1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
20 #include "extent-tree.h"
23 #include "print-tree.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
36 #include "rcu-string.h"
38 #include "dev-replace.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
44 #include "tree-checker.h"
46 #undef SCRAMBLE_DELAYED_REFS
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 struct btrfs_delayed_ref_node *node, u64 parent,
51 u64 root_objectid, u64 owner_objectid,
52 u64 owner_offset, int refs_to_drop,
53 struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 struct extent_buffer *leaf,
56 struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 u64 parent, u64 root_objectid,
59 u64 flags, u64 owner, u64 offset,
60 struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 struct btrfs_delayed_ref_node *node,
63 struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 struct btrfs_key *key);
67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
69 return (cache->flags & bits) == bits;
72 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
73 u64 start, u64 num_bytes)
75 u64 end = start + num_bytes - 1;
76 set_extent_bit(&fs_info->excluded_extents, start, end,
77 EXTENT_UPTODATE, NULL);
81 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
83 struct btrfs_fs_info *fs_info = cache->fs_info;
87 end = start + cache->length - 1;
89 clear_extent_bits(&fs_info->excluded_extents, start, end,
93 /* simple helper to search for an existing data extent at a given offset */
94 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
96 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
99 struct btrfs_path *path;
101 path = btrfs_alloc_path();
105 key.objectid = start;
107 key.type = BTRFS_EXTENT_ITEM_KEY;
108 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
109 btrfs_free_path(path);
114 * helper function to lookup reference count and flags of a tree block.
116 * the head node for delayed ref is used to store the sum of all the
117 * reference count modifications queued up in the rbtree. the head
118 * node may also store the extent flags to set. This way you can check
119 * to see what the reference count and extent flags would be if all of
120 * the delayed refs are not processed.
122 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
123 struct btrfs_fs_info *fs_info, u64 bytenr,
124 u64 offset, int metadata, u64 *refs, u64 *flags)
126 struct btrfs_root *extent_root;
127 struct btrfs_delayed_ref_head *head;
128 struct btrfs_delayed_ref_root *delayed_refs;
129 struct btrfs_path *path;
130 struct btrfs_extent_item *ei;
131 struct extent_buffer *leaf;
132 struct btrfs_key key;
139 * If we don't have skinny metadata, don't bother doing anything
142 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
143 offset = fs_info->nodesize;
147 path = btrfs_alloc_path();
152 path->skip_locking = 1;
153 path->search_commit_root = 1;
157 key.objectid = bytenr;
160 key.type = BTRFS_METADATA_ITEM_KEY;
162 key.type = BTRFS_EXTENT_ITEM_KEY;
164 extent_root = btrfs_extent_root(fs_info, bytenr);
165 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
169 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
170 if (path->slots[0]) {
172 btrfs_item_key_to_cpu(path->nodes[0], &key,
174 if (key.objectid == bytenr &&
175 key.type == BTRFS_EXTENT_ITEM_KEY &&
176 key.offset == fs_info->nodesize)
182 leaf = path->nodes[0];
183 item_size = btrfs_item_size(leaf, path->slots[0]);
184 if (item_size >= sizeof(*ei)) {
185 ei = btrfs_item_ptr(leaf, path->slots[0],
186 struct btrfs_extent_item);
187 num_refs = btrfs_extent_refs(leaf, ei);
188 extent_flags = btrfs_extent_flags(leaf, ei);
191 btrfs_print_v0_err(fs_info);
193 btrfs_abort_transaction(trans, ret);
195 btrfs_handle_fs_error(fs_info, ret, NULL);
200 BUG_ON(num_refs == 0);
210 delayed_refs = &trans->transaction->delayed_refs;
211 spin_lock(&delayed_refs->lock);
212 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
214 if (!mutex_trylock(&head->mutex)) {
215 refcount_inc(&head->refs);
216 spin_unlock(&delayed_refs->lock);
218 btrfs_release_path(path);
221 * Mutex was contended, block until it's released and try
224 mutex_lock(&head->mutex);
225 mutex_unlock(&head->mutex);
226 btrfs_put_delayed_ref_head(head);
229 spin_lock(&head->lock);
230 if (head->extent_op && head->extent_op->update_flags)
231 extent_flags |= head->extent_op->flags_to_set;
233 BUG_ON(num_refs == 0);
235 num_refs += head->ref_mod;
236 spin_unlock(&head->lock);
237 mutex_unlock(&head->mutex);
239 spin_unlock(&delayed_refs->lock);
241 WARN_ON(num_refs == 0);
245 *flags = extent_flags;
247 btrfs_free_path(path);
252 * Back reference rules. Back refs have three main goals:
254 * 1) differentiate between all holders of references to an extent so that
255 * when a reference is dropped we can make sure it was a valid reference
256 * before freeing the extent.
258 * 2) Provide enough information to quickly find the holders of an extent
259 * if we notice a given block is corrupted or bad.
261 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
262 * maintenance. This is actually the same as #2, but with a slightly
263 * different use case.
265 * There are two kinds of back refs. The implicit back refs is optimized
266 * for pointers in non-shared tree blocks. For a given pointer in a block,
267 * back refs of this kind provide information about the block's owner tree
268 * and the pointer's key. These information allow us to find the block by
269 * b-tree searching. The full back refs is for pointers in tree blocks not
270 * referenced by their owner trees. The location of tree block is recorded
271 * in the back refs. Actually the full back refs is generic, and can be
272 * used in all cases the implicit back refs is used. The major shortcoming
273 * of the full back refs is its overhead. Every time a tree block gets
274 * COWed, we have to update back refs entry for all pointers in it.
276 * For a newly allocated tree block, we use implicit back refs for
277 * pointers in it. This means most tree related operations only involve
278 * implicit back refs. For a tree block created in old transaction, the
279 * only way to drop a reference to it is COW it. So we can detect the
280 * event that tree block loses its owner tree's reference and do the
281 * back refs conversion.
283 * When a tree block is COWed through a tree, there are four cases:
285 * The reference count of the block is one and the tree is the block's
286 * owner tree. Nothing to do in this case.
288 * The reference count of the block is one and the tree is not the
289 * block's owner tree. In this case, full back refs is used for pointers
290 * in the block. Remove these full back refs, add implicit back refs for
291 * every pointers in the new block.
293 * The reference count of the block is greater than one and the tree is
294 * the block's owner tree. In this case, implicit back refs is used for
295 * pointers in the block. Add full back refs for every pointers in the
296 * block, increase lower level extents' reference counts. The original
297 * implicit back refs are entailed to the new block.
299 * The reference count of the block is greater than one and the tree is
300 * not the block's owner tree. Add implicit back refs for every pointer in
301 * the new block, increase lower level extents' reference count.
303 * Back Reference Key composing:
305 * The key objectid corresponds to the first byte in the extent,
306 * The key type is used to differentiate between types of back refs.
307 * There are different meanings of the key offset for different types
310 * File extents can be referenced by:
312 * - multiple snapshots, subvolumes, or different generations in one subvol
313 * - different files inside a single subvolume
314 * - different offsets inside a file (bookend extents in file.c)
316 * The extent ref structure for the implicit back refs has fields for:
318 * - Objectid of the subvolume root
319 * - objectid of the file holding the reference
320 * - original offset in the file
321 * - how many bookend extents
323 * The key offset for the implicit back refs is hash of the first
326 * The extent ref structure for the full back refs has field for:
328 * - number of pointers in the tree leaf
330 * The key offset for the implicit back refs is the first byte of
333 * When a file extent is allocated, The implicit back refs is used.
334 * the fields are filled in:
336 * (root_key.objectid, inode objectid, offset in file, 1)
338 * When a file extent is removed file truncation, we find the
339 * corresponding implicit back refs and check the following fields:
341 * (btrfs_header_owner(leaf), inode objectid, offset in file)
343 * Btree extents can be referenced by:
345 * - Different subvolumes
347 * Both the implicit back refs and the full back refs for tree blocks
348 * only consist of key. The key offset for the implicit back refs is
349 * objectid of block's owner tree. The key offset for the full back refs
350 * is the first byte of parent block.
352 * When implicit back refs is used, information about the lowest key and
353 * level of the tree block are required. These information are stored in
354 * tree block info structure.
358 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
359 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
360 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
362 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
363 struct btrfs_extent_inline_ref *iref,
364 enum btrfs_inline_ref_type is_data)
366 int type = btrfs_extent_inline_ref_type(eb, iref);
367 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
369 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
370 type == BTRFS_SHARED_BLOCK_REF_KEY ||
371 type == BTRFS_SHARED_DATA_REF_KEY ||
372 type == BTRFS_EXTENT_DATA_REF_KEY) {
373 if (is_data == BTRFS_REF_TYPE_BLOCK) {
374 if (type == BTRFS_TREE_BLOCK_REF_KEY)
376 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
379 * Every shared one has parent tree block,
380 * which must be aligned to sector size.
383 IS_ALIGNED(offset, eb->fs_info->sectorsize))
386 } else if (is_data == BTRFS_REF_TYPE_DATA) {
387 if (type == BTRFS_EXTENT_DATA_REF_KEY)
389 if (type == BTRFS_SHARED_DATA_REF_KEY) {
392 * Every shared one has parent tree block,
393 * which must be aligned to sector size.
396 IS_ALIGNED(offset, eb->fs_info->sectorsize))
400 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
405 btrfs_print_leaf(eb);
406 btrfs_err(eb->fs_info,
407 "eb %llu iref 0x%lx invalid extent inline ref type %d",
408 eb->start, (unsigned long)iref, type);
411 return BTRFS_REF_TYPE_INVALID;
414 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
416 u32 high_crc = ~(u32)0;
417 u32 low_crc = ~(u32)0;
420 lenum = cpu_to_le64(root_objectid);
421 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
422 lenum = cpu_to_le64(owner);
423 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
424 lenum = cpu_to_le64(offset);
425 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
427 return ((u64)high_crc << 31) ^ (u64)low_crc;
430 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
431 struct btrfs_extent_data_ref *ref)
433 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
434 btrfs_extent_data_ref_objectid(leaf, ref),
435 btrfs_extent_data_ref_offset(leaf, ref));
438 static int match_extent_data_ref(struct extent_buffer *leaf,
439 struct btrfs_extent_data_ref *ref,
440 u64 root_objectid, u64 owner, u64 offset)
442 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
443 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
444 btrfs_extent_data_ref_offset(leaf, ref) != offset)
449 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
450 struct btrfs_path *path,
451 u64 bytenr, u64 parent,
453 u64 owner, u64 offset)
455 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
456 struct btrfs_key key;
457 struct btrfs_extent_data_ref *ref;
458 struct extent_buffer *leaf;
464 key.objectid = bytenr;
466 key.type = BTRFS_SHARED_DATA_REF_KEY;
469 key.type = BTRFS_EXTENT_DATA_REF_KEY;
470 key.offset = hash_extent_data_ref(root_objectid,
475 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
490 if (path->slots[0] >= nritems) {
491 ret = btrfs_next_leaf(root, path);
497 leaf = path->nodes[0];
498 nritems = btrfs_header_nritems(leaf);
502 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
503 if (key.objectid != bytenr ||
504 key.type != BTRFS_EXTENT_DATA_REF_KEY)
507 ref = btrfs_item_ptr(leaf, path->slots[0],
508 struct btrfs_extent_data_ref);
510 if (match_extent_data_ref(leaf, ref, root_objectid,
513 btrfs_release_path(path);
525 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
526 struct btrfs_path *path,
527 u64 bytenr, u64 parent,
528 u64 root_objectid, u64 owner,
529 u64 offset, int refs_to_add)
531 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
532 struct btrfs_key key;
533 struct extent_buffer *leaf;
538 key.objectid = bytenr;
540 key.type = BTRFS_SHARED_DATA_REF_KEY;
542 size = sizeof(struct btrfs_shared_data_ref);
544 key.type = BTRFS_EXTENT_DATA_REF_KEY;
545 key.offset = hash_extent_data_ref(root_objectid,
547 size = sizeof(struct btrfs_extent_data_ref);
550 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
551 if (ret && ret != -EEXIST)
554 leaf = path->nodes[0];
556 struct btrfs_shared_data_ref *ref;
557 ref = btrfs_item_ptr(leaf, path->slots[0],
558 struct btrfs_shared_data_ref);
560 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
562 num_refs = btrfs_shared_data_ref_count(leaf, ref);
563 num_refs += refs_to_add;
564 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
567 struct btrfs_extent_data_ref *ref;
568 while (ret == -EEXIST) {
569 ref = btrfs_item_ptr(leaf, path->slots[0],
570 struct btrfs_extent_data_ref);
571 if (match_extent_data_ref(leaf, ref, root_objectid,
574 btrfs_release_path(path);
576 ret = btrfs_insert_empty_item(trans, root, path, &key,
578 if (ret && ret != -EEXIST)
581 leaf = path->nodes[0];
583 ref = btrfs_item_ptr(leaf, path->slots[0],
584 struct btrfs_extent_data_ref);
586 btrfs_set_extent_data_ref_root(leaf, ref,
588 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
589 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
590 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
592 num_refs = btrfs_extent_data_ref_count(leaf, ref);
593 num_refs += refs_to_add;
594 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
597 btrfs_mark_buffer_dirty(leaf);
600 btrfs_release_path(path);
604 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
605 struct btrfs_root *root,
606 struct btrfs_path *path,
609 struct btrfs_key key;
610 struct btrfs_extent_data_ref *ref1 = NULL;
611 struct btrfs_shared_data_ref *ref2 = NULL;
612 struct extent_buffer *leaf;
616 leaf = path->nodes[0];
617 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
619 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
620 ref1 = btrfs_item_ptr(leaf, path->slots[0],
621 struct btrfs_extent_data_ref);
622 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
623 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
624 ref2 = btrfs_item_ptr(leaf, path->slots[0],
625 struct btrfs_shared_data_ref);
626 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
627 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
628 btrfs_print_v0_err(trans->fs_info);
629 btrfs_abort_transaction(trans, -EINVAL);
635 BUG_ON(num_refs < refs_to_drop);
636 num_refs -= refs_to_drop;
639 ret = btrfs_del_item(trans, root, path);
641 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
642 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
643 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
644 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
645 btrfs_mark_buffer_dirty(leaf);
650 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
651 struct btrfs_extent_inline_ref *iref)
653 struct btrfs_key key;
654 struct extent_buffer *leaf;
655 struct btrfs_extent_data_ref *ref1;
656 struct btrfs_shared_data_ref *ref2;
660 leaf = path->nodes[0];
661 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
663 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
666 * If type is invalid, we should have bailed out earlier than
669 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
670 ASSERT(type != BTRFS_REF_TYPE_INVALID);
671 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
672 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
673 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
675 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
676 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
678 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
679 ref1 = btrfs_item_ptr(leaf, path->slots[0],
680 struct btrfs_extent_data_ref);
681 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
682 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
683 ref2 = btrfs_item_ptr(leaf, path->slots[0],
684 struct btrfs_shared_data_ref);
685 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
692 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
693 struct btrfs_path *path,
694 u64 bytenr, u64 parent,
697 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
698 struct btrfs_key key;
701 key.objectid = bytenr;
703 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
706 key.type = BTRFS_TREE_BLOCK_REF_KEY;
707 key.offset = root_objectid;
710 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
716 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
717 struct btrfs_path *path,
718 u64 bytenr, u64 parent,
721 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
722 struct btrfs_key key;
725 key.objectid = bytenr;
727 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
730 key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 key.offset = root_objectid;
734 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
735 btrfs_release_path(path);
739 static inline int extent_ref_type(u64 parent, u64 owner)
742 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
744 type = BTRFS_SHARED_BLOCK_REF_KEY;
746 type = BTRFS_TREE_BLOCK_REF_KEY;
749 type = BTRFS_SHARED_DATA_REF_KEY;
751 type = BTRFS_EXTENT_DATA_REF_KEY;
756 static int find_next_key(struct btrfs_path *path, int level,
757 struct btrfs_key *key)
760 for (; level < BTRFS_MAX_LEVEL; level++) {
761 if (!path->nodes[level])
763 if (path->slots[level] + 1 >=
764 btrfs_header_nritems(path->nodes[level]))
767 btrfs_item_key_to_cpu(path->nodes[level], key,
768 path->slots[level] + 1);
770 btrfs_node_key_to_cpu(path->nodes[level], key,
771 path->slots[level] + 1);
778 * look for inline back ref. if back ref is found, *ref_ret is set
779 * to the address of inline back ref, and 0 is returned.
