1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
23 #include "transaction.h"
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
29 static inline bool extent_state_in_tree(const struct extent_state *state)
31 return !RB_EMPTY_NODE(&state->rb_node);
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
38 static DEFINE_SPINLOCK(leak_lock);
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
45 spin_lock_irqsave(&leak_lock, flags);
47 spin_unlock_irqrestore(&leak_lock, flags);
51 void btrfs_leak_debug_del(struct list_head *entry)
55 spin_lock_irqsave(&leak_lock, flags);
57 spin_unlock_irqrestore(&leak_lock, flags);
61 void btrfs_leak_debug_check(void)
63 struct extent_state *state;
64 struct extent_buffer *eb;
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 atomic_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
111 #define BUFFER_LRU_MAX 64
116 struct rb_node rb_node;
119 struct extent_page_data {
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked:1;
130 /* tells the submit_bio code to use REQ_SYNC */
131 unsigned int sync_io:1;
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
142 if (set && (state->state & bits) == bits)
144 if (!set && (state->state & bits) == 0)
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(&changeset->range_changed, state->start, state->end,
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
159 return btrfs_sb(tree->mapping->host->i_sb);
162 int __init extent_io_init(void)
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
179 goto free_buffer_cache;
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
187 bioset_free(btrfs_bioset);
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
200 void extent_io_exit(void)
202 btrfs_leak_debug_check();
205 * Make sure all delayed rcu free are flushed before we
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
212 bioset_free(btrfs_bioset);
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
218 tree->state = RB_ROOT;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
225 static struct extent_state *alloc_extent_state(gfp_t mask)
227 struct extent_state *state;
230 * The given mask might be not appropriate for the slab allocator,
231 * drop the unsupported bits
233 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
234 state = kmem_cache_alloc(extent_state_cache, mask);
238 state->failrec = NULL;
239 RB_CLEAR_NODE(&state->rb_node);
240 btrfs_leak_debug_add(&state->leak_list, &states);
241 atomic_set(&state->refs, 1);
242 init_waitqueue_head(&state->wq);
243 trace_alloc_extent_state(state, mask, _RET_IP_);
247 void free_extent_state(struct extent_state *state)
251 if (atomic_dec_and_test(&state->refs)) {
252 WARN_ON(extent_state_in_tree(state));
253 btrfs_leak_debug_del(&state->leak_list);
254 trace_free_extent_state(state, _RET_IP_);
255 kmem_cache_free(extent_state_cache, state);
259 static struct rb_node *tree_insert(struct rb_root *root,
260 struct rb_node *search_start,
262 struct rb_node *node,
263 struct rb_node ***p_in,
264 struct rb_node **parent_in)
267 struct rb_node *parent = NULL;
268 struct tree_entry *entry;
270 if (p_in && parent_in) {
276 p = search_start ? &search_start : &root->rb_node;
279 entry = rb_entry(parent, struct tree_entry, rb_node);
281 if (offset < entry->start)
283 else if (offset > entry->end)
290 rb_link_node(node, parent, p);
291 rb_insert_color(node, root);
295 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
296 struct rb_node **prev_ret,
297 struct rb_node **next_ret,
298 struct rb_node ***p_ret,
299 struct rb_node **parent_ret)
301 struct rb_root *root = &tree->state;
302 struct rb_node **n = &root->rb_node;
303 struct rb_node *prev = NULL;
304 struct rb_node *orig_prev = NULL;
305 struct tree_entry *entry;
306 struct tree_entry *prev_entry = NULL;
310 entry = rb_entry(prev, struct tree_entry, rb_node);
313 if (offset < entry->start)
315 else if (offset > entry->end)
328 while (prev && offset > prev_entry->end) {
329 prev = rb_next(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 while (prev && offset < prev_entry->start) {
339 prev = rb_prev(prev);
340 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
347 static inline struct rb_node *
348 tree_search_for_insert(struct extent_io_tree *tree,
350 struct rb_node ***p_ret,
351 struct rb_node **parent_ret)
353 struct rb_node *prev = NULL;
356 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
362 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
365 return tree_search_for_insert(tree, offset, NULL, NULL);
368 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 struct extent_state *other)
371 if (tree->ops && tree->ops->merge_extent_hook)
372 tree->ops->merge_extent_hook(tree->mapping->host, new,
377 * utility function to look for merge candidates inside a given range.
378 * Any extents with matching state are merged together into a single
379 * extent in the tree. Extents with EXTENT_IO in their state field
380 * are not merged because the end_io handlers need to be able to do
381 * operations on them without sleeping (or doing allocations/splits).
383 * This should be called with the tree lock held.
385 static void merge_state(struct extent_io_tree *tree,
386 struct extent_state *state)
388 struct extent_state *other;
389 struct rb_node *other_node;
391 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
394 other_node = rb_prev(&state->rb_node);
396 other = rb_entry(other_node, struct extent_state, rb_node);
397 if (other->end == state->start - 1 &&
398 other->state == state->state) {
399 merge_cb(tree, state, other);
400 state->start = other->start;
401 rb_erase(&other->rb_node, &tree->state);
402 RB_CLEAR_NODE(&other->rb_node);
403 free_extent_state(other);
406 other_node = rb_next(&state->rb_node);
408 other = rb_entry(other_node, struct extent_state, rb_node);
409 if (other->start == state->end + 1 &&
410 other->state == state->state) {
411 merge_cb(tree, state, other);
412 state->end = other->end;
413 rb_erase(&other->rb_node, &tree->state);
414 RB_CLEAR_NODE(&other->rb_node);
415 free_extent_state(other);
420 static void set_state_cb(struct extent_io_tree *tree,
421 struct extent_state *state, unsigned *bits)
423 if (tree->ops && tree->ops->set_bit_hook)
424 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
427 static void clear_state_cb(struct extent_io_tree *tree,
428 struct extent_state *state, unsigned *bits)
430 if (tree->ops && tree->ops->clear_bit_hook)
431 tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
435 static void set_state_bits(struct extent_io_tree *tree,
436 struct extent_state *state, unsigned *bits,
437 struct extent_changeset *changeset);
440 * insert an extent_state struct into the tree. 'bits' are set on the
441 * struct before it is inserted.
443 * This may return -EEXIST if the extent is already there, in which case the
444 * state struct is freed.
446 * The tree lock is not taken internally. This is a utility function and
447 * probably isn't what you want to call (see set/clear_extent_bit).
449 static int insert_state(struct extent_io_tree *tree,
450 struct extent_state *state, u64 start, u64 end,
452 struct rb_node **parent,
453 unsigned *bits, struct extent_changeset *changeset)
455 struct rb_node *node;
458 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
460 state->start = start;
463 set_state_bits(tree, state, bits, changeset);
465 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
467 struct extent_state *found;
468 found = rb_entry(node, struct extent_state, rb_node);
469 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
470 found->start, found->end, start, end);
473 merge_state(tree, state);
477 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
480 if (tree->ops && tree->ops->split_extent_hook)
481 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
485 * split a given extent state struct in two, inserting the preallocated
486 * struct 'prealloc' as the newly created second half. 'split' indicates an
487 * offset inside 'orig' where it should be split.
490 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
491 * are two extent state structs in the tree:
492 * prealloc: [orig->start, split - 1]
493 * orig: [ split, orig->end ]
495 * The tree locks are not taken by this function. They need to be held
498 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 struct extent_state *prealloc, u64 split)
501 struct rb_node *node;
503 split_cb(tree, orig, split);
505 prealloc->start = orig->start;
506 prealloc->end = split - 1;
507 prealloc->state = orig->state;
510 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 &prealloc->rb_node, NULL, NULL);
513 free_extent_state(prealloc);
519 static struct extent_state *next_state(struct extent_state *state)
521 struct rb_node *next = rb_next(&state->rb_node);
523 return rb_entry(next, struct extent_state, rb_node);
529 * utility function to clear some bits in an extent state struct.
530 * it will optionally wake up any one waiting on this state (wake == 1).
532 * If no bits are set on the state struct after clearing things, the
533 * struct is freed and removed from the tree
535 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 struct extent_state *state,
537 unsigned *bits, int wake,
538 struct extent_changeset *changeset)
540 struct extent_state *next;
541 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
543 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
544 u64 range = state->end - state->start + 1;
545 WARN_ON(range > tree->dirty_bytes);
546 tree->dirty_bytes -= range;
548 clear_state_cb(tree, state, bits);
549 add_extent_changeset(state, bits_to_clear, changeset, 0);
550 state->state &= ~bits_to_clear;
553 if (state->state == 0) {
554 next = next_state(state);
555 if (extent_state_in_tree(state)) {
556 rb_erase(&state->rb_node, &tree->state);
557 RB_CLEAR_NODE(&state->rb_node);
558 free_extent_state(state);
563 merge_state(tree, state);
564 next = next_state(state);
569 static struct extent_state *
570 alloc_extent_state_atomic(struct extent_state *prealloc)
573 prealloc = alloc_extent_state(GFP_ATOMIC);
578 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
580 btrfs_panic(tree_fs_info(tree), err,
581 "Locking error: Extent tree was modified by another thread while locked.");
585 * clear some bits on a range in the tree. This may require splitting
586 * or inserting elements in the tree, so the gfp mask is used to
587 * indicate which allocations or sleeping are allowed.
589 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590 * the given range from the tree regardless of state (ie for truncate).
592 * the range [start, end] is inclusive.
594 * This takes the tree lock, and returns 0 on success and < 0 on error.
596 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 unsigned bits, int wake, int delete,
598 struct extent_state **cached_state,
599 gfp_t mask, struct extent_changeset *changeset)
601 struct extent_state *state;
602 struct extent_state *cached;
603 struct extent_state *prealloc = NULL;
604 struct rb_node *node;
609 btrfs_debug_check_extent_io_range(tree, start, end);
611 if (bits & EXTENT_DELALLOC)
612 bits |= EXTENT_NORESERVE;
615 bits |= ~EXTENT_CTLBITS;
616 bits |= EXTENT_FIRST_DELALLOC;
618 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
621 if (!prealloc && gfpflags_allow_blocking(mask)) {
623 * Don't care for allocation failure here because we might end
624 * up not needing the pre-allocated extent state at all, which
625 * is the case if we only have in the tree extent states that
626 * cover our input range and don't cover too any other range.
627 * If we end up needing a new extent state we allocate it later.
629 prealloc = alloc_extent_state(mask);
632 spin_lock(&tree->lock);
634 cached = *cached_state;
637 *cached_state = NULL;
641 if (cached && extent_state_in_tree(cached) &&
642 cached->start <= start && cached->end > start) {
644 atomic_dec(&cached->refs);
649 free_extent_state(cached);
652 * this search will find the extents that end after
655 node = tree_search(tree, start);
658 state = rb_entry(node, struct extent_state, rb_node);
660 if (state->start > end)
662 WARN_ON(state->end < start);
663 last_end = state->end;
665 /* the state doesn't have the wanted bits, go ahead */
666 if (!(state->state & bits)) {
667 state = next_state(state);
672 * | ---- desired range ---- |
674 * | ------------- state -------------- |
676 * We need to split the extent we found, and may flip
677 * bits on second half.
679 * If the extent we found extends past our range, we
680 * just split and search again. It'll get split again
681 * the next time though.
683 * If the extent we found is inside our range, we clear
684 * the desired bit on it.
687 if (state->start < start) {
688 prealloc = alloc_extent_state_atomic(prealloc);
690 err = split_state(tree, state, prealloc, start);
692 extent_io_tree_panic(tree, err);
697 if (state->end <= end) {
698 state = clear_state_bit(tree, state, &bits, wake,
705 * | ---- desired range ---- |
707 * We need to split the extent, and clear the bit
710 if (state->start <= end && state->end > end) {
711 prealloc = alloc_extent_state_atomic(prealloc);
713 err = split_state(tree, state, prealloc, end + 1);
715 extent_io_tree_panic(tree, err);
720 clear_state_bit(tree, prealloc, &bits, wake, changeset);
726 state = clear_state_bit(tree, state, &bits, wake, changeset);
728 if (last_end == (u64)-1)
730 start = last_end + 1;
731 if (start <= end && state && !need_resched())
737 spin_unlock(&tree->lock);
738 if (gfpflags_allow_blocking(mask))
743 spin_unlock(&tree->lock);
745 free_extent_state(prealloc);
751 static void wait_on_state(struct extent_io_tree *tree,
752 struct extent_state *state)
753 __releases(tree->lock)
754 __acquires(tree->lock)
757 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
758 spin_unlock(&tree->lock);
760 spin_lock(&tree->lock);
761 finish_wait(&state->wq, &wait);
765 * waits for one or more bits to clear on a range in the state tree.
766 * The range [start, end] is inclusive.
767 * The tree lock is taken by this function
769 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
772 struct extent_state *state;
773 struct rb_node *node;
775 btrfs_debug_check_extent_io_range(tree, start, end);
777 spin_lock(&tree->lock);
781 * this search will find all the extents that end after
784 node = tree_search(tree, start);
789 state = rb_entry(node, struct extent_state, rb_node);
791 if (state->start > end)
794 if (state->state & bits) {
795 start = state->start;
796 atomic_inc(&state->refs);
797 wait_on_state(tree, state);
798 free_extent_state(state);
801 start = state->end + 1;
806 if (!cond_resched_lock(&tree->lock)) {
807 node = rb_next(node);
812 spin_unlock(&tree->lock);
815 static void set_state_bits(struct extent_io_tree *tree,
816 struct extent_state *state,
817 unsigned *bits, struct extent_changeset *changeset)
819 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
821 set_state_cb(tree, state, bits);
822 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
823 u64 range = state->end - state->start + 1;
824 tree->dirty_bytes += range;
826 add_extent_changeset(state, bits_to_set, changeset, 1);
827 state->state |= bits_to_set;
830 static void cache_state_if_flags(struct extent_state *state,
831 struct extent_state **cached_ptr,
834 if (cached_ptr && !(*cached_ptr)) {
835 if (!flags || (state->state & flags)) {
837 atomic_inc(&state->refs);
842 static void cache_state(struct extent_state *state,
843 struct extent_state **cached_ptr)
845 return cache_state_if_flags(state, cached_ptr,
846 EXTENT_IOBITS | EXTENT_BOUNDARY);
850 * set some bits on a range in the tree. This may require allocations or
851 * sleeping, so the gfp mask is used to indicate what is allowed.
853 * If any of the exclusive bits are set, this will fail with -EEXIST if some
854 * part of the range already has the desired bits set. The start of the
855 * existing range is returned in failed_start in this case.
857 * [start, end] is inclusive This takes the tree lock.
