1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
22 #include "btrfs_inode.h"
24 #include "check-integrity.h"
26 #include "rcu-string.h"
31 #include "block-group.h"
32 #include "compression.h"
34 #include "accessors.h"
35 #include "file-item.h"
37 #include "dev-replace.h"
39 #include "transaction.h"
41 static struct kmem_cache *extent_buffer_cache;
43 #ifdef CONFIG_BTRFS_DEBUG
44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
46 struct btrfs_fs_info *fs_info = eb->fs_info;
49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
56 struct btrfs_fs_info *fs_info = eb->fs_info;
59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 list_del(&eb->leak_list);
61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
66 struct extent_buffer *eb;
70 * If we didn't get into open_ctree our allocated_ebs will not be
71 * initialized, so just skip this.
73 if (!fs_info->allocated_ebs.next)
76 WARN_ON(!list_empty(&fs_info->allocated_ebs));
77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 while (!list_empty(&fs_info->allocated_ebs)) {
79 eb = list_first_entry(&fs_info->allocated_ebs,
80 struct extent_buffer, leak_list);
82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 btrfs_header_owner(eb));
85 list_del(&eb->leak_list);
86 kmem_cache_free(extent_buffer_cache, eb);
88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
91 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
92 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
96 * Structure to record info about the bio being assembled, and other info like
97 * how many bytes are there before stripe/ordered extent boundary.
99 struct btrfs_bio_ctrl {
100 struct btrfs_bio *bbio;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
104 btrfs_bio_end_io_t end_io_func;
105 struct writeback_control *wbc;
108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
110 struct btrfs_bio *bbio = bio_ctrl->bbio;
115 /* Caller should ensure the bio has at least some range added */
116 ASSERT(bbio->bio.bi_iter.bi_size);
118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
120 btrfs_submit_compressed_read(bbio);
122 btrfs_submit_bio(bbio, 0);
124 /* The bbio is owned by the end_io handler now */
125 bio_ctrl->bbio = NULL;
129 * Submit or fail the current bio in the bio_ctrl structure.
131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
133 struct btrfs_bio *bbio = bio_ctrl->bbio;
140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
141 /* The bio is owned by the end_io handler now */
142 bio_ctrl->bbio = NULL;
144 submit_one_bio(bio_ctrl);
148 int __init extent_buffer_init_cachep(void)
150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
151 sizeof(struct extent_buffer), 0,
152 SLAB_MEM_SPREAD, NULL);
153 if (!extent_buffer_cache)
159 void __cold extent_buffer_free_cachep(void)
162 * Make sure all delayed rcu free are flushed before we
166 kmem_cache_destroy(extent_buffer_cache);
169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
171 unsigned long index = start >> PAGE_SHIFT;
172 unsigned long end_index = end >> PAGE_SHIFT;
175 while (index <= end_index) {
176 page = find_get_page(inode->i_mapping, index);
177 BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 clear_page_dirty_for_io(page);
184 static void process_one_page(struct btrfs_fs_info *fs_info,
185 struct page *page, struct page *locked_page,
186 unsigned long page_ops, u64 start, u64 end)
190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191 len = end + 1 - start;
193 if (page_ops & PAGE_SET_ORDERED)
194 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
195 if (page_ops & PAGE_START_WRITEBACK) {
196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
197 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
199 if (page_ops & PAGE_END_WRITEBACK)
200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
202 if (page != locked_page && (page_ops & PAGE_UNLOCK))
203 btrfs_page_end_writer_lock(fs_info, page, start, len);
206 static void __process_pages_contig(struct address_space *mapping,
207 struct page *locked_page, u64 start, u64 end,
208 unsigned long page_ops)
210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
211 pgoff_t start_index = start >> PAGE_SHIFT;
212 pgoff_t end_index = end >> PAGE_SHIFT;
213 pgoff_t index = start_index;
214 struct folio_batch fbatch;
217 folio_batch_init(&fbatch);
218 while (index <= end_index) {
221 found_folios = filemap_get_folios_contig(mapping, &index,
223 for (i = 0; i < found_folios; i++) {
224 struct folio *folio = fbatch.folios[i];
226 process_one_page(fs_info, &folio->page, locked_page,
227 page_ops, start, end);
229 folio_batch_release(&fbatch);
234 static noinline void __unlock_for_delalloc(struct inode *inode,
235 struct page *locked_page,
238 unsigned long index = start >> PAGE_SHIFT;
239 unsigned long end_index = end >> PAGE_SHIFT;
242 if (index == locked_page->index && end_index == index)
245 __process_pages_contig(inode->i_mapping, locked_page, start, end,
249 static noinline int lock_delalloc_pages(struct inode *inode,
250 struct page *locked_page,
254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255 struct address_space *mapping = inode->i_mapping;
256 pgoff_t start_index = start >> PAGE_SHIFT;
257 pgoff_t end_index = end >> PAGE_SHIFT;
258 pgoff_t index = start_index;
259 u64 processed_end = start;
260 struct folio_batch fbatch;
262 if (index == locked_page->index && index == end_index)
265 folio_batch_init(&fbatch);
266 while (index <= end_index) {
267 unsigned int found_folios, i;
269 found_folios = filemap_get_folios_contig(mapping, &index,
271 if (found_folios == 0)
274 for (i = 0; i < found_folios; i++) {
275 struct page *page = &fbatch.folios[i]->page;
276 u32 len = end + 1 - start;
278 if (page == locked_page)
281 if (btrfs_page_start_writer_lock(fs_info, page, start,
285 if (!PageDirty(page) || page->mapping != mapping) {
286 btrfs_page_end_writer_lock(fs_info, page, start,
291 processed_end = page_offset(page) + PAGE_SIZE - 1;
293 folio_batch_release(&fbatch);
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 __unlock_for_delalloc(inode, locked_page, start, processed_end);
306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307 * more than @max_bytes.
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 struct page *locked_page, u64 *start,
325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
334 struct extent_state *cached_state = NULL;
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
341 /* The range should at least cover part of the page */
342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 orig_end <= page_offset(locked_page)));
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 *start = delalloc_start;
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
355 free_extent_state(cached_state);
360 * start comes from the offset of locked_page. We have to lock
361 * pages in order, so we can't process delalloc bytes before
364 if (delalloc_start < *start)
365 delalloc_start = *start;
368 * make sure to limit the number of pages we try to lock down
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
373 /* step two, lock all the pages after the page that has start */
374 ret = lock_delalloc_pages(inode, locked_page,
375 delalloc_start, delalloc_end);
376 ASSERT(!ret || ret == -EAGAIN);
377 if (ret == -EAGAIN) {
378 /* some of the pages are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
381 free_extent_state(cached_state);
384 max_bytes = PAGE_SIZE;
393 /* step three, lock the state bits for the whole range */
394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
396 /* then test to make sure it is all still delalloc */
397 ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 EXTENT_DELALLOC, 1, cached_state);
400 unlock_extent(tree, delalloc_start, delalloc_end,
402 __unlock_for_delalloc(inode, locked_page,
403 delalloc_start, delalloc_end);
407 free_extent_state(cached_state);
408 *start = delalloc_start;
414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 struct page *locked_page,
416 u32 clear_bits, unsigned long page_ops)
418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 start, end, page_ops);
424 static bool btrfs_verify_page(struct page *page, u64 start)
426 if (!fsverity_active(page->mapping->host) ||
427 PageUptodate(page) ||
428 start >= i_size_read(page->mapping->host))
430 return fsverity_verify_page(page);
433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
437 ASSERT(page_offset(page) <= start &&
438 start + len <= page_offset(page) + PAGE_SIZE);
440 if (uptodate && btrfs_verify_page(page, start))
441 btrfs_page_set_uptodate(fs_info, page, start, len);
443 btrfs_page_clear_uptodate(fs_info, page, start, len);
445 if (!btrfs_is_subpage(fs_info, page))
448 btrfs_subpage_end_reader(fs_info, page, start, len);
452 * after a writepage IO is done, we need to:
453 * clear the uptodate bits on error
454 * clear the writeback bits in the extent tree for this IO
455 * end_page_writeback if the page has no more pending IO
457 * Scheduling is not allowed, so the extent state tree is expected
458 * to have one and only one object corresponding to this IO.
460 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
462 struct bio *bio = &bbio->bio;
463 int error = blk_status_to_errno(bio->bi_status);
464 struct bio_vec *bvec;
465 struct bvec_iter_all iter_all;
467 ASSERT(!bio_flagged(bio, BIO_CLONED));
468 bio_for_each_segment_all(bvec, bio, iter_all) {
469 struct page *page = bvec->bv_page;
470 struct inode *inode = page->mapping->host;
471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
472 const u32 sectorsize = fs_info->sectorsize;
473 u64 start = page_offset(page) + bvec->bv_offset;
474 u32 len = bvec->bv_len;
476 /* Our read/write should always be sector aligned. */
477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
479 "partial page write in btrfs with offset %u and length %u",
480 bvec->bv_offset, bvec->bv_len);
481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
483 "incomplete page write with offset %u and length %u",
484 bvec->bv_offset, bvec->bv_len);
486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
488 mapping_set_error(page->mapping, error);
489 btrfs_page_clear_writeback(fs_info, page, start, len);
496 * Record previously processed extent range
498 * For endio_readpage_release_extent() to handle a full extent range, reducing
499 * the extent io operations.
501 struct processed_extent {
502 struct btrfs_inode *inode;
503 /* Start of the range in @inode */
505 /* End of the range in @inode */
511 * Try to release processed extent range
513 * May not release the extent range right now if the current range is
514 * contiguous to processed extent.
516 * Will release processed extent when any of @inode, @uptodate, the range is
517 * no longer contiguous to the processed range.
519 * Passing @inode == NULL will force processed extent to be released.
521 static void endio_readpage_release_extent(struct processed_extent *processed,
522 struct btrfs_inode *inode, u64 start, u64 end,
525 struct extent_state *cached = NULL;
526 struct extent_io_tree *tree;
528 /* The first extent, initialize @processed */
529 if (!processed->inode)
533 * Contiguous to processed extent, just uptodate the end.
535 * Several things to notice:
537 * - bio can be merged as long as on-disk bytenr is contiguous
538 * This means we can have page belonging to other inodes, thus need to
539 * check if the inode still matches.
540 * - bvec can contain range beyond current page for multi-page bvec
541 * Thus we need to do processed->end + 1 >= start check
543 if (processed->inode == inode && processed->uptodate == uptodate &&
544 processed->end + 1 >= start && end >= processed->end) {
545 processed->end = end;
549 tree = &processed->inode->io_tree;
551 * Now we don't have range contiguous to the processed range, release
552 * the processed range now.
554 unlock_extent(tree, processed->start, processed->end, &cached);
557 /* Update processed to current range */
558 processed->inode = inode;
559 processed->start = start;
560 processed->end = end;
561 processed->uptodate = uptodate;
564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
566 ASSERT(PageLocked(page));
567 if (!btrfs_is_subpage(fs_info, page))
570 ASSERT(PagePrivate(page));
571 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
575 * after a readpage IO is done, we need to:
576 * clear the uptodate bits on error
577 * set the uptodate bits if things worked
578 * set the page up to date if all extents in the tree are uptodate
579 * clear the lock bit in the extent tree
580 * unlock the page if there are no other extents locked for it
582 * Scheduling is not allowed, so the extent state tree is expected
583 * to have one and only one object corresponding to this IO.
585 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
587 struct bio *bio = &bbio->bio;
588 struct bio_vec *bvec;
589 struct processed_extent processed = { 0 };
591 * The offset to the beginning of a bio, since one bio can never be
592 * larger than UINT_MAX, u32 here is enough.
595 struct bvec_iter_all iter_all;
597 ASSERT(!bio_flagged(bio, BIO_CLONED));
598 bio_for_each_segment_all(bvec, bio, iter_all) {
599 bool uptodate = !bio->bi_status;
600 struct page *page = bvec->bv_page;
601 struct inode *inode = page->mapping->host;
602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
603 const u32 sectorsize = fs_info->sectorsize;
609 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
610 bio->bi_iter.bi_sector, bio->bi_status,
614 * We always issue full-sector reads, but if some block in a
615 * page fails to read, blk_update_request() will advance
616 * bv_offset and adjust bv_len to compensate. Print a warning
617 * for unaligned offsets, and an error if they don't add up to
620 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
622 "partial page read in btrfs with offset %u and length %u",
623 bvec->bv_offset, bvec->bv_len);
624 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
627 "incomplete page read with offset %u and length %u",
628 bvec->bv_offset, bvec->bv_len);
630 start = page_offset(page) + bvec->bv_offset;
631 end = start + bvec->bv_len - 1;
634 if (likely(uptodate)) {
635 loff_t i_size = i_size_read(inode);
636 pgoff_t end_index = i_size >> PAGE_SHIFT;
639 * Zero out the remaining part if this range straddles
642 * Here we should only zero the range inside the bvec,
643 * not touch anything else.
645 * NOTE: i_size is exclusive while end is inclusive.
