1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 #include "check-integrity.h"
23 #include "rcu-string.h"
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
33 static DEFINE_SPINLOCK(leak_lock);
36 #define BUFFER_LRU_MAX 64
41 struct rb_node rb_node;
44 struct extent_page_data {
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
49 /* tells writepage not to lock the state bits for this range
50 * it still does the unlocking
52 unsigned int extent_locked:1;
54 /* tells the submit_bio code to use a WRITE_SYNC */
55 unsigned int sync_io:1;
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
62 return btrfs_sb(tree->mapping->host->i_sb);
65 int __init extent_io_init(void)
67 extent_state_cache = kmem_cache_create("extent_state",
68 sizeof(struct extent_state), 0,
69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70 if (!extent_state_cache)
73 extent_buffer_cache = kmem_cache_create("extent_buffers",
74 sizeof(struct extent_buffer), 0,
75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76 if (!extent_buffer_cache)
77 goto free_state_cache;
81 kmem_cache_destroy(extent_state_cache);
85 void extent_io_exit(void)
87 struct extent_state *state;
88 struct extent_buffer *eb;
90 while (!list_empty(&states)) {
91 state = list_entry(states.next, struct extent_state, leak_list);
92 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93 "state %lu in tree %p refs %d\n",
94 (unsigned long long)state->start,
95 (unsigned long long)state->end,
96 state->state, state->tree, atomic_read(&state->refs));
97 list_del(&state->leak_list);
98 kmem_cache_free(extent_state_cache, state);
102 while (!list_empty(&buffers)) {
103 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105 "refs %d\n", (unsigned long long)eb->start,
106 eb->len, atomic_read(&eb->refs));
107 list_del(&eb->leak_list);
108 kmem_cache_free(extent_buffer_cache, eb);
110 if (extent_state_cache)
111 kmem_cache_destroy(extent_state_cache);
112 if (extent_buffer_cache)
113 kmem_cache_destroy(extent_buffer_cache);
116 void extent_io_tree_init(struct extent_io_tree *tree,
117 struct address_space *mapping)
119 tree->state = RB_ROOT;
120 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
122 tree->dirty_bytes = 0;
123 spin_lock_init(&tree->lock);
124 spin_lock_init(&tree->buffer_lock);
125 tree->mapping = mapping;
128 static struct extent_state *alloc_extent_state(gfp_t mask)
130 struct extent_state *state;
135 state = kmem_cache_alloc(extent_state_cache, mask);
142 spin_lock_irqsave(&leak_lock, flags);
143 list_add(&state->leak_list, &states);
144 spin_unlock_irqrestore(&leak_lock, flags);
146 atomic_set(&state->refs, 1);
147 init_waitqueue_head(&state->wq);
148 trace_alloc_extent_state(state, mask, _RET_IP_);
152 void free_extent_state(struct extent_state *state)
156 if (atomic_dec_and_test(&state->refs)) {
160 WARN_ON(state->tree);
162 spin_lock_irqsave(&leak_lock, flags);
163 list_del(&state->leak_list);
164 spin_unlock_irqrestore(&leak_lock, flags);
166 trace_free_extent_state(state, _RET_IP_);
167 kmem_cache_free(extent_state_cache, state);
171 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
172 struct rb_node *node)
174 struct rb_node **p = &root->rb_node;
175 struct rb_node *parent = NULL;
176 struct tree_entry *entry;
180 entry = rb_entry(parent, struct tree_entry, rb_node);
182 if (offset < entry->start)
184 else if (offset > entry->end)
190 rb_link_node(node, parent, p);
191 rb_insert_color(node, root);
195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
196 struct rb_node **prev_ret,
197 struct rb_node **next_ret)
199 struct rb_root *root = &tree->state;
200 struct rb_node *n = root->rb_node;
201 struct rb_node *prev = NULL;
202 struct rb_node *orig_prev = NULL;
203 struct tree_entry *entry;
204 struct tree_entry *prev_entry = NULL;
207 entry = rb_entry(n, struct tree_entry, rb_node);
211 if (offset < entry->start)
213 else if (offset > entry->end)
221 while (prev && offset > prev_entry->end) {
222 prev = rb_next(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 while (prev && offset < prev_entry->start) {
232 prev = rb_prev(prev);
233 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
240 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
243 struct rb_node *prev = NULL;
246 ret = __etree_search(tree, offset, &prev, NULL);
252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253 struct extent_state *other)
255 if (tree->ops && tree->ops->merge_extent_hook)
256 tree->ops->merge_extent_hook(tree->mapping->host, new,
261 * utility function to look for merge candidates inside a given range.
262 * Any extents with matching state are merged together into a single
263 * extent in the tree. Extents with EXTENT_IO in their state field
264 * are not merged because the end_io handlers need to be able to do
265 * operations on them without sleeping (or doing allocations/splits).
267 * This should be called with the tree lock held.
269 static void merge_state(struct extent_io_tree *tree,
270 struct extent_state *state)
272 struct extent_state *other;
273 struct rb_node *other_node;
275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
278 other_node = rb_prev(&state->rb_node);
280 other = rb_entry(other_node, struct extent_state, rb_node);
281 if (other->end == state->start - 1 &&
282 other->state == state->state) {
283 merge_cb(tree, state, other);
284 state->start = other->start;
286 rb_erase(&other->rb_node, &tree->state);
287 free_extent_state(other);
290 other_node = rb_next(&state->rb_node);
292 other = rb_entry(other_node, struct extent_state, rb_node);
293 if (other->start == state->end + 1 &&
294 other->state == state->state) {
295 merge_cb(tree, state, other);
296 state->end = other->end;
298 rb_erase(&other->rb_node, &tree->state);
299 free_extent_state(other);
304 static void set_state_cb(struct extent_io_tree *tree,
305 struct extent_state *state, int *bits)
307 if (tree->ops && tree->ops->set_bit_hook)
308 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
311 static void clear_state_cb(struct extent_io_tree *tree,
312 struct extent_state *state, int *bits)
314 if (tree->ops && tree->ops->clear_bit_hook)
315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
318 static void set_state_bits(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits);
322 * insert an extent_state struct into the tree. 'bits' are set on the
323 * struct before it is inserted.
325 * This may return -EEXIST if the extent is already there, in which case the
326 * state struct is freed.
328 * The tree lock is not taken internally. This is a utility function and
329 * probably isn't what you want to call (see set/clear_extent_bit).
331 static int insert_state(struct extent_io_tree *tree,
332 struct extent_state *state, u64 start, u64 end,
335 struct rb_node *node;
338 printk(KERN_ERR "btrfs end < start %llu %llu\n",
339 (unsigned long long)end,
340 (unsigned long long)start);
343 state->start = start;
346 set_state_bits(tree, state, bits);
348 node = tree_insert(&tree->state, end, &state->rb_node);
350 struct extent_state *found;
351 found = rb_entry(node, struct extent_state, rb_node);
352 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353 "%llu %llu\n", (unsigned long long)found->start,
354 (unsigned long long)found->end,
355 (unsigned long long)start, (unsigned long long)end);
359 merge_state(tree, state);
363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
366 if (tree->ops && tree->ops->split_extent_hook)
367 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
371 * split a given extent state struct in two, inserting the preallocated
372 * struct 'prealloc' as the newly created second half. 'split' indicates an
373 * offset inside 'orig' where it should be split.
376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
377 * are two extent state structs in the tree:
378 * prealloc: [orig->start, split - 1]
379 * orig: [ split, orig->end ]
381 * The tree locks are not taken by this function. They need to be held
384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 struct extent_state *prealloc, u64 split)
387 struct rb_node *node;
389 split_cb(tree, orig, split);
391 prealloc->start = orig->start;
392 prealloc->end = split - 1;
393 prealloc->state = orig->state;
396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
398 free_extent_state(prealloc);
401 prealloc->tree = tree;
405 static struct extent_state *next_state(struct extent_state *state)
407 struct rb_node *next = rb_next(&state->rb_node);
409 return rb_entry(next, struct extent_state, rb_node);
415 * utility function to clear some bits in an extent state struct.
416 * it will optionally wake up any one waiting on this state (wake == 1).
418 * If no bits are set on the state struct after clearing things, the
419 * struct is freed and removed from the tree
421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422 struct extent_state *state,
425 struct extent_state *next;
426 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
429 u64 range = state->end - state->start + 1;
430 WARN_ON(range > tree->dirty_bytes);
431 tree->dirty_bytes -= range;
433 clear_state_cb(tree, state, bits);
434 state->state &= ~bits_to_clear;
437 if (state->state == 0) {
438 next = next_state(state);
440 rb_erase(&state->rb_node, &tree->state);
442 free_extent_state(state);
447 merge_state(tree, state);
448 next = next_state(state);
453 static struct extent_state *
454 alloc_extent_state_atomic(struct extent_state *prealloc)
457 prealloc = alloc_extent_state(GFP_ATOMIC);
462 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
464 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465 "Extent tree was modified by another "
466 "thread while locked.");
470 * clear some bits on a range in the tree. This may require splitting
471 * or inserting elements in the tree, so the gfp mask is used to
472 * indicate which allocations or sleeping are allowed.
474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475 * the given range from the tree regardless of state (ie for truncate).
477 * the range [start, end] is inclusive.
479 * This takes the tree lock, and returns 0 on success and < 0 on error.
481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
482 int bits, int wake, int delete,
483 struct extent_state **cached_state,
486 struct extent_state *state;
487 struct extent_state *cached;
488 struct extent_state *prealloc = NULL;
489 struct rb_node *node;
495 bits |= ~EXTENT_CTLBITS;
496 bits |= EXTENT_FIRST_DELALLOC;
498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
501 if (!prealloc && (mask & __GFP_WAIT)) {
502 prealloc = alloc_extent_state(mask);
507 spin_lock(&tree->lock);
509 cached = *cached_state;
512 *cached_state = NULL;
516 if (cached && cached->tree && cached->start <= start &&
517 cached->end > start) {
519 atomic_dec(&cached->refs);
524 free_extent_state(cached);
527 * this search will find the extents that end after
530 node = tree_search(tree, start);
533 state = rb_entry(node, struct extent_state, rb_node);
535 if (state->start > end)
537 WARN_ON(state->end < start);
538 last_end = state->end;
540 /* the state doesn't have the wanted bits, go ahead */
541 if (!(state->state & bits)) {
542 state = next_state(state);
547 * | ---- desired range ---- |
549 * | ------------- state -------------- |
551 * We need to split the extent we found, and may flip
552 * bits on second half.
554 * If the extent we found extends past our range, we
555 * just split and search again. It'll get split again
556 * the next time though.
558 * If the extent we found is inside our range, we clear
559 * the desired bit on it.
562 if (state->start < start) {
563 prealloc = alloc_extent_state_atomic(prealloc);
565 err = split_state(tree, state, prealloc, start);
567 extent_io_tree_panic(tree, err);
572 if (state->end <= end) {
573 state = clear_state_bit(tree, state, &bits, wake);
579 * | ---- desired range ---- |
581 * We need to split the extent, and clear the bit
584 if (state->start <= end && state->end > end) {
585 prealloc = alloc_extent_state_atomic(prealloc);
587 err = split_state(tree, state, prealloc, end + 1);
589 extent_io_tree_panic(tree, err);
594 clear_state_bit(tree, prealloc, &bits, wake);
600 state = clear_state_bit(tree, state, &bits, wake);
602 if (last_end == (u64)-1)
604 start = last_end + 1;
605 if (start <= end && state && !need_resched())
610 spin_unlock(&tree->lock);
612 free_extent_state(prealloc);
619 spin_unlock(&tree->lock);
620 if (mask & __GFP_WAIT)
625 static void wait_on_state(struct extent_io_tree *tree,
626 struct extent_state *state)
627 __releases(tree->lock)
628 __acquires(tree->lock)
631 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
632 spin_unlock(&tree->lock);
634 spin_lock(&tree->lock);
635 finish_wait(&state->wq, &wait);
639 * waits for one or more bits to clear on a range in the state tree.
640 * The range [start, end] is inclusive.