860 static int __must_check
861 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
862 unsigned bits, unsigned exclusive_bits,
863 u64 *failed_start, struct extent_state **cached_state,
864 gfp_t mask, struct extent_changeset *changeset)
866 struct extent_state *state;
867 struct extent_state *prealloc = NULL;
868 struct rb_node *node;
870 struct rb_node *parent;
875 btrfs_debug_check_extent_io_range(tree, start, end);
877 bits |= EXTENT_FIRST_DELALLOC;
879 if (!prealloc && gfpflags_allow_blocking(mask)) {
881 * Don't care for allocation failure here because we might end
882 * up not needing the pre-allocated extent state at all, which
883 * is the case if we only have in the tree extent states that
884 * cover our input range and don't cover too any other range.
885 * If we end up needing a new extent state we allocate it later.
887 prealloc = alloc_extent_state(mask);
890 spin_lock(&tree->lock);
891 if (cached_state && *cached_state) {
892 state = *cached_state;
893 if (state->start <= start && state->end > start &&
894 extent_state_in_tree(state)) {
895 node = &state->rb_node;
900 * this search will find all the extents that end after
903 node = tree_search_for_insert(tree, start, &p, &parent);
905 prealloc = alloc_extent_state_atomic(prealloc);
907 err = insert_state(tree, prealloc, start, end,
908 &p, &parent, &bits, changeset);
910 extent_io_tree_panic(tree, err);
912 cache_state(prealloc, cached_state);
916 state = rb_entry(node, struct extent_state, rb_node);
918 last_start = state->start;
919 last_end = state->end;
922 * | ---- desired range ---- |
925 * Just lock what we found and keep going
927 if (state->start == start && state->end <= end) {
928 if (state->state & exclusive_bits) {
929 *failed_start = state->start;
934 set_state_bits(tree, state, &bits, changeset);
935 cache_state(state, cached_state);
936 merge_state(tree, state);
937 if (last_end == (u64)-1)
939 start = last_end + 1;
940 state = next_state(state);
941 if (start < end && state && state->start == start &&
948 * | ---- desired range ---- |
951 * | ------------- state -------------- |
953 * We need to split the extent we found, and may flip bits on
956 * If the extent we found extends past our
957 * range, we just split and search again. It'll get split
958 * again the next time though.
960 * If the extent we found is inside our range, we set the
963 if (state->start < start) {
964 if (state->state & exclusive_bits) {
965 *failed_start = start;
970 prealloc = alloc_extent_state_atomic(prealloc);
972 err = split_state(tree, state, prealloc, start);
974 extent_io_tree_panic(tree, err);
979 if (state->end <= end) {
980 set_state_bits(tree, state, &bits, changeset);
981 cache_state(state, cached_state);
982 merge_state(tree, state);
983 if (last_end == (u64)-1)
985 start = last_end + 1;
986 state = next_state(state);
987 if (start < end && state && state->start == start &&
994 * | ---- desired range ---- |
995 * | state | or | state |
997 * There's a hole, we need to insert something in it and
998 * ignore the extent we found.
1000 if (state->start > start) {
1002 if (end < last_start)
1005 this_end = last_start - 1;
1007 prealloc = alloc_extent_state_atomic(prealloc);
1011 * Avoid to free 'prealloc' if it can be merged with
1014 err = insert_state(tree, prealloc, start, this_end,
1015 NULL, NULL, &bits, changeset);
1017 extent_io_tree_panic(tree, err);
1019 cache_state(prealloc, cached_state);
1021 start = this_end + 1;
1025 * | ---- desired range ---- |
1027 * We need to split the extent, and set the bit
1030 if (state->start <= end && state->end > end) {
1031 if (state->state & exclusive_bits) {
1032 *failed_start = start;
1037 prealloc = alloc_extent_state_atomic(prealloc);
1039 err = split_state(tree, state, prealloc, end + 1);
1041 extent_io_tree_panic(tree, err);
1043 set_state_bits(tree, prealloc, &bits, changeset);
1044 cache_state(prealloc, cached_state);
1045 merge_state(tree, prealloc);
1053 spin_unlock(&tree->lock);
1054 if (gfpflags_allow_blocking(mask))
1059 spin_unlock(&tree->lock);
1061 free_extent_state(prealloc);
1067 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1068 unsigned bits, u64 * failed_start,
1069 struct extent_state **cached_state, gfp_t mask)
1071 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1072 cached_state, mask, NULL);
1077 * convert_extent_bit - convert all bits in a given range from one bit to
1079 * @tree: the io tree to search
1080 * @start: the start offset in bytes
1081 * @end: the end offset in bytes (inclusive)
1082 * @bits: the bits to set in this range
1083 * @clear_bits: the bits to clear in this range
1084 * @cached_state: state that we're going to cache
1086 * This will go through and set bits for the given range. If any states exist
1087 * already in this range they are set with the given bit and cleared of the
1088 * clear_bits. This is only meant to be used by things that are mergeable, ie
1089 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1090 * boundary bits like LOCK.
1092 * All allocations are done with GFP_NOFS.
1094 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1095 unsigned bits, unsigned clear_bits,
1096 struct extent_state **cached_state)
1098 struct extent_state *state;
1099 struct extent_state *prealloc = NULL;
1100 struct rb_node *node;
1102 struct rb_node *parent;
1106 bool first_iteration = true;
1108 btrfs_debug_check_extent_io_range(tree, start, end);
1113 * Best effort, don't worry if extent state allocation fails
1114 * here for the first iteration. We might have a cached state
1115 * that matches exactly the target range, in which case no
1116 * extent state allocations are needed. We'll only know this
1117 * after locking the tree.
1119 prealloc = alloc_extent_state(GFP_NOFS);
1120 if (!prealloc && !first_iteration)
1124 spin_lock(&tree->lock);
1125 if (cached_state && *cached_state) {
1126 state = *cached_state;
1127 if (state->start <= start && state->end > start &&
1128 extent_state_in_tree(state)) {
1129 node = &state->rb_node;
1135 * this search will find all the extents that end after
1138 node = tree_search_for_insert(tree, start, &p, &parent);
1140 prealloc = alloc_extent_state_atomic(prealloc);
1145 err = insert_state(tree, prealloc, start, end,
1146 &p, &parent, &bits, NULL);
1148 extent_io_tree_panic(tree, err);
1149 cache_state(prealloc, cached_state);
1153 state = rb_entry(node, struct extent_state, rb_node);
1155 last_start = state->start;
1156 last_end = state->end;
1159 * | ---- desired range ---- |
1162 * Just lock what we found and keep going
1164 if (state->start == start && state->end <= end) {
1165 set_state_bits(tree, state, &bits, NULL);
1166 cache_state(state, cached_state);
1167 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1168 if (last_end == (u64)-1)
1170 start = last_end + 1;
1171 if (start < end && state && state->start == start &&
1178 * | ---- desired range ---- |
1181 * | ------------- state -------------- |
1183 * We need to split the extent we found, and may flip bits on
1186 * If the extent we found extends past our
1187 * range, we just split and search again. It'll get split
1188 * again the next time though.
1190 * If the extent we found is inside our range, we set the
1191 * desired bit on it.
1193 if (state->start < start) {
1194 prealloc = alloc_extent_state_atomic(prealloc);
1199 err = split_state(tree, state, prealloc, start);
1201 extent_io_tree_panic(tree, err);
1205 if (state->end <= end) {
1206 set_state_bits(tree, state, &bits, NULL);
1207 cache_state(state, cached_state);
1208 state = clear_state_bit(tree, state, &clear_bits, 0,
1210 if (last_end == (u64)-1)
1212 start = last_end + 1;
1213 if (start < end && state && state->start == start &&
1220 * | ---- desired range ---- |
1221 * | state | or | state |
1223 * There's a hole, we need to insert something in it and
1224 * ignore the extent we found.
1226 if (state->start > start) {
1228 if (end < last_start)
1231 this_end = last_start - 1;
1233 prealloc = alloc_extent_state_atomic(prealloc);
1240 * Avoid to free 'prealloc' if it can be merged with
1243 err = insert_state(tree, prealloc, start, this_end,
1244 NULL, NULL, &bits, NULL);
1246 extent_io_tree_panic(tree, err);
1247 cache_state(prealloc, cached_state);
1249 start = this_end + 1;
1253 * | ---- desired range ---- |
1255 * We need to split the extent, and set the bit
1258 if (state->start <= end && state->end > end) {
1259 prealloc = alloc_extent_state_atomic(prealloc);
1265 err = split_state(tree, state, prealloc, end + 1);
1267 extent_io_tree_panic(tree, err);
1269 set_state_bits(tree, prealloc, &bits, NULL);
1270 cache_state(prealloc, cached_state);
1271 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1279 spin_unlock(&tree->lock);
1281 first_iteration = false;
1285 spin_unlock(&tree->lock);
1287 free_extent_state(prealloc);
1292 /* wrappers around set/clear extent bit */
1293 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1294 unsigned bits, struct extent_changeset *changeset)
1297 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 * either fail with -EEXIST or changeset will record the whole
1302 BUG_ON(bits & EXTENT_LOCKED);
1304 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1308 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, int wake, int delete,
1310 struct extent_state **cached, gfp_t mask)
1312 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 cached, mask, NULL);
1316 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 unsigned bits, struct extent_changeset *changeset)
1320 * Don't support EXTENT_LOCKED case, same reason as
1321 * set_record_extent_bits().
1323 BUG_ON(bits & EXTENT_LOCKED);
1325 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1330 * either insert or lock state struct between start and end use mask to tell
1331 * us if waiting is desired.
1333 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1334 struct extent_state **cached_state)
1340 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1341 EXTENT_LOCKED, &failed_start,
1342 cached_state, GFP_NOFS, NULL);
1343 if (err == -EEXIST) {
1344 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 start = failed_start;
1348 WARN_ON(start > end);
1353 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1359 &failed_start, NULL, GFP_NOFS, NULL);
1360 if (err == -EEXIST) {
1361 if (failed_start > start)
1362 clear_extent_bit(tree, start, failed_start - 1,
1363 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1369 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1371 unsigned long index = start >> PAGE_SHIFT;
1372 unsigned long end_index = end >> PAGE_SHIFT;
1375 while (index <= end_index) {
1376 page = find_get_page(inode->i_mapping, index);
1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 clear_page_dirty_for_io(page);
1384 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1386 unsigned long index = start >> PAGE_SHIFT;
1387 unsigned long end_index = end >> PAGE_SHIFT;
1390 while (index <= end_index) {
1391 page = find_get_page(inode->i_mapping, index);
1392 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1393 __set_page_dirty_nobuffers(page);
1394 account_page_redirty(page);
1401 * helper function to set both pages and extents in the tree writeback
1403 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1405 unsigned long index = start >> PAGE_SHIFT;
1406 unsigned long end_index = end >> PAGE_SHIFT;
1409 while (index <= end_index) {
1410 page = find_get_page(tree->mapping, index);
1411 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1412 set_page_writeback(page);
1418 /* find the first state struct with 'bits' set after 'start', and
1419 * return it. tree->lock must be held. NULL will returned if
1420 * nothing was found after 'start'
1422 static struct extent_state *
1423 find_first_extent_bit_state(struct extent_io_tree *tree,
1424 u64 start, unsigned bits)
1426 struct rb_node *node;
1427 struct extent_state *state;
1430 * this search will find all the extents that end after
1433 node = tree_search(tree, start);
1438 state = rb_entry(node, struct extent_state, rb_node);
1439 if (state->end >= start && (state->state & bits))
1442 node = rb_next(node);
1451 * find the first offset in the io tree with 'bits' set. zero is
1452 * returned if we find something, and *start_ret and *end_ret are
1453 * set to reflect the state struct that was found.
1455 * If nothing was found, 1 is returned. If found something, return 0.
1457 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1458 u64 *start_ret, u64 *end_ret, unsigned bits,
1459 struct extent_state **cached_state)
1461 struct extent_state *state;
1465 spin_lock(&tree->lock);
1466 if (cached_state && *cached_state) {
1467 state = *cached_state;
1468 if (state->end == start - 1 && extent_state_in_tree(state)) {
1469 n = rb_next(&state->rb_node);
1471 state = rb_entry(n, struct extent_state,
1473 if (state->state & bits)
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1481 free_extent_state(*cached_state);
1482 *cached_state = NULL;
1485 state = find_first_extent_bit_state(tree, start, bits);
1488 cache_state_if_flags(state, cached_state, 0);
1489 *start_ret = state->start;
1490 *end_ret = state->end;
1494 spin_unlock(&tree->lock);
1499 * find a contiguous range of bytes in the file marked as delalloc, not
1500 * more than 'max_bytes'. start and end are used to return the range,
1502 * 1 is returned if we find something, 0 if nothing was in the tree
1504 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1505 u64 *start, u64 *end, u64 max_bytes,
1506 struct extent_state **cached_state)
1508 struct rb_node *node;
1509 struct extent_state *state;
1510 u64 cur_start = *start;
1512 u64 total_bytes = 0;
1514 spin_lock(&tree->lock);
1517 * this search will find all the extents that end after
1520 node = tree_search(tree, cur_start);
1528 state = rb_entry(node, struct extent_state, rb_node);
1529 if (found && (state->start != cur_start ||
1530 (state->state & EXTENT_BOUNDARY))) {
1533 if (!(state->state & EXTENT_DELALLOC)) {
1539 *start = state->start;
1540 *cached_state = state;
1541 atomic_inc(&state->refs);
1545 cur_start = state->end + 1;
1546 node = rb_next(node);
1547 total_bytes += state->end - state->start + 1;
1548 if (total_bytes >= max_bytes)
1554 spin_unlock(&tree->lock);
1558 static int __process_pages_contig(struct address_space *mapping,
1559 struct page *locked_page,
1560 pgoff_t start_index, pgoff_t end_index,
1561 unsigned long page_ops, pgoff_t *index_ret);
1563 static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1567 unsigned long index = start >> PAGE_SHIFT;
1568 unsigned long end_index = end >> PAGE_SHIFT;
1570 ASSERT(locked_page);
1571 if (index == locked_page->index && end_index == index)
1574 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1578 static noinline int lock_delalloc_pages(struct inode *inode,
1579 struct page *locked_page,
1583 unsigned long index = delalloc_start >> PAGE_SHIFT;
1584 unsigned long index_ret = index;
1585 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1588 ASSERT(locked_page);
1589 if (index == locked_page->index && index == end_index)
1592 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 end_index, PAGE_LOCK, &index_ret);
1595 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 (u64)index_ret << PAGE_SHIFT);
1601 * find a contiguous range of bytes in the file marked as delalloc, not
1602 * more than 'max_bytes'. start and end are used to return the range,
1604 * 1 is returned if we find something, 0 if nothing was in the tree
1606 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 struct extent_io_tree *tree,
1608 struct page *locked_page, u64 *start,
1609 u64 *end, u64 max_bytes)
1614 struct extent_state *cached_state = NULL;
1619 /* step one, find a bunch of delalloc bytes starting at start */
1620 delalloc_start = *start;
1622 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1623 max_bytes, &cached_state);
1624 if (!found || delalloc_end <= *start) {
1625 *start = delalloc_start;
1626 *end = delalloc_end;
1627 free_extent_state(cached_state);
1632 * start comes from the offset of locked_page. We have to lock
1633 * pages in order, so we can't process delalloc bytes before
1636 if (delalloc_start < *start)
1637 delalloc_start = *start;
1640 * make sure to limit the number of pages we try to lock down
1642 if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 delalloc_end = delalloc_start + max_bytes - 1;
1645 /* step two, lock all the pages after the page that has start */
1646 ret = lock_delalloc_pages(inode, locked_page,
1647 delalloc_start, delalloc_end);
1648 if (ret == -EAGAIN) {
1649 /* some of the pages are gone, lets avoid looping by
1650 * shortening the size of the delalloc range we're searching
1652 free_extent_state(cached_state);
1653 cached_state = NULL;
1655 max_bytes = PAGE_SIZE;
1663 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1665 /* step three, lock the state bits for the whole range */
1666 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1668 /* then test to make sure it is all still delalloc */
1669 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1670 EXTENT_DELALLOC, 1, cached_state);
1672 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 &cached_state, GFP_NOFS);
1674 __unlock_for_delalloc(inode, locked_page,
1675 delalloc_start, delalloc_end);
1679 free_extent_state(cached_state);
1680 *start = delalloc_start;
1681 *end = delalloc_end;
1686 static int __process_pages_contig(struct address_space *mapping,
1687 struct page *locked_page,
1688 pgoff_t start_index, pgoff_t end_index,
1689 unsigned long page_ops, pgoff_t *index_ret)
1691 unsigned long nr_pages = end_index - start_index + 1;
1692 unsigned long pages_locked = 0;
1693 pgoff_t index = start_index;
1694 struct page *pages[16];
1699 if (page_ops & PAGE_LOCK) {
1700 ASSERT(page_ops == PAGE_LOCK);
1701 ASSERT(index_ret && *index_ret == start_index);
1704 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1705 mapping_set_error(mapping, -EIO);
1707 while (nr_pages > 0) {
1708 ret = find_get_pages_contig(mapping, index,
1709 min_t(unsigned long,
1710 nr_pages, ARRAY_SIZE(pages)), pages);
1713 * Only if we're going to lock these pages,
1714 * can we find nothing at @index.
