1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 #include "check-integrity.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
32 static DEFINE_SPINLOCK(leak_lock);
35 #define BUFFER_LRU_MAX 64
40 struct rb_node rb_node;
43 struct extent_page_data {
45 struct extent_io_tree *tree;
46 get_extent_t *get_extent;
48 /* tells writepage not to lock the state bits for this range
49 * it still does the unlocking
51 unsigned int extent_locked:1;
53 /* tells the submit_bio code to use a WRITE_SYNC */
54 unsigned int sync_io:1;
57 static noinline void flush_write_bio(void *data);
58 static inline struct btrfs_fs_info *
59 tree_fs_info(struct extent_io_tree *tree)
61 return btrfs_sb(tree->mapping->host->i_sb);
64 int __init extent_io_init(void)
66 extent_state_cache = kmem_cache_create("extent_state",
67 sizeof(struct extent_state), 0,
68 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
69 if (!extent_state_cache)
72 extent_buffer_cache = kmem_cache_create("extent_buffers",
73 sizeof(struct extent_buffer), 0,
74 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
75 if (!extent_buffer_cache)
76 goto free_state_cache;
80 kmem_cache_destroy(extent_state_cache);
84 void extent_io_exit(void)
86 struct extent_state *state;
87 struct extent_buffer *eb;
89 while (!list_empty(&states)) {
90 state = list_entry(states.next, struct extent_state, leak_list);
91 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
92 "state %lu in tree %p refs %d\n",
93 (unsigned long long)state->start,
94 (unsigned long long)state->end,
95 state->state, state->tree, atomic_read(&state->refs));
96 list_del(&state->leak_list);
97 kmem_cache_free(extent_state_cache, state);
101 while (!list_empty(&buffers)) {
102 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
103 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
104 "refs %d\n", (unsigned long long)eb->start,
105 eb->len, atomic_read(&eb->refs));
106 list_del(&eb->leak_list);
107 kmem_cache_free(extent_buffer_cache, eb);
109 if (extent_state_cache)
110 kmem_cache_destroy(extent_state_cache);
111 if (extent_buffer_cache)
112 kmem_cache_destroy(extent_buffer_cache);
115 void extent_io_tree_init(struct extent_io_tree *tree,
116 struct address_space *mapping)
118 tree->state = RB_ROOT;
119 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
121 tree->dirty_bytes = 0;
122 spin_lock_init(&tree->lock);
123 spin_lock_init(&tree->buffer_lock);
124 tree->mapping = mapping;
127 static struct extent_state *alloc_extent_state(gfp_t mask)
129 struct extent_state *state;
134 state = kmem_cache_alloc(extent_state_cache, mask);
141 spin_lock_irqsave(&leak_lock, flags);
142 list_add(&state->leak_list, &states);
143 spin_unlock_irqrestore(&leak_lock, flags);
145 atomic_set(&state->refs, 1);
146 init_waitqueue_head(&state->wq);
147 trace_alloc_extent_state(state, mask, _RET_IP_);
151 void free_extent_state(struct extent_state *state)
155 if (atomic_dec_and_test(&state->refs)) {
159 WARN_ON(state->tree);
161 spin_lock_irqsave(&leak_lock, flags);
162 list_del(&state->leak_list);
163 spin_unlock_irqrestore(&leak_lock, flags);
165 trace_free_extent_state(state, _RET_IP_);
166 kmem_cache_free(extent_state_cache, state);
170 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
171 struct rb_node *node)
173 struct rb_node **p = &root->rb_node;
174 struct rb_node *parent = NULL;
175 struct tree_entry *entry;
179 entry = rb_entry(parent, struct tree_entry, rb_node);
181 if (offset < entry->start)
183 else if (offset > entry->end)
189 rb_link_node(node, parent, p);
190 rb_insert_color(node, root);
194 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
195 struct rb_node **prev_ret,
196 struct rb_node **next_ret)
198 struct rb_root *root = &tree->state;
199 struct rb_node *n = root->rb_node;
200 struct rb_node *prev = NULL;
201 struct rb_node *orig_prev = NULL;
202 struct tree_entry *entry;
203 struct tree_entry *prev_entry = NULL;
206 entry = rb_entry(n, struct tree_entry, rb_node);
210 if (offset < entry->start)
212 else if (offset > entry->end)
220 while (prev && offset > prev_entry->end) {
221 prev = rb_next(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
229 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
230 while (prev && offset < prev_entry->start) {
231 prev = rb_prev(prev);
232 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
239 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
242 struct rb_node *prev = NULL;
245 ret = __etree_search(tree, offset, &prev, NULL);
251 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
252 struct extent_state *other)
254 if (tree->ops && tree->ops->merge_extent_hook)
255 tree->ops->merge_extent_hook(tree->mapping->host, new,
260 * utility function to look for merge candidates inside a given range.
261 * Any extents with matching state are merged together into a single
262 * extent in the tree. Extents with EXTENT_IO in their state field
263 * are not merged because the end_io handlers need to be able to do
264 * operations on them without sleeping (or doing allocations/splits).
266 * This should be called with the tree lock held.
268 static void merge_state(struct extent_io_tree *tree,
269 struct extent_state *state)
271 struct extent_state *other;
272 struct rb_node *other_node;
274 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
277 other_node = rb_prev(&state->rb_node);
279 other = rb_entry(other_node, struct extent_state, rb_node);
280 if (other->end == state->start - 1 &&
281 other->state == state->state) {
282 merge_cb(tree, state, other);
283 state->start = other->start;
285 rb_erase(&other->rb_node, &tree->state);
286 free_extent_state(other);
289 other_node = rb_next(&state->rb_node);
291 other = rb_entry(other_node, struct extent_state, rb_node);
292 if (other->start == state->end + 1 &&
293 other->state == state->state) {
294 merge_cb(tree, state, other);
295 state->end = other->end;
297 rb_erase(&other->rb_node, &tree->state);
298 free_extent_state(other);
303 static void set_state_cb(struct extent_io_tree *tree,
304 struct extent_state *state, int *bits)
306 if (tree->ops && tree->ops->set_bit_hook)
307 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
310 static void clear_state_cb(struct extent_io_tree *tree,
311 struct extent_state *state, int *bits)
313 if (tree->ops && tree->ops->clear_bit_hook)
314 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
317 static void set_state_bits(struct extent_io_tree *tree,
318 struct extent_state *state, int *bits);
321 * insert an extent_state struct into the tree. 'bits' are set on the
322 * struct before it is inserted.
324 * This may return -EEXIST if the extent is already there, in which case the
325 * state struct is freed.
327 * The tree lock is not taken internally. This is a utility function and
328 * probably isn't what you want to call (see set/clear_extent_bit).
330 static int insert_state(struct extent_io_tree *tree,
331 struct extent_state *state, u64 start, u64 end,
334 struct rb_node *node;
337 printk(KERN_ERR "btrfs end < start %llu %llu\n",
338 (unsigned long long)end,
339 (unsigned long long)start);
342 state->start = start;
345 set_state_bits(tree, state, bits);
347 node = tree_insert(&tree->state, end, &state->rb_node);
349 struct extent_state *found;
350 found = rb_entry(node, struct extent_state, rb_node);
351 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
352 "%llu %llu\n", (unsigned long long)found->start,
353 (unsigned long long)found->end,
354 (unsigned long long)start, (unsigned long long)end);
358 merge_state(tree, state);
362 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
365 if (tree->ops && tree->ops->split_extent_hook)
366 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
370 * split a given extent state struct in two, inserting the preallocated
371 * struct 'prealloc' as the newly created second half. 'split' indicates an
372 * offset inside 'orig' where it should be split.
375 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
376 * are two extent state structs in the tree:
377 * prealloc: [orig->start, split - 1]
378 * orig: [ split, orig->end ]
380 * The tree locks are not taken by this function. They need to be held
383 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 struct extent_state *prealloc, u64 split)
386 struct rb_node *node;
388 split_cb(tree, orig, split);
390 prealloc->start = orig->start;
391 prealloc->end = split - 1;
392 prealloc->state = orig->state;
395 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 free_extent_state(prealloc);
400 prealloc->tree = tree;
404 static struct extent_state *next_state(struct extent_state *state)
406 struct rb_node *next = rb_next(&state->rb_node);
408 return rb_entry(next, struct extent_state, rb_node);
414 * utility function to clear some bits in an extent state struct.
415 * it will optionally wake up any one waiting on this state (wake == 1).
417 * If no bits are set on the state struct after clearing things, the
418 * struct is freed and removed from the tree
420 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
421 struct extent_state *state,
424 struct extent_state *next;
425 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
427 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
428 u64 range = state->end - state->start + 1;
429 WARN_ON(range > tree->dirty_bytes);
430 tree->dirty_bytes -= range;
432 clear_state_cb(tree, state, bits);
433 state->state &= ~bits_to_clear;
436 if (state->state == 0) {
437 next = next_state(state);
439 rb_erase(&state->rb_node, &tree->state);
441 free_extent_state(state);
446 merge_state(tree, state);
447 next = next_state(state);
452 static struct extent_state *
453 alloc_extent_state_atomic(struct extent_state *prealloc)
456 prealloc = alloc_extent_state(GFP_ATOMIC);
461 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
464 "Extent tree was modified by another "
465 "thread while locked.");
469 * clear some bits on a range in the tree. This may require splitting
470 * or inserting elements in the tree, so the gfp mask is used to
471 * indicate which allocations or sleeping are allowed.
473 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
474 * the given range from the tree regardless of state (ie for truncate).
476 * the range [start, end] is inclusive.
478 * This takes the tree lock, and returns 0 on success and < 0 on error.
480 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
481 int bits, int wake, int delete,
482 struct extent_state **cached_state,
485 struct extent_state *state;
486 struct extent_state *cached;
487 struct extent_state *prealloc = NULL;
488 struct rb_node *node;
494 bits |= ~EXTENT_CTLBITS;
495 bits |= EXTENT_FIRST_DELALLOC;
497 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
500 if (!prealloc && (mask & __GFP_WAIT)) {
501 prealloc = alloc_extent_state(mask);
506 spin_lock(&tree->lock);
508 cached = *cached_state;
511 *cached_state = NULL;
515 if (cached && cached->tree && cached->start <= start &&
516 cached->end > start) {
518 atomic_dec(&cached->refs);
523 free_extent_state(cached);
526 * this search will find the extents that end after
529 node = tree_search(tree, start);
532 state = rb_entry(node, struct extent_state, rb_node);
534 if (state->start > end)
536 WARN_ON(state->end < start);
537 last_end = state->end;
539 /* the state doesn't have the wanted bits, go ahead */
540 if (!(state->state & bits)) {
541 state = next_state(state);
546 * | ---- desired range ---- |
548 * | ------------- state -------------- |
550 * We need to split the extent we found, and may flip
551 * bits on second half.
553 * If the extent we found extends past our range, we
554 * just split and search again. It'll get split again
555 * the next time though.
557 * If the extent we found is inside our range, we clear
558 * the desired bit on it.
561 if (state->start < start) {
562 prealloc = alloc_extent_state_atomic(prealloc);
564 err = split_state(tree, state, prealloc, start);
566 extent_io_tree_panic(tree, err);
571 if (state->end <= end) {
572 clear_state_bit(tree, state, &bits, wake);
573 if (last_end == (u64)-1)
575 start = last_end + 1;
580 * | ---- desired range ---- |
582 * We need to split the extent, and clear the bit
585 if (state->start <= end && state->end > end) {
586 prealloc = alloc_extent_state_atomic(prealloc);
588 err = split_state(tree, state, prealloc, end + 1);
590 extent_io_tree_panic(tree, err);
595 clear_state_bit(tree, prealloc, &bits, wake);
601 state = clear_state_bit(tree, state, &bits, wake);
603 if (last_end == (u64)-1)
605 start = last_end + 1;
606 if (start <= end && state && !need_resched())
611 spin_unlock(&tree->lock);
613 free_extent_state(prealloc);
620 spin_unlock(&tree->lock);
621 if (mask & __GFP_WAIT)
626 static void wait_on_state(struct extent_io_tree *tree,
627 struct extent_state *state)
628 __releases(tree->lock)
629 __acquires(tree->lock)
632 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
633 spin_unlock(&tree->lock);
635 spin_lock(&tree->lock);
636 finish_wait(&state->wq, &wait);
640 * waits for one or more bits to clear on a range in the state tree.
