1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
22 #include "btrfs_inode.h"
24 #include "check-integrity.h"
26 #include "rcu-string.h"
31 #include "block-group.h"
32 #include "compression.h"
34 #include "accessors.h"
35 #include "file-item.h"
37 #include "dev-replace.h"
39 #include "transaction.h"
41 static struct kmem_cache *extent_buffer_cache;
43 #ifdef CONFIG_BTRFS_DEBUG
44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
46 struct btrfs_fs_info *fs_info = eb->fs_info;
49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
56 struct btrfs_fs_info *fs_info = eb->fs_info;
59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 list_del(&eb->leak_list);
61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
66 struct extent_buffer *eb;
70 * If we didn't get into open_ctree our allocated_ebs will not be
71 * initialized, so just skip this.
73 if (!fs_info->allocated_ebs.next)
76 WARN_ON(!list_empty(&fs_info->allocated_ebs));
77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 while (!list_empty(&fs_info->allocated_ebs)) {
79 eb = list_first_entry(&fs_info->allocated_ebs,
80 struct extent_buffer, leak_list);
82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 btrfs_header_owner(eb));
85 list_del(&eb->leak_list);
86 kmem_cache_free(extent_buffer_cache, eb);
88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
91 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
92 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
96 * Structure to record info about the bio being assembled, and other info like
97 * how many bytes are there before stripe/ordered extent boundary.
99 struct btrfs_bio_ctrl {
100 struct btrfs_bio *bbio;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
104 btrfs_bio_end_io_t end_io_func;
105 struct writeback_control *wbc;
108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
110 struct btrfs_bio *bbio = bio_ctrl->bbio;
115 /* Caller should ensure the bio has at least some range added */
116 ASSERT(bbio->bio.bi_iter.bi_size);
118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
120 btrfs_submit_compressed_read(bbio);
122 btrfs_submit_bio(bbio, 0);
124 /* The bbio is owned by the end_io handler now */
125 bio_ctrl->bbio = NULL;
129 * Submit or fail the current bio in the bio_ctrl structure.
131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
133 struct btrfs_bio *bbio = bio_ctrl->bbio;
140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
141 /* The bio is owned by the end_io handler now */
142 bio_ctrl->bbio = NULL;
144 submit_one_bio(bio_ctrl);
148 int __init extent_buffer_init_cachep(void)
150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
151 sizeof(struct extent_buffer), 0,
152 SLAB_MEM_SPREAD, NULL);
153 if (!extent_buffer_cache)
159 void __cold extent_buffer_free_cachep(void)
162 * Make sure all delayed rcu free are flushed before we
166 kmem_cache_destroy(extent_buffer_cache);
169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
171 unsigned long index = start >> PAGE_SHIFT;
172 unsigned long end_index = end >> PAGE_SHIFT;
175 while (index <= end_index) {
176 page = find_get_page(inode->i_mapping, index);
177 BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 clear_page_dirty_for_io(page);
184 static void process_one_page(struct btrfs_fs_info *fs_info,
185 struct page *page, struct page *locked_page,
186 unsigned long page_ops, u64 start, u64 end)
190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191 len = end + 1 - start;
193 if (page_ops & PAGE_SET_ORDERED)
194 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
195 if (page_ops & PAGE_START_WRITEBACK) {
196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
197 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
199 if (page_ops & PAGE_END_WRITEBACK)
200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
202 if (page != locked_page && (page_ops & PAGE_UNLOCK))
203 btrfs_page_end_writer_lock(fs_info, page, start, len);
206 static void __process_pages_contig(struct address_space *mapping,
207 struct page *locked_page, u64 start, u64 end,
208 unsigned long page_ops)
210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
211 pgoff_t start_index = start >> PAGE_SHIFT;
212 pgoff_t end_index = end >> PAGE_SHIFT;
213 pgoff_t index = start_index;
214 struct folio_batch fbatch;
217 folio_batch_init(&fbatch);
218 while (index <= end_index) {
221 found_folios = filemap_get_folios_contig(mapping, &index,
223 for (i = 0; i < found_folios; i++) {
224 struct folio *folio = fbatch.folios[i];
226 process_one_page(fs_info, &folio->page, locked_page,
227 page_ops, start, end);
229 folio_batch_release(&fbatch);
234 static noinline void __unlock_for_delalloc(struct inode *inode,
235 struct page *locked_page,
238 unsigned long index = start >> PAGE_SHIFT;
239 unsigned long end_index = end >> PAGE_SHIFT;
242 if (index == locked_page->index && end_index == index)
245 __process_pages_contig(inode->i_mapping, locked_page, start, end,
249 static noinline int lock_delalloc_pages(struct inode *inode,
250 struct page *locked_page,
254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255 struct address_space *mapping = inode->i_mapping;
256 pgoff_t start_index = start >> PAGE_SHIFT;
257 pgoff_t end_index = end >> PAGE_SHIFT;
258 pgoff_t index = start_index;
259 u64 processed_end = start;
260 struct folio_batch fbatch;
262 if (index == locked_page->index && index == end_index)
265 folio_batch_init(&fbatch);
266 while (index <= end_index) {
267 unsigned int found_folios, i;
269 found_folios = filemap_get_folios_contig(mapping, &index,
271 if (found_folios == 0)
274 for (i = 0; i < found_folios; i++) {
275 struct page *page = &fbatch.folios[i]->page;
276 u32 len = end + 1 - start;
278 if (page == locked_page)
281 if (btrfs_page_start_writer_lock(fs_info, page, start,
285 if (!PageDirty(page) || page->mapping != mapping) {
286 btrfs_page_end_writer_lock(fs_info, page, start,
291 processed_end = page_offset(page) + PAGE_SIZE - 1;
293 folio_batch_release(&fbatch);
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 __unlock_for_delalloc(inode, locked_page, start, processed_end);
306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307 * more than @max_bytes.
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 struct page *locked_page, u64 *start,
325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
334 struct extent_state *cached_state = NULL;
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
341 /* The range should at least cover part of the page */
342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 orig_end <= page_offset(locked_page)));
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 *start = delalloc_start;
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
355 free_extent_state(cached_state);
360 * start comes from the offset of locked_page. We have to lock
361 * pages in order, so we can't process delalloc bytes before
364 if (delalloc_start < *start)
365 delalloc_start = *start;
368 * make sure to limit the number of pages we try to lock down
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
373 /* step two, lock all the pages after the page that has start */
374 ret = lock_delalloc_pages(inode, locked_page,
375 delalloc_start, delalloc_end);
376 ASSERT(!ret || ret == -EAGAIN);
377 if (ret == -EAGAIN) {
378 /* some of the pages are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
381 free_extent_state(cached_state);
384 max_bytes = PAGE_SIZE;
393 /* step three, lock the state bits for the whole range */
394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
396 /* then test to make sure it is all still delalloc */
397 ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 EXTENT_DELALLOC, 1, cached_state);
400 unlock_extent(tree, delalloc_start, delalloc_end,
402 __unlock_for_delalloc(inode, locked_page,
403 delalloc_start, delalloc_end);
407 free_extent_state(cached_state);
408 *start = delalloc_start;
414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 struct page *locked_page,
416 u32 clear_bits, unsigned long page_ops)
418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 start, end, page_ops);
424 static bool btrfs_verify_page(struct page *page, u64 start)
426 if (!fsverity_active(page->mapping->host) ||
427 PageUptodate(page) ||
428 start >= i_size_read(page->mapping->host))
430 return fsverity_verify_page(page);
433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
437 ASSERT(page_offset(page) <= start &&
438 start + len <= page_offset(page) + PAGE_SIZE);
440 if (uptodate && btrfs_verify_page(page, start))
441 btrfs_page_set_uptodate(fs_info, page, start, len);
443 btrfs_page_clear_uptodate(fs_info, page, start, len);
445 if (!btrfs_is_subpage(fs_info, page))
448 btrfs_subpage_end_reader(fs_info, page, start, len);
452 * after a writepage IO is done, we need to:
453 * clear the uptodate bits on error
454 * clear the writeback bits in the extent tree for this IO
455 * end_page_writeback if the page has no more pending IO
457 * Scheduling is not allowed, so the extent state tree is expected
458 * to have one and only one object corresponding to this IO.
460 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
462 struct bio *bio = &bbio->bio;
463 int error = blk_status_to_errno(bio->bi_status);
464 struct bio_vec *bvec;
465 struct bvec_iter_all iter_all;
467 ASSERT(!bio_flagged(bio, BIO_CLONED));
468 bio_for_each_segment_all(bvec, bio, iter_all) {
469 struct page *page = bvec->bv_page;
470 struct inode *inode = page->mapping->host;
471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
472 const u32 sectorsize = fs_info->sectorsize;
473 u64 start = page_offset(page) + bvec->bv_offset;
474 u32 len = bvec->bv_len;
476 /* Our read/write should always be sector aligned. */
477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
479 "partial page write in btrfs with offset %u and length %u",
480 bvec->bv_offset, bvec->bv_len);
481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
483 "incomplete page write with offset %u and length %u",
484 bvec->bv_offset, bvec->bv_len);
486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
488 btrfs_page_clear_uptodate(fs_info, page, start, len);
489 mapping_set_error(page->mapping, error);
491 btrfs_page_clear_writeback(fs_info, page, start, len);
498 * Record previously processed extent range
500 * For endio_readpage_release_extent() to handle a full extent range, reducing
501 * the extent io operations.
503 struct processed_extent {
504 struct btrfs_inode *inode;
505 /* Start of the range in @inode */
507 /* End of the range in @inode */
513 * Try to release processed extent range
515 * May not release the extent range right now if the current range is
516 * contiguous to processed extent.
518 * Will release processed extent when any of @inode, @uptodate, the range is
519 * no longer contiguous to the processed range.
521 * Passing @inode == NULL will force processed extent to be released.
523 static void endio_readpage_release_extent(struct processed_extent *processed,
524 struct btrfs_inode *inode, u64 start, u64 end,
527 struct extent_state *cached = NULL;
528 struct extent_io_tree *tree;
530 /* The first extent, initialize @processed */
531 if (!processed->inode)
535 * Contiguous to processed extent, just uptodate the end.
537 * Several things to notice:
539 * - bio can be merged as long as on-disk bytenr is contiguous
540 * This means we can have page belonging to other inodes, thus need to
541 * check if the inode still matches.
542 * - bvec can contain range beyond current page for multi-page bvec
543 * Thus we need to do processed->end + 1 >= start check
545 if (processed->inode == inode && processed->uptodate == uptodate &&
546 processed->end + 1 >= start && end >= processed->end) {
547 processed->end = end;
551 tree = &processed->inode->io_tree;
553 * Now we don't have range contiguous to the processed range, release
554 * the processed range now.
556 unlock_extent(tree, processed->start, processed->end, &cached);
559 /* Update processed to current range */
560 processed->inode = inode;
561 processed->start = start;
562 processed->end = end;
563 processed->uptodate = uptodate;
566 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
568 ASSERT(PageLocked(page));
569 if (!btrfs_is_subpage(fs_info, page))
572 ASSERT(PagePrivate(page));
573 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
577 * after a readpage IO is done, we need to:
578 * clear the uptodate bits on error
579 * set the uptodate bits if things worked
580 * set the page up to date if all extents in the tree are uptodate
581 * clear the lock bit in the extent tree
582 * unlock the page if there are no other extents locked for it
584 * Scheduling is not allowed, so the extent state tree is expected
585 * to have one and only one object corresponding to this IO.
587 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
589 struct bio *bio = &bbio->bio;
590 struct bio_vec *bvec;
591 struct processed_extent processed = { 0 };
593 * The offset to the beginning of a bio, since one bio can never be
594 * larger than UINT_MAX, u32 here is enough.
597 struct bvec_iter_all iter_all;
599 ASSERT(!bio_flagged(bio, BIO_CLONED));
600 bio_for_each_segment_all(bvec, bio, iter_all) {
601 bool uptodate = !bio->bi_status;
602 struct page *page = bvec->bv_page;
603 struct inode *inode = page->mapping->host;
604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
605 const u32 sectorsize = fs_info->sectorsize;
611 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
612 bio->bi_iter.bi_sector, bio->bi_status,
616 * We always issue full-sector reads, but if some block in a
617 * page fails to read, blk_update_request() will advance
618 * bv_offset and adjust bv_len to compensate. Print a warning
619 * for unaligned offsets, and an error if they don't add up to
622 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
624 "partial page read in btrfs with offset %u and length %u",
625 bvec->bv_offset, bvec->bv_len);
626 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
629 "incomplete page read with offset %u and length %u",
630 bvec->bv_offset, bvec->bv_len);
632 start = page_offset(page) + bvec->bv_offset;
633 end = start + bvec->bv_len - 1;
636 if (likely(uptodate)) {
637 loff_t i_size = i_size_read(inode);
638 pgoff_t end_index = i_size >> PAGE_SHIFT;
641 * Zero out the remaining part if this range straddles
644 * Here we should only zero the range inside the bvec,
645 * not touch anything else.