641 * The tree lock is taken by this function
643 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
645 struct extent_state *state;
646 struct rb_node *node;
648 spin_lock(&tree->lock);
652 * this search will find all the extents that end after
655 node = tree_search(tree, start);
659 state = rb_entry(node, struct extent_state, rb_node);
661 if (state->start > end)
664 if (state->state & bits) {
665 start = state->start;
666 atomic_inc(&state->refs);
667 wait_on_state(tree, state);
668 free_extent_state(state);
671 start = state->end + 1;
676 cond_resched_lock(&tree->lock);
679 spin_unlock(&tree->lock);
682 static void set_state_bits(struct extent_io_tree *tree,
683 struct extent_state *state,
686 int bits_to_set = *bits & ~EXTENT_CTLBITS;
688 set_state_cb(tree, state, bits);
689 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
690 u64 range = state->end - state->start + 1;
691 tree->dirty_bytes += range;
693 state->state |= bits_to_set;
696 static void cache_state(struct extent_state *state,
697 struct extent_state **cached_ptr)
699 if (cached_ptr && !(*cached_ptr)) {
700 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
702 atomic_inc(&state->refs);
707 static void uncache_state(struct extent_state **cached_ptr)
709 if (cached_ptr && (*cached_ptr)) {
710 struct extent_state *state = *cached_ptr;
712 free_extent_state(state);
717 * set some bits on a range in the tree. This may require allocations or
718 * sleeping, so the gfp mask is used to indicate what is allowed.
720 * If any of the exclusive bits are set, this will fail with -EEXIST if some
721 * part of the range already has the desired bits set. The start of the
722 * existing range is returned in failed_start in this case.
724 * [start, end] is inclusive This takes the tree lock.
727 static int __must_check
728 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
729 int bits, int exclusive_bits, u64 *failed_start,
730 struct extent_state **cached_state, gfp_t mask)
732 struct extent_state *state;
733 struct extent_state *prealloc = NULL;
734 struct rb_node *node;
739 bits |= EXTENT_FIRST_DELALLOC;
741 if (!prealloc && (mask & __GFP_WAIT)) {
742 prealloc = alloc_extent_state(mask);
746 spin_lock(&tree->lock);
747 if (cached_state && *cached_state) {
748 state = *cached_state;
749 if (state->start <= start && state->end > start &&
751 node = &state->rb_node;
756 * this search will find all the extents that end after
759 node = tree_search(tree, start);
761 prealloc = alloc_extent_state_atomic(prealloc);
763 err = insert_state(tree, prealloc, start, end, &bits);
765 extent_io_tree_panic(tree, err);
770 state = rb_entry(node, struct extent_state, rb_node);
772 last_start = state->start;
773 last_end = state->end;
776 * | ---- desired range ---- |
779 * Just lock what we found and keep going
781 if (state->start == start && state->end <= end) {
782 if (state->state & exclusive_bits) {
783 *failed_start = state->start;
788 set_state_bits(tree, state, &bits);
789 cache_state(state, cached_state);
790 merge_state(tree, state);
791 if (last_end == (u64)-1)
793 start = last_end + 1;
794 state = next_state(state);
795 if (start < end && state && state->start == start &&
802 * | ---- desired range ---- |
805 * | ------------- state -------------- |
807 * We need to split the extent we found, and may flip bits on
810 * If the extent we found extends past our
811 * range, we just split and search again. It'll get split
812 * again the next time though.
814 * If the extent we found is inside our range, we set the
817 if (state->start < start) {
818 if (state->state & exclusive_bits) {
819 *failed_start = start;
824 prealloc = alloc_extent_state_atomic(prealloc);
826 err = split_state(tree, state, prealloc, start);
828 extent_io_tree_panic(tree, err);
833 if (state->end <= end) {
834 set_state_bits(tree, state, &bits);
835 cache_state(state, cached_state);
836 merge_state(tree, state);
837 if (last_end == (u64)-1)
839 start = last_end + 1;
840 state = next_state(state);
841 if (start < end && state && state->start == start &&
848 * | ---- desired range ---- |
849 * | state | or | state |
851 * There's a hole, we need to insert something in it and
852 * ignore the extent we found.
854 if (state->start > start) {
856 if (end < last_start)
859 this_end = last_start - 1;
861 prealloc = alloc_extent_state_atomic(prealloc);
865 * Avoid to free 'prealloc' if it can be merged with
868 err = insert_state(tree, prealloc, start, this_end,
871 extent_io_tree_panic(tree, err);
873 cache_state(prealloc, cached_state);
875 start = this_end + 1;
879 * | ---- desired range ---- |
881 * We need to split the extent, and set the bit
884 if (state->start <= end && state->end > end) {
885 if (state->state & exclusive_bits) {
886 *failed_start = start;
891 prealloc = alloc_extent_state_atomic(prealloc);
893 err = split_state(tree, state, prealloc, end + 1);
895 extent_io_tree_panic(tree, err);
897 set_state_bits(tree, prealloc, &bits);
898 cache_state(prealloc, cached_state);
899 merge_state(tree, prealloc);
907 spin_unlock(&tree->lock);
909 free_extent_state(prealloc);
916 spin_unlock(&tree->lock);
917 if (mask & __GFP_WAIT)
922 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
923 u64 *failed_start, struct extent_state **cached_state,
926 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
932 * convert_extent - convert all bits in a given range from one bit to another
933 * @tree: the io tree to search
934 * @start: the start offset in bytes
935 * @end: the end offset in bytes (inclusive)
936 * @bits: the bits to set in this range
937 * @clear_bits: the bits to clear in this range
938 * @mask: the allocation mask
940 * This will go through and set bits for the given range. If any states exist
941 * already in this range they are set with the given bit and cleared of the
942 * clear_bits. This is only meant to be used by things that are mergeable, ie
943 * converting from say DELALLOC to DIRTY. This is not meant to be used with
944 * boundary bits like LOCK.
946 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
947 int bits, int clear_bits, gfp_t mask)
949 struct extent_state *state;
950 struct extent_state *prealloc = NULL;
951 struct rb_node *node;
957 if (!prealloc && (mask & __GFP_WAIT)) {
958 prealloc = alloc_extent_state(mask);
963 spin_lock(&tree->lock);
965 * this search will find all the extents that end after
968 node = tree_search(tree, start);
970 prealloc = alloc_extent_state_atomic(prealloc);
975 err = insert_state(tree, prealloc, start, end, &bits);
978 extent_io_tree_panic(tree, err);
981 state = rb_entry(node, struct extent_state, rb_node);
983 last_start = state->start;
984 last_end = state->end;
987 * | ---- desired range ---- |
990 * Just lock what we found and keep going
992 if (state->start == start && state->end <= end) {
993 set_state_bits(tree, state, &bits);
994 state = clear_state_bit(tree, state, &clear_bits, 0);
995 if (last_end == (u64)-1)
997 start = last_end + 1;
998 if (start < end && state && state->start == start &&
1005 * | ---- desired range ---- |
1008 * | ------------- state -------------- |
1010 * We need to split the extent we found, and may flip bits on
1013 * If the extent we found extends past our
1014 * range, we just split and search again. It'll get split
1015 * again the next time though.
1017 * If the extent we found is inside our range, we set the
1018 * desired bit on it.
1020 if (state->start < start) {
1021 prealloc = alloc_extent_state_atomic(prealloc);
1026 err = split_state(tree, state, prealloc, start);
1028 extent_io_tree_panic(tree, err);
1032 if (state->end <= end) {
1033 set_state_bits(tree, state, &bits);
1034 state = clear_state_bit(tree, state, &clear_bits, 0);
1035 if (last_end == (u64)-1)
1037 start = last_end + 1;
1038 if (start < end && state && state->start == start &&
1045 * | ---- desired range ---- |
1046 * | state | or | state |
1048 * There's a hole, we need to insert something in it and
1049 * ignore the extent we found.
1051 if (state->start > start) {
1053 if (end < last_start)
1056 this_end = last_start - 1;
1058 prealloc = alloc_extent_state_atomic(prealloc);
1065 * Avoid to free 'prealloc' if it can be merged with
1068 err = insert_state(tree, prealloc, start, this_end,
1071 extent_io_tree_panic(tree, err);
1073 start = this_end + 1;
1077 * | ---- desired range ---- |
1079 * We need to split the extent, and set the bit
1082 if (state->start <= end && state->end > end) {
1083 prealloc = alloc_extent_state_atomic(prealloc);
1089 err = split_state(tree, state, prealloc, end + 1);
1091 extent_io_tree_panic(tree, err);
1093 set_state_bits(tree, prealloc, &bits);
1094 clear_state_bit(tree, prealloc, &clear_bits, 0);
1102 spin_unlock(&tree->lock);
1104 free_extent_state(prealloc);
1111 spin_unlock(&tree->lock);
1112 if (mask & __GFP_WAIT)
1117 /* wrappers around set/clear extent bit */
1118 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1121 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1125 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1126 int bits, gfp_t mask)
1128 return set_extent_bit(tree, start, end, bits, NULL,
1132 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133 int bits, gfp_t mask)
1135 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1138 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1139 struct extent_state **cached_state, gfp_t mask)
1141 return set_extent_bit(tree, start, end,
1142 EXTENT_DELALLOC | EXTENT_UPTODATE,
1143 NULL, cached_state, mask);
1146 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1149 return clear_extent_bit(tree, start, end,
1150 EXTENT_DIRTY | EXTENT_DELALLOC |
1151 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1154 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1157 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1161 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1162 struct extent_state **cached_state, gfp_t mask)
1164 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1165 cached_state, mask);
1168 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1169 struct extent_state **cached_state, gfp_t mask)
1171 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1172 cached_state, mask);
1176 * either insert or lock state struct between start and end use mask to tell
1177 * us if waiting is desired.
1179 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1180 int bits, struct extent_state **cached_state)
1185 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1186 EXTENT_LOCKED, &failed_start,
1187 cached_state, GFP_NOFS);
1188 if (err == -EEXIST) {
1189 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1190 start = failed_start;
1193 WARN_ON(start > end);
1198 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1200 return lock_extent_bits(tree, start, end, 0, NULL);
1203 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1208 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1209 &failed_start, NULL, GFP_NOFS);
1210 if (err == -EEXIST) {
1211 if (failed_start > start)
1212 clear_extent_bit(tree, start, failed_start - 1,
1213 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1219 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1220 struct extent_state **cached, gfp_t mask)
1222 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1226 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1228 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1233 * helper function to set both pages and extents in the tree writeback
1235 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1237 unsigned long index = start >> PAGE_CACHE_SHIFT;
1238 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1241 while (index <= end_index) {
1242 page = find_get_page(tree->mapping, index);
1243 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1244 set_page_writeback(page);
1245 page_cache_release(page);
1251 /* find the first state struct with 'bits' set after 'start', and
1252 * return it. tree->lock must be held. NULL will returned if
1253 * nothing was found after 'start'
1255 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1256 u64 start, int bits)
1258 struct rb_node *node;
1259 struct extent_state *state;
1262 * this search will find all the extents that end after
1265 node = tree_search(tree, start);
1270 state = rb_entry(node, struct extent_state, rb_node);
1271 if (state->end >= start && (state->state & bits))
1274 node = rb_next(node);
1283 * find the first offset in the io tree with 'bits' set. zero is
1284 * returned if we find something, and *start_ret and *end_ret are
1285 * set to reflect the state struct that was found.
1287 * If nothing was found, 1 is returned. If found something, return 0.