641 * The range [start, end] is inclusive.
642 * The tree lock is taken by this function
644 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
646 struct extent_state *state;
647 struct rb_node *node;
649 spin_lock(&tree->lock);
653 * this search will find all the extents that end after
656 node = tree_search(tree, start);
660 state = rb_entry(node, struct extent_state, rb_node);
662 if (state->start > end)
665 if (state->state & bits) {
666 start = state->start;
667 atomic_inc(&state->refs);
668 wait_on_state(tree, state);
669 free_extent_state(state);
672 start = state->end + 1;
677 cond_resched_lock(&tree->lock);
680 spin_unlock(&tree->lock);
683 static void set_state_bits(struct extent_io_tree *tree,
684 struct extent_state *state,
687 int bits_to_set = *bits & ~EXTENT_CTLBITS;
689 set_state_cb(tree, state, bits);
690 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
691 u64 range = state->end - state->start + 1;
692 tree->dirty_bytes += range;
694 state->state |= bits_to_set;
697 static void cache_state(struct extent_state *state,
698 struct extent_state **cached_ptr)
700 if (cached_ptr && !(*cached_ptr)) {
701 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
703 atomic_inc(&state->refs);
708 static void uncache_state(struct extent_state **cached_ptr)
710 if (cached_ptr && (*cached_ptr)) {
711 struct extent_state *state = *cached_ptr;
713 free_extent_state(state);
718 * set some bits on a range in the tree. This may require allocations or
719 * sleeping, so the gfp mask is used to indicate what is allowed.
721 * If any of the exclusive bits are set, this will fail with -EEXIST if some
722 * part of the range already has the desired bits set. The start of the
723 * existing range is returned in failed_start in this case.
725 * [start, end] is inclusive This takes the tree lock.
728 static int __must_check
729 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
730 int bits, int exclusive_bits, u64 *failed_start,
731 struct extent_state **cached_state, gfp_t mask)
733 struct extent_state *state;
734 struct extent_state *prealloc = NULL;
735 struct rb_node *node;
740 bits |= EXTENT_FIRST_DELALLOC;
742 if (!prealloc && (mask & __GFP_WAIT)) {
743 prealloc = alloc_extent_state(mask);
747 spin_lock(&tree->lock);
748 if (cached_state && *cached_state) {
749 state = *cached_state;
750 if (state->start <= start && state->end > start &&
752 node = &state->rb_node;
757 * this search will find all the extents that end after
760 node = tree_search(tree, start);
762 prealloc = alloc_extent_state_atomic(prealloc);
764 err = insert_state(tree, prealloc, start, end, &bits);
766 extent_io_tree_panic(tree, err);
771 state = rb_entry(node, struct extent_state, rb_node);
773 last_start = state->start;
774 last_end = state->end;
777 * | ---- desired range ---- |
780 * Just lock what we found and keep going
782 if (state->start == start && state->end <= end) {
783 struct rb_node *next_node;
784 if (state->state & exclusive_bits) {
785 *failed_start = state->start;
790 set_state_bits(tree, state, &bits);
792 cache_state(state, cached_state);
793 merge_state(tree, state);
794 if (last_end == (u64)-1)
797 start = last_end + 1;
798 next_node = rb_next(&state->rb_node);
799 if (next_node && start < end && prealloc && !need_resched()) {
800 state = rb_entry(next_node, struct extent_state,
802 if (state->start == start)
809 * | ---- desired range ---- |
812 * | ------------- state -------------- |
814 * We need to split the extent we found, and may flip bits on
817 * If the extent we found extends past our
818 * range, we just split and search again. It'll get split
819 * again the next time though.
821 * If the extent we found is inside our range, we set the
824 if (state->start < start) {
825 if (state->state & exclusive_bits) {
826 *failed_start = start;
831 prealloc = alloc_extent_state_atomic(prealloc);
833 err = split_state(tree, state, prealloc, start);
835 extent_io_tree_panic(tree, err);
840 if (state->end <= end) {
841 set_state_bits(tree, state, &bits);
842 cache_state(state, cached_state);
843 merge_state(tree, state);
844 if (last_end == (u64)-1)
846 start = last_end + 1;
851 * | ---- desired range ---- |
852 * | state | or | state |
854 * There's a hole, we need to insert something in it and
855 * ignore the extent we found.
857 if (state->start > start) {
859 if (end < last_start)
862 this_end = last_start - 1;
864 prealloc = alloc_extent_state_atomic(prealloc);
868 * Avoid to free 'prealloc' if it can be merged with
871 err = insert_state(tree, prealloc, start, this_end,
874 extent_io_tree_panic(tree, err);
876 cache_state(prealloc, cached_state);
878 start = this_end + 1;
882 * | ---- desired range ---- |
884 * We need to split the extent, and set the bit
887 if (state->start <= end && state->end > end) {
888 if (state->state & exclusive_bits) {
889 *failed_start = start;
894 prealloc = alloc_extent_state_atomic(prealloc);
896 err = split_state(tree, state, prealloc, end + 1);
898 extent_io_tree_panic(tree, err);
900 set_state_bits(tree, prealloc, &bits);
901 cache_state(prealloc, cached_state);
902 merge_state(tree, prealloc);
910 spin_unlock(&tree->lock);
912 free_extent_state(prealloc);
919 spin_unlock(&tree->lock);
920 if (mask & __GFP_WAIT)
925 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
926 u64 *failed_start, struct extent_state **cached_state,
929 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
935 * convert_extent - convert all bits in a given range from one bit to another
936 * @tree: the io tree to search
937 * @start: the start offset in bytes
938 * @end: the end offset in bytes (inclusive)
939 * @bits: the bits to set in this range
940 * @clear_bits: the bits to clear in this range
941 * @mask: the allocation mask
943 * This will go through and set bits for the given range. If any states exist
944 * already in this range they are set with the given bit and cleared of the
945 * clear_bits. This is only meant to be used by things that are mergeable, ie
946 * converting from say DELALLOC to DIRTY. This is not meant to be used with
947 * boundary bits like LOCK.
949 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
950 int bits, int clear_bits, gfp_t mask)
952 struct extent_state *state;
953 struct extent_state *prealloc = NULL;
954 struct rb_node *node;
960 if (!prealloc && (mask & __GFP_WAIT)) {
961 prealloc = alloc_extent_state(mask);
966 spin_lock(&tree->lock);
968 * this search will find all the extents that end after
971 node = tree_search(tree, start);
973 prealloc = alloc_extent_state_atomic(prealloc);
978 err = insert_state(tree, prealloc, start, end, &bits);
981 extent_io_tree_panic(tree, err);
984 state = rb_entry(node, struct extent_state, rb_node);
986 last_start = state->start;
987 last_end = state->end;
990 * | ---- desired range ---- |
993 * Just lock what we found and keep going
995 if (state->start == start && state->end <= end) {
996 struct rb_node *next_node;
998 set_state_bits(tree, state, &bits);
999 clear_state_bit(tree, state, &clear_bits, 0);
1000 if (last_end == (u64)-1)
1003 start = last_end + 1;
1004 next_node = rb_next(&state->rb_node);
1005 if (next_node && start < end && prealloc && !need_resched()) {
1006 state = rb_entry(next_node, struct extent_state,
1008 if (state->start == start)
1015 * | ---- desired range ---- |
1018 * | ------------- state -------------- |
1020 * We need to split the extent we found, and may flip bits on
1023 * If the extent we found extends past our
1024 * range, we just split and search again. It'll get split
1025 * again the next time though.
1027 * If the extent we found is inside our range, we set the
1028 * desired bit on it.
1030 if (state->start < start) {
1031 prealloc = alloc_extent_state_atomic(prealloc);
1036 err = split_state(tree, state, prealloc, start);
1038 extent_io_tree_panic(tree, err);
1042 if (state->end <= end) {
1043 set_state_bits(tree, state, &bits);
1044 clear_state_bit(tree, state, &clear_bits, 0);
1045 if (last_end == (u64)-1)
1047 start = last_end + 1;
1052 * | ---- desired range ---- |
1053 * | state | or | state |
1055 * There's a hole, we need to insert something in it and
1056 * ignore the extent we found.
1058 if (state->start > start) {
1060 if (end < last_start)
1063 this_end = last_start - 1;
1065 prealloc = alloc_extent_state_atomic(prealloc);
1072 * Avoid to free 'prealloc' if it can be merged with
1075 err = insert_state(tree, prealloc, start, this_end,
1078 extent_io_tree_panic(tree, err);
1080 start = this_end + 1;
1084 * | ---- desired range ---- |
1086 * We need to split the extent, and set the bit
1089 if (state->start <= end && state->end > end) {
1090 prealloc = alloc_extent_state_atomic(prealloc);
1096 err = split_state(tree, state, prealloc, end + 1);
1098 extent_io_tree_panic(tree, err);
1100 set_state_bits(tree, prealloc, &bits);
1101 clear_state_bit(tree, prealloc, &clear_bits, 0);
1109 spin_unlock(&tree->lock);
1111 free_extent_state(prealloc);
1118 spin_unlock(&tree->lock);
1119 if (mask & __GFP_WAIT)
1124 /* wrappers around set/clear extent bit */
1125 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1128 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1132 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133 int bits, gfp_t mask)
1135 return set_extent_bit(tree, start, end, bits, NULL,
1139 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1140 int bits, gfp_t mask)
1142 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1145 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1146 struct extent_state **cached_state, gfp_t mask)
1148 return set_extent_bit(tree, start, end,
1149 EXTENT_DELALLOC | EXTENT_UPTODATE,
1150 NULL, cached_state, mask);
1153 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1156 return clear_extent_bit(tree, start, end,
1157 EXTENT_DIRTY | EXTENT_DELALLOC |
1158 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1161 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1164 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1168 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1169 struct extent_state **cached_state, gfp_t mask)
1171 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1172 cached_state, mask);
1175 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1176 struct extent_state **cached_state, gfp_t mask)
1178 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1179 cached_state, mask);
1183 * either insert or lock state struct between start and end use mask to tell
1184 * us if waiting is desired.
1186 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1187 int bits, struct extent_state **cached_state)
1192 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1193 EXTENT_LOCKED, &failed_start,
1194 cached_state, GFP_NOFS);
1195 if (err == -EEXIST) {
1196 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1197 start = failed_start;
1200 WARN_ON(start > end);
1205 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1207 return lock_extent_bits(tree, start, end, 0, NULL);
1210 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1215 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1216 &failed_start, NULL, GFP_NOFS);
1217 if (err == -EEXIST) {
1218 if (failed_start > start)
1219 clear_extent_bit(tree, start, failed_start - 1,
1220 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1226 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1227 struct extent_state **cached, gfp_t mask)
1229 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1233 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1235 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1240 * helper function to set both pages and extents in the tree writeback
1242 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1244 unsigned long index = start >> PAGE_CACHE_SHIFT;
1245 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1248 while (index <= end_index) {
1249 page = find_get_page(tree->mapping, index);
1250 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1251 set_page_writeback(page);
1252 page_cache_release(page);
1258 /* find the first state struct with 'bits' set after 'start', and
1259 * return it. tree->lock must be held. NULL will returned if
1260 * nothing was found after 'start'
1262 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1263 u64 start, int bits)
1265 struct rb_node *node;
1266 struct extent_state *state;
1269 * this search will find all the extents that end after
1272 node = tree_search(tree, start);
1277 state = rb_entry(node, struct extent_state, rb_node);
1278 if (state->end >= start && (state->state & bits))
1281 node = rb_next(node);
1290 * find the first offset in the io tree with 'bits' set. zero is
1291 * returned if we find something, and *start_ret and *end_ret are
1292 * set to reflect the state struct that was found.
1294 * If nothing was found, 1 is returned. If found something, return 0.