647 if (page->index == end_index && i_size <= end) {
648 u32 zero_start = max(offset_in_page(i_size),
649 offset_in_page(start));
651 zero_user_segment(page, zero_start,
652 offset_in_page(end) + 1);
656 /* Update page status and unlock. */
657 end_page_read(page, uptodate, start, len);
658 endio_readpage_release_extent(&processed, BTRFS_I(inode),
659 start, end, uptodate);
661 ASSERT(bio_offset + len > bio_offset);
665 /* Release the last extent */
666 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
671 * Populate every free slot in a provided array with pages.
673 * @nr_pages: number of pages to allocate
674 * @page_array: the array to fill with pages; any existing non-null entries in
675 * the array will be skipped
677 * Return: 0 if all pages were able to be allocated;
678 * -ENOMEM otherwise, and the caller is responsible for freeing all
679 * non-null page pointers in the array.
681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
683 unsigned int allocated;
685 for (allocated = 0; allocated < nr_pages;) {
686 unsigned int last = allocated;
688 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
690 if (allocated == nr_pages)
694 * During this iteration, no page could be allocated, even
695 * though alloc_pages_bulk_array() falls back to alloc_page()
696 * if it could not bulk-allocate. So we must be out of memory.
698 if (allocated == last)
701 memalloc_retry_wait(GFP_NOFS);
706 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
707 struct page *page, u64 disk_bytenr,
708 unsigned int pg_offset)
710 struct bio *bio = &bio_ctrl->bbio->bio;
711 struct bio_vec *bvec = bio_last_bvec_all(bio);
712 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
714 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
716 * For compression, all IO should have its logical bytenr set
717 * to the starting bytenr of the compressed extent.
719 return bio->bi_iter.bi_sector == sector;
723 * The contig check requires the following conditions to be met:
725 * 1) The pages are belonging to the same inode
726 * This is implied by the call chain.
728 * 2) The range has adjacent logical bytenr
730 * 3) The range has adjacent file offset
731 * This is required for the usage of btrfs_bio->file_offset.
733 return bio_end_sector(bio) == sector &&
734 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
735 page_offset(page) + pg_offset;
738 static void alloc_new_bio(struct btrfs_inode *inode,
739 struct btrfs_bio_ctrl *bio_ctrl,
740 u64 disk_bytenr, u64 file_offset)
742 struct btrfs_fs_info *fs_info = inode->root->fs_info;
743 struct btrfs_bio *bbio;
745 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
746 bio_ctrl->end_io_func, NULL);
747 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
749 bbio->file_offset = file_offset;
750 bio_ctrl->bbio = bbio;
751 bio_ctrl->len_to_oe_boundary = U32_MAX;
753 /* Limit data write bios to the ordered boundary. */
755 struct btrfs_ordered_extent *ordered;
757 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
759 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
760 ordered->file_offset +
761 ordered->disk_num_bytes - file_offset);
762 bbio->ordered = ordered;
766 * Pick the last added device to support cgroup writeback. For
767 * multi-device file systems this means blk-cgroup policies have
768 * to always be set on the last added/replaced device.
769 * This is a bit odd but has been like that for a long time.
771 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
772 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
777 * @disk_bytenr: logical bytenr where the write will be
778 * @page: page to add to the bio
779 * @size: portion of page that we want to write to
780 * @pg_offset: offset of the new bio or to check whether we are adding
781 * a contiguous page to the previous one
783 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
784 * new one in @bio_ctrl->bbio.
785 * The mirror number for this IO should already be initizlied in
786 * @bio_ctrl->mirror_num.
788 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
789 u64 disk_bytenr, struct page *page,
790 size_t size, unsigned long pg_offset)
792 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
794 ASSERT(pg_offset + size <= PAGE_SIZE);
795 ASSERT(bio_ctrl->end_io_func);
797 if (bio_ctrl->bbio &&
798 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
799 submit_one_bio(bio_ctrl);
804 /* Allocate new bio if needed */
805 if (!bio_ctrl->bbio) {
806 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
807 page_offset(page) + pg_offset);
810 /* Cap to the current ordered extent boundary if there is one. */
811 if (len > bio_ctrl->len_to_oe_boundary) {
812 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
813 ASSERT(is_data_inode(&inode->vfs_inode));
814 len = bio_ctrl->len_to_oe_boundary;
817 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
818 /* bio full: move on to a new one */
819 submit_one_bio(bio_ctrl);
824 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
831 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
832 * sector aligned. alloc_new_bio() then sets it to the end of
833 * our ordered extent for writes into zoned devices.
835 * When len_to_oe_boundary is tracking an ordered extent, we
836 * trust the ordered extent code to align things properly, and
837 * the check above to cap our write to the ordered extent
838 * boundary is correct.
840 * When len_to_oe_boundary is U32_MAX, the cap above would
841 * result in a 4095 byte IO for the last page right before
842 * we hit the bio limit of UINT_MAX. bio_add_page() has all
843 * the checks required to make sure we don't overflow the bio,
844 * and we should just ignore len_to_oe_boundary completely
845 * unless we're using it to track an ordered extent.
847 * It's pretty hard to make a bio sized U32_MAX, but it can
848 * happen when the page cache is able to feed us contiguous
849 * pages for large extents.
851 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
852 bio_ctrl->len_to_oe_boundary -= len;
854 /* Ordered extent boundary: move on to a new bio. */
855 if (bio_ctrl->len_to_oe_boundary == 0)
856 submit_one_bio(bio_ctrl);
860 static int attach_extent_buffer_page(struct extent_buffer *eb,
862 struct btrfs_subpage *prealloc)
864 struct btrfs_fs_info *fs_info = eb->fs_info;
868 * If the page is mapped to btree inode, we should hold the private
869 * lock to prevent race.
870 * For cloned or dummy extent buffers, their pages are not mapped and
871 * will not race with any other ebs.
874 lockdep_assert_held(&page->mapping->private_lock);
876 if (fs_info->nodesize >= PAGE_SIZE) {
877 if (!PagePrivate(page))
878 attach_page_private(page, eb);
880 WARN_ON(page->private != (unsigned long)eb);
884 /* Already mapped, just free prealloc */
885 if (PagePrivate(page)) {
886 btrfs_free_subpage(prealloc);
891 /* Has preallocated memory for subpage */
892 attach_page_private(page, prealloc);
894 /* Do new allocation to attach subpage */
895 ret = btrfs_attach_subpage(fs_info, page,
896 BTRFS_SUBPAGE_METADATA);
900 int set_page_extent_mapped(struct page *page)
902 struct btrfs_fs_info *fs_info;
904 ASSERT(page->mapping);
906 if (PagePrivate(page))
909 fs_info = btrfs_sb(page->mapping->host->i_sb);
911 if (btrfs_is_subpage(fs_info, page))
912 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
914 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
918 void clear_page_extent_mapped(struct page *page)
920 struct btrfs_fs_info *fs_info;
922 ASSERT(page->mapping);
924 if (!PagePrivate(page))
927 fs_info = btrfs_sb(page->mapping->host->i_sb);
928 if (btrfs_is_subpage(fs_info, page))
929 return btrfs_detach_subpage(fs_info, page);
931 detach_page_private(page);
934 static struct extent_map *
935 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
936 u64 start, u64 len, struct extent_map **em_cached)
938 struct extent_map *em;
940 if (em_cached && *em_cached) {
942 if (extent_map_in_tree(em) && start >= em->start &&
943 start < extent_map_end(em)) {
944 refcount_inc(&em->refs);
952 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
953 if (em_cached && !IS_ERR(em)) {
955 refcount_inc(&em->refs);
961 * basic readpage implementation. Locked extent state structs are inserted
962 * into the tree that are removed when the IO is done (by the end_io
964 * XXX JDM: This needs looking at to ensure proper page locking
965 * return 0 on success, otherwise return error
967 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
968 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
970 struct inode *inode = page->mapping->host;
971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
972 u64 start = page_offset(page);
973 const u64 end = start + PAGE_SIZE - 1;
976 u64 last_byte = i_size_read(inode);
978 struct extent_map *em;
980 size_t pg_offset = 0;
982 size_t blocksize = inode->i_sb->s_blocksize;
983 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
985 ret = set_page_extent_mapped(page);
987 unlock_extent(tree, start, end, NULL);
992 if (page->index == last_byte >> PAGE_SHIFT) {
993 size_t zero_offset = offset_in_page(last_byte);
996 iosize = PAGE_SIZE - zero_offset;
997 memzero_page(page, zero_offset, iosize);
1000 bio_ctrl->end_io_func = end_bio_extent_readpage;
1001 begin_page_read(fs_info, page);
1002 while (cur <= end) {
1003 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1004 bool force_bio_submit = false;
1007 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1008 if (cur >= last_byte) {
1009 iosize = PAGE_SIZE - pg_offset;
1010 memzero_page(page, pg_offset, iosize);
1011 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1012 end_page_read(page, true, cur, iosize);
1015 em = __get_extent_map(inode, page, pg_offset, cur,
1016 end - cur + 1, em_cached);
1018 unlock_extent(tree, cur, end, NULL);
1019 end_page_read(page, false, cur, end + 1 - cur);
1022 extent_offset = cur - em->start;
1023 BUG_ON(extent_map_end(em) <= cur);
1026 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1027 compress_type = em->compress_type;
1029 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1030 iosize = ALIGN(iosize, blocksize);
1031 if (compress_type != BTRFS_COMPRESS_NONE)
1032 disk_bytenr = em->block_start;
1034 disk_bytenr = em->block_start + extent_offset;
1035 block_start = em->block_start;
1036 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1037 block_start = EXTENT_MAP_HOLE;
1040 * If we have a file range that points to a compressed extent
1041 * and it's followed by a consecutive file range that points
1042 * to the same compressed extent (possibly with a different
1043 * offset and/or length, so it either points to the whole extent
1044 * or only part of it), we must make sure we do not submit a
1045 * single bio to populate the pages for the 2 ranges because
1046 * this makes the compressed extent read zero out the pages
1047 * belonging to the 2nd range. Imagine the following scenario:
1050 * [0 - 8K] [8K - 24K]
1053 * points to extent X, points to extent X,
1054 * offset 4K, length of 8K offset 0, length 16K
1056 * [extent X, compressed length = 4K uncompressed length = 16K]
1058 * If the bio to read the compressed extent covers both ranges,
1059 * it will decompress extent X into the pages belonging to the
1060 * first range and then it will stop, zeroing out the remaining
1061 * pages that belong to the other range that points to extent X.
1062 * So here we make sure we submit 2 bios, one for the first
1063 * range and another one for the third range. Both will target
1064 * the same physical extent from disk, but we can't currently
1065 * make the compressed bio endio callback populate the pages
1066 * for both ranges because each compressed bio is tightly
1067 * coupled with a single extent map, and each range can have
1068 * an extent map with a different offset value relative to the
1069 * uncompressed data of our extent and different lengths. This
1070 * is a corner case so we prioritize correctness over
1071 * non-optimal behavior (submitting 2 bios for the same extent).
1073 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1074 prev_em_start && *prev_em_start != (u64)-1 &&
1075 *prev_em_start != em->start)
1076 force_bio_submit = true;
1079 *prev_em_start = em->start;
1081 free_extent_map(em);
1084 /* we've found a hole, just zero and go on */
1085 if (block_start == EXTENT_MAP_HOLE) {
1086 memzero_page(page, pg_offset, iosize);
1088 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1089 end_page_read(page, true, cur, iosize);
1091 pg_offset += iosize;
1094 /* the get_extent function already copied into the page */
1095 if (block_start == EXTENT_MAP_INLINE) {
1096 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1097 end_page_read(page, true, cur, iosize);
1099 pg_offset += iosize;
1103 if (bio_ctrl->compress_type != compress_type) {
1104 submit_one_bio(bio_ctrl);
1105 bio_ctrl->compress_type = compress_type;
1108 if (force_bio_submit)
1109 submit_one_bio(bio_ctrl);
1110 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1113 pg_offset += iosize;
1119 int btrfs_read_folio(struct file *file, struct folio *folio)
1121 struct page *page = &folio->page;
1122 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1123 u64 start = page_offset(page);
1124 u64 end = start + PAGE_SIZE - 1;
1125 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1128 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1130 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1132 * If btrfs_do_readpage() failed we will want to submit the assembled
1133 * bio to do the cleanup.
1135 submit_one_bio(&bio_ctrl);
1139 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1141 struct extent_map **em_cached,
1142 struct btrfs_bio_ctrl *bio_ctrl,
1145 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1148 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1150 for (index = 0; index < nr_pages; index++) {
1151 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1153 put_page(pages[index]);
1158 * helper for __extent_writepage, doing all of the delayed allocation setup.
1160 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1161 * to write the page (copy into inline extent). In this case the IO has
1162 * been started and the page is already unlocked.
