leak_lock, flags);
4000         list_del(&eb->leak_list);
4001         spin_unlock_irqrestore(&leak_lock, flags);
4002 #endif
4003         if (eb->pages && eb->pages != eb->inline_pages)
4004                 kfree(eb->pages);
4005         kmem_cache_free(extent_buffer_cache, eb);
4006 }
4007
4008 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4009                                                    u64 start,
4010                                                    unsigned long len,
4011                                                    gfp_t mask)
4012 {
4013         struct extent_buffer *eb = NULL;
4014 #if LEAK_DEBUG
4015         unsigned long flags;
4016 #endif
4017
4018         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4019         if (eb == NULL)
4020                 return NULL;
4021         eb->start = start;
4022         eb->len = len;
4023         eb->tree = tree;
4024         eb->bflags = 0;
4025         rwlock_init(&eb->lock);
4026         atomic_set(&eb->write_locks, 0);
4027         atomic_set(&eb->read_locks, 0);
4028         atomic_set(&eb->blocking_readers, 0);
4029         atomic_set(&eb->blocking_writers, 0);
4030         atomic_set(&eb->spinning_readers, 0);
4031         atomic_set(&eb->spinning_writers, 0);
4032         eb->lock_nested = 0;
4033         init_waitqueue_head(&eb->write_lock_wq);
4034         init_waitqueue_head(&eb->read_lock_wq);
4035
4036 #if LEAK_DEBUG
4037         spin_lock_irqsave(&leak_lock, flags);
4038         list_add(&eb->leak_list, &buffers);
4039         spin_unlock_irqrestore(&leak_lock, flags);
4040 #endif
4041         spin_lock_init(&eb->refs_lock);
4042         atomic_set(&eb->refs, 1);
4043         atomic_set(&eb->io_pages, 0);
4044
4045         if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
4046                 struct page **pages;
4047                 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
4048                         PAGE_CACHE_SHIFT;
4049                 pages = kzalloc(num_pages, mask);
4050                 if (!pages) {
4051                         __free_extent_buffer(eb);
4052                         return NULL;
4053                 }
4054                 eb->pages = pages;
4055         } else {
4056                 eb->pages = eb->inline_pages;
4057         }
4058
4059         return eb;
4060 }
4061
4062 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4063 {
4064         unsigned long i;
4065         struct page *p;
4066         struct extent_buffer *new;
4067         unsigned long num_pages = num_extent_pages(src->start, src->len);
4068
4069         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4070         if (new == NULL)
4071                 return NULL;
4072
4073         for (i = 0; i < num_pages; i++) {
4074                 p = alloc_page(GFP_ATOMIC);
4075                 BUG_ON(!p);
4076                 attach_extent_buffer_page(new, p);
4077                 WARN_ON(PageDirty(p));
4078                 SetPageUptodate(p);
4079                 new->pages[i] = p;
4080         }
4081
4082         copy_extent_buffer(new, src, 0, 0, src->len);
4083         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4084         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4085
4086         return new;
4087 }
4088
4089 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4090 {
4091         struct extent_buffer *eb;
4092         unsigned long num_pages = num_extent_pages(0, len);
4093         unsigned long i;
4094
4095         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4096         if (!eb)
4097                 return NULL;
4098
4099         for (i = 0; i < num_pages; i++) {
4100                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4101                 if (!eb->pages[i])
4102                         goto err;
4103         }
4104         set_extent_buffer_uptodate(eb);
4105         btrfs_set_header_nritems(eb, 0);
4106         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4107
4108         return eb;
4109 err:
4110         for (; i > 0; i--)
4111                 __free_page(eb->pages[i - 1]);
4112         __free_extent_buffer(eb);
4113         return NULL;
4114 }
4115
4116 static int extent_buffer_under_io(struct extent_buffer *eb)
4117 {
4118         return (atomic_read(&eb->io_pages) ||
4119                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4120                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4121 }
4122
4123 /*
4124  * Helper for releasing extent buffer page.