1296 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1297 u64 *start_ret, u64 *end_ret, int bits)
1299 struct extent_state *state;
1302 spin_lock(&tree->lock);
1303 state = find_first_extent_bit_state(tree, start, bits);
1305 *start_ret = state->start;
1306 *end_ret = state->end;
1309 spin_unlock(&tree->lock);
1314 * find a contiguous range of bytes in the file marked as delalloc, not
1315 * more than 'max_bytes'. start and end are used to return the range,
1317 * 1 is returned if we find something, 0 if nothing was in the tree
1319 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1320 u64 *start, u64 *end, u64 max_bytes,
1321 struct extent_state **cached_state)
1323 struct rb_node *node;
1324 struct extent_state *state;
1325 u64 cur_start = *start;
1327 u64 total_bytes = 0;
1329 spin_lock(&tree->lock);
1332 * this search will find all the extents that end after
1335 node = tree_search(tree, cur_start);
1343 state = rb_entry(node, struct extent_state, rb_node);
1344 if (found && (state->start != cur_start ||
1345 (state->state & EXTENT_BOUNDARY))) {
1348 if (!(state->state & EXTENT_DELALLOC)) {
1354 *start = state->start;
1355 *cached_state = state;
1356 atomic_inc(&state->refs);
1360 cur_start = state->end + 1;
1361 node = rb_next(node);
1364 total_bytes += state->end - state->start + 1;
1365 if (total_bytes >= max_bytes)
1369 spin_unlock(&tree->lock);
1373 static noinline void __unlock_for_delalloc(struct inode *inode,
1374 struct page *locked_page,
1378 struct page *pages[16];
1379 unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 unsigned long nr_pages = end_index - index + 1;
1384 if (index == locked_page->index && end_index == index)
1387 while (nr_pages > 0) {
1388 ret = find_get_pages_contig(inode->i_mapping, index,
1389 min_t(unsigned long, nr_pages,
1390 ARRAY_SIZE(pages)), pages);
1391 for (i = 0; i < ret; i++) {
1392 if (pages[i] != locked_page)
1393 unlock_page(pages[i]);
1394 page_cache_release(pages[i]);
1402 static noinline int lock_delalloc_pages(struct inode *inode,
1403 struct page *locked_page,
1407 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1408 unsigned long start_index = index;
1409 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1410 unsigned long pages_locked = 0;
1411 struct page *pages[16];
1412 unsigned long nrpages;
1416 /* the caller is responsible for locking the start index */
1417 if (index == locked_page->index && index == end_index)
1420 /* skip the page at the start index */
1421 nrpages = end_index - index + 1;
1422 while (nrpages > 0) {
1423 ret = find_get_pages_contig(inode->i_mapping, index,
1424 min_t(unsigned long,
1425 nrpages, ARRAY_SIZE(pages)), pages);
1430 /* now we have an array of pages, lock them all */
1431 for (i = 0; i < ret; i++) {
1433 * the caller is taking responsibility for
1436 if (pages[i] != locked_page) {
1437 lock_page(pages[i]);
1438 if (!PageDirty(pages[i]) ||
1439 pages[i]->mapping != inode->i_mapping) {
1441 unlock_page(pages[i]);
1442 page_cache_release(pages[i]);
1446 page_cache_release(pages[i]);
1455 if (ret && pages_locked) {
1456 __unlock_for_delalloc(inode, locked_page,
1458 ((u64)(start_index + pages_locked - 1)) <<
1465 * find a contiguous range of bytes in the file marked as delalloc, not
1466 * more than 'max_bytes'. start and end are used to return the range,
1468 * 1 is returned if we find something, 0 if nothing was in the tree
1470 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1471 struct extent_io_tree *tree,
1472 struct page *locked_page,
1473 u64 *start, u64 *end,
1479 struct extent_state *cached_state = NULL;
1484 /* step one, find a bunch of delalloc bytes starting at start */
1485 delalloc_start = *start;
1487 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1488 max_bytes, &cached_state);
1489 if (!found || delalloc_end <= *start) {
1490 *start = delalloc_start;
1491 *end = delalloc_end;
1492 free_extent_state(cached_state);
1497 * start comes from the offset of locked_page. We have to lock
1498 * pages in order, so we can't process delalloc bytes before
1501 if (delalloc_start < *start)
1502 delalloc_start = *start;
1505 * make sure to limit the number of pages we try to lock down
1508 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1509 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1511 /* step two, lock all the pages after the page that has start */
1512 ret = lock_delalloc_pages(inode, locked_page,
1513 delalloc_start, delalloc_end);
1514 if (ret == -EAGAIN) {
1515 /* some of the pages are gone, lets avoid looping by
1516 * shortening the size of the delalloc range we're searching
1518 free_extent_state(cached_state);
1520 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1521 max_bytes = PAGE_CACHE_SIZE - offset;
1529 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1531 /* step three, lock the state bits for the whole range */
1532 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1534 /* then test to make sure it is all still delalloc */
1535 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1536 EXTENT_DELALLOC, 1, cached_state);
1538 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1539 &cached_state, GFP_NOFS);
1540 __unlock_for_delalloc(inode, locked_page,
1541 delalloc_start, delalloc_end);
1545 free_extent_state(cached_state);
1546 *start = delalloc_start;
1547 *end = delalloc_end;
1552 int extent_clear_unlock_delalloc(struct inode *inode,
1553 struct extent_io_tree *tree,
1554 u64 start, u64 end, struct page *locked_page,
1558 struct page *pages[16];
1559 unsigned long index = start >> PAGE_CACHE_SHIFT;
1560 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1561 unsigned long nr_pages = end_index - index + 1;
1565 if (op & EXTENT_CLEAR_UNLOCK)
1566 clear_bits |= EXTENT_LOCKED;
1567 if (op & EXTENT_CLEAR_DIRTY)
1568 clear_bits |= EXTENT_DIRTY;
1570 if (op & EXTENT_CLEAR_DELALLOC)
1571 clear_bits |= EXTENT_DELALLOC;
1573 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1574 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1575 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1576 EXTENT_SET_PRIVATE2)))
1579 while (nr_pages > 0) {
1580 ret = find_get_pages_contig(inode->i_mapping, index,
1581 min_t(unsigned long,
1582 nr_pages, ARRAY_SIZE(pages)), pages);
1583 for (i = 0; i < ret; i++) {
1585 if (op & EXTENT_SET_PRIVATE2)
1586 SetPagePrivate2(pages[i]);
1588 if (pages[i] == locked_page) {
1589 page_cache_release(pages[i]);
1592 if (op & EXTENT_CLEAR_DIRTY)
1593 clear_page_dirty_for_io(pages[i]);
1594 if (op & EXTENT_SET_WRITEBACK)
1595 set_page_writeback(pages[i]);
1596 if (op & EXTENT_END_WRITEBACK)
1597 end_page_writeback(pages[i]);
1598 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1599 unlock_page(pages[i]);
1600 page_cache_release(pages[i]);
1610 * count the number of bytes in the tree that have a given bit(s)
1611 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1612 * cached. The total number found is returned.
1614 u64 count_range_bits(struct extent_io_tree *tree,
1615 u64 *start, u64 search_end, u64 max_bytes,
1616 unsigned long bits, int contig)
1618 struct rb_node *node;
1619 struct extent_state *state;
1620 u64 cur_start = *start;
1621 u64 total_bytes = 0;
1625 if (search_end <= cur_start) {
1630 spin_lock(&tree->lock);
1631 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1632 total_bytes = tree->dirty_bytes;
1636 * this search will find all the extents that end after
1639 node = tree_search(tree, cur_start);
1644 state = rb_entry(node, struct extent_state, rb_node);
1645 if (state->start > search_end)
1647 if (contig && found && state->start > last + 1)
1649 if (state->end >= cur_start && (state->state & bits) == bits) {
1650 total_bytes += min(search_end, state->end) + 1 -
1651 max(cur_start, state->start);
1652 if (total_bytes >= max_bytes)
1655 *start = max(cur_start, state->start);
1659 } else if (contig && found) {
1662 node = rb_next(node);
1667 spin_unlock(&tree->lock);
1672 * set the private field for a given byte offset in the tree. If there isn't
1673 * an extent_state there already, this does nothing.
1675 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1677 struct rb_node *node;
1678 struct extent_state *state;
1681 spin_lock(&tree->lock);
1683 * this search will find all the extents that end after
1686 node = tree_search(tree, start);
1691 state = rb_entry(node, struct extent_state, rb_node);
1692 if (state->start != start) {
1696 state->private = private;
1698 spin_unlock(&tree->lock);
1702 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1704 struct rb_node *node;
1705 struct extent_state *state;
1708 spin_lock(&tree->lock);
1710 * this search will find all the extents that end after
1713 node = tree_search(tree, start);
1718 state = rb_entry(node, struct extent_state, rb_node);
1719 if (state->start != start) {
1723 *private = state->private;
1725 spin_unlock(&tree->lock);
1730 * searches a range in the state tree for a given mask.
1731 * If 'filled' == 1, this returns 1 only if every extent in the tree
1732 * has the bits set. Otherwise, 1 is returned if any bit in the
1733 * range is found set.
1735 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1736 int bits, int filled, struct extent_state *cached)
1738 struct extent_state *state = NULL;
1739 struct rb_node *node;
1742 spin_lock(&tree->lock);
1743 if (cached && cached->tree && cached->start <= start &&
1744 cached->end > start)
1745 node = &cached->rb_node;
1747 node = tree_search(tree, start);
1748 while (node && start <= end) {
1749 state = rb_entry(node, struct extent_state, rb_node);
1751 if (filled && state->start > start) {
1756 if (state->start > end)
1759 if (state->state & bits) {
1763 } else if (filled) {
1768 if (state->end == (u64)-1)
1771 start = state->end + 1;
1774 node = rb_next(node);
1781 spin_unlock(&tree->lock);
1786 * helper function to set a given page up to date if all the
1787 * extents in the tree for that page are up to date
1789 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1791 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1792 u64 end = start + PAGE_CACHE_SIZE - 1;
1793 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1794 SetPageUptodate(page);
1798 * helper function to unlock a page if all the extents in the tree
1799 * for that page are unlocked
1801 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1803 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1804 u64 end = start + PAGE_CACHE_SIZE - 1;
1805 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1810 * helper function to end page writeback if all the extents
1811 * in the tree for that page are done with writeback
1813 static void check_page_writeback(struct extent_io_tree *tree,
1816 end_page_writeback(page);
1820 * When IO fails, either with EIO or csum verification fails, we
1821 * try other mirrors that might have a good copy of the data. This
1822 * io_failure_record is used to record state as we go through all the
1823 * mirrors. If another mirror has good data, the page is set up to date
1824 * and things continue. If a good mirror can't be found, the original
1825 * bio end_io callback is called to indicate things have failed.
1827 struct io_failure_record {
1832 unsigned long bio_flags;
1838 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1843 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1845 set_state_private(failure_tree, rec->start, 0);
1846 ret = clear_extent_bits(failure_tree, rec->start,
1847 rec->start + rec->len - 1,
1848 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1853 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1854 rec->start + rec->len - 1,
1855 EXTENT_DAMAGED, GFP_NOFS);
1864 static void repair_io_failure_callback(struct bio *bio, int err)
1866 complete(bio->bi_private);
1870 * this bypasses the standard btrfs submit functions deliberately, as
1871 * the standard behavior is to write all copies in a raid setup. here we only
1872 * want to write the one bad copy. so we do the mapping for ourselves and issue
1873 * submit_bio directly.
1874 * to avoid any synchonization issues, wait for the data after writing, which
1875 * actually prevents the read that triggered the error from finishing.
1876 * currently, there can be no more than two copies of every data bit. thus,
1877 * exactly one rewrite is required.