781 * if back ref isn't found, *ref_ret is set to the address where it
782 * should be inserted, and -ENOENT is returned.
784 * if insert is true and there are too many inline back refs, the path
785 * points to the extent item, and -EAGAIN is returned.
787 * NOTE: inline back refs are ordered in the same way that back ref
788 * items in the tree are ordered.
790 static noinline_for_stack
791 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
792 struct btrfs_path *path,
793 struct btrfs_extent_inline_ref **ref_ret,
794 u64 bytenr, u64 num_bytes,
795 u64 parent, u64 root_objectid,
796 u64 owner, u64 offset, int insert)
798 struct btrfs_fs_info *fs_info = trans->fs_info;
799 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
800 struct btrfs_key key;
801 struct extent_buffer *leaf;
802 struct btrfs_extent_item *ei;
803 struct btrfs_extent_inline_ref *iref;
813 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
816 key.objectid = bytenr;
817 key.type = BTRFS_EXTENT_ITEM_KEY;
818 key.offset = num_bytes;
820 want = extent_ref_type(parent, owner);
822 extra_size = btrfs_extent_inline_ref_size(want);
823 path->search_for_extension = 1;
824 path->keep_locks = 1;
829 * Owner is our level, so we can just add one to get the level for the
830 * block we are interested in.
832 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
833 key.type = BTRFS_METADATA_ITEM_KEY;
838 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
845 * We may be a newly converted file system which still has the old fat
846 * extent entries for metadata, so try and see if we have one of those.
848 if (ret > 0 && skinny_metadata) {
849 skinny_metadata = false;
850 if (path->slots[0]) {
852 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 if (key.objectid == bytenr &&
855 key.type == BTRFS_EXTENT_ITEM_KEY &&
856 key.offset == num_bytes)
860 key.objectid = bytenr;
861 key.type = BTRFS_EXTENT_ITEM_KEY;
862 key.offset = num_bytes;
863 btrfs_release_path(path);
868 if (ret && !insert) {
871 } else if (WARN_ON(ret)) {
876 leaf = path->nodes[0];
877 item_size = btrfs_item_size(leaf, path->slots[0]);
878 if (unlikely(item_size < sizeof(*ei))) {
880 btrfs_print_v0_err(fs_info);
881 btrfs_abort_transaction(trans, err);
885 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
886 flags = btrfs_extent_flags(leaf, ei);
888 ptr = (unsigned long)(ei + 1);
889 end = (unsigned long)ei + item_size;
891 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
892 ptr += sizeof(struct btrfs_tree_block_info);
896 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
897 needed = BTRFS_REF_TYPE_DATA;
899 needed = BTRFS_REF_TYPE_BLOCK;
906 btrfs_print_leaf(path->nodes[0]);
908 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
909 path->slots[0], root_objectid, owner, offset, parent);
913 iref = (struct btrfs_extent_inline_ref *)ptr;
914 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
915 if (type == BTRFS_REF_TYPE_INVALID) {
923 ptr += btrfs_extent_inline_ref_size(type);
927 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
928 struct btrfs_extent_data_ref *dref;
929 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
930 if (match_extent_data_ref(leaf, dref, root_objectid,
935 if (hash_extent_data_ref_item(leaf, dref) <
936 hash_extent_data_ref(root_objectid, owner, offset))
940 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
942 if (parent == ref_offset) {
946 if (ref_offset < parent)
949 if (root_objectid == ref_offset) {
953 if (ref_offset < root_objectid)
957 ptr += btrfs_extent_inline_ref_size(type);
959 if (err == -ENOENT && insert) {
960 if (item_size + extra_size >=
961 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
966 * To add new inline back ref, we have to make sure
967 * there is no corresponding back ref item.
968 * For simplicity, we just do not add new inline back
969 * ref if there is any kind of item for this block
971 if (find_next_key(path, 0, &key) == 0 &&
972 key.objectid == bytenr &&
973 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
978 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
981 path->keep_locks = 0;
982 path->search_for_extension = 0;
983 btrfs_unlock_up_safe(path, 1);
989 * helper to add new inline back ref
991 static noinline_for_stack
992 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
993 struct btrfs_path *path,
994 struct btrfs_extent_inline_ref *iref,
995 u64 parent, u64 root_objectid,
996 u64 owner, u64 offset, int refs_to_add,
997 struct btrfs_delayed_extent_op *extent_op)
999 struct extent_buffer *leaf;
1000 struct btrfs_extent_item *ei;
1003 unsigned long item_offset;
1008 leaf = path->nodes[0];
1009 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1010 item_offset = (unsigned long)iref - (unsigned long)ei;
1012 type = extent_ref_type(parent, owner);
1013 size = btrfs_extent_inline_ref_size(type);
1015 btrfs_extend_item(path, size);
1017 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 refs = btrfs_extent_refs(leaf, ei);
1019 refs += refs_to_add;
1020 btrfs_set_extent_refs(leaf, ei, refs);
1022 __run_delayed_extent_op(extent_op, leaf, ei);
1024 ptr = (unsigned long)ei + item_offset;
1025 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1026 if (ptr < end - size)
1027 memmove_extent_buffer(leaf, ptr + size, ptr,
1030 iref = (struct btrfs_extent_inline_ref *)ptr;
1031 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1032 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1033 struct btrfs_extent_data_ref *dref;
1034 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1035 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1036 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1037 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1038 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1039 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1040 struct btrfs_shared_data_ref *sref;
1041 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1042 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1043 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1044 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1047 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1049 btrfs_mark_buffer_dirty(leaf);
1052 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1053 struct btrfs_path *path,
1054 struct btrfs_extent_inline_ref **ref_ret,
1055 u64 bytenr, u64 num_bytes, u64 parent,
1056 u64 root_objectid, u64 owner, u64 offset)
1060 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1061 num_bytes, parent, root_objectid,
1066 btrfs_release_path(path);
1069 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1070 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1073 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1074 root_objectid, owner, offset);
1080 * helper to update/remove inline back ref
1082 static noinline_for_stack
1083 void update_inline_extent_backref(struct btrfs_path *path,
1084 struct btrfs_extent_inline_ref *iref,
1086 struct btrfs_delayed_extent_op *extent_op)
1088 struct extent_buffer *leaf = path->nodes[0];
1089 struct btrfs_extent_item *ei;
1090 struct btrfs_extent_data_ref *dref = NULL;
1091 struct btrfs_shared_data_ref *sref = NULL;
1099 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1100 refs = btrfs_extent_refs(leaf, ei);
1101 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1102 refs += refs_to_mod;
1103 btrfs_set_extent_refs(leaf, ei, refs);
1105 __run_delayed_extent_op(extent_op, leaf, ei);
1108 * If type is invalid, we should have bailed out after
1109 * lookup_inline_extent_backref().
1111 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1112 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1114 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1115 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1116 refs = btrfs_extent_data_ref_count(leaf, dref);
1117 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1118 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1119 refs = btrfs_shared_data_ref_count(leaf, sref);
1122 BUG_ON(refs_to_mod != -1);
1125 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1126 refs += refs_to_mod;
1129 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1130 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1132 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1134 size = btrfs_extent_inline_ref_size(type);
1135 item_size = btrfs_item_size(leaf, path->slots[0]);
1136 ptr = (unsigned long)iref;
1137 end = (unsigned long)ei + item_size;
1138 if (ptr + size < end)
1139 memmove_extent_buffer(leaf, ptr, ptr + size,
1142 btrfs_truncate_item(path, item_size, 1);
1144 btrfs_mark_buffer_dirty(leaf);
1147 static noinline_for_stack
1148 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1149 struct btrfs_path *path,
1150 u64 bytenr, u64 num_bytes, u64 parent,
1151 u64 root_objectid, u64 owner,
1152 u64 offset, int refs_to_add,
1153 struct btrfs_delayed_extent_op *extent_op)
1155 struct btrfs_extent_inline_ref *iref;
1158 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1159 num_bytes, parent, root_objectid,
1163 * We're adding refs to a tree block we already own, this
1164 * should not happen at all.
1166 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1167 btrfs_print_leaf(path->nodes[0]);
1168 btrfs_crit(trans->fs_info,
1169 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1170 bytenr, num_bytes, root_objectid, path->slots[0]);
1173 update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1174 } else if (ret == -ENOENT) {
1175 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1176 root_objectid, owner, offset,
1177 refs_to_add, extent_op);
1183 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 struct btrfs_extent_inline_ref *iref,
1187 int refs_to_drop, int is_data)
1191 BUG_ON(!is_data && refs_to_drop != 1);
1193 update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1195 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1197 ret = btrfs_del_item(trans, root, path);
1201 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1202 u64 *discarded_bytes)
1205 u64 bytes_left, end;
1206 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1208 if (WARN_ON(start != aligned_start)) {
1209 len -= aligned_start - start;
1210 len = round_down(len, 1 << SECTOR_SHIFT);
1211 start = aligned_start;
1214 *discarded_bytes = 0;
1222 /* Skip any superblocks on this device. */
1223 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1224 u64 sb_start = btrfs_sb_offset(j);
1225 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1226 u64 size = sb_start - start;
1228 if (!in_range(sb_start, start, bytes_left) &&
1229 !in_range(sb_end, start, bytes_left) &&
1230 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1234 * Superblock spans beginning of range. Adjust start and
1237 if (sb_start <= start) {
1238 start += sb_end - start;
1243 bytes_left = end - start;
1248 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1249 size >> SECTOR_SHIFT,
1252 *discarded_bytes += size;
1253 else if (ret != -EOPNOTSUPP)
1262 bytes_left = end - start;
1266 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1267 bytes_left >> SECTOR_SHIFT,
1270 *discarded_bytes += bytes_left;
1275 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1277 struct btrfs_device *dev = stripe->dev;
1278 struct btrfs_fs_info *fs_info = dev->fs_info;
1279 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1280 u64 phys = stripe->physical;
1281 u64 len = stripe->length;
1285 /* Zone reset on a zoned filesystem */
1286 if (btrfs_can_zone_reset(dev, phys, len)) {
1289 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1293 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1294 dev != dev_replace->srcdev)
1297 src_disc = discarded;
1299 /* Send to replace target as well */
1300 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1302 discarded += src_disc;
1303 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1304 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1315 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1316 u64 num_bytes, u64 *actual_bytes)
1319 u64 discarded_bytes = 0;
1320 u64 end = bytenr + num_bytes;
1324 * Avoid races with device replace and make sure the devices in the
1325 * stripes don't go away while we are discarding.
1327 btrfs_bio_counter_inc_blocked(fs_info);
1329 struct btrfs_discard_stripe *stripes;
1330 unsigned int num_stripes;
1333 num_bytes = end - cur;
1334 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1335 if (IS_ERR(stripes)) {
1336 ret = PTR_ERR(stripes);
1337 if (ret == -EOPNOTSUPP)
1342 for (i = 0; i < num_stripes; i++) {
1343 struct btrfs_discard_stripe *stripe = stripes + i;
1346 if (!stripe->dev->bdev) {
1347 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1351 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1352 &stripe->dev->dev_state))
1355 ret = do_discard_extent(stripe, &bytes);
1358 * Keep going if discard is not supported by the
1361 if (ret != -EOPNOTSUPP)
1365 discarded_bytes += bytes;
1373 btrfs_bio_counter_dec(fs_info);
1375 *actual_bytes = discarded_bytes;
1379 /* Can return -ENOMEM */
1380 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1381 struct btrfs_ref *generic_ref)
1383 struct btrfs_fs_info *fs_info = trans->fs_info;
1386 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1387 generic_ref->action);
1388 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1389 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1391 if (generic_ref->type == BTRFS_REF_METADATA)
1392 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1394 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1396 btrfs_ref_tree_mod(fs_info, generic_ref);
1402 * __btrfs_inc_extent_ref - insert backreference for a given extent
1404 * The counterpart is in __btrfs_free_extent(), with examples and more details
1407 * @trans: Handle of transaction
1409 * @node: The delayed ref node used to get the bytenr/length for
1410 * extent whose references are incremented.
1412 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1413 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1414 * bytenr of the parent block. Since new extents are always
1415 * created with indirect references, this will only be the case
1416 * when relocating a shared extent. In that case, root_objectid
1417 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1420 * @root_objectid: The id of the root where this modification has originated,
1421 * this can be either one of the well-known metadata trees or
1422 * the subvolume id which references this extent.
1424 * @owner: For data extents it is the inode number of the owning file.
1425 * For metadata extents this parameter holds the level in the
1426 * tree of the extent.
1428 * @offset: For metadata extents the offset is ignored and is currently
1429 * always passed as 0. For data extents it is the fileoffset
1430 * this extent belongs to.