1289 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1290 u64 *start_ret, u64 *end_ret, int bits)
1292 struct extent_state *state;
1295 spin_lock(&tree->lock);
1296 state = find_first_extent_bit_state(tree, start, bits);
1298 *start_ret = state->start;
1299 *end_ret = state->end;
1302 spin_unlock(&tree->lock);
1307 * find a contiguous range of bytes in the file marked as delalloc, not
1308 * more than 'max_bytes'. start and end are used to return the range,
1310 * 1 is returned if we find something, 0 if nothing was in the tree
1312 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1313 u64 *start, u64 *end, u64 max_bytes,
1314 struct extent_state **cached_state)
1316 struct rb_node *node;
1317 struct extent_state *state;
1318 u64 cur_start = *start;
1320 u64 total_bytes = 0;
1322 spin_lock(&tree->lock);
1325 * this search will find all the extents that end after
1328 node = tree_search(tree, cur_start);
1336 state = rb_entry(node, struct extent_state, rb_node);
1337 if (found && (state->start != cur_start ||
1338 (state->state & EXTENT_BOUNDARY))) {
1341 if (!(state->state & EXTENT_DELALLOC)) {
1347 *start = state->start;
1348 *cached_state = state;
1349 atomic_inc(&state->refs);
1353 cur_start = state->end + 1;
1354 node = rb_next(node);
1357 total_bytes += state->end - state->start + 1;
1358 if (total_bytes >= max_bytes)
1362 spin_unlock(&tree->lock);
1366 static noinline void __unlock_for_delalloc(struct inode *inode,
1367 struct page *locked_page,
1371 struct page *pages[16];
1372 unsigned long index = start >> PAGE_CACHE_SHIFT;
1373 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1374 unsigned long nr_pages = end_index - index + 1;
1377 if (index == locked_page->index && end_index == index)
1380 while (nr_pages > 0) {
1381 ret = find_get_pages_contig(inode->i_mapping, index,
1382 min_t(unsigned long, nr_pages,
1383 ARRAY_SIZE(pages)), pages);
1384 for (i = 0; i < ret; i++) {
1385 if (pages[i] != locked_page)
1386 unlock_page(pages[i]);
1387 page_cache_release(pages[i]);
1395 static noinline int lock_delalloc_pages(struct inode *inode,
1396 struct page *locked_page,
1400 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1401 unsigned long start_index = index;
1402 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1403 unsigned long pages_locked = 0;
1404 struct page *pages[16];
1405 unsigned long nrpages;
1409 /* the caller is responsible for locking the start index */
1410 if (index == locked_page->index && index == end_index)
1413 /* skip the page at the start index */
1414 nrpages = end_index - index + 1;
1415 while (nrpages > 0) {
1416 ret = find_get_pages_contig(inode->i_mapping, index,
1417 min_t(unsigned long,
1418 nrpages, ARRAY_SIZE(pages)), pages);
1423 /* now we have an array of pages, lock them all */
1424 for (i = 0; i < ret; i++) {
1426 * the caller is taking responsibility for
1429 if (pages[i] != locked_page) {
1430 lock_page(pages[i]);
1431 if (!PageDirty(pages[i]) ||
1432 pages[i]->mapping != inode->i_mapping) {
1434 unlock_page(pages[i]);
1435 page_cache_release(pages[i]);
1439 page_cache_release(pages[i]);
1448 if (ret && pages_locked) {
1449 __unlock_for_delalloc(inode, locked_page,
1451 ((u64)(start_index + pages_locked - 1)) <<
1458 * find a contiguous range of bytes in the file marked as delalloc, not
1459 * more than 'max_bytes'. start and end are used to return the range,
1461 * 1 is returned if we find something, 0 if nothing was in the tree
1463 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1464 struct extent_io_tree *tree,
1465 struct page *locked_page,
1466 u64 *start, u64 *end,
1472 struct extent_state *cached_state = NULL;
1477 /* step one, find a bunch of delalloc bytes starting at start */
1478 delalloc_start = *start;
1480 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1481 max_bytes, &cached_state);
1482 if (!found || delalloc_end <= *start) {
1483 *start = delalloc_start;
1484 *end = delalloc_end;
1485 free_extent_state(cached_state);
1490 * start comes from the offset of locked_page. We have to lock
1491 * pages in order, so we can't process delalloc bytes before
1494 if (delalloc_start < *start)
1495 delalloc_start = *start;
1498 * make sure to limit the number of pages we try to lock down
1501 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1502 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1504 /* step two, lock all the pages after the page that has start */
1505 ret = lock_delalloc_pages(inode, locked_page,
1506 delalloc_start, delalloc_end);
1507 if (ret == -EAGAIN) {
1508 /* some of the pages are gone, lets avoid looping by
1509 * shortening the size of the delalloc range we're searching
1511 free_extent_state(cached_state);
1513 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1514 max_bytes = PAGE_CACHE_SIZE - offset;
1522 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1524 /* step three, lock the state bits for the whole range */
1525 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1527 /* then test to make sure it is all still delalloc */
1528 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1529 EXTENT_DELALLOC, 1, cached_state);
1531 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1532 &cached_state, GFP_NOFS);
1533 __unlock_for_delalloc(inode, locked_page,
1534 delalloc_start, delalloc_end);
1538 free_extent_state(cached_state);
1539 *start = delalloc_start;
1540 *end = delalloc_end;
1545 int extent_clear_unlock_delalloc(struct inode *inode,
1546 struct extent_io_tree *tree,
1547 u64 start, u64 end, struct page *locked_page,
1551 struct page *pages[16];
1552 unsigned long index = start >> PAGE_CACHE_SHIFT;
1553 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1554 unsigned long nr_pages = end_index - index + 1;
1558 if (op & EXTENT_CLEAR_UNLOCK)
1559 clear_bits |= EXTENT_LOCKED;
1560 if (op & EXTENT_CLEAR_DIRTY)
1561 clear_bits |= EXTENT_DIRTY;
1563 if (op & EXTENT_CLEAR_DELALLOC)
1564 clear_bits |= EXTENT_DELALLOC;
1566 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1567 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1568 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1569 EXTENT_SET_PRIVATE2)))
1572 while (nr_pages > 0) {
1573 ret = find_get_pages_contig(inode->i_mapping, index,
1574 min_t(unsigned long,
1575 nr_pages, ARRAY_SIZE(pages)), pages);
1576 for (i = 0; i < ret; i++) {
1578 if (op & EXTENT_SET_PRIVATE2)
1579 SetPagePrivate2(pages[i]);
1581 if (pages[i] == locked_page) {
1582 page_cache_release(pages[i]);
1585 if (op & EXTENT_CLEAR_DIRTY)
1586 clear_page_dirty_for_io(pages[i]);
1587 if (op & EXTENT_SET_WRITEBACK)
1588 set_page_writeback(pages[i]);
1589 if (op & EXTENT_END_WRITEBACK)
1590 end_page_writeback(pages[i]);
1591 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1592 unlock_page(pages[i]);
1593 page_cache_release(pages[i]);
1603 * count the number of bytes in the tree that have a given bit(s)
1604 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1605 * cached. The total number found is returned.
1607 u64 count_range_bits(struct extent_io_tree *tree,
1608 u64 *start, u64 search_end, u64 max_bytes,
1609 unsigned long bits, int contig)
1611 struct rb_node *node;
1612 struct extent_state *state;
1613 u64 cur_start = *start;
1614 u64 total_bytes = 0;
1618 if (search_end <= cur_start) {
1623 spin_lock(&tree->lock);
1624 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1625 total_bytes = tree->dirty_bytes;
1629 * this search will find all the extents that end after
1632 node = tree_search(tree, cur_start);
1637 state = rb_entry(node, struct extent_state, rb_node);
1638 if (state->start > search_end)
1640 if (contig && found && state->start > last + 1)
1642 if (state->end >= cur_start && (state->state & bits) == bits) {
1643 total_bytes += min(search_end, state->end) + 1 -
1644 max(cur_start, state->start);
1645 if (total_bytes >= max_bytes)
1648 *start = max(cur_start, state->start);
1652 } else if (contig && found) {
1655 node = rb_next(node);
1660 spin_unlock(&tree->lock);
1665 * set the private field for a given byte offset in the tree. If there isn't
1666 * an extent_state there already, this does nothing.
1668 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1670 struct rb_node *node;
1671 struct extent_state *state;
1674 spin_lock(&tree->lock);
1676 * this search will find all the extents that end after
1679 node = tree_search(tree, start);
1684 state = rb_entry(node, struct extent_state, rb_node);
1685 if (state->start != start) {
1689 state->private = private;
1691 spin_unlock(&tree->lock);
1695 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1697 struct rb_node *node;
1698 struct extent_state *state;
1701 spin_lock(&tree->lock);
1703 * this search will find all the extents that end after
1706 node = tree_search(tree, start);
1711 state = rb_entry(node, struct extent_state, rb_node);
1712 if (state->start != start) {
1716 *private = state->private;
1718 spin_unlock(&tree->lock);
1723 * searches a range in the state tree for a given mask.
1724 * If 'filled' == 1, this returns 1 only if every extent in the tree
1725 * has the bits set. Otherwise, 1 is returned if any bit in the
1726 * range is found set.
1728 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1729 int bits, int filled, struct extent_state *cached)
1731 struct extent_state *state = NULL;
1732 struct rb_node *node;
1735 spin_lock(&tree->lock);
1736 if (cached && cached->tree && cached->start <= start &&
1737 cached->end > start)
1738 node = &cached->rb_node;
1740 node = tree_search(tree, start);
1741 while (node && start <= end) {
1742 state = rb_entry(node, struct extent_state, rb_node);
1744 if (filled && state->start > start) {
1749 if (state->start > end)
1752 if (state->state & bits) {
1756 } else if (filled) {
1761 if (state->end == (u64)-1)
1764 start = state->end + 1;
1767 node = rb_next(node);
1774 spin_unlock(&tree->lock);
1779 * helper function to set a given page up to date if all the
1780 * extents in the tree for that page are up to date
1782 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1784 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1785 u64 end = start + PAGE_CACHE_SIZE - 1;
1786 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1787 SetPageUptodate(page);
1791 * helper function to unlock a page if all the extents in the tree
1792 * for that page are unlocked
1794 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1796 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1797 u64 end = start + PAGE_CACHE_SIZE - 1;
1798 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1803 * helper function to end page writeback if all the extents
1804 * in the tree for that page are done with writeback
1806 static void check_page_writeback(struct extent_io_tree *tree,
1809 end_page_writeback(page);
1813 * When IO fails, either with EIO or csum verification fails, we
1814 * try other mirrors that might have a good copy of the data. This
1815 * io_failure_record is used to record state as we go through all the
1816 * mirrors. If another mirror has good data, the page is set up to date
1817 * and things continue. If a good mirror can't be found, the original
1818 * bio end_io callback is called to indicate things have failed.
1820 struct io_failure_record {
1825 unsigned long bio_flags;
1831 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1836 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1838 set_state_private(failure_tree, rec->start, 0);
1839 ret = clear_extent_bits(failure_tree, rec->start,
1840 rec->start + rec->len - 1,
1841 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1846 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1847 rec->start + rec->len - 1,
1848 EXTENT_DAMAGED, GFP_NOFS);
1857 static void repair_io_failure_callback(struct bio *bio, int err)
1859 complete(bio->bi_private);
1863 * this bypasses the standard btrfs submit functions deliberately, as
1864 * the standard behavior is to write all copies in a raid setup. here we only
1865 * want to write the one bad copy. so we do the mapping for ourselves and issue
1866 * submit_bio directly.
1867 * to avoid any synchonization issues, wait for the data after writing, which
1868 * actually prevents the read that triggered the error from finishing.
1869 * currently, there can be no more than two copies of every data bit. thus,
1870 * exactly one rewrite is required.