1879 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1880 u64 length, u64 logical, struct page *page,
1884 struct btrfs_device *dev;
1885 DECLARE_COMPLETION_ONSTACK(compl);
1888 struct btrfs_bio *bbio = NULL;
1891 BUG_ON(!mirror_num);
1893 bio = bio_alloc(GFP_NOFS, 1);
1896 bio->bi_private = &compl;
1897 bio->bi_end_io = repair_io_failure_callback;
1899 map_length = length;
1901 ret = btrfs_map_block(map_tree, WRITE, logical,
1902 &map_length, &bbio, mirror_num);
1907 BUG_ON(mirror_num != bbio->mirror_num);
1908 sector = bbio->stripes[mirror_num-1].physical >> 9;
1909 bio->bi_sector = sector;
1910 dev = bbio->stripes[mirror_num-1].dev;
1912 if (!dev || !dev->bdev || !dev->writeable) {
1916 bio->bi_bdev = dev->bdev;
1917 bio_add_page(bio, page, length, start-page_offset(page));
1918 btrfsic_submit_bio(WRITE_SYNC, bio);
1919 wait_for_completion(&compl);
1921 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1922 /* try to remap that extent elsewhere? */
1927 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1928 "sector %llu)\n", page->mapping->host->i_ino, start,
1935 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1938 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1939 u64 start = eb->start;
1940 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1943 for (i = 0; i < num_pages; i++) {
1944 struct page *p = extent_buffer_page(eb, i);
1945 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1946 start, p, mirror_num);
1949 start += PAGE_CACHE_SIZE;
1956 * each time an IO finishes, we do a fast check in the IO failure tree
1957 * to see if we need to process or clean up an io_failure_record
1959 static int clean_io_failure(u64 start, struct page *page)
1962 u64 private_failure;
1963 struct io_failure_record *failrec;
1964 struct btrfs_mapping_tree *map_tree;
1965 struct extent_state *state;
1969 struct inode *inode = page->mapping->host;
1972 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1973 (u64)-1, 1, EXTENT_DIRTY, 0);
1977 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1982 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1983 BUG_ON(!failrec->this_mirror);
1985 if (failrec->in_validation) {
1986 /* there was no real error, just free the record */
1987 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1993 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1994 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1997 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1999 if (state && state->start == failrec->start) {
2000 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2001 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2003 if (num_copies > 1) {
2004 ret = repair_io_failure(map_tree, start, failrec->len,
2005 failrec->logical, page,
2006 failrec->failed_mirror);
2013 ret = free_io_failure(inode, failrec, did_repair);
2019 * this is a generic handler for readpage errors (default
2020 * readpage_io_failed_hook). if other copies exist, read those and write back
2021 * good data to the failed position. does not investigate in remapping the
2022 * failed extent elsewhere, hoping the device will be smart enough to do this as
2026 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2027 u64 start, u64 end, int failed_mirror,
2028 struct extent_state *state)
2030 struct io_failure_record *failrec = NULL;
2032 struct extent_map *em;
2033 struct inode *inode = page->mapping->host;
2034 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2035 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2036 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2043 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2045 ret = get_state_private(failure_tree, start, &private);
2047 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2050 failrec->start = start;
2051 failrec->len = end - start + 1;
2052 failrec->this_mirror = 0;
2053 failrec->bio_flags = 0;
2054 failrec->in_validation = 0;
2056 read_lock(&em_tree->lock);
2057 em = lookup_extent_mapping(em_tree, start, failrec->len);
2059 read_unlock(&em_tree->lock);
2064 if (em->start > start || em->start + em->len < start) {
2065 free_extent_map(em);
2068 read_unlock(&em_tree->lock);
2070 if (!em || IS_ERR(em)) {
2074 logical = start - em->start;
2075 logical = em->block_start + logical;
2076 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2077 logical = em->block_start;
2078 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2079 extent_set_compress_type(&failrec->bio_flags,
2082 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2083 "len=%llu\n", logical, start, failrec->len);
2084 failrec->logical = logical;
2085 free_extent_map(em);
2087 /* set the bits in the private failure tree */
2088 ret = set_extent_bits(failure_tree, start, end,
2089 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2091 ret = set_state_private(failure_tree, start,
2092 (u64)(unsigned long)failrec);
2093 /* set the bits in the inode's tree */
2095 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2102 failrec = (struct io_failure_record *)(unsigned long)private;
2103 pr_debug("bio_readpage_error: (found) logical=%llu, "
2104 "start=%llu, len=%llu, validation=%d\n",
2105 failrec->logical, failrec->start, failrec->len,
2106 failrec->in_validation);
2108 * when data can be on disk more than twice, add to failrec here
2109 * (e.g. with a list for failed_mirror) to make
2110 * clean_io_failure() clean all those errors at once.
2113 num_copies = btrfs_num_copies(
2114 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2115 failrec->logical, failrec->len);
2116 if (num_copies == 1) {
2118 * we only have a single copy of the data, so don't bother with
2119 * all the retry and error correction code that follows. no
2120 * matter what the error is, it is very likely to persist.
2122 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2123 "state=%p, num_copies=%d, next_mirror %d, "
2124 "failed_mirror %d\n", state, num_copies,
2125 failrec->this_mirror, failed_mirror);
2126 free_io_failure(inode, failrec, 0);
2131 spin_lock(&tree->lock);
2132 state = find_first_extent_bit_state(tree, failrec->start,
2134 if (state && state->start != failrec->start)
2136 spin_unlock(&tree->lock);
2140 * there are two premises:
2141 * a) deliver good data to the caller
2142 * b) correct the bad sectors on disk
2144 if (failed_bio->bi_vcnt > 1) {
2146 * to fulfill b), we need to know the exact failing sectors, as
2147 * we don't want to rewrite any more than the failed ones. thus,
2148 * we need separate read requests for the failed bio
2150 * if the following BUG_ON triggers, our validation request got
2151 * merged. we need separate requests for our algorithm to work.
2153 BUG_ON(failrec->in_validation);
2154 failrec->in_validation = 1;
2155 failrec->this_mirror = failed_mirror;
2156 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2159 * we're ready to fulfill a) and b) alongside. get a good copy
2160 * of the failed sector and if we succeed, we have setup
2161 * everything for repair_io_failure to do the rest for us.
2163 if (failrec->in_validation) {
2164 BUG_ON(failrec->this_mirror != failed_mirror);
2165 failrec->in_validation = 0;
2166 failrec->this_mirror = 0;
2168 failrec->failed_mirror = failed_mirror;
2169 failrec->this_mirror++;
2170 if (failrec->this_mirror == failed_mirror)
2171 failrec->this_mirror++;
2172 read_mode = READ_SYNC;
2175 if (!state || failrec->this_mirror > num_copies) {
2176 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2177 "next_mirror %d, failed_mirror %d\n", state,
2178 num_copies, failrec->this_mirror, failed_mirror);
2179 free_io_failure(inode, failrec, 0);
2183 bio = bio_alloc(GFP_NOFS, 1);
2185 free_io_failure(inode, failrec, 0);
2188 bio->bi_private = state;
2189 bio->bi_end_io = failed_bio->bi_end_io;
2190 bio->bi_sector = failrec->logical >> 9;
2191 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2194 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2196 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2197 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2198 failrec->this_mirror, num_copies, failrec->in_validation);
2200 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2201 failrec->this_mirror,
2202 failrec->bio_flags, 0);
2206 /* lots and lots of room for performance fixes in the end_bio funcs */
2208 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2210 int uptodate = (err == 0);
2211 struct extent_io_tree *tree;
2214 tree = &BTRFS_I(page->mapping->host)->io_tree;
2216 if (tree->ops && tree->ops->writepage_end_io_hook) {
2217 ret = tree->ops->writepage_end_io_hook(page, start,
2218 end, NULL, uptodate);
2224 ClearPageUptodate(page);
2231 * after a writepage IO is done, we need to:
2232 * clear the uptodate bits on error
2233 * clear the writeback bits in the extent tree for this IO
2234 * end_page_writeback if the page has no more pending IO
2236 * Scheduling is not allowed, so the extent state tree is expected
2237 * to have one and only one object corresponding to this IO.
2239 static void end_bio_extent_writepage(struct bio *bio, int err)
2241 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2242 struct extent_io_tree *tree;
2248 struct page *page = bvec->bv_page;
2249 tree = &BTRFS_I(page->mapping->host)->io_tree;
2251 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2253 end = start + bvec->bv_len - 1;
2255 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2260 if (--bvec >= bio->bi_io_vec)
2261 prefetchw(&bvec->bv_page->flags);
2263 if (end_extent_writepage(page, err, start, end))
2267 end_page_writeback(page);
2269 check_page_writeback(tree, page);
2270 } while (bvec >= bio->bi_io_vec);
2276 * after a readpage IO is done, we need to:
2277 * clear the uptodate bits on error
2278 * set the uptodate bits if things worked
2279 * set the page up to date if all extents in the tree are uptodate
2280 * clear the lock bit in the extent tree
2281 * unlock the page if there are no other extents locked for it
2283 * Scheduling is not allowed, so the extent state tree is expected
2284 * to have one and only one object corresponding to this IO.
2286 static void end_bio_extent_readpage(struct bio *bio, int err)
2288 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2289 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2290 struct bio_vec *bvec = bio->bi_io_vec;
2291 struct extent_io_tree *tree;
2302 struct page *page = bvec->bv_page;
2303 struct extent_state *cached = NULL;
2304 struct extent_state *state;
2306 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2307 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2308 (long int)bio->bi_bdev);
2309 tree = &BTRFS_I(page->mapping->host)->io_tree;
2311 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2313 end = start + bvec->bv_len - 1;
2315 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2320 if (++bvec <= bvec_end)
2321 prefetchw(&bvec->bv_page->flags);
2323 spin_lock(&tree->lock);
2324 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2325 if (state && state->start == start) {
2327 * take a reference on the state, unlock will drop
2330 cache_state(state, &cached);
2332 spin_unlock(&tree->lock);
2334 mirror = (int)(unsigned long)bio->bi_bdev;
2335 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2336 ret = tree->ops->readpage_end_io_hook(page, start, end,
2341 clean_io_failure(start, page);
2344 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2345 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2347 test_bit(BIO_UPTODATE, &bio->bi_flags))
2349 } else if (!uptodate) {
2351 * The generic bio_readpage_error handles errors the
2352 * following way: If possible, new read requests are
2353 * created and submitted and will end up in
2354 * end_bio_extent_readpage as well (if we're lucky, not
2355 * in the !uptodate case). In that case it returns 0 and
2356 * we just go on with the next page in our bio. If it
2357 * can't handle the error it will return -EIO and we
2358 * remain responsible for that page.
2360 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2363 test_bit(BIO_UPTODATE, &bio->bi_flags);
2366 uncache_state(&cached);
2371 if (uptodate && tree->track_uptodate) {
2372 set_extent_uptodate(tree, start, end, &cached,
2375 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2379 SetPageUptodate(page);
2381 ClearPageUptodate(page);
2387 check_page_uptodate(tree, page);
2389 ClearPageUptodate(page);
2392 check_page_locked(tree, page);
2394 } while (bvec <= bvec_end);
2400 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2405 bio = bio_alloc(gfp_flags, nr_vecs);
2407 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2408 while (!bio && (nr_vecs /= 2))
2409 bio = bio_alloc(gfp_flags, nr_vecs);
2414 bio->bi_bdev = bdev;
2415 bio->bi_sector = first_sector;
2421 * Since writes are async, they will only return -ENOMEM.
2422 * Reads can return the full range of I/O error conditions.