647 * NOTE: i_size is exclusive while end is inclusive.
649 if (page->index == end_index && i_size <= end) {
650 u32 zero_start = max(offset_in_page(i_size),
651 offset_in_page(start));
653 zero_user_segment(page, zero_start,
654 offset_in_page(end) + 1);
658 /* Update page status and unlock. */
659 end_page_read(page, uptodate, start, len);
660 endio_readpage_release_extent(&processed, BTRFS_I(inode),
661 start, end, uptodate);
663 ASSERT(bio_offset + len > bio_offset);
667 /* Release the last extent */
668 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
673 * Populate every free slot in a provided array with pages.
675 * @nr_pages: number of pages to allocate
676 * @page_array: the array to fill with pages; any existing non-null entries in
677 * the array will be skipped
679 * Return: 0 if all pages were able to be allocated;
680 * -ENOMEM otherwise, and the caller is responsible for freeing all
681 * non-null page pointers in the array.
683 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
685 unsigned int allocated;
687 for (allocated = 0; allocated < nr_pages;) {
688 unsigned int last = allocated;
690 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
692 if (allocated == nr_pages)
696 * During this iteration, no page could be allocated, even
697 * though alloc_pages_bulk_array() falls back to alloc_page()
698 * if it could not bulk-allocate. So we must be out of memory.
700 if (allocated == last)
703 memalloc_retry_wait(GFP_NOFS);
708 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
709 struct page *page, u64 disk_bytenr,
710 unsigned int pg_offset)
712 struct bio *bio = &bio_ctrl->bbio->bio;
713 struct bio_vec *bvec = bio_last_bvec_all(bio);
714 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
716 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
718 * For compression, all IO should have its logical bytenr set
719 * to the starting bytenr of the compressed extent.
721 return bio->bi_iter.bi_sector == sector;
725 * The contig check requires the following conditions to be met:
727 * 1) The pages are belonging to the same inode
728 * This is implied by the call chain.
730 * 2) The range has adjacent logical bytenr
732 * 3) The range has adjacent file offset
733 * This is required for the usage of btrfs_bio->file_offset.
735 return bio_end_sector(bio) == sector &&
736 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
737 page_offset(page) + pg_offset;
740 static void alloc_new_bio(struct btrfs_inode *inode,
741 struct btrfs_bio_ctrl *bio_ctrl,
742 u64 disk_bytenr, u64 file_offset)
744 struct btrfs_fs_info *fs_info = inode->root->fs_info;
745 struct btrfs_bio *bbio;
747 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
748 bio_ctrl->end_io_func, NULL);
749 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
751 bbio->file_offset = file_offset;
752 bio_ctrl->bbio = bbio;
753 bio_ctrl->len_to_oe_boundary = U32_MAX;
755 /* Limit data write bios to the ordered boundary. */
757 struct btrfs_ordered_extent *ordered;
759 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
761 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
762 ordered->file_offset +
763 ordered->disk_num_bytes - file_offset);
764 bbio->ordered = ordered;
768 * Pick the last added device to support cgroup writeback. For
769 * multi-device file systems this means blk-cgroup policies have
770 * to always be set on the last added/replaced device.
771 * This is a bit odd but has been like that for a long time.
773 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
774 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
779 * @disk_bytenr: logical bytenr where the write will be
780 * @page: page to add to the bio
781 * @size: portion of page that we want to write to
782 * @pg_offset: offset of the new bio or to check whether we are adding
783 * a contiguous page to the previous one
785 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
786 * new one in @bio_ctrl->bbio.
787 * The mirror number for this IO should already be initizlied in
788 * @bio_ctrl->mirror_num.
790 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
791 u64 disk_bytenr, struct page *page,
792 size_t size, unsigned long pg_offset)
794 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
796 ASSERT(pg_offset + size <= PAGE_SIZE);
797 ASSERT(bio_ctrl->end_io_func);
799 if (bio_ctrl->bbio &&
800 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
801 submit_one_bio(bio_ctrl);
806 /* Allocate new bio if needed */
807 if (!bio_ctrl->bbio) {
808 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
809 page_offset(page) + pg_offset);
812 /* Cap to the current ordered extent boundary if there is one. */
813 if (len > bio_ctrl->len_to_oe_boundary) {
814 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
815 ASSERT(is_data_inode(&inode->vfs_inode));
816 len = bio_ctrl->len_to_oe_boundary;
819 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
820 /* bio full: move on to a new one */
821 submit_one_bio(bio_ctrl);
826 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
833 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
834 * sector aligned. alloc_new_bio() then sets it to the end of
835 * our ordered extent for writes into zoned devices.
837 * When len_to_oe_boundary is tracking an ordered extent, we
838 * trust the ordered extent code to align things properly, and
839 * the check above to cap our write to the ordered extent
840 * boundary is correct.
842 * When len_to_oe_boundary is U32_MAX, the cap above would
843 * result in a 4095 byte IO for the last page right before
844 * we hit the bio limit of UINT_MAX. bio_add_page() has all
845 * the checks required to make sure we don't overflow the bio,
846 * and we should just ignore len_to_oe_boundary completely
847 * unless we're using it to track an ordered extent.
849 * It's pretty hard to make a bio sized U32_MAX, but it can
850 * happen when the page cache is able to feed us contiguous
851 * pages for large extents.
853 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
854 bio_ctrl->len_to_oe_boundary -= len;
856 /* Ordered extent boundary: move on to a new bio. */
857 if (bio_ctrl->len_to_oe_boundary == 0)
858 submit_one_bio(bio_ctrl);
862 static int attach_extent_buffer_page(struct extent_buffer *eb,
864 struct btrfs_subpage *prealloc)
866 struct btrfs_fs_info *fs_info = eb->fs_info;
870 * If the page is mapped to btree inode, we should hold the private
871 * lock to prevent race.
872 * For cloned or dummy extent buffers, their pages are not mapped and
873 * will not race with any other ebs.
876 lockdep_assert_held(&page->mapping->private_lock);
878 if (fs_info->nodesize >= PAGE_SIZE) {
879 if (!PagePrivate(page))
880 attach_page_private(page, eb);
882 WARN_ON(page->private != (unsigned long)eb);
886 /* Already mapped, just free prealloc */
887 if (PagePrivate(page)) {
888 btrfs_free_subpage(prealloc);
893 /* Has preallocated memory for subpage */
894 attach_page_private(page, prealloc);
896 /* Do new allocation to attach subpage */
897 ret = btrfs_attach_subpage(fs_info, page,
898 BTRFS_SUBPAGE_METADATA);
902 int set_page_extent_mapped(struct page *page)
904 struct btrfs_fs_info *fs_info;
906 ASSERT(page->mapping);
908 if (PagePrivate(page))
911 fs_info = btrfs_sb(page->mapping->host->i_sb);
913 if (btrfs_is_subpage(fs_info, page))
914 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
916 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
920 void clear_page_extent_mapped(struct page *page)
922 struct btrfs_fs_info *fs_info;
924 ASSERT(page->mapping);
926 if (!PagePrivate(page))
929 fs_info = btrfs_sb(page->mapping->host->i_sb);
930 if (btrfs_is_subpage(fs_info, page))
931 return btrfs_detach_subpage(fs_info, page);
933 detach_page_private(page);
936 static struct extent_map *
937 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
938 u64 start, u64 len, struct extent_map **em_cached)
940 struct extent_map *em;
942 if (em_cached && *em_cached) {
944 if (extent_map_in_tree(em) && start >= em->start &&
945 start < extent_map_end(em)) {
946 refcount_inc(&em->refs);
954 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
955 if (em_cached && !IS_ERR(em)) {
957 refcount_inc(&em->refs);
963 * basic readpage implementation. Locked extent state structs are inserted
964 * into the tree that are removed when the IO is done (by the end_io
966 * XXX JDM: This needs looking at to ensure proper page locking
967 * return 0 on success, otherwise return error
969 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
970 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
972 struct inode *inode = page->mapping->host;
973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
974 u64 start = page_offset(page);
975 const u64 end = start + PAGE_SIZE - 1;
978 u64 last_byte = i_size_read(inode);
980 struct extent_map *em;
982 size_t pg_offset = 0;
984 size_t blocksize = inode->i_sb->s_blocksize;
985 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
987 ret = set_page_extent_mapped(page);
989 unlock_extent(tree, start, end, NULL);
994 if (page->index == last_byte >> PAGE_SHIFT) {
995 size_t zero_offset = offset_in_page(last_byte);
998 iosize = PAGE_SIZE - zero_offset;
999 memzero_page(page, zero_offset, iosize);
1002 bio_ctrl->end_io_func = end_bio_extent_readpage;
1003 begin_page_read(fs_info, page);
1004 while (cur <= end) {
1005 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1006 bool force_bio_submit = false;
1009 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1010 if (cur >= last_byte) {
1011 iosize = PAGE_SIZE - pg_offset;
1012 memzero_page(page, pg_offset, iosize);
1013 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1014 end_page_read(page, true, cur, iosize);
1017 em = __get_extent_map(inode, page, pg_offset, cur,
1018 end - cur + 1, em_cached);
1020 unlock_extent(tree, cur, end, NULL);
1021 end_page_read(page, false, cur, end + 1 - cur);
1024 extent_offset = cur - em->start;
1025 BUG_ON(extent_map_end(em) <= cur);
1028 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1029 compress_type = em->compress_type;
1031 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1032 iosize = ALIGN(iosize, blocksize);
1033 if (compress_type != BTRFS_COMPRESS_NONE)
1034 disk_bytenr = em->block_start;
1036 disk_bytenr = em->block_start + extent_offset;
1037 block_start = em->block_start;
1038 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1039 block_start = EXTENT_MAP_HOLE;
1042 * If we have a file range that points to a compressed extent
1043 * and it's followed by a consecutive file range that points
1044 * to the same compressed extent (possibly with a different
1045 * offset and/or length, so it either points to the whole extent
1046 * or only part of it), we must make sure we do not submit a
1047 * single bio to populate the pages for the 2 ranges because
1048 * this makes the compressed extent read zero out the pages
1049 * belonging to the 2nd range. Imagine the following scenario:
1052 * [0 - 8K] [8K - 24K]
1055 * points to extent X, points to extent X,
1056 * offset 4K, length of 8K offset 0, length 16K
1058 * [extent X, compressed length = 4K uncompressed length = 16K]
1060 * If the bio to read the compressed extent covers both ranges,
1061 * it will decompress extent X into the pages belonging to the
1062 * first range and then it will stop, zeroing out the remaining
1063 * pages that belong to the other range that points to extent X.
1064 * So here we make sure we submit 2 bios, one for the first
1065 * range and another one for the third range. Both will target
1066 * the same physical extent from disk, but we can't currently
1067 * make the compressed bio endio callback populate the pages
1068 * for both ranges because each compressed bio is tightly
1069 * coupled with a single extent map, and each range can have
1070 * an extent map with a different offset value relative to the
1071 * uncompressed data of our extent and different lengths. This
1072 * is a corner case so we prioritize correctness over
1073 * non-optimal behavior (submitting 2 bios for the same extent).
1075 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1076 prev_em_start && *prev_em_start != (u64)-1 &&
1077 *prev_em_start != em->start)
1078 force_bio_submit = true;
1081 *prev_em_start = em->start;
1083 free_extent_map(em);
1086 /* we've found a hole, just zero and go on */
1087 if (block_start == EXTENT_MAP_HOLE) {
1088 memzero_page(page, pg_offset, iosize);
1090 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1091 end_page_read(page, true, cur, iosize);
1093 pg_offset += iosize;
1096 /* the get_extent function already copied into the page */
1097 if (block_start == EXTENT_MAP_INLINE) {
1098 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1099 end_page_read(page, true, cur, iosize);
1101 pg_offset += iosize;
1105 if (bio_ctrl->compress_type != compress_type) {
1106 submit_one_bio(bio_ctrl);
1107 bio_ctrl->compress_type = compress_type;
1110 if (force_bio_submit)
1111 submit_one_bio(bio_ctrl);
1112 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1115 pg_offset += iosize;
1121 int btrfs_read_folio(struct file *file, struct folio *folio)
1123 struct page *page = &folio->page;
1124 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1125 u64 start = page_offset(page);
1126 u64 end = start + PAGE_SIZE - 1;
1127 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1130 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1132 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1134 * If btrfs_do_readpage() failed we will want to submit the assembled
1135 * bio to do the cleanup.
1137 submit_one_bio(&bio_ctrl);
1141 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1143 struct extent_map **em_cached,
1144 struct btrfs_bio_ctrl *bio_ctrl,
1147 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1150 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1152 for (index = 0; index < nr_pages; index++) {
1153 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1155 put_page(pages[index]);
1160 * helper for __extent_writepage, doing all of the delayed allocation setup.
1162 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1163 * to write the page (copy into inline extent). In this case the IO has
1164 * been started and the page is already unlocked.