1716 ASSERT(page_ops & PAGE_LOCK);
1720 for (i = 0; i < ret; i++) {
1721 if (page_ops & PAGE_SET_PRIVATE2)
1722 SetPagePrivate2(pages[i]);
1724 if (pages[i] == locked_page) {
1729 if (page_ops & PAGE_CLEAR_DIRTY)
1730 clear_page_dirty_for_io(pages[i]);
1731 if (page_ops & PAGE_SET_WRITEBACK)
1732 set_page_writeback(pages[i]);
1733 if (page_ops & PAGE_SET_ERROR)
1734 SetPageError(pages[i]);
1735 if (page_ops & PAGE_END_WRITEBACK)
1736 end_page_writeback(pages[i]);
1737 if (page_ops & PAGE_UNLOCK)
1738 unlock_page(pages[i]);
1739 if (page_ops & PAGE_LOCK) {
1740 lock_page(pages[i]);
1741 if (!PageDirty(pages[i]) ||
1742 pages[i]->mapping != mapping) {
1743 unlock_page(pages[i]);
1757 if (err && index_ret)
1758 *index_ret = start_index + pages_locked - 1;
1762 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1763 u64 delalloc_end, struct page *locked_page,
1764 unsigned clear_bits,
1765 unsigned long page_ops)
1767 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1770 __process_pages_contig(inode->i_mapping, locked_page,
1771 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1776 * count the number of bytes in the tree that have a given bit(s)
1777 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1778 * cached. The total number found is returned.
1780 u64 count_range_bits(struct extent_io_tree *tree,
1781 u64 *start, u64 search_end, u64 max_bytes,
1782 unsigned bits, int contig)
1784 struct rb_node *node;
1785 struct extent_state *state;
1786 u64 cur_start = *start;
1787 u64 total_bytes = 0;
1791 if (WARN_ON(search_end <= cur_start))
1794 spin_lock(&tree->lock);
1795 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1796 total_bytes = tree->dirty_bytes;
1800 * this search will find all the extents that end after
1803 node = tree_search(tree, cur_start);
1808 state = rb_entry(node, struct extent_state, rb_node);
1809 if (state->start > search_end)
1811 if (contig && found && state->start > last + 1)
1813 if (state->end >= cur_start && (state->state & bits) == bits) {
1814 total_bytes += min(search_end, state->end) + 1 -
1815 max(cur_start, state->start);
1816 if (total_bytes >= max_bytes)
1819 *start = max(cur_start, state->start);
1823 } else if (contig && found) {
1826 node = rb_next(node);
1831 spin_unlock(&tree->lock);
1836 * set the private field for a given byte offset in the tree. If there isn't
1837 * an extent_state there already, this does nothing.
1839 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1840 struct io_failure_record *failrec)
1842 struct rb_node *node;
1843 struct extent_state *state;
1846 spin_lock(&tree->lock);
1848 * this search will find all the extents that end after
1851 node = tree_search(tree, start);
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 if (state->start != start) {
1861 state->failrec = failrec;
1863 spin_unlock(&tree->lock);
1867 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1868 struct io_failure_record **failrec)
1870 struct rb_node *node;
1871 struct extent_state *state;
1874 spin_lock(&tree->lock);
1876 * this search will find all the extents that end after
1879 node = tree_search(tree, start);
1884 state = rb_entry(node, struct extent_state, rb_node);
1885 if (state->start != start) {
1889 *failrec = state->failrec;
1891 spin_unlock(&tree->lock);
1896 * searches a range in the state tree for a given mask.
1897 * If 'filled' == 1, this returns 1 only if every extent in the tree
1898 * has the bits set. Otherwise, 1 is returned if any bit in the
1899 * range is found set.
1901 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1902 unsigned bits, int filled, struct extent_state *cached)
1904 struct extent_state *state = NULL;
1905 struct rb_node *node;
1908 spin_lock(&tree->lock);
1909 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1910 cached->end > start)
1911 node = &cached->rb_node;
1913 node = tree_search(tree, start);
1914 while (node && start <= end) {
1915 state = rb_entry(node, struct extent_state, rb_node);
1917 if (filled && state->start > start) {
1922 if (state->start > end)
1925 if (state->state & bits) {
1929 } else if (filled) {
1934 if (state->end == (u64)-1)
1937 start = state->end + 1;
1940 node = rb_next(node);
1947 spin_unlock(&tree->lock);
1952 * helper function to set a given page up to date if all the
1953 * extents in the tree for that page are up to date
1955 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1957 u64 start = page_offset(page);
1958 u64 end = start + PAGE_SIZE - 1;
1959 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1960 SetPageUptodate(page);
1963 int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
1967 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
1969 set_state_failrec(failure_tree, rec->start, NULL);
1970 ret = clear_extent_bits(failure_tree, rec->start,
1971 rec->start + rec->len - 1,
1972 EXTENT_LOCKED | EXTENT_DIRTY);
1976 ret = clear_extent_bits(&inode->io_tree, rec->start,
1977 rec->start + rec->len - 1,
1987 * this bypasses the standard btrfs submit functions deliberately, as
1988 * the standard behavior is to write all copies in a raid setup. here we only
1989 * want to write the one bad copy. so we do the mapping for ourselves and issue
1990 * submit_bio directly.
1991 * to avoid any synchronization issues, wait for the data after writing, which
1992 * actually prevents the read that triggered the error from finishing.
1993 * currently, there can be no more than two copies of every data bit. thus,
1994 * exactly one rewrite is required.
1996 int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1997 u64 logical, struct page *page,
1998 unsigned int pg_offset, int mirror_num)
2000 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2002 struct btrfs_device *dev;
2005 struct btrfs_bio *bbio = NULL;
2006 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2009 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2010 BUG_ON(!mirror_num);
2012 /* we can't repair anything in raid56 yet */
2013 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2016 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2019 bio->bi_iter.bi_size = 0;
2020 map_length = length;
2023 * Avoid races with device replace and make sure our bbio has devices
2024 * associated to its stripes that don't go away while we are doing the
2025 * read repair operation.
2027 btrfs_bio_counter_inc_blocked(fs_info);
2028 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2029 &map_length, &bbio, mirror_num);
2031 btrfs_bio_counter_dec(fs_info);
2035 BUG_ON(mirror_num != bbio->mirror_num);
2036 sector = bbio->stripes[mirror_num-1].physical >> 9;
2037 bio->bi_iter.bi_sector = sector;
2038 dev = bbio->stripes[mirror_num-1].dev;
2039 btrfs_put_bbio(bbio);
2040 if (!dev || !dev->bdev || !dev->writeable) {
2041 btrfs_bio_counter_dec(fs_info);
2045 bio->bi_bdev = dev->bdev;
2046 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2047 bio_add_page(bio, page, length, pg_offset);
2049 if (btrfsic_submit_bio_wait(bio)) {
2050 /* try to remap that extent elsewhere? */
2051 btrfs_bio_counter_dec(fs_info);
2053 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2057 btrfs_info_rl_in_rcu(fs_info,
2058 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2059 btrfs_ino(inode), start,
2060 rcu_str_deref(dev->name), sector);
2061 btrfs_bio_counter_dec(fs_info);
2066 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2067 struct extent_buffer *eb, int mirror_num)
2069 u64 start = eb->start;
2070 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2073 if (fs_info->sb->s_flags & MS_RDONLY)
2076 for (i = 0; i < num_pages; i++) {
2077 struct page *p = eb->pages[i];
2079 ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
2080 PAGE_SIZE, start, p,
2081 start - page_offset(p), mirror_num);
2091 * each time an IO finishes, we do a fast check in the IO failure tree
2092 * to see if we need to process or clean up an io_failure_record
2094 int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
2095 unsigned int pg_offset)
2098 struct io_failure_record *failrec;
2099 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2100 struct extent_state *state;
2105 ret = count_range_bits(&inode->io_failure_tree, &private,
2106 (u64)-1, 1, EXTENT_DIRTY, 0);
2110 ret = get_state_failrec(&inode->io_failure_tree, start,
2115 BUG_ON(!failrec->this_mirror);
2117 if (failrec->in_validation) {
2118 /* there was no real error, just free the record */
2119 btrfs_debug(fs_info,
2120 "clean_io_failure: freeing dummy error at %llu",
2124 if (fs_info->sb->s_flags & MS_RDONLY)
2127 spin_lock(&inode->io_tree.lock);
2128 state = find_first_extent_bit_state(&inode->io_tree,
2131 spin_unlock(&inode->io_tree.lock);
2133 if (state && state->start <= failrec->start &&
2134 state->end >= failrec->start + failrec->len - 1) {
2135 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2137 if (num_copies > 1) {
2138 repair_io_failure(inode, start, failrec->len,
2139 failrec->logical, page,
2140 pg_offset, failrec->failed_mirror);
2145 free_io_failure(inode, failrec);
2151 * Can be called when
2152 * - hold extent lock
2153 * - under ordered extent
2154 * - the inode is freeing
2156 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2158 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2159 struct io_failure_record *failrec;
2160 struct extent_state *state, *next;
2162 if (RB_EMPTY_ROOT(&failure_tree->state))
2165 spin_lock(&failure_tree->lock);
2166 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2168 if (state->start > end)
2171 ASSERT(state->end <= end);
2173 next = next_state(state);
2175 failrec = state->failrec;
2176 free_extent_state(state);
2181 spin_unlock(&failure_tree->lock);
2184 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2185 struct io_failure_record **failrec_ret)
2187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2188 struct io_failure_record *failrec;
2189 struct extent_map *em;
2190 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2191 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2196 ret = get_state_failrec(failure_tree, start, &failrec);
2198 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2202 failrec->start = start;
2203 failrec->len = end - start + 1;
2204 failrec->this_mirror = 0;
2205 failrec->bio_flags = 0;
2206 failrec->in_validation = 0;
2208 read_lock(&em_tree->lock);
2209 em = lookup_extent_mapping(em_tree, start, failrec->len);
2211 read_unlock(&em_tree->lock);
2216 if (em->start > start || em->start + em->len <= start) {
2217 free_extent_map(em);
2220 read_unlock(&em_tree->lock);
2226 logical = start - em->start;
2227 logical = em->block_start + logical;
2228 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2229 logical = em->block_start;
2230 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2231 extent_set_compress_type(&failrec->bio_flags,
2235 btrfs_debug(fs_info,
2236 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2237 logical, start, failrec->len);
2239 failrec->logical = logical;
2240 free_extent_map(em);
2242 /* set the bits in the private failure tree */
2243 ret = set_extent_bits(failure_tree, start, end,
2244 EXTENT_LOCKED | EXTENT_DIRTY);
2246 ret = set_state_failrec(failure_tree, start, failrec);
2247 /* set the bits in the inode's tree */
2249 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2255 btrfs_debug(fs_info,
2256 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2257 failrec->logical, failrec->start, failrec->len,
2258 failrec->in_validation);
2260 * when data can be on disk more than twice, add to failrec here
2261 * (e.g. with a list for failed_mirror) to make
2262 * clean_io_failure() clean all those errors at once.
2266 *failrec_ret = failrec;
2271 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2272 struct io_failure_record *failrec, int failed_mirror)
2274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2277 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2278 if (num_copies == 1) {
2280 * we only have a single copy of the data, so don't bother with
2281 * all the retry and error correction code that follows. no
2282 * matter what the error is, it is very likely to persist.
2284 btrfs_debug(fs_info,
2285 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2286 num_copies, failrec->this_mirror, failed_mirror);
2291 * there are two premises:
2292 * a) deliver good data to the caller
2293 * b) correct the bad sectors on disk
2295 if (failed_bio->bi_vcnt > 1) {
2297 * to fulfill b), we need to know the exact failing sectors, as
2298 * we don't want to rewrite any more than the failed ones. thus,
2299 * we need separate read requests for the failed bio
2301 * if the following BUG_ON triggers, our validation request got
2302 * merged. we need separate requests for our algorithm to work.
2304 BUG_ON(failrec->in_validation);
2305 failrec->in_validation = 1;
2306 failrec->this_mirror = failed_mirror;
2309 * we're ready to fulfill a) and b) alongside. get a good copy
2310 * of the failed sector and if we succeed, we have setup
2311 * everything for repair_io_failure to do the rest for us.