2424 static int __must_check submit_one_bio(int rw, struct bio *bio,
2425 int mirror_num, unsigned long bio_flags)
2428 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2429 struct page *page = bvec->bv_page;
2430 struct extent_io_tree *tree = bio->bi_private;
2433 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2435 bio->bi_private = NULL;
2439 if (tree->ops && tree->ops->submit_bio_hook)
2440 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2441 mirror_num, bio_flags, start);
2443 btrfsic_submit_bio(rw, bio);
2445 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2451 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2452 unsigned long offset, size_t size, struct bio *bio,
2453 unsigned long bio_flags)
2456 if (tree->ops && tree->ops->merge_bio_hook)
2457 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2464 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2465 struct page *page, sector_t sector,
2466 size_t size, unsigned long offset,
2467 struct block_device *bdev,
2468 struct bio **bio_ret,
2469 unsigned long max_pages,
2470 bio_end_io_t end_io_func,
2472 unsigned long prev_bio_flags,
2473 unsigned long bio_flags)
2479 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2480 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2481 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2483 if (bio_ret && *bio_ret) {
2486 contig = bio->bi_sector == sector;
2488 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2491 if (prev_bio_flags != bio_flags || !contig ||
2492 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2493 bio_add_page(bio, page, page_size, offset) < page_size) {
2494 ret = submit_one_bio(rw, bio, mirror_num,
2503 if (this_compressed)
2506 nr = bio_get_nr_vecs(bdev);
2508 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2512 bio_add_page(bio, page, page_size, offset);
2513 bio->bi_end_io = end_io_func;
2514 bio->bi_private = tree;
2519 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2524 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2526 if (!PagePrivate(page)) {
2527 SetPagePrivate(page);
2528 page_cache_get(page);
2529 set_page_private(page, (unsigned long)eb);
2531 WARN_ON(page->private != (unsigned long)eb);
2535 void set_page_extent_mapped(struct page *page)
2537 if (!PagePrivate(page)) {
2538 SetPagePrivate(page);
2539 page_cache_get(page);
2540 set_page_private(page, EXTENT_PAGE_PRIVATE);
2545 * basic readpage implementation. Locked extent state structs are inserted
2546 * into the tree that are removed when the IO is done (by the end_io
2548 * XXX JDM: This needs looking at to ensure proper page locking
2550 static int __extent_read_full_page(struct extent_io_tree *tree,
2552 get_extent_t *get_extent,
2553 struct bio **bio, int mirror_num,
2554 unsigned long *bio_flags)
2556 struct inode *inode = page->mapping->host;
2557 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2558 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2562 u64 last_byte = i_size_read(inode);
2566 struct extent_map *em;
2567 struct block_device *bdev;
2568 struct btrfs_ordered_extent *ordered;
2571 size_t pg_offset = 0;
2573 size_t disk_io_size;
2574 size_t blocksize = inode->i_sb->s_blocksize;
2575 unsigned long this_bio_flag = 0;
2577 set_page_extent_mapped(page);
2579 if (!PageUptodate(page)) {
2580 if (cleancache_get_page(page) == 0) {
2581 BUG_ON(blocksize != PAGE_SIZE);
2588 lock_extent(tree, start, end);
2589 ordered = btrfs_lookup_ordered_extent(inode, start);
2592 unlock_extent(tree, start, end);
2593 btrfs_start_ordered_extent(inode, ordered, 1);
2594 btrfs_put_ordered_extent(ordered);
2597 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2599 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2602 iosize = PAGE_CACHE_SIZE - zero_offset;
2603 userpage = kmap_atomic(page);
2604 memset(userpage + zero_offset, 0, iosize);
2605 flush_dcache_page(page);
2606 kunmap_atomic(userpage);
2609 while (cur <= end) {
2610 if (cur >= last_byte) {
2612 struct extent_state *cached = NULL;
2614 iosize = PAGE_CACHE_SIZE - pg_offset;
2615 userpage = kmap_atomic(page);
2616 memset(userpage + pg_offset, 0, iosize);
2617 flush_dcache_page(page);
2618 kunmap_atomic(userpage);
2619 set_extent_uptodate(tree, cur, cur + iosize - 1,
2621 unlock_extent_cached(tree, cur, cur + iosize - 1,
2625 em = get_extent(inode, page, pg_offset, cur,
2627 if (IS_ERR_OR_NULL(em)) {
2629 unlock_extent(tree, cur, end);
2632 extent_offset = cur - em->start;
2633 BUG_ON(extent_map_end(em) <= cur);
2636 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2637 this_bio_flag = EXTENT_BIO_COMPRESSED;
2638 extent_set_compress_type(&this_bio_flag,
2642 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2643 cur_end = min(extent_map_end(em) - 1, end);
2644 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2645 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2646 disk_io_size = em->block_len;
2647 sector = em->block_start >> 9;
2649 sector = (em->block_start + extent_offset) >> 9;
2650 disk_io_size = iosize;
2653 block_start = em->block_start;
2654 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2655 block_start = EXTENT_MAP_HOLE;
2656 free_extent_map(em);
2659 /* we've found a hole, just zero and go on */
2660 if (block_start == EXTENT_MAP_HOLE) {
2662 struct extent_state *cached = NULL;
2664 userpage = kmap_atomic(page);
2665 memset(userpage + pg_offset, 0, iosize);
2666 flush_dcache_page(page);
2667 kunmap_atomic(userpage);
2669 set_extent_uptodate(tree, cur, cur + iosize - 1,
2671 unlock_extent_cached(tree, cur, cur + iosize - 1,
2674 pg_offset += iosize;
2677 /* the get_extent function already copied into the page */
2678 if (test_range_bit(tree, cur, cur_end,
2679 EXTENT_UPTODATE, 1, NULL)) {
2680 check_page_uptodate(tree, page);
2681 unlock_extent(tree, cur, cur + iosize - 1);
2683 pg_offset += iosize;
2686 /* we have an inline extent but it didn't get marked up
2687 * to date. Error out
2689 if (block_start == EXTENT_MAP_INLINE) {
2691 unlock_extent(tree, cur, cur + iosize - 1);
2693 pg_offset += iosize;
2698 if (tree->ops && tree->ops->readpage_io_hook) {
2699 ret = tree->ops->readpage_io_hook(page, cur,
2703 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2705 ret = submit_extent_page(READ, tree, page,
2706 sector, disk_io_size, pg_offset,
2708 end_bio_extent_readpage, mirror_num,
2711 BUG_ON(ret == -ENOMEM);
2713 *bio_flags = this_bio_flag;
2718 pg_offset += iosize;
2722 if (!PageError(page))
2723 SetPageUptodate(page);
2729 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2730 get_extent_t *get_extent, int mirror_num)
2732 struct bio *bio = NULL;
2733 unsigned long bio_flags = 0;
2736 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2739 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2743 static noinline void update_nr_written(struct page *page,
2744 struct writeback_control *wbc,
2745 unsigned long nr_written)
2747 wbc->nr_to_write -= nr_written;
2748 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2749 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2750 page->mapping->writeback_index = page->index + nr_written;
2754 * the writepage semantics are similar to regular writepage. extent
2755 * records are inserted to lock ranges in the tree, and as dirty areas
2756 * are found, they are marked writeback. Then the lock bits are removed
2757 * and the end_io handler clears the writeback ranges
2759 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2762 struct inode *inode = page->mapping->host;
2763 struct extent_page_data *epd = data;
2764 struct extent_io_tree *tree = epd->tree;
2765 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2767 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2771 u64 last_byte = i_size_read(inode);
2775 struct extent_state *cached_state = NULL;
2776 struct extent_map *em;
2777 struct block_device *bdev;
2780 size_t pg_offset = 0;
2782 loff_t i_size = i_size_read(inode);
2783 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2789 unsigned long nr_written = 0;
2790 bool fill_delalloc = true;
2792 if (wbc->sync_mode == WB_SYNC_ALL)
2793 write_flags = WRITE_SYNC;
2795 write_flags = WRITE;
2797 trace___extent_writepage(page, inode, wbc);
2799 WARN_ON(!PageLocked(page));
2801 ClearPageError(page);
2803 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2804 if (page->index > end_index ||
2805 (page->index == end_index && !pg_offset)) {
2806 page->mapping->a_ops->invalidatepage(page, 0);
2811 if (page->index == end_index) {
2814 userpage = kmap_atomic(page);
2815 memset(userpage + pg_offset, 0,
2816 PAGE_CACHE_SIZE - pg_offset);
2817 kunmap_atomic(userpage);
2818 flush_dcache_page(page);
2822 set_page_extent_mapped(page);
2824 if (!tree->ops || !tree->ops->fill_delalloc)
2825 fill_delalloc = false;
2827 delalloc_start = start;
2830 if (!epd->extent_locked && fill_delalloc) {
2831 u64 delalloc_to_write = 0;
2833 * make sure the wbc mapping index is at least updated
2836 update_nr_written(page, wbc, 0);
2838 while (delalloc_end < page_end) {
2839 nr_delalloc = find_lock_delalloc_range(inode, tree,
2844 if (nr_delalloc == 0) {
2845 delalloc_start = delalloc_end + 1;
2848 ret = tree->ops->fill_delalloc(inode, page,
2853 /* File system has been set read-only */
2859 * delalloc_end is already one less than the total
2860 * length, so we don't subtract one from
2863 delalloc_to_write += (delalloc_end - delalloc_start +
2866 delalloc_start = delalloc_end + 1;
2868 if (wbc->nr_to_write < delalloc_to_write) {
2871 if (delalloc_to_write < thresh * 2)
2872 thresh = delalloc_to_write;
2873 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2877 /* did the fill delalloc function already unlock and start
2883 * we've unlocked the page, so we can't update
2884 * the mapping's writeback index, just update
2887 wbc->nr_to_write -= nr_written;
2891 if (tree->ops && tree->ops->writepage_start_hook) {
2892 ret = tree->ops->writepage_start_hook(page, start,
2895 /* Fixup worker will requeue */
2897 wbc->pages_skipped++;
2899 redirty_page_for_writepage(wbc, page);
2900 update_nr_written(page, wbc, nr_written);
2908 * we don't want to touch the inode after unlocking the page,
2909 * so we update the mapping writeback index now
2911 update_nr_written(page, wbc, nr_written + 1);
2914 if (last_byte <= start) {
2915 if (tree->ops && tree->ops->writepage_end_io_hook)
2916 tree->ops->writepage_end_io_hook(page, start,
2921 blocksize = inode->i_sb->s_blocksize;
2923 while (cur <= end) {
2924 if (cur >= last_byte) {
2925 if (tree->ops && tree->ops->writepage_end_io_hook)
2926 tree->ops->writepage_end_io_hook(page, cur,
2930 em = epd->get_extent(inode, page, pg_offset, cur,
2932 if (IS_ERR_OR_NULL(em)) {
2937 extent_offset = cur - em->start;
2938 BUG_ON(extent_map_end(em) <= cur);
2940 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2941 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2942 sector = (em->block_start + extent_offset) >> 9;
2944 block_start = em->block_start;
2945 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2946 free_extent_map(em);
2950 * compressed and inline extents are written through other
2953 if (compressed || block_start == EXTENT_MAP_HOLE ||
2954 block_start == EXTENT_MAP_INLINE) {
2956 * end_io notification does not happen here for
2957 * compressed extents
2959 if (!compressed && tree->ops &&
2960 tree->ops->writepage_end_io_hook)
2961 tree->ops->writepage_end_io_hook(page, cur,
2964 else if (compressed) {
2965 /* we don't want to end_page_writeback on
2966 * a compressed extent. this happens
2973 pg_offset += iosize;
2976 /* leave this out until we have a page_mkwrite call */
2977 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2978 EXTENT_DIRTY, 0, NULL)) {
2980 pg_offset += iosize;
2984 if (tree->ops && tree->ops->writepage_io_hook) {
2985 ret = tree->ops->writepage_io_hook(page, cur,
2993 unsigned long max_nr = end_index + 1;
2995 set_range_writeback(tree, cur, cur + iosize - 1);
2996 if (!PageWriteback(page)) {
2997 printk(KERN_ERR "btrfs warning page %lu not "
2998 "writeback, cur %llu end %llu\n",
2999 page->index, (unsigned long long)cur,
3000 (unsigned long long)end);
3003 ret = submit_extent_page(write_flags, tree, page,
3004 sector, iosize, pg_offset,
3005 bdev, &epd->bio, max_nr,
3006 end_bio_extent_writepage,
3012 pg_offset += iosize;
3017 /* make sure the mapping tag for page dirty gets cleared */
3018 set_page_writeback(page);
3019 end_page_writeback(page);
3025 /* drop our reference on any cached states */
3026 free_extent_state(cached_state);
3030 static int eb_wait(void *word)
3036 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3038 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3039 TASK_UNINTERRUPTIBLE);
3042 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3043 struct btrfs_fs_info *fs_info,
3044 struct extent_page_data *epd)
3046 unsigned long i, num_pages;
3050 if (!btrfs_try_tree_write_lock(eb)) {
3052 flush_write_bio(epd);
3053 btrfs_tree_lock(eb);
3056 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3057 btrfs_tree_unlock(eb);
3061 flush_write_bio(epd);
3065 wait_on_extent_buffer_writeback(eb);
3066 btrfs_tree_lock(eb);
3067 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3069 btrfs_tree_unlock(eb);
3073 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3074 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3075 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3076 spin_lock(&fs_info->delalloc_lock);
3077 if (fs_info->dirty_metadata_bytes >= eb->len)
3078 fs_info->dirty_metadata_bytes -= eb->len;
3081 spin_unlock(&fs_info->delalloc_lock);
3085 btrfs_tree_unlock(eb);
3090 num_pages = num_extent_pages(eb->start, eb->len);
3091 for (i = 0; i < num_pages; i++) {
3092 struct page *p = extent_buffer_page(eb, i);
3094 if (!trylock_page(p)) {
3096 flush_write_bio(epd);
3106 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3108 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3109 smp_mb__after_clear_bit();
3110 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3113 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3115 int uptodate = err == 0;
3116 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3117 struct extent_buffer *eb;
3121 struct page *page = bvec->bv_page;
3124 eb = (struct extent_buffer *)page->private;
3126 done = atomic_dec_and_test(&eb->io_pages);
3128 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3129 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3130 ClearPageUptodate(page);
3134 end_page_writeback(page);
3139 end_extent_buffer_writeback(eb);
3140 } while (bvec >= bio->bi_io_vec);
3146 static int write_one_eb(struct extent_buffer *eb,
3147 struct btrfs_fs_info *fs_info,
3148 struct writeback_control *wbc,
3149 struct extent_page_data *epd)
3151 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3152 u64 offset = eb->start;
3153 unsigned long i, num_pages;
3154 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3157 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3158 num_pages = num_extent_pages(eb->start, eb->len);
3159 atomic_set(&eb->io_pages, num_pages);
3160 for (i = 0; i < num_pages; i++) {
3161 struct page *p = extent_buffer_page(eb, i);
3163 clear_page_dirty_for_io(p);
3164 set_page_writeback(p);
3165 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3166 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3167 -1, end_bio_extent_buffer_writepage,
3170 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3172 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3173 end_extent_buffer_writeback(eb);
3177 offset += PAGE_CACHE_SIZE;
3178 update_nr_written(p, wbc, 1);
3182 if (unlikely(ret)) {
3183 for (; i < num_pages; i++) {
3184 struct page *p = extent_buffer_page(eb, i);
3192 int btree_write_cache_pages(struct address_space *mapping,
3193 struct writeback_control *wbc)
3195 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3196 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3197 struct extent_buffer *eb, *prev_eb = NULL;
3198 struct extent_page_data epd = {
3202 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3206 int nr_to_write_done = 0;
3207 struct pagevec pvec;
3210 pgoff_t end; /* Inclusive */
3214 pagevec_init(&pvec, 0);
3215 if (wbc->range_cyclic) {
3216 index = mapping->writeback_index; /* Start from prev offset */
3219 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3220 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3223 if (wbc->sync_mode == WB_SYNC_ALL)
3224 tag = PAGECACHE_TAG_TOWRITE;
3226 tag = PAGECACHE_TAG_DIRTY;
3228 if (wbc->sync_mode == WB_SYNC_ALL)
3229 tag_pages_for_writeback(mapping, index, end);
3230 while (!done && !nr_to_write_done && (index <= end) &&
3231 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3232 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3236 for (i = 0; i < nr_pages; i++) {
3237 struct page *page = pvec.pages[i];
3239 if (!PagePrivate(page))
3242 if (!wbc->range_cyclic && page->index > end) {
3247 eb = (struct extent_buffer *)page->private;
3256 if (!atomic_inc_not_zero(&eb->refs)) {
3262 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3264 free_extent_buffer(eb);
3268 ret = write_one_eb(eb, fs_info, wbc, &epd);
3271 free_extent_buffer(eb);
3274 free_extent_buffer(eb);
3277 * the filesystem may choose to bump up nr_to_write.