1166 * This returns 0 if all went well (page still locked)
1167 * This returns < 0 if there were errors (page still locked)
1169 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1170 struct page *page, struct writeback_control *wbc)
1172 const u64 page_start = page_offset(page);
1173 const u64 page_end = page_start + PAGE_SIZE - 1;
1174 u64 delalloc_start = page_start;
1175 u64 delalloc_end = page_end;
1176 u64 delalloc_to_write = 0;
1179 while (delalloc_start < page_end) {
1180 delalloc_end = page_end;
1181 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1182 &delalloc_start, &delalloc_end)) {
1183 delalloc_start = delalloc_end + 1;
1187 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1192 delalloc_start = delalloc_end + 1;
1196 * delalloc_end is already one less than the total length, so
1197 * we don't subtract one from PAGE_SIZE
1199 delalloc_to_write +=
1200 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1203 * If btrfs_run_dealloc_range() already started I/O and unlocked
1204 * the pages, we just need to account for them here.
1207 wbc->nr_to_write -= delalloc_to_write;
1211 if (wbc->nr_to_write < delalloc_to_write) {
1214 if (delalloc_to_write < thresh * 2)
1215 thresh = delalloc_to_write;
1216 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1224 * Find the first byte we need to write.
1226 * For subpage, one page can contain several sectors, and
1227 * __extent_writepage_io() will just grab all extent maps in the page
1228 * range and try to submit all non-inline/non-compressed extents.
1230 * This is a big problem for subpage, we shouldn't re-submit already written
1232 * This function will lookup subpage dirty bit to find which range we really
1235 * Return the next dirty range in [@start, @end).
1236 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1238 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1239 struct page *page, u64 *start, u64 *end)
1241 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1242 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1243 u64 orig_start = *start;
1244 /* Declare as unsigned long so we can use bitmap ops */
1245 unsigned long flags;
1246 int range_start_bit;
1250 * For regular sector size == page size case, since one page only
1251 * contains one sector, we return the page offset directly.
1253 if (!btrfs_is_subpage(fs_info, page)) {
1254 *start = page_offset(page);
1255 *end = page_offset(page) + PAGE_SIZE;
1259 range_start_bit = spi->dirty_offset +
1260 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1262 /* We should have the page locked, but just in case */
1263 spin_lock_irqsave(&subpage->lock, flags);
1264 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1265 spi->dirty_offset + spi->bitmap_nr_bits);
1266 spin_unlock_irqrestore(&subpage->lock, flags);
1268 range_start_bit -= spi->dirty_offset;
1269 range_end_bit -= spi->dirty_offset;
1271 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1272 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1276 * helper for __extent_writepage. This calls the writepage start hooks,
1277 * and does the loop to map the page into extents and bios.
1279 * We return 1 if the IO is started and the page is unlocked,
1280 * 0 if all went well (page still locked)
1281 * < 0 if there were errors (page still locked)
1283 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1285 struct btrfs_bio_ctrl *bio_ctrl,
1289 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1290 u64 cur = page_offset(page);
1291 u64 end = cur + PAGE_SIZE - 1;
1294 struct extent_map *em;
1298 ret = btrfs_writepage_cow_fixup(page);
1300 /* Fixup worker will requeue */
1301 redirty_page_for_writepage(bio_ctrl->wbc, page);
1306 bio_ctrl->end_io_func = end_bio_extent_writepage;
1307 while (cur <= end) {
1308 u32 len = end - cur + 1;
1311 u64 dirty_range_start = cur;
1312 u64 dirty_range_end;
1315 if (cur >= i_size) {
1316 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1319 * This range is beyond i_size, thus we don't need to
1320 * bother writing back.
1321 * But we still need to clear the dirty subpage bit, or
1322 * the next time the page gets dirtied, we will try to
1323 * writeback the sectors with subpage dirty bits,
1324 * causing writeback without ordered extent.
1326 btrfs_page_clear_dirty(fs_info, page, cur, len);
1330 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1332 if (cur < dirty_range_start) {
1333 cur = dirty_range_start;
1337 em = btrfs_get_extent(inode, NULL, 0, cur, len);
1339 ret = PTR_ERR_OR_ZERO(em);
1343 extent_offset = cur - em->start;
1344 em_end = extent_map_end(em);
1345 ASSERT(cur <= em_end);
1347 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1348 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1350 block_start = em->block_start;
1351 disk_bytenr = em->block_start + extent_offset;
1353 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1354 ASSERT(block_start != EXTENT_MAP_HOLE);
1355 ASSERT(block_start != EXTENT_MAP_INLINE);
1358 * Note that em_end from extent_map_end() and dirty_range_end from
1359 * find_next_dirty_byte() are all exclusive
1361 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1362 free_extent_map(em);
1365 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1366 if (!PageWriteback(page)) {
1367 btrfs_err(inode->root->fs_info,
1368 "page %lu not writeback, cur %llu end %llu",
1369 page->index, cur, end);
1373 * Although the PageDirty bit is cleared before entering this
1374 * function, subpage dirty bit is not cleared.
1375 * So clear subpage dirty bit here so next time we won't submit
1376 * page for range already written to disk.
1378 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1380 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1381 cur - page_offset(page));
1386 btrfs_page_assert_not_dirty(fs_info, page);
1392 * If we finish without problem, we should not only clear page dirty,
1393 * but also empty subpage dirty bits
1400 * the writepage semantics are similar to regular writepage. extent
1401 * records are inserted to lock ranges in the tree, and as dirty areas
1402 * are found, they are marked writeback. Then the lock bits are removed
1403 * and the end_io handler clears the writeback ranges
1405 * Return 0 if everything goes well.
1406 * Return <0 for error.
1408 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1410 struct folio *folio = page_folio(page);
1411 struct inode *inode = page->mapping->host;
1412 const u64 page_start = page_offset(page);
1416 loff_t i_size = i_size_read(inode);
1417 unsigned long end_index = i_size >> PAGE_SHIFT;
1419 trace___extent_writepage(page, inode, bio_ctrl->wbc);
1421 WARN_ON(!PageLocked(page));
1423 pg_offset = offset_in_page(i_size);
1424 if (page->index > end_index ||
1425 (page->index == end_index && !pg_offset)) {
1426 folio_invalidate(folio, 0, folio_size(folio));
1427 folio_unlock(folio);
1431 if (page->index == end_index)
1432 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1434 ret = set_page_extent_mapped(page);
1438 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1444 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1448 bio_ctrl->wbc->nr_to_write--;
1452 /* make sure the mapping tag for page dirty gets cleared */
1453 set_page_writeback(page);
1454 end_page_writeback(page);
1457 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1459 btrfs_page_clear_uptodate(btrfs_sb(inode->i_sb), page,
1460 page_start, PAGE_SIZE);
1461 mapping_set_error(page->mapping, ret);
1468 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1470 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1471 TASK_UNINTERRUPTIBLE);
1475 * Lock extent buffer status and pages for writeback.
1477 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1478 * extent buffer is not dirty)
1479 * Return %true is the extent buffer is submitted to bio.
1481 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1482 struct writeback_control *wbc)
1484 struct btrfs_fs_info *fs_info = eb->fs_info;
1487 btrfs_tree_lock(eb);
1488 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1489 btrfs_tree_unlock(eb);
1490 if (wbc->sync_mode != WB_SYNC_ALL)
1492 wait_on_extent_buffer_writeback(eb);
1493 btrfs_tree_lock(eb);
1497 * We need to do this to prevent races in people who check if the eb is
1498 * under IO since we can end up having no IO bits set for a short period
1501 spin_lock(&eb->refs_lock);
1502 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1503 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1504 spin_unlock(&eb->refs_lock);
1505 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1506 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1508 fs_info->dirty_metadata_batch);
1511 spin_unlock(&eb->refs_lock);
1513 btrfs_tree_unlock(eb);
1517 static void set_btree_ioerr(struct extent_buffer *eb)
1519 struct btrfs_fs_info *fs_info = eb->fs_info;
1521 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1524 * A read may stumble upon this buffer later, make sure that it gets an
1525 * error and knows there was an error.
1527 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1530 * We need to set the mapping with the io error as well because a write
1531 * error will flip the file system readonly, and then syncfs() will
1532 * return a 0 because we are readonly if we don't modify the err seq for
1535 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1538 * If writeback for a btree extent that doesn't belong to a log tree
1539 * failed, increment the counter transaction->eb_write_errors.
1540 * We do this because while the transaction is running and before it's
1541 * committing (when we call filemap_fdata[write|wait]_range against
1542 * the btree inode), we might have
1543 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1544 * returns an error or an error happens during writeback, when we're
1545 * committing the transaction we wouldn't know about it, since the pages
1546 * can be no longer dirty nor marked anymore for writeback (if a
1547 * subsequent modification to the extent buffer didn't happen before the
1548 * transaction commit), which makes filemap_fdata[write|wait]_range not
1549 * able to find the pages tagged with SetPageError at transaction
1550 * commit time. So if this happens we must abort the transaction,
1551 * otherwise we commit a super block with btree roots that point to
1552 * btree nodes/leafs whose content on disk is invalid - either garbage
1553 * or the content of some node/leaf from a past generation that got
1554 * cowed or deleted and is no longer valid.
1556 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1557 * not be enough - we need to distinguish between log tree extents vs
1558 * non-log tree extents, and the next filemap_fdatawait_range() call
1559 * will catch and clear such errors in the mapping - and that call might
1560 * be from a log sync and not from a transaction commit. Also, checking
1561 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1562 * not done and would not be reliable - the eb might have been released
1563 * from memory and reading it back again means that flag would not be
1564 * set (since it's a runtime flag, not persisted on disk).
1566 * Using the flags below in the btree inode also makes us achieve the
1567 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1568 * writeback for all dirty pages and before filemap_fdatawait_range()
1569 * is called, the writeback for all dirty pages had already finished
1570 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1571 * filemap_fdatawait_range() would return success, as it could not know
1572 * that writeback errors happened (the pages were no longer tagged for
1575 switch (eb->log_index) {
1577 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1580 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1583 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1586 BUG(); /* unexpected, logic error */
1591 * The endio specific version which won't touch any unsafe spinlock in endio
1594 static struct extent_buffer *find_extent_buffer_nolock(
1595 struct btrfs_fs_info *fs_info, u64 start)
1597 struct extent_buffer *eb;
1600 eb = radix_tree_lookup(&fs_info->buffer_radix,
1601 start >> fs_info->sectorsize_bits);
1602 if (eb && atomic_inc_not_zero(&eb->refs)) {
1610 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1612 struct extent_buffer *eb = bbio->private;
1613 struct btrfs_fs_info *fs_info = eb->fs_info;
1614 bool uptodate = !bbio->bio.bi_status;
1615 struct bvec_iter_all iter_all;
1616 struct bio_vec *bvec;
1620 set_btree_ioerr(eb);
1622 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1623 u64 start = eb->start + bio_offset;
1624 struct page *page = bvec->bv_page;
1625 u32 len = bvec->bv_len;
1628 btrfs_page_clear_uptodate(fs_info, page, start, len);
1629 btrfs_page_clear_writeback(fs_info, page, start, len);
1633 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1634 smp_mb__after_atomic();
1635 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1637 bio_put(&bbio->bio);
1640 static void prepare_eb_write(struct extent_buffer *eb)
1643 unsigned long start;
1646 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1648 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1649 nritems = btrfs_header_nritems(eb);
1650 if (btrfs_header_level(eb) > 0) {
1651 end = btrfs_node_key_ptr_offset(eb, nritems);
1652 memzero_extent_buffer(eb, end, eb->len - end);
1656 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1658 start = btrfs_item_nr_offset(eb, nritems);
1659 end = btrfs_item_nr_offset(eb, 0);
1661 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1663 end += btrfs_item_offset(eb, nritems - 1);
1664 memzero_extent_buffer(eb, start, end - start);
1668 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1669 struct writeback_control *wbc)
1671 struct btrfs_fs_info *fs_info = eb->fs_info;
1672 struct btrfs_bio *bbio;
1674 prepare_eb_write(eb);
1676 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1677 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1678 eb->fs_info, extent_buffer_write_end_io, eb);
1679 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1680 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1681 wbc_init_bio(wbc, &bbio->bio);
1682 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1683 bbio->file_offset = eb->start;
1684 if (fs_info->nodesize < PAGE_SIZE) {
1685 struct page *p = eb->pages[0];
1688 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1689 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1691 clear_page_dirty_for_io(p);
1694 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1695 wbc_account_cgroup_owner(wbc, p, eb->len);
1698 for (int i = 0; i < num_extent_pages(eb); i++) {
1699 struct page *p = eb->pages[i];
1702 clear_page_dirty_for_io(p);
1703 set_page_writeback(p);
1704 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1705 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1710 btrfs_submit_bio(bbio, 0);
1714 * Submit one subpage btree page.
1716 * The main difference to submit_eb_page() is:
1718 * For subpage, we don't rely on page locking at all.
1721 * We only flush bio if we may be unable to fit current extent buffers into
1724 * Return >=0 for the number of submitted extent buffers.
1725 * Return <0 for fatal error.