4125  */
4126 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4127                                                 unsigned long start_idx)
4128 {
4129         unsigned long index;
4130         unsigned long num_pages;
4131         struct page *page;
4132         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4133
4134         BUG_ON(extent_buffer_under_io(eb));
4135
4136         num_pages = num_extent_pages(eb->start, eb->len);
4137         index = start_idx + num_pages;
4138         if (start_idx >= index)
4139                 return;
4140
4141         do {
4142                 index--;
4143                 page = extent_buffer_page(eb, index);
4144                 if (page && mapped) {
4145                         spin_lock(&page->mapping->private_lock);
4146                         /*
4147                          * We do this since we'll remove the pages after we've
4148                          * removed the eb from the radix tree, so we could race
4149                          * and have this page now attached to the new eb.  So
4150                          * only clear page_private if it's still connected to
4151                          * this eb.
4152                          */
4153                         if (PagePrivate(page) &&
4154                             page->private == (unsigned long)eb) {
4155                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4156                                 BUG_ON(PageDirty(page));
4157                                 BUG_ON(PageWriteback(page));
4158                                 /*
4159                                  * We need to make sure we haven't be attached
4160                                  * to a new eb.
4161                                  */
4162                                 ClearPagePrivate(page);
4163                                 set_page_private(page, 0);
4164                                 /* One for the page private */
4165                                 page_cache_release(page);
4166                         }
4167                         spin_unlock(&page->mapping->private_lock);
4168
4169                 }
4170                 if (page) {
4171                         /* One for when we alloced the page */
4172                         page_cache_release(page);
4173                 }
4174         } while (index != start_idx);
4175 }
4176
4177 /*
4178  * Helper for releasing the extent buffer.
4179  */
4180 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4181 {
4182         btrfs_release_extent_buffer_page(eb, 0);
4183         __free_extent_buffer(eb);
4184 }
4185
4186 static void check_buffer_tree_ref(struct extent_buffer *eb)
4187 {
4188         /* the ref bit is tricky.  We have to make sure it is set
4189          * if we have the buffer dirty.   Otherwise the
4190          * code to free a buffer can end up dropping a dirty
4191          * page
4192          *
4193          * Once the ref bit is set, it won't go away while the
4194          * buffer is dirty or in writeback, and it also won't
4195          * go away while we have the reference count on the
4196          * eb bumped.
4197          *
4198          * We can't just set the ref bit without bumping the
4199          * ref on the eb because free_extent_buffer might
4200          * see the ref bit and try to clear it.  If this happens
4201          * free_extent_buffer might end up dropping our original
4202          * ref by mistake and freeing the page before we are able
4203          * to add one more ref.
4204          *
4205          * So bump the ref count first, then set the bit.  If someone
4206          * beat us to it, drop the ref we added.
4207          */
4208         spin_lock(&eb->refs_lock);
4209         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4210                 atomic_inc(&eb->refs);
4211         spin_unlock(&eb->refs_lock);
4212 }
4213
4214 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4215 {
4216         unsigned long num_pages, i;
4217
4218         check_buffer_tree_ref(eb);
4219
4220         num_pages = num_extent_pages(eb->start, eb->len);
4221         for (i = 0; i < num_pages; i++) {
4222                 struct page *p = extent_buffer_page(eb, i);
4223                 mark_page_accessed(p);
4224         }
4225 }
4226
4227 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4228                                           u64 start, unsigned long len)
4229 {
4230         unsigned long num_pages = num_extent_pages(start, len);
4231         unsigned long i;
4232         unsigned long index = start >> PAGE_CACHE_SHIFT;
4233         struct extent_buffer *eb;
4234         struct extent_buffer *exists = NULL;
4235         struct page *p;
4236         struct address_space *mapping = tree->mapping;
4237         int uptodate = 1;
4238         int ret;
4239
4240         rcu_read_lock();
4241         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4242         if (eb && atomic_inc_not_zero(&eb->refs)) {
4243                 rcu_read_unlock();
4244                 mark_extent_buffer_accessed(eb);
4245                 return eb;
4246         }
4247         rcu_read_unlock();
4248
4249         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4250         if (!eb)
4251                 return NULL;
4252
4253         for (i = 0; i < num_pages; i++, index++) {
4254                 p = find_or_create_page(mapping, index, GFP_NOFS);
4255                 if (!p)
4256                         goto free_eb;
4257
4258                 spin_lock(&mapping->private_lock);
4259                 if (PagePrivate(p)) {
4260                         /*
4261                          * We could have already allocated an eb for this page
4262                          * and attached one so lets see if we can get a ref on
4263                          * the existing eb, and if we can we know it's good and
4264                          * we can just return that one, else we know we can just
4265                          * overwrite page->private.