3278 * We have to make sure to honor the new nr_to_write
3281 nr_to_write_done = wbc->nr_to_write <= 0;
3283 pagevec_release(&pvec);
3286 if (!scanned && !done) {
3288 * We hit the last page and there is more work to be done: wrap
3289 * back to the start of the file
3295 flush_write_bio(&epd);
3300 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3301 * @mapping: address space structure to write
3302 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3303 * @writepage: function called for each page
3304 * @data: data passed to writepage function
3306 * If a page is already under I/O, write_cache_pages() skips it, even
3307 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3308 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3309 * and msync() need to guarantee that all the data which was dirty at the time
3310 * the call was made get new I/O started against them. If wbc->sync_mode is
3311 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3312 * existing IO to complete.
3314 static int extent_write_cache_pages(struct extent_io_tree *tree,
3315 struct address_space *mapping,
3316 struct writeback_control *wbc,
3317 writepage_t writepage, void *data,
3318 void (*flush_fn)(void *))
3322 int nr_to_write_done = 0;
3323 struct pagevec pvec;
3326 pgoff_t end; /* Inclusive */
3330 pagevec_init(&pvec, 0);
3331 if (wbc->range_cyclic) {
3332 index = mapping->writeback_index; /* Start from prev offset */
3335 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3336 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3339 if (wbc->sync_mode == WB_SYNC_ALL)
3340 tag = PAGECACHE_TAG_TOWRITE;
3342 tag = PAGECACHE_TAG_DIRTY;
3344 if (wbc->sync_mode == WB_SYNC_ALL)
3345 tag_pages_for_writeback(mapping, index, end);
3346 while (!done && !nr_to_write_done && (index <= end) &&
3347 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3348 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3352 for (i = 0; i < nr_pages; i++) {
3353 struct page *page = pvec.pages[i];
3356 * At this point we hold neither mapping->tree_lock nor
3357 * lock on the page itself: the page may be truncated or
3358 * invalidated (changing page->mapping to NULL), or even
3359 * swizzled back from swapper_space to tmpfs file
3363 tree->ops->write_cache_pages_lock_hook) {
3364 tree->ops->write_cache_pages_lock_hook(page,
3367 if (!trylock_page(page)) {
3373 if (unlikely(page->mapping != mapping)) {
3378 if (!wbc->range_cyclic && page->index > end) {
3384 if (wbc->sync_mode != WB_SYNC_NONE) {
3385 if (PageWriteback(page))
3387 wait_on_page_writeback(page);
3390 if (PageWriteback(page) ||
3391 !clear_page_dirty_for_io(page)) {
3396 ret = (*writepage)(page, wbc, data);
3398 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3406 * the filesystem may choose to bump up nr_to_write.
3407 * We have to make sure to honor the new nr_to_write
3410 nr_to_write_done = wbc->nr_to_write <= 0;
3412 pagevec_release(&pvec);
3415 if (!scanned && !done) {
3417 * We hit the last page and there is more work to be done: wrap
3418 * back to the start of the file
3427 static void flush_epd_write_bio(struct extent_page_data *epd)
3436 ret = submit_one_bio(rw, epd->bio, 0, 0);
3437 BUG_ON(ret < 0); /* -ENOMEM */
3442 static noinline void flush_write_bio(void *data)
3444 struct extent_page_data *epd = data;
3445 flush_epd_write_bio(epd);
3448 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3449 get_extent_t *get_extent,
3450 struct writeback_control *wbc)
3453 struct extent_page_data epd = {
3456 .get_extent = get_extent,
3458 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3461 ret = __extent_writepage(page, wbc, &epd);
3463 flush_epd_write_bio(&epd);
3467 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3468 u64 start, u64 end, get_extent_t *get_extent,
3472 struct address_space *mapping = inode->i_mapping;
3474 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3477 struct extent_page_data epd = {
3480 .get_extent = get_extent,
3482 .sync_io = mode == WB_SYNC_ALL,
3484 struct writeback_control wbc_writepages = {
3486 .nr_to_write = nr_pages * 2,
3487 .range_start = start,
3488 .range_end = end + 1,
3491 while (start <= end) {
3492 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3493 if (clear_page_dirty_for_io(page))
3494 ret = __extent_writepage(page, &wbc_writepages, &epd);
3496 if (tree->ops && tree->ops->writepage_end_io_hook)
3497 tree->ops->writepage_end_io_hook(page, start,
3498 start + PAGE_CACHE_SIZE - 1,
3502 page_cache_release(page);
3503 start += PAGE_CACHE_SIZE;
3506 flush_epd_write_bio(&epd);
3510 int extent_writepages(struct extent_io_tree *tree,
3511 struct address_space *mapping,
3512 get_extent_t *get_extent,
3513 struct writeback_control *wbc)
3516 struct extent_page_data epd = {
3519 .get_extent = get_extent,
3521 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3524 ret = extent_write_cache_pages(tree, mapping, wbc,
3525 __extent_writepage, &epd,
3527 flush_epd_write_bio(&epd);
3531 int extent_readpages(struct extent_io_tree *tree,
3532 struct address_space *mapping,
3533 struct list_head *pages, unsigned nr_pages,
3534 get_extent_t get_extent)
3536 struct bio *bio = NULL;
3538 unsigned long bio_flags = 0;
3540 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3541 struct page *page = list_entry(pages->prev, struct page, lru);
3543 prefetchw(&page->flags);
3544 list_del(&page->lru);
3545 if (!add_to_page_cache_lru(page, mapping,
3546 page->index, GFP_NOFS)) {
3547 __extent_read_full_page(tree, page, get_extent,
3548 &bio, 0, &bio_flags);
3550 page_cache_release(page);
3552 BUG_ON(!list_empty(pages));
3554 return submit_one_bio(READ, bio, 0, bio_flags);
3559 * basic invalidatepage code, this waits on any locked or writeback
3560 * ranges corresponding to the page, and then deletes any extent state
3561 * records from the tree
3563 int extent_invalidatepage(struct extent_io_tree *tree,
3564 struct page *page, unsigned long offset)
3566 struct extent_state *cached_state = NULL;
3567 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3568 u64 end = start + PAGE_CACHE_SIZE - 1;
3569 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3571 start += (offset + blocksize - 1) & ~(blocksize - 1);
3575 lock_extent_bits(tree, start, end, 0, &cached_state);
3576 wait_on_page_writeback(page);
3577 clear_extent_bit(tree, start, end,
3578 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3579 EXTENT_DO_ACCOUNTING,
3580 1, 1, &cached_state, GFP_NOFS);
3585 * a helper for releasepage, this tests for areas of the page that
3586 * are locked or under IO and drops the related state bits if it is safe
3589 int try_release_extent_state(struct extent_map_tree *map,
3590 struct extent_io_tree *tree, struct page *page,
3593 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3594 u64 end = start + PAGE_CACHE_SIZE - 1;
3597 if (test_range_bit(tree, start, end,
3598 EXTENT_IOBITS, 0, NULL))
3601 if ((mask & GFP_NOFS) == GFP_NOFS)
3604 * at this point we can safely clear everything except the
3605 * locked bit and the nodatasum bit
3607 ret = clear_extent_bit(tree, start, end,
3608 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3611 /* if clear_extent_bit failed for enomem reasons,
3612 * we can't allow the release to continue.
3623 * a helper for releasepage. As long as there are no locked extents
3624 * in the range corresponding to the page, both state records and extent
3625 * map records are removed
3627 int try_release_extent_mapping(struct extent_map_tree *map,
3628 struct extent_io_tree *tree, struct page *page,
3631 struct extent_map *em;
3632 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3633 u64 end = start + PAGE_CACHE_SIZE - 1;
3635 if ((mask & __GFP_WAIT) &&
3636 page->mapping->host->i_size > 16 * 1024 * 1024) {
3638 while (start <= end) {
3639 len = end - start + 1;
3640 write_lock(&map->lock);
3641 em = lookup_extent_mapping(map, start, len);
3643 write_unlock(&map->lock);
3646 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3647 em->start != start) {
3648 write_unlock(&map->lock);
3649 free_extent_map(em);
3652 if (!test_range_bit(tree, em->start,
3653 extent_map_end(em) - 1,
3654 EXTENT_LOCKED | EXTENT_WRITEBACK,
3656 remove_extent_mapping(map, em);
3657 /* once for the rb tree */
3658 free_extent_map(em);
3660 start = extent_map_end(em);
3661 write_unlock(&map->lock);
3664 free_extent_map(em);
3667 return try_release_extent_state(map, tree, page, mask);
3671 * helper function for fiemap, which doesn't want to see any holes.