1727 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1729 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1731 u64 page_start = page_offset(page);
1733 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1735 /* Lock and write each dirty extent buffers in the range */
1736 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1737 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1738 struct extent_buffer *eb;
1739 unsigned long flags;
1743 * Take private lock to ensure the subpage won't be detached
1746 spin_lock(&page->mapping->private_lock);
1747 if (!PagePrivate(page)) {
1748 spin_unlock(&page->mapping->private_lock);
1751 spin_lock_irqsave(&subpage->lock, flags);
1752 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1753 subpage->bitmaps)) {
1754 spin_unlock_irqrestore(&subpage->lock, flags);
1755 spin_unlock(&page->mapping->private_lock);
1760 start = page_start + bit_start * fs_info->sectorsize;
1761 bit_start += sectors_per_node;
1764 * Here we just want to grab the eb without touching extra
1765 * spin locks, so call find_extent_buffer_nolock().
1767 eb = find_extent_buffer_nolock(fs_info, start);
1768 spin_unlock_irqrestore(&subpage->lock, flags);
1769 spin_unlock(&page->mapping->private_lock);
1772 * The eb has already reached 0 refs thus find_extent_buffer()
1773 * doesn't return it. We don't need to write back such eb
1779 if (lock_extent_buffer_for_io(eb, wbc)) {
1780 write_one_eb(eb, wbc);
1783 free_extent_buffer(eb);
1789 * Submit all page(s) of one extent buffer.
1791 * @page: the page of one extent buffer
1792 * @eb_context: to determine if we need to submit this page, if current page
1793 * belongs to this eb, we don't need to submit
1795 * The caller should pass each page in their bytenr order, and here we use
1796 * @eb_context to determine if we have submitted pages of one extent buffer.
1798 * If we have, we just skip until we hit a new page that doesn't belong to
1799 * current @eb_context.
1801 * If not, we submit all the page(s) of the extent buffer.
1803 * Return >0 if we have submitted the extent buffer successfully.
1804 * Return 0 if we don't need to submit the page, as it's already submitted by
1806 * Return <0 for fatal error.
1808 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1810 struct writeback_control *wbc = ctx->wbc;
1811 struct address_space *mapping = page->mapping;
1812 struct extent_buffer *eb;
1815 if (!PagePrivate(page))
1818 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1819 return submit_eb_subpage(page, wbc);
1821 spin_lock(&mapping->private_lock);
1822 if (!PagePrivate(page)) {
1823 spin_unlock(&mapping->private_lock);
1827 eb = (struct extent_buffer *)page->private;
1830 * Shouldn't happen and normally this would be a BUG_ON but no point
1831 * crashing the machine for something we can survive anyway.
1834 spin_unlock(&mapping->private_lock);
1838 if (eb == ctx->eb) {
1839 spin_unlock(&mapping->private_lock);
1842 ret = atomic_inc_not_zero(&eb->refs);
1843 spin_unlock(&mapping->private_lock);
1849 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1853 free_extent_buffer(eb);
1857 if (!lock_extent_buffer_for_io(eb, wbc)) {
1858 free_extent_buffer(eb);
1861 /* Implies write in zoned mode. */
1862 if (ctx->zoned_bg) {
1863 /* Mark the last eb in the block group. */
1864 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1865 ctx->zoned_bg->meta_write_pointer += eb->len;
1867 write_one_eb(eb, wbc);
1868 free_extent_buffer(eb);
1872 int btree_write_cache_pages(struct address_space *mapping,
1873 struct writeback_control *wbc)
1875 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1876 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1879 int nr_to_write_done = 0;
1880 struct folio_batch fbatch;
1881 unsigned int nr_folios;
1883 pgoff_t end; /* Inclusive */
1887 folio_batch_init(&fbatch);
1888 if (wbc->range_cyclic) {
1889 index = mapping->writeback_index; /* Start from prev offset */
1892 * Start from the beginning does not need to cycle over the
1893 * range, mark it as scanned.
1895 scanned = (index == 0);
1897 index = wbc->range_start >> PAGE_SHIFT;
1898 end = wbc->range_end >> PAGE_SHIFT;
1901 if (wbc->sync_mode == WB_SYNC_ALL)
1902 tag = PAGECACHE_TAG_TOWRITE;
1904 tag = PAGECACHE_TAG_DIRTY;
1905 btrfs_zoned_meta_io_lock(fs_info);
1907 if (wbc->sync_mode == WB_SYNC_ALL)
1908 tag_pages_for_writeback(mapping, index, end);
1909 while (!done && !nr_to_write_done && (index <= end) &&
1910 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1914 for (i = 0; i < nr_folios; i++) {
1915 struct folio *folio = fbatch.folios[i];
1917 ret = submit_eb_page(&folio->page, &ctx);
1926 * the filesystem may choose to bump up nr_to_write.
1927 * We have to make sure to honor the new nr_to_write
1930 nr_to_write_done = wbc->nr_to_write <= 0;
1932 folio_batch_release(&fbatch);
1935 if (!scanned && !done) {
1937 * We hit the last page and there is more work to be done: wrap
1938 * back to the start of the file
1945 * If something went wrong, don't allow any metadata write bio to be
1948 * This would prevent use-after-free if we had dirty pages not
1949 * cleaned up, which can still happen by fuzzed images.
1952 * Allowing existing tree block to be allocated for other trees.
1954 * - Log tree operations
1955 * Exiting tree blocks get allocated to log tree, bumps its
1956 * generation, then get cleaned in tree re-balance.
1957 * Such tree block will not be written back, since it's clean,
1958 * thus no WRITTEN flag set.
1959 * And after log writes back, this tree block is not traced by
1960 * any dirty extent_io_tree.
1962 * - Offending tree block gets re-dirtied from its original owner
1963 * Since it has bumped generation, no WRITTEN flag, it can be
1964 * reused without COWing. This tree block will not be traced
1965 * by btrfs_transaction::dirty_pages.
1967 * Now such dirty tree block will not be cleaned by any dirty
1968 * extent io tree. Thus we don't want to submit such wild eb
1969 * if the fs already has error.
1971 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1972 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1976 if (!ret && BTRFS_FS_ERROR(fs_info))
1980 btrfs_put_block_group(ctx.zoned_bg);
1981 btrfs_zoned_meta_io_unlock(fs_info);
1986 * Walk the list of dirty pages of the given address space and write all of them.
1988 * @mapping: address space structure to write
1989 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1990 * @bio_ctrl: holds context for the write, namely the bio
1992 * If a page is already under I/O, write_cache_pages() skips it, even
1993 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1994 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1995 * and msync() need to guarantee that all the data which was dirty at the time
1996 * the call was made get new I/O started against them. If wbc->sync_mode is
1997 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1998 * existing IO to complete.
2000 static int extent_write_cache_pages(struct address_space *mapping,
2001 struct btrfs_bio_ctrl *bio_ctrl)
2003 struct writeback_control *wbc = bio_ctrl->wbc;
2004 struct inode *inode = mapping->host;
2007 int nr_to_write_done = 0;
2008 struct folio_batch fbatch;
2009 unsigned int nr_folios;
2011 pgoff_t end; /* Inclusive */
2013 int range_whole = 0;
2018 * We have to hold onto the inode so that ordered extents can do their
2019 * work when the IO finishes. The alternative to this is failing to add
2020 * an ordered extent if the igrab() fails there and that is a huge pain
2021 * to deal with, so instead just hold onto the inode throughout the
2022 * writepages operation. If it fails here we are freeing up the inode
2023 * anyway and we'd rather not waste our time writing out stuff that is
2024 * going to be truncated anyway.
2029 folio_batch_init(&fbatch);
2030 if (wbc->range_cyclic) {
2031 index = mapping->writeback_index; /* Start from prev offset */
2034 * Start from the beginning does not need to cycle over the
2035 * range, mark it as scanned.
2037 scanned = (index == 0);
2039 index = wbc->range_start >> PAGE_SHIFT;
2040 end = wbc->range_end >> PAGE_SHIFT;
2041 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2047 * We do the tagged writepage as long as the snapshot flush bit is set
2048 * and we are the first one who do the filemap_flush() on this inode.
2050 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2051 * not race in and drop the bit.
2053 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2054 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2055 &BTRFS_I(inode)->runtime_flags))
2056 wbc->tagged_writepages = 1;
2058 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2059 tag = PAGECACHE_TAG_TOWRITE;
2061 tag = PAGECACHE_TAG_DIRTY;
2063 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2064 tag_pages_for_writeback(mapping, index, end);
2066 while (!done && !nr_to_write_done && (index <= end) &&
2067 (nr_folios = filemap_get_folios_tag(mapping, &index,
2068 end, tag, &fbatch))) {
2071 for (i = 0; i < nr_folios; i++) {
2072 struct folio *folio = fbatch.folios[i];
2074 done_index = folio_next_index(folio);
2076 * At this point we hold neither the i_pages lock nor
2077 * the page lock: the page may be truncated or
2078 * invalidated (changing page->mapping to NULL),
2079 * or even swizzled back from swapper_space to
2080 * tmpfs file mapping
2082 if (!folio_trylock(folio)) {
2083 submit_write_bio(bio_ctrl, 0);
2087 if (unlikely(folio->mapping != mapping)) {
2088 folio_unlock(folio);
2092 if (!folio_test_dirty(folio)) {
2093 /* Someone wrote it for us. */
2094 folio_unlock(folio);
2098 if (wbc->sync_mode != WB_SYNC_NONE) {
2099 if (folio_test_writeback(folio))
2100 submit_write_bio(bio_ctrl, 0);
2101 folio_wait_writeback(folio);
2104 if (folio_test_writeback(folio) ||
2105 !folio_clear_dirty_for_io(folio)) {
2106 folio_unlock(folio);
2110 ret = __extent_writepage(&folio->page, bio_ctrl);
2117 * The filesystem may choose to bump up nr_to_write.
2118 * We have to make sure to honor the new nr_to_write
2121 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2122 wbc->nr_to_write <= 0);
2124 folio_batch_release(&fbatch);
2127 if (!scanned && !done) {
2129 * We hit the last page and there is more work to be done: wrap
2130 * back to the start of the file
2136 * If we're looping we could run into a page that is locked by a
2137 * writer and that writer could be waiting on writeback for a
2138 * page in our current bio, and thus deadlock, so flush the
2141 submit_write_bio(bio_ctrl, 0);
2145 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2146 mapping->writeback_index = done_index;
2148 btrfs_add_delayed_iput(BTRFS_I(inode));
2153 * Submit the pages in the range to bio for call sites which delalloc range has
2154 * already been ran (aka, ordered extent inserted) and all pages are still
2157 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2158 u64 start, u64 end, struct writeback_control *wbc,
2161 bool found_error = false;
2163 struct address_space *mapping = inode->i_mapping;
2164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2165 const u32 sectorsize = fs_info->sectorsize;
2166 loff_t i_size = i_size_read(inode);
2168 struct btrfs_bio_ctrl bio_ctrl = {
2170 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2173 if (wbc->no_cgroup_owner)
2174 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2176 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2178 while (cur <= end) {
2179 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2180 u32 cur_len = cur_end + 1 - cur;
2184 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2185 ASSERT(PageLocked(page));
2186 if (pages_dirty && page != locked_page) {
2187 ASSERT(PageDirty(page));
2188 clear_page_dirty_for_io(page);
2191 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2196 /* Make sure the mapping tag for page dirty gets cleared. */
2198 set_page_writeback(page);
2199 end_page_writeback(page);
2202 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2203 cur, cur_len, !ret);
2204 btrfs_page_clear_uptodate(fs_info, page, cur, cur_len);
2205 mapping_set_error(page->mapping, ret);
2207 btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2215 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2218 int extent_writepages(struct address_space *mapping,
2219 struct writeback_control *wbc)
2221 struct inode *inode = mapping->host;
2223 struct btrfs_bio_ctrl bio_ctrl = {
2225 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2229 * Allow only a single thread to do the reloc work in zoned mode to
2230 * protect the write pointer updates.
2232 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2233 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2234 submit_write_bio(&bio_ctrl, ret);
2235 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2239 void extent_readahead(struct readahead_control *rac)
2241 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2242 struct page *pagepool[16];
2243 struct extent_map *em_cached = NULL;
2244 u64 prev_em_start = (u64)-1;
2247 while ((nr = readahead_page_batch(rac, pagepool))) {
2248 u64 contig_start = readahead_pos(rac);
2249 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2251 contiguous_readpages(pagepool, nr, contig_start, contig_end,
2252 &em_cached, &bio_ctrl, &prev_em_start);
2256 free_extent_map(em_cached);
2257 submit_one_bio(&bio_ctrl);
2261 * basic invalidate_folio code, this waits on any locked or writeback
2262 * ranges corresponding to the folio, and then deletes any extent state
2263 * records from the tree
2265 int extent_invalidate_folio(struct extent_io_tree *tree,
2266 struct folio *folio, size_t offset)
2268 struct extent_state *cached_state = NULL;
2269 u64 start = folio_pos(folio);
2270 u64 end = start + folio_size(folio) - 1;
2271 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2273 /* This function is only called for the btree inode */
2274 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2276 start += ALIGN(offset, blocksize);
2280 lock_extent(tree, start, end, &cached_state);
2281 folio_wait_writeback(folio);
2284 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2285 * so here we only need to unlock the extent range to free any
2286 * existing extent state.