1872 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1873 u64 length, u64 logical, struct page *page,
1877 struct btrfs_device *dev;
1878 DECLARE_COMPLETION_ONSTACK(compl);
1881 struct btrfs_bio *bbio = NULL;
1884 BUG_ON(!mirror_num);
1886 bio = bio_alloc(GFP_NOFS, 1);
1889 bio->bi_private = &compl;
1890 bio->bi_end_io = repair_io_failure_callback;
1892 map_length = length;
1894 ret = btrfs_map_block(map_tree, WRITE, logical,
1895 &map_length, &bbio, mirror_num);
1900 BUG_ON(mirror_num != bbio->mirror_num);
1901 sector = bbio->stripes[mirror_num-1].physical >> 9;
1902 bio->bi_sector = sector;
1903 dev = bbio->stripes[mirror_num-1].dev;
1905 if (!dev || !dev->bdev || !dev->writeable) {
1909 bio->bi_bdev = dev->bdev;
1910 bio_add_page(bio, page, length, start-page_offset(page));
1911 btrfsic_submit_bio(WRITE_SYNC, bio);
1912 wait_for_completion(&compl);
1914 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1915 /* try to remap that extent elsewhere? */
1917 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1921 printk_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1922 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1923 start, rcu_str_deref(dev->name), sector);
1929 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1932 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1933 u64 start = eb->start;
1934 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1937 for (i = 0; i < num_pages; i++) {
1938 struct page *p = extent_buffer_page(eb, i);
1939 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1940 start, p, mirror_num);
1943 start += PAGE_CACHE_SIZE;
1950 * each time an IO finishes, we do a fast check in the IO failure tree
1951 * to see if we need to process or clean up an io_failure_record
1953 static int clean_io_failure(u64 start, struct page *page)
1956 u64 private_failure;
1957 struct io_failure_record *failrec;
1958 struct btrfs_mapping_tree *map_tree;
1959 struct extent_state *state;
1963 struct inode *inode = page->mapping->host;
1966 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1967 (u64)-1, 1, EXTENT_DIRTY, 0);
1971 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1976 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1977 BUG_ON(!failrec->this_mirror);
1979 if (failrec->in_validation) {
1980 /* there was no real error, just free the record */
1981 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1987 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1988 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1991 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1993 if (state && state->start == failrec->start) {
1994 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1995 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1997 if (num_copies > 1) {
1998 ret = repair_io_failure(map_tree, start, failrec->len,
1999 failrec->logical, page,
2000 failrec->failed_mirror);
2007 ret = free_io_failure(inode, failrec, did_repair);
2013 * this is a generic handler for readpage errors (default
2014 * readpage_io_failed_hook). if other copies exist, read those and write back
2015 * good data to the failed position. does not investigate in remapping the
2016 * failed extent elsewhere, hoping the device will be smart enough to do this as
2020 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2021 u64 start, u64 end, int failed_mirror,
2022 struct extent_state *state)
2024 struct io_failure_record *failrec = NULL;
2026 struct extent_map *em;
2027 struct inode *inode = page->mapping->host;
2028 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2029 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2030 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2037 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2039 ret = get_state_private(failure_tree, start, &private);
2041 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2044 failrec->start = start;
2045 failrec->len = end - start + 1;
2046 failrec->this_mirror = 0;
2047 failrec->bio_flags = 0;
2048 failrec->in_validation = 0;
2050 read_lock(&em_tree->lock);
2051 em = lookup_extent_mapping(em_tree, start, failrec->len);
2053 read_unlock(&em_tree->lock);
2058 if (em->start > start || em->start + em->len < start) {
2059 free_extent_map(em);
2062 read_unlock(&em_tree->lock);
2064 if (!em || IS_ERR(em)) {
2068 logical = start - em->start;
2069 logical = em->block_start + logical;
2070 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2071 logical = em->block_start;
2072 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2073 extent_set_compress_type(&failrec->bio_flags,
2076 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2077 "len=%llu\n", logical, start, failrec->len);
2078 failrec->logical = logical;
2079 free_extent_map(em);
2081 /* set the bits in the private failure tree */
2082 ret = set_extent_bits(failure_tree, start, end,
2083 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2085 ret = set_state_private(failure_tree, start,
2086 (u64)(unsigned long)failrec);
2087 /* set the bits in the inode's tree */
2089 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2096 failrec = (struct io_failure_record *)(unsigned long)private;
2097 pr_debug("bio_readpage_error: (found) logical=%llu, "
2098 "start=%llu, len=%llu, validation=%d\n",
2099 failrec->logical, failrec->start, failrec->len,
2100 failrec->in_validation);
2102 * when data can be on disk more than twice, add to failrec here
2103 * (e.g. with a list for failed_mirror) to make
2104 * clean_io_failure() clean all those errors at once.
2107 num_copies = btrfs_num_copies(
2108 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2109 failrec->logical, failrec->len);
2110 if (num_copies == 1) {
2112 * we only have a single copy of the data, so don't bother with
2113 * all the retry and error correction code that follows. no
2114 * matter what the error is, it is very likely to persist.
2116 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2117 "state=%p, num_copies=%d, next_mirror %d, "
2118 "failed_mirror %d\n", state, num_copies,
2119 failrec->this_mirror, failed_mirror);
2120 free_io_failure(inode, failrec, 0);
2125 spin_lock(&tree->lock);
2126 state = find_first_extent_bit_state(tree, failrec->start,
2128 if (state && state->start != failrec->start)
2130 spin_unlock(&tree->lock);
2134 * there are two premises:
2135 * a) deliver good data to the caller
2136 * b) correct the bad sectors on disk
2138 if (failed_bio->bi_vcnt > 1) {
2140 * to fulfill b), we need to know the exact failing sectors, as
2141 * we don't want to rewrite any more than the failed ones. thus,
2142 * we need separate read requests for the failed bio
2144 * if the following BUG_ON triggers, our validation request got
2145 * merged. we need separate requests for our algorithm to work.
2147 BUG_ON(failrec->in_validation);
2148 failrec->in_validation = 1;
2149 failrec->this_mirror = failed_mirror;
2150 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2153 * we're ready to fulfill a) and b) alongside. get a good copy
2154 * of the failed sector and if we succeed, we have setup
2155 * everything for repair_io_failure to do the rest for us.
2157 if (failrec->in_validation) {
2158 BUG_ON(failrec->this_mirror != failed_mirror);
2159 failrec->in_validation = 0;
2160 failrec->this_mirror = 0;
2162 failrec->failed_mirror = failed_mirror;
2163 failrec->this_mirror++;
2164 if (failrec->this_mirror == failed_mirror)
2165 failrec->this_mirror++;
2166 read_mode = READ_SYNC;
2169 if (!state || failrec->this_mirror > num_copies) {
2170 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2171 "next_mirror %d, failed_mirror %d\n", state,
2172 num_copies, failrec->this_mirror, failed_mirror);
2173 free_io_failure(inode, failrec, 0);
2177 bio = bio_alloc(GFP_NOFS, 1);
2179 free_io_failure(inode, failrec, 0);
2182 bio->bi_private = state;
2183 bio->bi_end_io = failed_bio->bi_end_io;
2184 bio->bi_sector = failrec->logical >> 9;
2185 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2188 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2190 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2191 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2192 failrec->this_mirror, num_copies, failrec->in_validation);
2194 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2195 failrec->this_mirror,
2196 failrec->bio_flags, 0);
2200 /* lots and lots of room for performance fixes in the end_bio funcs */
2202 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2204 int uptodate = (err == 0);
2205 struct extent_io_tree *tree;
2208 tree = &BTRFS_I(page->mapping->host)->io_tree;
2210 if (tree->ops && tree->ops->writepage_end_io_hook) {
2211 ret = tree->ops->writepage_end_io_hook(page, start,
2212 end, NULL, uptodate);
2218 ClearPageUptodate(page);
2225 * after a writepage IO is done, we need to:
2226 * clear the uptodate bits on error
2227 * clear the writeback bits in the extent tree for this IO
2228 * end_page_writeback if the page has no more pending IO
2230 * Scheduling is not allowed, so the extent state tree is expected
2231 * to have one and only one object corresponding to this IO.
2233 static void end_bio_extent_writepage(struct bio *bio, int err)
2235 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2236 struct extent_io_tree *tree;
2242 struct page *page = bvec->bv_page;
2243 tree = &BTRFS_I(page->mapping->host)->io_tree;
2245 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2247 end = start + bvec->bv_len - 1;
2249 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2254 if (--bvec >= bio->bi_io_vec)
2255 prefetchw(&bvec->bv_page->flags);
2257 if (end_extent_writepage(page, err, start, end))
2261 end_page_writeback(page);
2263 check_page_writeback(tree, page);
2264 } while (bvec >= bio->bi_io_vec);
2270 * after a readpage IO is done, we need to:
2271 * clear the uptodate bits on error
2272 * set the uptodate bits if things worked
2273 * set the page up to date if all extents in the tree are uptodate
2274 * clear the lock bit in the extent tree
2275 * unlock the page if there are no other extents locked for it
2277 * Scheduling is not allowed, so the extent state tree is expected
2278 * to have one and only one object corresponding to this IO.
2280 static void end_bio_extent_readpage(struct bio *bio, int err)
2282 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2283 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2284 struct bio_vec *bvec = bio->bi_io_vec;
2285 struct extent_io_tree *tree;
2296 struct page *page = bvec->bv_page;
2297 struct extent_state *cached = NULL;
2298 struct extent_state *state;
2300 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2301 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2302 (long int)bio->bi_bdev);
2303 tree = &BTRFS_I(page->mapping->host)->io_tree;
2305 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2307 end = start + bvec->bv_len - 1;
2309 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2314 if (++bvec <= bvec_end)
2315 prefetchw(&bvec->bv_page->flags);
2317 spin_lock(&tree->lock);
2318 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2319 if (state && state->start == start) {
2321 * take a reference on the state, unlock will drop
2324 cache_state(state, &cached);
2326 spin_unlock(&tree->lock);
2328 mirror = (int)(unsigned long)bio->bi_bdev;
2329 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2330 ret = tree->ops->readpage_end_io_hook(page, start, end,
2333 /* no IO indicated but software detected errors
2334 * in the block, either checksum errors or
2335 * issues with the contents */
2336 struct btrfs_root *root =
2337 BTRFS_I(page->mapping->host)->root;
2338 struct btrfs_device *device;
2341 device = btrfs_find_device_for_logical(
2342 root, start, mirror);
2344 btrfs_dev_stat_inc_and_print(device,
2345 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2347 clean_io_failure(start, page);
2351 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2352 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2354 test_bit(BIO_UPTODATE, &bio->bi_flags))
2356 } else if (!uptodate) {
2358 * The generic bio_readpage_error handles errors the
2359 * following way: If possible, new read requests are
2360 * created and submitted and will end up in
2361 * end_bio_extent_readpage as well (if we're lucky, not
2362 * in the !uptodate case). In that case it returns 0 and
2363 * we just go on with the next page in our bio. If it
2364 * can't handle the error it will return -EIO and we
2365 * remain responsible for that page.
2367 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2370 test_bit(BIO_UPTODATE, &bio->bi_flags);
2373 uncache_state(&cached);
2378 if (uptodate && tree->track_uptodate) {
2379 set_extent_uptodate(tree, start, end, &cached,
2382 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2386 SetPageUptodate(page);
2388 ClearPageUptodate(page);
2394 check_page_uptodate(tree, page);
2396 ClearPageUptodate(page);
2399 check_page_locked(tree, page);
2401 } while (bvec <= bvec_end);
2407 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2412 bio = bio_alloc(gfp_flags, nr_vecs);
2414 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2415 while (!bio && (nr_vecs /= 2))
2416 bio = bio_alloc(gfp_flags, nr_vecs);
2421 bio->bi_bdev = bdev;
2422 bio->bi_sector = first_sector;
2428 * Since writes are async, they will only return -ENOMEM.
2429 * Reads can return the full range of I/O error conditions.