3672 * This maps until we find something past 'last'
3674 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3677 get_extent_t *get_extent)
3679 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3680 struct extent_map *em;
3687 len = last - offset;
3690 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3691 em = get_extent(inode, NULL, 0, offset, len, 0);
3692 if (IS_ERR_OR_NULL(em))
3695 /* if this isn't a hole return it */
3696 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3697 em->block_start != EXTENT_MAP_HOLE) {
3701 /* this is a hole, advance to the next extent */
3702 offset = extent_map_end(em);
3703 free_extent_map(em);
3710 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3711 __u64 start, __u64 len, get_extent_t *get_extent)
3715 u64 max = start + len;
3719 u64 last_for_get_extent = 0;
3721 u64 isize = i_size_read(inode);
3722 struct btrfs_key found_key;
3723 struct extent_map *em = NULL;
3724 struct extent_state *cached_state = NULL;
3725 struct btrfs_path *path;
3726 struct btrfs_file_extent_item *item;
3731 unsigned long emflags;
3736 path = btrfs_alloc_path();
3739 path->leave_spinning = 1;
3741 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3742 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3745 * lookup the last file extent. We're not using i_size here
3746 * because there might be preallocation past i_size
3748 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3749 path, btrfs_ino(inode), -1, 0);
3751 btrfs_free_path(path);
3756 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3757 struct btrfs_file_extent_item);
3758 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3759 found_type = btrfs_key_type(&found_key);
3761 /* No extents, but there might be delalloc bits */
3762 if (found_key.objectid != btrfs_ino(inode) ||
3763 found_type != BTRFS_EXTENT_DATA_KEY) {
3764 /* have to trust i_size as the end */
3766 last_for_get_extent = isize;
3769 * remember the start of the last extent. There are a
3770 * bunch of different factors that go into the length of the
3771 * extent, so its much less complex to remember where it started
3773 last = found_key.offset;
3774 last_for_get_extent = last + 1;
3776 btrfs_free_path(path);
3779 * we might have some extents allocated but more delalloc past those
3780 * extents. so, we trust isize unless the start of the last extent is
3785 last_for_get_extent = isize;
3788 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3791 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3801 u64 offset_in_extent;
3803 /* break if the extent we found is outside the range */
3804 if (em->start >= max || extent_map_end(em) < off)
3808 * get_extent may return an extent that starts before our
3809 * requested range. We have to make sure the ranges
3810 * we return to fiemap always move forward and don't
3811 * overlap, so adjust the offsets here
3813 em_start = max(em->start, off);
3816 * record the offset from the start of the extent
3817 * for adjusting the disk offset below
3819 offset_in_extent = em_start - em->start;
3820 em_end = extent_map_end(em);
3821 em_len = em_end - em_start;
3822 emflags = em->flags;
3827 * bump off for our next call to get_extent
3829 off = extent_map_end(em);
3833 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3835 flags |= FIEMAP_EXTENT_LAST;
3836 } else if (em->block_start == EXTENT_MAP_INLINE) {
3837 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3838 FIEMAP_EXTENT_NOT_ALIGNED);
3839 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3840 flags |= (FIEMAP_EXTENT_DELALLOC |
3841 FIEMAP_EXTENT_UNKNOWN);
3843 disko = em->block_start + offset_in_extent;
3845 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3846 flags |= FIEMAP_EXTENT_ENCODED;
3848 free_extent_map(em);
3850 if ((em_start >= last) || em_len == (u64)-1 ||
3851 (last == (u64)-1 && isize <= em_end)) {
3852 flags |= FIEMAP_EXTENT_LAST;
3856 /* now scan forward to see if this is really the last extent. */
3857 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3864 flags |= FIEMAP_EXTENT_LAST;
3867 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3873 free_extent_map(em);
3875 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3876 &cached_state, GFP_NOFS);
3880 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3883 return eb->pages[i];
3886 inline unsigned long num_extent_pages(u64 start, u64 len)
3888 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3889 (start >> PAGE_CACHE_SHIFT);
3892 static void __free_extent_buffer(struct extent_buffer *eb)
3895 unsigned long flags;
3896 spin_lock_irqsave(&leak_lock, flags);
3897 list_del(&eb->leak_list);
3898 spin_unlock_irqrestore(&leak_lock, flags);
3900 if (eb->pages && eb->pages != eb->inline_pages)
3902 kmem_cache_free(extent_buffer_cache, eb);
3905 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3910 struct extent_buffer *eb = NULL;
3912 unsigned long flags;
3915 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3921 rwlock_init(&eb->lock);
3922 atomic_set(&eb->write_locks, 0);
3923 atomic_set(&eb->read_locks, 0);
3924 atomic_set(&eb->blocking_readers, 0);
3925 atomic_set(&eb->blocking_writers, 0);
3926 atomic_set(&eb->spinning_readers, 0);
3927 atomic_set(&eb->spinning_writers, 0);
3928 eb->lock_nested = 0;
3929 init_waitqueue_head(&eb->write_lock_wq);
3930 init_waitqueue_head(&eb->read_lock_wq);
3933 spin_lock_irqsave(&leak_lock, flags);
3934 list_add(&eb->leak_list, &buffers);
3935 spin_unlock_irqrestore(&leak_lock, flags);
3937 spin_lock_init(&eb->refs_lock);
3938 atomic_set(&eb->refs, 1);
3939 atomic_set(&eb->io_pages, 0);
3941 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3942 struct page **pages;
3943 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3945 pages = kzalloc(num_pages, mask);
3947 __free_extent_buffer(eb);
3952 eb->pages = eb->inline_pages;
3958 static int extent_buffer_under_io(struct extent_buffer *eb)
3960 return (atomic_read(&eb->io_pages) ||
3961 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3962 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3966 * Helper for releasing extent buffer page.
3968 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3969 unsigned long start_idx)
3971 unsigned long index;
3972 unsigned long num_pages;
3975 BUG_ON(extent_buffer_under_io(eb));
3977 num_pages = num_extent_pages(eb->start, eb->len);
3978 index = start_idx + num_pages;
3979 if (start_idx >= index)
3984 page = extent_buffer_page(eb, index);
3986 spin_lock(&page->mapping->private_lock);
3988 * We do this since we'll remove the pages after we've
3989 * removed the eb from the radix tree, so we could race
3990 * and have this page now attached to the new eb. So
3991 * only clear page_private if it's still connected to
3994 if (PagePrivate(page) &&
3995 page->private == (unsigned long)eb) {
3996 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3997 BUG_ON(PageDirty(page));
3998 BUG_ON(PageWriteback(page));
4000 * We need to make sure we haven't be attached
4003 ClearPagePrivate(page);
4004 set_page_private(page, 0);
4005 /* One for the page private */
4006 page_cache_release(page);
4008 spin_unlock(&page->mapping->private_lock);
4010 /* One for when we alloced the page */
4011 page_cache_release(page);
4013 } while (index != start_idx);
4017 * Helper for releasing the extent buffer.
4019 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4021 btrfs_release_extent_buffer_page(eb, 0);
4022 __free_extent_buffer(eb);
4025 static void check_buffer_tree_ref(struct extent_buffer *eb)
4027 /* the ref bit is tricky. We have to make sure it is set
4028 * if we have the buffer dirty. Otherwise the
4029 * code to free a buffer can end up dropping a dirty
4032 * Once the ref bit is set, it won't go away while the
4033 * buffer is dirty or in writeback, and it also won't
4034 * go away while we have the reference count on the
4037 * We can't just set the ref bit without bumping the
4038 * ref on the eb because free_extent_buffer might
4039 * see the ref bit and try to clear it. If this happens
4040 * free_extent_buffer might end up dropping our original
4041 * ref by mistake and freeing the page before we are able
4042 * to add one more ref.
4044 * So bump the ref count first, then set the bit. If someone
4045 * beat us to it, drop the ref we added.
4047 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4048 atomic_inc(&eb->refs);
4049 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4050 atomic_dec(&eb->refs);
4054 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4056 unsigned long num_pages, i;
4058 check_buffer_tree_ref(eb);
4060 num_pages = num_extent_pages(eb->start, eb->len);
4061 for (i = 0; i < num_pages; i++) {
4062 struct page *p = extent_buffer_page(eb, i);
4063 mark_page_accessed(p);
4067 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4068 u64 start, unsigned long len)
4070 unsigned long num_pages = num_extent_pages(start, len);
4072 unsigned long index = start >> PAGE_CACHE_SHIFT;
4073 struct extent_buffer *eb;
4074 struct extent_buffer *exists = NULL;
4076 struct address_space *mapping = tree->mapping;
4081 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4082 if (eb && atomic_inc_not_zero(&eb->refs)) {
4084 mark_extent_buffer_accessed(eb);
4089 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4093 for (i = 0; i < num_pages; i++, index++) {
4094 p = find_or_create_page(mapping, index, GFP_NOFS);
4100 spin_lock(&mapping->private_lock);
4101 if (PagePrivate(p)) {
4103 * We could have already allocated an eb for this page
4104 * and attached one so lets see if we can get a ref on
4105 * the existing eb, and if we can we know it's good and
4106 * we can just return that one, else we know we can just
4107 * overwrite page->private.
4109 exists = (struct extent_buffer *)p->private;
4110 if (atomic_inc_not_zero(&exists->refs)) {
4111 spin_unlock(&mapping->private_lock);
4113 page_cache_release(p);
4114 mark_extent_buffer_accessed(exists);
4119 * Do this so attach doesn't complain and we need to
4120 * drop the ref the old guy had.
4122 ClearPagePrivate(p);
4123 WARN_ON(PageDirty(p));
4124 page_cache_release(p);
4126 attach_extent_buffer_page(eb, p);
4127 spin_unlock(&mapping->private_lock);
4128 WARN_ON(PageDirty(p));
4129 mark_page_accessed(p);
4131 if (!PageUptodate(p))
4135 * see below about how we avoid a nasty race with release page
4136 * and why we unlock later
4140 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4142 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4146 spin_lock(&tree->buffer_lock);
4147 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4148 if (ret == -EEXIST) {
4149 exists = radix_tree_lookup(&tree->buffer,
4150 start >> PAGE_CACHE_SHIFT);
4151 if (!atomic_inc_not_zero(&exists->refs)) {
4152 spin_unlock(&tree->buffer_lock);
4153 radix_tree_preload_end();
4157 spin_unlock(&tree->buffer_lock);
4158 radix_tree_preload_end();
4159 mark_extent_buffer_accessed(exists);
4162 /* add one reference for the tree */
4163 spin_lock(&eb->refs_lock);
4164 check_buffer_tree_ref(eb);
4165 spin_unlock(&eb->refs_lock);
4166 spin_unlock(&tree->buffer_lock);
4167 radix_tree_preload_end();
4170 * there is a race where release page may have
4171 * tried to find this extent buffer in the radix
4172 * but failed. It will tell the VM it is safe to
4173 * reclaim the, and it will clear the page private bit.
4174 * We must make sure to set the page private bit properly
4175 * after the extent buffer is in the radix tree so
4176 * it doesn't get lost
4178 SetPageChecked(eb->pages[0]);
4179 for (i = 1; i < num_pages; i++) {
4180 p = extent_buffer_page(eb, i);
4181 ClearPageChecked(p);
4184 unlock_page(eb->pages[0]);
4188 for (i = 0; i < num_pages; i++) {
4190 unlock_page(eb->pages[i]);
4193 WARN_ON(!atomic_dec_and_test(&eb->refs));
4194 btrfs_release_extent_buffer(eb);
4198 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4199 u64 start, unsigned long len)
4201 struct extent_buffer *eb;
4204 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4205 if (eb && atomic_inc_not_zero(&eb->refs)) {
4207 mark_extent_buffer_accessed(eb);
4215 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4217 struct extent_buffer *eb =
4218 container_of(head, struct extent_buffer, rcu_head);
4220 __free_extent_buffer(eb);
4223 /* Expects to have eb->eb_lock already held */
4224 static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4226 WARN_ON(atomic_read(&eb->refs) == 0);
4227 if (atomic_dec_and_test(&eb->refs)) {
4228 struct extent_io_tree *tree = eb->tree;
4230 spin_unlock(&eb->refs_lock);
4232 spin_lock(&tree->buffer_lock);
4233 radix_tree_delete(&tree->buffer,
4234 eb->start >> PAGE_CACHE_SHIFT);
4235 spin_unlock(&tree->buffer_lock);
4237 /* Should be safe to release our pages at this point */
4238 btrfs_release_extent_buffer_page(eb, 0);
4240 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4243 spin_unlock(&eb->refs_lock);
4246 void free_extent_buffer(struct extent_buffer *eb)
4251 spin_lock(&eb->refs_lock);
4252 if (atomic_read(&eb->refs) == 2 &&
4253 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4254 !extent_buffer_under_io(eb) &&
4255 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4256 atomic_dec(&eb->refs);
4259 * I know this is terrible, but it's temporary until we stop tracking
4260 * the uptodate bits and such for the extent buffers.