2288 unlock_extent(tree, start, end, &cached_state);
2293 * a helper for release_folio, this tests for areas of the page that
2294 * are locked or under IO and drops the related state bits if it is safe
2297 static int try_release_extent_state(struct extent_io_tree *tree,
2298 struct page *page, gfp_t mask)
2300 u64 start = page_offset(page);
2301 u64 end = start + PAGE_SIZE - 1;
2304 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2307 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2308 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
2311 * At this point we can safely clear everything except the
2312 * locked bit, the nodatasum bit and the delalloc new bit.
2313 * The delalloc new bit will be cleared by ordered extent
2316 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2318 /* if clear_extent_bit failed for enomem reasons,
2319 * we can't allow the release to continue.
2330 * a helper for release_folio. As long as there are no locked extents
2331 * in the range corresponding to the page, both state records and extent
2332 * map records are removed
2334 int try_release_extent_mapping(struct page *page, gfp_t mask)
2336 struct extent_map *em;
2337 u64 start = page_offset(page);
2338 u64 end = start + PAGE_SIZE - 1;
2339 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2340 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2341 struct extent_map_tree *map = &btrfs_inode->extent_tree;
2343 if (gfpflags_allow_blocking(mask) &&
2344 page->mapping->host->i_size > SZ_16M) {
2346 while (start <= end) {
2347 struct btrfs_fs_info *fs_info;
2350 len = end - start + 1;
2351 write_lock(&map->lock);
2352 em = lookup_extent_mapping(map, start, len);
2354 write_unlock(&map->lock);
2357 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2358 em->start != start) {
2359 write_unlock(&map->lock);
2360 free_extent_map(em);
2363 if (test_range_bit(tree, em->start,
2364 extent_map_end(em) - 1,
2365 EXTENT_LOCKED, 0, NULL))
2368 * If it's not in the list of modified extents, used
2369 * by a fast fsync, we can remove it. If it's being
2370 * logged we can safely remove it since fsync took an
2371 * extra reference on the em.
2373 if (list_empty(&em->list) ||
2374 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2377 * If it's in the list of modified extents, remove it
2378 * only if its generation is older then the current one,
2379 * in which case we don't need it for a fast fsync.
2380 * Otherwise don't remove it, we could be racing with an
2381 * ongoing fast fsync that could miss the new extent.
2383 fs_info = btrfs_inode->root->fs_info;
2384 spin_lock(&fs_info->trans_lock);
2385 cur_gen = fs_info->generation;
2386 spin_unlock(&fs_info->trans_lock);
2387 if (em->generation >= cur_gen)
2391 * We only remove extent maps that are not in the list of
2392 * modified extents or that are in the list but with a
2393 * generation lower then the current generation, so there
2394 * is no need to set the full fsync flag on the inode (it
2395 * hurts the fsync performance for workloads with a data
2396 * size that exceeds or is close to the system's memory).
2398 remove_extent_mapping(map, em);
2399 /* once for the rb tree */
2400 free_extent_map(em);
2402 start = extent_map_end(em);
2403 write_unlock(&map->lock);
2406 free_extent_map(em);
2408 cond_resched(); /* Allow large-extent preemption. */
2411 return try_release_extent_state(tree, page, mask);
2415 * To cache previous fiemap extent
2417 * Will be used for merging fiemap extent
2419 struct fiemap_cache {
2428 * Helper to submit fiemap extent.
2430 * Will try to merge current fiemap extent specified by @offset, @phys,
2431 * @len and @flags with cached one.
2432 * And only when we fails to merge, cached one will be submitted as
2435 * Return value is the same as fiemap_fill_next_extent().
2437 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2438 struct fiemap_cache *cache,
2439 u64 offset, u64 phys, u64 len, u32 flags)
2443 /* Set at the end of extent_fiemap(). */
2444 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2450 * Sanity check, extent_fiemap() should have ensured that new
2451 * fiemap extent won't overlap with cached one.
2454 * NOTE: Physical address can overlap, due to compression
2456 if (cache->offset + cache->len > offset) {
2462 * Only merges fiemap extents if
2463 * 1) Their logical addresses are continuous
2465 * 2) Their physical addresses are continuous
2466 * So truly compressed (physical size smaller than logical size)
2467 * extents won't get merged with each other
2469 * 3) Share same flags
2471 if (cache->offset + cache->len == offset &&
2472 cache->phys + cache->len == phys &&
2473 cache->flags == flags) {
2478 /* Not mergeable, need to submit cached one */
2479 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2480 cache->len, cache->flags);
2481 cache->cached = false;
2485 cache->cached = true;
2486 cache->offset = offset;
2489 cache->flags = flags;
2495 * Emit last fiemap cache
2497 * The last fiemap cache may still be cached in the following case:
2499 * |<- Fiemap range ->|
2500 * |<------------ First extent ----------->|
2502 * In this case, the first extent range will be cached but not emitted.
2503 * So we must emit it before ending extent_fiemap().
2505 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2506 struct fiemap_cache *cache)
2513 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2514 cache->len, cache->flags);
2515 cache->cached = false;
2521 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2523 struct extent_buffer *clone;
2524 struct btrfs_key key;
2529 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2532 ret = btrfs_next_leaf(inode->root, path);
2537 * Don't bother with cloning if there are no more file extent items for
2540 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2541 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2544 /* See the comment at fiemap_search_slot() about why we clone. */
2545 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2549 slot = path->slots[0];
2550 btrfs_release_path(path);
2551 path->nodes[0] = clone;
2552 path->slots[0] = slot;
2558 * Search for the first file extent item that starts at a given file offset or
2559 * the one that starts immediately before that offset.
2560 * Returns: 0 on success, < 0 on error, 1 if not found.
2562 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2565 const u64 ino = btrfs_ino(inode);
2566 struct btrfs_root *root = inode->root;
2567 struct extent_buffer *clone;
2568 struct btrfs_key key;
2573 key.type = BTRFS_EXTENT_DATA_KEY;
2574 key.offset = file_offset;
2576 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2580 if (ret > 0 && path->slots[0] > 0) {
2581 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2582 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2586 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2587 ret = btrfs_next_leaf(root, path);
2591 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2592 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2597 * We clone the leaf and use it during fiemap. This is because while
2598 * using the leaf we do expensive things like checking if an extent is
2599 * shared, which can take a long time. In order to prevent blocking
2600 * other tasks for too long, we use a clone of the leaf. We have locked
2601 * the file range in the inode's io tree, so we know none of our file
2602 * extent items can change. This way we avoid blocking other tasks that
2603 * want to insert items for other inodes in the same leaf or b+tree
2604 * rebalance operations (triggered for example when someone is trying
2605 * to push items into this leaf when trying to insert an item in a
2607 * We also need the private clone because holding a read lock on an
2608 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2609 * when we call fiemap_fill_next_extent(), because that may cause a page
2610 * fault when filling the user space buffer with fiemap data.
2612 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2616 slot = path->slots[0];
2617 btrfs_release_path(path);
2618 path->nodes[0] = clone;
2619 path->slots[0] = slot;
2625 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2626 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2627 * extent. The end offset (@end) is inclusive.
2629 static int fiemap_process_hole(struct btrfs_inode *inode,
2630 struct fiemap_extent_info *fieinfo,
2631 struct fiemap_cache *cache,
2632 struct extent_state **delalloc_cached_state,
2633 struct btrfs_backref_share_check_ctx *backref_ctx,
2634 u64 disk_bytenr, u64 extent_offset,
2638 const u64 i_size = i_size_read(&inode->vfs_inode);
2639 u64 cur_offset = start;
2640 u64 last_delalloc_end = 0;
2641 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2642 bool checked_extent_shared = false;
2646 * There can be no delalloc past i_size, so don't waste time looking for
2649 while (cur_offset < end && cur_offset < i_size) {
2653 u64 prealloc_len = 0;
2656 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2657 delalloc_cached_state,
2664 * If this is a prealloc extent we have to report every section
2665 * of it that has no delalloc.
2667 if (disk_bytenr != 0) {
2668 if (last_delalloc_end == 0) {
2669 prealloc_start = start;
2670 prealloc_len = delalloc_start - start;
2672 prealloc_start = last_delalloc_end + 1;
2673 prealloc_len = delalloc_start - prealloc_start;
2677 if (prealloc_len > 0) {
2678 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2679 ret = btrfs_is_data_extent_shared(inode,
2686 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2688 checked_extent_shared = true;
2690 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2691 disk_bytenr + extent_offset,
2692 prealloc_len, prealloc_flags);
2695 extent_offset += prealloc_len;
2698 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2699 delalloc_end + 1 - delalloc_start,
2700 FIEMAP_EXTENT_DELALLOC |
2701 FIEMAP_EXTENT_UNKNOWN);
2705 last_delalloc_end = delalloc_end;
2706 cur_offset = delalloc_end + 1;
2707 extent_offset += cur_offset - delalloc_start;
2712 * Either we found no delalloc for the whole prealloc extent or we have
2713 * a prealloc extent that spans i_size or starts at or after i_size.
2715 if (disk_bytenr != 0 && last_delalloc_end < end) {
2719 if (last_delalloc_end == 0) {
2720 prealloc_start = start;
2721 prealloc_len = end + 1 - start;
2723 prealloc_start = last_delalloc_end + 1;
2724 prealloc_len = end + 1 - prealloc_start;
2727 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2728 ret = btrfs_is_data_extent_shared(inode,
2735 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2737 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2738 disk_bytenr + extent_offset,
2739 prealloc_len, prealloc_flags);
2747 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2748 struct btrfs_path *path,
2749 u64 *last_extent_end_ret)
2751 const u64 ino = btrfs_ino(inode);
2752 struct btrfs_root *root = inode->root;
2753 struct extent_buffer *leaf;
2754 struct btrfs_file_extent_item *ei;
2755 struct btrfs_key key;
2760 * Lookup the last file extent. We're not using i_size here because
2761 * there might be preallocation past i_size.
2763 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2764 /* There can't be a file extent item at offset (u64)-1 */
2770 * For a non-existing key, btrfs_search_slot() always leaves us at a
2771 * slot > 0, except if the btree is empty, which is impossible because
2772 * at least it has the inode item for this inode and all the items for
2773 * the root inode 256.
2775 ASSERT(path->slots[0] > 0);
2777 leaf = path->nodes[0];
2778 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2779 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2780 /* No file extent items in the subvolume tree. */
2781 *last_extent_end_ret = 0;
2786 * For an inline extent, the disk_bytenr is where inline data starts at,
2787 * so first check if we have an inline extent item before checking if we
2788 * have an implicit hole (disk_bytenr == 0).
2790 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2791 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2792 *last_extent_end_ret = btrfs_file_extent_end(path);
2797 * Find the last file extent item that is not a hole (when NO_HOLES is
2798 * not enabled). This should take at most 2 iterations in the worst
2799 * case: we have one hole file extent item at slot 0 of a leaf and
2800 * another hole file extent item as the last item in the previous leaf.
2801 * This is because we merge file extent items that represent holes.
2803 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2804 while (disk_bytenr == 0) {
2805 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2808 } else if (ret > 0) {
2809 /* No file extent items that are not holes. */
2810 *last_extent_end_ret = 0;
2813 leaf = path->nodes[0];
2814 ei = btrfs_item_ptr(leaf, path->slots[0],
2815 struct btrfs_file_extent_item);
2816 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2819 *last_extent_end_ret = btrfs_file_extent_end(path);
2823 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2826 const u64 ino = btrfs_ino(inode);
2827 struct extent_state *cached_state = NULL;
2828 struct extent_state *delalloc_cached_state = NULL;
2829 struct btrfs_path *path;
2830 struct fiemap_cache cache = { 0 };
2831 struct btrfs_backref_share_check_ctx *backref_ctx;
2832 u64 last_extent_end;
2833 u64 prev_extent_end;
2836 bool stopped = false;
2839 backref_ctx = btrfs_alloc_backref_share_check_ctx();
2840 path = btrfs_alloc_path();
2841 if (!backref_ctx || !path) {
2846 lockstart = round_down(start, inode->root->fs_info->sectorsize);
2847 lockend = round_up(start + len, inode->root->fs_info->sectorsize);
2848 prev_extent_end = lockstart;
2850 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2851 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2853 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2856 btrfs_release_path(path);
2858 path->reada = READA_FORWARD;
2859 ret = fiemap_search_slot(inode, path, lockstart);
2862 } else if (ret > 0) {
2864 * No file extent item found, but we may have delalloc between
2865 * the current offset and i_size. So check for that.