4266                          */
4267                         exists = (struct extent_buffer *)p->private;
4268                         if (atomic_inc_not_zero(&exists->refs)) {
4269                                 spin_unlock(&mapping->private_lock);
4270                                 unlock_page(p);
4271                                 page_cache_release(p);
4272                                 mark_extent_buffer_accessed(exists);
4273                                 goto free_eb;
4274                         }
4275
4276                         /*
4277                          * Do this so attach doesn't complain and we need to
4278                          * drop the ref the old guy had.
4279                          */
4280                         ClearPagePrivate(p);
4281                         WARN_ON(PageDirty(p));
4282                         page_cache_release(p);
4283                 }
4284                 attach_extent_buffer_page(eb, p);
4285                 spin_unlock(&mapping->private_lock);
4286                 WARN_ON(PageDirty(p));
4287                 mark_page_accessed(p);
4288                 eb->pages[i] = p;
4289                 if (!PageUptodate(p))
4290                         uptodate = 0;
4291
4292                 /*
4293                  * see below about how we avoid a nasty race with release page
4294                  * and why we unlock later
4295                  */
4296         }
4297         if (uptodate)
4298                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4299 again:
4300         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4301         if (ret)
4302                 goto free_eb;
4303
4304         spin_lock(&tree->buffer_lock);
4305         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4306         if (ret == -EEXIST) {
4307                 exists = radix_tree_lookup(&tree->buffer,
4308                                                 start >> PAGE_CACHE_SHIFT);
4309                 if (!atomic_inc_not_zero(&exists->refs)) {
4310                         spin_unlock(&tree->buffer_lock);
4311                         radix_tree_preload_end();
4312                         exists = NULL;
4313                         goto again;
4314                 }
4315                 spin_unlock(&tree->buffer_lock);
4316                 radix_tree_preload_end();
4317                 mark_extent_buffer_accessed(exists);
4318                 goto free_eb;
4319         }
4320         /* add one reference for the tree */
4321         check_buffer_tree_ref(eb);
4322         spin_unlock(&tree->buffer_lock);
4323         radix_tree_preload_end();
4324
4325         /*
4326          * there is a race where release page may have
4327          * tried to find this extent buffer in the radix
4328          * but failed.  It will tell the VM it is safe to
4329          * reclaim the, and it will clear the page private bit.