1432 * @refs_to_add Number of references to add
1434 * @extent_op Pointer to a structure, holding information necessary when
1435 * updating a tree block's flags
1438 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1439 struct btrfs_delayed_ref_node *node,
1440 u64 parent, u64 root_objectid,
1441 u64 owner, u64 offset, int refs_to_add,
1442 struct btrfs_delayed_extent_op *extent_op)
1444 struct btrfs_path *path;
1445 struct extent_buffer *leaf;
1446 struct btrfs_extent_item *item;
1447 struct btrfs_key key;
1448 u64 bytenr = node->bytenr;
1449 u64 num_bytes = node->num_bytes;
1453 path = btrfs_alloc_path();
1457 /* this will setup the path even if it fails to insert the back ref */
1458 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1459 parent, root_objectid, owner,
1460 offset, refs_to_add, extent_op);
1461 if ((ret < 0 && ret != -EAGAIN) || !ret)
1465 * Ok we had -EAGAIN which means we didn't have space to insert and
1466 * inline extent ref, so just update the reference count and add a
1469 leaf = path->nodes[0];
1470 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1471 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1472 refs = btrfs_extent_refs(leaf, item);
1473 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1475 __run_delayed_extent_op(extent_op, leaf, item);
1477 btrfs_mark_buffer_dirty(leaf);
1478 btrfs_release_path(path);
1480 /* now insert the actual backref */
1481 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1482 BUG_ON(refs_to_add != 1);
1483 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1486 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1487 root_objectid, owner, offset,
1491 btrfs_abort_transaction(trans, ret);
1493 btrfs_free_path(path);
1497 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1498 struct btrfs_delayed_ref_node *node,
1499 struct btrfs_delayed_extent_op *extent_op,
1500 bool insert_reserved)
1503 struct btrfs_delayed_data_ref *ref;
1504 struct btrfs_key ins;
1509 ins.objectid = node->bytenr;
1510 ins.offset = node->num_bytes;
1511 ins.type = BTRFS_EXTENT_ITEM_KEY;
1513 ref = btrfs_delayed_node_to_data_ref(node);
1514 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1516 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1517 parent = ref->parent;
1518 ref_root = ref->root;
1520 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1522 flags |= extent_op->flags_to_set;
1523 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1524 flags, ref->objectid,
1527 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1528 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1529 ref->objectid, ref->offset,
1530 node->ref_mod, extent_op);
1531 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1532 ret = __btrfs_free_extent(trans, node, parent,
1533 ref_root, ref->objectid,
1534 ref->offset, node->ref_mod,
1542 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1543 struct extent_buffer *leaf,
1544 struct btrfs_extent_item *ei)
1546 u64 flags = btrfs_extent_flags(leaf, ei);
1547 if (extent_op->update_flags) {
1548 flags |= extent_op->flags_to_set;
1549 btrfs_set_extent_flags(leaf, ei, flags);
1552 if (extent_op->update_key) {
1553 struct btrfs_tree_block_info *bi;
1554 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1555 bi = (struct btrfs_tree_block_info *)(ei + 1);
1556 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1560 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1561 struct btrfs_delayed_ref_head *head,
1562 struct btrfs_delayed_extent_op *extent_op)
1564 struct btrfs_fs_info *fs_info = trans->fs_info;
1565 struct btrfs_root *root;
1566 struct btrfs_key key;
1567 struct btrfs_path *path;
1568 struct btrfs_extent_item *ei;
1569 struct extent_buffer *leaf;
1575 if (TRANS_ABORTED(trans))
1578 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1581 path = btrfs_alloc_path();
1585 key.objectid = head->bytenr;
1588 key.type = BTRFS_METADATA_ITEM_KEY;
1589 key.offset = extent_op->level;
1591 key.type = BTRFS_EXTENT_ITEM_KEY;
1592 key.offset = head->num_bytes;
1595 root = btrfs_extent_root(fs_info, key.objectid);
1597 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1604 if (path->slots[0] > 0) {
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1608 if (key.objectid == head->bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == head->num_bytes)
1614 btrfs_release_path(path);
1617 key.objectid = head->bytenr;
1618 key.offset = head->num_bytes;
1619 key.type = BTRFS_EXTENT_ITEM_KEY;
1628 leaf = path->nodes[0];
1629 item_size = btrfs_item_size(leaf, path->slots[0]);
1631 if (unlikely(item_size < sizeof(*ei))) {
1633 btrfs_print_v0_err(fs_info);
1634 btrfs_abort_transaction(trans, err);
1638 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1639 __run_delayed_extent_op(extent_op, leaf, ei);
1641 btrfs_mark_buffer_dirty(leaf);
1643 btrfs_free_path(path);
1647 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1648 struct btrfs_delayed_ref_node *node,
1649 struct btrfs_delayed_extent_op *extent_op,
1650 bool insert_reserved)
1653 struct btrfs_delayed_tree_ref *ref;
1657 ref = btrfs_delayed_node_to_tree_ref(node);
1658 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1660 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1661 parent = ref->parent;
1662 ref_root = ref->root;
1664 if (node->ref_mod != 1) {
1665 btrfs_err(trans->fs_info,
1666 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1667 node->bytenr, node->ref_mod, node->action, ref_root,
1671 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1672 BUG_ON(!extent_op || !extent_op->update_flags);
1673 ret = alloc_reserved_tree_block(trans, node, extent_op);
1674 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1675 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1676 ref->level, 0, 1, extent_op);
1677 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1678 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1679 ref->level, 0, 1, extent_op);
1686 /* helper function to actually process a single delayed ref entry */
1687 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1688 struct btrfs_delayed_ref_node *node,
1689 struct btrfs_delayed_extent_op *extent_op,
1690 bool insert_reserved)
1694 if (TRANS_ABORTED(trans)) {
1695 if (insert_reserved)
1696 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1700 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1701 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1702 ret = run_delayed_tree_ref(trans, node, extent_op,
1704 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1705 node->type == BTRFS_SHARED_DATA_REF_KEY)
1706 ret = run_delayed_data_ref(trans, node, extent_op,
1710 if (ret && insert_reserved)
1711 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1713 btrfs_err(trans->fs_info,
1714 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1715 node->bytenr, node->num_bytes, node->type,
1716 node->action, node->ref_mod, ret);
1720 static inline struct btrfs_delayed_ref_node *
1721 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1723 struct btrfs_delayed_ref_node *ref;
1725 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1729 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1730 * This is to prevent a ref count from going down to zero, which deletes
1731 * the extent item from the extent tree, when there still are references
1732 * to add, which would fail because they would not find the extent item.
1734 if (!list_empty(&head->ref_add_list))
1735 return list_first_entry(&head->ref_add_list,
1736 struct btrfs_delayed_ref_node, add_list);
1738 ref = rb_entry(rb_first_cached(&head->ref_tree),
1739 struct btrfs_delayed_ref_node, ref_node);
1740 ASSERT(list_empty(&ref->add_list));
1744 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1745 struct btrfs_delayed_ref_head *head)
1747 spin_lock(&delayed_refs->lock);
1748 head->processing = false;
1749 delayed_refs->num_heads_ready++;
1750 spin_unlock(&delayed_refs->lock);
1751 btrfs_delayed_ref_unlock(head);
1754 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1755 struct btrfs_delayed_ref_head *head)
1757 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1762 if (head->must_insert_reserved) {
1763 head->extent_op = NULL;
1764 btrfs_free_delayed_extent_op(extent_op);
1770 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1771 struct btrfs_delayed_ref_head *head)
1773 struct btrfs_delayed_extent_op *extent_op;
1776 extent_op = cleanup_extent_op(head);
1779 head->extent_op = NULL;
1780 spin_unlock(&head->lock);
1781 ret = run_delayed_extent_op(trans, head, extent_op);
1782 btrfs_free_delayed_extent_op(extent_op);
1783 return ret ? ret : 1;
1786 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1787 struct btrfs_delayed_ref_root *delayed_refs,
1788 struct btrfs_delayed_ref_head *head)
1790 int nr_items = 1; /* Dropping this ref head update. */
1793 * We had csum deletions accounted for in our delayed refs rsv, we need
1794 * to drop the csum leaves for this update from our delayed_refs_rsv.
1796 if (head->total_ref_mod < 0 && head->is_data) {
1797 spin_lock(&delayed_refs->lock);
1798 delayed_refs->pending_csums -= head->num_bytes;
1799 spin_unlock(&delayed_refs->lock);
1800 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1803 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1806 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1807 struct btrfs_delayed_ref_head *head)
1810 struct btrfs_fs_info *fs_info = trans->fs_info;
1811 struct btrfs_delayed_ref_root *delayed_refs;
1814 delayed_refs = &trans->transaction->delayed_refs;
1816 ret = run_and_cleanup_extent_op(trans, head);
1818 unselect_delayed_ref_head(delayed_refs, head);
1819 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1826 * Need to drop our head ref lock and re-acquire the delayed ref lock
1827 * and then re-check to make sure nobody got added.
1829 spin_unlock(&head->lock);
1830 spin_lock(&delayed_refs->lock);
1831 spin_lock(&head->lock);
1832 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1833 spin_unlock(&head->lock);
1834 spin_unlock(&delayed_refs->lock);
1837 btrfs_delete_ref_head(delayed_refs, head);
1838 spin_unlock(&head->lock);
1839 spin_unlock(&delayed_refs->lock);
1841 if (head->must_insert_reserved) {
1842 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1843 if (head->is_data) {
1844 struct btrfs_root *csum_root;
1846 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1847 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1852 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1854 trace_run_delayed_ref_head(fs_info, head, 0);
1855 btrfs_delayed_ref_unlock(head);
1856 btrfs_put_delayed_ref_head(head);
1860 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1861 struct btrfs_trans_handle *trans)
1863 struct btrfs_delayed_ref_root *delayed_refs =
1864 &trans->transaction->delayed_refs;
1865 struct btrfs_delayed_ref_head *head = NULL;
1868 spin_lock(&delayed_refs->lock);
1869 head = btrfs_select_ref_head(delayed_refs);
1871 spin_unlock(&delayed_refs->lock);
1876 * Grab the lock that says we are going to process all the refs for
1879 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1880 spin_unlock(&delayed_refs->lock);
1883 * We may have dropped the spin lock to get the head mutex lock, and
1884 * that might have given someone else time to free the head. If that's
1885 * true, it has been removed from our list and we can move on.
1888 head = ERR_PTR(-EAGAIN);
1893 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1894 struct btrfs_delayed_ref_head *locked_ref)
1896 struct btrfs_fs_info *fs_info = trans->fs_info;
1897 struct btrfs_delayed_ref_root *delayed_refs;
1898 struct btrfs_delayed_extent_op *extent_op;
1899 struct btrfs_delayed_ref_node *ref;
1900 bool must_insert_reserved;
1903 delayed_refs = &trans->transaction->delayed_refs;
1905 lockdep_assert_held(&locked_ref->mutex);
1906 lockdep_assert_held(&locked_ref->lock);
1908 while ((ref = select_delayed_ref(locked_ref))) {
1910 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1911 spin_unlock(&locked_ref->lock);
1912 unselect_delayed_ref_head(delayed_refs, locked_ref);
1916 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1917 RB_CLEAR_NODE(&ref->ref_node);
1918 if (!list_empty(&ref->add_list))
1919 list_del(&ref->add_list);
1921 * When we play the delayed ref, also correct the ref_mod on
1924 switch (ref->action) {
1925 case BTRFS_ADD_DELAYED_REF:
1926 case BTRFS_ADD_DELAYED_EXTENT:
1927 locked_ref->ref_mod -= ref->ref_mod;
1929 case BTRFS_DROP_DELAYED_REF:
1930 locked_ref->ref_mod += ref->ref_mod;
1935 atomic_dec(&delayed_refs->num_entries);
1938 * Record the must_insert_reserved flag before we drop the
1941 must_insert_reserved = locked_ref->must_insert_reserved;
1942 locked_ref->must_insert_reserved = false;
1944 extent_op = locked_ref->extent_op;
1945 locked_ref->extent_op = NULL;
1946 spin_unlock(&locked_ref->lock);
1948 ret = run_one_delayed_ref(trans, ref, extent_op,
1949 must_insert_reserved);
1951 btrfs_free_delayed_extent_op(extent_op);
1953 unselect_delayed_ref_head(delayed_refs, locked_ref);
1954 btrfs_put_delayed_ref(ref);
1958 btrfs_put_delayed_ref(ref);
1961 spin_lock(&locked_ref->lock);
1962 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1969 * Returns 0 on success or if called with an already aborted transaction.
1970 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1972 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1975 struct btrfs_fs_info *fs_info = trans->fs_info;
1976 struct btrfs_delayed_ref_root *delayed_refs;
1977 struct btrfs_delayed_ref_head *locked_ref = NULL;
1979 unsigned long count = 0;
1981 delayed_refs = &trans->transaction->delayed_refs;
1984 locked_ref = btrfs_obtain_ref_head(trans);
1985 if (IS_ERR_OR_NULL(locked_ref)) {
1986 if (PTR_ERR(locked_ref) == -EAGAIN) {
1995 * We need to try and merge add/drops of the same ref since we
1996 * can run into issues with relocate dropping the implicit ref
1997 * and then it being added back again before the drop can
1998 * finish. If we merged anything we need to re-loop so we can
2000 * Or we can get node references of the same type that weren't
2001 * merged when created due to bumps in the tree mod seq, and
2002 * we need to merge them to prevent adding an inline extent
2003 * backref before dropping it (triggering a BUG_ON at
2004 * insert_inline_extent_backref()).
2006 spin_lock(&locked_ref->lock);
2007 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2009 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2010 if (ret < 0 && ret != -EAGAIN) {
2012 * Error, btrfs_run_delayed_refs_for_head already
2013 * unlocked everything so just bail out
2018 * Success, perform the usual cleanup of a processed
2021 ret = cleanup_ref_head(trans, locked_ref);
2023 /* We dropped our lock, we need to loop. */
2032 * Either success case or btrfs_run_delayed_refs_for_head
2033 * returned -EAGAIN, meaning we need to select another head
2038 } while ((nr != -1 && count < nr) || locked_ref);
2043 #ifdef SCRAMBLE_DELAYED_REFS
2045 * Normally delayed refs get processed in ascending bytenr order. This
2046 * correlates in most cases to the order added. To expose dependencies on this
2047 * order, we start to process the tree in the middle instead of the beginning
2049 static u64 find_middle(struct rb_root *root)
2051 struct rb_node *n = root->rb_node;
2052 struct btrfs_delayed_ref_node *entry;
2055 u64 first = 0, last = 0;
2059 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2060 first = entry->bytenr;
2064 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2065 last = entry->bytenr;
2070 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2071 WARN_ON(!entry->in_tree);
2073 middle = entry->bytenr;
2087 * this starts processing the delayed reference count updates and
2088 * extent insertions we have queued up so far. count can be
2089 * 0, which means to process everything in the tree at the start
2090 * of the run (but not newly added entries), or it can be some target
2091 * number you'd like to process.
2093 * Returns 0 on success or if called with an aborted transaction
2094 * Returns <0 on error and aborts the transaction
2096 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2097 unsigned long count)
2099 struct btrfs_fs_info *fs_info = trans->fs_info;
2100 struct rb_node *node;
2101 struct btrfs_delayed_ref_root *delayed_refs;
2102 struct btrfs_delayed_ref_head *head;
2104 int run_all = count == (unsigned long)-1;
2106 /* We'll clean this up in btrfs_cleanup_transaction */
2107 if (TRANS_ABORTED(trans))
2110 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2113 delayed_refs = &trans->transaction->delayed_refs;
2115 count = delayed_refs->num_heads_ready;
2118 #ifdef SCRAMBLE_DELAYED_REFS
2119 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2121 ret = __btrfs_run_delayed_refs(trans, count);
2123 btrfs_abort_transaction(trans, ret);
2128 btrfs_create_pending_block_groups(trans);
2130 spin_lock(&delayed_refs->lock);
2131 node = rb_first_cached(&delayed_refs->href_root);
2133 spin_unlock(&delayed_refs->lock);
2136 head = rb_entry(node, struct btrfs_delayed_ref_head,
2138 refcount_inc(&head->refs);
2139 spin_unlock(&delayed_refs->lock);
2141 /* Mutex was contended, block until it's released and retry. */
2142 mutex_lock(&head->mutex);
2143 mutex_unlock(&head->mutex);
2145 btrfs_put_delayed_ref_head(head);
2153 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2154 struct extent_buffer *eb, u64 flags)
2156 struct btrfs_delayed_extent_op *extent_op;
2157 int level = btrfs_header_level(eb);
2160 extent_op = btrfs_alloc_delayed_extent_op();
2164 extent_op->flags_to_set = flags;
2165 extent_op->update_flags = true;
2166 extent_op->update_key = false;
2167 extent_op->level = level;
2169 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2171 btrfs_free_delayed_extent_op(extent_op);
2175 static noinline int check_delayed_ref(struct btrfs_root *root,
2176 struct btrfs_path *path,
2177 u64 objectid, u64 offset, u64 bytenr)
2179 struct btrfs_delayed_ref_head *head;
2180 struct btrfs_delayed_ref_node *ref;
2181 struct btrfs_delayed_data_ref *data_ref;
2182 struct btrfs_delayed_ref_root *delayed_refs;
2183 struct btrfs_transaction *cur_trans;
2184 struct rb_node *node;
2187 spin_lock(&root->fs_info->trans_lock);
2188 cur_trans = root->fs_info->running_transaction;
2190 refcount_inc(&cur_trans->use_count);
2191 spin_unlock(&root->fs_info->trans_lock);
2195 delayed_refs = &cur_trans->delayed_refs;
2196 spin_lock(&delayed_refs->lock);
2197 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2199 spin_unlock(&delayed_refs->lock);
2200 btrfs_put_transaction(cur_trans);
2204 if (!mutex_trylock(&head->mutex)) {
2206 spin_unlock(&delayed_refs->lock);
2207 btrfs_put_transaction(cur_trans);
2211 refcount_inc(&head->refs);
2212 spin_unlock(&delayed_refs->lock);
2214 btrfs_release_path(path);
2217 * Mutex was contended, block until it's released and let
2220 mutex_lock(&head->mutex);
2221 mutex_unlock(&head->mutex);
2222 btrfs_put_delayed_ref_head(head);
2223 btrfs_put_transaction(cur_trans);
2226 spin_unlock(&delayed_refs->lock);
2228 spin_lock(&head->lock);
2230 * XXX: We should replace this with a proper search function in the
2233 for (node = rb_first_cached(&head->ref_tree); node;
2234 node = rb_next(node)) {
2235 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2236 /* If it's a shared ref we know a cross reference exists */
2237 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2242 data_ref = btrfs_delayed_node_to_data_ref(ref);
2245 * If our ref doesn't match the one we're currently looking at
2246 * then we have a cross reference.