2431 static int __must_check submit_one_bio(int rw, struct bio *bio,
2432 int mirror_num, unsigned long bio_flags)
2435 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2436 struct page *page = bvec->bv_page;
2437 struct extent_io_tree *tree = bio->bi_private;
2440 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2442 bio->bi_private = NULL;
2446 if (tree->ops && tree->ops->submit_bio_hook)
2447 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2448 mirror_num, bio_flags, start);
2450 btrfsic_submit_bio(rw, bio);
2452 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2458 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2459 unsigned long offset, size_t size, struct bio *bio,
2460 unsigned long bio_flags)
2463 if (tree->ops && tree->ops->merge_bio_hook)
2464 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2471 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2472 struct page *page, sector_t sector,
2473 size_t size, unsigned long offset,
2474 struct block_device *bdev,
2475 struct bio **bio_ret,
2476 unsigned long max_pages,
2477 bio_end_io_t end_io_func,
2479 unsigned long prev_bio_flags,
2480 unsigned long bio_flags)
2486 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2487 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2488 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2490 if (bio_ret && *bio_ret) {
2493 contig = bio->bi_sector == sector;
2495 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2498 if (prev_bio_flags != bio_flags || !contig ||
2499 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2500 bio_add_page(bio, page, page_size, offset) < page_size) {
2501 ret = submit_one_bio(rw, bio, mirror_num,
2510 if (this_compressed)
2513 nr = bio_get_nr_vecs(bdev);
2515 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2519 bio_add_page(bio, page, page_size, offset);
2520 bio->bi_end_io = end_io_func;
2521 bio->bi_private = tree;
2526 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2531 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2533 if (!PagePrivate(page)) {
2534 SetPagePrivate(page);
2535 page_cache_get(page);
2536 set_page_private(page, (unsigned long)eb);
2538 WARN_ON(page->private != (unsigned long)eb);
2542 void set_page_extent_mapped(struct page *page)
2544 if (!PagePrivate(page)) {
2545 SetPagePrivate(page);
2546 page_cache_get(page);
2547 set_page_private(page, EXTENT_PAGE_PRIVATE);
2552 * basic readpage implementation. Locked extent state structs are inserted
2553 * into the tree that are removed when the IO is done (by the end_io
2555 * XXX JDM: This needs looking at to ensure proper page locking
2557 static int __extent_read_full_page(struct extent_io_tree *tree,
2559 get_extent_t *get_extent,
2560 struct bio **bio, int mirror_num,
2561 unsigned long *bio_flags)
2563 struct inode *inode = page->mapping->host;
2564 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2565 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2569 u64 last_byte = i_size_read(inode);
2573 struct extent_map *em;
2574 struct block_device *bdev;
2575 struct btrfs_ordered_extent *ordered;
2578 size_t pg_offset = 0;
2580 size_t disk_io_size;
2581 size_t blocksize = inode->i_sb->s_blocksize;
2582 unsigned long this_bio_flag = 0;
2584 set_page_extent_mapped(page);
2586 if (!PageUptodate(page)) {
2587 if (cleancache_get_page(page) == 0) {
2588 BUG_ON(blocksize != PAGE_SIZE);
2595 lock_extent(tree, start, end);
2596 ordered = btrfs_lookup_ordered_extent(inode, start);
2599 unlock_extent(tree, start, end);
2600 btrfs_start_ordered_extent(inode, ordered, 1);
2601 btrfs_put_ordered_extent(ordered);
2604 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2606 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2609 iosize = PAGE_CACHE_SIZE - zero_offset;
2610 userpage = kmap_atomic(page);
2611 memset(userpage + zero_offset, 0, iosize);
2612 flush_dcache_page(page);
2613 kunmap_atomic(userpage);
2616 while (cur <= end) {
2617 if (cur >= last_byte) {
2619 struct extent_state *cached = NULL;
2621 iosize = PAGE_CACHE_SIZE - pg_offset;
2622 userpage = kmap_atomic(page);
2623 memset(userpage + pg_offset, 0, iosize);
2624 flush_dcache_page(page);
2625 kunmap_atomic(userpage);
2626 set_extent_uptodate(tree, cur, cur + iosize - 1,
2628 unlock_extent_cached(tree, cur, cur + iosize - 1,
2632 em = get_extent(inode, page, pg_offset, cur,
2634 if (IS_ERR_OR_NULL(em)) {
2636 unlock_extent(tree, cur, end);
2639 extent_offset = cur - em->start;
2640 BUG_ON(extent_map_end(em) <= cur);
2643 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2644 this_bio_flag = EXTENT_BIO_COMPRESSED;
2645 extent_set_compress_type(&this_bio_flag,
2649 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2650 cur_end = min(extent_map_end(em) - 1, end);
2651 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2652 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2653 disk_io_size = em->block_len;
2654 sector = em->block_start >> 9;
2656 sector = (em->block_start + extent_offset) >> 9;
2657 disk_io_size = iosize;
2660 block_start = em->block_start;
2661 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2662 block_start = EXTENT_MAP_HOLE;
2663 free_extent_map(em);
2666 /* we've found a hole, just zero and go on */
2667 if (block_start == EXTENT_MAP_HOLE) {
2669 struct extent_state *cached = NULL;
2671 userpage = kmap_atomic(page);
2672 memset(userpage + pg_offset, 0, iosize);
2673 flush_dcache_page(page);
2674 kunmap_atomic(userpage);
2676 set_extent_uptodate(tree, cur, cur + iosize - 1,
2678 unlock_extent_cached(tree, cur, cur + iosize - 1,
2681 pg_offset += iosize;
2684 /* the get_extent function already copied into the page */
2685 if (test_range_bit(tree, cur, cur_end,
2686 EXTENT_UPTODATE, 1, NULL)) {
2687 check_page_uptodate(tree, page);
2688 unlock_extent(tree, cur, cur + iosize - 1);
2690 pg_offset += iosize;
2693 /* we have an inline extent but it didn't get marked up
2694 * to date. Error out
2696 if (block_start == EXTENT_MAP_INLINE) {
2698 unlock_extent(tree, cur, cur + iosize - 1);
2700 pg_offset += iosize;
2705 if (tree->ops && tree->ops->readpage_io_hook) {
2706 ret = tree->ops->readpage_io_hook(page, cur,
2710 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2712 ret = submit_extent_page(READ, tree, page,
2713 sector, disk_io_size, pg_offset,
2715 end_bio_extent_readpage, mirror_num,
2718 BUG_ON(ret == -ENOMEM);
2720 *bio_flags = this_bio_flag;
2725 pg_offset += iosize;
2729 if (!PageError(page))
2730 SetPageUptodate(page);
2736 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2737 get_extent_t *get_extent, int mirror_num)
2739 struct bio *bio = NULL;
2740 unsigned long bio_flags = 0;
2743 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2746 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2750 static noinline void update_nr_written(struct page *page,
2751 struct writeback_control *wbc,
2752 unsigned long nr_written)
2754 wbc->nr_to_write -= nr_written;
2755 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2756 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2757 page->mapping->writeback_index = page->index + nr_written;
2761 * the writepage semantics are similar to regular writepage. extent
2762 * records are inserted to lock ranges in the tree, and as dirty areas
2763 * are found, they are marked writeback. Then the lock bits are removed
2764 * and the end_io handler clears the writeback ranges
2766 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2769 struct inode *inode = page->mapping->host;
2770 struct extent_page_data *epd = data;
2771 struct extent_io_tree *tree = epd->tree;
2772 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2774 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2778 u64 last_byte = i_size_read(inode);
2782 struct extent_state *cached_state = NULL;
2783 struct extent_map *em;
2784 struct block_device *bdev;
2787 size_t pg_offset = 0;
2789 loff_t i_size = i_size_read(inode);
2790 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2796 unsigned long nr_written = 0;
2797 bool fill_delalloc = true;
2799 if (wbc->sync_mode == WB_SYNC_ALL)
2800 write_flags = WRITE_SYNC;
2802 write_flags = WRITE;
2804 trace___extent_writepage(page, inode, wbc);
2806 WARN_ON(!PageLocked(page));
2808 ClearPageError(page);
2810 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2811 if (page->index > end_index ||
2812 (page->index == end_index && !pg_offset)) {
2813 page->mapping->a_ops->invalidatepage(page, 0);
2818 if (page->index == end_index) {
2821 userpage = kmap_atomic(page);
2822 memset(userpage + pg_offset, 0,
2823 PAGE_CACHE_SIZE - pg_offset);
2824 kunmap_atomic(userpage);
2825 flush_dcache_page(page);
2829 set_page_extent_mapped(page);
2831 if (!tree->ops || !tree->ops->fill_delalloc)
2832 fill_delalloc = false;
2834 delalloc_start = start;
2837 if (!epd->extent_locked && fill_delalloc) {
2838 u64 delalloc_to_write = 0;
2840 * make sure the wbc mapping index is at least updated
2843 update_nr_written(page, wbc, 0);
2845 while (delalloc_end < page_end) {
2846 nr_delalloc = find_lock_delalloc_range(inode, tree,
2851 if (nr_delalloc == 0) {
2852 delalloc_start = delalloc_end + 1;
2855 ret = tree->ops->fill_delalloc(inode, page,
2860 /* File system has been set read-only */
2866 * delalloc_end is already one less than the total
2867 * length, so we don't subtract one from
2870 delalloc_to_write += (delalloc_end - delalloc_start +
2873 delalloc_start = delalloc_end + 1;
2875 if (wbc->nr_to_write < delalloc_to_write) {
2878 if (delalloc_to_write < thresh * 2)
2879 thresh = delalloc_to_write;
2880 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2884 /* did the fill delalloc function already unlock and start
2890 * we've unlocked the page, so we can't update
2891 * the mapping's writeback index, just update
2894 wbc->nr_to_write -= nr_written;
2898 if (tree->ops && tree->ops->writepage_start_hook) {
2899 ret = tree->ops->writepage_start_hook(page, start,
2902 /* Fixup worker will requeue */
2904 wbc->pages_skipped++;
2906 redirty_page_for_writepage(wbc, page);
2907 update_nr_written(page, wbc, nr_written);
2915 * we don't want to touch the inode after unlocking the page,
2916 * so we update the mapping writeback index now
2918 update_nr_written(page, wbc, nr_written + 1);
2921 if (last_byte <= start) {
2922 if (tree->ops && tree->ops->writepage_end_io_hook)
2923 tree->ops->writepage_end_io_hook(page, start,
2928 blocksize = inode->i_sb->s_blocksize;
2930 while (cur <= end) {
2931 if (cur >= last_byte) {
2932 if (tree->ops && tree->ops->writepage_end_io_hook)
2933 tree->ops->writepage_end_io_hook(page, cur,
2937 em = epd->get_extent(inode, page, pg_offset, cur,
2939 if (IS_ERR_OR_NULL(em)) {
2944 extent_offset = cur - em->start;
2945 BUG_ON(extent_map_end(em) <= cur);
2947 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2948 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2949 sector = (em->block_start + extent_offset) >> 9;
2951 block_start = em->block_start;
2952 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2953 free_extent_map(em);
2957 * compressed and inline extents are written through other
2960 if (compressed || block_start == EXTENT_MAP_HOLE ||
2961 block_start == EXTENT_MAP_INLINE) {
2963 * end_io notification does not happen here for
2964 * compressed extents
2966 if (!compressed && tree->ops &&
2967 tree->ops->writepage_end_io_hook)
2968 tree->ops->writepage_end_io_hook(page, cur,
2971 else if (compressed) {
2972 /* we don't want to end_page_writeback on
2973 * a compressed extent. this happens
2980 pg_offset += iosize;
2983 /* leave this out until we have a page_mkwrite call */
2984 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2985 EXTENT_DIRTY, 0, NULL)) {
2987 pg_offset += iosize;
2991 if (tree->ops && tree->ops->writepage_io_hook) {
2992 ret = tree->ops->writepage_io_hook(page, cur,
3000 unsigned long max_nr = end_index + 1;
3002 set_range_writeback(tree, cur, cur + iosize - 1);
3003 if (!PageWriteback(page)) {
3004 printk(KERN_ERR "btrfs warning page %lu not "
3005 "writeback, cur %llu end %llu\n",
3006 page->index, (unsigned long long)cur,
3007 (unsigned long long)end);
3010 ret = submit_extent_page(write_flags, tree, page,
3011 sector, iosize, pg_offset,
3012 bdev, &epd->bio, max_nr,
3013 end_bio_extent_writepage,
3019 pg_offset += iosize;
3024 /* make sure the mapping tag for page dirty gets cleared */
3025 set_page_writeback(page);
3026 end_page_writeback(page);
3032 /* drop our reference on any cached states */
3033 free_extent_state(cached_state);
3037 static int eb_wait(void *word)
3043 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3045 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3046 TASK_UNINTERRUPTIBLE);
3049 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3050 struct btrfs_fs_info *fs_info,
3051 struct extent_page_data *epd)
3053 unsigned long i, num_pages;
3057 if (!btrfs_try_tree_write_lock(eb)) {
3059 flush_write_bio(epd);
3060 btrfs_tree_lock(eb);
3063 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3064 btrfs_tree_unlock(eb);
3068 flush_write_bio(epd);
3072 wait_on_extent_buffer_writeback(eb);
3073 btrfs_tree_lock(eb);
3074 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3076 btrfs_tree_unlock(eb);
3080 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3081 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3082 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3083 spin_lock(&fs_info->delalloc_lock);
3084 if (fs_info->dirty_metadata_bytes >= eb->len)
3085 fs_info->dirty_metadata_bytes -= eb->len;
3088 spin_unlock(&fs_info->delalloc_lock);
3092 btrfs_tree_unlock(eb);
3097 num_pages = num_extent_pages(eb->start, eb->len);
3098 for (i = 0; i < num_pages; i++) {
3099 struct page *p = extent_buffer_page(eb, i);
3101 if (!trylock_page(p)) {
3103 flush_write_bio(epd);
3113 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3115 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3116 smp_mb__after_clear_bit();
3117 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3120 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3122 int uptodate = err == 0;
3123 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3124 struct extent_buffer *eb;
3128 struct page *page = bvec->bv_page;
3131 eb = (struct extent_buffer *)page->private;
3133 done = atomic_dec_and_test(&eb->io_pages);
3135 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3136 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3137 ClearPageUptodate(page);
3141 end_page_writeback(page);
3146 end_extent_buffer_writeback(eb);
3147 } while (bvec >= bio->bi_io_vec);
3153 static int write_one_eb(struct extent_buffer *eb,
3154 struct btrfs_fs_info *fs_info,
3155 struct writeback_control *wbc,
3156 struct extent_page_data *epd)
3158 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3159 u64 offset = eb->start;
3160 unsigned long i, num_pages;
3161 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3164 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3165 num_pages = num_extent_pages(eb->start, eb->len);
3166 atomic_set(&eb->io_pages, num_pages);
3167 for (i = 0; i < num_pages; i++) {
3168 struct page *p = extent_buffer_page(eb, i);
3170 clear_page_dirty_for_io(p);
3171 set_page_writeback(p);
3172 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3173 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3174 -1, end_bio_extent_buffer_writepage,
3177 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3179 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3180 end_extent_buffer_writeback(eb);
3184 offset += PAGE_CACHE_SIZE;
3185 update_nr_written(p, wbc, 1);
3189 if (unlikely(ret)) {
3190 for (; i < num_pages; i++) {
3191 struct page *p = extent_buffer_page(eb, i);
3199 int btree_write_cache_pages(struct address_space *mapping,
3200 struct writeback_control *wbc)
3202 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3203 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3204 struct extent_buffer *eb, *prev_eb = NULL;
3205 struct extent_page_data epd = {
3209 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3213 int nr_to_write_done = 0;
3214 struct pagevec pvec;
3217 pgoff_t end; /* Inclusive */
3221 pagevec_init(&pvec, 0);
3222 if (wbc->range_cyclic) {
3223 index = mapping->writeback_index; /* Start from prev offset */
3226 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3227 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3230 if (wbc->sync_mode == WB_SYNC_ALL)
3231 tag = PAGECACHE_TAG_TOWRITE;
3233 tag = PAGECACHE_TAG_DIRTY;
3235 if (wbc->sync_mode == WB_SYNC_ALL)
3236 tag_pages_for_writeback(mapping, index, end);
3237 while (!done && !nr_to_write_done && (index <= end) &&
3238 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3239 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3243 for (i = 0; i < nr_pages; i++) {
3244 struct page *page = pvec.pages[i];
3246 if (!PagePrivate(page))
3249 if (!wbc->range_cyclic && page->index > end) {
3254 eb = (struct extent_buffer *)page->private;
3263 if (!atomic_inc_not_zero(&eb->refs)) {
3269 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3271 free_extent_buffer(eb);
3275 ret = write_one_eb(eb, fs_info, wbc, &epd);
3278 free_extent_buffer(eb);
3281 free_extent_buffer(eb);
3284 * the filesystem may choose to bump up nr_to_write.