2313 if (failrec->in_validation) {
2314 BUG_ON(failrec->this_mirror != failed_mirror);
2315 failrec->in_validation = 0;
2316 failrec->this_mirror = 0;
2318 failrec->failed_mirror = failed_mirror;
2319 failrec->this_mirror++;
2320 if (failrec->this_mirror == failed_mirror)
2321 failrec->this_mirror++;
2324 if (failrec->this_mirror > num_copies) {
2325 btrfs_debug(fs_info,
2326 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2327 num_copies, failrec->this_mirror, failed_mirror);
2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
2338 bio_end_io_t *endio_func, void *data)
2340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2342 struct btrfs_io_bio *btrfs_failed_bio;
2343 struct btrfs_io_bio *btrfs_bio;
2345 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2349 bio->bi_end_io = endio_func;
2350 bio->bi_iter.bi_sector = failrec->logical >> 9;
2351 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2352 bio->bi_iter.bi_size = 0;
2353 bio->bi_private = data;
2355 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2356 if (btrfs_failed_bio->csum) {
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2398 free_io_failure(BTRFS_I(inode), failrec);
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode |= REQ_FAILFAST_DEV;
2405 phy_offset >>= inode->i_sb->s_blocksize_bits;
2406 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2407 start - page_offset(page),
2408 (int)phy_offset, failed_bio->bi_end_io,
2411 free_io_failure(BTRFS_I(inode), failrec);
2414 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2416 btrfs_debug(btrfs_sb(inode->i_sb),
2417 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2418 read_mode, failrec->this_mirror, failrec->in_validation);
2420 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2421 failrec->bio_flags, 0);
2423 free_io_failure(BTRFS_I(inode), failrec);
2430 /* lots and lots of room for performance fixes in the end_bio funcs */
2432 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2434 int uptodate = (err == 0);
2435 struct extent_io_tree *tree;
2438 tree = &BTRFS_I(page->mapping->host)->io_tree;
2440 if (tree->ops && tree->ops->writepage_end_io_hook)
2441 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2445 ClearPageUptodate(page);
2447 ret = ret < 0 ? ret : -EIO;
2448 mapping_set_error(page->mapping, ret);
2453 * after a writepage IO is done, we need to:
2454 * clear the uptodate bits on error
2455 * clear the writeback bits in the extent tree for this IO
2456 * end_page_writeback if the page has no more pending IO
2458 * Scheduling is not allowed, so the extent state tree is expected
2459 * to have one and only one object corresponding to this IO.
2461 static void end_bio_extent_writepage(struct bio *bio)
2463 struct bio_vec *bvec;
2468 bio_for_each_segment_all(bvec, bio, i) {
2469 struct page *page = bvec->bv_page;
2470 struct inode *inode = page->mapping->host;
2471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2473 /* We always issue full-page reads, but if some block
2474 * in a page fails to read, blk_update_request() will
2475 * advance bv_offset and adjust bv_len to compensate.
2476 * Print a warning for nonzero offsets, and an error
2477 * if they don't add up to a full page. */
2478 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2479 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2481 "partial page write in btrfs with offset %u and length %u",
2482 bvec->bv_offset, bvec->bv_len);
2485 "incomplete page write in btrfs with offset %u and length %u",
2486 bvec->bv_offset, bvec->bv_len);
2489 start = page_offset(page);
2490 end = start + bvec->bv_offset + bvec->bv_len - 1;
2492 end_extent_writepage(page, bio->bi_error, start, end);
2493 end_page_writeback(page);
2500 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2503 struct extent_state *cached = NULL;
2504 u64 end = start + len - 1;
2506 if (uptodate && tree->track_uptodate)
2507 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2508 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2512 * after a readpage IO is done, we need to:
2513 * clear the uptodate bits on error
2514 * set the uptodate bits if things worked
2515 * set the page up to date if all extents in the tree are uptodate
2516 * clear the lock bit in the extent tree
2517 * unlock the page if there are no other extents locked for it
2519 * Scheduling is not allowed, so the extent state tree is expected
2520 * to have one and only one object corresponding to this IO.
2522 static void end_bio_extent_readpage(struct bio *bio)
2524 struct bio_vec *bvec;
2525 int uptodate = !bio->bi_error;
2526 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2527 struct extent_io_tree *tree;
2532 u64 extent_start = 0;
2538 bio_for_each_segment_all(bvec, bio, i) {
2539 struct page *page = bvec->bv_page;
2540 struct inode *inode = page->mapping->host;
2541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543 btrfs_debug(fs_info,
2544 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2545 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2546 io_bio->mirror_num);
2547 tree = &BTRFS_I(inode)->io_tree;
2549 /* We always issue full-page reads, but if some block
2550 * in a page fails to read, blk_update_request() will
2551 * advance bv_offset and adjust bv_len to compensate.
2552 * Print a warning for nonzero offsets, and an error
2553 * if they don't add up to a full page. */
2554 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2555 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2557 "partial page read in btrfs with offset %u and length %u",
2558 bvec->bv_offset, bvec->bv_len);
2561 "incomplete page read in btrfs with offset %u and length %u",
2562 bvec->bv_offset, bvec->bv_len);
2565 start = page_offset(page);
2566 end = start + bvec->bv_offset + bvec->bv_len - 1;
2569 mirror = io_bio->mirror_num;
2570 if (likely(uptodate && tree->ops)) {
2571 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2577 clean_io_failure(BTRFS_I(inode), start,
2581 if (likely(uptodate))
2585 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2586 if (!ret && !bio->bi_error)
2590 * The generic bio_readpage_error handles errors the
2591 * following way: If possible, new read requests are
2592 * created and submitted and will end up in
2593 * end_bio_extent_readpage as well (if we're lucky, not
2594 * in the !uptodate case). In that case it returns 0 and
2595 * we just go on with the next page in our bio. If it
2596 * can't handle the error it will return -EIO and we
2597 * remain responsible for that page.
2599 ret = bio_readpage_error(bio, offset, page, start, end,
2602 uptodate = !bio->bi_error;
2608 if (likely(uptodate)) {
2609 loff_t i_size = i_size_read(inode);
2610 pgoff_t end_index = i_size >> PAGE_SHIFT;
2613 /* Zero out the end if this page straddles i_size */
2614 off = i_size & (PAGE_SIZE-1);
2615 if (page->index == end_index && off)
2616 zero_user_segment(page, off, PAGE_SIZE);
2617 SetPageUptodate(page);
2619 ClearPageUptodate(page);
2625 if (unlikely(!uptodate)) {
2627 endio_readpage_release_extent(tree,
2633 endio_readpage_release_extent(tree, start,
2634 end - start + 1, 0);
2635 } else if (!extent_len) {
2636 extent_start = start;
2637 extent_len = end + 1 - start;
2638 } else if (extent_start + extent_len == start) {
2639 extent_len += end + 1 - start;
2641 endio_readpage_release_extent(tree, extent_start,
2642 extent_len, uptodate);
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2649 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 io_bio->end_io(io_bio, bio->bi_error);
2657 * this allocates from the btrfs_bioset. We're returning a bio right now
2658 * but you can call btrfs_io_bio for the appropriate container_of magic
2661 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 struct btrfs_io_bio *btrfs_bio;
2667 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2669 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2670 while (!bio && (nr_vecs /= 2)) {
2671 bio = bio_alloc_bioset(gfp_flags,
2672 nr_vecs, btrfs_bioset);
2677 bio->bi_bdev = bdev;
2678 bio->bi_iter.bi_sector = first_sector;
2679 btrfs_bio = btrfs_io_bio(bio);
2680 btrfs_bio->csum = NULL;
2681 btrfs_bio->csum_allocated = NULL;
2682 btrfs_bio->end_io = NULL;
2687 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2689 struct btrfs_io_bio *btrfs_bio;
2692 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2694 btrfs_bio = btrfs_io_bio(new);
2695 btrfs_bio->csum = NULL;
2696 btrfs_bio->csum_allocated = NULL;
2697 btrfs_bio->end_io = NULL;
2702 /* this also allocates from the btrfs_bioset */
2703 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2705 struct btrfs_io_bio *btrfs_bio;
2708 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2710 btrfs_bio = btrfs_io_bio(bio);
2711 btrfs_bio->csum = NULL;
2712 btrfs_bio->csum_allocated = NULL;
2713 btrfs_bio->end_io = NULL;
2719 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2720 unsigned long bio_flags)
2723 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2724 struct page *page = bvec->bv_page;
2725 struct extent_io_tree *tree = bio->bi_private;
2728 start = page_offset(page) + bvec->bv_offset;
2730 bio->bi_private = NULL;
2734 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2735 mirror_num, bio_flags, start);
2737 btrfsic_submit_bio(bio);
2743 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2744 unsigned long offset, size_t size, struct bio *bio,
2745 unsigned long bio_flags)
2749 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2755 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2756 struct writeback_control *wbc,
2757 struct page *page, sector_t sector,
2758 size_t size, unsigned long offset,
2759 struct block_device *bdev,
2760 struct bio **bio_ret,
2761 bio_end_io_t end_io_func,
2763 unsigned long prev_bio_flags,
2764 unsigned long bio_flags,
2765 bool force_bio_submit)
2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2773 if (bio_ret && *bio_ret) {
2776 contig = bio->bi_iter.bi_sector == sector;
2778 contig = bio_end_sector(bio) == sector;
2780 if (prev_bio_flags != bio_flags || !contig ||
2782 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2783 bio_add_page(bio, page, page_size, offset) < page_size) {
2784 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2792 wbc_account_io(wbc, page, page_size);
2797 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2798 GFP_NOFS | __GFP_HIGH);
2802 bio_add_page(bio, page, page_size, offset);
2803 bio->bi_end_io = end_io_func;
2804 bio->bi_private = tree;
2805 bio_set_op_attrs(bio, op, op_flags);
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2814 ret = submit_one_bio(bio, mirror_num, bio_flags);
2819 static void attach_extent_buffer_page(struct extent_buffer *eb,
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
2825 set_page_private(page, (unsigned long)eb);
2827 WARN_ON(page->private != (unsigned long)eb);
2831 void set_page_extent_mapped(struct page *page)
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
2836 set_page_private(page, EXTENT_PAGE_PRIVATE);
2840 static struct extent_map *
2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 u64 start, u64 len, get_extent_t *get_extent,
2843 struct extent_map **em_cached)
2845 struct extent_map *em;
2847 if (em_cached && *em_cached) {
2849 if (extent_map_in_tree(em) && start >= em->start &&
2850 start < extent_map_end(em)) {
2851 atomic_inc(&em->refs);
2855 free_extent_map(em);
2859 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2860 if (em_cached && !IS_ERR_OR_NULL(em)) {
2862 atomic_inc(&em->refs);
2868 * basic readpage implementation. Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2871 * XXX JDM: This needs looking at to ensure proper page locking
2872 * return 0 on success, otherwise return error
2874 static int __do_readpage(struct extent_io_tree *tree,
2876 get_extent_t *get_extent,
2877 struct extent_map **em_cached,
2878 struct bio **bio, int mirror_num,
2879 unsigned long *bio_flags, int read_flags,
2882 struct inode *inode = page->mapping->host;
2883 u64 start = page_offset(page);
2884 u64 page_end = start + PAGE_SIZE - 1;
2888 u64 last_byte = i_size_read(inode);
2892 struct extent_map *em;
2893 struct block_device *bdev;
2896 size_t pg_offset = 0;
2898 size_t disk_io_size;
2899 size_t blocksize = inode->i_sb->s_blocksize;
2900 unsigned long this_bio_flag = 0;
2902 set_page_extent_mapped(page);
2905 if (!PageUptodate(page)) {
2906 if (cleancache_get_page(page) == 0) {
2907 BUG_ON(blocksize != PAGE_SIZE);
2908 unlock_extent(tree, start, end);
2913 if (page->index == last_byte >> PAGE_SHIFT) {
2915 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2918 iosize = PAGE_SIZE - zero_offset;
2919 userpage = kmap_atomic(page);
2920 memset(userpage + zero_offset, 0, iosize);
2921 flush_dcache_page(page);
2922 kunmap_atomic(userpage);
2925 while (cur <= end) {
2926 bool force_bio_submit = false;
2928 if (cur >= last_byte) {
2930 struct extent_state *cached = NULL;
2932 iosize = PAGE_SIZE - pg_offset;
2933 userpage = kmap_atomic(page);
2934 memset(userpage + pg_offset, 0, iosize);
2935 flush_dcache_page(page);
2936 kunmap_atomic(userpage);
2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
2939 unlock_extent_cached(tree, cur,
2944 em = __get_extent_map(inode, page, pg_offset, cur,
2945 end - cur + 1, get_extent, em_cached);
2946 if (IS_ERR_OR_NULL(em)) {
2948 unlock_extent(tree, cur, end);
2951 extent_offset = cur - em->start;
2952 BUG_ON(extent_map_end(em) <= cur);
2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957 extent_set_compress_type(&this_bio_flag,
2961 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 cur_end = min(extent_map_end(em) - 1, end);
2963 iosize = ALIGN(iosize, blocksize);
2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 disk_io_size = em->block_len;
2966 sector = em->block_start >> 9;
2968 sector = (em->block_start + extent_offset) >> 9;
2969 disk_io_size = iosize;
2972 block_start = em->block_start;
2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 block_start = EXTENT_MAP_HOLE;
2977 * If we have a file range that points to a compressed extent
2978 * and it's followed by a consecutive file range that points to
2979 * to the same compressed extent (possibly with a different
2980 * offset and/or length, so it either points to the whole extent
2981 * or only part of it), we must make sure we do not submit a
2982 * single bio to populate the pages for the 2 ranges because
2983 * this makes the compressed extent read zero out the pages
2984 * belonging to the 2nd range. Imagine the following scenario:
2987 * [0 - 8K] [8K - 24K]
2990 * points to extent X, points to extent X,
2991 * offset 4K, length of 8K offset 0, length 16K
2993 * [extent X, compressed length = 4K uncompressed length = 16K]
2995 * If the bio to read the compressed extent covers both ranges,
2996 * it will decompress extent X into the pages belonging to the
2997 * first range and then it will stop, zeroing out the remaining
2998 * pages that belong to the other range that points to extent X.
2999 * So here we make sure we submit 2 bios, one for the first
3000 * range and another one for the third range. Both will target
3001 * the same physical extent from disk, but we can't currently
3002 * make the compressed bio endio callback populate the pages
3003 * for both ranges because each compressed bio is tightly
3004 * coupled with a single extent map, and each range can have
3005 * an extent map with a different offset value relative to the
3006 * uncompressed data of our extent and different lengths. This
3007 * is a corner case so we prioritize correctness over
3008 * non-optimal behavior (submitting 2 bios for the same extent).