4330          * We must make sure to set the page private bit properly
4331          * after the extent buffer is in the radix tree so
4332          * it doesn't get lost
4333          */
4334         SetPageChecked(eb->pages[0]);
4335         for (i = 1; i < num_pages; i++) {
4336                 p = extent_buffer_page(eb, i);
4337                 ClearPageChecked(p);
4338                 unlock_page(p);
4339         }
4340         unlock_page(eb->pages[0]);
4341         return eb;
4342
4343 free_eb:
4344         for (i = 0; i < num_pages; i++) {
4345                 if (eb->pages[i])
4346                         unlock_page(eb->pages[i]);
4347         }
4348
4349         WARN_ON(!atomic_dec_and_test(&eb->refs));
4350         btrfs_release_extent_buffer(eb);
4351         return exists;
4352 }
4353
4354 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4355                                          u64 start, unsigned long len)
4356 {
4357         struct extent_buffer *eb;
4358
4359         rcu_read_lock();
4360         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4361         if (eb && atomic_inc_not_zero(&eb->refs)) {
4362                 rcu_read_unlock();
4363                 mark_extent_buffer_accessed(eb);
4364                 return eb;
4365         }
4366         rcu_read_unlock();
4367
4368         return NULL;
4369 }
4370
4371 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4372 {
4373         struct extent_buffer *eb =
4374                         container_of(head, struct extent_buffer, rcu_head);
4375
4376         __free_extent_buffer(eb);
4377 }
4378
4379 /* Expects to have eb->eb_lock already held */
4380 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4381 {
4382         WARN_ON(atomic_read(&eb->refs) == 0);
4383         if (atomic_dec_and_test(&eb->refs)) {
4384                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4385                         spin_unlock(&eb->refs_lock);
4386                 } else {
4387                         struct extent_io_tree *tree = eb->tree;
4388
4389                         spin_unlock(&eb->refs_lock);
4390
4391                         spin_lock(&tree->buffer_lock);
4392                         radix_tree_delete(&tree->buffer,
4393                                           eb->start >> PAGE_CACHE_SHIFT);
4394                         spin_unlock(&tree->buffer_lock);
4395                 }
4396
4397                 /* Should be safe to release our pages at this point */
4398                 btrfs_release_extent_buffer_page(eb, 0);
4399                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4400                 return 1;
4401         }
4402         spin_unlock(&eb->refs_lock);
4403
4404         return 0;
4405 }
4406
4407 void free_extent_buffer(struct extent_buffer *eb)
4408 {
4409         if (!eb)
4410                 return;
4411
4412         spin_lock(&eb->refs_lock);
4413         if (atomic_read(&eb->refs) == 2 &&
4414             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4415                 atomic_dec(&eb->refs);
4416
4417         if (atomic_read(&eb->refs) == 2 &&
4418             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4419             !extent_buffer_under_io(eb) &&
4420             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4421                 atomic_dec(&eb->refs);
4422
4423         /*
4424          * I know this is terrible, but it's temporary until we stop tracking
4425          * the uptodate bits and such for the extent buffers.
4426          */
4427         release_extent_buffer(eb, GFP_ATOMIC);
4428 }
4429
4430 void free_extent_buffer_stale(struct extent_buffer *eb)
4431 {
4432         if (!eb)
4433                 return;
4434
4435         spin_lock(&eb->refs_lock);
4436         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4437
4438         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4439             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4440                 atomic_dec(&eb->refs);
4441         release_extent_buffer(eb, GFP_NOFS);
4442 }
4443
4444 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4445 {
4446         unsigned long i;
4447         unsigned long num_pages;
4448         struct page *page;
4449
4450         num_pages = num_extent_pages(eb->start, eb->len);
4451
4452         for (i = 0; i < num_pages; i++) {
4453                 page = extent_buffer_page(eb, i);
4454                 if (!PageDirty(page))
4455                         continue;
4456
4457                 lock_page(page);
4458                 WARN_ON(!PagePrivate(page));
4459
4460                 clear_page_dirty_for_io(page);
4461                 spin_lock_irq(&page->mapping->tree_lock);
4462                 if (!PageDirty(page)) {
4463                         radix_tree_tag_clear(&page->mapping->page_tree,
4464                                                 page_index(page),
4465                                                 PAGECACHE_TAG_DIRTY);
4466                 }
4467                 spin_unlock_irq(&page->mapping->tree_lock);
4468                 ClearPageError(page);
4469                 unlock_page(page);
4470         }
4471         WARN_ON(atomic_read(&eb->refs) == 0);
4472 }
4473