1164 * This returns 0 if all went well (page still locked)
1165 * This returns < 0 if there were errors (page still locked)
1167 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1168 struct page *page, struct writeback_control *wbc)
1170 const u64 page_start = page_offset(page);
1171 const u64 page_end = page_start + PAGE_SIZE - 1;
1172 u64 delalloc_start = page_start;
1173 u64 delalloc_end = page_end;
1174 u64 delalloc_to_write = 0;
1177 while (delalloc_start < page_end) {
1178 delalloc_end = page_end;
1179 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1180 &delalloc_start, &delalloc_end)) {
1181 delalloc_start = delalloc_end + 1;
1185 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1190 delalloc_start = delalloc_end + 1;
1194 * delalloc_end is already one less than the total length, so
1195 * we don't subtract one from PAGE_SIZE
1197 delalloc_to_write +=
1198 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1201 * If btrfs_run_dealloc_range() already started I/O and unlocked
1202 * the pages, we just need to account for them here.
1205 wbc->nr_to_write -= delalloc_to_write;
1209 if (wbc->nr_to_write < delalloc_to_write) {
1212 if (delalloc_to_write < thresh * 2)
1213 thresh = delalloc_to_write;
1214 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1222 * Find the first byte we need to write.
1224 * For subpage, one page can contain several sectors, and
1225 * __extent_writepage_io() will just grab all extent maps in the page
1226 * range and try to submit all non-inline/non-compressed extents.
1228 * This is a big problem for subpage, we shouldn't re-submit already written
1230 * This function will lookup subpage dirty bit to find which range we really
1233 * Return the next dirty range in [@start, @end).
1234 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1236 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1237 struct page *page, u64 *start, u64 *end)
1239 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1240 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1241 u64 orig_start = *start;
1242 /* Declare as unsigned long so we can use bitmap ops */
1243 unsigned long flags;
1244 int range_start_bit;
1248 * For regular sector size == page size case, since one page only
1249 * contains one sector, we return the page offset directly.
1251 if (!btrfs_is_subpage(fs_info, page)) {
1252 *start = page_offset(page);
1253 *end = page_offset(page) + PAGE_SIZE;
1257 range_start_bit = spi->dirty_offset +
1258 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1260 /* We should have the page locked, but just in case */
1261 spin_lock_irqsave(&subpage->lock, flags);
1262 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1263 spi->dirty_offset + spi->bitmap_nr_bits);
1264 spin_unlock_irqrestore(&subpage->lock, flags);
1266 range_start_bit -= spi->dirty_offset;
1267 range_end_bit -= spi->dirty_offset;
1269 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1270 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1274 * helper for __extent_writepage. This calls the writepage start hooks,
1275 * and does the loop to map the page into extents and bios.
1277 * We return 1 if the IO is started and the page is unlocked,
1278 * 0 if all went well (page still locked)
1279 * < 0 if there were errors (page still locked)
1281 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1283 struct btrfs_bio_ctrl *bio_ctrl,
1287 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1288 u64 cur = page_offset(page);
1289 u64 end = cur + PAGE_SIZE - 1;
1292 struct extent_map *em;
1296 ret = btrfs_writepage_cow_fixup(page);
1298 /* Fixup worker will requeue */
1299 redirty_page_for_writepage(bio_ctrl->wbc, page);
1304 bio_ctrl->end_io_func = end_bio_extent_writepage;
1305 while (cur <= end) {
1306 u32 len = end - cur + 1;
1309 u64 dirty_range_start = cur;
1310 u64 dirty_range_end;
1313 if (cur >= i_size) {
1314 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1317 * This range is beyond i_size, thus we don't need to
1318 * bother writing back.
1319 * But we still need to clear the dirty subpage bit, or
1320 * the next time the page gets dirtied, we will try to
1321 * writeback the sectors with subpage dirty bits,
1322 * causing writeback without ordered extent.
1324 btrfs_page_clear_dirty(fs_info, page, cur, len);
1328 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1330 if (cur < dirty_range_start) {
1331 cur = dirty_range_start;
1335 em = btrfs_get_extent(inode, NULL, 0, cur, len);
1337 ret = PTR_ERR_OR_ZERO(em);
1341 extent_offset = cur - em->start;
1342 em_end = extent_map_end(em);
1343 ASSERT(cur <= em_end);
1345 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1346 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1348 block_start = em->block_start;
1349 disk_bytenr = em->block_start + extent_offset;
1351 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1352 ASSERT(block_start != EXTENT_MAP_HOLE);
1353 ASSERT(block_start != EXTENT_MAP_INLINE);
1356 * Note that em_end from extent_map_end() and dirty_range_end from
1357 * find_next_dirty_byte() are all exclusive
1359 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1360 free_extent_map(em);
1363 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1364 if (!PageWriteback(page)) {
1365 btrfs_err(inode->root->fs_info,
1366 "page %lu not writeback, cur %llu end %llu",
1367 page->index, cur, end);
1371 * Although the PageDirty bit is cleared before entering this
1372 * function, subpage dirty bit is not cleared.
1373 * So clear subpage dirty bit here so next time we won't submit
1374 * page for range already written to disk.
1376 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1378 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1379 cur - page_offset(page));
1384 btrfs_page_assert_not_dirty(fs_info, page);
1390 * If we finish without problem, we should not only clear page dirty,
1391 * but also empty subpage dirty bits
1398 * the writepage semantics are similar to regular writepage. extent
1399 * records are inserted to lock ranges in the tree, and as dirty areas
1400 * are found, they are marked writeback. Then the lock bits are removed
1401 * and the end_io handler clears the writeback ranges
1403 * Return 0 if everything goes well.
1404 * Return <0 for error.
1406 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1408 struct folio *folio = page_folio(page);
1409 struct inode *inode = page->mapping->host;
1410 const u64 page_start = page_offset(page);
1414 loff_t i_size = i_size_read(inode);
1415 unsigned long end_index = i_size >> PAGE_SHIFT;
1417 trace___extent_writepage(page, inode, bio_ctrl->wbc);
1419 WARN_ON(!PageLocked(page));
1421 pg_offset = offset_in_page(i_size);
1422 if (page->index > end_index ||
1423 (page->index == end_index && !pg_offset)) {
1424 folio_invalidate(folio, 0, folio_size(folio));
1425 folio_unlock(folio);
1429 if (page->index == end_index)
1430 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1432 ret = set_page_extent_mapped(page);
1436 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1442 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1446 bio_ctrl->wbc->nr_to_write--;
1450 /* make sure the mapping tag for page dirty gets cleared */
1451 set_page_writeback(page);
1452 end_page_writeback(page);
1455 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1457 mapping_set_error(page->mapping, ret);
1464 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1466 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1467 TASK_UNINTERRUPTIBLE);
1471 * Lock extent buffer status and pages for writeback.
1473 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1474 * extent buffer is not dirty)
1475 * Return %true is the extent buffer is submitted to bio.
1477 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1478 struct writeback_control *wbc)
1480 struct btrfs_fs_info *fs_info = eb->fs_info;
1483 btrfs_tree_lock(eb);
1484 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1485 btrfs_tree_unlock(eb);
1486 if (wbc->sync_mode != WB_SYNC_ALL)
1488 wait_on_extent_buffer_writeback(eb);
1489 btrfs_tree_lock(eb);
1493 * We need to do this to prevent races in people who check if the eb is
1494 * under IO since we can end up having no IO bits set for a short period
1497 spin_lock(&eb->refs_lock);
1498 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1499 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1500 spin_unlock(&eb->refs_lock);
1501 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1502 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1504 fs_info->dirty_metadata_batch);
1507 spin_unlock(&eb->refs_lock);
1509 btrfs_tree_unlock(eb);
1513 static void set_btree_ioerr(struct extent_buffer *eb)
1515 struct btrfs_fs_info *fs_info = eb->fs_info;
1517 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1520 * A read may stumble upon this buffer later, make sure that it gets an
1521 * error and knows there was an error.
1523 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1526 * We need to set the mapping with the io error as well because a write
1527 * error will flip the file system readonly, and then syncfs() will
1528 * return a 0 because we are readonly if we don't modify the err seq for
1531 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1534 * If writeback for a btree extent that doesn't belong to a log tree
1535 * failed, increment the counter transaction->eb_write_errors.
1536 * We do this because while the transaction is running and before it's
1537 * committing (when we call filemap_fdata[write|wait]_range against
1538 * the btree inode), we might have
1539 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1540 * returns an error or an error happens during writeback, when we're
1541 * committing the transaction we wouldn't know about it, since the pages
1542 * can be no longer dirty nor marked anymore for writeback (if a
1543 * subsequent modification to the extent buffer didn't happen before the
1544 * transaction commit), which makes filemap_fdata[write|wait]_range not
1545 * able to find the pages tagged with SetPageError at transaction
1546 * commit time. So if this happens we must abort the transaction,
1547 * otherwise we commit a super block with btree roots that point to
1548 * btree nodes/leafs whose content on disk is invalid - either garbage
1549 * or the content of some node/leaf from a past generation that got
1550 * cowed or deleted and is no longer valid.
1552 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1553 * not be enough - we need to distinguish between log tree extents vs
1554 * non-log tree extents, and the next filemap_fdatawait_range() call
1555 * will catch and clear such errors in the mapping - and that call might
1556 * be from a log sync and not from a transaction commit. Also, checking
1557 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1558 * not done and would not be reliable - the eb might have been released
1559 * from memory and reading it back again means that flag would not be
1560 * set (since it's a runtime flag, not persisted on disk).
1562 * Using the flags below in the btree inode also makes us achieve the
1563 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1564 * writeback for all dirty pages and before filemap_fdatawait_range()
1565 * is called, the writeback for all dirty pages had already finished
1566 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1567 * filemap_fdatawait_range() would return success, as it could not know
1568 * that writeback errors happened (the pages were no longer tagged for
1571 switch (eb->log_index) {
1573 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1576 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1579 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1582 BUG(); /* unexpected, logic error */
1587 * The endio specific version which won't touch any unsafe spinlock in endio
1590 static struct extent_buffer *find_extent_buffer_nolock(
1591 struct btrfs_fs_info *fs_info, u64 start)
1593 struct extent_buffer *eb;
1596 eb = radix_tree_lookup(&fs_info->buffer_radix,
1597 start >> fs_info->sectorsize_bits);
1598 if (eb && atomic_inc_not_zero(&eb->refs)) {
1606 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1608 struct extent_buffer *eb = bbio->private;
1609 struct btrfs_fs_info *fs_info = eb->fs_info;
1610 bool uptodate = !bbio->bio.bi_status;
1611 struct bvec_iter_all iter_all;
1612 struct bio_vec *bvec;
1616 set_btree_ioerr(eb);
1618 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1619 u64 start = eb->start + bio_offset;
1620 struct page *page = bvec->bv_page;
1621 u32 len = bvec->bv_len;
1623 btrfs_page_clear_writeback(fs_info, page, start, len);
1627 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1628 smp_mb__after_atomic();
1629 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1631 bio_put(&bbio->bio);
1634 static void prepare_eb_write(struct extent_buffer *eb)
1637 unsigned long start;
1640 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1642 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1643 nritems = btrfs_header_nritems(eb);
1644 if (btrfs_header_level(eb) > 0) {
1645 end = btrfs_node_key_ptr_offset(eb, nritems);
1646 memzero_extent_buffer(eb, end, eb->len - end);
1650 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1652 start = btrfs_item_nr_offset(eb, nritems);
1653 end = btrfs_item_nr_offset(eb, 0);
1655 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1657 end += btrfs_item_offset(eb, nritems - 1);
1658 memzero_extent_buffer(eb, start, end - start);
1662 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1663 struct writeback_control *wbc)
1665 struct btrfs_fs_info *fs_info = eb->fs_info;
1666 struct btrfs_bio *bbio;
1668 prepare_eb_write(eb);
1670 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1671 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1672 eb->fs_info, extent_buffer_write_end_io, eb);
1673 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1674 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1675 wbc_init_bio(wbc, &bbio->bio);
1676 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1677 bbio->file_offset = eb->start;
1678 if (fs_info->nodesize < PAGE_SIZE) {
1679 struct page *p = eb->pages[0];
1682 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1683 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1685 clear_page_dirty_for_io(p);
1688 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1689 wbc_account_cgroup_owner(wbc, p, eb->len);
1692 for (int i = 0; i < num_extent_pages(eb); i++) {
1693 struct page *p = eb->pages[i];
1696 clear_page_dirty_for_io(p);
1697 set_page_writeback(p);
1698 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1699 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1704 btrfs_submit_bio(bbio, 0);
1708 * Submit one subpage btree page.
1710 * The main difference to submit_eb_page() is:
1712 * For subpage, we don't rely on page locking at all.
1715 * We only flush bio if we may be unable to fit current extent buffers into
1718 * Return >=0 for the number of submitted extent buffers.
1719 * Return <0 for fatal error.