3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 prev_em_start && *prev_em_start != (u64)-1 &&
3012 *prev_em_start != em->orig_start)
3013 force_bio_submit = true;
3016 *prev_em_start = em->orig_start;
3018 free_extent_map(em);
3021 /* we've found a hole, just zero and go on */
3022 if (block_start == EXTENT_MAP_HOLE) {
3024 struct extent_state *cached = NULL;
3026 userpage = kmap_atomic(page);
3027 memset(userpage + pg_offset, 0, iosize);
3028 flush_dcache_page(page);
3029 kunmap_atomic(userpage);
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
3033 unlock_extent_cached(tree, cur,
3037 pg_offset += iosize;
3040 /* the get_extent function already copied into the page */
3041 if (test_range_bit(tree, cur, cur_end,
3042 EXTENT_UPTODATE, 1, NULL)) {
3043 check_page_uptodate(tree, page);
3044 unlock_extent(tree, cur, cur + iosize - 1);
3046 pg_offset += iosize;
3049 /* we have an inline extent but it didn't get marked up
3050 * to date. Error out
3052 if (block_start == EXTENT_MAP_INLINE) {
3054 unlock_extent(tree, cur, cur + iosize - 1);
3056 pg_offset += iosize;
3060 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3061 page, sector, disk_io_size, pg_offset,
3063 end_bio_extent_readpage, mirror_num,
3069 *bio_flags = this_bio_flag;
3072 unlock_extent(tree, cur, cur + iosize - 1);
3076 pg_offset += iosize;
3080 if (!PageError(page))
3081 SetPageUptodate(page);
3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 struct page *pages[], int nr_pages,
3090 get_extent_t *get_extent,
3091 struct extent_map **em_cached,
3092 struct bio **bio, int mirror_num,
3093 unsigned long *bio_flags,
3096 struct inode *inode;
3097 struct btrfs_ordered_extent *ordered;
3100 inode = pages[0]->mapping->host;
3102 lock_extent(tree, start, end);
3103 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3107 unlock_extent(tree, start, end);
3108 btrfs_start_ordered_extent(inode, ordered, 1);
3109 btrfs_put_ordered_extent(ordered);
3112 for (index = 0; index < nr_pages; index++) {
3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114 mirror_num, bio_flags, 0, prev_em_start);
3115 put_page(pages[index]);
3119 static void __extent_readpages(struct extent_io_tree *tree,
3120 struct page *pages[],
3121 int nr_pages, get_extent_t *get_extent,
3122 struct extent_map **em_cached,
3123 struct bio **bio, int mirror_num,
3124 unsigned long *bio_flags,
3131 int first_index = 0;
3133 for (index = 0; index < nr_pages; index++) {
3134 page_start = page_offset(pages[index]);
3137 end = start + PAGE_SIZE - 1;
3138 first_index = index;
3139 } else if (end + 1 == page_start) {
3142 __do_contiguous_readpages(tree, &pages[first_index],
3143 index - first_index, start,
3144 end, get_extent, em_cached,
3145 bio, mirror_num, bio_flags,
3148 end = start + PAGE_SIZE - 1;
3149 first_index = index;
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
3156 end, get_extent, em_cached, bio,
3157 mirror_num, bio_flags,
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
3165 unsigned long *bio_flags, int read_flags)
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_ordered_extent *ordered;
3169 u64 start = page_offset(page);
3170 u64 end = start + PAGE_SIZE - 1;
3174 lock_extent(tree, start, end);
3175 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3179 unlock_extent(tree, start, end);
3180 btrfs_start_ordered_extent(inode, ordered, 1);
3181 btrfs_put_ordered_extent(ordered);
3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185 bio_flags, read_flags, NULL);
3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190 get_extent_t *get_extent, int mirror_num)
3192 struct bio *bio = NULL;
3193 unsigned long bio_flags = 0;
3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3199 ret = submit_one_bio(bio, mirror_num, bio_flags);
3203 static void update_nr_written(struct writeback_control *wbc,
3204 unsigned long nr_written)
3206 wbc->nr_to_write -= nr_written;
3210 * helper for __extent_writepage, doing all of the delayed allocation setup.
3212 * This returns 1 if our fill_delalloc function did all the work required
3213 * to write the page (copy into inline extent). In this case the IO has
3214 * been started and the page is already unlocked.
3216 * This returns 0 if all went well (page still locked)
3217 * This returns < 0 if there were errors (page still locked)
3219 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220 struct page *page, struct writeback_control *wbc,
3221 struct extent_page_data *epd,
3223 unsigned long *nr_written)
3225 struct extent_io_tree *tree = epd->tree;
3226 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3228 u64 delalloc_to_write = 0;
3229 u64 delalloc_end = 0;
3231 int page_started = 0;
3233 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3236 while (delalloc_end < page_end) {
3237 nr_delalloc = find_lock_delalloc_range(inode, tree,
3241 BTRFS_MAX_EXTENT_SIZE);
3242 if (nr_delalloc == 0) {
3243 delalloc_start = delalloc_end + 1;
3246 ret = tree->ops->fill_delalloc(inode, page,
3251 /* File system has been set read-only */
3254 /* fill_delalloc should be return < 0 for error
3255 * but just in case, we use > 0 here meaning the
3256 * IO is started, so we don't want to return > 0
3257 * unless things are going well.
3259 ret = ret < 0 ? ret : -EIO;
3263 * delalloc_end is already one less than the total length, so
3264 * we don't subtract one from PAGE_SIZE
3266 delalloc_to_write += (delalloc_end - delalloc_start +
3267 PAGE_SIZE) >> PAGE_SHIFT;
3268 delalloc_start = delalloc_end + 1;
3270 if (wbc->nr_to_write < delalloc_to_write) {
3273 if (delalloc_to_write < thresh * 2)
3274 thresh = delalloc_to_write;
3275 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3279 /* did the fill delalloc function already unlock and start
3284 * we've unlocked the page, so we can't update
3285 * the mapping's writeback index, just update
3288 wbc->nr_to_write -= *nr_written;
3299 * helper for __extent_writepage. This calls the writepage start hooks,
3300 * and does the loop to map the page into extents and bios.
3302 * We return 1 if the IO is started and the page is unlocked,
3303 * 0 if all went well (page still locked)
3304 * < 0 if there were errors (page still locked)
3306 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3308 struct writeback_control *wbc,
3309 struct extent_page_data *epd,
3311 unsigned long nr_written,
3312 int write_flags, int *nr_ret)
3314 struct extent_io_tree *tree = epd->tree;
3315 u64 start = page_offset(page);
3316 u64 page_end = start + PAGE_SIZE - 1;
3323 struct extent_map *em;
3324 struct block_device *bdev;
3325 size_t pg_offset = 0;
3331 if (tree->ops && tree->ops->writepage_start_hook) {
3332 ret = tree->ops->writepage_start_hook(page, start,
3335 /* Fixup worker will requeue */
3337 wbc->pages_skipped++;
3339 redirty_page_for_writepage(wbc, page);
3341 update_nr_written(wbc, nr_written);
3348 * we don't want to touch the inode after unlocking the page,
3349 * so we update the mapping writeback index now
3351 update_nr_written(wbc, nr_written + 1);
3354 if (i_size <= start) {
3355 if (tree->ops && tree->ops->writepage_end_io_hook)
3356 tree->ops->writepage_end_io_hook(page, start,
3361 blocksize = inode->i_sb->s_blocksize;
3363 while (cur <= end) {
3366 if (cur >= i_size) {
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, cur,
3372 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3374 if (IS_ERR_OR_NULL(em)) {
3376 ret = PTR_ERR_OR_ZERO(em);
3380 extent_offset = cur - em->start;
3381 em_end = extent_map_end(em);
3382 BUG_ON(em_end <= cur);
3384 iosize = min(em_end - cur, end - cur + 1);
3385 iosize = ALIGN(iosize, blocksize);
3386 sector = (em->block_start + extent_offset) >> 9;
3388 block_start = em->block_start;
3389 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3390 free_extent_map(em);
3394 * compressed and inline extents are written through other
3397 if (compressed || block_start == EXTENT_MAP_HOLE ||
3398 block_start == EXTENT_MAP_INLINE) {
3400 * end_io notification does not happen here for
3401 * compressed extents
3403 if (!compressed && tree->ops &&
3404 tree->ops->writepage_end_io_hook)
3405 tree->ops->writepage_end_io_hook(page, cur,
3408 else if (compressed) {
3409 /* we don't want to end_page_writeback on
3410 * a compressed extent. this happens
3417 pg_offset += iosize;
3421 set_range_writeback(tree, cur, cur + iosize - 1);
3422 if (!PageWriteback(page)) {
3423 btrfs_err(BTRFS_I(inode)->root->fs_info,
3424 "page %lu not writeback, cur %llu end %llu",
3425 page->index, cur, end);
3428 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3429 page, sector, iosize, pg_offset,
3431 end_bio_extent_writepage,
3435 if (PageWriteback(page))
3436 end_page_writeback(page);
3440 pg_offset += iosize;
3449 * the writepage semantics are similar to regular writepage. extent
3450 * records are inserted to lock ranges in the tree, and as dirty areas
3451 * are found, they are marked writeback. Then the lock bits are removed
3452 * and the end_io handler clears the writeback ranges
3454 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3457 struct inode *inode = page->mapping->host;
3458 struct extent_page_data *epd = data;
3459 u64 start = page_offset(page);
3460 u64 page_end = start + PAGE_SIZE - 1;
3463 size_t pg_offset = 0;
3464 loff_t i_size = i_size_read(inode);
3465 unsigned long end_index = i_size >> PAGE_SHIFT;
3466 int write_flags = 0;
3467 unsigned long nr_written = 0;
3469 if (wbc->sync_mode == WB_SYNC_ALL)
3470 write_flags = REQ_SYNC;
3472 trace___extent_writepage(page, inode, wbc);
3474 WARN_ON(!PageLocked(page));
3476 ClearPageError(page);
3478 pg_offset = i_size & (PAGE_SIZE - 1);
3479 if (page->index > end_index ||
3480 (page->index == end_index && !pg_offset)) {
3481 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3486 if (page->index == end_index) {
3489 userpage = kmap_atomic(page);
3490 memset(userpage + pg_offset, 0,
3491 PAGE_SIZE - pg_offset);
3492 kunmap_atomic(userpage);
3493 flush_dcache_page(page);
3498 set_page_extent_mapped(page);
3500 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 ret = __extent_writepage_io(inode, page, wbc, epd,
3507 i_size, nr_written, write_flags, &nr);
3513 /* make sure the mapping tag for page dirty gets cleared */
3514 set_page_writeback(page);
3515 end_page_writeback(page);
3517 if (PageError(page)) {
3518 ret = ret < 0 ? ret : -EIO;
3519 end_extent_writepage(page, ret, start, page_end);
3528 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3530 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3531 TASK_UNINTERRUPTIBLE);
3534 static noinline_for_stack int
3535 lock_extent_buffer_for_io(struct extent_buffer *eb,
3536 struct btrfs_fs_info *fs_info,
3537 struct extent_page_data *epd)
3539 unsigned long i, num_pages;
3543 if (!btrfs_try_tree_write_lock(eb)) {
3545 flush_write_bio(epd);
3546 btrfs_tree_lock(eb);
3549 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3550 btrfs_tree_unlock(eb);
3554 flush_write_bio(epd);
3558 wait_on_extent_buffer_writeback(eb);
3559 btrfs_tree_lock(eb);
3560 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3562 btrfs_tree_unlock(eb);
3567 * We need to do this to prevent races in people who check if the eb is
3568 * under IO since we can end up having no IO bits set for a short period
3571 spin_lock(&eb->refs_lock);
3572 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3573 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3574 spin_unlock(&eb->refs_lock);
3575 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3576 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3578 fs_info->dirty_metadata_batch);
3581 spin_unlock(&eb->refs_lock);
3584 btrfs_tree_unlock(eb);
3589 num_pages = num_extent_pages(eb->start, eb->len);
3590 for (i = 0; i < num_pages; i++) {
3591 struct page *p = eb->pages[i];
3593 if (!trylock_page(p)) {
3595 flush_write_bio(epd);
3605 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3607 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3608 smp_mb__after_atomic();
3609 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3612 static void set_btree_ioerr(struct page *page)
3614 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3617 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3621 * If writeback for a btree extent that doesn't belong to a log tree
3622 * failed, increment the counter transaction->eb_write_errors.
3623 * We do this because while the transaction is running and before it's
3624 * committing (when we call filemap_fdata[write|wait]_range against
3625 * the btree inode), we might have
3626 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3627 * returns an error or an error happens during writeback, when we're
3628 * committing the transaction we wouldn't know about it, since the pages
3629 * can be no longer dirty nor marked anymore for writeback (if a
3630 * subsequent modification to the extent buffer didn't happen before the
3631 * transaction commit), which makes filemap_fdata[write|wait]_range not
3632 * able to find the pages tagged with SetPageError at transaction
3633 * commit time. So if this happens we must abort the transaction,
3634 * otherwise we commit a super block with btree roots that point to
3635 * btree nodes/leafs whose content on disk is invalid - either garbage
3636 * or the content of some node/leaf from a past generation that got
3637 * cowed or deleted and is no longer valid.
3639 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3640 * not be enough - we need to distinguish between log tree extents vs
3641 * non-log tree extents, and the next filemap_fdatawait_range() call
3642 * will catch and clear such errors in the mapping - and that call might
3643 * be from a log sync and not from a transaction commit. Also, checking
3644 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3645 * not done and would not be reliable - the eb might have been released
3646 * from memory and reading it back again means that flag would not be
3647 * set (since it's a runtime flag, not persisted on disk).