4474 int set_extent_buffer_dirty(struct extent_buffer *eb)
4475 {
4476         unsigned long i;
4477         unsigned long num_pages;
4478         int was_dirty = 0;
4479
4480         check_buffer_tree_ref(eb);
4481
4482         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4483
4484         num_pages = num_extent_pages(eb->start, eb->len);
4485         WARN_ON(atomic_read(&eb->refs) == 0);
4486         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4487
4488         for (i = 0; i < num_pages; i++)
4489                 set_page_dirty(extent_buffer_page(eb, i));
4490         return was_dirty;
4491 }
4492
4493 static int range_straddles_pages(u64 start, u64 len)
4494 {
4495         if (len < PAGE_CACHE_SIZE)
4496                 return 1;
4497         if (start & (PAGE_CACHE_SIZE - 1))
4498                 return 1;
4499         if ((start + len) & (PAGE_CACHE_SIZE - 1))
4500                 return 1;
4501         return 0;
4502 }
4503
4504 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4505 {
4506         unsigned long i;
4507         struct page *page;
4508         unsigned long num_pages;
4509
4510         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4511         num_pages = num_extent_pages(eb->start, eb->len);
4512         for (i = 0; i < num_pages; i++) {
4513                 page = extent_buffer_page(eb, i);
4514                 if (page)
4515                         ClearPageUptodate(page);
4516         }
4517         return 0;
4518 }
4519
4520 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4521 {
4522         unsigned long i;
4523         struct page *page;
4524         unsigned long num_pages;
4525
4526         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4527         num_pages = num_extent_pages(eb->start, eb->len);
4528         for (i = 0; i < num_pages; i++) {
4529                 page = extent_buffer_page(eb, i);
4530                 SetPageUptodate(page);
4531         }
4532         return 0;
4533 }
4534
4535 int extent_range_uptodate(struct extent_io_tree *tree,
4536                           u64 start, u64 end)
4537 {
4538         struct page *page;
4539         int ret;
4540         int pg_uptodate = 1;
4541         int uptodate;
4542         unsigned long index;
4543
4544         if (range_straddles_pages(start, end - start + 1)) {
4545                 ret = test_range_bit(tree, start, end,
4546                                      EXTENT_UPTODATE, 1, NULL);
4547                 if (ret)
4548                         return 1;
4549         }
4550         while (start <= end) {
4551                 index = start >> PAGE_CACHE_SHIFT;
4552                 page = find_get_page(tree->mapping, index);
4553                 if (!page)
4554                         return 1;
4555                 uptodate = PageUptodate(page);
4556                 page_cache_release(page);
4557                 if (!uptodate) {
4558                         pg_uptodate = 0;
4559                         break;
4560                 }
4561                 start += PAGE_CACHE_SIZE;
4562         }
4563         return pg_uptodate;
4564 }
4565
4566 int extent_buffer_uptodate(struct extent_buffer *eb)
4567 {
4568         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4569 }
4570
4571 int read_extent_buffer_pages(struct extent_io_tree *tree,
4572                              struct extent_buffer *eb, u64 start, int wait,
4573                              get_extent_t *get_extent, int mirror_num)
4574 {
4575         unsigned long i;
4576         unsigned long start_i;
4577         struct page *page;
4578         int err;
4579         int ret = 0;
4580         int locked_pages = 0;
4581         int all_uptodate = 1;
4582         unsigned long num_pages;
4583         unsigned long num_reads = 0;
4584         struct bio *bio = NULL;
4585         unsigned long bio_flags = 0;
4586
4587         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4588                 return 0;
4589
4590         if (start) {
4591                 WARN_ON(start < eb->start);
4592                 start_i = (start >> PAGE_CACHE_SHIFT) -
4593                         (eb->start >> PAGE_CACHE_SHIFT);
4594         } else {
4595                 start_i = 0;
4596         }
4597
4598         num_pages = num_extent_pages(eb->start, eb->len);
4599         for (i = start_i; i < num_pages; i++) {
4600                 page = extent_buffer_page(eb, i);
4601                 if (wait == WAIT_NONE) {
4602                         if (!trylock_page(page))
4603                                 goto unlock_exit;
4604                 } else {
4605                         lock_page(page);
4606                 }
4607                 locked_pages++;
4608                 if (!PageUptodate(page)) {
4609                         num_reads++;
4610                         all_uptodate = 0;
4611                 }
4612         }
4613         if (all_uptodate) {
4614                 if (start_i == 0)
4615                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4616                 goto unlock_exit;
4617         }
4618
4619         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4620         eb->read_mirror = 0;
4621         atomic_set(&eb->io_pages, num_reads);
4622         for (i = start_i; i < num_pages; i++) {