1721 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1723 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1725 u64 page_start = page_offset(page);
1727 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1729 /* Lock and write each dirty extent buffers in the range */
1730 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1731 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1732 struct extent_buffer *eb;
1733 unsigned long flags;
1737 * Take private lock to ensure the subpage won't be detached
1740 spin_lock(&page->mapping->private_lock);
1741 if (!PagePrivate(page)) {
1742 spin_unlock(&page->mapping->private_lock);
1745 spin_lock_irqsave(&subpage->lock, flags);
1746 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1747 subpage->bitmaps)) {
1748 spin_unlock_irqrestore(&subpage->lock, flags);
1749 spin_unlock(&page->mapping->private_lock);
1754 start = page_start + bit_start * fs_info->sectorsize;
1755 bit_start += sectors_per_node;
1758 * Here we just want to grab the eb without touching extra
1759 * spin locks, so call find_extent_buffer_nolock().
1761 eb = find_extent_buffer_nolock(fs_info, start);
1762 spin_unlock_irqrestore(&subpage->lock, flags);
1763 spin_unlock(&page->mapping->private_lock);
1766 * The eb has already reached 0 refs thus find_extent_buffer()
1767 * doesn't return it. We don't need to write back such eb
1773 if (lock_extent_buffer_for_io(eb, wbc)) {
1774 write_one_eb(eb, wbc);
1777 free_extent_buffer(eb);
1783 * Submit all page(s) of one extent buffer.
1785 * @page: the page of one extent buffer
1786 * @eb_context: to determine if we need to submit this page, if current page
1787 * belongs to this eb, we don't need to submit
1789 * The caller should pass each page in their bytenr order, and here we use
1790 * @eb_context to determine if we have submitted pages of one extent buffer.
1792 * If we have, we just skip until we hit a new page that doesn't belong to
1793 * current @eb_context.
1795 * If not, we submit all the page(s) of the extent buffer.
1797 * Return >0 if we have submitted the extent buffer successfully.
1798 * Return 0 if we don't need to submit the page, as it's already submitted by
1800 * Return <0 for fatal error.
1802 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1804 struct writeback_control *wbc = ctx->wbc;
1805 struct address_space *mapping = page->mapping;
1806 struct extent_buffer *eb;
1809 if (!PagePrivate(page))
1812 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1813 return submit_eb_subpage(page, wbc);
1815 spin_lock(&mapping->private_lock);
1816 if (!PagePrivate(page)) {
1817 spin_unlock(&mapping->private_lock);
1821 eb = (struct extent_buffer *)page->private;
1824 * Shouldn't happen and normally this would be a BUG_ON but no point
1825 * crashing the machine for something we can survive anyway.
1828 spin_unlock(&mapping->private_lock);
1832 if (eb == ctx->eb) {
1833 spin_unlock(&mapping->private_lock);
1836 ret = atomic_inc_not_zero(&eb->refs);
1837 spin_unlock(&mapping->private_lock);
1843 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1847 free_extent_buffer(eb);
1851 if (!lock_extent_buffer_for_io(eb, wbc)) {
1852 free_extent_buffer(eb);
1855 /* Implies write in zoned mode. */
1856 if (ctx->zoned_bg) {
1857 /* Mark the last eb in the block group. */
1858 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1859 ctx->zoned_bg->meta_write_pointer += eb->len;
1861 write_one_eb(eb, wbc);
1862 free_extent_buffer(eb);
1866 int btree_write_cache_pages(struct address_space *mapping,
1867 struct writeback_control *wbc)
1869 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1870 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1873 int nr_to_write_done = 0;
1874 struct folio_batch fbatch;
1875 unsigned int nr_folios;
1877 pgoff_t end; /* Inclusive */
1881 folio_batch_init(&fbatch);
1882 if (wbc->range_cyclic) {
1883 index = mapping->writeback_index; /* Start from prev offset */
1886 * Start from the beginning does not need to cycle over the
1887 * range, mark it as scanned.
1889 scanned = (index == 0);
1891 index = wbc->range_start >> PAGE_SHIFT;
1892 end = wbc->range_end >> PAGE_SHIFT;
1895 if (wbc->sync_mode == WB_SYNC_ALL)
1896 tag = PAGECACHE_TAG_TOWRITE;
1898 tag = PAGECACHE_TAG_DIRTY;
1899 btrfs_zoned_meta_io_lock(fs_info);
1901 if (wbc->sync_mode == WB_SYNC_ALL)
1902 tag_pages_for_writeback(mapping, index, end);
1903 while (!done && !nr_to_write_done && (index <= end) &&
1904 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1908 for (i = 0; i < nr_folios; i++) {
1909 struct folio *folio = fbatch.folios[i];
1911 ret = submit_eb_page(&folio->page, &ctx);
1920 * the filesystem may choose to bump up nr_to_write.
1921 * We have to make sure to honor the new nr_to_write
1924 nr_to_write_done = wbc->nr_to_write <= 0;
1926 folio_batch_release(&fbatch);
1929 if (!scanned && !done) {
1931 * We hit the last page and there is more work to be done: wrap
1932 * back to the start of the file
1939 * If something went wrong, don't allow any metadata write bio to be
1942 * This would prevent use-after-free if we had dirty pages not
1943 * cleaned up, which can still happen by fuzzed images.
1946 * Allowing existing tree block to be allocated for other trees.
1948 * - Log tree operations
1949 * Exiting tree blocks get allocated to log tree, bumps its
1950 * generation, then get cleaned in tree re-balance.
1951 * Such tree block will not be written back, since it's clean,
1952 * thus no WRITTEN flag set.
1953 * And after log writes back, this tree block is not traced by
1954 * any dirty extent_io_tree.
1956 * - Offending tree block gets re-dirtied from its original owner
1957 * Since it has bumped generation, no WRITTEN flag, it can be
1958 * reused without COWing. This tree block will not be traced
1959 * by btrfs_transaction::dirty_pages.
1961 * Now such dirty tree block will not be cleaned by any dirty
1962 * extent io tree. Thus we don't want to submit such wild eb
1963 * if the fs already has error.
1965 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1966 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1970 if (!ret && BTRFS_FS_ERROR(fs_info))
1974 btrfs_put_block_group(ctx.zoned_bg);
1975 btrfs_zoned_meta_io_unlock(fs_info);
1980 * Walk the list of dirty pages of the given address space and write all of them.
1982 * @mapping: address space structure to write
1983 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1984 * @bio_ctrl: holds context for the write, namely the bio
1986 * If a page is already under I/O, write_cache_pages() skips it, even
1987 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1988 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1989 * and msync() need to guarantee that all the data which was dirty at the time
1990 * the call was made get new I/O started against them. If wbc->sync_mode is
1991 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1992 * existing IO to complete.
1994 static int extent_write_cache_pages(struct address_space *mapping,
1995 struct btrfs_bio_ctrl *bio_ctrl)
1997 struct writeback_control *wbc = bio_ctrl->wbc;
1998 struct inode *inode = mapping->host;
2001 int nr_to_write_done = 0;
2002 struct folio_batch fbatch;
2003 unsigned int nr_folios;
2005 pgoff_t end; /* Inclusive */
2007 int range_whole = 0;
2012 * We have to hold onto the inode so that ordered extents can do their
2013 * work when the IO finishes. The alternative to this is failing to add
2014 * an ordered extent if the igrab() fails there and that is a huge pain
2015 * to deal with, so instead just hold onto the inode throughout the
2016 * writepages operation. If it fails here we are freeing up the inode
2017 * anyway and we'd rather not waste our time writing out stuff that is
2018 * going to be truncated anyway.
2023 folio_batch_init(&fbatch);
2024 if (wbc->range_cyclic) {
2025 index = mapping->writeback_index; /* Start from prev offset */
2028 * Start from the beginning does not need to cycle over the
2029 * range, mark it as scanned.
2031 scanned = (index == 0);
2033 index = wbc->range_start >> PAGE_SHIFT;
2034 end = wbc->range_end >> PAGE_SHIFT;
2035 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2041 * We do the tagged writepage as long as the snapshot flush bit is set
2042 * and we are the first one who do the filemap_flush() on this inode.
2044 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2045 * not race in and drop the bit.
2047 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2048 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2049 &BTRFS_I(inode)->runtime_flags))
2050 wbc->tagged_writepages = 1;
2052 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2053 tag = PAGECACHE_TAG_TOWRITE;
2055 tag = PAGECACHE_TAG_DIRTY;
2057 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2058 tag_pages_for_writeback(mapping, index, end);
2060 while (!done && !nr_to_write_done && (index <= end) &&
2061 (nr_folios = filemap_get_folios_tag(mapping, &index,
2062 end, tag, &fbatch))) {
2065 for (i = 0; i < nr_folios; i++) {
2066 struct folio *folio = fbatch.folios[i];
2068 done_index = folio_next_index(folio);
2070 * At this point we hold neither the i_pages lock nor
2071 * the page lock: the page may be truncated or
2072 * invalidated (changing page->mapping to NULL),
2073 * or even swizzled back from swapper_space to
2074 * tmpfs file mapping
2076 if (!folio_trylock(folio)) {
2077 submit_write_bio(bio_ctrl, 0);
2081 if (unlikely(folio->mapping != mapping)) {
2082 folio_unlock(folio);
2086 if (!folio_test_dirty(folio)) {
2087 /* Someone wrote it for us. */
2088 folio_unlock(folio);
2092 if (wbc->sync_mode != WB_SYNC_NONE) {
2093 if (folio_test_writeback(folio))
2094 submit_write_bio(bio_ctrl, 0);
2095 folio_wait_writeback(folio);
2098 if (folio_test_writeback(folio) ||
2099 !folio_clear_dirty_for_io(folio)) {
2100 folio_unlock(folio);
2104 ret = __extent_writepage(&folio->page, bio_ctrl);
2111 * The filesystem may choose to bump up nr_to_write.
2112 * We have to make sure to honor the new nr_to_write
2115 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2116 wbc->nr_to_write <= 0);
2118 folio_batch_release(&fbatch);
2121 if (!scanned && !done) {
2123 * We hit the last page and there is more work to be done: wrap
2124 * back to the start of the file
2130 * If we're looping we could run into a page that is locked by a
2131 * writer and that writer could be waiting on writeback for a
2132 * page in our current bio, and thus deadlock, so flush the
2135 submit_write_bio(bio_ctrl, 0);
2139 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2140 mapping->writeback_index = done_index;
2142 btrfs_add_delayed_iput(BTRFS_I(inode));
2147 * Submit the pages in the range to bio for call sites which delalloc range has
2148 * already been ran (aka, ordered extent inserted) and all pages are still
2151 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2152 u64 start, u64 end, struct writeback_control *wbc,
2155 bool found_error = false;
2157 struct address_space *mapping = inode->i_mapping;
2158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2159 const u32 sectorsize = fs_info->sectorsize;
2160 loff_t i_size = i_size_read(inode);
2162 struct btrfs_bio_ctrl bio_ctrl = {
2164 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2167 if (wbc->no_cgroup_owner)
2168 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2170 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2172 while (cur <= end) {
2173 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2174 u32 cur_len = cur_end + 1 - cur;
2178 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2179 ASSERT(PageLocked(page));
2180 if (pages_dirty && page != locked_page) {
2181 ASSERT(PageDirty(page));
2182 clear_page_dirty_for_io(page);
2185 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2190 /* Make sure the mapping tag for page dirty gets cleared. */
2192 set_page_writeback(page);
2193 end_page_writeback(page);
2196 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2197 cur, cur_len, !ret);
2198 mapping_set_error(page->mapping, ret);
2200 btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2208 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2211 int extent_writepages(struct address_space *mapping,
2212 struct writeback_control *wbc)
2214 struct inode *inode = mapping->host;
2216 struct btrfs_bio_ctrl bio_ctrl = {
2218 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2222 * Allow only a single thread to do the reloc work in zoned mode to
2223 * protect the write pointer updates.
2225 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2226 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2227 submit_write_bio(&bio_ctrl, ret);
2228 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2232 void extent_readahead(struct readahead_control *rac)
2234 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2235 struct page *pagepool[16];
2236 struct extent_map *em_cached = NULL;
2237 u64 prev_em_start = (u64)-1;
2240 while ((nr = readahead_page_batch(rac, pagepool))) {
2241 u64 contig_start = readahead_pos(rac);
2242 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2244 contiguous_readpages(pagepool, nr, contig_start, contig_end,
2245 &em_cached, &bio_ctrl, &prev_em_start);
2249 free_extent_map(em_cached);
2250 submit_one_bio(&bio_ctrl);
2254 * basic invalidate_folio code, this waits on any locked or writeback
2255 * ranges corresponding to the folio, and then deletes any extent state
2256 * records from the tree
2258 int extent_invalidate_folio(struct extent_io_tree *tree,
2259 struct folio *folio, size_t offset)
2261 struct extent_state *cached_state = NULL;
2262 u64 start = folio_pos(folio);
2263 u64 end = start + folio_size(folio) - 1;
2264 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2266 /* This function is only called for the btree inode */
2267 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2269 start += ALIGN(offset, blocksize);
2273 lock_extent(tree, start, end, &cached_state);
2274 folio_wait_writeback(folio);
2277 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2278 * so here we only need to unlock the extent range to free any
2279 * existing extent state.