3649 * Using the flags below in the btree inode also makes us achieve the
3650 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3651 * writeback for all dirty pages and before filemap_fdatawait_range()
3652 * is called, the writeback for all dirty pages had already finished
3653 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3654 * filemap_fdatawait_range() would return success, as it could not know
3655 * that writeback errors happened (the pages were no longer tagged for
3658 switch (eb->log_index) {
3660 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3663 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3666 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3669 BUG(); /* unexpected, logic error */
3673 static void end_bio_extent_buffer_writepage(struct bio *bio)
3675 struct bio_vec *bvec;
3676 struct extent_buffer *eb;
3679 bio_for_each_segment_all(bvec, bio, i) {
3680 struct page *page = bvec->bv_page;
3682 eb = (struct extent_buffer *)page->private;
3684 done = atomic_dec_and_test(&eb->io_pages);
3686 if (bio->bi_error ||
3687 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3688 ClearPageUptodate(page);
3689 set_btree_ioerr(page);
3692 end_page_writeback(page);
3697 end_extent_buffer_writeback(eb);
3703 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3704 struct btrfs_fs_info *fs_info,
3705 struct writeback_control *wbc,
3706 struct extent_page_data *epd)
3708 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3709 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3710 u64 offset = eb->start;
3712 unsigned long i, num_pages;
3713 unsigned long bio_flags = 0;
3714 unsigned long start, end;
3715 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3718 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3719 num_pages = num_extent_pages(eb->start, eb->len);
3720 atomic_set(&eb->io_pages, num_pages);
3721 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3722 bio_flags = EXTENT_BIO_TREE_LOG;
3724 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3725 nritems = btrfs_header_nritems(eb);
3726 if (btrfs_header_level(eb) > 0) {
3727 end = btrfs_node_key_ptr_offset(nritems);
3729 memzero_extent_buffer(eb, end, eb->len - end);
3733 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3735 start = btrfs_item_nr_offset(nritems);
3736 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3737 memzero_extent_buffer(eb, start, end - start);
3740 for (i = 0; i < num_pages; i++) {
3741 struct page *p = eb->pages[i];
3743 clear_page_dirty_for_io(p);
3744 set_page_writeback(p);
3745 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3746 p, offset >> 9, PAGE_SIZE, 0, bdev,
3748 end_bio_extent_buffer_writepage,
3749 0, epd->bio_flags, bio_flags, false);
3750 epd->bio_flags = bio_flags;
3753 if (PageWriteback(p))
3754 end_page_writeback(p);
3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 end_extent_buffer_writeback(eb);
3760 offset += PAGE_SIZE;
3761 update_nr_written(wbc, 1);
3765 if (unlikely(ret)) {
3766 for (; i < num_pages; i++) {
3767 struct page *p = eb->pages[i];
3768 clear_page_dirty_for_io(p);
3776 int btree_write_cache_pages(struct address_space *mapping,
3777 struct writeback_control *wbc)
3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 struct extent_buffer *eb, *prev_eb = NULL;
3782 struct extent_page_data epd = {
3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3791 int nr_to_write_done = 0;
3792 struct pagevec pvec;
3795 pgoff_t end; /* Inclusive */
3799 pagevec_init(&pvec, 0);
3800 if (wbc->range_cyclic) {
3801 index = mapping->writeback_index; /* Start from prev offset */
3804 index = wbc->range_start >> PAGE_SHIFT;
3805 end = wbc->range_end >> PAGE_SHIFT;
3808 if (wbc->sync_mode == WB_SYNC_ALL)
3809 tag = PAGECACHE_TAG_TOWRITE;
3811 tag = PAGECACHE_TAG_DIRTY;
3813 if (wbc->sync_mode == WB_SYNC_ALL)
3814 tag_pages_for_writeback(mapping, index, end);
3815 while (!done && !nr_to_write_done && (index <= end) &&
3816 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3821 for (i = 0; i < nr_pages; i++) {
3822 struct page *page = pvec.pages[i];
3824 if (!PagePrivate(page))
3827 if (!wbc->range_cyclic && page->index > end) {
3832 spin_lock(&mapping->private_lock);
3833 if (!PagePrivate(page)) {
3834 spin_unlock(&mapping->private_lock);
3838 eb = (struct extent_buffer *)page->private;
3841 * Shouldn't happen and normally this would be a BUG_ON
3842 * but no sense in crashing the users box for something
3843 * we can survive anyway.
3846 spin_unlock(&mapping->private_lock);
3850 if (eb == prev_eb) {
3851 spin_unlock(&mapping->private_lock);
3855 ret = atomic_inc_not_zero(&eb->refs);
3856 spin_unlock(&mapping->private_lock);
3861 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3863 free_extent_buffer(eb);
3867 ret = write_one_eb(eb, fs_info, wbc, &epd);
3870 free_extent_buffer(eb);
3873 free_extent_buffer(eb);
3876 * the filesystem may choose to bump up nr_to_write.
3877 * We have to make sure to honor the new nr_to_write
3880 nr_to_write_done = wbc->nr_to_write <= 0;
3882 pagevec_release(&pvec);
3885 if (!scanned && !done) {
3887 * We hit the last page and there is more work to be done: wrap
3888 * back to the start of the file
3894 flush_write_bio(&epd);
3899 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3900 * @mapping: address space structure to write
3901 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3902 * @writepage: function called for each page
3903 * @data: data passed to writepage function
3905 * If a page is already under I/O, write_cache_pages() skips it, even
3906 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3907 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3908 * and msync() need to guarantee that all the data which was dirty at the time
3909 * the call was made get new I/O started against them. If wbc->sync_mode is
3910 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3911 * existing IO to complete.
3913 static int extent_write_cache_pages(struct address_space *mapping,
3914 struct writeback_control *wbc,
3915 writepage_t writepage, void *data,
3916 void (*flush_fn)(void *))
3918 struct inode *inode = mapping->host;
3921 int nr_to_write_done = 0;
3922 struct pagevec pvec;
3925 pgoff_t end; /* Inclusive */
3927 int range_whole = 0;
3932 * We have to hold onto the inode so that ordered extents can do their
3933 * work when the IO finishes. The alternative to this is failing to add
3934 * an ordered extent if the igrab() fails there and that is a huge pain
3935 * to deal with, so instead just hold onto the inode throughout the
3936 * writepages operation. If it fails here we are freeing up the inode
3937 * anyway and we'd rather not waste our time writing out stuff that is
3938 * going to be truncated anyway.
3943 pagevec_init(&pvec, 0);
3944 if (wbc->range_cyclic) {
3945 index = mapping->writeback_index; /* Start from prev offset */
3948 index = wbc->range_start >> PAGE_SHIFT;
3949 end = wbc->range_end >> PAGE_SHIFT;
3950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag = PAGECACHE_TAG_TOWRITE;
3957 tag = PAGECACHE_TAG_DIRTY;
3959 if (wbc->sync_mode == WB_SYNC_ALL)
3960 tag_pages_for_writeback(mapping, index, end);
3962 while (!done && !nr_to_write_done && (index <= end) &&
3963 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3964 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3968 for (i = 0; i < nr_pages; i++) {
3969 struct page *page = pvec.pages[i];
3971 done_index = page->index;
3973 * At this point we hold neither mapping->tree_lock nor
3974 * lock on the page itself: the page may be truncated or
3975 * invalidated (changing page->mapping to NULL), or even
3976 * swizzled back from swapper_space to tmpfs file
3979 if (!trylock_page(page)) {
3984 if (unlikely(page->mapping != mapping)) {
3989 if (!wbc->range_cyclic && page->index > end) {
3995 if (wbc->sync_mode != WB_SYNC_NONE) {
3996 if (PageWriteback(page))
3998 wait_on_page_writeback(page);
4001 if (PageWriteback(page) ||
4002 !clear_page_dirty_for_io(page)) {
4007 ret = (*writepage)(page, wbc, data);
4009 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4015 * done_index is set past this page,
4016 * so media errors will not choke
4017 * background writeout for the entire
4018 * file. This has consequences for
4019 * range_cyclic semantics (ie. it may
4020 * not be suitable for data integrity
4023 done_index = page->index + 1;
4029 * the filesystem may choose to bump up nr_to_write.
4030 * We have to make sure to honor the new nr_to_write
4033 nr_to_write_done = wbc->nr_to_write <= 0;
4035 pagevec_release(&pvec);
4038 if (!scanned && !done) {
4040 * We hit the last page and there is more work to be done: wrap
4041 * back to the start of the file
4048 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4049 mapping->writeback_index = done_index;
4051 btrfs_add_delayed_iput(inode);
4055 static void flush_epd_write_bio(struct extent_page_data *epd)
4060 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4061 epd->sync_io ? REQ_SYNC : 0);
4063 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4064 BUG_ON(ret < 0); /* -ENOMEM */
4069 static noinline void flush_write_bio(void *data)
4071 struct extent_page_data *epd = data;
4072 flush_epd_write_bio(epd);
4075 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4076 get_extent_t *get_extent,
4077 struct writeback_control *wbc)
4080 struct extent_page_data epd = {
4083 .get_extent = get_extent,
4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4089 ret = __extent_writepage(page, wbc, &epd);
4091 flush_epd_write_bio(&epd);
4095 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4096 u64 start, u64 end, get_extent_t *get_extent,
4100 struct address_space *mapping = inode->i_mapping;
4102 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4105 struct extent_page_data epd = {
4108 .get_extent = get_extent,
4110 .sync_io = mode == WB_SYNC_ALL,
4113 struct writeback_control wbc_writepages = {
4115 .nr_to_write = nr_pages * 2,
4116 .range_start = start,
4117 .range_end = end + 1,
4120 while (start <= end) {
4121 page = find_get_page(mapping, start >> PAGE_SHIFT);
4122 if (clear_page_dirty_for_io(page))
4123 ret = __extent_writepage(page, &wbc_writepages, &epd);
4125 if (tree->ops && tree->ops->writepage_end_io_hook)
4126 tree->ops->writepage_end_io_hook(page, start,
4127 start + PAGE_SIZE - 1,
4135 flush_epd_write_bio(&epd);
4139 int extent_writepages(struct extent_io_tree *tree,
4140 struct address_space *mapping,
4141 get_extent_t *get_extent,
4142 struct writeback_control *wbc)
4145 struct extent_page_data epd = {
4148 .get_extent = get_extent,
4150 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4154 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4156 flush_epd_write_bio(&epd);
4160 int extent_readpages(struct extent_io_tree *tree,
4161 struct address_space *mapping,
4162 struct list_head *pages, unsigned nr_pages,
4163 get_extent_t get_extent)
4165 struct bio *bio = NULL;
4167 unsigned long bio_flags = 0;
4168 struct page *pagepool[16];
4170 struct extent_map *em_cached = NULL;
4172 u64 prev_em_start = (u64)-1;
4174 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4175 page = list_entry(pages->prev, struct page, lru);
4177 prefetchw(&page->flags);
4178 list_del(&page->lru);
4179 if (add_to_page_cache_lru(page, mapping,
4181 readahead_gfp_mask(mapping))) {
4186 pagepool[nr++] = page;
4187 if (nr < ARRAY_SIZE(pagepool))
4189 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4190 &bio, 0, &bio_flags, &prev_em_start);
4194 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4195 &bio, 0, &bio_flags, &prev_em_start);
4198 free_extent_map(em_cached);
4200 BUG_ON(!list_empty(pages));
4202 return submit_one_bio(bio, 0, bio_flags);
4207 * basic invalidatepage code, this waits on any locked or writeback
4208 * ranges corresponding to the page, and then deletes any extent state
4209 * records from the tree
4211 int extent_invalidatepage(struct extent_io_tree *tree,
4212 struct page *page, unsigned long offset)
4214 struct extent_state *cached_state = NULL;
4215 u64 start = page_offset(page);
4216 u64 end = start + PAGE_SIZE - 1;
4217 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4219 start += ALIGN(offset, blocksize);
4223 lock_extent_bits(tree, start, end, &cached_state);
4224 wait_on_page_writeback(page);
4225 clear_extent_bit(tree, start, end,
4226 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4227 EXTENT_DO_ACCOUNTING,
4228 1, 1, &cached_state, GFP_NOFS);
4233 * a helper for releasepage, this tests for areas of the page that
4234 * are locked or under IO and drops the related state bits if it is safe
4237 static int try_release_extent_state(struct extent_map_tree *map,
4238 struct extent_io_tree *tree,
4239 struct page *page, gfp_t mask)
4241 u64 start = page_offset(page);
4242 u64 end = start + PAGE_SIZE - 1;
4245 if (test_range_bit(tree, start, end,
4246 EXTENT_IOBITS, 0, NULL))
4250 * at this point we can safely clear everything except the
4251 * locked bit and the nodatasum bit
4253 ret = clear_extent_bit(tree, start, end,
4254 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4257 /* if clear_extent_bit failed for enomem reasons,
4258 * we can't allow the release to continue.
4269 * a helper for releasepage. As long as there are no locked extents
4270 * in the range corresponding to the page, both state records and extent
4271 * map records are removed
4273 int try_release_extent_mapping(struct extent_map_tree *map,
4274 struct extent_io_tree *tree, struct page *page,
4277 struct extent_map *em;
4278 u64 start = page_offset(page);
4279 u64 end = start + PAGE_SIZE - 1;
4281 if (gfpflags_allow_blocking(mask) &&
4282 page->mapping->host->i_size > SZ_16M) {
4284 while (start <= end) {
4285 len = end - start + 1;
4286 write_lock(&map->lock);
4287 em = lookup_extent_mapping(map, start, len);
4289 write_unlock(&map->lock);
4292 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4293 em->start != start) {
4294 write_unlock(&map->lock);
4295 free_extent_map(em);
4298 if (!test_range_bit(tree, em->start,
4299 extent_map_end(em) - 1,
4300 EXTENT_LOCKED | EXTENT_WRITEBACK,
4302 remove_extent_mapping(map, em);
4303 /* once for the rb tree */
4304 free_extent_map(em);
4306 start = extent_map_end(em);
4307 write_unlock(&map->lock);
4310 free_extent_map(em);
4313 return try_release_extent_state(map, tree, page, mask);
4317 * helper function for fiemap, which doesn't want to see any holes.
4318 * This maps until we find something past 'last'
4320 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4323 get_extent_t *get_extent)
4325 u64 sectorsize = btrfs_inode_sectorsize(inode);
4326 struct extent_map *em;
4333 len = last - offset;
4336 len = ALIGN(len, sectorsize);
4337 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4338 if (IS_ERR_OR_NULL(em))
4341 /* if this isn't a hole return it */
4342 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4343 em->block_start != EXTENT_MAP_HOLE) {
4347 /* this is a hole, advance to the next extent */
4348 offset = extent_map_end(em);
4349 free_extent_map(em);
4356 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4357 __u64 start, __u64 len, get_extent_t *get_extent)
4361 u64 max = start + len;
4365 u64 last_for_get_extent = 0;
4367 u64 isize = i_size_read(inode);
4368 struct btrfs_key found_key;
4369 struct extent_map *em = NULL;
4370 struct extent_state *cached_state = NULL;
4371 struct btrfs_path *path;
4372 struct btrfs_root *root = BTRFS_I(inode)->root;
4381 path = btrfs_alloc_path();
4384 path->leave_spinning = 1;
4386 start = round_down(start, btrfs_inode_sectorsize(inode));
4387 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4390 * lookup the last file extent. We're not using i_size here
4391 * because there might be preallocation past i_size
4393 ret = btrfs_lookup_file_extent(NULL, root, path,
4394 btrfs_ino(BTRFS_I(inode)), -1, 0);
4396 btrfs_free_path(path);
4405 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4406 found_type = found_key.type;
4408 /* No extents, but there might be delalloc bits */
4409 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4410 found_type != BTRFS_EXTENT_DATA_KEY) {
4411 /* have to trust i_size as the end */
4413 last_for_get_extent = isize;
4416 * remember the start of the last extent. There are a
4417 * bunch of different factors that go into the length of the
4418 * extent, so its much less complex to remember where it started
4420 last = found_key.offset;
4421 last_for_get_extent = last + 1;
4423 btrfs_release_path(path);
4426 * we might have some extents allocated but more delalloc past those
4427 * extents. so, we trust isize unless the start of the last extent is
4432 last_for_get_extent = isize;
4435 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4438 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4448 u64 offset_in_extent = 0;
4450 /* break if the extent we found is outside the range */
4451 if (em->start >= max || extent_map_end(em) < off)
4455 * get_extent may return an extent that starts before our
4456 * requested range. We have to make sure the ranges
4457 * we return to fiemap always move forward and don't
4458 * overlap, so adjust the offsets here
4460 em_start = max(em->start, off);
4463 * record the offset from the start of the extent
4464 * for adjusting the disk offset below. Only do this if the
4465 * extent isn't compressed since our in ram offset may be past
4466 * what we have actually allocated on disk.