2248 if (data_ref->root != root->root_key.objectid ||
2249 data_ref->objectid != objectid ||
2250 data_ref->offset != offset) {
2255 spin_unlock(&head->lock);
2256 mutex_unlock(&head->mutex);
2257 btrfs_put_transaction(cur_trans);
2261 static noinline int check_committed_ref(struct btrfs_root *root,
2262 struct btrfs_path *path,
2263 u64 objectid, u64 offset, u64 bytenr,
2266 struct btrfs_fs_info *fs_info = root->fs_info;
2267 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2268 struct extent_buffer *leaf;
2269 struct btrfs_extent_data_ref *ref;
2270 struct btrfs_extent_inline_ref *iref;
2271 struct btrfs_extent_item *ei;
2272 struct btrfs_key key;
2277 key.objectid = bytenr;
2278 key.offset = (u64)-1;
2279 key.type = BTRFS_EXTENT_ITEM_KEY;
2281 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2284 BUG_ON(ret == 0); /* Corruption */
2287 if (path->slots[0] == 0)
2291 leaf = path->nodes[0];
2292 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2294 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2298 item_size = btrfs_item_size(leaf, path->slots[0]);
2299 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2301 /* If extent item has more than 1 inline ref then it's shared */
2302 if (item_size != sizeof(*ei) +
2303 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2307 * If extent created before last snapshot => it's shared unless the
2308 * snapshot has been deleted. Use the heuristic if strict is false.
2311 (btrfs_extent_generation(leaf, ei) <=
2312 btrfs_root_last_snapshot(&root->root_item)))
2315 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2317 /* If this extent has SHARED_DATA_REF then it's shared */
2318 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2319 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2322 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2323 if (btrfs_extent_refs(leaf, ei) !=
2324 btrfs_extent_data_ref_count(leaf, ref) ||
2325 btrfs_extent_data_ref_root(leaf, ref) !=
2326 root->root_key.objectid ||
2327 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2328 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2336 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2337 u64 bytenr, bool strict, struct btrfs_path *path)
2342 ret = check_committed_ref(root, path, objectid,
2343 offset, bytenr, strict);
2344 if (ret && ret != -ENOENT)
2347 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2348 } while (ret == -EAGAIN);
2351 btrfs_release_path(path);
2352 if (btrfs_is_data_reloc_root(root))
2357 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2358 struct btrfs_root *root,
2359 struct extent_buffer *buf,
2360 int full_backref, int inc)
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2368 struct btrfs_key key;
2369 struct btrfs_file_extent_item *fi;
2370 struct btrfs_ref generic_ref = { 0 };
2371 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2377 if (btrfs_is_testing(fs_info))
2380 ref_root = btrfs_header_owner(buf);
2381 nritems = btrfs_header_nritems(buf);
2382 level = btrfs_header_level(buf);
2384 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2388 parent = buf->start;
2392 action = BTRFS_ADD_DELAYED_REF;
2394 action = BTRFS_DROP_DELAYED_REF;
2396 for (i = 0; i < nritems; i++) {
2398 btrfs_item_key_to_cpu(buf, &key, i);
2399 if (key.type != BTRFS_EXTENT_DATA_KEY)
2401 fi = btrfs_item_ptr(buf, i,
2402 struct btrfs_file_extent_item);
2403 if (btrfs_file_extent_type(buf, fi) ==
2404 BTRFS_FILE_EXTENT_INLINE)
2406 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2410 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2411 key.offset -= btrfs_file_extent_offset(buf, fi);
2412 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2414 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2415 key.offset, root->root_key.objectid,
2418 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2420 ret = btrfs_free_extent(trans, &generic_ref);
2424 bytenr = btrfs_node_blockptr(buf, i);
2425 num_bytes = fs_info->nodesize;
2426 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2428 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2429 root->root_key.objectid, for_reloc);
2431 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2433 ret = btrfs_free_extent(trans, &generic_ref);
2443 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2444 struct extent_buffer *buf, int full_backref)
2446 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2449 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2450 struct extent_buffer *buf, int full_backref)
2452 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2455 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2457 struct btrfs_fs_info *fs_info = root->fs_info;
2462 flags = BTRFS_BLOCK_GROUP_DATA;
2463 else if (root == fs_info->chunk_root)
2464 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2466 flags = BTRFS_BLOCK_GROUP_METADATA;
2468 ret = btrfs_get_alloc_profile(fs_info, flags);
2472 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2474 struct rb_node *leftmost;
2477 read_lock(&fs_info->block_group_cache_lock);
2478 /* Get the block group with the lowest logical start address. */
2479 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2481 struct btrfs_block_group *bg;
2483 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2486 read_unlock(&fs_info->block_group_cache_lock);
2491 static int pin_down_extent(struct btrfs_trans_handle *trans,
2492 struct btrfs_block_group *cache,
2493 u64 bytenr, u64 num_bytes, int reserved)
2495 struct btrfs_fs_info *fs_info = cache->fs_info;
2497 spin_lock(&cache->space_info->lock);
2498 spin_lock(&cache->lock);
2499 cache->pinned += num_bytes;
2500 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2503 cache->reserved -= num_bytes;
2504 cache->space_info->bytes_reserved -= num_bytes;
2506 spin_unlock(&cache->lock);
2507 spin_unlock(&cache->space_info->lock);
2509 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2510 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2514 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2515 u64 bytenr, u64 num_bytes, int reserved)
2517 struct btrfs_block_group *cache;
2519 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2520 BUG_ON(!cache); /* Logic error */
2522 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2524 btrfs_put_block_group(cache);
2529 * this function must be called within transaction
2531 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2532 u64 bytenr, u64 num_bytes)
2534 struct btrfs_block_group *cache;
2537 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2542 * Fully cache the free space first so that our pin removes the free space
2545 ret = btrfs_cache_block_group(cache, true);
2549 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2551 /* remove us from the free space cache (if we're there at all) */
2552 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2554 btrfs_put_block_group(cache);
2558 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2559 u64 start, u64 num_bytes)
2562 struct btrfs_block_group *block_group;
2564 block_group = btrfs_lookup_block_group(fs_info, start);
2568 ret = btrfs_cache_block_group(block_group, true);
2572 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2574 btrfs_put_block_group(block_group);
2578 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2580 struct btrfs_fs_info *fs_info = eb->fs_info;
2581 struct btrfs_file_extent_item *item;
2582 struct btrfs_key key;
2587 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2590 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2591 btrfs_item_key_to_cpu(eb, &key, i);
2592 if (key.type != BTRFS_EXTENT_DATA_KEY)
2594 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2595 found_type = btrfs_file_extent_type(eb, item);
2596 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2598 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2600 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2601 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2602 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2611 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2613 atomic_inc(&bg->reservations);
2617 * Returns the free cluster for the given space info and sets empty_cluster to
2618 * what it should be based on the mount options.
2620 static struct btrfs_free_cluster *
2621 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2622 struct btrfs_space_info *space_info, u64 *empty_cluster)
2624 struct btrfs_free_cluster *ret = NULL;
2627 if (btrfs_mixed_space_info(space_info))
2630 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2631 ret = &fs_info->meta_alloc_cluster;
2632 if (btrfs_test_opt(fs_info, SSD))
2633 *empty_cluster = SZ_2M;
2635 *empty_cluster = SZ_64K;
2636 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2637 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2638 *empty_cluster = SZ_2M;
2639 ret = &fs_info->data_alloc_cluster;
2645 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2647 const bool return_free_space)
2649 struct btrfs_block_group *cache = NULL;
2650 struct btrfs_space_info *space_info;
2651 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2652 struct btrfs_free_cluster *cluster = NULL;
2654 u64 total_unpinned = 0;
2655 u64 empty_cluster = 0;
2658 while (start <= end) {
2661 start >= cache->start + cache->length) {
2663 btrfs_put_block_group(cache);
2665 cache = btrfs_lookup_block_group(fs_info, start);
2666 BUG_ON(!cache); /* Logic error */
2668 cluster = fetch_cluster_info(fs_info,
2671 empty_cluster <<= 1;
2674 len = cache->start + cache->length - start;
2675 len = min(len, end + 1 - start);
2677 if (return_free_space)
2678 btrfs_add_free_space(cache, start, len);
2681 total_unpinned += len;
2682 space_info = cache->space_info;
2685 * If this space cluster has been marked as fragmented and we've
2686 * unpinned enough in this block group to potentially allow a
2687 * cluster to be created inside of it go ahead and clear the
2690 if (cluster && cluster->fragmented &&
2691 total_unpinned > empty_cluster) {
2692 spin_lock(&cluster->lock);
2693 cluster->fragmented = 0;
2694 spin_unlock(&cluster->lock);
2697 spin_lock(&space_info->lock);
2698 spin_lock(&cache->lock);
2699 cache->pinned -= len;
2700 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2701 space_info->max_extent_size = 0;
2703 space_info->bytes_readonly += len;
2705 } else if (btrfs_is_zoned(fs_info)) {
2706 /* Need reset before reusing in a zoned block group */
2707 space_info->bytes_zone_unusable += len;
2710 spin_unlock(&cache->lock);
2711 if (!readonly && return_free_space &&
2712 global_rsv->space_info == space_info) {
2713 spin_lock(&global_rsv->lock);
2714 if (!global_rsv->full) {
2715 u64 to_add = min(len, global_rsv->size -
2716 global_rsv->reserved);
2718 global_rsv->reserved += to_add;
2719 btrfs_space_info_update_bytes_may_use(fs_info,
2720 space_info, to_add);
2721 if (global_rsv->reserved >= global_rsv->size)
2722 global_rsv->full = 1;
2725 spin_unlock(&global_rsv->lock);
2727 /* Add to any tickets we may have */
2728 if (!readonly && return_free_space && len)
2729 btrfs_try_granting_tickets(fs_info, space_info);
2730 spin_unlock(&space_info->lock);
2734 btrfs_put_block_group(cache);
2738 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2740 struct btrfs_fs_info *fs_info = trans->fs_info;
2741 struct btrfs_block_group *block_group, *tmp;
2742 struct list_head *deleted_bgs;
2743 struct extent_io_tree *unpin;
2748 unpin = &trans->transaction->pinned_extents;
2750 while (!TRANS_ABORTED(trans)) {
2751 struct extent_state *cached_state = NULL;
2753 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2754 ret = find_first_extent_bit(unpin, 0, &start, &end,
2755 EXTENT_DIRTY, &cached_state);
2757 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2761 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2762 ret = btrfs_discard_extent(fs_info, start,
2763 end + 1 - start, NULL);
2765 clear_extent_dirty(unpin, start, end, &cached_state);
2766 unpin_extent_range(fs_info, start, end, true);
2767 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2768 free_extent_state(cached_state);
2772 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2773 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2774 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2778 * Transaction is finished. We don't need the lock anymore. We
2779 * do need to clean up the block groups in case of a transaction
2782 deleted_bgs = &trans->transaction->deleted_bgs;
2783 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2787 if (!TRANS_ABORTED(trans))
2788 ret = btrfs_discard_extent(fs_info,
2790 block_group->length,
2793 list_del_init(&block_group->bg_list);
2794 btrfs_unfreeze_block_group(block_group);
2795 btrfs_put_block_group(block_group);
2798 const char *errstr = btrfs_decode_error(ret);
2800 "discard failed while removing blockgroup: errno=%d %s",
2808 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2809 u64 bytenr, u64 num_bytes, bool is_data)
2814 struct btrfs_root *csum_root;
2816 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2817 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2819 btrfs_abort_transaction(trans, ret);
2824 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2826 btrfs_abort_transaction(trans, ret);
2830 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2832 btrfs_abort_transaction(trans, ret);
2837 #define abort_and_dump(trans, path, fmt, args...) \
2839 btrfs_abort_transaction(trans, -EUCLEAN); \
2840 btrfs_print_leaf(path->nodes[0]); \
2841 btrfs_crit(trans->fs_info, fmt, ##args); \
2845 * Drop one or more refs of @node.
2847 * 1. Locate the extent refs.
2848 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2849 * Locate it, then reduce the refs number or remove the ref line completely.