2281 unlock_extent(tree, start, end, &cached_state);
2286 * a helper for release_folio, this tests for areas of the page that
2287 * are locked or under IO and drops the related state bits if it is safe
2290 static int try_release_extent_state(struct extent_io_tree *tree,
2291 struct page *page, gfp_t mask)
2293 u64 start = page_offset(page);
2294 u64 end = start + PAGE_SIZE - 1;
2297 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2300 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2301 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
2304 * At this point we can safely clear everything except the
2305 * locked bit, the nodatasum bit and the delalloc new bit.
2306 * The delalloc new bit will be cleared by ordered extent
2309 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2311 /* if clear_extent_bit failed for enomem reasons,
2312 * we can't allow the release to continue.
2323 * a helper for release_folio. As long as there are no locked extents
2324 * in the range corresponding to the page, both state records and extent
2325 * map records are removed
2327 int try_release_extent_mapping(struct page *page, gfp_t mask)
2329 struct extent_map *em;
2330 u64 start = page_offset(page);
2331 u64 end = start + PAGE_SIZE - 1;
2332 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2333 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2334 struct extent_map_tree *map = &btrfs_inode->extent_tree;
2336 if (gfpflags_allow_blocking(mask) &&
2337 page->mapping->host->i_size > SZ_16M) {
2339 while (start <= end) {
2340 struct btrfs_fs_info *fs_info;
2343 len = end - start + 1;
2344 write_lock(&map->lock);
2345 em = lookup_extent_mapping(map, start, len);
2347 write_unlock(&map->lock);
2350 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2351 em->start != start) {
2352 write_unlock(&map->lock);
2353 free_extent_map(em);
2356 if (test_range_bit(tree, em->start,
2357 extent_map_end(em) - 1,
2358 EXTENT_LOCKED, 0, NULL))
2361 * If it's not in the list of modified extents, used
2362 * by a fast fsync, we can remove it. If it's being
2363 * logged we can safely remove it since fsync took an
2364 * extra reference on the em.
2366 if (list_empty(&em->list) ||
2367 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2370 * If it's in the list of modified extents, remove it
2371 * only if its generation is older then the current one,
2372 * in which case we don't need it for a fast fsync.
2373 * Otherwise don't remove it, we could be racing with an
2374 * ongoing fast fsync that could miss the new extent.
2376 fs_info = btrfs_inode->root->fs_info;
2377 spin_lock(&fs_info->trans_lock);
2378 cur_gen = fs_info->generation;
2379 spin_unlock(&fs_info->trans_lock);
2380 if (em->generation >= cur_gen)
2384 * We only remove extent maps that are not in the list of
2385 * modified extents or that are in the list but with a
2386 * generation lower then the current generation, so there
2387 * is no need to set the full fsync flag on the inode (it
2388 * hurts the fsync performance for workloads with a data
2389 * size that exceeds or is close to the system's memory).
2391 remove_extent_mapping(map, em);
2392 /* once for the rb tree */
2393 free_extent_map(em);
2395 start = extent_map_end(em);
2396 write_unlock(&map->lock);
2399 free_extent_map(em);
2401 cond_resched(); /* Allow large-extent preemption. */
2404 return try_release_extent_state(tree, page, mask);
2408 * To cache previous fiemap extent
2410 * Will be used for merging fiemap extent
2412 struct fiemap_cache {
2421 * Helper to submit fiemap extent.
2423 * Will try to merge current fiemap extent specified by @offset, @phys,
2424 * @len and @flags with cached one.
2425 * And only when we fails to merge, cached one will be submitted as
2428 * Return value is the same as fiemap_fill_next_extent().
2430 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2431 struct fiemap_cache *cache,
2432 u64 offset, u64 phys, u64 len, u32 flags)
2436 /* Set at the end of extent_fiemap(). */
2437 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2443 * Sanity check, extent_fiemap() should have ensured that new
2444 * fiemap extent won't overlap with cached one.
2447 * NOTE: Physical address can overlap, due to compression
2449 if (cache->offset + cache->len > offset) {
2455 * Only merges fiemap extents if
2456 * 1) Their logical addresses are continuous
2458 * 2) Their physical addresses are continuous
2459 * So truly compressed (physical size smaller than logical size)
2460 * extents won't get merged with each other
2462 * 3) Share same flags
2464 if (cache->offset + cache->len == offset &&
2465 cache->phys + cache->len == phys &&
2466 cache->flags == flags) {
2471 /* Not mergeable, need to submit cached one */
2472 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2473 cache->len, cache->flags);
2474 cache->cached = false;
2478 cache->cached = true;
2479 cache->offset = offset;
2482 cache->flags = flags;
2488 * Emit last fiemap cache
2490 * The last fiemap cache may still be cached in the following case:
2492 * |<- Fiemap range ->|
2493 * |<------------ First extent ----------->|
2495 * In this case, the first extent range will be cached but not emitted.
2496 * So we must emit it before ending extent_fiemap().
2498 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2499 struct fiemap_cache *cache)
2506 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2507 cache->len, cache->flags);
2508 cache->cached = false;
2514 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2516 struct extent_buffer *clone;
2517 struct btrfs_key key;
2522 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2525 ret = btrfs_next_leaf(inode->root, path);
2530 * Don't bother with cloning if there are no more file extent items for
2533 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2534 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2537 /* See the comment at fiemap_search_slot() about why we clone. */
2538 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2542 slot = path->slots[0];
2543 btrfs_release_path(path);
2544 path->nodes[0] = clone;
2545 path->slots[0] = slot;
2551 * Search for the first file extent item that starts at a given file offset or
2552 * the one that starts immediately before that offset.
2553 * Returns: 0 on success, < 0 on error, 1 if not found.
2555 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2558 const u64 ino = btrfs_ino(inode);
2559 struct btrfs_root *root = inode->root;
2560 struct extent_buffer *clone;
2561 struct btrfs_key key;
2566 key.type = BTRFS_EXTENT_DATA_KEY;
2567 key.offset = file_offset;
2569 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2573 if (ret > 0 && path->slots[0] > 0) {
2574 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2575 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2579 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2580 ret = btrfs_next_leaf(root, path);
2584 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2585 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2590 * We clone the leaf and use it during fiemap. This is because while
2591 * using the leaf we do expensive things like checking if an extent is
2592 * shared, which can take a long time. In order to prevent blocking
2593 * other tasks for too long, we use a clone of the leaf. We have locked
2594 * the file range in the inode's io tree, so we know none of our file
2595 * extent items can change. This way we avoid blocking other tasks that
2596 * want to insert items for other inodes in the same leaf or b+tree
2597 * rebalance operations (triggered for example when someone is trying
2598 * to push items into this leaf when trying to insert an item in a
2600 * We also need the private clone because holding a read lock on an
2601 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2602 * when we call fiemap_fill_next_extent(), because that may cause a page
2603 * fault when filling the user space buffer with fiemap data.
2605 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2609 slot = path->slots[0];
2610 btrfs_release_path(path);
2611 path->nodes[0] = clone;
2612 path->slots[0] = slot;
2618 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2619 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2620 * extent. The end offset (@end) is inclusive.
2622 static int fiemap_process_hole(struct btrfs_inode *inode,
2623 struct fiemap_extent_info *fieinfo,
2624 struct fiemap_cache *cache,
2625 struct extent_state **delalloc_cached_state,
2626 struct btrfs_backref_share_check_ctx *backref_ctx,
2627 u64 disk_bytenr, u64 extent_offset,
2631 const u64 i_size = i_size_read(&inode->vfs_inode);
2632 u64 cur_offset = start;
2633 u64 last_delalloc_end = 0;
2634 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2635 bool checked_extent_shared = false;
2639 * There can be no delalloc past i_size, so don't waste time looking for
2642 while (cur_offset < end && cur_offset < i_size) {
2646 u64 prealloc_len = 0;
2649 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2650 delalloc_cached_state,
2657 * If this is a prealloc extent we have to report every section
2658 * of it that has no delalloc.
2660 if (disk_bytenr != 0) {
2661 if (last_delalloc_end == 0) {
2662 prealloc_start = start;
2663 prealloc_len = delalloc_start - start;
2665 prealloc_start = last_delalloc_end + 1;
2666 prealloc_len = delalloc_start - prealloc_start;
2670 if (prealloc_len > 0) {
2671 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2672 ret = btrfs_is_data_extent_shared(inode,
2679 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2681 checked_extent_shared = true;
2683 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2684 disk_bytenr + extent_offset,
2685 prealloc_len, prealloc_flags);
2688 extent_offset += prealloc_len;
2691 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2692 delalloc_end + 1 - delalloc_start,
2693 FIEMAP_EXTENT_DELALLOC |
2694 FIEMAP_EXTENT_UNKNOWN);
2698 last_delalloc_end = delalloc_end;
2699 cur_offset = delalloc_end + 1;
2700 extent_offset += cur_offset - delalloc_start;
2705 * Either we found no delalloc for the whole prealloc extent or we have
2706 * a prealloc extent that spans i_size or starts at or after i_size.
2708 if (disk_bytenr != 0 && last_delalloc_end < end) {
2712 if (last_delalloc_end == 0) {
2713 prealloc_start = start;
2714 prealloc_len = end + 1 - start;
2716 prealloc_start = last_delalloc_end + 1;
2717 prealloc_len = end + 1 - prealloc_start;
2720 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2721 ret = btrfs_is_data_extent_shared(inode,
2728 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2730 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2731 disk_bytenr + extent_offset,
2732 prealloc_len, prealloc_flags);
2740 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2741 struct btrfs_path *path,
2742 u64 *last_extent_end_ret)
2744 const u64 ino = btrfs_ino(inode);
2745 struct btrfs_root *root = inode->root;
2746 struct extent_buffer *leaf;
2747 struct btrfs_file_extent_item *ei;
2748 struct btrfs_key key;
2753 * Lookup the last file extent. We're not using i_size here because
2754 * there might be preallocation past i_size.
2756 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2757 /* There can't be a file extent item at offset (u64)-1 */
2763 * For a non-existing key, btrfs_search_slot() always leaves us at a
2764 * slot > 0, except if the btree is empty, which is impossible because
2765 * at least it has the inode item for this inode and all the items for
2766 * the root inode 256.
2768 ASSERT(path->slots[0] > 0);
2770 leaf = path->nodes[0];
2771 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2772 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2773 /* No file extent items in the subvolume tree. */
2774 *last_extent_end_ret = 0;
2779 * For an inline extent, the disk_bytenr is where inline data starts at,
2780 * so first check if we have an inline extent item before checking if we
2781 * have an implicit hole (disk_bytenr == 0).
2783 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2784 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2785 *last_extent_end_ret = btrfs_file_extent_end(path);
2790 * Find the last file extent item that is not a hole (when NO_HOLES is
2791 * not enabled). This should take at most 2 iterations in the worst
2792 * case: we have one hole file extent item at slot 0 of a leaf and
2793 * another hole file extent item as the last item in the previous leaf.
2794 * This is because we merge file extent items that represent holes.
2796 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2797 while (disk_bytenr == 0) {
2798 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2801 } else if (ret > 0) {
2802 /* No file extent items that are not holes. */
2803 *last_extent_end_ret = 0;
2806 leaf = path->nodes[0];
2807 ei = btrfs_item_ptr(leaf, path->slots[0],
2808 struct btrfs_file_extent_item);
2809 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2812 *last_extent_end_ret = btrfs_file_extent_end(path);
2816 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2819 const u64 ino = btrfs_ino(inode);
2820 struct extent_state *cached_state = NULL;
2821 struct extent_state *delalloc_cached_state = NULL;
2822 struct btrfs_path *path;
2823 struct fiemap_cache cache = { 0 };
2824 struct btrfs_backref_share_check_ctx *backref_ctx;
2825 u64 last_extent_end;
2826 u64 prev_extent_end;
2829 bool stopped = false;
2832 backref_ctx = btrfs_alloc_backref_share_check_ctx();
2833 path = btrfs_alloc_path();
2834 if (!backref_ctx || !path) {
2839 lockstart = round_down(start, inode->root->fs_info->sectorsize);
2840 lockend = round_up(start + len, inode->root->fs_info->sectorsize);
2841 prev_extent_end = lockstart;
2843 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2844 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2846 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2849 btrfs_release_path(path);
2851 path->reada = READA_FORWARD;
2852 ret = fiemap_search_slot(inode, path, lockstart);
2855 } else if (ret > 0) {
2857 * No file extent item found, but we may have delalloc between
2858 * the current offset and i_size. So check for that.
2861 goto check_eof_delalloc;
2864 while (prev_extent_end < lockend) {
2865 struct extent_buffer *leaf = path->nodes[0];
2866 struct btrfs_file_extent_item *ei;
2867 struct btrfs_key key;
2870 u64 extent_offset = 0;
2872 u64 disk_bytenr = 0;
2877 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2878 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2881 extent_end = btrfs_file_extent_end(path);
2884 * The first iteration can leave us at an extent item that ends
2885 * before our range's start. Move to the next item.