2868 goto check_eof_delalloc;
2871 while (prev_extent_end < lockend) {
2872 struct extent_buffer *leaf = path->nodes[0];
2873 struct btrfs_file_extent_item *ei;
2874 struct btrfs_key key;
2877 u64 extent_offset = 0;
2879 u64 disk_bytenr = 0;
2884 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2885 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2888 extent_end = btrfs_file_extent_end(path);
2891 * The first iteration can leave us at an extent item that ends
2892 * before our range's start. Move to the next item.
2894 if (extent_end <= lockstart)
2897 backref_ctx->curr_leaf_bytenr = leaf->start;
2899 /* We have in implicit hole (NO_HOLES feature enabled). */
2900 if (prev_extent_end < key.offset) {
2901 const u64 range_end = min(key.offset, lockend) - 1;
2903 ret = fiemap_process_hole(inode, fieinfo, &cache,
2904 &delalloc_cached_state,
2905 backref_ctx, 0, 0, 0,
2906 prev_extent_end, range_end);
2909 } else if (ret > 0) {
2910 /* fiemap_fill_next_extent() told us to stop. */
2915 /* We've reached the end of the fiemap range, stop. */
2916 if (key.offset >= lockend) {
2922 extent_len = extent_end - key.offset;
2923 ei = btrfs_item_ptr(leaf, path->slots[0],
2924 struct btrfs_file_extent_item);
2925 compression = btrfs_file_extent_compression(leaf, ei);
2926 extent_type = btrfs_file_extent_type(leaf, ei);
2927 extent_gen = btrfs_file_extent_generation(leaf, ei);
2929 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2930 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2931 if (compression == BTRFS_COMPRESS_NONE)
2932 extent_offset = btrfs_file_extent_offset(leaf, ei);
2935 if (compression != BTRFS_COMPRESS_NONE)
2936 flags |= FIEMAP_EXTENT_ENCODED;
2938 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2939 flags |= FIEMAP_EXTENT_DATA_INLINE;
2940 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
2941 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
2943 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2944 ret = fiemap_process_hole(inode, fieinfo, &cache,
2945 &delalloc_cached_state,
2947 disk_bytenr, extent_offset,
2948 extent_gen, key.offset,
2950 } else if (disk_bytenr == 0) {
2951 /* We have an explicit hole. */
2952 ret = fiemap_process_hole(inode, fieinfo, &cache,
2953 &delalloc_cached_state,
2954 backref_ctx, 0, 0, 0,
2955 key.offset, extent_end - 1);
2957 /* We have a regular extent. */
2958 if (fieinfo->fi_extents_max) {
2959 ret = btrfs_is_data_extent_shared(inode,
2966 flags |= FIEMAP_EXTENT_SHARED;
2969 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
2970 disk_bytenr + extent_offset,
2976 } else if (ret > 0) {
2977 /* fiemap_fill_next_extent() told us to stop. */
2982 prev_extent_end = extent_end;
2984 if (fatal_signal_pending(current)) {
2989 ret = fiemap_next_leaf_item(inode, path);
2992 } else if (ret > 0) {
2993 /* No more file extent items for this inode. */
3001 * Release (and free) the path before emitting any final entries to
3002 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3003 * once we find no more file extent items exist, we may have a
3004 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3005 * faults when copying data to the user space buffer.
3007 btrfs_free_path(path);
3010 if (!stopped && prev_extent_end < lockend) {
3011 ret = fiemap_process_hole(inode, fieinfo, &cache,
3012 &delalloc_cached_state, backref_ctx,
3013 0, 0, 0, prev_extent_end, lockend - 1);
3016 prev_extent_end = lockend;
3019 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3020 const u64 i_size = i_size_read(&inode->vfs_inode);
3022 if (prev_extent_end < i_size) {
3027 delalloc = btrfs_find_delalloc_in_range(inode,
3030 &delalloc_cached_state,
3034 cache.flags |= FIEMAP_EXTENT_LAST;
3036 cache.flags |= FIEMAP_EXTENT_LAST;
3040 ret = emit_last_fiemap_cache(fieinfo, &cache);
3043 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3044 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3046 free_extent_state(delalloc_cached_state);
3047 btrfs_free_backref_share_ctx(backref_ctx);
3048 btrfs_free_path(path);
3052 static void __free_extent_buffer(struct extent_buffer *eb)
3054 kmem_cache_free(extent_buffer_cache, eb);
3057 static int extent_buffer_under_io(const struct extent_buffer *eb)
3059 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3060 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3063 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3065 struct btrfs_subpage *subpage;
3067 lockdep_assert_held(&page->mapping->private_lock);
3069 if (PagePrivate(page)) {
3070 subpage = (struct btrfs_subpage *)page->private;
3071 if (atomic_read(&subpage->eb_refs))
3074 * Even there is no eb refs here, we may still have
3075 * end_page_read() call relying on page::private.
3077 if (atomic_read(&subpage->readers))
3083 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3085 struct btrfs_fs_info *fs_info = eb->fs_info;
3086 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3089 * For mapped eb, we're going to change the page private, which should
3090 * be done under the private_lock.
3093 spin_lock(&page->mapping->private_lock);
3095 if (!PagePrivate(page)) {
3097 spin_unlock(&page->mapping->private_lock);
3101 if (fs_info->nodesize >= PAGE_SIZE) {
3103 * We do this since we'll remove the pages after we've
3104 * removed the eb from the radix tree, so we could race
3105 * and have this page now attached to the new eb. So
3106 * only clear page_private if it's still connected to
3109 if (PagePrivate(page) &&
3110 page->private == (unsigned long)eb) {
3111 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3112 BUG_ON(PageDirty(page));
3113 BUG_ON(PageWriteback(page));
3115 * We need to make sure we haven't be attached
3118 detach_page_private(page);
3121 spin_unlock(&page->mapping->private_lock);
3126 * For subpage, we can have dummy eb with page private. In this case,
3127 * we can directly detach the private as such page is only attached to
3128 * one dummy eb, no sharing.
3131 btrfs_detach_subpage(fs_info, page);
3135 btrfs_page_dec_eb_refs(fs_info, page);
3138 * We can only detach the page private if there are no other ebs in the
3139 * page range and no unfinished IO.
3141 if (!page_range_has_eb(fs_info, page))
3142 btrfs_detach_subpage(fs_info, page);
3144 spin_unlock(&page->mapping->private_lock);
3147 /* Release all pages attached to the extent buffer */
3148 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3153 ASSERT(!extent_buffer_under_io(eb));
3155 num_pages = num_extent_pages(eb);
3156 for (i = 0; i < num_pages; i++) {
3157 struct page *page = eb->pages[i];
3162 detach_extent_buffer_page(eb, page);
3164 /* One for when we allocated the page */
3170 * Helper for releasing the extent buffer.
3172 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3174 btrfs_release_extent_buffer_pages(eb);
3175 btrfs_leak_debug_del_eb(eb);
3176 __free_extent_buffer(eb);
3179 static struct extent_buffer *
3180 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3183 struct extent_buffer *eb = NULL;
3185 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3188 eb->fs_info = fs_info;
3189 init_rwsem(&eb->lock);
3191 btrfs_leak_debug_add_eb(eb);
3193 spin_lock_init(&eb->refs_lock);
3194 atomic_set(&eb->refs, 1);
3196 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3201 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3204 struct extent_buffer *new;
3205 int num_pages = num_extent_pages(src);
3208 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3213 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3214 * btrfs_release_extent_buffer() have different behavior for
3215 * UNMAPPED subpage extent buffer.
3217 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3219 ret = btrfs_alloc_page_array(num_pages, new->pages);
3221 btrfs_release_extent_buffer(new);
3225 for (i = 0; i < num_pages; i++) {
3227 struct page *p = new->pages[i];
3229 ret = attach_extent_buffer_page(new, p, NULL);
3231 btrfs_release_extent_buffer(new);
3234 WARN_ON(PageDirty(p));
3236 copy_extent_buffer_full(new, src);
3237 set_extent_buffer_uptodate(new);
3242 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3243 u64 start, unsigned long len)
3245 struct extent_buffer *eb;
3250 eb = __alloc_extent_buffer(fs_info, start, len);
3254 num_pages = num_extent_pages(eb);
3255 ret = btrfs_alloc_page_array(num_pages, eb->pages);
3259 for (i = 0; i < num_pages; i++) {
3260 struct page *p = eb->pages[i];
3262 ret = attach_extent_buffer_page(eb, p, NULL);
3267 set_extent_buffer_uptodate(eb);
3268 btrfs_set_header_nritems(eb, 0);
3269 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3273 for (i = 0; i < num_pages; i++) {
3275 detach_extent_buffer_page(eb, eb->pages[i]);
3276 __free_page(eb->pages[i]);
3279 __free_extent_buffer(eb);
3283 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3286 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3289 static void check_buffer_tree_ref(struct extent_buffer *eb)
3293 * The TREE_REF bit is first set when the extent_buffer is added
3294 * to the radix tree. It is also reset, if unset, when a new reference
3295 * is created by find_extent_buffer.
3297 * It is only cleared in two cases: freeing the last non-tree
3298 * reference to the extent_buffer when its STALE bit is set or
3299 * calling release_folio when the tree reference is the only reference.
3301 * In both cases, care is taken to ensure that the extent_buffer's
3302 * pages are not under io. However, release_folio can be concurrently
3303 * called with creating new references, which is prone to race
3304 * conditions between the calls to check_buffer_tree_ref in those
3305 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3307 * The actual lifetime of the extent_buffer in the radix tree is
3308 * adequately protected by the refcount, but the TREE_REF bit and
3309 * its corresponding reference are not. To protect against this
3310 * class of races, we call check_buffer_tree_ref from the codepaths
3311 * which trigger io. Note that once io is initiated, TREE_REF can no
3312 * longer be cleared, so that is the moment at which any such race is
3315 refs = atomic_read(&eb->refs);
3316 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3319 spin_lock(&eb->refs_lock);
3320 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3321 atomic_inc(&eb->refs);
3322 spin_unlock(&eb->refs_lock);
3325 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3326 struct page *accessed)
3330 check_buffer_tree_ref(eb);
3332 num_pages = num_extent_pages(eb);
3333 for (i = 0; i < num_pages; i++) {
3334 struct page *p = eb->pages[i];
3337 mark_page_accessed(p);
3341 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3344 struct extent_buffer *eb;
3346 eb = find_extent_buffer_nolock(fs_info, start);
3350 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3351 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3352 * another task running free_extent_buffer() might have seen that flag
3353 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3354 * writeback flags not set) and it's still in the tree (flag
3355 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3356 * decrementing the extent buffer's reference count twice. So here we
3357 * could race and increment the eb's reference count, clear its stale
3358 * flag, mark it as dirty and drop our reference before the other task
3359 * finishes executing free_extent_buffer, which would later result in
3360 * an attempt to free an extent buffer that is dirty.
3362 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3363 spin_lock(&eb->refs_lock);
3364 spin_unlock(&eb->refs_lock);
3366 mark_extent_buffer_accessed(eb, NULL);
3370 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3371 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3374 struct extent_buffer *eb, *exists = NULL;
3377 eb = find_extent_buffer(fs_info, start);
3380 eb = alloc_dummy_extent_buffer(fs_info, start);
3382 return ERR_PTR(-ENOMEM);
3383 eb->fs_info = fs_info;
3385 ret = radix_tree_preload(GFP_NOFS);
3387 exists = ERR_PTR(ret);
3390 spin_lock(&fs_info->buffer_lock);
3391 ret = radix_tree_insert(&fs_info->buffer_radix,
3392 start >> fs_info->sectorsize_bits, eb);
3393 spin_unlock(&fs_info->buffer_lock);
3394 radix_tree_preload_end();
3395 if (ret == -EEXIST) {
3396 exists = find_extent_buffer(fs_info, start);
3402 check_buffer_tree_ref(eb);
3403 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3407 btrfs_release_extent_buffer(eb);
3412 static struct extent_buffer *grab_extent_buffer(
3413 struct btrfs_fs_info *fs_info, struct page *page)
3415 struct extent_buffer *exists;
3418 * For subpage case, we completely rely on radix tree to ensure we
3419 * don't try to insert two ebs for the same bytenr. So here we always
3420 * return NULL and just continue.
3422 if (fs_info->nodesize < PAGE_SIZE)
3425 /* Page not yet attached to an extent buffer */
3426 if (!PagePrivate(page))
3430 * We could have already allocated an eb for this page and attached one
3431 * so lets see if we can get a ref on the existing eb, and if we can we
3432 * know it's good and we can just return that one, else we know we can
3433 * just overwrite page->private.