3285 * We have to make sure to honor the new nr_to_write
3288 nr_to_write_done = wbc->nr_to_write <= 0;
3290 pagevec_release(&pvec);
3293 if (!scanned && !done) {
3295 * We hit the last page and there is more work to be done: wrap
3296 * back to the start of the file
3302 flush_write_bio(&epd);
3307 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3308 * @mapping: address space structure to write
3309 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3310 * @writepage: function called for each page
3311 * @data: data passed to writepage function
3313 * If a page is already under I/O, write_cache_pages() skips it, even
3314 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3315 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3316 * and msync() need to guarantee that all the data which was dirty at the time
3317 * the call was made get new I/O started against them. If wbc->sync_mode is
3318 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3319 * existing IO to complete.
3321 static int extent_write_cache_pages(struct extent_io_tree *tree,
3322 struct address_space *mapping,
3323 struct writeback_control *wbc,
3324 writepage_t writepage, void *data,
3325 void (*flush_fn)(void *))
3329 int nr_to_write_done = 0;
3330 struct pagevec pvec;
3333 pgoff_t end; /* Inclusive */
3337 pagevec_init(&pvec, 0);
3338 if (wbc->range_cyclic) {
3339 index = mapping->writeback_index; /* Start from prev offset */
3342 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3343 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3346 if (wbc->sync_mode == WB_SYNC_ALL)
3347 tag = PAGECACHE_TAG_TOWRITE;
3349 tag = PAGECACHE_TAG_DIRTY;
3351 if (wbc->sync_mode == WB_SYNC_ALL)
3352 tag_pages_for_writeback(mapping, index, end);
3353 while (!done && !nr_to_write_done && (index <= end) &&
3354 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3355 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3359 for (i = 0; i < nr_pages; i++) {
3360 struct page *page = pvec.pages[i];
3363 * At this point we hold neither mapping->tree_lock nor
3364 * lock on the page itself: the page may be truncated or
3365 * invalidated (changing page->mapping to NULL), or even
3366 * swizzled back from swapper_space to tmpfs file
3370 tree->ops->write_cache_pages_lock_hook) {
3371 tree->ops->write_cache_pages_lock_hook(page,
3374 if (!trylock_page(page)) {
3380 if (unlikely(page->mapping != mapping)) {
3385 if (!wbc->range_cyclic && page->index > end) {
3391 if (wbc->sync_mode != WB_SYNC_NONE) {
3392 if (PageWriteback(page))
3394 wait_on_page_writeback(page);
3397 if (PageWriteback(page) ||
3398 !clear_page_dirty_for_io(page)) {
3403 ret = (*writepage)(page, wbc, data);
3405 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3413 * the filesystem may choose to bump up nr_to_write.
3414 * We have to make sure to honor the new nr_to_write
3417 nr_to_write_done = wbc->nr_to_write <= 0;
3419 pagevec_release(&pvec);
3422 if (!scanned && !done) {
3424 * We hit the last page and there is more work to be done: wrap
3425 * back to the start of the file
3434 static void flush_epd_write_bio(struct extent_page_data *epd)
3443 ret = submit_one_bio(rw, epd->bio, 0, 0);
3444 BUG_ON(ret < 0); /* -ENOMEM */
3449 static noinline void flush_write_bio(void *data)
3451 struct extent_page_data *epd = data;
3452 flush_epd_write_bio(epd);
3455 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3456 get_extent_t *get_extent,
3457 struct writeback_control *wbc)
3460 struct extent_page_data epd = {
3463 .get_extent = get_extent,
3465 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3468 ret = __extent_writepage(page, wbc, &epd);
3470 flush_epd_write_bio(&epd);
3474 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3475 u64 start, u64 end, get_extent_t *get_extent,
3479 struct address_space *mapping = inode->i_mapping;
3481 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3484 struct extent_page_data epd = {
3487 .get_extent = get_extent,
3489 .sync_io = mode == WB_SYNC_ALL,
3491 struct writeback_control wbc_writepages = {
3493 .nr_to_write = nr_pages * 2,
3494 .range_start = start,
3495 .range_end = end + 1,
3498 while (start <= end) {
3499 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3500 if (clear_page_dirty_for_io(page))
3501 ret = __extent_writepage(page, &wbc_writepages, &epd);
3503 if (tree->ops && tree->ops->writepage_end_io_hook)
3504 tree->ops->writepage_end_io_hook(page, start,
3505 start + PAGE_CACHE_SIZE - 1,
3509 page_cache_release(page);
3510 start += PAGE_CACHE_SIZE;
3513 flush_epd_write_bio(&epd);
3517 int extent_writepages(struct extent_io_tree *tree,
3518 struct address_space *mapping,
3519 get_extent_t *get_extent,
3520 struct writeback_control *wbc)
3523 struct extent_page_data epd = {
3526 .get_extent = get_extent,
3528 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3531 ret = extent_write_cache_pages(tree, mapping, wbc,
3532 __extent_writepage, &epd,
3534 flush_epd_write_bio(&epd);
3538 int extent_readpages(struct extent_io_tree *tree,
3539 struct address_space *mapping,
3540 struct list_head *pages, unsigned nr_pages,
3541 get_extent_t get_extent)
3543 struct bio *bio = NULL;
3545 unsigned long bio_flags = 0;
3547 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3548 struct page *page = list_entry(pages->prev, struct page, lru);
3550 prefetchw(&page->flags);
3551 list_del(&page->lru);
3552 if (!add_to_page_cache_lru(page, mapping,
3553 page->index, GFP_NOFS)) {
3554 __extent_read_full_page(tree, page, get_extent,
3555 &bio, 0, &bio_flags);
3557 page_cache_release(page);
3559 BUG_ON(!list_empty(pages));
3561 return submit_one_bio(READ, bio, 0, bio_flags);
3566 * basic invalidatepage code, this waits on any locked or writeback
3567 * ranges corresponding to the page, and then deletes any extent state
3568 * records from the tree
3570 int extent_invalidatepage(struct extent_io_tree *tree,
3571 struct page *page, unsigned long offset)
3573 struct extent_state *cached_state = NULL;
3574 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3575 u64 end = start + PAGE_CACHE_SIZE - 1;
3576 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3578 start += (offset + blocksize - 1) & ~(blocksize - 1);
3582 lock_extent_bits(tree, start, end, 0, &cached_state);
3583 wait_on_page_writeback(page);
3584 clear_extent_bit(tree, start, end,
3585 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3586 EXTENT_DO_ACCOUNTING,
3587 1, 1, &cached_state, GFP_NOFS);
3592 * a helper for releasepage, this tests for areas of the page that
3593 * are locked or under IO and drops the related state bits if it is safe
3596 int try_release_extent_state(struct extent_map_tree *map,
3597 struct extent_io_tree *tree, struct page *page,
3600 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3601 u64 end = start + PAGE_CACHE_SIZE - 1;
3604 if (test_range_bit(tree, start, end,
3605 EXTENT_IOBITS, 0, NULL))
3608 if ((mask & GFP_NOFS) == GFP_NOFS)
3611 * at this point we can safely clear everything except the
3612 * locked bit and the nodatasum bit
3614 ret = clear_extent_bit(tree, start, end,
3615 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3618 /* if clear_extent_bit failed for enomem reasons,
3619 * we can't allow the release to continue.
3630 * a helper for releasepage. As long as there are no locked extents
3631 * in the range corresponding to the page, both state records and extent
3632 * map records are removed
3634 int try_release_extent_mapping(struct extent_map_tree *map,
3635 struct extent_io_tree *tree, struct page *page,
3638 struct extent_map *em;
3639 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3640 u64 end = start + PAGE_CACHE_SIZE - 1;
3642 if ((mask & __GFP_WAIT) &&
3643 page->mapping->host->i_size > 16 * 1024 * 1024) {
3645 while (start <= end) {
3646 len = end - start + 1;
3647 write_lock(&map->lock);
3648 em = lookup_extent_mapping(map, start, len);
3650 write_unlock(&map->lock);
3653 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3654 em->start != start) {
3655 write_unlock(&map->lock);
3656 free_extent_map(em);
3659 if (!test_range_bit(tree, em->start,
3660 extent_map_end(em) - 1,
3661 EXTENT_LOCKED | EXTENT_WRITEBACK,
3663 remove_extent_mapping(map, em);
3664 /* once for the rb tree */
3665 free_extent_map(em);
3667 start = extent_map_end(em);
3668 write_unlock(&map->lock);
3671 free_extent_map(em);
3674 return try_release_extent_state(map, tree, page, mask);
3678 * helper function for fiemap, which doesn't want to see any holes.