2851 * 2. Update the refs count in EXTENT/METADATA_ITEM
2853 * Inline backref case:
2855 * in extent tree we have:
2857 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2858 * refs 2 gen 6 flags DATA
2859 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2860 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2862 * This function gets called with:
2864 * node->bytenr = 13631488
2865 * node->num_bytes = 1048576
2866 * root_objectid = FS_TREE
2867 * owner_objectid = 257
2871 * Then we should get some like:
2873 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2874 * refs 1 gen 6 flags DATA
2875 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2877 * Keyed backref case:
2879 * in extent tree we have:
2881 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2882 * refs 754 gen 6 flags DATA
2884 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2885 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2887 * This function get called with:
2889 * node->bytenr = 13631488
2890 * node->num_bytes = 1048576
2891 * root_objectid = FS_TREE
2892 * owner_objectid = 866
2896 * Then we should get some like:
2898 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2899 * refs 753 gen 6 flags DATA
2901 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2903 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2904 struct btrfs_delayed_ref_node *node, u64 parent,
2905 u64 root_objectid, u64 owner_objectid,
2906 u64 owner_offset, int refs_to_drop,
2907 struct btrfs_delayed_extent_op *extent_op)
2909 struct btrfs_fs_info *info = trans->fs_info;
2910 struct btrfs_key key;
2911 struct btrfs_path *path;
2912 struct btrfs_root *extent_root;
2913 struct extent_buffer *leaf;
2914 struct btrfs_extent_item *ei;
2915 struct btrfs_extent_inline_ref *iref;
2918 int extent_slot = 0;
2919 int found_extent = 0;
2923 u64 bytenr = node->bytenr;
2924 u64 num_bytes = node->num_bytes;
2925 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2927 extent_root = btrfs_extent_root(info, bytenr);
2928 ASSERT(extent_root);
2930 path = btrfs_alloc_path();
2934 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2936 if (!is_data && refs_to_drop != 1) {
2938 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2939 node->bytenr, refs_to_drop);
2941 btrfs_abort_transaction(trans, ret);
2946 skinny_metadata = false;
2948 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2949 parent, root_objectid, owner_objectid,
2953 * Either the inline backref or the SHARED_DATA_REF/
2954 * SHARED_BLOCK_REF is found
2956 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2957 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2959 extent_slot = path->slots[0];
2960 while (extent_slot >= 0) {
2961 btrfs_item_key_to_cpu(path->nodes[0], &key,
2963 if (key.objectid != bytenr)
2965 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2966 key.offset == num_bytes) {
2970 if (key.type == BTRFS_METADATA_ITEM_KEY &&
2971 key.offset == owner_objectid) {
2976 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
2977 if (path->slots[0] - extent_slot > 5)
2982 if (!found_extent) {
2984 abort_and_dump(trans, path,
2985 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
2990 /* Must be SHARED_* item, remove the backref first */
2991 ret = remove_extent_backref(trans, extent_root, path,
2992 NULL, refs_to_drop, is_data);
2994 btrfs_abort_transaction(trans, ret);
2997 btrfs_release_path(path);
2999 /* Slow path to locate EXTENT/METADATA_ITEM */
3000 key.objectid = bytenr;
3001 key.type = BTRFS_EXTENT_ITEM_KEY;
3002 key.offset = num_bytes;
3004 if (!is_data && skinny_metadata) {
3005 key.type = BTRFS_METADATA_ITEM_KEY;
3006 key.offset = owner_objectid;
3009 ret = btrfs_search_slot(trans, extent_root,
3011 if (ret > 0 && skinny_metadata && path->slots[0]) {
3013 * Couldn't find our skinny metadata item,
3014 * see if we have ye olde extent item.
3017 btrfs_item_key_to_cpu(path->nodes[0], &key,
3019 if (key.objectid == bytenr &&
3020 key.type == BTRFS_EXTENT_ITEM_KEY &&
3021 key.offset == num_bytes)
3025 if (ret > 0 && skinny_metadata) {
3026 skinny_metadata = false;
3027 key.objectid = bytenr;
3028 key.type = BTRFS_EXTENT_ITEM_KEY;
3029 key.offset = num_bytes;
3030 btrfs_release_path(path);
3031 ret = btrfs_search_slot(trans, extent_root,
3037 btrfs_print_leaf(path->nodes[0]);
3039 "umm, got %d back from search, was looking for %llu, slot %d",
3040 ret, bytenr, path->slots[0]);
3043 btrfs_abort_transaction(trans, ret);
3046 extent_slot = path->slots[0];
3048 } else if (WARN_ON(ret == -ENOENT)) {
3049 abort_and_dump(trans, path,
3050 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3051 bytenr, parent, root_objectid, owner_objectid,
3052 owner_offset, path->slots[0]);
3055 btrfs_abort_transaction(trans, ret);
3059 leaf = path->nodes[0];
3060 item_size = btrfs_item_size(leaf, extent_slot);
3061 if (unlikely(item_size < sizeof(*ei))) {
3063 btrfs_print_v0_err(info);
3064 btrfs_abort_transaction(trans, ret);
3067 ei = btrfs_item_ptr(leaf, extent_slot,
3068 struct btrfs_extent_item);
3069 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3070 key.type == BTRFS_EXTENT_ITEM_KEY) {
3071 struct btrfs_tree_block_info *bi;
3073 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3074 abort_and_dump(trans, path,
3075 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3076 key.objectid, key.type, key.offset,
3077 path->slots[0], owner_objectid, item_size,
3078 sizeof(*ei) + sizeof(*bi));
3082 bi = (struct btrfs_tree_block_info *)(ei + 1);
3083 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3086 refs = btrfs_extent_refs(leaf, ei);
3087 if (refs < refs_to_drop) {
3088 abort_and_dump(trans, path,
3089 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3090 refs_to_drop, refs, bytenr, path->slots[0]);
3094 refs -= refs_to_drop;
3098 __run_delayed_extent_op(extent_op, leaf, ei);
3100 * In the case of inline back ref, reference count will
3101 * be updated by remove_extent_backref
3104 if (!found_extent) {
3105 abort_and_dump(trans, path,
3106 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3112 btrfs_set_extent_refs(leaf, ei, refs);
3113 btrfs_mark_buffer_dirty(leaf);
3116 ret = remove_extent_backref(trans, extent_root, path,
3117 iref, refs_to_drop, is_data);
3119 btrfs_abort_transaction(trans, ret);
3124 /* In this branch refs == 1 */
3126 if (is_data && refs_to_drop !=
3127 extent_data_ref_count(path, iref)) {
3128 abort_and_dump(trans, path,
3129 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3130 extent_data_ref_count(path, iref),
3131 refs_to_drop, path->slots[0]);
3136 if (path->slots[0] != extent_slot) {
3137 abort_and_dump(trans, path,
3138 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3139 key.objectid, key.type,
3140 key.offset, path->slots[0]);
3146 * No inline ref, we must be at SHARED_* item,
3147 * And it's single ref, it must be:
3148 * | extent_slot ||extent_slot + 1|
3149 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3151 if (path->slots[0] != extent_slot + 1) {
3152 abort_and_dump(trans, path,
3153 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3158 path->slots[0] = extent_slot;
3163 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3166 btrfs_abort_transaction(trans, ret);
3169 btrfs_release_path(path);
3171 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3173 btrfs_release_path(path);
3176 btrfs_free_path(path);
3181 * when we free an block, it is possible (and likely) that we free the last
3182 * delayed ref for that extent as well. This searches the delayed ref tree for
3183 * a given extent, and if there are no other delayed refs to be processed, it
3184 * removes it from the tree.
3186 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3189 struct btrfs_delayed_ref_head *head;
3190 struct btrfs_delayed_ref_root *delayed_refs;
3193 delayed_refs = &trans->transaction->delayed_refs;
3194 spin_lock(&delayed_refs->lock);
3195 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3197 goto out_delayed_unlock;
3199 spin_lock(&head->lock);
3200 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3203 if (cleanup_extent_op(head) != NULL)
3207 * waiting for the lock here would deadlock. If someone else has it
3208 * locked they are already in the process of dropping it anyway
3210 if (!mutex_trylock(&head->mutex))
3213 btrfs_delete_ref_head(delayed_refs, head);
3214 head->processing = false;
3216 spin_unlock(&head->lock);
3217 spin_unlock(&delayed_refs->lock);
3219 BUG_ON(head->extent_op);
3220 if (head->must_insert_reserved)
3223 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3224 mutex_unlock(&head->mutex);
3225 btrfs_put_delayed_ref_head(head);
3228 spin_unlock(&head->lock);
3231 spin_unlock(&delayed_refs->lock);
3235 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3237 struct extent_buffer *buf,
3238 u64 parent, int last_ref)
3240 struct btrfs_fs_info *fs_info = trans->fs_info;
3241 struct btrfs_ref generic_ref = { 0 };
3244 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3245 buf->start, buf->len, parent);
3246 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3249 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3250 btrfs_ref_tree_mod(fs_info, &generic_ref);
3251 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3252 BUG_ON(ret); /* -ENOMEM */
3255 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3256 struct btrfs_block_group *cache;
3257 bool must_pin = false;
3259 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3260 ret = check_ref_cleanup(trans, buf->start);
3262 btrfs_redirty_list_add(trans->transaction, buf);
3267 cache = btrfs_lookup_block_group(fs_info, buf->start);
3269 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3270 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3271 btrfs_put_block_group(cache);
3276 * If there are tree mod log users we may have recorded mod log
3277 * operations for this node. If we re-allocate this node we
3278 * could replay operations on this node that happened when it
3279 * existed in a completely different root. For example if it
3280 * was part of root A, then was reallocated to root B, and we
3281 * are doing a btrfs_old_search_slot(root b), we could replay
3282 * operations that happened when the block was part of root A,
3283 * giving us an inconsistent view of the btree.
3285 * We are safe from races here because at this point no other
3286 * node or root points to this extent buffer, so if after this
3287 * check a new tree mod log user joins we will not have an
3288 * existing log of operations on this node that we have to
3291 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3294 if (must_pin || btrfs_is_zoned(fs_info)) {
3295 btrfs_redirty_list_add(trans->transaction, buf);
3296 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3297 btrfs_put_block_group(cache);
3301 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3303 btrfs_add_free_space(cache, buf->start, buf->len);
3304 btrfs_free_reserved_bytes(cache, buf->len, 0);
3305 btrfs_put_block_group(cache);
3306 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3311 * Deleting the buffer, clear the corrupt flag since it doesn't
3314 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3318 /* Can return -ENOMEM */
3319 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3321 struct btrfs_fs_info *fs_info = trans->fs_info;
3324 if (btrfs_is_testing(fs_info))
3328 * tree log blocks never actually go into the extent allocation
3329 * tree, just update pinning info and exit early.
3331 if ((ref->type == BTRFS_REF_METADATA &&
3332 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3333 (ref->type == BTRFS_REF_DATA &&
3334 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3335 /* unlocks the pinned mutex */
3336 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3338 } else if (ref->type == BTRFS_REF_METADATA) {
3339 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3341 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3344 if (!((ref->type == BTRFS_REF_METADATA &&
3345 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3346 (ref->type == BTRFS_REF_DATA &&
3347 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3348 btrfs_ref_tree_mod(fs_info, ref);
3353 enum btrfs_loop_type {
3354 LOOP_CACHING_NOWAIT,
3356 LOOP_UNSET_SIZE_CLASS,
3358 LOOP_WRONG_SIZE_CLASS,
3363 btrfs_lock_block_group(struct btrfs_block_group *cache,
3367 down_read(&cache->data_rwsem);
3370 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3373 btrfs_get_block_group(cache);
3375 down_read(&cache->data_rwsem);
3378 static struct btrfs_block_group *btrfs_lock_cluster(
3379 struct btrfs_block_group *block_group,
3380 struct btrfs_free_cluster *cluster,
3382 __acquires(&cluster->refill_lock)
3384 struct btrfs_block_group *used_bg = NULL;
3386 spin_lock(&cluster->refill_lock);
3388 used_bg = cluster->block_group;
3392 if (used_bg == block_group)
3395 btrfs_get_block_group(used_bg);
3400 if (down_read_trylock(&used_bg->data_rwsem))
3403 spin_unlock(&cluster->refill_lock);
3405 /* We should only have one-level nested. */
3406 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3408 spin_lock(&cluster->refill_lock);
3409 if (used_bg == cluster->block_group)
3412 up_read(&used_bg->data_rwsem);
3413 btrfs_put_block_group(used_bg);
3418 btrfs_release_block_group(struct btrfs_block_group *cache,
3422 up_read(&cache->data_rwsem);
3423 btrfs_put_block_group(cache);
3427 * Helper function for find_free_extent().
3429 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3430 * Return -EAGAIN to inform caller that we need to re-search this block group
3431 * Return >0 to inform caller that we find nothing
3432 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3434 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3435 struct find_free_extent_ctl *ffe_ctl,
3436 struct btrfs_block_group **cluster_bg_ret)
3438 struct btrfs_block_group *cluster_bg;
3439 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3440 u64 aligned_cluster;
3444 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3446 goto refill_cluster;
3447 if (cluster_bg != bg && (cluster_bg->ro ||
3448 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3449 goto release_cluster;
3451 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3452 ffe_ctl->num_bytes, cluster_bg->start,
3453 &ffe_ctl->max_extent_size);
3455 /* We have a block, we're done */
3456 spin_unlock(&last_ptr->refill_lock);
3457 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3458 *cluster_bg_ret = cluster_bg;
3459 ffe_ctl->found_offset = offset;
3462 WARN_ON(last_ptr->block_group != cluster_bg);
3466 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3467 * lets just skip it and let the allocator find whatever block it can
3468 * find. If we reach this point, we will have tried the cluster
3469 * allocator plenty of times and not have found anything, so we are
3470 * likely way too fragmented for the clustering stuff to find anything.
3472 * However, if the cluster is taken from the current block group,
3473 * release the cluster first, so that we stand a better chance of
3474 * succeeding in the unclustered allocation.
3476 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3477 spin_unlock(&last_ptr->refill_lock);
3478 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3482 /* This cluster didn't work out, free it and start over */
3483 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3485 if (cluster_bg != bg)
3486 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3489 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3490 spin_unlock(&last_ptr->refill_lock);
3494 aligned_cluster = max_t(u64,
3495 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3496 bg->full_stripe_len);
3497 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3498 ffe_ctl->num_bytes, aligned_cluster);
3500 /* Now pull our allocation out of this cluster */
3501 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3502 ffe_ctl->num_bytes, ffe_ctl->search_start,
3503 &ffe_ctl->max_extent_size);
3505 /* We found one, proceed */
3506 spin_unlock(&last_ptr->refill_lock);
3507 ffe_ctl->found_offset = offset;
3508 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3511 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3512 !ffe_ctl->retry_clustered) {
3513 spin_unlock(&last_ptr->refill_lock);
3515 ffe_ctl->retry_clustered = true;
3516 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3517 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3521 * At this point we either didn't find a cluster or we weren't able to
3522 * allocate a block from our cluster. Free the cluster we've been
3523 * trying to use, and go to the next block group.
3525 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3526 spin_unlock(&last_ptr->refill_lock);
3531 * Return >0 to inform caller that we find nothing
3532 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3533 * Return -EAGAIN to inform caller that we need to re-search this block group
3535 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3536 struct find_free_extent_ctl *ffe_ctl)
3538 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3542 * We are doing an unclustered allocation, set the fragmented flag so
3543 * we don't bother trying to setup a cluster again until we get more
3546 if (unlikely(last_ptr)) {
3547 spin_lock(&last_ptr->lock);
3548 last_ptr->fragmented = 1;
3549 spin_unlock(&last_ptr->lock);
3551 if (ffe_ctl->cached) {
3552 struct btrfs_free_space_ctl *free_space_ctl;
3554 free_space_ctl = bg->free_space_ctl;
3555 spin_lock(&free_space_ctl->tree_lock);
3556 if (free_space_ctl->free_space <
3557 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3558 ffe_ctl->empty_size) {
3559 ffe_ctl->total_free_space = max_t(u64,
3560 ffe_ctl->total_free_space,
3561 free_space_ctl->free_space);
3562 spin_unlock(&free_space_ctl->tree_lock);
3565 spin_unlock(&free_space_ctl->tree_lock);
3568 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3569 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3570 &ffe_ctl->max_extent_size);
3573 * If we didn't find a chunk, and we haven't failed on this block group
3574 * before, and this block group is in the middle of caching and we are
3575 * ok with waiting, then go ahead and wait for progress to be made, and
3576 * set @retry_unclustered to true.
3578 * If @retry_unclustered is true then we've already waited on this
3579 * block group once and should move on to the next block group.
3581 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3582 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3583 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3584 ffe_ctl->empty_size);
3585 ffe_ctl->retry_unclustered = true;
3587 } else if (!offset) {
3590 ffe_ctl->found_offset = offset;
3594 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3595 struct find_free_extent_ctl *ffe_ctl,
3596 struct btrfs_block_group **bg_ret)
3600 /* We want to try and use the cluster allocator, so lets look there */
3601 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3602 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3603 if (ret >= 0 || ret == -EAGAIN)
3605 /* ret == -ENOENT case falls through */
3608 return find_free_extent_unclustered(block_group, ffe_ctl);
3612 * Tree-log block group locking
3613 * ============================
3615 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3616 * indicates the starting address of a block group, which is reserved only
3617 * for tree-log metadata.