3435 exists = (struct extent_buffer *)page->private;
3436 if (atomic_inc_not_zero(&exists->refs))
3439 WARN_ON(PageDirty(page));
3440 detach_page_private(page);
3444 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3446 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3447 btrfs_err(fs_info, "bad tree block start %llu", start);
3451 if (fs_info->nodesize < PAGE_SIZE &&
3452 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3454 "tree block crosses page boundary, start %llu nodesize %u",
3455 start, fs_info->nodesize);
3458 if (fs_info->nodesize >= PAGE_SIZE &&
3459 !PAGE_ALIGNED(start)) {
3461 "tree block is not page aligned, start %llu nodesize %u",
3462 start, fs_info->nodesize);
3468 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3469 u64 start, u64 owner_root, int level)
3471 unsigned long len = fs_info->nodesize;
3474 unsigned long index = start >> PAGE_SHIFT;
3475 struct extent_buffer *eb;
3476 struct extent_buffer *exists = NULL;
3478 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3479 struct btrfs_subpage *prealloc = NULL;
3480 u64 lockdep_owner = owner_root;
3484 if (check_eb_alignment(fs_info, start))
3485 return ERR_PTR(-EINVAL);
3487 #if BITS_PER_LONG == 32
3488 if (start >= MAX_LFS_FILESIZE) {
3489 btrfs_err_rl(fs_info,
3490 "extent buffer %llu is beyond 32bit page cache limit", start);
3491 btrfs_err_32bit_limit(fs_info);
3492 return ERR_PTR(-EOVERFLOW);
3494 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3495 btrfs_warn_32bit_limit(fs_info);
3498 eb = find_extent_buffer(fs_info, start);
3502 eb = __alloc_extent_buffer(fs_info, start, len);
3504 return ERR_PTR(-ENOMEM);
3507 * The reloc trees are just snapshots, so we need them to appear to be
3508 * just like any other fs tree WRT lockdep.
3510 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3511 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3513 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3515 num_pages = num_extent_pages(eb);
3518 * Preallocate page->private for subpage case, so that we won't
3519 * allocate memory with private_lock nor page lock hold.
3521 * The memory will be freed by attach_extent_buffer_page() or freed
3522 * manually if we exit earlier.
3524 if (fs_info->nodesize < PAGE_SIZE) {
3525 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3526 if (IS_ERR(prealloc)) {
3527 exists = ERR_CAST(prealloc);
3532 for (i = 0; i < num_pages; i++, index++) {
3533 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3535 exists = ERR_PTR(-ENOMEM);
3536 btrfs_free_subpage(prealloc);
3540 spin_lock(&mapping->private_lock);
3541 exists = grab_extent_buffer(fs_info, p);
3543 spin_unlock(&mapping->private_lock);
3546 mark_extent_buffer_accessed(exists, p);
3547 btrfs_free_subpage(prealloc);
3550 /* Should not fail, as we have preallocated the memory */
3551 ret = attach_extent_buffer_page(eb, p, prealloc);
3554 * To inform we have extra eb under allocation, so that
3555 * detach_extent_buffer_page() won't release the page private
3556 * when the eb hasn't yet been inserted into radix tree.
3558 * The ref will be decreased when the eb released the page, in
3559 * detach_extent_buffer_page().
3560 * Thus needs no special handling in error path.
3562 btrfs_page_inc_eb_refs(fs_info, p);
3563 spin_unlock(&mapping->private_lock);
3565 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3567 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3571 * We can't unlock the pages just yet since the extent buffer
3572 * hasn't been properly inserted in the radix tree, this
3573 * opens a race with btree_release_folio which can free a page
3574 * while we are still filling in all pages for the buffer and
3579 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3581 ret = radix_tree_preload(GFP_NOFS);
3583 exists = ERR_PTR(ret);
3587 spin_lock(&fs_info->buffer_lock);
3588 ret = radix_tree_insert(&fs_info->buffer_radix,
3589 start >> fs_info->sectorsize_bits, eb);
3590 spin_unlock(&fs_info->buffer_lock);
3591 radix_tree_preload_end();
3592 if (ret == -EEXIST) {
3593 exists = find_extent_buffer(fs_info, start);
3599 /* add one reference for the tree */
3600 check_buffer_tree_ref(eb);
3601 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3604 * Now it's safe to unlock the pages because any calls to
3605 * btree_release_folio will correctly detect that a page belongs to a
3606 * live buffer and won't free them prematurely.
3608 for (i = 0; i < num_pages; i++)
3609 unlock_page(eb->pages[i]);
3613 WARN_ON(!atomic_dec_and_test(&eb->refs));
3614 for (i = 0; i < num_pages; i++) {
3616 unlock_page(eb->pages[i]);
3619 btrfs_release_extent_buffer(eb);
3623 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3625 struct extent_buffer *eb =
3626 container_of(head, struct extent_buffer, rcu_head);
3628 __free_extent_buffer(eb);
3631 static int release_extent_buffer(struct extent_buffer *eb)
3632 __releases(&eb->refs_lock)
3634 lockdep_assert_held(&eb->refs_lock);
3636 WARN_ON(atomic_read(&eb->refs) == 0);
3637 if (atomic_dec_and_test(&eb->refs)) {
3638 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3639 struct btrfs_fs_info *fs_info = eb->fs_info;
3641 spin_unlock(&eb->refs_lock);
3643 spin_lock(&fs_info->buffer_lock);
3644 radix_tree_delete(&fs_info->buffer_radix,
3645 eb->start >> fs_info->sectorsize_bits);
3646 spin_unlock(&fs_info->buffer_lock);
3648 spin_unlock(&eb->refs_lock);
3651 btrfs_leak_debug_del_eb(eb);
3652 /* Should be safe to release our pages at this point */
3653 btrfs_release_extent_buffer_pages(eb);
3654 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3655 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3656 __free_extent_buffer(eb);
3660 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3663 spin_unlock(&eb->refs_lock);
3668 void free_extent_buffer(struct extent_buffer *eb)
3674 refs = atomic_read(&eb->refs);
3676 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3677 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3680 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3684 spin_lock(&eb->refs_lock);
3685 if (atomic_read(&eb->refs) == 2 &&
3686 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3687 !extent_buffer_under_io(eb) &&
3688 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3689 atomic_dec(&eb->refs);
3692 * I know this is terrible, but it's temporary until we stop tracking
3693 * the uptodate bits and such for the extent buffers.
3695 release_extent_buffer(eb);
3698 void free_extent_buffer_stale(struct extent_buffer *eb)
3703 spin_lock(&eb->refs_lock);
3704 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3706 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3707 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3708 atomic_dec(&eb->refs);
3709 release_extent_buffer(eb);
3712 static void btree_clear_page_dirty(struct page *page)
3714 ASSERT(PageDirty(page));
3715 ASSERT(PageLocked(page));
3716 clear_page_dirty_for_io(page);
3717 xa_lock_irq(&page->mapping->i_pages);
3718 if (!PageDirty(page))
3719 __xa_clear_mark(&page->mapping->i_pages,
3720 page_index(page), PAGECACHE_TAG_DIRTY);
3721 xa_unlock_irq(&page->mapping->i_pages);
3724 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3726 struct btrfs_fs_info *fs_info = eb->fs_info;
3727 struct page *page = eb->pages[0];
3730 /* btree_clear_page_dirty() needs page locked */
3732 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3735 btree_clear_page_dirty(page);
3737 WARN_ON(atomic_read(&eb->refs) == 0);
3740 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3741 struct extent_buffer *eb)
3743 struct btrfs_fs_info *fs_info = eb->fs_info;
3748 btrfs_assert_tree_write_locked(eb);
3750 if (trans && btrfs_header_generation(eb) != trans->transid)
3753 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3756 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3757 fs_info->dirty_metadata_batch);
3759 if (eb->fs_info->nodesize < PAGE_SIZE)
3760 return clear_subpage_extent_buffer_dirty(eb);
3762 num_pages = num_extent_pages(eb);
3764 for (i = 0; i < num_pages; i++) {
3765 page = eb->pages[i];
3766 if (!PageDirty(page))
3769 btree_clear_page_dirty(page);
3772 WARN_ON(atomic_read(&eb->refs) == 0);
3775 void set_extent_buffer_dirty(struct extent_buffer *eb)
3781 check_buffer_tree_ref(eb);
3783 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3785 num_pages = num_extent_pages(eb);
3786 WARN_ON(atomic_read(&eb->refs) == 0);
3787 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3790 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3793 * For subpage case, we can have other extent buffers in the
3794 * same page, and in clear_subpage_extent_buffer_dirty() we
3795 * have to clear page dirty without subpage lock held.
3796 * This can cause race where our page gets dirty cleared after
3799 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3800 * its page for other reasons, we can use page lock to prevent
3804 lock_page(eb->pages[0]);
3805 for (i = 0; i < num_pages; i++)
3806 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3807 eb->start, eb->len);
3809 unlock_page(eb->pages[0]);
3810 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3812 eb->fs_info->dirty_metadata_batch);
3814 #ifdef CONFIG_BTRFS_DEBUG
3815 for (i = 0; i < num_pages; i++)
3816 ASSERT(PageDirty(eb->pages[i]));
3820 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3822 struct btrfs_fs_info *fs_info = eb->fs_info;
3827 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3828 num_pages = num_extent_pages(eb);
3829 for (i = 0; i < num_pages; i++) {
3830 page = eb->pages[i];
3835 * This is special handling for metadata subpage, as regular
3836 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3838 if (fs_info->nodesize >= PAGE_SIZE)
3839 ClearPageUptodate(page);
3841 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3846 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3848 struct btrfs_fs_info *fs_info = eb->fs_info;
3853 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3854 num_pages = num_extent_pages(eb);
3855 for (i = 0; i < num_pages; i++) {
3856 page = eb->pages[i];
3859 * This is special handling for metadata subpage, as regular
3860 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3862 if (fs_info->nodesize >= PAGE_SIZE)
3863 SetPageUptodate(page);
3865 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3870 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3872 struct extent_buffer *eb = bbio->private;
3873 struct btrfs_fs_info *fs_info = eb->fs_info;
3874 bool uptodate = !bbio->bio.bi_status;
3875 struct bvec_iter_all iter_all;
3876 struct bio_vec *bvec;
3879 eb->read_mirror = bbio->mirror_num;
3882 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3886 set_extent_buffer_uptodate(eb);
3888 clear_extent_buffer_uptodate(eb);
3889 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3892 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
3893 u64 start = eb->start + bio_offset;
3894 struct page *page = bvec->bv_page;
3895 u32 len = bvec->bv_len;
3898 btrfs_page_set_uptodate(fs_info, page, start, len);
3900 btrfs_page_clear_uptodate(fs_info, page, start, len);
3905 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3906 smp_mb__after_atomic();
3907 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3908 free_extent_buffer(eb);
3910 bio_put(&bbio->bio);
3913 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3914 struct btrfs_tree_parent_check *check)
3916 int num_pages = num_extent_pages(eb), i;
3917 struct btrfs_bio *bbio;
3919 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3923 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3924 * operation, which could potentially still be in flight. In this case
3925 * we simply want to return an error.
3927 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3930 /* Someone else is already reading the buffer, just wait for it. */
3931 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3934 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3935 eb->read_mirror = 0;
3936 check_buffer_tree_ref(eb);
3937 atomic_inc(&eb->refs);
3939 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3940 REQ_OP_READ | REQ_META, eb->fs_info,
3941 extent_buffer_read_end_io, eb);
3942 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3943 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3944 bbio->file_offset = eb->start;
3945 memcpy(&bbio->parent_check, check, sizeof(*check));
3946 if (eb->fs_info->nodesize < PAGE_SIZE) {
3947 __bio_add_page(&bbio->bio, eb->pages[0], eb->len,
3948 eb->start - page_offset(eb->pages[0]));
3950 for (i = 0; i < num_pages; i++)
3951 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
3953 btrfs_submit_bio(bbio, mirror_num);
3956 if (wait == WAIT_COMPLETE) {
3957 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3958 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3965 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3968 btrfs_warn(eb->fs_info,
3969 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
3970 eb->start, eb->len, start, len);
3971 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3977 * Check if the [start, start + len) range is valid before reading/writing
3979 * NOTE: @start and @len are offset inside the eb, not logical address.
3981 * Caller should not touch the dst/src memory if this function returns error.
3983 static inline int check_eb_range(const struct extent_buffer *eb,
3984 unsigned long start, unsigned long len)
3986 unsigned long offset;
3988 /* start, start + len should not go beyond eb->len nor overflow */
3989 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3990 return report_eb_range(eb, start, len);
3995 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3996 unsigned long start, unsigned long len)
4002 char *dst = (char *)dstv;
4003 unsigned long i = get_eb_page_index(start);
4005 if (check_eb_range(eb, start, len))
4008 offset = get_eb_offset_in_page(eb, start);
4011 page = eb->pages[i];
4013 cur = min(len, (PAGE_SIZE - offset));
4014 kaddr = page_address(page);
4015 memcpy(dst, kaddr + offset, cur);
4024 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4026 unsigned long start, unsigned long len)
4032 char __user *dst = (char __user *)dstv;
4033 unsigned long i = get_eb_page_index(start);
4036 WARN_ON(start > eb->len);
4037 WARN_ON(start + len > eb->start + eb->len);
4039 offset = get_eb_offset_in_page(eb, start);
4042 page = eb->pages[i];
4044 cur = min(len, (PAGE_SIZE - offset));
4045 kaddr = page_address(page);
4046 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4060 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4061 unsigned long start, unsigned long len)
4067 char *ptr = (char *)ptrv;
4068 unsigned long i = get_eb_page_index(start);
4071 if (check_eb_range(eb, start, len))
4074 offset = get_eb_offset_in_page(eb, start);
4077 page = eb->pages[i];
4079 cur = min(len, (PAGE_SIZE - offset));
4081 kaddr = page_address(page);
4082 ret = memcmp(ptr, kaddr + offset, cur);
4095 * Check that the extent buffer is uptodate.