3679 * This maps until we find something past 'last'
3681 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3684 get_extent_t *get_extent)
3686 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3687 struct extent_map *em;
3694 len = last - offset;
3697 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3698 em = get_extent(inode, NULL, 0, offset, len, 0);
3699 if (IS_ERR_OR_NULL(em))
3702 /* if this isn't a hole return it */
3703 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3704 em->block_start != EXTENT_MAP_HOLE) {
3708 /* this is a hole, advance to the next extent */
3709 offset = extent_map_end(em);
3710 free_extent_map(em);
3717 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3718 __u64 start, __u64 len, get_extent_t *get_extent)
3722 u64 max = start + len;
3726 u64 last_for_get_extent = 0;
3728 u64 isize = i_size_read(inode);
3729 struct btrfs_key found_key;
3730 struct extent_map *em = NULL;
3731 struct extent_state *cached_state = NULL;
3732 struct btrfs_path *path;
3733 struct btrfs_file_extent_item *item;
3738 unsigned long emflags;
3743 path = btrfs_alloc_path();
3746 path->leave_spinning = 1;
3748 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3749 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3752 * lookup the last file extent. We're not using i_size here
3753 * because there might be preallocation past i_size
3755 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3756 path, btrfs_ino(inode), -1, 0);
3758 btrfs_free_path(path);
3763 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3764 struct btrfs_file_extent_item);
3765 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3766 found_type = btrfs_key_type(&found_key);
3768 /* No extents, but there might be delalloc bits */
3769 if (found_key.objectid != btrfs_ino(inode) ||
3770 found_type != BTRFS_EXTENT_DATA_KEY) {
3771 /* have to trust i_size as the end */
3773 last_for_get_extent = isize;
3776 * remember the start of the last extent. There are a
3777 * bunch of different factors that go into the length of the
3778 * extent, so its much less complex to remember where it started
3780 last = found_key.offset;
3781 last_for_get_extent = last + 1;
3783 btrfs_free_path(path);
3786 * we might have some extents allocated but more delalloc past those
3787 * extents. so, we trust isize unless the start of the last extent is
3792 last_for_get_extent = isize;
3795 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3798 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3808 u64 offset_in_extent;
3810 /* break if the extent we found is outside the range */
3811 if (em->start >= max || extent_map_end(em) < off)
3815 * get_extent may return an extent that starts before our
3816 * requested range. We have to make sure the ranges
3817 * we return to fiemap always move forward and don't
3818 * overlap, so adjust the offsets here
3820 em_start = max(em->start, off);
3823 * record the offset from the start of the extent
3824 * for adjusting the disk offset below
3826 offset_in_extent = em_start - em->start;
3827 em_end = extent_map_end(em);
3828 em_len = em_end - em_start;
3829 emflags = em->flags;
3834 * bump off for our next call to get_extent
3836 off = extent_map_end(em);
3840 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3842 flags |= FIEMAP_EXTENT_LAST;
3843 } else if (em->block_start == EXTENT_MAP_INLINE) {
3844 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3845 FIEMAP_EXTENT_NOT_ALIGNED);
3846 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3847 flags |= (FIEMAP_EXTENT_DELALLOC |
3848 FIEMAP_EXTENT_UNKNOWN);
3850 disko = em->block_start + offset_in_extent;
3852 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3853 flags |= FIEMAP_EXTENT_ENCODED;
3855 free_extent_map(em);
3857 if ((em_start >= last) || em_len == (u64)-1 ||
3858 (last == (u64)-1 && isize <= em_end)) {
3859 flags |= FIEMAP_EXTENT_LAST;
3863 /* now scan forward to see if this is really the last extent. */
3864 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3871 flags |= FIEMAP_EXTENT_LAST;
3874 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3880 free_extent_map(em);
3882 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3883 &cached_state, GFP_NOFS);
3887 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3890 return eb->pages[i];
3893 inline unsigned long num_extent_pages(u64 start, u64 len)
3895 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3896 (start >> PAGE_CACHE_SHIFT);
3899 static void __free_extent_buffer(struct extent_buffer *eb)
3902 unsigned long flags;
3903 spin_lock_irqsave(&leak_lock, flags);
3904 list_del(&eb->leak_list);
3905 spin_unlock_irqrestore(&leak_lock, flags);
3907 if (eb->pages && eb->pages != eb->inline_pages)
3909 kmem_cache_free(extent_buffer_cache, eb);
3912 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3917 struct extent_buffer *eb = NULL;
3919 unsigned long flags;
3922 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3929 rwlock_init(&eb->lock);
3930 atomic_set(&eb->write_locks, 0);
3931 atomic_set(&eb->read_locks, 0);
3932 atomic_set(&eb->blocking_readers, 0);
3933 atomic_set(&eb->blocking_writers, 0);
3934 atomic_set(&eb->spinning_readers, 0);
3935 atomic_set(&eb->spinning_writers, 0);
3936 eb->lock_nested = 0;
3937 init_waitqueue_head(&eb->write_lock_wq);
3938 init_waitqueue_head(&eb->read_lock_wq);
3941 spin_lock_irqsave(&leak_lock, flags);
3942 list_add(&eb->leak_list, &buffers);
3943 spin_unlock_irqrestore(&leak_lock, flags);
3945 spin_lock_init(&eb->refs_lock);
3946 atomic_set(&eb->refs, 1);
3947 atomic_set(&eb->io_pages, 0);
3949 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3950 struct page **pages;
3951 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3953 pages = kzalloc(num_pages, mask);
3955 __free_extent_buffer(eb);
3960 eb->pages = eb->inline_pages;
3966 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
3970 struct extent_buffer *new;
3971 unsigned long num_pages = num_extent_pages(src->start, src->len);
3973 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
3977 for (i = 0; i < num_pages; i++) {
3978 p = alloc_page(GFP_ATOMIC);
3980 attach_extent_buffer_page(new, p);
3981 WARN_ON(PageDirty(p));
3986 copy_extent_buffer(new, src, 0, 0, src->len);
3987 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
3988 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
3993 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
3995 struct extent_buffer *eb;
3996 unsigned long num_pages = num_extent_pages(0, len);
3999 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4003 for (i = 0; i < num_pages; i++) {
4004 eb->pages[i] = alloc_page(GFP_ATOMIC);
4008 set_extent_buffer_uptodate(eb);
4009 btrfs_set_header_nritems(eb, 0);
4010 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4014 for (i--; i > 0; i--)
4015 __free_page(eb->pages[i]);
4016 __free_extent_buffer(eb);
4020 static int extent_buffer_under_io(struct extent_buffer *eb)
4022 return (atomic_read(&eb->io_pages) ||
4023 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4024 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4028 * Helper for releasing extent buffer page.
4030 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4031 unsigned long start_idx)
4033 unsigned long index;
4034 unsigned long num_pages;
4036 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4038 BUG_ON(extent_buffer_under_io(eb));
4040 num_pages = num_extent_pages(eb->start, eb->len);
4041 index = start_idx + num_pages;
4042 if (start_idx >= index)
4047 page = extent_buffer_page(eb, index);
4048 if (page && mapped) {
4049 spin_lock(&page->mapping->private_lock);
4051 * We do this since we'll remove the pages after we've
4052 * removed the eb from the radix tree, so we could race
4053 * and have this page now attached to the new eb. So
4054 * only clear page_private if it's still connected to
4057 if (PagePrivate(page) &&
4058 page->private == (unsigned long)eb) {
4059 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4060 BUG_ON(PageDirty(page));
4061 BUG_ON(PageWriteback(page));
4063 * We need to make sure we haven't be attached
4066 ClearPagePrivate(page);
4067 set_page_private(page, 0);
4068 /* One for the page private */
4069 page_cache_release(page);
4071 spin_unlock(&page->mapping->private_lock);
4075 /* One for when we alloced the page */
4076 page_cache_release(page);
4078 } while (index != start_idx);
4082 * Helper for releasing the extent buffer.
4084 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4086 btrfs_release_extent_buffer_page(eb, 0);
4087 __free_extent_buffer(eb);
4090 static void check_buffer_tree_ref(struct extent_buffer *eb)
4092 /* the ref bit is tricky. We have to make sure it is set
4093 * if we have the buffer dirty. Otherwise the
4094 * code to free a buffer can end up dropping a dirty
4097 * Once the ref bit is set, it won't go away while the
4098 * buffer is dirty or in writeback, and it also won't
4099 * go away while we have the reference count on the
4102 * We can't just set the ref bit without bumping the
4103 * ref on the eb because free_extent_buffer might
4104 * see the ref bit and try to clear it. If this happens
4105 * free_extent_buffer might end up dropping our original
4106 * ref by mistake and freeing the page before we are able
4107 * to add one more ref.
4109 * So bump the ref count first, then set the bit. If someone
4110 * beat us to it, drop the ref we added.
4112 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4113 atomic_inc(&eb->refs);
4114 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4115 atomic_dec(&eb->refs);
4119 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4121 unsigned long num_pages, i;
4123 check_buffer_tree_ref(eb);
4125 num_pages = num_extent_pages(eb->start, eb->len);
4126 for (i = 0; i < num_pages; i++) {
4127 struct page *p = extent_buffer_page(eb, i);
4128 mark_page_accessed(p);
4132 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4133 u64 start, unsigned long len)
4135 unsigned long num_pages = num_extent_pages(start, len);
4137 unsigned long index = start >> PAGE_CACHE_SHIFT;
4138 struct extent_buffer *eb;
4139 struct extent_buffer *exists = NULL;
4141 struct address_space *mapping = tree->mapping;
4146 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4147 if (eb && atomic_inc_not_zero(&eb->refs)) {
4149 mark_extent_buffer_accessed(eb);
4154 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4158 for (i = 0; i < num_pages; i++, index++) {
4159 p = find_or_create_page(mapping, index, GFP_NOFS);
4165 spin_lock(&mapping->private_lock);
4166 if (PagePrivate(p)) {
4168 * We could have already allocated an eb for this page
4169 * and attached one so lets see if we can get a ref on
4170 * the existing eb, and if we can we know it's good and
4171 * we can just return that one, else we know we can just
4172 * overwrite page->private.
4174 exists = (struct extent_buffer *)p->private;
4175 if (atomic_inc_not_zero(&exists->refs)) {
4176 spin_unlock(&mapping->private_lock);
4178 page_cache_release(p);
4179 mark_extent_buffer_accessed(exists);
4184 * Do this so attach doesn't complain and we need to
4185 * drop the ref the old guy had.
4187 ClearPagePrivate(p);
4188 WARN_ON(PageDirty(p));
4189 page_cache_release(p);
4191 attach_extent_buffer_page(eb, p);
4192 spin_unlock(&mapping->private_lock);
4193 WARN_ON(PageDirty(p));
4194 mark_page_accessed(p);
4196 if (!PageUptodate(p))
4200 * see below about how we avoid a nasty race with release page
4201 * and why we unlock later
4205 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4207 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4211 spin_lock(&tree->buffer_lock);
4212 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4213 if (ret == -EEXIST) {
4214 exists = radix_tree_lookup(&tree->buffer,
4215 start >> PAGE_CACHE_SHIFT);
4216 if (!atomic_inc_not_zero(&exists->refs)) {
4217 spin_unlock(&tree->buffer_lock);
4218 radix_tree_preload_end();
4222 spin_unlock(&tree->buffer_lock);
4223 radix_tree_preload_end();
4224 mark_extent_buffer_accessed(exists);
4227 /* add one reference for the tree */
4228 spin_lock(&eb->refs_lock);
4229 check_buffer_tree_ref(eb);
4230 spin_unlock(&eb->refs_lock);
4231 spin_unlock(&tree->buffer_lock);
4232 radix_tree_preload_end();
4235 * there is a race where release page may have
4236 * tried to find this extent buffer in the radix
4237 * but failed. It will tell the VM it is safe to
4238 * reclaim the, and it will clear the page private bit.
4239 * We must make sure to set the page private bit properly
4240 * after the extent buffer is in the radix tree so
4241 * it doesn't get lost
4243 SetPageChecked(eb->pages[0]);
4244 for (i = 1; i < num_pages; i++) {
4245 p = extent_buffer_page(eb, i);
4246 ClearPageChecked(p);
4249 unlock_page(eb->pages[0]);
4253 for (i = 0; i < num_pages; i++) {
4255 unlock_page(eb->pages[i]);
4258 WARN_ON(!atomic_dec_and_test(&eb->refs));
4259 btrfs_release_extent_buffer(eb);
4263 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4264 u64 start, unsigned long len)
4266 struct extent_buffer *eb;
4269 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4270 if (eb && atomic_inc_not_zero(&eb->refs)) {
4272 mark_extent_buffer_accessed(eb);
4280 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4282 struct extent_buffer *eb =
4283 container_of(head, struct extent_buffer, rcu_head);
4285 __free_extent_buffer(eb);
4288 /* Expects to have eb->eb_lock already held */
4289 static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4291 WARN_ON(atomic_read(&eb->refs) == 0);
4292 if (atomic_dec_and_test(&eb->refs)) {
4293 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4294 spin_unlock(&eb->refs_lock);
4296 struct extent_io_tree *tree = eb->tree;
4298 spin_unlock(&eb->refs_lock);
4300 spin_lock(&tree->buffer_lock);
4301 radix_tree_delete(&tree->buffer,
4302 eb->start >> PAGE_CACHE_SHIFT);
4303 spin_unlock(&tree->buffer_lock);
4306 /* Should be safe to release our pages at this point */
4307 btrfs_release_extent_buffer_page(eb, 0);
4309 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4312 spin_unlock(&eb->refs_lock);
4315 void free_extent_buffer(struct extent_buffer *eb)
4320 spin_lock(&eb->refs_lock);
4321 if (atomic_read(&eb->refs) == 2 &&
4322 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4323 atomic_dec(&eb->refs);
4325 if (atomic_read(&eb->refs) == 2 &&
4326 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4327 !extent_buffer_under_io(eb) &&
4328 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4329 atomic_dec(&eb->refs);
4332 * I know this is terrible, but it's temporary until we stop tracking
4333 * the uptodate bits and such for the extent buffers.