3624 * fs_info::treelog_bg_lock
3628 * Simple allocator for sequential-only block group. It only allows sequential
3629 * allocation. No need to play with trees. This function also reserves the
3630 * bytes as in btrfs_add_reserved_bytes.
3632 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3633 struct find_free_extent_ctl *ffe_ctl,
3634 struct btrfs_block_group **bg_ret)
3636 struct btrfs_fs_info *fs_info = block_group->fs_info;
3637 struct btrfs_space_info *space_info = block_group->space_info;
3638 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3639 u64 start = block_group->start;
3640 u64 num_bytes = ffe_ctl->num_bytes;
3642 u64 bytenr = block_group->start;
3644 u64 data_reloc_bytenr;
3648 ASSERT(btrfs_is_zoned(block_group->fs_info));
3651 * Do not allow non-tree-log blocks in the dedicated tree-log block
3652 * group, and vice versa.
3654 spin_lock(&fs_info->treelog_bg_lock);
3655 log_bytenr = fs_info->treelog_bg;
3656 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3657 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3659 spin_unlock(&fs_info->treelog_bg_lock);
3664 * Do not allow non-relocation blocks in the dedicated relocation block
3665 * group, and vice versa.
3667 spin_lock(&fs_info->relocation_bg_lock);
3668 data_reloc_bytenr = fs_info->data_reloc_bg;
3669 if (data_reloc_bytenr &&
3670 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3671 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3673 spin_unlock(&fs_info->relocation_bg_lock);
3677 /* Check RO and no space case before trying to activate it */
3678 spin_lock(&block_group->lock);
3679 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3682 * May need to clear fs_info->{treelog,data_reloc}_bg.
3683 * Return the error after taking the locks.
3686 spin_unlock(&block_group->lock);
3688 if (!ret && !btrfs_zone_activate(block_group)) {
3691 * May need to clear fs_info->{treelog,data_reloc}_bg.
3692 * Return the error after taking the locks.
3696 spin_lock(&space_info->lock);
3697 spin_lock(&block_group->lock);
3698 spin_lock(&fs_info->treelog_bg_lock);
3699 spin_lock(&fs_info->relocation_bg_lock);
3704 ASSERT(!ffe_ctl->for_treelog ||
3705 block_group->start == fs_info->treelog_bg ||
3706 fs_info->treelog_bg == 0);
3707 ASSERT(!ffe_ctl->for_data_reloc ||
3708 block_group->start == fs_info->data_reloc_bg ||
3709 fs_info->data_reloc_bg == 0);
3711 if (block_group->ro ||
3712 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
3718 * Do not allow currently using block group to be tree-log dedicated
3721 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3722 (block_group->used || block_group->reserved)) {
3728 * Do not allow currently used block group to be the data relocation
3729 * dedicated block group.
3731 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3732 (block_group->used || block_group->reserved)) {
3737 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3738 avail = block_group->zone_capacity - block_group->alloc_offset;
3739 if (avail < num_bytes) {
3740 if (ffe_ctl->max_extent_size < avail) {
3742 * With sequential allocator, free space is always
3745 ffe_ctl->max_extent_size = avail;
3746 ffe_ctl->total_free_space = avail;
3752 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3753 fs_info->treelog_bg = block_group->start;
3755 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3756 fs_info->data_reloc_bg = block_group->start;
3758 ffe_ctl->found_offset = start + block_group->alloc_offset;
3759 block_group->alloc_offset += num_bytes;
3760 spin_lock(&ctl->tree_lock);
3761 ctl->free_space -= num_bytes;
3762 spin_unlock(&ctl->tree_lock);
3765 * We do not check if found_offset is aligned to stripesize. The
3766 * address is anyway rewritten when using zone append writing.
3769 ffe_ctl->search_start = ffe_ctl->found_offset;
3772 if (ret && ffe_ctl->for_treelog)
3773 fs_info->treelog_bg = 0;
3774 if (ret && ffe_ctl->for_data_reloc &&
3775 fs_info->data_reloc_bg == block_group->start) {
3777 * Do not allow further allocations from this block group.
3778 * Compared to increasing the ->ro, setting the
3779 * ->zoned_data_reloc_ongoing flag still allows nocow
3780 * writers to come in. See btrfs_inc_nocow_writers().
3782 * We need to disable an allocation to avoid an allocation of
3783 * regular (non-relocation data) extent. With mix of relocation
3784 * extents and regular extents, we can dispatch WRITE commands
3785 * (for relocation extents) and ZONE APPEND commands (for
3786 * regular extents) at the same time to the same zone, which
3787 * easily break the write pointer.
3789 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3790 fs_info->data_reloc_bg = 0;
3792 spin_unlock(&fs_info->relocation_bg_lock);
3793 spin_unlock(&fs_info->treelog_bg_lock);
3794 spin_unlock(&block_group->lock);
3795 spin_unlock(&space_info->lock);
3799 static int do_allocation(struct btrfs_block_group *block_group,
3800 struct find_free_extent_ctl *ffe_ctl,
3801 struct btrfs_block_group **bg_ret)
3803 switch (ffe_ctl->policy) {
3804 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3805 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3806 case BTRFS_EXTENT_ALLOC_ZONED:
3807 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3813 static void release_block_group(struct btrfs_block_group *block_group,
3814 struct find_free_extent_ctl *ffe_ctl,
3817 switch (ffe_ctl->policy) {
3818 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3819 ffe_ctl->retry_clustered = false;
3820 ffe_ctl->retry_unclustered = false;
3822 case BTRFS_EXTENT_ALLOC_ZONED:
3829 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3831 btrfs_release_block_group(block_group, delalloc);
3834 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3835 struct btrfs_key *ins)
3837 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3839 if (!ffe_ctl->use_cluster && last_ptr) {
3840 spin_lock(&last_ptr->lock);
3841 last_ptr->window_start = ins->objectid;
3842 spin_unlock(&last_ptr->lock);
3846 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3847 struct btrfs_key *ins)
3849 switch (ffe_ctl->policy) {
3850 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3851 found_extent_clustered(ffe_ctl, ins);
3853 case BTRFS_EXTENT_ALLOC_ZONED:
3861 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3862 struct find_free_extent_ctl *ffe_ctl)
3864 /* If we can activate new zone, just allocate a chunk and use it */
3865 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3869 * We already reached the max active zones. Try to finish one block
3870 * group to make a room for a new block group. This is only possible
3871 * for a data block group because btrfs_zone_finish() may need to wait
3872 * for a running transaction which can cause a deadlock for metadata
3875 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3876 int ret = btrfs_zone_finish_one_bg(fs_info);
3885 * If we have enough free space left in an already active block group
3886 * and we can't activate any other zone now, do not allow allocating a
3887 * new chunk and let find_free_extent() retry with a smaller size.
3889 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3893 * Even min_alloc_size is not left in any block groups. Since we cannot
3894 * activate a new block group, allocating it may not help. Let's tell a
3895 * caller to try again and hope it progress something by writing some
3896 * parts of the region. That is only possible for data block groups,
3897 * where a part of the region can be written.
3899 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3903 * We cannot activate a new block group and no enough space left in any
3904 * block groups. So, allocating a new block group may not help. But,
3905 * there is nothing to do anyway, so let's go with it.
3910 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3911 struct find_free_extent_ctl *ffe_ctl)
3913 switch (ffe_ctl->policy) {
3914 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3916 case BTRFS_EXTENT_ALLOC_ZONED:
3917 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3924 * Return >0 means caller needs to re-search for free extent
3925 * Return 0 means we have the needed free extent.
3926 * Return <0 means we failed to locate any free extent.
3928 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3929 struct btrfs_key *ins,
3930 struct find_free_extent_ctl *ffe_ctl,
3933 struct btrfs_root *root = fs_info->chunk_root;
3936 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3937 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3938 ffe_ctl->orig_have_caching_bg = true;
3940 if (ins->objectid) {
3941 found_extent(ffe_ctl, ins);
3945 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
3949 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
3953 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3954 * caching kthreads as we move along
3955 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3956 * LOOP_UNSET_SIZE_CLASS, allow unset size class
3957 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3958 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3961 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3964 * We want to skip the LOOP_CACHING_WAIT step if we don't have
3965 * any uncached bgs and we've already done a full search
3968 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
3969 (!ffe_ctl->orig_have_caching_bg && full_search))
3973 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3974 struct btrfs_trans_handle *trans;
3977 /* Check if allocation policy allows to create a new chunk */
3978 ret = can_allocate_chunk(fs_info, ffe_ctl);
3982 trans = current->journal_info;
3986 trans = btrfs_join_transaction(root);
3988 if (IS_ERR(trans)) {
3989 ret = PTR_ERR(trans);
3993 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3994 CHUNK_ALLOC_FORCE_FOR_EXTENT);
3996 /* Do not bail out on ENOSPC since we can do more. */
3997 if (ret == -ENOSPC) {
4002 btrfs_abort_transaction(trans, ret);
4006 btrfs_end_transaction(trans);
4011 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4012 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4016 * Don't loop again if we already have no empty_size and
4019 if (ffe_ctl->empty_size == 0 &&
4020 ffe_ctl->empty_cluster == 0)
4022 ffe_ctl->empty_size = 0;
4023 ffe_ctl->empty_cluster = 0;
4030 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4031 struct btrfs_block_group *bg)
4033 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4035 if (!btrfs_block_group_should_use_size_class(bg))
4037 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4039 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4040 bg->size_class == BTRFS_BG_SZ_NONE)
4042 return ffe_ctl->size_class == bg->size_class;
4045 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4046 struct find_free_extent_ctl *ffe_ctl,
4047 struct btrfs_space_info *space_info,
4048 struct btrfs_key *ins)
4051 * If our free space is heavily fragmented we may not be able to make
4052 * big contiguous allocations, so instead of doing the expensive search
4053 * for free space, simply return ENOSPC with our max_extent_size so we
4054 * can go ahead and search for a more manageable chunk.
4056 * If our max_extent_size is large enough for our allocation simply
4057 * disable clustering since we will likely not be able to find enough
4058 * space to create a cluster and induce latency trying.
4060 if (space_info->max_extent_size) {
4061 spin_lock(&space_info->lock);
4062 if (space_info->max_extent_size &&
4063 ffe_ctl->num_bytes > space_info->max_extent_size) {
4064 ins->offset = space_info->max_extent_size;
4065 spin_unlock(&space_info->lock);
4067 } else if (space_info->max_extent_size) {
4068 ffe_ctl->use_cluster = false;
4070 spin_unlock(&space_info->lock);
4073 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4074 &ffe_ctl->empty_cluster);
4075 if (ffe_ctl->last_ptr) {
4076 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4078 spin_lock(&last_ptr->lock);
4079 if (last_ptr->block_group)
4080 ffe_ctl->hint_byte = last_ptr->window_start;
4081 if (last_ptr->fragmented) {
4083 * We still set window_start so we can keep track of the
4084 * last place we found an allocation to try and save
4087 ffe_ctl->hint_byte = last_ptr->window_start;
4088 ffe_ctl->use_cluster = false;
4090 spin_unlock(&last_ptr->lock);
4096 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4097 struct find_free_extent_ctl *ffe_ctl,
4098 struct btrfs_space_info *space_info,
4099 struct btrfs_key *ins)
4101 switch (ffe_ctl->policy) {
4102 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4103 return prepare_allocation_clustered(fs_info, ffe_ctl,
4105 case BTRFS_EXTENT_ALLOC_ZONED:
4106 if (ffe_ctl->for_treelog) {
4107 spin_lock(&fs_info->treelog_bg_lock);
4108 if (fs_info->treelog_bg)
4109 ffe_ctl->hint_byte = fs_info->treelog_bg;
4110 spin_unlock(&fs_info->treelog_bg_lock);
4112 if (ffe_ctl->for_data_reloc) {
4113 spin_lock(&fs_info->relocation_bg_lock);
4114 if (fs_info->data_reloc_bg)
4115 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4116 spin_unlock(&fs_info->relocation_bg_lock);
4125 * walks the btree of allocated extents and find a hole of a given size.
4126 * The key ins is changed to record the hole:
4127 * ins->objectid == start position
4128 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4129 * ins->offset == the size of the hole.
4130 * Any available blocks before search_start are skipped.
4132 * If there is no suitable free space, we will record the max size of
4133 * the free space extent currently.
4135 * The overall logic and call chain:
4137 * find_free_extent()
4138 * |- Iterate through all block groups
4139 * | |- Get a valid block group
4140 * | |- Try to do clustered allocation in that block group
4141 * | |- Try to do unclustered allocation in that block group
4142 * | |- Check if the result is valid
4143 * | | |- If valid, then exit
4144 * | |- Jump to next block group
4146 * |- Push harder to find free extents
4147 * |- If not found, re-iterate all block groups
4149 static noinline int find_free_extent(struct btrfs_root *root,
4150 struct btrfs_key *ins,
4151 struct find_free_extent_ctl *ffe_ctl)
4153 struct btrfs_fs_info *fs_info = root->fs_info;
4155 int cache_block_group_error = 0;
4156 struct btrfs_block_group *block_group = NULL;
4157 struct btrfs_space_info *space_info;
4158 bool full_search = false;
4160 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4162 ffe_ctl->search_start = 0;
4163 /* For clustered allocation */
4164 ffe_ctl->empty_cluster = 0;
4165 ffe_ctl->last_ptr = NULL;
4166 ffe_ctl->use_cluster = true;
4167 ffe_ctl->have_caching_bg = false;
4168 ffe_ctl->orig_have_caching_bg = false;
4169 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4171 /* For clustered allocation */
4172 ffe_ctl->retry_clustered = false;
4173 ffe_ctl->retry_unclustered = false;
4174 ffe_ctl->cached = 0;
4175 ffe_ctl->max_extent_size = 0;
4176 ffe_ctl->total_free_space = 0;
4177 ffe_ctl->found_offset = 0;
4178 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4179 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4181 if (btrfs_is_zoned(fs_info))
4182 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4184 ins->type = BTRFS_EXTENT_ITEM_KEY;
4188 trace_find_free_extent(root, ffe_ctl);
4190 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4192 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4196 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4200 ffe_ctl->search_start = max(ffe_ctl->search_start,
4201 first_logical_byte(fs_info));
4202 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4203 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4204 block_group = btrfs_lookup_block_group(fs_info,
4205 ffe_ctl->search_start);
4207 * we don't want to use the block group if it doesn't match our
4208 * allocation bits, or if its not cached.
4210 * However if we are re-searching with an ideal block group
4211 * picked out then we don't care that the block group is cached.