2887 if (extent_end <= lockstart)
2890 backref_ctx->curr_leaf_bytenr = leaf->start;
2892 /* We have in implicit hole (NO_HOLES feature enabled). */
2893 if (prev_extent_end < key.offset) {
2894 const u64 range_end = min(key.offset, lockend) - 1;
2896 ret = fiemap_process_hole(inode, fieinfo, &cache,
2897 &delalloc_cached_state,
2898 backref_ctx, 0, 0, 0,
2899 prev_extent_end, range_end);
2902 } else if (ret > 0) {
2903 /* fiemap_fill_next_extent() told us to stop. */
2908 /* We've reached the end of the fiemap range, stop. */
2909 if (key.offset >= lockend) {
2915 extent_len = extent_end - key.offset;
2916 ei = btrfs_item_ptr(leaf, path->slots[0],
2917 struct btrfs_file_extent_item);
2918 compression = btrfs_file_extent_compression(leaf, ei);
2919 extent_type = btrfs_file_extent_type(leaf, ei);
2920 extent_gen = btrfs_file_extent_generation(leaf, ei);
2922 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2923 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2924 if (compression == BTRFS_COMPRESS_NONE)
2925 extent_offset = btrfs_file_extent_offset(leaf, ei);
2928 if (compression != BTRFS_COMPRESS_NONE)
2929 flags |= FIEMAP_EXTENT_ENCODED;
2931 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2932 flags |= FIEMAP_EXTENT_DATA_INLINE;
2933 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
2934 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
2936 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2937 ret = fiemap_process_hole(inode, fieinfo, &cache,
2938 &delalloc_cached_state,
2940 disk_bytenr, extent_offset,
2941 extent_gen, key.offset,
2943 } else if (disk_bytenr == 0) {
2944 /* We have an explicit hole. */
2945 ret = fiemap_process_hole(inode, fieinfo, &cache,
2946 &delalloc_cached_state,
2947 backref_ctx, 0, 0, 0,
2948 key.offset, extent_end - 1);
2950 /* We have a regular extent. */
2951 if (fieinfo->fi_extents_max) {
2952 ret = btrfs_is_data_extent_shared(inode,
2959 flags |= FIEMAP_EXTENT_SHARED;
2962 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
2963 disk_bytenr + extent_offset,
2969 } else if (ret > 0) {
2970 /* fiemap_fill_next_extent() told us to stop. */
2975 prev_extent_end = extent_end;
2977 if (fatal_signal_pending(current)) {
2982 ret = fiemap_next_leaf_item(inode, path);
2985 } else if (ret > 0) {
2986 /* No more file extent items for this inode. */
2994 * Release (and free) the path before emitting any final entries to
2995 * fiemap_fill_next_extent() to keep lockdep happy. This is because
2996 * once we find no more file extent items exist, we may have a
2997 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
2998 * faults when copying data to the user space buffer.
3000 btrfs_free_path(path);
3003 if (!stopped && prev_extent_end < lockend) {
3004 ret = fiemap_process_hole(inode, fieinfo, &cache,
3005 &delalloc_cached_state, backref_ctx,
3006 0, 0, 0, prev_extent_end, lockend - 1);
3009 prev_extent_end = lockend;
3012 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3013 const u64 i_size = i_size_read(&inode->vfs_inode);
3015 if (prev_extent_end < i_size) {
3020 delalloc = btrfs_find_delalloc_in_range(inode,
3023 &delalloc_cached_state,
3027 cache.flags |= FIEMAP_EXTENT_LAST;
3029 cache.flags |= FIEMAP_EXTENT_LAST;
3033 ret = emit_last_fiemap_cache(fieinfo, &cache);
3036 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3037 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3039 free_extent_state(delalloc_cached_state);
3040 btrfs_free_backref_share_ctx(backref_ctx);
3041 btrfs_free_path(path);
3045 static void __free_extent_buffer(struct extent_buffer *eb)
3047 kmem_cache_free(extent_buffer_cache, eb);
3050 static int extent_buffer_under_io(const struct extent_buffer *eb)
3052 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3053 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3056 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3058 struct btrfs_subpage *subpage;
3060 lockdep_assert_held(&page->mapping->private_lock);
3062 if (PagePrivate(page)) {
3063 subpage = (struct btrfs_subpage *)page->private;
3064 if (atomic_read(&subpage->eb_refs))
3067 * Even there is no eb refs here, we may still have
3068 * end_page_read() call relying on page::private.
3070 if (atomic_read(&subpage->readers))
3076 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3078 struct btrfs_fs_info *fs_info = eb->fs_info;
3079 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3082 * For mapped eb, we're going to change the page private, which should
3083 * be done under the private_lock.
3086 spin_lock(&page->mapping->private_lock);
3088 if (!PagePrivate(page)) {
3090 spin_unlock(&page->mapping->private_lock);
3094 if (fs_info->nodesize >= PAGE_SIZE) {
3096 * We do this since we'll remove the pages after we've
3097 * removed the eb from the radix tree, so we could race
3098 * and have this page now attached to the new eb. So
3099 * only clear page_private if it's still connected to
3102 if (PagePrivate(page) &&
3103 page->private == (unsigned long)eb) {
3104 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3105 BUG_ON(PageDirty(page));
3106 BUG_ON(PageWriteback(page));
3108 * We need to make sure we haven't be attached
3111 detach_page_private(page);
3114 spin_unlock(&page->mapping->private_lock);
3119 * For subpage, we can have dummy eb with page private. In this case,
3120 * we can directly detach the private as such page is only attached to
3121 * one dummy eb, no sharing.
3124 btrfs_detach_subpage(fs_info, page);
3128 btrfs_page_dec_eb_refs(fs_info, page);
3131 * We can only detach the page private if there are no other ebs in the
3132 * page range and no unfinished IO.
3134 if (!page_range_has_eb(fs_info, page))
3135 btrfs_detach_subpage(fs_info, page);
3137 spin_unlock(&page->mapping->private_lock);
3140 /* Release all pages attached to the extent buffer */
3141 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3146 ASSERT(!extent_buffer_under_io(eb));
3148 num_pages = num_extent_pages(eb);
3149 for (i = 0; i < num_pages; i++) {
3150 struct page *page = eb->pages[i];
3155 detach_extent_buffer_page(eb, page);
3157 /* One for when we allocated the page */
3163 * Helper for releasing the extent buffer.
3165 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3167 btrfs_release_extent_buffer_pages(eb);
3168 btrfs_leak_debug_del_eb(eb);
3169 __free_extent_buffer(eb);
3172 static struct extent_buffer *
3173 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3176 struct extent_buffer *eb = NULL;
3178 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3181 eb->fs_info = fs_info;
3182 init_rwsem(&eb->lock);
3184 btrfs_leak_debug_add_eb(eb);
3186 spin_lock_init(&eb->refs_lock);
3187 atomic_set(&eb->refs, 1);
3189 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3194 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3197 struct extent_buffer *new;
3198 int num_pages = num_extent_pages(src);
3201 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3206 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3207 * btrfs_release_extent_buffer() have different behavior for
3208 * UNMAPPED subpage extent buffer.
3210 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3212 ret = btrfs_alloc_page_array(num_pages, new->pages);
3214 btrfs_release_extent_buffer(new);
3218 for (i = 0; i < num_pages; i++) {
3220 struct page *p = new->pages[i];
3222 ret = attach_extent_buffer_page(new, p, NULL);
3224 btrfs_release_extent_buffer(new);
3227 WARN_ON(PageDirty(p));
3229 copy_extent_buffer_full(new, src);
3230 set_extent_buffer_uptodate(new);
3235 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3236 u64 start, unsigned long len)
3238 struct extent_buffer *eb;
3243 eb = __alloc_extent_buffer(fs_info, start, len);
3247 num_pages = num_extent_pages(eb);
3248 ret = btrfs_alloc_page_array(num_pages, eb->pages);
3252 for (i = 0; i < num_pages; i++) {
3253 struct page *p = eb->pages[i];
3255 ret = attach_extent_buffer_page(eb, p, NULL);
3260 set_extent_buffer_uptodate(eb);
3261 btrfs_set_header_nritems(eb, 0);
3262 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3266 for (i = 0; i < num_pages; i++) {
3268 detach_extent_buffer_page(eb, eb->pages[i]);
3269 __free_page(eb->pages[i]);
3272 __free_extent_buffer(eb);
3276 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3279 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3282 static void check_buffer_tree_ref(struct extent_buffer *eb)
3286 * The TREE_REF bit is first set when the extent_buffer is added
3287 * to the radix tree. It is also reset, if unset, when a new reference
3288 * is created by find_extent_buffer.
3290 * It is only cleared in two cases: freeing the last non-tree
3291 * reference to the extent_buffer when its STALE bit is set or
3292 * calling release_folio when the tree reference is the only reference.
3294 * In both cases, care is taken to ensure that the extent_buffer's
3295 * pages are not under io. However, release_folio can be concurrently
3296 * called with creating new references, which is prone to race
3297 * conditions between the calls to check_buffer_tree_ref in those
3298 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3300 * The actual lifetime of the extent_buffer in the radix tree is
3301 * adequately protected by the refcount, but the TREE_REF bit and
3302 * its corresponding reference are not. To protect against this
3303 * class of races, we call check_buffer_tree_ref from the codepaths
3304 * which trigger io. Note that once io is initiated, TREE_REF can no
3305 * longer be cleared, so that is the moment at which any such race is
3308 refs = atomic_read(&eb->refs);
3309 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3312 spin_lock(&eb->refs_lock);
3313 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3314 atomic_inc(&eb->refs);
3315 spin_unlock(&eb->refs_lock);
3318 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3319 struct page *accessed)
3323 check_buffer_tree_ref(eb);
3325 num_pages = num_extent_pages(eb);
3326 for (i = 0; i < num_pages; i++) {
3327 struct page *p = eb->pages[i];
3330 mark_page_accessed(p);
3334 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3337 struct extent_buffer *eb;
3339 eb = find_extent_buffer_nolock(fs_info, start);
3343 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3344 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3345 * another task running free_extent_buffer() might have seen that flag
3346 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3347 * writeback flags not set) and it's still in the tree (flag
3348 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3349 * decrementing the extent buffer's reference count twice. So here we
3350 * could race and increment the eb's reference count, clear its stale
3351 * flag, mark it as dirty and drop our reference before the other task
3352 * finishes executing free_extent_buffer, which would later result in
3353 * an attempt to free an extent buffer that is dirty.
3355 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3356 spin_lock(&eb->refs_lock);
3357 spin_unlock(&eb->refs_lock);
3359 mark_extent_buffer_accessed(eb, NULL);
3363 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3364 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3367 struct extent_buffer *eb, *exists = NULL;
3370 eb = find_extent_buffer(fs_info, start);
3373 eb = alloc_dummy_extent_buffer(fs_info, start);
3375 return ERR_PTR(-ENOMEM);
3376 eb->fs_info = fs_info;
3378 ret = radix_tree_preload(GFP_NOFS);
3380 exists = ERR_PTR(ret);
3383 spin_lock(&fs_info->buffer_lock);
3384 ret = radix_tree_insert(&fs_info->buffer_radix,
3385 start >> fs_info->sectorsize_bits, eb);
3386 spin_unlock(&fs_info->buffer_lock);
3387 radix_tree_preload_end();
3388 if (ret == -EEXIST) {
3389 exists = find_extent_buffer(fs_info, start);
3395 check_buffer_tree_ref(eb);
3396 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3400 btrfs_release_extent_buffer(eb);
3405 static struct extent_buffer *grab_extent_buffer(
3406 struct btrfs_fs_info *fs_info, struct page *page)
3408 struct extent_buffer *exists;
3411 * For subpage case, we completely rely on radix tree to ensure we
3412 * don't try to insert two ebs for the same bytenr. So here we always
3413 * return NULL and just continue.
3415 if (fs_info->nodesize < PAGE_SIZE)
3418 /* Page not yet attached to an extent buffer */
3419 if (!PagePrivate(page))
3423 * We could have already allocated an eb for this page and attached one
3424 * so lets see if we can get a ref on the existing eb, and if we can we
3425 * know it's good and we can just return that one, else we know we can
3426 * just overwrite page->private.