4335 release_extent_buffer(eb, GFP_ATOMIC);
4338 void free_extent_buffer_stale(struct extent_buffer *eb)
4343 spin_lock(&eb->refs_lock);
4344 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4346 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4347 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4348 atomic_dec(&eb->refs);
4349 release_extent_buffer(eb, GFP_NOFS);
4352 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4355 unsigned long num_pages;
4358 num_pages = num_extent_pages(eb->start, eb->len);
4360 for (i = 0; i < num_pages; i++) {
4361 page = extent_buffer_page(eb, i);
4362 if (!PageDirty(page))
4366 WARN_ON(!PagePrivate(page));
4368 clear_page_dirty_for_io(page);
4369 spin_lock_irq(&page->mapping->tree_lock);
4370 if (!PageDirty(page)) {
4371 radix_tree_tag_clear(&page->mapping->page_tree,
4373 PAGECACHE_TAG_DIRTY);
4375 spin_unlock_irq(&page->mapping->tree_lock);
4376 ClearPageError(page);
4379 WARN_ON(atomic_read(&eb->refs) == 0);
4382 int set_extent_buffer_dirty(struct extent_buffer *eb)
4385 unsigned long num_pages;
4388 check_buffer_tree_ref(eb);
4390 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4392 num_pages = num_extent_pages(eb->start, eb->len);
4393 WARN_ON(atomic_read(&eb->refs) == 0);
4394 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4396 for (i = 0; i < num_pages; i++)
4397 set_page_dirty(extent_buffer_page(eb, i));
4401 static int range_straddles_pages(u64 start, u64 len)
4403 if (len < PAGE_CACHE_SIZE)
4405 if (start & (PAGE_CACHE_SIZE - 1))
4407 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4412 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4416 unsigned long num_pages;
4418 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4419 num_pages = num_extent_pages(eb->start, eb->len);
4420 for (i = 0; i < num_pages; i++) {
4421 page = extent_buffer_page(eb, i);
4423 ClearPageUptodate(page);
4428 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4432 unsigned long num_pages;
4434 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4435 num_pages = num_extent_pages(eb->start, eb->len);
4436 for (i = 0; i < num_pages; i++) {
4437 page = extent_buffer_page(eb, i);
4438 SetPageUptodate(page);
4443 int extent_range_uptodate(struct extent_io_tree *tree,
4448 int pg_uptodate = 1;
4450 unsigned long index;
4452 if (range_straddles_pages(start, end - start + 1)) {
4453 ret = test_range_bit(tree, start, end,
4454 EXTENT_UPTODATE, 1, NULL);
4458 while (start <= end) {
4459 index = start >> PAGE_CACHE_SHIFT;
4460 page = find_get_page(tree->mapping, index);
4463 uptodate = PageUptodate(page);
4464 page_cache_release(page);
4469 start += PAGE_CACHE_SIZE;
4474 int extent_buffer_uptodate(struct extent_buffer *eb)
4476 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4479 int read_extent_buffer_pages(struct extent_io_tree *tree,
4480 struct extent_buffer *eb, u64 start, int wait,
4481 get_extent_t *get_extent, int mirror_num)
4484 unsigned long start_i;
4488 int locked_pages = 0;
4489 int all_uptodate = 1;
4490 unsigned long num_pages;
4491 unsigned long num_reads = 0;
4492 struct bio *bio = NULL;
4493 unsigned long bio_flags = 0;
4495 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4499 WARN_ON(start < eb->start);
4500 start_i = (start >> PAGE_CACHE_SHIFT) -
4501 (eb->start >> PAGE_CACHE_SHIFT);
4506 num_pages = num_extent_pages(eb->start, eb->len);
4507 for (i = start_i; i < num_pages; i++) {
4508 page = extent_buffer_page(eb, i);
4509 if (wait == WAIT_NONE) {
4510 if (!trylock_page(page))
4516 if (!PageUptodate(page)) {
4523 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4527 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4528 eb->read_mirror = 0;
4529 atomic_set(&eb->io_pages, num_reads);
4530 for (i = start_i; i < num_pages; i++) {
4531 page = extent_buffer_page(eb, i);
4532 if (!PageUptodate(page)) {
4533 ClearPageError(page);
4534 err = __extent_read_full_page(tree, page,
4536 mirror_num, &bio_flags);
4545 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4550 if (ret || wait != WAIT_COMPLETE)
4553 for (i = start_i; i < num_pages; i++) {
4554 page = extent_buffer_page(eb, i);
4555 wait_on_page_locked(page);
4556 if (!PageUptodate(page))
4564 while (locked_pages > 0) {
4565 page = extent_buffer_page(eb, i);
4573 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4574 unsigned long start,
4581 char *dst = (char *)dstv;
4582 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4583 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4585 WARN_ON(start > eb->len);
4586 WARN_ON(start + len > eb->start + eb->len);
4588 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4591 page = extent_buffer_page(eb, i);
4593 cur = min(len, (PAGE_CACHE_SIZE - offset));
4594 kaddr = page_address(page);
4595 memcpy(dst, kaddr + offset, cur);
4604 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4605 unsigned long min_len, char **map,
4606 unsigned long *map_start,
4607 unsigned long *map_len)
4609 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4612 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4613 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4614 unsigned long end_i = (start_offset + start + min_len - 1) >>
4621 offset = start_offset;
4625 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4628 if (start + min_len > eb->len) {
4629 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4630 "wanted %lu %lu\n", (unsigned long long)eb->start,
4631 eb->len, start, min_len);
4636 p = extent_buffer_page(eb, i);
4637 kaddr = page_address(p);
4638 *map = kaddr + offset;
4639 *map_len = PAGE_CACHE_SIZE - offset;
4643 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4644 unsigned long start,
4651 char *ptr = (char *)ptrv;
4652 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4653 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4656 WARN_ON(start > eb->len);
4657 WARN_ON(start + len > eb->start + eb->len);
4659 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4662 page = extent_buffer_page(eb, i);
4664 cur = min(len, (PAGE_CACHE_SIZE - offset));
4666 kaddr = page_address(page);
4667 ret = memcmp(ptr, kaddr + offset, cur);
4679 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4680 unsigned long start, unsigned long len)
4686 char *src = (char *)srcv;
4687 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4688 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4690 WARN_ON(start > eb->len);
4691 WARN_ON(start + len > eb->start + eb->len);
4693 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4696 page = extent_buffer_page(eb, i);
4697 WARN_ON(!PageUptodate(page));
4699 cur = min(len, PAGE_CACHE_SIZE - offset);
4700 kaddr = page_address(page);
4701 memcpy(kaddr + offset, src, cur);
4710 void memset_extent_buffer(struct extent_buffer *eb, char c,
4711 unsigned long start, unsigned long len)
4717 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4718 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4720 WARN_ON(start > eb->len);
4721 WARN_ON(start + len > eb->start + eb->len);
4723 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4726 page = extent_buffer_page(eb, i);
4727 WARN_ON(!PageUptodate(page));
4729 cur = min(len, PAGE_CACHE_SIZE - offset);
4730 kaddr = page_address(page);
4731 memset(kaddr + offset, c, cur);
4739 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4740 unsigned long dst_offset, unsigned long src_offset,
4743 u64 dst_len = dst->len;
4748 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4749 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4751 WARN_ON(src->len != dst_len);
4753 offset = (start_offset + dst_offset) &
4754 ((unsigned long)PAGE_CACHE_SIZE - 1);
4757 page = extent_buffer_page(dst, i);
4758 WARN_ON(!PageUptodate(page));
4760 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4762 kaddr = page_address(page);
4763 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4772 static void move_pages(struct page *dst_page, struct page *src_page,
4773 unsigned long dst_off, unsigned long src_off,
4776 char *dst_kaddr = page_address(dst_page);
4777 if (dst_page == src_page) {
4778 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4780 char *src_kaddr = page_address(src_page);
4781 char *p = dst_kaddr + dst_off + len;
4782 char *s = src_kaddr + src_off + len;
4789 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4791 unsigned long distance = (src > dst) ? src - dst : dst - src;
4792 return distance < len;
4795 static void copy_pages(struct page *dst_page, struct page *src_page,
4796 unsigned long dst_off, unsigned long src_off,
4799 char *dst_kaddr = page_address(dst_page);
4801 int must_memmove = 0;
4803 if (dst_page != src_page) {
4804 src_kaddr = page_address(src_page);
4806 src_kaddr = dst_kaddr;
4807 if (areas_overlap(src_off, dst_off, len))
4812 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4814 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4817 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4818 unsigned long src_offset, unsigned long len)
4821 size_t dst_off_in_page;
4822 size_t src_off_in_page;
4823 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4824 unsigned long dst_i;
4825 unsigned long src_i;
4827 if (src_offset + len > dst->len) {
4828 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4829 "len %lu dst len %lu\n", src_offset, len, dst->len);
4832 if (dst_offset + len > dst->len) {
4833 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4834 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4839 dst_off_in_page = (start_offset + dst_offset) &
4840 ((unsigned long)PAGE_CACHE_SIZE - 1);
4841 src_off_in_page = (start_offset + src_offset) &
4842 ((unsigned long)PAGE_CACHE_SIZE - 1);
4844 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4845 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4847 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4849 cur = min_t(unsigned long, cur,
4850 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4852 copy_pages(extent_buffer_page(dst, dst_i),
4853 extent_buffer_page(dst, src_i),
4854 dst_off_in_page, src_off_in_page, cur);
4862 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4863 unsigned long src_offset, unsigned long len)
4866 size_t dst_off_in_page;
4867 size_t src_off_in_page;
4868 unsigned long dst_end = dst_offset + len - 1;
4869 unsigned long src_end = src_offset + len - 1;
4870 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4871 unsigned long dst_i;
4872 unsigned long src_i;
4874 if (src_offset + len > dst->len) {
4875 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4876 "len %lu len %lu\n", src_offset, len, dst->len);
4879 if (dst_offset + len > dst->len) {
4880 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4881 "len %lu len %lu\n", dst_offset, len, dst->len);
4884 if (dst_offset < src_offset) {
4885 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4889 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4890 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4892 dst_off_in_page = (start_offset + dst_end) &
4893 ((unsigned long)PAGE_CACHE_SIZE - 1);
4894 src_off_in_page = (start_offset + src_end) &
4895 ((unsigned long)PAGE_CACHE_SIZE - 1);
4897 cur = min_t(unsigned long, len, src_off_in_page + 1);
4898 cur = min(cur, dst_off_in_page + 1);
4899 move_pages(extent_buffer_page(dst, dst_i),
4900 extent_buffer_page(dst, src_i),
4901 dst_off_in_page - cur + 1,
4902 src_off_in_page - cur + 1, cur);
4910 int try_release_extent_buffer(struct page *page, gfp_t mask)
4912 struct extent_buffer *eb;
4915 * We need to make sure noboody is attaching this page to an eb right
4918 spin_lock(&page->mapping->private_lock);
4919 if (!PagePrivate(page)) {
4920 spin_unlock(&page->mapping->private_lock);
4924 eb = (struct extent_buffer *)page->private;
4928 * This is a little awful but should be ok, we need to make sure that
4929 * the eb doesn't disappear out from under us while we're looking at
4932 spin_lock(&eb->refs_lock);
4933 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4934 spin_unlock(&eb->refs_lock);
4935 spin_unlock(&page->mapping->private_lock);
4938 spin_unlock(&page->mapping->private_lock);
4940 if ((mask & GFP_NOFS) == GFP_NOFS)
4944 * If tree ref isn't set then we know the ref on this eb is a real ref,
4945 * so just return, this page will likely be freed soon anyway.
4947 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4948 spin_unlock(&eb->refs_lock);
4951 release_extent_buffer(eb, mask);