4468 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4469 offset_in_extent = em_start - em->start;
4470 em_end = extent_map_end(em);
4471 em_len = em_end - em_start;
4476 * bump off for our next call to get_extent
4478 off = extent_map_end(em);
4482 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4484 flags |= FIEMAP_EXTENT_LAST;
4485 } else if (em->block_start == EXTENT_MAP_INLINE) {
4486 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4487 FIEMAP_EXTENT_NOT_ALIGNED);
4488 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4489 flags |= (FIEMAP_EXTENT_DELALLOC |
4490 FIEMAP_EXTENT_UNKNOWN);
4491 } else if (fieinfo->fi_extents_max) {
4492 struct btrfs_trans_handle *trans;
4494 u64 bytenr = em->block_start -
4495 (em->start - em->orig_start);
4497 disko = em->block_start + offset_in_extent;
4500 * We need a trans handle to get delayed refs
4502 trans = btrfs_join_transaction(root);
4504 * It's OK if we can't start a trans we can still check
4511 * As btrfs supports shared space, this information
4512 * can be exported to userspace tools via
4513 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4514 * then we're just getting a count and we can skip the
4517 ret = btrfs_check_shared(trans, root->fs_info,
4519 btrfs_ino(BTRFS_I(inode)), bytenr);
4521 btrfs_end_transaction(trans);
4525 flags |= FIEMAP_EXTENT_SHARED;
4528 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4529 flags |= FIEMAP_EXTENT_ENCODED;
4530 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4531 flags |= FIEMAP_EXTENT_UNWRITTEN;
4533 free_extent_map(em);
4535 if ((em_start >= last) || em_len == (u64)-1 ||
4536 (last == (u64)-1 && isize <= em_end)) {
4537 flags |= FIEMAP_EXTENT_LAST;
4541 /* now scan forward to see if this is really the last extent. */
4542 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4549 flags |= FIEMAP_EXTENT_LAST;
4552 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4561 free_extent_map(em);
4563 btrfs_free_path(path);
4564 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4565 &cached_state, GFP_NOFS);
4569 static void __free_extent_buffer(struct extent_buffer *eb)
4571 btrfs_leak_debug_del(&eb->leak_list);
4572 kmem_cache_free(extent_buffer_cache, eb);
4575 int extent_buffer_under_io(struct extent_buffer *eb)
4577 return (atomic_read(&eb->io_pages) ||
4578 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4579 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4583 * Helper for releasing extent buffer page.
4585 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4587 unsigned long index;
4589 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4591 BUG_ON(extent_buffer_under_io(eb));
4593 index = num_extent_pages(eb->start, eb->len);
4599 page = eb->pages[index];
4603 spin_lock(&page->mapping->private_lock);
4605 * We do this since we'll remove the pages after we've
4606 * removed the eb from the radix tree, so we could race
4607 * and have this page now attached to the new eb. So
4608 * only clear page_private if it's still connected to
4611 if (PagePrivate(page) &&
4612 page->private == (unsigned long)eb) {
4613 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4614 BUG_ON(PageDirty(page));
4615 BUG_ON(PageWriteback(page));
4617 * We need to make sure we haven't be attached
4620 ClearPagePrivate(page);
4621 set_page_private(page, 0);
4622 /* One for the page private */
4627 spin_unlock(&page->mapping->private_lock);
4629 /* One for when we allocated the page */
4631 } while (index != 0);
4635 * Helper for releasing the extent buffer.
4637 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4639 btrfs_release_extent_buffer_page(eb);
4640 __free_extent_buffer(eb);
4643 static struct extent_buffer *
4644 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4647 struct extent_buffer *eb = NULL;
4649 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4652 eb->fs_info = fs_info;
4654 rwlock_init(&eb->lock);
4655 atomic_set(&eb->write_locks, 0);
4656 atomic_set(&eb->read_locks, 0);
4657 atomic_set(&eb->blocking_readers, 0);
4658 atomic_set(&eb->blocking_writers, 0);
4659 atomic_set(&eb->spinning_readers, 0);
4660 atomic_set(&eb->spinning_writers, 0);
4661 eb->lock_nested = 0;
4662 init_waitqueue_head(&eb->write_lock_wq);
4663 init_waitqueue_head(&eb->read_lock_wq);
4665 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4667 spin_lock_init(&eb->refs_lock);
4668 atomic_set(&eb->refs, 1);
4669 atomic_set(&eb->io_pages, 0);
4672 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4674 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4675 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4676 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4681 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4685 struct extent_buffer *new;
4686 unsigned long num_pages = num_extent_pages(src->start, src->len);
4688 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4692 for (i = 0; i < num_pages; i++) {
4693 p = alloc_page(GFP_NOFS);
4695 btrfs_release_extent_buffer(new);
4698 attach_extent_buffer_page(new, p);
4699 WARN_ON(PageDirty(p));
4702 copy_page(page_address(p), page_address(src->pages[i]));
4705 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4706 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4711 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4712 u64 start, unsigned long len)
4714 struct extent_buffer *eb;
4715 unsigned long num_pages;
4718 num_pages = num_extent_pages(start, len);
4720 eb = __alloc_extent_buffer(fs_info, start, len);
4724 for (i = 0; i < num_pages; i++) {
4725 eb->pages[i] = alloc_page(GFP_NOFS);
4729 set_extent_buffer_uptodate(eb);
4730 btrfs_set_header_nritems(eb, 0);
4731 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4736 __free_page(eb->pages[i - 1]);
4737 __free_extent_buffer(eb);
4741 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4744 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4747 static void check_buffer_tree_ref(struct extent_buffer *eb)
4750 /* the ref bit is tricky. We have to make sure it is set
4751 * if we have the buffer dirty. Otherwise the
4752 * code to free a buffer can end up dropping a dirty
4755 * Once the ref bit is set, it won't go away while the
4756 * buffer is dirty or in writeback, and it also won't
4757 * go away while we have the reference count on the
4760 * We can't just set the ref bit without bumping the
4761 * ref on the eb because free_extent_buffer might
4762 * see the ref bit and try to clear it. If this happens
4763 * free_extent_buffer might end up dropping our original
4764 * ref by mistake and freeing the page before we are able
4765 * to add one more ref.
4767 * So bump the ref count first, then set the bit. If someone
4768 * beat us to it, drop the ref we added.
4770 refs = atomic_read(&eb->refs);
4771 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4774 spin_lock(&eb->refs_lock);
4775 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4776 atomic_inc(&eb->refs);
4777 spin_unlock(&eb->refs_lock);
4780 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4781 struct page *accessed)
4783 unsigned long num_pages, i;
4785 check_buffer_tree_ref(eb);
4787 num_pages = num_extent_pages(eb->start, eb->len);
4788 for (i = 0; i < num_pages; i++) {
4789 struct page *p = eb->pages[i];
4792 mark_page_accessed(p);
4796 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4799 struct extent_buffer *eb;
4802 eb = radix_tree_lookup(&fs_info->buffer_radix,
4803 start >> PAGE_SHIFT);
4804 if (eb && atomic_inc_not_zero(&eb->refs)) {
4807 * Lock our eb's refs_lock to avoid races with
4808 * free_extent_buffer. When we get our eb it might be flagged
4809 * with EXTENT_BUFFER_STALE and another task running
4810 * free_extent_buffer might have seen that flag set,
4811 * eb->refs == 2, that the buffer isn't under IO (dirty and
4812 * writeback flags not set) and it's still in the tree (flag
4813 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4814 * of decrementing the extent buffer's reference count twice.
4815 * So here we could race and increment the eb's reference count,
4816 * clear its stale flag, mark it as dirty and drop our reference
4817 * before the other task finishes executing free_extent_buffer,
4818 * which would later result in an attempt to free an extent
4819 * buffer that is dirty.
4821 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4822 spin_lock(&eb->refs_lock);
4823 spin_unlock(&eb->refs_lock);
4825 mark_extent_buffer_accessed(eb, NULL);
4833 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4834 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4837 struct extent_buffer *eb, *exists = NULL;
4840 eb = find_extent_buffer(fs_info, start);
4843 eb = alloc_dummy_extent_buffer(fs_info, start);
4846 eb->fs_info = fs_info;
4848 ret = radix_tree_preload(GFP_NOFS);
4851 spin_lock(&fs_info->buffer_lock);
4852 ret = radix_tree_insert(&fs_info->buffer_radix,
4853 start >> PAGE_SHIFT, eb);
4854 spin_unlock(&fs_info->buffer_lock);
4855 radix_tree_preload_end();
4856 if (ret == -EEXIST) {
4857 exists = find_extent_buffer(fs_info, start);
4863 check_buffer_tree_ref(eb);
4864 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4867 * We will free dummy extent buffer's if they come into
4868 * free_extent_buffer with a ref count of 2, but if we are using this we
4869 * want the buffers to stay in memory until we're done with them, so
4870 * bump the ref count again.
4872 atomic_inc(&eb->refs);
4875 btrfs_release_extent_buffer(eb);
4880 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4883 unsigned long len = fs_info->nodesize;
4884 unsigned long num_pages = num_extent_pages(start, len);
4886 unsigned long index = start >> PAGE_SHIFT;
4887 struct extent_buffer *eb;
4888 struct extent_buffer *exists = NULL;
4890 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4894 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4895 btrfs_err(fs_info, "bad tree block start %llu", start);
4896 return ERR_PTR(-EINVAL);
4899 eb = find_extent_buffer(fs_info, start);
4903 eb = __alloc_extent_buffer(fs_info, start, len);
4905 return ERR_PTR(-ENOMEM);
4907 for (i = 0; i < num_pages; i++, index++) {
4908 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4910 exists = ERR_PTR(-ENOMEM);
4914 spin_lock(&mapping->private_lock);
4915 if (PagePrivate(p)) {
4917 * We could have already allocated an eb for this page
4918 * and attached one so lets see if we can get a ref on
4919 * the existing eb, and if we can we know it's good and
4920 * we can just return that one, else we know we can just
4921 * overwrite page->private.
4923 exists = (struct extent_buffer *)p->private;
4924 if (atomic_inc_not_zero(&exists->refs)) {
4925 spin_unlock(&mapping->private_lock);
4928 mark_extent_buffer_accessed(exists, p);
4934 * Do this so attach doesn't complain and we need to
4935 * drop the ref the old guy had.
4937 ClearPagePrivate(p);
4938 WARN_ON(PageDirty(p));
4941 attach_extent_buffer_page(eb, p);
4942 spin_unlock(&mapping->private_lock);
4943 WARN_ON(PageDirty(p));
4945 if (!PageUptodate(p))
4949 * see below about how we avoid a nasty race with release page
4950 * and why we unlock later
4954 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4956 ret = radix_tree_preload(GFP_NOFS);
4958 exists = ERR_PTR(ret);
4962 spin_lock(&fs_info->buffer_lock);
4963 ret = radix_tree_insert(&fs_info->buffer_radix,
4964 start >> PAGE_SHIFT, eb);
4965 spin_unlock(&fs_info->buffer_lock);
4966 radix_tree_preload_end();
4967 if (ret == -EEXIST) {
4968 exists = find_extent_buffer(fs_info, start);
4974 /* add one reference for the tree */
4975 check_buffer_tree_ref(eb);
4976 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4979 * there is a race where release page may have
4980 * tried to find this extent buffer in the radix
4981 * but failed. It will tell the VM it is safe to
4982 * reclaim the, and it will clear the page private bit.
4983 * We must make sure to set the page private bit properly
4984 * after the extent buffer is in the radix tree so
4985 * it doesn't get lost
4987 SetPageChecked(eb->pages[0]);
4988 for (i = 1; i < num_pages; i++) {
4990 ClearPageChecked(p);
4993 unlock_page(eb->pages[0]);
4997 WARN_ON(!atomic_dec_and_test(&eb->refs));
4998 for (i = 0; i < num_pages; i++) {
5000 unlock_page(eb->pages[i]);
5003 btrfs_release_extent_buffer(eb);
5007 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5009 struct extent_buffer *eb =
5010 container_of(head, struct extent_buffer, rcu_head);
5012 __free_extent_buffer(eb);
5015 /* Expects to have eb->eb_lock already held */
5016 static int release_extent_buffer(struct extent_buffer *eb)
5018 WARN_ON(atomic_read(&eb->refs) == 0);
5019 if (atomic_dec_and_test(&eb->refs)) {
5020 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5021 struct btrfs_fs_info *fs_info = eb->fs_info;
5023 spin_unlock(&eb->refs_lock);
5025 spin_lock(&fs_info->buffer_lock);
5026 radix_tree_delete(&fs_info->buffer_radix,
5027 eb->start >> PAGE_SHIFT);
5028 spin_unlock(&fs_info->buffer_lock);
5030 spin_unlock(&eb->refs_lock);
5033 /* Should be safe to release our pages at this point */
5034 btrfs_release_extent_buffer_page(eb);
5035 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5036 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5037 __free_extent_buffer(eb);
5041 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5044 spin_unlock(&eb->refs_lock);
5049 void free_extent_buffer(struct extent_buffer *eb)
5057 refs = atomic_read(&eb->refs);
5060 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5065 spin_lock(&eb->refs_lock);
5066 if (atomic_read(&eb->refs) == 2 &&
5067 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5068 atomic_dec(&eb->refs);
5070 if (atomic_read(&eb->refs) == 2 &&
5071 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5072 !extent_buffer_under_io(eb) &&
5073 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5074 atomic_dec(&eb->refs);
5077 * I know this is terrible, but it's temporary until we stop tracking
5078 * the uptodate bits and such for the extent buffers.