3428 exists = (struct extent_buffer *)page->private;
3429 if (atomic_inc_not_zero(&exists->refs))
3432 WARN_ON(PageDirty(page));
3433 detach_page_private(page);
3437 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3439 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3440 btrfs_err(fs_info, "bad tree block start %llu", start);
3444 if (fs_info->nodesize < PAGE_SIZE &&
3445 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3447 "tree block crosses page boundary, start %llu nodesize %u",
3448 start, fs_info->nodesize);
3451 if (fs_info->nodesize >= PAGE_SIZE &&
3452 !PAGE_ALIGNED(start)) {
3454 "tree block is not page aligned, start %llu nodesize %u",
3455 start, fs_info->nodesize);
3461 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3462 u64 start, u64 owner_root, int level)
3464 unsigned long len = fs_info->nodesize;
3467 unsigned long index = start >> PAGE_SHIFT;
3468 struct extent_buffer *eb;
3469 struct extent_buffer *exists = NULL;
3471 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3472 struct btrfs_subpage *prealloc = NULL;
3473 u64 lockdep_owner = owner_root;
3477 if (check_eb_alignment(fs_info, start))
3478 return ERR_PTR(-EINVAL);
3480 #if BITS_PER_LONG == 32
3481 if (start >= MAX_LFS_FILESIZE) {
3482 btrfs_err_rl(fs_info,
3483 "extent buffer %llu is beyond 32bit page cache limit", start);
3484 btrfs_err_32bit_limit(fs_info);
3485 return ERR_PTR(-EOVERFLOW);
3487 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3488 btrfs_warn_32bit_limit(fs_info);
3491 eb = find_extent_buffer(fs_info, start);
3495 eb = __alloc_extent_buffer(fs_info, start, len);
3497 return ERR_PTR(-ENOMEM);
3500 * The reloc trees are just snapshots, so we need them to appear to be
3501 * just like any other fs tree WRT lockdep.
3503 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3504 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3506 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3508 num_pages = num_extent_pages(eb);
3511 * Preallocate page->private for subpage case, so that we won't
3512 * allocate memory with private_lock nor page lock hold.
3514 * The memory will be freed by attach_extent_buffer_page() or freed
3515 * manually if we exit earlier.
3517 if (fs_info->nodesize < PAGE_SIZE) {
3518 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3519 if (IS_ERR(prealloc)) {
3520 exists = ERR_CAST(prealloc);
3525 for (i = 0; i < num_pages; i++, index++) {
3526 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3528 exists = ERR_PTR(-ENOMEM);
3529 btrfs_free_subpage(prealloc);
3533 spin_lock(&mapping->private_lock);
3534 exists = grab_extent_buffer(fs_info, p);
3536 spin_unlock(&mapping->private_lock);
3539 mark_extent_buffer_accessed(exists, p);
3540 btrfs_free_subpage(prealloc);
3543 /* Should not fail, as we have preallocated the memory */
3544 ret = attach_extent_buffer_page(eb, p, prealloc);
3547 * To inform we have extra eb under allocation, so that
3548 * detach_extent_buffer_page() won't release the page private
3549 * when the eb hasn't yet been inserted into radix tree.
3551 * The ref will be decreased when the eb released the page, in
3552 * detach_extent_buffer_page().
3553 * Thus needs no special handling in error path.
3555 btrfs_page_inc_eb_refs(fs_info, p);
3556 spin_unlock(&mapping->private_lock);
3558 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3560 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3564 * We can't unlock the pages just yet since the extent buffer
3565 * hasn't been properly inserted in the radix tree, this
3566 * opens a race with btree_release_folio which can free a page
3567 * while we are still filling in all pages for the buffer and
3572 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3574 ret = radix_tree_preload(GFP_NOFS);
3576 exists = ERR_PTR(ret);
3580 spin_lock(&fs_info->buffer_lock);
3581 ret = radix_tree_insert(&fs_info->buffer_radix,
3582 start >> fs_info->sectorsize_bits, eb);
3583 spin_unlock(&fs_info->buffer_lock);
3584 radix_tree_preload_end();
3585 if (ret == -EEXIST) {
3586 exists = find_extent_buffer(fs_info, start);
3592 /* add one reference for the tree */
3593 check_buffer_tree_ref(eb);
3594 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3597 * Now it's safe to unlock the pages because any calls to
3598 * btree_release_folio will correctly detect that a page belongs to a
3599 * live buffer and won't free them prematurely.
3601 for (i = 0; i < num_pages; i++)
3602 unlock_page(eb->pages[i]);
3606 WARN_ON(!atomic_dec_and_test(&eb->refs));
3607 for (i = 0; i < num_pages; i++) {
3609 unlock_page(eb->pages[i]);
3612 btrfs_release_extent_buffer(eb);
3616 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3618 struct extent_buffer *eb =
3619 container_of(head, struct extent_buffer, rcu_head);
3621 __free_extent_buffer(eb);
3624 static int release_extent_buffer(struct extent_buffer *eb)
3625 __releases(&eb->refs_lock)
3627 lockdep_assert_held(&eb->refs_lock);
3629 WARN_ON(atomic_read(&eb->refs) == 0);
3630 if (atomic_dec_and_test(&eb->refs)) {
3631 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3632 struct btrfs_fs_info *fs_info = eb->fs_info;
3634 spin_unlock(&eb->refs_lock);
3636 spin_lock(&fs_info->buffer_lock);
3637 radix_tree_delete(&fs_info->buffer_radix,
3638 eb->start >> fs_info->sectorsize_bits);
3639 spin_unlock(&fs_info->buffer_lock);
3641 spin_unlock(&eb->refs_lock);
3644 btrfs_leak_debug_del_eb(eb);
3645 /* Should be safe to release our pages at this point */
3646 btrfs_release_extent_buffer_pages(eb);
3647 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3648 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3649 __free_extent_buffer(eb);
3653 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3656 spin_unlock(&eb->refs_lock);
3661 void free_extent_buffer(struct extent_buffer *eb)
3667 refs = atomic_read(&eb->refs);
3669 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3670 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3673 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3677 spin_lock(&eb->refs_lock);
3678 if (atomic_read(&eb->refs) == 2 &&
3679 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3680 !extent_buffer_under_io(eb) &&
3681 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3682 atomic_dec(&eb->refs);
3685 * I know this is terrible, but it's temporary until we stop tracking
3686 * the uptodate bits and such for the extent buffers.
3688 release_extent_buffer(eb);
3691 void free_extent_buffer_stale(struct extent_buffer *eb)
3696 spin_lock(&eb->refs_lock);
3697 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3699 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3700 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3701 atomic_dec(&eb->refs);
3702 release_extent_buffer(eb);
3705 static void btree_clear_page_dirty(struct page *page)
3707 ASSERT(PageDirty(page));
3708 ASSERT(PageLocked(page));
3709 clear_page_dirty_for_io(page);
3710 xa_lock_irq(&page->mapping->i_pages);
3711 if (!PageDirty(page))
3712 __xa_clear_mark(&page->mapping->i_pages,
3713 page_index(page), PAGECACHE_TAG_DIRTY);
3714 xa_unlock_irq(&page->mapping->i_pages);
3717 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3719 struct btrfs_fs_info *fs_info = eb->fs_info;
3720 struct page *page = eb->pages[0];
3723 /* btree_clear_page_dirty() needs page locked */
3725 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3728 btree_clear_page_dirty(page);
3730 WARN_ON(atomic_read(&eb->refs) == 0);
3733 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3734 struct extent_buffer *eb)
3736 struct btrfs_fs_info *fs_info = eb->fs_info;
3741 btrfs_assert_tree_write_locked(eb);
3743 if (trans && btrfs_header_generation(eb) != trans->transid)
3746 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3749 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3750 fs_info->dirty_metadata_batch);
3752 if (eb->fs_info->nodesize < PAGE_SIZE)
3753 return clear_subpage_extent_buffer_dirty(eb);
3755 num_pages = num_extent_pages(eb);
3757 for (i = 0; i < num_pages; i++) {
3758 page = eb->pages[i];
3759 if (!PageDirty(page))
3762 btree_clear_page_dirty(page);
3765 WARN_ON(atomic_read(&eb->refs) == 0);
3768 void set_extent_buffer_dirty(struct extent_buffer *eb)
3774 check_buffer_tree_ref(eb);
3776 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3778 num_pages = num_extent_pages(eb);
3779 WARN_ON(atomic_read(&eb->refs) == 0);
3780 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3783 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3786 * For subpage case, we can have other extent buffers in the
3787 * same page, and in clear_subpage_extent_buffer_dirty() we
3788 * have to clear page dirty without subpage lock held.
3789 * This can cause race where our page gets dirty cleared after
3792 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3793 * its page for other reasons, we can use page lock to prevent
3797 lock_page(eb->pages[0]);
3798 for (i = 0; i < num_pages; i++)
3799 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3800 eb->start, eb->len);
3802 unlock_page(eb->pages[0]);
3803 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3805 eb->fs_info->dirty_metadata_batch);
3807 #ifdef CONFIG_BTRFS_DEBUG
3808 for (i = 0; i < num_pages; i++)
3809 ASSERT(PageDirty(eb->pages[i]));
3813 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3815 struct btrfs_fs_info *fs_info = eb->fs_info;
3820 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3821 num_pages = num_extent_pages(eb);
3822 for (i = 0; i < num_pages; i++) {
3823 page = eb->pages[i];
3828 * This is special handling for metadata subpage, as regular
3829 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3831 if (fs_info->nodesize >= PAGE_SIZE)
3832 ClearPageUptodate(page);
3834 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3839 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3841 struct btrfs_fs_info *fs_info = eb->fs_info;
3846 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3847 num_pages = num_extent_pages(eb);
3848 for (i = 0; i < num_pages; i++) {
3849 page = eb->pages[i];
3852 * This is special handling for metadata subpage, as regular
3853 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3855 if (fs_info->nodesize >= PAGE_SIZE)
3856 SetPageUptodate(page);
3858 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3863 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3865 struct extent_buffer *eb = bbio->private;
3866 struct btrfs_fs_info *fs_info = eb->fs_info;
3867 bool uptodate = !bbio->bio.bi_status;
3868 struct bvec_iter_all iter_all;
3869 struct bio_vec *bvec;
3872 eb->read_mirror = bbio->mirror_num;
3875 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3879 set_extent_buffer_uptodate(eb);
3881 clear_extent_buffer_uptodate(eb);
3882 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3885 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
3886 u64 start = eb->start + bio_offset;
3887 struct page *page = bvec->bv_page;
3888 u32 len = bvec->bv_len;
3891 btrfs_page_set_uptodate(fs_info, page, start, len);
3893 btrfs_page_clear_uptodate(fs_info, page, start, len);
3898 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3899 smp_mb__after_atomic();
3900 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3901 free_extent_buffer(eb);
3903 bio_put(&bbio->bio);
3906 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3907 struct btrfs_tree_parent_check *check)
3909 int num_pages = num_extent_pages(eb), i;
3910 struct btrfs_bio *bbio;
3912 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3916 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3917 * operation, which could potentially still be in flight. In this case
3918 * we simply want to return an error.
3920 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3923 /* Someone else is already reading the buffer, just wait for it. */
3924 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3927 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3928 eb->read_mirror = 0;
3929 check_buffer_tree_ref(eb);
3930 atomic_inc(&eb->refs);
3932 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3933 REQ_OP_READ | REQ_META, eb->fs_info,
3934 extent_buffer_read_end_io, eb);
3935 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3936 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3937 bbio->file_offset = eb->start;
3938 memcpy(&bbio->parent_check, check, sizeof(*check));
3939 if (eb->fs_info->nodesize < PAGE_SIZE) {
3940 __bio_add_page(&bbio->bio, eb->pages[0], eb->len,
3941 eb->start - page_offset(eb->pages[0]));
3943 for (i = 0; i < num_pages; i++)
3944 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
3946 btrfs_submit_bio(bbio, mirror_num);
3949 if (wait == WAIT_COMPLETE) {
3950 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3951 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3958 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3961 btrfs_warn(eb->fs_info,
3962 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
3963 eb->start, eb->len, start, len);
3964 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3970 * Check if the [start, start + len) range is valid before reading/writing
3972 * NOTE: @start and @len are offset inside the eb, not logical address.
3974 * Caller should not touch the dst/src memory if this function returns error.
3976 static inline int check_eb_range(const struct extent_buffer *eb,
3977 unsigned long start, unsigned long len)
3979 unsigned long offset;
3981 /* start, start + len should not go beyond eb->len nor overflow */
3982 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3983 return report_eb_range(eb, start, len);
3988 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3989 unsigned long start, unsigned long len)
3995 char *dst = (char *)dstv;
3996 unsigned long i = get_eb_page_index(start);
3998 if (check_eb_range(eb, start, len)) {
4000 * Invalid range hit, reset the memory, so callers won't get
4001 * some random garbage for their uninitialzed memory.
4003 memset(dstv, 0, len);
4007 offset = get_eb_offset_in_page(eb, start);
4010 page = eb->pages[i];
4012 cur = min(len, (PAGE_SIZE - offset));
4013 kaddr = page_address(page);
4014 memcpy(dst, kaddr + offset, cur);
4023 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4025 unsigned long start, unsigned long len)
4031 char __user *dst = (char __user *)dstv;
4032 unsigned long i = get_eb_page_index(start);
4035 WARN_ON(start > eb->len);
4036 WARN_ON(start + len > eb->start + eb->len);
4038 offset = get_eb_offset_in_page(eb, start);
4041 page = eb->pages[i];
4043 cur = min(len, (PAGE_SIZE - offset));
4044 kaddr = page_address(page);
4045 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4059 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4060 unsigned long start, unsigned long len)
4066 char *ptr = (char *)ptrv;
4067 unsigned long i = get_eb_page_index(start);
4070 if (check_eb_range(eb, start, len))
4073 offset = get_eb_offset_in_page(eb, start);
4076 page = eb->pages[i];
4078 cur = min(len, (PAGE_SIZE - offset));
4080 kaddr = page_address(page);
4081 ret = memcmp(ptr, kaddr + offset, cur);
4094 * Check that the extent buffer is uptodate.