4623                 page = extent_buffer_page(eb, i);
4624                 if (!PageUptodate(page)) {
4625                         ClearPageError(page);
4626                         err = __extent_read_full_page(tree, page,
4627                                                       get_extent, &bio,
4628                                                       mirror_num, &bio_flags);
4629                         if (err)
4630                                 ret = err;
4631                 } else {
4632                         unlock_page(page);
4633                 }
4634         }
4635
4636         if (bio) {
4637                 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4638                 if (err)
4639                         return err;
4640         }
4641
4642         if (ret || wait != WAIT_COMPLETE)
4643                 return ret;
4644
4645         for (i = start_i; i < num_pages; i++) {
4646                 page = extent_buffer_page(eb, i);
4647                 wait_on_page_locked(page);
4648                 if (!PageUptodate(page))
4649                         ret = -EIO;
4650         }
4651
4652         return ret;
4653
4654 unlock_exit:
4655         i = start_i;
4656         while (locked_pages > 0) {
4657                 page = extent_buffer_page(eb, i);
4658                 i++;
4659                 unlock_page(page);
4660                 locked_pages--;
4661         }
4662         return ret;
4663 }
4664
4665 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4666                         unsigned long start,
4667                         unsigned long len)
4668 {
4669         size_t cur;
4670         size_t offset;
4671         struct page *page;
4672         char *kaddr;
4673         char *dst = (char *)dstv;
4674         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4675         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4676
4677         WARN_ON(start > eb->len);
4678         WARN_ON(start + len > eb->start + eb->len);
4679
4680         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4681
4682         while (len > 0) {
4683                 page = extent_buffer_page(eb, i);
4684
4685                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4686                 kaddr = page_address(page);
4687                 memcpy(dst, kaddr + offset, cur);
4688
4689                 dst += cur;
4690                 len -= cur;
4691                 offset = 0;
4692                 i++;
4693         }
4694 }
4695
4696 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4697                                unsigned long min_len, char **map,
4698                                unsigned long *map_start,
4699                                unsigned long *map_len)
4700 {
4701         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4702         char *kaddr;
4703         struct page *p;
4704         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4705         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4706         unsigned long end_i = (start_offset + start + min_len - 1) >>
4707                 PAGE_CACHE_SHIFT;
4708
4709         if (i != end_i)
4710                 return -EINVAL;
4711
4712         if (i == 0) {
4713                 offset = start_offset;
4714                 *map_start = 0;
4715         } else {
4716                 offset = 0;
4717                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4718         }
4719
4720         if (start + min_len > eb->len) {
4721                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4722                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4723                        eb->len, start, min_len);
4724                 return -EINVAL;
4725         }
4726
4727         p = extent_buffer_page(eb, i);
4728         kaddr = page_address(p);
4729         *map = kaddr + offset;
4730         *map_len = PAGE_CACHE_SIZE - offset;
4731         return 0;
4732 }
4733
4734 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4735                           unsigned long start,
4736                           unsigned long len)
4737 {
4738         size_t cur;
4739         size_t offset;
4740         struct page *page;
4741         char *kaddr;
4742         char *ptr = (char *)ptrv;
4743         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4744         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4745         int ret = 0;
4746
4747         WARN_ON(start > eb->len);
4748         WARN_ON(start + len > eb->start + eb->len);
4749
4750         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4751
4752         while (len > 0) {
4753                 page = extent_buffer_page(eb, i);
4754
4755                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4756
4757                 kaddr = page_address(page);
4758                 ret = memcmp(ptr, kaddr + offset, cur);
4759                 if (ret)
4760                         break;
4761
4762                 ptr += cur;
4763                 len -= cur;
4764                 offset = 0;
4765                 i++;
4766         }
4767         return ret;
4768 }
4769
4770 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4771                          unsigned long start, unsigned long len)