4262 release_extent_buffer(eb, GFP_ATOMIC);
4265 void free_extent_buffer_stale(struct extent_buffer *eb)
4270 spin_lock(&eb->refs_lock);
4271 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4273 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4274 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4275 atomic_dec(&eb->refs);
4276 release_extent_buffer(eb, GFP_NOFS);
4279 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4282 unsigned long num_pages;
4285 num_pages = num_extent_pages(eb->start, eb->len);
4287 for (i = 0; i < num_pages; i++) {
4288 page = extent_buffer_page(eb, i);
4289 if (!PageDirty(page))
4293 WARN_ON(!PagePrivate(page));
4295 clear_page_dirty_for_io(page);
4296 spin_lock_irq(&page->mapping->tree_lock);
4297 if (!PageDirty(page)) {
4298 radix_tree_tag_clear(&page->mapping->page_tree,
4300 PAGECACHE_TAG_DIRTY);
4302 spin_unlock_irq(&page->mapping->tree_lock);
4303 ClearPageError(page);
4306 WARN_ON(atomic_read(&eb->refs) == 0);
4309 int set_extent_buffer_dirty(struct extent_buffer *eb)
4312 unsigned long num_pages;
4315 check_buffer_tree_ref(eb);
4317 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4319 num_pages = num_extent_pages(eb->start, eb->len);
4320 WARN_ON(atomic_read(&eb->refs) == 0);
4321 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4323 for (i = 0; i < num_pages; i++)
4324 set_page_dirty(extent_buffer_page(eb, i));
4328 static int range_straddles_pages(u64 start, u64 len)
4330 if (len < PAGE_CACHE_SIZE)
4332 if (start & (PAGE_CACHE_SIZE - 1))
4334 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4339 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4343 unsigned long num_pages;
4345 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4346 num_pages = num_extent_pages(eb->start, eb->len);
4347 for (i = 0; i < num_pages; i++) {
4348 page = extent_buffer_page(eb, i);
4350 ClearPageUptodate(page);
4355 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4359 unsigned long num_pages;
4361 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4362 num_pages = num_extent_pages(eb->start, eb->len);
4363 for (i = 0; i < num_pages; i++) {
4364 page = extent_buffer_page(eb, i);
4365 SetPageUptodate(page);
4370 int extent_range_uptodate(struct extent_io_tree *tree,
4375 int pg_uptodate = 1;
4377 unsigned long index;
4379 if (range_straddles_pages(start, end - start + 1)) {
4380 ret = test_range_bit(tree, start, end,
4381 EXTENT_UPTODATE, 1, NULL);
4385 while (start <= end) {
4386 index = start >> PAGE_CACHE_SHIFT;
4387 page = find_get_page(tree->mapping, index);
4390 uptodate = PageUptodate(page);
4391 page_cache_release(page);
4396 start += PAGE_CACHE_SIZE;
4401 int extent_buffer_uptodate(struct extent_buffer *eb)
4403 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4406 int read_extent_buffer_pages(struct extent_io_tree *tree,
4407 struct extent_buffer *eb, u64 start, int wait,
4408 get_extent_t *get_extent, int mirror_num)
4411 unsigned long start_i;
4415 int locked_pages = 0;
4416 int all_uptodate = 1;
4417 unsigned long num_pages;
4418 unsigned long num_reads = 0;
4419 struct bio *bio = NULL;
4420 unsigned long bio_flags = 0;
4422 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4426 WARN_ON(start < eb->start);
4427 start_i = (start >> PAGE_CACHE_SHIFT) -
4428 (eb->start >> PAGE_CACHE_SHIFT);
4433 num_pages = num_extent_pages(eb->start, eb->len);
4434 for (i = start_i; i < num_pages; i++) {
4435 page = extent_buffer_page(eb, i);
4436 if (wait == WAIT_NONE) {
4437 if (!trylock_page(page))
4443 if (!PageUptodate(page)) {
4450 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4454 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4455 eb->read_mirror = 0;
4456 atomic_set(&eb->io_pages, num_reads);
4457 for (i = start_i; i < num_pages; i++) {
4458 page = extent_buffer_page(eb, i);
4459 if (!PageUptodate(page)) {
4460 ClearPageError(page);
4461 err = __extent_read_full_page(tree, page,
4463 mirror_num, &bio_flags);
4472 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4477 if (ret || wait != WAIT_COMPLETE)
4480 for (i = start_i; i < num_pages; i++) {
4481 page = extent_buffer_page(eb, i);
4482 wait_on_page_locked(page);
4483 if (!PageUptodate(page))
4491 while (locked_pages > 0) {
4492 page = extent_buffer_page(eb, i);
4500 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4501 unsigned long start,
4508 char *dst = (char *)dstv;
4509 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4510 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4512 WARN_ON(start > eb->len);
4513 WARN_ON(start + len > eb->start + eb->len);
4515 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4518 page = extent_buffer_page(eb, i);
4520 cur = min(len, (PAGE_CACHE_SIZE - offset));
4521 kaddr = page_address(page);
4522 memcpy(dst, kaddr + offset, cur);
4531 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4532 unsigned long min_len, char **map,
4533 unsigned long *map_start,
4534 unsigned long *map_len)
4536 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4539 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4540 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4541 unsigned long end_i = (start_offset + start + min_len - 1) >>
4548 offset = start_offset;
4552 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4555 if (start + min_len > eb->len) {
4556 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4557 "wanted %lu %lu\n", (unsigned long long)eb->start,
4558 eb->len, start, min_len);
4563 p = extent_buffer_page(eb, i);
4564 kaddr = page_address(p);
4565 *map = kaddr + offset;
4566 *map_len = PAGE_CACHE_SIZE - offset;
4570 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4571 unsigned long start,
4578 char *ptr = (char *)ptrv;
4579 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4580 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4583 WARN_ON(start > eb->len);
4584 WARN_ON(start + len > eb->start + eb->len);
4586 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4589 page = extent_buffer_page(eb, i);
4591 cur = min(len, (PAGE_CACHE_SIZE - offset));
4593 kaddr = page_address(page);
4594 ret = memcmp(ptr, kaddr + offset, cur);
4606 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4607 unsigned long start, unsigned long len)
4613 char *src = (char *)srcv;
4614 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4615 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4617 WARN_ON(start > eb->len);
4618 WARN_ON(start + len > eb->start + eb->len);
4620 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4623 page = extent_buffer_page(eb, i);
4624 WARN_ON(!PageUptodate(page));
4626 cur = min(len, PAGE_CACHE_SIZE - offset);
4627 kaddr = page_address(page);
4628 memcpy(kaddr + offset, src, cur);
4637 void memset_extent_buffer(struct extent_buffer *eb, char c,
4638 unsigned long start, unsigned long len)
4644 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4645 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4647 WARN_ON(start > eb->len);
4648 WARN_ON(start + len > eb->start + eb->len);
4650 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4653 page = extent_buffer_page(eb, i);
4654 WARN_ON(!PageUptodate(page));
4656 cur = min(len, PAGE_CACHE_SIZE - offset);
4657 kaddr = page_address(page);
4658 memset(kaddr + offset, c, cur);
4666 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4667 unsigned long dst_offset, unsigned long src_offset,
4670 u64 dst_len = dst->len;
4675 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4676 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4678 WARN_ON(src->len != dst_len);
4680 offset = (start_offset + dst_offset) &
4681 ((unsigned long)PAGE_CACHE_SIZE - 1);
4684 page = extent_buffer_page(dst, i);
4685 WARN_ON(!PageUptodate(page));
4687 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4689 kaddr = page_address(page);
4690 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4699 static void move_pages(struct page *dst_page, struct page *src_page,
4700 unsigned long dst_off, unsigned long src_off,
4703 char *dst_kaddr = page_address(dst_page);
4704 if (dst_page == src_page) {
4705 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4707 char *src_kaddr = page_address(src_page);
4708 char *p = dst_kaddr + dst_off + len;
4709 char *s = src_kaddr + src_off + len;
4716 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4718 unsigned long distance = (src > dst) ? src - dst : dst - src;
4719 return distance < len;
4722 static void copy_pages(struct page *dst_page, struct page *src_page,
4723 unsigned long dst_off, unsigned long src_off,
4726 char *dst_kaddr = page_address(dst_page);
4728 int must_memmove = 0;
4730 if (dst_page != src_page) {
4731 src_kaddr = page_address(src_page);
4733 src_kaddr = dst_kaddr;
4734 if (areas_overlap(src_off, dst_off, len))
4739 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4741 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4744 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4745 unsigned long src_offset, unsigned long len)
4748 size_t dst_off_in_page;
4749 size_t src_off_in_page;
4750 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4751 unsigned long dst_i;
4752 unsigned long src_i;
4754 if (src_offset + len > dst->len) {
4755 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4756 "len %lu dst len %lu\n", src_offset, len, dst->len);
4759 if (dst_offset + len > dst->len) {
4760 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4761 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4766 dst_off_in_page = (start_offset + dst_offset) &
4767 ((unsigned long)PAGE_CACHE_SIZE - 1);
4768 src_off_in_page = (start_offset + src_offset) &
4769 ((unsigned long)PAGE_CACHE_SIZE - 1);
4771 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4772 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4774 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4776 cur = min_t(unsigned long, cur,
4777 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4779 copy_pages(extent_buffer_page(dst, dst_i),
4780 extent_buffer_page(dst, src_i),
4781 dst_off_in_page, src_off_in_page, cur);
4789 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4790 unsigned long src_offset, unsigned long len)
4793 size_t dst_off_in_page;
4794 size_t src_off_in_page;
4795 unsigned long dst_end = dst_offset + len - 1;
4796 unsigned long src_end = src_offset + len - 1;
4797 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4798 unsigned long dst_i;
4799 unsigned long src_i;
4801 if (src_offset + len > dst->len) {
4802 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4803 "len %lu len %lu\n", src_offset, len, dst->len);
4806 if (dst_offset + len > dst->len) {
4807 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4808 "len %lu len %lu\n", dst_offset, len, dst->len);
4811 if (dst_offset < src_offset) {
4812 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4816 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4817 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4819 dst_off_in_page = (start_offset + dst_end) &
4820 ((unsigned long)PAGE_CACHE_SIZE - 1);
4821 src_off_in_page = (start_offset + src_end) &
4822 ((unsigned long)PAGE_CACHE_SIZE - 1);
4824 cur = min_t(unsigned long, len, src_off_in_page + 1);
4825 cur = min(cur, dst_off_in_page + 1);
4826 move_pages(extent_buffer_page(dst, dst_i),
4827 extent_buffer_page(dst, src_i),
4828 dst_off_in_page - cur + 1,
4829 src_off_in_page - cur + 1, cur);
4837 int try_release_extent_buffer(struct page *page, gfp_t mask)
4839 struct extent_buffer *eb;
4842 * We need to make sure noboody is attaching this page to an eb right
4845 spin_lock(&page->mapping->private_lock);
4846 if (!PagePrivate(page)) {
4847 spin_unlock(&page->mapping->private_lock);
4851 eb = (struct extent_buffer *)page->private;
4855 * This is a little awful but should be ok, we need to make sure that
4856 * the eb doesn't disappear out from under us while we're looking at
4859 spin_lock(&eb->refs_lock);
4860 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4861 spin_unlock(&eb->refs_lock);
4862 spin_unlock(&page->mapping->private_lock);
4865 spin_unlock(&page->mapping->private_lock);
4867 if ((mask & GFP_NOFS) == GFP_NOFS)
4871 * If tree ref isn't set then we know the ref on this eb is a real ref,
4872 * so just return, this page will likely be freed soon anyway.
4874 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4875 spin_unlock(&eb->refs_lock);
4878 release_extent_buffer(eb, mask);