4096 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4097 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4099 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4102 struct btrfs_fs_info *fs_info = eb->fs_info;
4105 * If we are using the commit root we could potentially clear a page
4106 * Uptodate while we're using the extent buffer that we've previously
4107 * looked up. We don't want to complain in this case, as the page was
4108 * valid before, we just didn't write it out. Instead we want to catch
4109 * the case where we didn't actually read the block properly, which
4110 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4112 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4115 if (fs_info->nodesize < PAGE_SIZE) {
4116 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4117 eb->start, eb->len)))
4118 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4120 WARN_ON(!PageUptodate(page));
4124 static void __write_extent_buffer(const struct extent_buffer *eb,
4125 const void *srcv, unsigned long start,
4126 unsigned long len, bool use_memmove)
4132 char *src = (char *)srcv;
4133 unsigned long i = get_eb_page_index(start);
4134 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4135 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4137 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4139 if (check_eb_range(eb, start, len))
4142 offset = get_eb_offset_in_page(eb, start);
4145 page = eb->pages[i];
4147 assert_eb_page_uptodate(eb, page);
4149 cur = min(len, PAGE_SIZE - offset);
4150 kaddr = page_address(page);
4152 memmove(kaddr + offset, src, cur);
4154 memcpy(kaddr + offset, src, cur);
4163 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4164 unsigned long start, unsigned long len)
4166 return __write_extent_buffer(eb, srcv, start, len, false);
4169 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4170 unsigned long start, unsigned long len)
4172 unsigned long cur = start;
4174 while (cur < start + len) {
4175 unsigned long index = get_eb_page_index(cur);
4176 unsigned int offset = get_eb_offset_in_page(eb, cur);
4177 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4178 struct page *page = eb->pages[index];
4180 assert_eb_page_uptodate(eb, page);
4181 memset(page_address(page) + offset, c, cur_len);
4187 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4190 if (check_eb_range(eb, start, len))
4192 return memset_extent_buffer(eb, 0, start, len);
4195 void copy_extent_buffer_full(const struct extent_buffer *dst,
4196 const struct extent_buffer *src)
4198 unsigned long cur = 0;
4200 ASSERT(dst->len == src->len);
4202 while (cur < src->len) {
4203 unsigned long index = get_eb_page_index(cur);
4204 unsigned long offset = get_eb_offset_in_page(src, cur);
4205 unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4206 void *addr = page_address(src->pages[index]) + offset;
4208 write_extent_buffer(dst, addr, cur, cur_len);
4214 void copy_extent_buffer(const struct extent_buffer *dst,
4215 const struct extent_buffer *src,
4216 unsigned long dst_offset, unsigned long src_offset,
4219 u64 dst_len = dst->len;
4224 unsigned long i = get_eb_page_index(dst_offset);
4226 if (check_eb_range(dst, dst_offset, len) ||
4227 check_eb_range(src, src_offset, len))
4230 WARN_ON(src->len != dst_len);
4232 offset = get_eb_offset_in_page(dst, dst_offset);
4235 page = dst->pages[i];
4236 assert_eb_page_uptodate(dst, page);
4238 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4240 kaddr = page_address(page);
4241 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4251 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4253 * @eb: the extent buffer
4254 * @start: offset of the bitmap item in the extent buffer
4256 * @page_index: return index of the page in the extent buffer that contains the
4258 * @page_offset: return offset into the page given by page_index
4260 * This helper hides the ugliness of finding the byte in an extent buffer which
4261 * contains a given bit.
4263 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4264 unsigned long start, unsigned long nr,
4265 unsigned long *page_index,
4266 size_t *page_offset)
4268 size_t byte_offset = BIT_BYTE(nr);
4272 * The byte we want is the offset of the extent buffer + the offset of
4273 * the bitmap item in the extent buffer + the offset of the byte in the
4276 offset = start + offset_in_page(eb->start) + byte_offset;
4278 *page_index = offset >> PAGE_SHIFT;
4279 *page_offset = offset_in_page(offset);
4283 * Determine whether a bit in a bitmap item is set.
4285 * @eb: the extent buffer
4286 * @start: offset of the bitmap item in the extent buffer
4287 * @nr: bit number to test
4289 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4297 eb_bitmap_offset(eb, start, nr, &i, &offset);
4298 page = eb->pages[i];
4299 assert_eb_page_uptodate(eb, page);
4300 kaddr = page_address(page);
4301 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4304 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4306 unsigned long index = get_eb_page_index(bytenr);
4308 if (check_eb_range(eb, bytenr, 1))
4310 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4314 * Set an area of a bitmap to 1.
4316 * @eb: the extent buffer
4317 * @start: offset of the bitmap item in the extent buffer
4318 * @pos: bit number of the first bit
4319 * @len: number of bits to set
4321 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4322 unsigned long pos, unsigned long len)
4324 unsigned int first_byte = start + BIT_BYTE(pos);
4325 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4326 const bool same_byte = (first_byte == last_byte);
4327 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4331 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4333 /* Handle the first byte. */
4334 kaddr = extent_buffer_get_byte(eb, first_byte);
4339 /* Handle the byte aligned part. */
4340 ASSERT(first_byte + 1 <= last_byte);
4341 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4343 /* Handle the last byte. */
4344 kaddr = extent_buffer_get_byte(eb, last_byte);
4345 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4350 * Clear an area of a bitmap.
4352 * @eb: the extent buffer
4353 * @start: offset of the bitmap item in the extent buffer
4354 * @pos: bit number of the first bit
4355 * @len: number of bits to clear
4357 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4358 unsigned long start, unsigned long pos,
4361 unsigned int first_byte = start + BIT_BYTE(pos);
4362 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4363 const bool same_byte = (first_byte == last_byte);
4364 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4368 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4370 /* Handle the first byte. */
4371 kaddr = extent_buffer_get_byte(eb, first_byte);
4376 /* Handle the byte aligned part. */
4377 ASSERT(first_byte + 1 <= last_byte);
4378 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4380 /* Handle the last byte. */
4381 kaddr = extent_buffer_get_byte(eb, last_byte);
4382 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4385 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4387 unsigned long distance = (src > dst) ? src - dst : dst - src;
4388 return distance < len;
4391 void memcpy_extent_buffer(const struct extent_buffer *dst,
4392 unsigned long dst_offset, unsigned long src_offset,
4395 unsigned long cur_off = 0;
4397 if (check_eb_range(dst, dst_offset, len) ||
4398 check_eb_range(dst, src_offset, len))
4401 while (cur_off < len) {
4402 unsigned long cur_src = cur_off + src_offset;
4403 unsigned long pg_index = get_eb_page_index(cur_src);
4404 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4405 unsigned long cur_len = min(src_offset + len - cur_src,
4406 PAGE_SIZE - pg_off);
4407 void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4408 const bool use_memmove = areas_overlap(src_offset + cur_off,
4409 dst_offset + cur_off, cur_len);
4411 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4417 void memmove_extent_buffer(const struct extent_buffer *dst,
4418 unsigned long dst_offset, unsigned long src_offset,
4421 unsigned long dst_end = dst_offset + len - 1;
4422 unsigned long src_end = src_offset + len - 1;
4424 if (check_eb_range(dst, dst_offset, len) ||
4425 check_eb_range(dst, src_offset, len))
4428 if (dst_offset < src_offset) {
4429 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4434 unsigned long src_i;
4436 size_t dst_off_in_page;
4437 size_t src_off_in_page;
4441 src_i = get_eb_page_index(src_end);
4443 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4444 src_off_in_page = get_eb_offset_in_page(dst, src_end);
4446 cur = min_t(unsigned long, len, src_off_in_page + 1);
4447 cur = min(cur, dst_off_in_page + 1);
4449 src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4451 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4454 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4463 #define GANG_LOOKUP_SIZE 16
4464 static struct extent_buffer *get_next_extent_buffer(
4465 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4467 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4468 struct extent_buffer *found = NULL;
4469 u64 page_start = page_offset(page);
4470 u64 cur = page_start;
4472 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4473 lockdep_assert_held(&fs_info->buffer_lock);
4475 while (cur < page_start + PAGE_SIZE) {
4479 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4480 (void **)gang, cur >> fs_info->sectorsize_bits,
4481 min_t(unsigned int, GANG_LOOKUP_SIZE,
4482 PAGE_SIZE / fs_info->nodesize));
4485 for (i = 0; i < ret; i++) {
4486 /* Already beyond page end */
4487 if (gang[i]->start >= page_start + PAGE_SIZE)
4490 if (gang[i]->start >= bytenr) {
4495 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4501 static int try_release_subpage_extent_buffer(struct page *page)
4503 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4504 u64 cur = page_offset(page);
4505 const u64 end = page_offset(page) + PAGE_SIZE;
4509 struct extent_buffer *eb = NULL;
4512 * Unlike try_release_extent_buffer() which uses page->private
4513 * to grab buffer, for subpage case we rely on radix tree, thus
4514 * we need to ensure radix tree consistency.
4516 * We also want an atomic snapshot of the radix tree, thus go
4517 * with spinlock rather than RCU.
4519 spin_lock(&fs_info->buffer_lock);
4520 eb = get_next_extent_buffer(fs_info, page, cur);
4522 /* No more eb in the page range after or at cur */
4523 spin_unlock(&fs_info->buffer_lock);
4526 cur = eb->start + eb->len;
4529 * The same as try_release_extent_buffer(), to ensure the eb
4530 * won't disappear out from under us.
4532 spin_lock(&eb->refs_lock);
4533 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4534 spin_unlock(&eb->refs_lock);
4535 spin_unlock(&fs_info->buffer_lock);
4538 spin_unlock(&fs_info->buffer_lock);
4541 * If tree ref isn't set then we know the ref on this eb is a
4542 * real ref, so just return, this eb will likely be freed soon
4545 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4546 spin_unlock(&eb->refs_lock);
4551 * Here we don't care about the return value, we will always
4552 * check the page private at the end. And
4553 * release_extent_buffer() will release the refs_lock.
4555 release_extent_buffer(eb);
4558 * Finally to check if we have cleared page private, as if we have
4559 * released all ebs in the page, the page private should be cleared now.
4561 spin_lock(&page->mapping->private_lock);
4562 if (!PagePrivate(page))
4566 spin_unlock(&page->mapping->private_lock);
4571 int try_release_extent_buffer(struct page *page)
4573 struct extent_buffer *eb;
4575 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4576 return try_release_subpage_extent_buffer(page);
4579 * We need to make sure nobody is changing page->private, as we rely on
4580 * page->private as the pointer to extent buffer.
4582 spin_lock(&page->mapping->private_lock);
4583 if (!PagePrivate(page)) {
4584 spin_unlock(&page->mapping->private_lock);
4588 eb = (struct extent_buffer *)page->private;
4592 * This is a little awful but should be ok, we need to make sure that
4593 * the eb doesn't disappear out from under us while we're looking at
4596 spin_lock(&eb->refs_lock);
4597 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4598 spin_unlock(&eb->refs_lock);
4599 spin_unlock(&page->mapping->private_lock);
4602 spin_unlock(&page->mapping->private_lock);
4605 * If tree ref isn't set then we know the ref on this eb is a real ref,
4606 * so just return, this page will likely be freed soon anyway.
4608 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4609 spin_unlock(&eb->refs_lock);
4613 return release_extent_buffer(eb);
4617 * btrfs_readahead_tree_block - attempt to readahead a child block
4618 * @fs_info: the fs_info
4619 * @bytenr: bytenr to read
4620 * @owner_root: objectid of the root that owns this eb
4621 * @gen: generation for the uptodate check, can be 0
4622 * @level: level for the eb
4624 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4625 * normal uptodate check of the eb, without checking the generation. If we have
4626 * to read the block we will not block on anything.
4628 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4629 u64 bytenr, u64 owner_root, u64 gen, int level)
4631 struct btrfs_tree_parent_check check = {
4636 struct extent_buffer *eb;
4639 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4643 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4644 free_extent_buffer(eb);
4648 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4650 free_extent_buffer_stale(eb);
4652 free_extent_buffer(eb);
4656 * btrfs_readahead_node_child - readahead a node's child block
4657 * @node: parent node we're reading from
4658 * @slot: slot in the parent node for the child we want to read
4660 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4661 * the slot in the node provided.
4663 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4665 btrfs_readahead_tree_block(node->fs_info,
4666 btrfs_node_blockptr(node, slot),
4667 btrfs_header_owner(node),
4668 btrfs_node_ptr_generation(node, slot),
4669 btrfs_header_level(node) - 1);