4213 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4214 block_group->cached != BTRFS_CACHE_NO) {
4215 down_read(&space_info->groups_sem);
4216 if (list_empty(&block_group->list) ||
4219 * someone is removing this block group,
4220 * we can't jump into the have_block_group
4221 * target because our list pointers are not
4224 btrfs_put_block_group(block_group);
4225 up_read(&space_info->groups_sem);
4227 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4228 block_group->flags);
4229 btrfs_lock_block_group(block_group,
4231 ffe_ctl->hinted = true;
4232 goto have_block_group;
4234 } else if (block_group) {
4235 btrfs_put_block_group(block_group);
4239 trace_find_free_extent_search_loop(root, ffe_ctl);
4240 ffe_ctl->have_caching_bg = false;
4241 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4242 ffe_ctl->index == 0)
4244 down_read(&space_info->groups_sem);
4245 list_for_each_entry(block_group,
4246 &space_info->block_groups[ffe_ctl->index], list) {
4247 struct btrfs_block_group *bg_ret;
4249 ffe_ctl->hinted = false;
4250 /* If the block group is read-only, we can skip it entirely. */
4251 if (unlikely(block_group->ro)) {
4252 if (ffe_ctl->for_treelog)
4253 btrfs_clear_treelog_bg(block_group);
4254 if (ffe_ctl->for_data_reloc)
4255 btrfs_clear_data_reloc_bg(block_group);
4259 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4260 ffe_ctl->search_start = block_group->start;
4263 * this can happen if we end up cycling through all the
4264 * raid types, but we want to make sure we only allocate
4265 * for the proper type.
4267 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4268 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4269 BTRFS_BLOCK_GROUP_RAID1_MASK |
4270 BTRFS_BLOCK_GROUP_RAID56_MASK |
4271 BTRFS_BLOCK_GROUP_RAID10;
4274 * if they asked for extra copies and this block group
4275 * doesn't provide them, bail. This does allow us to
4276 * fill raid0 from raid1.
4278 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4282 * This block group has different flags than we want.
4283 * It's possible that we have MIXED_GROUP flag but no
4284 * block group is mixed. Just skip such block group.
4286 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4291 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4292 ffe_ctl->cached = btrfs_block_group_done(block_group);
4293 if (unlikely(!ffe_ctl->cached)) {
4294 ffe_ctl->have_caching_bg = true;
4295 ret = btrfs_cache_block_group(block_group, false);
4298 * If we get ENOMEM here or something else we want to
4299 * try other block groups, because it may not be fatal.
4300 * However if we can't find anything else we need to
4301 * save our return here so that we return the actual
4302 * error that caused problems, not ENOSPC.
4305 if (!cache_block_group_error)
4306 cache_block_group_error = ret;
4313 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4316 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4320 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4322 if (bg_ret && bg_ret != block_group) {
4323 btrfs_release_block_group(block_group,
4325 block_group = bg_ret;
4327 } else if (ret == -EAGAIN) {
4328 goto have_block_group;
4329 } else if (ret > 0) {
4334 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4335 fs_info->stripesize);
4337 /* move on to the next group */
4338 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4339 block_group->start + block_group->length) {
4340 btrfs_add_free_space_unused(block_group,
4341 ffe_ctl->found_offset,
4342 ffe_ctl->num_bytes);
4346 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4347 btrfs_add_free_space_unused(block_group,
4348 ffe_ctl->found_offset,
4349 ffe_ctl->search_start - ffe_ctl->found_offset);
4351 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4354 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4355 if (ret == -EAGAIN) {
4356 btrfs_add_free_space_unused(block_group,
4357 ffe_ctl->found_offset,
4358 ffe_ctl->num_bytes);
4361 btrfs_inc_block_group_reservations(block_group);
4363 /* we are all good, lets return */
4364 ins->objectid = ffe_ctl->search_start;
4365 ins->offset = ffe_ctl->num_bytes;
4367 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4368 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4371 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4374 up_read(&space_info->groups_sem);
4376 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4380 if (ret == -ENOSPC && !cache_block_group_error) {
4382 * Use ffe_ctl->total_free_space as fallback if we can't find
4383 * any contiguous hole.
4385 if (!ffe_ctl->max_extent_size)
4386 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4387 spin_lock(&space_info->lock);
4388 space_info->max_extent_size = ffe_ctl->max_extent_size;
4389 spin_unlock(&space_info->lock);
4390 ins->offset = ffe_ctl->max_extent_size;
4391 } else if (ret == -ENOSPC) {
4392 ret = cache_block_group_error;
4398 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4399 * hole that is at least as big as @num_bytes.
4401 * @root - The root that will contain this extent
4403 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4404 * is used for accounting purposes. This value differs
4405 * from @num_bytes only in the case of compressed extents.
4407 * @num_bytes - Number of bytes to allocate on-disk.
4409 * @min_alloc_size - Indicates the minimum amount of space that the
4410 * allocator should try to satisfy. In some cases
4411 * @num_bytes may be larger than what is required and if
4412 * the filesystem is fragmented then allocation fails.
4413 * However, the presence of @min_alloc_size gives a
4414 * chance to try and satisfy the smaller allocation.
4416 * @empty_size - A hint that you plan on doing more COW. This is the
4417 * size in bytes the allocator should try to find free
4418 * next to the block it returns. This is just a hint and
4419 * may be ignored by the allocator.
4421 * @hint_byte - Hint to the allocator to start searching above the byte
4422 * address passed. It might be ignored.
4424 * @ins - This key is modified to record the found hole. It will
4425 * have the following values:
4426 * ins->objectid == start position
4427 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4428 * ins->offset == the size of the hole.
4430 * @is_data - Boolean flag indicating whether an extent is
4431 * allocated for data (true) or metadata (false)
4433 * @delalloc - Boolean flag indicating whether this allocation is for
4434 * delalloc or not. If 'true' data_rwsem of block groups
4435 * is going to be acquired.
4438 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4439 * case -ENOSPC is returned then @ins->offset will contain the size of the
4440 * largest available hole the allocator managed to find.
4442 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4443 u64 num_bytes, u64 min_alloc_size,
4444 u64 empty_size, u64 hint_byte,
4445 struct btrfs_key *ins, int is_data, int delalloc)
4447 struct btrfs_fs_info *fs_info = root->fs_info;
4448 struct find_free_extent_ctl ffe_ctl = {};
4449 bool final_tried = num_bytes == min_alloc_size;
4452 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4453 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4455 flags = get_alloc_profile_by_root(root, is_data);
4457 WARN_ON(num_bytes < fs_info->sectorsize);
4459 ffe_ctl.ram_bytes = ram_bytes;
4460 ffe_ctl.num_bytes = num_bytes;
4461 ffe_ctl.min_alloc_size = min_alloc_size;
4462 ffe_ctl.empty_size = empty_size;
4463 ffe_ctl.flags = flags;
4464 ffe_ctl.delalloc = delalloc;
4465 ffe_ctl.hint_byte = hint_byte;
4466 ffe_ctl.for_treelog = for_treelog;
4467 ffe_ctl.for_data_reloc = for_data_reloc;
4469 ret = find_free_extent(root, ins, &ffe_ctl);
4470 if (!ret && !is_data) {
4471 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4472 } else if (ret == -ENOSPC) {
4473 if (!final_tried && ins->offset) {
4474 num_bytes = min(num_bytes >> 1, ins->offset);
4475 num_bytes = round_down(num_bytes,
4476 fs_info->sectorsize);
4477 num_bytes = max(num_bytes, min_alloc_size);
4478 ram_bytes = num_bytes;
4479 if (num_bytes == min_alloc_size)
4482 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4483 struct btrfs_space_info *sinfo;
4485 sinfo = btrfs_find_space_info(fs_info, flags);
4487 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4488 flags, num_bytes, for_treelog, for_data_reloc);
4490 btrfs_dump_space_info(fs_info, sinfo,
4498 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4499 u64 start, u64 len, int delalloc)
4501 struct btrfs_block_group *cache;
4503 cache = btrfs_lookup_block_group(fs_info, start);
4505 btrfs_err(fs_info, "Unable to find block group for %llu",
4510 btrfs_add_free_space(cache, start, len);
4511 btrfs_free_reserved_bytes(cache, len, delalloc);
4512 trace_btrfs_reserved_extent_free(fs_info, start, len);
4514 btrfs_put_block_group(cache);
4518 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4521 struct btrfs_block_group *cache;
4524 cache = btrfs_lookup_block_group(trans->fs_info, start);
4526 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4531 ret = pin_down_extent(trans, cache, start, len, 1);
4532 btrfs_put_block_group(cache);
4536 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4539 struct btrfs_fs_info *fs_info = trans->fs_info;
4542 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4546 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4549 btrfs_err(fs_info, "update block group failed for %llu %llu",
4554 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4558 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4559 u64 parent, u64 root_objectid,
4560 u64 flags, u64 owner, u64 offset,
4561 struct btrfs_key *ins, int ref_mod)
4563 struct btrfs_fs_info *fs_info = trans->fs_info;
4564 struct btrfs_root *extent_root;
4566 struct btrfs_extent_item *extent_item;
4567 struct btrfs_extent_inline_ref *iref;
4568 struct btrfs_path *path;
4569 struct extent_buffer *leaf;
4574 type = BTRFS_SHARED_DATA_REF_KEY;
4576 type = BTRFS_EXTENT_DATA_REF_KEY;
4578 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4580 path = btrfs_alloc_path();
4584 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4585 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4587 btrfs_free_path(path);
4591 leaf = path->nodes[0];
4592 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4593 struct btrfs_extent_item);
4594 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4595 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4596 btrfs_set_extent_flags(leaf, extent_item,
4597 flags | BTRFS_EXTENT_FLAG_DATA);
4599 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4600 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4602 struct btrfs_shared_data_ref *ref;
4603 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4604 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4605 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4607 struct btrfs_extent_data_ref *ref;
4608 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4609 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4610 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4611 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4612 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4615 btrfs_mark_buffer_dirty(path->nodes[0]);
4616 btrfs_free_path(path);
4618 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4621 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4622 struct btrfs_delayed_ref_node *node,
4623 struct btrfs_delayed_extent_op *extent_op)
4625 struct btrfs_fs_info *fs_info = trans->fs_info;
4626 struct btrfs_root *extent_root;
4628 struct btrfs_extent_item *extent_item;
4629 struct btrfs_key extent_key;
4630 struct btrfs_tree_block_info *block_info;
4631 struct btrfs_extent_inline_ref *iref;
4632 struct btrfs_path *path;
4633 struct extent_buffer *leaf;
4634 struct btrfs_delayed_tree_ref *ref;
4635 u32 size = sizeof(*extent_item) + sizeof(*iref);
4636 u64 flags = extent_op->flags_to_set;
4637 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4639 ref = btrfs_delayed_node_to_tree_ref(node);
4641 extent_key.objectid = node->bytenr;
4642 if (skinny_metadata) {
4643 extent_key.offset = ref->level;
4644 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4646 extent_key.offset = node->num_bytes;
4647 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4648 size += sizeof(*block_info);
4651 path = btrfs_alloc_path();
4655 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4656 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4659 btrfs_free_path(path);
4663 leaf = path->nodes[0];
4664 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4665 struct btrfs_extent_item);
4666 btrfs_set_extent_refs(leaf, extent_item, 1);
4667 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4668 btrfs_set_extent_flags(leaf, extent_item,
4669 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4671 if (skinny_metadata) {
4672 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4674 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4675 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4676 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4677 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4680 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4681 btrfs_set_extent_inline_ref_type(leaf, iref,
4682 BTRFS_SHARED_BLOCK_REF_KEY);
4683 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4685 btrfs_set_extent_inline_ref_type(leaf, iref,
4686 BTRFS_TREE_BLOCK_REF_KEY);
4687 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4690 btrfs_mark_buffer_dirty(leaf);
4691 btrfs_free_path(path);
4693 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4696 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4697 struct btrfs_root *root, u64 owner,
4698 u64 offset, u64 ram_bytes,
4699 struct btrfs_key *ins)
4701 struct btrfs_ref generic_ref = { 0 };
4703 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4705 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4706 ins->objectid, ins->offset, 0);
4707 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4709 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4711 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4715 * this is used by the tree logging recovery code. It records that
4716 * an extent has been allocated and makes sure to clear the free
4717 * space cache bits as well
4719 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4720 u64 root_objectid, u64 owner, u64 offset,
4721 struct btrfs_key *ins)
4723 struct btrfs_fs_info *fs_info = trans->fs_info;
4725 struct btrfs_block_group *block_group;
4726 struct btrfs_space_info *space_info;
4729 * Mixed block groups will exclude before processing the log so we only
4730 * need to do the exclude dance if this fs isn't mixed.
4732 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4733 ret = __exclude_logged_extent(fs_info, ins->objectid,
4739 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4743 space_info = block_group->space_info;
4744 spin_lock(&space_info->lock);
4745 spin_lock(&block_group->lock);
4746 space_info->bytes_reserved += ins->offset;
4747 block_group->reserved += ins->offset;
4748 spin_unlock(&block_group->lock);
4749 spin_unlock(&space_info->lock);
4751 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4754 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4755 btrfs_put_block_group(block_group);
4759 static struct extent_buffer *
4760 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4761 u64 bytenr, int level, u64 owner,
4762 enum btrfs_lock_nesting nest)
4764 struct btrfs_fs_info *fs_info = root->fs_info;
4765 struct extent_buffer *buf;
4766 u64 lockdep_owner = owner;
4768 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4773 * Extra safety check in case the extent tree is corrupted and extent
4774 * allocator chooses to use a tree block which is already used and
4777 if (buf->lock_owner == current->pid) {
4778 btrfs_err_rl(fs_info,
4779 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4780 buf->start, btrfs_header_owner(buf), current->pid);
4781 free_extent_buffer(buf);
4782 return ERR_PTR(-EUCLEAN);
4786 * The reloc trees are just snapshots, so we need them to appear to be
4787 * just like any other fs tree WRT lockdep.
4789 * The exception however is in replace_path() in relocation, where we
4790 * hold the lock on the original fs root and then search for the reloc
4791 * root. At that point we need to make sure any reloc root buffers are
4792 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4795 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4796 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4797 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4799 /* btrfs_clear_buffer_dirty() accesses generation field. */
4800 btrfs_set_header_generation(buf, trans->transid);
4803 * This needs to stay, because we could allocate a freed block from an
4804 * old tree into a new tree, so we need to make sure this new block is
4805 * set to the appropriate level and owner.
4807 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4809 __btrfs_tree_lock(buf, nest);
4810 btrfs_clear_buffer_dirty(trans, buf);
4811 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4812 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4814 set_extent_buffer_uptodate(buf);
4816 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4817 btrfs_set_header_level(buf, level);
4818 btrfs_set_header_bytenr(buf, buf->start);
4819 btrfs_set_header_generation(buf, trans->transid);
4820 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4821 btrfs_set_header_owner(buf, owner);
4822 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4823 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4824 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4825 buf->log_index = root->log_transid % 2;
4827 * we allow two log transactions at a time, use different
4828 * EXTENT bit to differentiate dirty pages.
4830 if (buf->log_index == 0)
4831 set_extent_bit(&root->dirty_log_pages, buf->start,
4832 buf->start + buf->len - 1,
4833 EXTENT_DIRTY, NULL);
4835 set_extent_bit(&root->dirty_log_pages, buf->start,
4836 buf->start + buf->len - 1,
4839 buf->log_index = -1;
4840 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4841 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4843 /* this returns a buffer locked for blocking */
4848 * finds a free extent and does all the dirty work required for allocation
4849 * returns the tree buffer or an ERR_PTR on error.