4772 {
4773         size_t cur;
4774         size_t offset;
4775         struct page *page;
4776         char *kaddr;
4777         char *src = (char *)srcv;
4778         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4779         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4780
4781         WARN_ON(start > eb->len);
4782         WARN_ON(start + len > eb->start + eb->len);
4783
4784         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4785
4786         while (len > 0) {
4787                 page = extent_buffer_page(eb, i);
4788                 WARN_ON(!PageUptodate(page));
4789
4790                 cur = min(len, PAGE_CACHE_SIZE - offset);
4791                 kaddr = page_address(page);
4792                 memcpy(kaddr + offset, src, cur);
4793
4794                 src += cur;
4795                 len -= cur;
4796                 offset = 0;
4797                 i++;
4798         }
4799 }
4800
4801 void memset_extent_buffer(struct extent_buffer *eb, char c,
4802                           unsigned long start, unsigned long len)
4803 {
4804         size_t cur;
4805         size_t offset;
4806         struct page *page;
4807         char *kaddr;
4808         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4809         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4810
4811         WARN_ON(start > eb->len);
4812         WARN_ON(start + len > eb->start + eb->len);
4813
4814         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4815
4816         while (len > 0) {
4817                 page = extent_buffer_page(eb, i);
4818                 WARN_ON(!PageUptodate(page));
4819
4820                 cur = min(len, PAGE_CACHE_SIZE - offset);
4821                 kaddr = page_address(page);
4822                 memset(kaddr + offset, c, cur);
4823
4824                 len -= cur;
4825                 offset = 0;
4826                 i++;
4827         }
4828 }
4829
4830 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4831                         unsigned long dst_offset, unsigned long src_offset,
4832                         unsigned long len)
4833 {
4834         u64 dst_len = dst->len;
4835         size_t cur;
4836         size_t offset;
4837         struct page *page;
4838         char *kaddr;
4839         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4840         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4841
4842         WARN_ON(src->len != dst_len);
4843
4844         offset = (start_offset + dst_offset) &
4845                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4846
4847         while (len > 0) {
4848                 page = extent_buffer_page(dst, i);
4849                 WARN_ON(!PageUptodate(page));
4850
4851                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4852
4853                 kaddr = page_address(page);
4854                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4855
4856                 src_offset += cur;
4857                 len -= cur;
4858                 offset = 0;
4859                 i++;
4860         }
4861 }
4862
4863 static void move_pages(struct page *dst_page, struct page *src_page,
4864                        unsigned long dst_off, unsigned long src_off,
4865                        unsigned long len)
4866 {
4867         char *dst_kaddr = page_address(dst_page);
4868         if (dst_page == src_page) {
4869                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4870         } else {
4871                 char *src_kaddr = page_address(src_page);
4872                 char *p = dst_kaddr + dst_off + len;
4873                 char *s = src_kaddr + src_off + len;
4874
4875                 while (len--)
4876                         *--p = *--s;
4877         }
4878 }
4879
4880 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4881 {
4882         unsigned long distance = (src > dst) ? src - dst : dst - src;
4883         return distance < len;
4884 }
4885
4886 static void copy_pages(struct page *dst_page, struct page *src_page,
4887                        unsigned long dst_off, unsigned long src_off,
4888                        unsigned long len)
4889 {
4890         char *dst_kaddr = page_address(dst_page);
4891         char *src_kaddr;
4892         int must_memmove = 0;
4893
4894         if (dst_page != src_page) {
4895                 src_kaddr = page_address(src_page);
4896         } else {
4897                 src_kaddr = dst_kaddr;
4898                 if (areas_overlap(src_off, dst_off, len))
4899                         must_memmove = 1;
4900         }
4901
4902         if (must_memmove)
4903                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4904         else
4905                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4906 }
4907
4908 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4909                            unsigned long src_offset, unsigned long len)
4910 {
4911         size_t cur;
4912         size_t dst_off_in_page;
4913         size_t src_off_in_page;
4914         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4915         unsigned long dst_i;
4916         unsigned long src_i;
4917
4918         if (src_offset + len > dst->len) {