4097 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4098 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4100 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4103 struct btrfs_fs_info *fs_info = eb->fs_info;
4106 * If we are using the commit root we could potentially clear a page
4107 * Uptodate while we're using the extent buffer that we've previously
4108 * looked up. We don't want to complain in this case, as the page was
4109 * valid before, we just didn't write it out. Instead we want to catch
4110 * the case where we didn't actually read the block properly, which
4111 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4113 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4116 if (fs_info->nodesize < PAGE_SIZE) {
4117 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4118 eb->start, eb->len)))
4119 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4121 WARN_ON(!PageUptodate(page));
4125 static void __write_extent_buffer(const struct extent_buffer *eb,
4126 const void *srcv, unsigned long start,
4127 unsigned long len, bool use_memmove)
4133 char *src = (char *)srcv;
4134 unsigned long i = get_eb_page_index(start);
4135 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4136 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4138 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4140 if (check_eb_range(eb, start, len))
4143 offset = get_eb_offset_in_page(eb, start);
4146 page = eb->pages[i];
4148 assert_eb_page_uptodate(eb, page);
4150 cur = min(len, PAGE_SIZE - offset);
4151 kaddr = page_address(page);
4153 memmove(kaddr + offset, src, cur);
4155 memcpy(kaddr + offset, src, cur);
4164 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4165 unsigned long start, unsigned long len)
4167 return __write_extent_buffer(eb, srcv, start, len, false);
4170 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4171 unsigned long start, unsigned long len)
4173 unsigned long cur = start;
4175 while (cur < start + len) {
4176 unsigned long index = get_eb_page_index(cur);
4177 unsigned int offset = get_eb_offset_in_page(eb, cur);
4178 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4179 struct page *page = eb->pages[index];
4181 assert_eb_page_uptodate(eb, page);
4182 memset(page_address(page) + offset, c, cur_len);
4188 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4191 if (check_eb_range(eb, start, len))
4193 return memset_extent_buffer(eb, 0, start, len);
4196 void copy_extent_buffer_full(const struct extent_buffer *dst,
4197 const struct extent_buffer *src)
4199 unsigned long cur = 0;
4201 ASSERT(dst->len == src->len);
4203 while (cur < src->len) {
4204 unsigned long index = get_eb_page_index(cur);
4205 unsigned long offset = get_eb_offset_in_page(src, cur);
4206 unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4207 void *addr = page_address(src->pages[index]) + offset;
4209 write_extent_buffer(dst, addr, cur, cur_len);
4215 void copy_extent_buffer(const struct extent_buffer *dst,
4216 const struct extent_buffer *src,
4217 unsigned long dst_offset, unsigned long src_offset,
4220 u64 dst_len = dst->len;
4225 unsigned long i = get_eb_page_index(dst_offset);
4227 if (check_eb_range(dst, dst_offset, len) ||
4228 check_eb_range(src, src_offset, len))
4231 WARN_ON(src->len != dst_len);
4233 offset = get_eb_offset_in_page(dst, dst_offset);
4236 page = dst->pages[i];
4237 assert_eb_page_uptodate(dst, page);
4239 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4241 kaddr = page_address(page);
4242 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4252 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4254 * @eb: the extent buffer
4255 * @start: offset of the bitmap item in the extent buffer
4257 * @page_index: return index of the page in the extent buffer that contains the
4259 * @page_offset: return offset into the page given by page_index
4261 * This helper hides the ugliness of finding the byte in an extent buffer which
4262 * contains a given bit.
4264 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4265 unsigned long start, unsigned long nr,
4266 unsigned long *page_index,
4267 size_t *page_offset)
4269 size_t byte_offset = BIT_BYTE(nr);
4273 * The byte we want is the offset of the extent buffer + the offset of
4274 * the bitmap item in the extent buffer + the offset of the byte in the
4277 offset = start + offset_in_page(eb->start) + byte_offset;
4279 *page_index = offset >> PAGE_SHIFT;
4280 *page_offset = offset_in_page(offset);
4284 * Determine whether a bit in a bitmap item is set.
4286 * @eb: the extent buffer
4287 * @start: offset of the bitmap item in the extent buffer
4288 * @nr: bit number to test
4290 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4298 eb_bitmap_offset(eb, start, nr, &i, &offset);
4299 page = eb->pages[i];
4300 assert_eb_page_uptodate(eb, page);
4301 kaddr = page_address(page);
4302 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4305 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4307 unsigned long index = get_eb_page_index(bytenr);
4309 if (check_eb_range(eb, bytenr, 1))
4311 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4315 * Set an area of a bitmap to 1.
4317 * @eb: the extent buffer
4318 * @start: offset of the bitmap item in the extent buffer
4319 * @pos: bit number of the first bit
4320 * @len: number of bits to set
4322 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4323 unsigned long pos, unsigned long len)
4325 unsigned int first_byte = start + BIT_BYTE(pos);
4326 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4327 const bool same_byte = (first_byte == last_byte);
4328 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4332 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4334 /* Handle the first byte. */
4335 kaddr = extent_buffer_get_byte(eb, first_byte);
4340 /* Handle the byte aligned part. */
4341 ASSERT(first_byte + 1 <= last_byte);
4342 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4344 /* Handle the last byte. */
4345 kaddr = extent_buffer_get_byte(eb, last_byte);
4346 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4351 * Clear an area of a bitmap.
4353 * @eb: the extent buffer
4354 * @start: offset of the bitmap item in the extent buffer
4355 * @pos: bit number of the first bit
4356 * @len: number of bits to clear
4358 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4359 unsigned long start, unsigned long pos,
4362 unsigned int first_byte = start + BIT_BYTE(pos);
4363 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4364 const bool same_byte = (first_byte == last_byte);
4365 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4369 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4371 /* Handle the first byte. */
4372 kaddr = extent_buffer_get_byte(eb, first_byte);
4377 /* Handle the byte aligned part. */
4378 ASSERT(first_byte + 1 <= last_byte);
4379 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4381 /* Handle the last byte. */
4382 kaddr = extent_buffer_get_byte(eb, last_byte);
4383 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4386 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4388 unsigned long distance = (src > dst) ? src - dst : dst - src;
4389 return distance < len;
4392 void memcpy_extent_buffer(const struct extent_buffer *dst,
4393 unsigned long dst_offset, unsigned long src_offset,
4396 unsigned long cur_off = 0;
4398 if (check_eb_range(dst, dst_offset, len) ||
4399 check_eb_range(dst, src_offset, len))
4402 while (cur_off < len) {
4403 unsigned long cur_src = cur_off + src_offset;
4404 unsigned long pg_index = get_eb_page_index(cur_src);
4405 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4406 unsigned long cur_len = min(src_offset + len - cur_src,
4407 PAGE_SIZE - pg_off);
4408 void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4409 const bool use_memmove = areas_overlap(src_offset + cur_off,
4410 dst_offset + cur_off, cur_len);
4412 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4418 void memmove_extent_buffer(const struct extent_buffer *dst,
4419 unsigned long dst_offset, unsigned long src_offset,
4422 unsigned long dst_end = dst_offset + len - 1;
4423 unsigned long src_end = src_offset + len - 1;
4425 if (check_eb_range(dst, dst_offset, len) ||
4426 check_eb_range(dst, src_offset, len))
4429 if (dst_offset < src_offset) {
4430 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4435 unsigned long src_i;
4437 size_t dst_off_in_page;
4438 size_t src_off_in_page;
4442 src_i = get_eb_page_index(src_end);
4444 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4445 src_off_in_page = get_eb_offset_in_page(dst, src_end);
4447 cur = min_t(unsigned long, len, src_off_in_page + 1);
4448 cur = min(cur, dst_off_in_page + 1);
4450 src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4452 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4455 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4464 #define GANG_LOOKUP_SIZE 16
4465 static struct extent_buffer *get_next_extent_buffer(
4466 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4468 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4469 struct extent_buffer *found = NULL;
4470 u64 page_start = page_offset(page);
4471 u64 cur = page_start;
4473 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4474 lockdep_assert_held(&fs_info->buffer_lock);
4476 while (cur < page_start + PAGE_SIZE) {
4480 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4481 (void **)gang, cur >> fs_info->sectorsize_bits,
4482 min_t(unsigned int, GANG_LOOKUP_SIZE,
4483 PAGE_SIZE / fs_info->nodesize));
4486 for (i = 0; i < ret; i++) {
4487 /* Already beyond page end */
4488 if (gang[i]->start >= page_start + PAGE_SIZE)
4491 if (gang[i]->start >= bytenr) {
4496 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4502 static int try_release_subpage_extent_buffer(struct page *page)
4504 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4505 u64 cur = page_offset(page);
4506 const u64 end = page_offset(page) + PAGE_SIZE;
4510 struct extent_buffer *eb = NULL;
4513 * Unlike try_release_extent_buffer() which uses page->private
4514 * to grab buffer, for subpage case we rely on radix tree, thus
4515 * we need to ensure radix tree consistency.
4517 * We also want an atomic snapshot of the radix tree, thus go
4518 * with spinlock rather than RCU.
4520 spin_lock(&fs_info->buffer_lock);
4521 eb = get_next_extent_buffer(fs_info, page, cur);
4523 /* No more eb in the page range after or at cur */
4524 spin_unlock(&fs_info->buffer_lock);
4527 cur = eb->start + eb->len;
4530 * The same as try_release_extent_buffer(), to ensure the eb
4531 * won't disappear out from under us.
4533 spin_lock(&eb->refs_lock);
4534 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4535 spin_unlock(&eb->refs_lock);
4536 spin_unlock(&fs_info->buffer_lock);
4539 spin_unlock(&fs_info->buffer_lock);
4542 * If tree ref isn't set then we know the ref on this eb is a
4543 * real ref, so just return, this eb will likely be freed soon
4546 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4547 spin_unlock(&eb->refs_lock);
4552 * Here we don't care about the return value, we will always
4553 * check the page private at the end. And
4554 * release_extent_buffer() will release the refs_lock.
4556 release_extent_buffer(eb);
4559 * Finally to check if we have cleared page private, as if we have
4560 * released all ebs in the page, the page private should be cleared now.
4562 spin_lock(&page->mapping->private_lock);
4563 if (!PagePrivate(page))
4567 spin_unlock(&page->mapping->private_lock);
4572 int try_release_extent_buffer(struct page *page)
4574 struct extent_buffer *eb;
4576 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4577 return try_release_subpage_extent_buffer(page);
4580 * We need to make sure nobody is changing page->private, as we rely on
4581 * page->private as the pointer to extent buffer.
4583 spin_lock(&page->mapping->private_lock);
4584 if (!PagePrivate(page)) {
4585 spin_unlock(&page->mapping->private_lock);
4589 eb = (struct extent_buffer *)page->private;
4593 * This is a little awful but should be ok, we need to make sure that
4594 * the eb doesn't disappear out from under us while we're looking at
4597 spin_lock(&eb->refs_lock);
4598 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4599 spin_unlock(&eb->refs_lock);
4600 spin_unlock(&page->mapping->private_lock);
4603 spin_unlock(&page->mapping->private_lock);
4606 * If tree ref isn't set then we know the ref on this eb is a real ref,
4607 * so just return, this page will likely be freed soon anyway.
4609 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4610 spin_unlock(&eb->refs_lock);
4614 return release_extent_buffer(eb);
4618 * btrfs_readahead_tree_block - attempt to readahead a child block
4619 * @fs_info: the fs_info
4620 * @bytenr: bytenr to read
4621 * @owner_root: objectid of the root that owns this eb
4622 * @gen: generation for the uptodate check, can be 0
4623 * @level: level for the eb
4625 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4626 * normal uptodate check of the eb, without checking the generation. If we have
4627 * to read the block we will not block on anything.
4629 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4630 u64 bytenr, u64 owner_root, u64 gen, int level)
4632 struct btrfs_tree_parent_check check = {
4637 struct extent_buffer *eb;
4640 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4644 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4645 free_extent_buffer(eb);
4649 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4651 free_extent_buffer_stale(eb);
4653 free_extent_buffer(eb);
4657 * btrfs_readahead_node_child - readahead a node's child block
4658 * @node: parent node we're reading from
4659 * @slot: slot in the parent node for the child we want to read
4661 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4662 * the slot in the node provided.
4664 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4666 btrfs_readahead_tree_block(node->fs_info,
4667 btrfs_node_blockptr(node, slot),
4668 btrfs_header_owner(node),
4669 btrfs_node_ptr_generation(node, slot),
4670 btrfs_header_level(node) - 1);