5080 release_extent_buffer(eb);
5083 void free_extent_buffer_stale(struct extent_buffer *eb)
5088 spin_lock(&eb->refs_lock);
5089 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5091 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5092 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5093 atomic_dec(&eb->refs);
5094 release_extent_buffer(eb);
5097 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5100 unsigned long num_pages;
5103 num_pages = num_extent_pages(eb->start, eb->len);
5105 for (i = 0; i < num_pages; i++) {
5106 page = eb->pages[i];
5107 if (!PageDirty(page))
5111 WARN_ON(!PagePrivate(page));
5113 clear_page_dirty_for_io(page);
5114 spin_lock_irq(&page->mapping->tree_lock);
5115 if (!PageDirty(page)) {
5116 radix_tree_tag_clear(&page->mapping->page_tree,
5118 PAGECACHE_TAG_DIRTY);
5120 spin_unlock_irq(&page->mapping->tree_lock);
5121 ClearPageError(page);
5124 WARN_ON(atomic_read(&eb->refs) == 0);
5127 int set_extent_buffer_dirty(struct extent_buffer *eb)
5130 unsigned long num_pages;
5133 check_buffer_tree_ref(eb);
5135 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5137 num_pages = num_extent_pages(eb->start, eb->len);
5138 WARN_ON(atomic_read(&eb->refs) == 0);
5139 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5141 for (i = 0; i < num_pages; i++)
5142 set_page_dirty(eb->pages[i]);
5146 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5150 unsigned long num_pages;
5152 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5153 num_pages = num_extent_pages(eb->start, eb->len);
5154 for (i = 0; i < num_pages; i++) {
5155 page = eb->pages[i];
5157 ClearPageUptodate(page);
5161 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5165 unsigned long num_pages;
5167 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5168 num_pages = num_extent_pages(eb->start, eb->len);
5169 for (i = 0; i < num_pages; i++) {
5170 page = eb->pages[i];
5171 SetPageUptodate(page);
5175 int extent_buffer_uptodate(struct extent_buffer *eb)
5177 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5180 int read_extent_buffer_pages(struct extent_io_tree *tree,
5181 struct extent_buffer *eb, int wait,
5182 get_extent_t *get_extent, int mirror_num)
5188 int locked_pages = 0;
5189 int all_uptodate = 1;
5190 unsigned long num_pages;
5191 unsigned long num_reads = 0;
5192 struct bio *bio = NULL;
5193 unsigned long bio_flags = 0;
5195 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5198 num_pages = num_extent_pages(eb->start, eb->len);
5199 for (i = 0; i < num_pages; i++) {
5200 page = eb->pages[i];
5201 if (wait == WAIT_NONE) {
5202 if (!trylock_page(page))
5210 * We need to firstly lock all pages to make sure that
5211 * the uptodate bit of our pages won't be affected by
5212 * clear_extent_buffer_uptodate().
5214 for (i = 0; i < num_pages; i++) {
5215 page = eb->pages[i];
5216 if (!PageUptodate(page)) {
5223 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5227 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5228 eb->read_mirror = 0;
5229 atomic_set(&eb->io_pages, num_reads);
5230 for (i = 0; i < num_pages; i++) {
5231 page = eb->pages[i];
5233 if (!PageUptodate(page)) {
5235 atomic_dec(&eb->io_pages);
5240 ClearPageError(page);
5241 err = __extent_read_full_page(tree, page,
5243 mirror_num, &bio_flags,
5248 * We use &bio in above __extent_read_full_page,
5249 * so we ensure that if it returns error, the
5250 * current page fails to add itself to bio and
5251 * it's been unlocked.
5253 * We must dec io_pages by ourselves.
5255 atomic_dec(&eb->io_pages);
5263 err = submit_one_bio(bio, mirror_num, bio_flags);
5268 if (ret || wait != WAIT_COMPLETE)
5271 for (i = 0; i < num_pages; i++) {
5272 page = eb->pages[i];
5273 wait_on_page_locked(page);
5274 if (!PageUptodate(page))
5281 while (locked_pages > 0) {
5283 page = eb->pages[locked_pages];
5289 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5290 unsigned long start,
5297 char *dst = (char *)dstv;
5298 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5299 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5301 WARN_ON(start > eb->len);
5302 WARN_ON(start + len > eb->start + eb->len);
5304 offset = (start_offset + start) & (PAGE_SIZE - 1);
5307 page = eb->pages[i];
5309 cur = min(len, (PAGE_SIZE - offset));
5310 kaddr = page_address(page);
5311 memcpy(dst, kaddr + offset, cur);
5320 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5321 unsigned long start,
5328 char __user *dst = (char __user *)dstv;
5329 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5330 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5333 WARN_ON(start > eb->len);
5334 WARN_ON(start + len > eb->start + eb->len);
5336 offset = (start_offset + start) & (PAGE_SIZE - 1);
5339 page = eb->pages[i];
5341 cur = min(len, (PAGE_SIZE - offset));
5342 kaddr = page_address(page);
5343 if (copy_to_user(dst, kaddr + offset, cur)) {
5358 * return 0 if the item is found within a page.
5359 * return 1 if the item spans two pages.
5360 * return -EINVAL otherwise.
5362 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5363 unsigned long min_len, char **map,
5364 unsigned long *map_start,
5365 unsigned long *map_len)
5367 size_t offset = start & (PAGE_SIZE - 1);
5370 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5371 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5372 unsigned long end_i = (start_offset + start + min_len - 1) >>
5379 offset = start_offset;
5383 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5386 if (start + min_len > eb->len) {
5387 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5388 eb->start, eb->len, start, min_len);
5393 kaddr = page_address(p);
5394 *map = kaddr + offset;
5395 *map_len = PAGE_SIZE - offset;
5399 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5400 unsigned long start,
5407 char *ptr = (char *)ptrv;
5408 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5412 WARN_ON(start > eb->len);
5413 WARN_ON(start + len > eb->start + eb->len);
5415 offset = (start_offset + start) & (PAGE_SIZE - 1);
5418 page = eb->pages[i];
5420 cur = min(len, (PAGE_SIZE - offset));
5422 kaddr = page_address(page);
5423 ret = memcmp(ptr, kaddr + offset, cur);
5435 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5440 WARN_ON(!PageUptodate(eb->pages[0]));
5441 kaddr = page_address(eb->pages[0]);
5442 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5446 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5450 WARN_ON(!PageUptodate(eb->pages[0]));
5451 kaddr = page_address(eb->pages[0]);
5452 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5456 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5457 unsigned long start, unsigned long len)
5463 char *src = (char *)srcv;
5464 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5465 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5467 WARN_ON(start > eb->len);
5468 WARN_ON(start + len > eb->start + eb->len);
5470 offset = (start_offset + start) & (PAGE_SIZE - 1);
5473 page = eb->pages[i];
5474 WARN_ON(!PageUptodate(page));
5476 cur = min(len, PAGE_SIZE - offset);
5477 kaddr = page_address(page);
5478 memcpy(kaddr + offset, src, cur);
5487 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5494 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5495 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5497 WARN_ON(start > eb->len);
5498 WARN_ON(start + len > eb->start + eb->len);
5500 offset = (start_offset + start) & (PAGE_SIZE - 1);
5503 page = eb->pages[i];
5504 WARN_ON(!PageUptodate(page));
5506 cur = min(len, PAGE_SIZE - offset);
5507 kaddr = page_address(page);
5508 memset(kaddr + offset, 0, cur);
5516 void copy_extent_buffer_full(struct extent_buffer *dst,
5517 struct extent_buffer *src)
5522 ASSERT(dst->len == src->len);
5524 num_pages = num_extent_pages(dst->start, dst->len);
5525 for (i = 0; i < num_pages; i++)
5526 copy_page(page_address(dst->pages[i]),
5527 page_address(src->pages[i]));
5530 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5531 unsigned long dst_offset, unsigned long src_offset,
5534 u64 dst_len = dst->len;
5539 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5540 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5542 WARN_ON(src->len != dst_len);
5544 offset = (start_offset + dst_offset) &
5548 page = dst->pages[i];
5549 WARN_ON(!PageUptodate(page));
5551 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5553 kaddr = page_address(page);
5554 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5563 void le_bitmap_set(u8 *map, unsigned int start, int len)
5565 u8 *p = map + BIT_BYTE(start);
5566 const unsigned int size = start + len;
5567 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5568 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5570 while (len - bits_to_set >= 0) {
5573 bits_to_set = BITS_PER_BYTE;
5578 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5583 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5585 u8 *p = map + BIT_BYTE(start);
5586 const unsigned int size = start + len;
5587 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5588 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5590 while (len - bits_to_clear >= 0) {
5591 *p &= ~mask_to_clear;
5592 len -= bits_to_clear;
5593 bits_to_clear = BITS_PER_BYTE;
5598 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5599 *p &= ~mask_to_clear;
5604 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5606 * @eb: the extent buffer
5607 * @start: offset of the bitmap item in the extent buffer
5609 * @page_index: return index of the page in the extent buffer that contains the
5611 * @page_offset: return offset into the page given by page_index
5613 * This helper hides the ugliness of finding the byte in an extent buffer which
5614 * contains a given bit.
5616 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5617 unsigned long start, unsigned long nr,
5618 unsigned long *page_index,
5619 size_t *page_offset)
5621 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5622 size_t byte_offset = BIT_BYTE(nr);
5626 * The byte we want is the offset of the extent buffer + the offset of
5627 * the bitmap item in the extent buffer + the offset of the byte in the
5630 offset = start_offset + start + byte_offset;
5632 *page_index = offset >> PAGE_SHIFT;
5633 *page_offset = offset & (PAGE_SIZE - 1);
5637 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5638 * @eb: the extent buffer
5639 * @start: offset of the bitmap item in the extent buffer
5640 * @nr: bit number to test
5642 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5650 eb_bitmap_offset(eb, start, nr, &i, &offset);
5651 page = eb->pages[i];
5652 WARN_ON(!PageUptodate(page));
5653 kaddr = page_address(page);
5654 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5658 * extent_buffer_bitmap_set - set an area of a bitmap
5659 * @eb: the extent buffer
5660 * @start: offset of the bitmap item in the extent buffer
5661 * @pos: bit number of the first bit
5662 * @len: number of bits to set
5664 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5665 unsigned long pos, unsigned long len)
5671 const unsigned int size = pos + len;
5672 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5673 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5675 eb_bitmap_offset(eb, start, pos, &i, &offset);
5676 page = eb->pages[i];
5677 WARN_ON(!PageUptodate(page));
5678 kaddr = page_address(page);
5680 while (len >= bits_to_set) {
5681 kaddr[offset] |= mask_to_set;
5683 bits_to_set = BITS_PER_BYTE;
5685 if (++offset >= PAGE_SIZE && len > 0) {
5687 page = eb->pages[++i];
5688 WARN_ON(!PageUptodate(page));
5689 kaddr = page_address(page);
5693 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5694 kaddr[offset] |= mask_to_set;
5700 * extent_buffer_bitmap_clear - clear an area of a bitmap
5701 * @eb: the extent buffer
5702 * @start: offset of the bitmap item in the extent buffer
5703 * @pos: bit number of the first bit
5704 * @len: number of bits to clear
5706 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5707 unsigned long pos, unsigned long len)
5713 const unsigned int size = pos + len;
5714 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5715 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5717 eb_bitmap_offset(eb, start, pos, &i, &offset);
5718 page = eb->pages[i];
5719 WARN_ON(!PageUptodate(page));
5720 kaddr = page_address(page);
5722 while (len >= bits_to_clear) {
5723 kaddr[offset] &= ~mask_to_clear;
5724 len -= bits_to_clear;
5725 bits_to_clear = BITS_PER_BYTE;
5727 if (++offset >= PAGE_SIZE && len > 0) {
5729 page = eb->pages[++i];
5730 WARN_ON(!PageUptodate(page));
5731 kaddr = page_address(page);
5735 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5736 kaddr[offset] &= ~mask_to_clear;
5740 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5742 unsigned long distance = (src > dst) ? src - dst : dst - src;
5743 return distance < len;
5746 static void copy_pages(struct page *dst_page, struct page *src_page,
5747 unsigned long dst_off, unsigned long src_off,
5750 char *dst_kaddr = page_address(dst_page);
5752 int must_memmove = 0;
5754 if (dst_page != src_page) {
5755 src_kaddr = page_address(src_page);
5757 src_kaddr = dst_kaddr;
5758 if (areas_overlap(src_off, dst_off, len))
5763 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5765 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5768 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5769 unsigned long src_offset, unsigned long len)
5771 struct btrfs_fs_info *fs_info = dst->fs_info;
5773 size_t dst_off_in_page;
5774 size_t src_off_in_page;
5775 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5776 unsigned long dst_i;
5777 unsigned long src_i;
5779 if (src_offset + len > dst->len) {
5781 "memmove bogus src_offset %lu move len %lu dst len %lu",
5782 src_offset, len, dst->len);
5785 if (dst_offset + len > dst->len) {
5787 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5788 dst_offset, len, dst->len);
5793 dst_off_in_page = (start_offset + dst_offset) &
5795 src_off_in_page = (start_offset + src_offset) &
5798 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5799 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5801 cur = min(len, (unsigned long)(PAGE_SIZE -
5803 cur = min_t(unsigned long, cur,
5804 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5806 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5807 dst_off_in_page, src_off_in_page, cur);
5815 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5816 unsigned long src_offset, unsigned long len)
5818 struct btrfs_fs_info *fs_info = dst->fs_info;
5820 size_t dst_off_in_page;
5821 size_t src_off_in_page;
5822 unsigned long dst_end = dst_offset + len - 1;
5823 unsigned long src_end = src_offset + len - 1;
5824 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5825 unsigned long dst_i;
5826 unsigned long src_i;
5828 if (src_offset + len > dst->len) {
5830 "memmove bogus src_offset %lu move len %lu len %lu",
5831 src_offset, len, dst->len);
5834 if (dst_offset + len > dst->len) {
5836 "memmove bogus dst_offset %lu move len %lu len %lu",
5837 dst_offset, len, dst->len);
5840 if (dst_offset < src_offset) {
5841 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5845 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5846 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5848 dst_off_in_page = (start_offset + dst_end) &
5850 src_off_in_page = (start_offset + src_end) &
5853 cur = min_t(unsigned long, len, src_off_in_page + 1);
5854 cur = min(cur, dst_off_in_page + 1);
5855 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5856 dst_off_in_page - cur + 1,
5857 src_off_in_page - cur + 1, cur);
5865 int try_release_extent_buffer(struct page *page)
5867 struct extent_buffer *eb;
5870 * We need to make sure nobody is attaching this page to an eb right
5873 spin_lock(&page->mapping->private_lock);
5874 if (!PagePrivate(page)) {
5875 spin_unlock(&page->mapping->private_lock);
5879 eb = (struct extent_buffer *)page->private;
5883 * This is a little awful but should be ok, we need to make sure that
5884 * the eb doesn't disappear out from under us while we're looking at
5887 spin_lock(&eb->refs_lock);
5888 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5889 spin_unlock(&eb->refs_lock);
5890 spin_unlock(&page->mapping->private_lock);
5893 spin_unlock(&page->mapping->private_lock);
5896 * If tree ref isn't set then we know the ref on this eb is a real ref,
5897 * so just return, this page will likely be freed soon anyway.
5899 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5900 spin_unlock(&eb->refs_lock);
5904 return release_extent_buffer(eb);