4919                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4920                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4921                 BUG_ON(1);
4922         }
4923         if (dst_offset + len > dst->len) {
4924                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4925                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4926                 BUG_ON(1);
4927         }
4928
4929         while (len > 0) {
4930                 dst_off_in_page = (start_offset + dst_offset) &
4931                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4932                 src_off_in_page = (start_offset + src_offset) &
4933                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4934
4935                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4936                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4937
4938                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4939                                                src_off_in_page));
4940                 cur = min_t(unsigned long, cur,
4941                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4942
4943                 copy_pages(extent_buffer_page(dst, dst_i),
4944                            extent_buffer_page(dst, src_i),
4945                            dst_off_in_page, src_off_in_page, cur);
4946
4947                 src_offset += cur;
4948                 dst_offset += cur;
4949                 len -= cur;
4950         }
4951 }
4952
4953 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4954                            unsigned long src_offset, unsigned long len)
4955 {
4956         size_t cur;
4957         size_t dst_off_in_page;
4958         size_t src_off_in_page;
4959         unsigned long dst_end = dst_offset + len - 1;
4960         unsigned long src_end = src_offset + len - 1;
4961         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4962         unsigned long dst_i;
4963         unsigned long src_i;
4964
4965         if (src_offset + len > dst->len) {
4966                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4967                        "len %lu len %lu\n", src_offset, len, dst->len);
4968                 BUG_ON(1);
4969         }
4970         if (dst_offset + len > dst->len) {
4971                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4972                        "len %lu len %lu\n", dst_offset, len, dst->len);
4973                 BUG_ON(1);
4974         }
4975         if (dst_offset < src_offset) {
4976                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4977                 return;
4978         }
4979         while (len > 0) {
4980                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4981                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4982
4983                 dst_off_in_page = (start_offset + dst_end) &
4984                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4985                 src_off_in_page = (start_offset + src_end) &
4986                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4987
4988                 cur = min_t(unsigned long, len, src_off_in_page + 1);
4989                 cur = min(cur, dst_off_in_page + 1);
4990                 move_pages(extent_buffer_page(dst, dst_i),
4991                            extent_buffer_page(dst, src_i),
4992                            dst_off_in_page - cur + 1,
4993                            src_off_in_page - cur + 1, cur);
4994
4995                 dst_end -= cur;
4996                 src_end -= cur;
4997                 len -= cur;
4998         }
4999 }
5000
5001 int try_release_extent_buffer(struct page *page, gfp_t mask)
5002 {
5003         struct extent_buffer *eb;
5004
5005         /*
5006          * We need to make sure noboody is attaching this page to an eb right
5007          * now.
5008          */
5009         spin_lock(&page->mapping->private_lock);
5010         if (!PagePrivate(page)) {
5011                 spin_unlock(&page->mapping->private_lock);
5012                 return 1;
5013         }
5014
5015         eb = (struct extent_buffer *)page->private;
5016         BUG_ON(!eb);
5017
5018         /*
5019          * This is a little awful but should be ok, we need to make sure that
5020          * the eb doesn't disappear out from under us while we're looking at
5021          * this page.
5022          */
5023         spin_lock(&eb->refs_lock);
5024         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5025                 spin_unlock(&eb->refs_lock);
5026                 spin_unlock(&page->mapping->private_lock);
5027                 return 0;
5028         }
5029         spin_unlock(&page->mapping->private_lock);
5030
5031         if ((mask & GFP_NOFS) == GFP_NOFS)
5032                 mask = GFP_NOFS;
5033
5034         /*
5035          * If tree ref isn't set then we know the ref on this eb is a real ref,
5036          * so just return, this page will likely be freed soon anyway.
5037          */
5038         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5039                 spin_unlock(&eb->refs_lock);
5040                 return 0;
5041         }
5042
5043         return release_extent_buffer(eb, mask);
5044 }