4851 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4852 struct btrfs_root *root,
4853 u64 parent, u64 root_objectid,
4854 const struct btrfs_disk_key *key,
4855 int level, u64 hint,
4857 enum btrfs_lock_nesting nest)
4859 struct btrfs_fs_info *fs_info = root->fs_info;
4860 struct btrfs_key ins;
4861 struct btrfs_block_rsv *block_rsv;
4862 struct extent_buffer *buf;
4863 struct btrfs_delayed_extent_op *extent_op;
4864 struct btrfs_ref generic_ref = { 0 };
4867 u32 blocksize = fs_info->nodesize;
4868 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4870 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4871 if (btrfs_is_testing(fs_info)) {
4872 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4873 level, root_objectid, nest);
4875 root->alloc_bytenr += blocksize;
4880 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4881 if (IS_ERR(block_rsv))
4882 return ERR_CAST(block_rsv);
4884 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4885 empty_size, hint, &ins, 0, 0);
4889 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4890 root_objectid, nest);
4893 goto out_free_reserved;
4896 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4898 parent = ins.objectid;
4899 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4903 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4904 extent_op = btrfs_alloc_delayed_extent_op();
4910 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4912 memset(&extent_op->key, 0, sizeof(extent_op->key));
4913 extent_op->flags_to_set = flags;
4914 extent_op->update_key = skinny_metadata ? false : true;
4915 extent_op->update_flags = true;
4916 extent_op->level = level;
4918 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4919 ins.objectid, ins.offset, parent);
4920 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4921 root->root_key.objectid, false);
4922 btrfs_ref_tree_mod(fs_info, &generic_ref);
4923 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4925 goto out_free_delayed;
4930 btrfs_free_delayed_extent_op(extent_op);
4932 btrfs_tree_unlock(buf);
4933 free_extent_buffer(buf);
4935 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4937 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4938 return ERR_PTR(ret);
4941 struct walk_control {
4942 u64 refs[BTRFS_MAX_LEVEL];
4943 u64 flags[BTRFS_MAX_LEVEL];
4944 struct btrfs_key update_progress;
4945 struct btrfs_key drop_progress;
4957 #define DROP_REFERENCE 1
4958 #define UPDATE_BACKREF 2
4960 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4961 struct btrfs_root *root,
4962 struct walk_control *wc,
4963 struct btrfs_path *path)
4965 struct btrfs_fs_info *fs_info = root->fs_info;
4971 struct btrfs_key key;
4972 struct extent_buffer *eb;
4977 if (path->slots[wc->level] < wc->reada_slot) {
4978 wc->reada_count = wc->reada_count * 2 / 3;
4979 wc->reada_count = max(wc->reada_count, 2);
4981 wc->reada_count = wc->reada_count * 3 / 2;
4982 wc->reada_count = min_t(int, wc->reada_count,
4983 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4986 eb = path->nodes[wc->level];
4987 nritems = btrfs_header_nritems(eb);
4989 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4990 if (nread >= wc->reada_count)
4994 bytenr = btrfs_node_blockptr(eb, slot);
4995 generation = btrfs_node_ptr_generation(eb, slot);
4997 if (slot == path->slots[wc->level])
5000 if (wc->stage == UPDATE_BACKREF &&
5001 generation <= root->root_key.offset)
5004 /* We don't lock the tree block, it's OK to be racy here */
5005 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5006 wc->level - 1, 1, &refs,
5008 /* We don't care about errors in readahead. */
5013 if (wc->stage == DROP_REFERENCE) {
5017 if (wc->level == 1 &&
5018 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5020 if (!wc->update_ref ||
5021 generation <= root->root_key.offset)
5023 btrfs_node_key_to_cpu(eb, &key, slot);
5024 ret = btrfs_comp_cpu_keys(&key,
5025 &wc->update_progress);
5029 if (wc->level == 1 &&
5030 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5034 btrfs_readahead_node_child(eb, slot);
5037 wc->reada_slot = slot;
5041 * helper to process tree block while walking down the tree.
5043 * when wc->stage == UPDATE_BACKREF, this function updates
5044 * back refs for pointers in the block.
5046 * NOTE: return value 1 means we should stop walking down.
5048 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5049 struct btrfs_root *root,
5050 struct btrfs_path *path,
5051 struct walk_control *wc, int lookup_info)
5053 struct btrfs_fs_info *fs_info = root->fs_info;
5054 int level = wc->level;
5055 struct extent_buffer *eb = path->nodes[level];
5056 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5059 if (wc->stage == UPDATE_BACKREF &&
5060 btrfs_header_owner(eb) != root->root_key.objectid)
5064 * when reference count of tree block is 1, it won't increase
5065 * again. once full backref flag is set, we never clear it.
5068 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5069 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5070 BUG_ON(!path->locks[level]);
5071 ret = btrfs_lookup_extent_info(trans, fs_info,
5072 eb->start, level, 1,
5075 BUG_ON(ret == -ENOMEM);
5078 BUG_ON(wc->refs[level] == 0);
5081 if (wc->stage == DROP_REFERENCE) {
5082 if (wc->refs[level] > 1)
5085 if (path->locks[level] && !wc->keep_locks) {
5086 btrfs_tree_unlock_rw(eb, path->locks[level]);
5087 path->locks[level] = 0;
5092 /* wc->stage == UPDATE_BACKREF */
5093 if (!(wc->flags[level] & flag)) {
5094 BUG_ON(!path->locks[level]);
5095 ret = btrfs_inc_ref(trans, root, eb, 1);
5096 BUG_ON(ret); /* -ENOMEM */
5097 ret = btrfs_dec_ref(trans, root, eb, 0);
5098 BUG_ON(ret); /* -ENOMEM */
5099 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5100 BUG_ON(ret); /* -ENOMEM */
5101 wc->flags[level] |= flag;
5105 * the block is shared by multiple trees, so it's not good to
5106 * keep the tree lock
5108 if (path->locks[level] && level > 0) {
5109 btrfs_tree_unlock_rw(eb, path->locks[level]);
5110 path->locks[level] = 0;
5116 * This is used to verify a ref exists for this root to deal with a bug where we
5117 * would have a drop_progress key that hadn't been updated properly.
5119 static int check_ref_exists(struct btrfs_trans_handle *trans,
5120 struct btrfs_root *root, u64 bytenr, u64 parent,
5123 struct btrfs_path *path;
5124 struct btrfs_extent_inline_ref *iref;
5127 path = btrfs_alloc_path();
5131 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5132 root->fs_info->nodesize, parent,
5133 root->root_key.objectid, level, 0);
5134 btrfs_free_path(path);
5143 * helper to process tree block pointer.
5145 * when wc->stage == DROP_REFERENCE, this function checks
5146 * reference count of the block pointed to. if the block
5147 * is shared and we need update back refs for the subtree
5148 * rooted at the block, this function changes wc->stage to
5149 * UPDATE_BACKREF. if the block is shared and there is no
5150 * need to update back, this function drops the reference
5153 * NOTE: return value 1 means we should stop walking down.
5155 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5156 struct btrfs_root *root,
5157 struct btrfs_path *path,
5158 struct walk_control *wc, int *lookup_info)
5160 struct btrfs_fs_info *fs_info = root->fs_info;
5164 struct btrfs_tree_parent_check check = { 0 };
5165 struct btrfs_key key;
5166 struct btrfs_ref ref = { 0 };
5167 struct extent_buffer *next;
5168 int level = wc->level;
5171 bool need_account = false;
5173 generation = btrfs_node_ptr_generation(path->nodes[level],
5174 path->slots[level]);
5176 * if the lower level block was created before the snapshot
5177 * was created, we know there is no need to update back refs
5180 if (wc->stage == UPDATE_BACKREF &&
5181 generation <= root->root_key.offset) {
5186 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5188 check.level = level - 1;
5189 check.transid = generation;
5190 check.owner_root = root->root_key.objectid;
5191 check.has_first_key = true;
5192 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5193 path->slots[level]);
5195 next = find_extent_buffer(fs_info, bytenr);
5197 next = btrfs_find_create_tree_block(fs_info, bytenr,
5198 root->root_key.objectid, level - 1);
5200 return PTR_ERR(next);
5203 btrfs_tree_lock(next);
5205 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5206 &wc->refs[level - 1],
5207 &wc->flags[level - 1]);
5211 if (unlikely(wc->refs[level - 1] == 0)) {
5212 btrfs_err(fs_info, "Missing references.");
5218 if (wc->stage == DROP_REFERENCE) {
5219 if (wc->refs[level - 1] > 1) {
5220 need_account = true;
5222 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5225 if (!wc->update_ref ||
5226 generation <= root->root_key.offset)
5229 btrfs_node_key_to_cpu(path->nodes[level], &key,
5230 path->slots[level]);
5231 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5235 wc->stage = UPDATE_BACKREF;
5236 wc->shared_level = level - 1;
5240 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5244 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5245 btrfs_tree_unlock(next);
5246 free_extent_buffer(next);
5252 if (reada && level == 1)
5253 reada_walk_down(trans, root, wc, path);
5254 next = read_tree_block(fs_info, bytenr, &check);
5256 return PTR_ERR(next);
5257 } else if (!extent_buffer_uptodate(next)) {
5258 free_extent_buffer(next);
5261 btrfs_tree_lock(next);
5265 ASSERT(level == btrfs_header_level(next));
5266 if (level != btrfs_header_level(next)) {
5267 btrfs_err(root->fs_info, "mismatched level");
5271 path->nodes[level] = next;
5272 path->slots[level] = 0;
5273 path->locks[level] = BTRFS_WRITE_LOCK;
5279 wc->refs[level - 1] = 0;
5280 wc->flags[level - 1] = 0;
5281 if (wc->stage == DROP_REFERENCE) {
5282 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5283 parent = path->nodes[level]->start;
5285 ASSERT(root->root_key.objectid ==
5286 btrfs_header_owner(path->nodes[level]));
5287 if (root->root_key.objectid !=
5288 btrfs_header_owner(path->nodes[level])) {
5289 btrfs_err(root->fs_info,
5290 "mismatched block owner");
5298 * If we had a drop_progress we need to verify the refs are set
5299 * as expected. If we find our ref then we know that from here
5300 * on out everything should be correct, and we can clear the
5303 if (wc->restarted) {
5304 ret = check_ref_exists(trans, root, bytenr, parent,
5315 * Reloc tree doesn't contribute to qgroup numbers, and we have
5316 * already accounted them at merge time (replace_path),
5317 * thus we could skip expensive subtree trace here.
5319 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5321 ret = btrfs_qgroup_trace_subtree(trans, next,
5322 generation, level - 1);
5324 btrfs_err_rl(fs_info,
5325 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5331 * We need to update the next key in our walk control so we can
5332 * update the drop_progress key accordingly. We don't care if
5333 * find_next_key doesn't find a key because that means we're at
5334 * the end and are going to clean up now.
5336 wc->drop_level = level;
5337 find_next_key(path, level, &wc->drop_progress);
5339 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5340 fs_info->nodesize, parent);
5341 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5343 ret = btrfs_free_extent(trans, &ref);
5352 btrfs_tree_unlock(next);
5353 free_extent_buffer(next);
5359 * helper to process tree block while walking up the tree.
5361 * when wc->stage == DROP_REFERENCE, this function drops
5362 * reference count on the block.
5364 * when wc->stage == UPDATE_BACKREF, this function changes
5365 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5366 * to UPDATE_BACKREF previously while processing the block.
5368 * NOTE: return value 1 means we should stop walking up.
5370 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5371 struct btrfs_root *root,
5372 struct btrfs_path *path,
5373 struct walk_control *wc)
5375 struct btrfs_fs_info *fs_info = root->fs_info;
5377 int level = wc->level;
5378 struct extent_buffer *eb = path->nodes[level];
5381 if (wc->stage == UPDATE_BACKREF) {
5382 BUG_ON(wc->shared_level < level);
5383 if (level < wc->shared_level)
5386 ret = find_next_key(path, level + 1, &wc->update_progress);
5390 wc->stage = DROP_REFERENCE;
5391 wc->shared_level = -1;
5392 path->slots[level] = 0;
5395 * check reference count again if the block isn't locked.
5396 * we should start walking down the tree again if reference
5399 if (!path->locks[level]) {
5401 btrfs_tree_lock(eb);
5402 path->locks[level] = BTRFS_WRITE_LOCK;
5404 ret = btrfs_lookup_extent_info(trans, fs_info,
5405 eb->start, level, 1,
5409 btrfs_tree_unlock_rw(eb, path->locks[level]);
5410 path->locks[level] = 0;
5413 BUG_ON(wc->refs[level] == 0);
5414 if (wc->refs[level] == 1) {
5415 btrfs_tree_unlock_rw(eb, path->locks[level]);
5416 path->locks[level] = 0;
5422 /* wc->stage == DROP_REFERENCE */
5423 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5425 if (wc->refs[level] == 1) {
5427 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5428 ret = btrfs_dec_ref(trans, root, eb, 1);
5430 ret = btrfs_dec_ref(trans, root, eb, 0);
5431 BUG_ON(ret); /* -ENOMEM */
5432 if (is_fstree(root->root_key.objectid)) {
5433 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5435 btrfs_err_rl(fs_info,
5436 "error %d accounting leaf items, quota is out of sync, rescan required",
5441 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5442 if (!path->locks[level]) {
5443 btrfs_tree_lock(eb);
5444 path->locks[level] = BTRFS_WRITE_LOCK;
5446 btrfs_clear_buffer_dirty(trans, eb);
5449 if (eb == root->node) {
5450 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5452 else if (root->root_key.objectid != btrfs_header_owner(eb))
5453 goto owner_mismatch;
5455 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5456 parent = path->nodes[level + 1]->start;
5457 else if (root->root_key.objectid !=
5458 btrfs_header_owner(path->nodes[level + 1]))
5459 goto owner_mismatch;
5462 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5463 wc->refs[level] == 1);
5465 wc->refs[level] = 0;
5466 wc->flags[level] = 0;
5470 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5471 btrfs_header_owner(eb), root->root_key.objectid);
5475 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5476 struct btrfs_root *root,
5477 struct btrfs_path *path,
5478 struct walk_control *wc)
5480 int level = wc->level;
5481 int lookup_info = 1;
5484 while (level >= 0) {
5485 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5492 if (path->slots[level] >=
5493 btrfs_header_nritems(path->nodes[level]))
5496 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5498 path->slots[level]++;
5504 return (ret == 1) ? 0 : ret;
5507 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5508 struct btrfs_root *root,
5509 struct btrfs_path *path,
5510 struct walk_control *wc, int max_level)
5512 int level = wc->level;
5515 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5516 while (level < max_level && path->nodes[level]) {
5518 if (path->slots[level] + 1 <
5519 btrfs_header_nritems(path->nodes[level])) {
5520 path->slots[level]++;
5523 ret = walk_up_proc(trans, root, path, wc);
5529 if (path->locks[level]) {
5530 btrfs_tree_unlock_rw(path->nodes[level],
5531 path->locks[level]);
5532 path->locks[level] = 0;
5534 free_extent_buffer(path->nodes[level]);
5535 path->nodes[level] = NULL;
5543 * drop a subvolume tree.
5545 * this function traverses the tree freeing any blocks that only
5546 * referenced by the tree.
5548 * when a shared tree block is found. this function decreases its
5549 * reference count by one. if update_ref is true, this function
5550 * also make sure backrefs for the shared block and all lower level
5551 * blocks are properly updated.
5553 * If called with for_reloc == 0, may exit early with -EAGAIN
5555 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5557 const bool is_reloc_root = (root->root_key.objectid ==
5558 BTRFS_TREE_RELOC_OBJECTID);
5559 struct btrfs_fs_info *fs_info = root->fs_info;
5560 struct btrfs_path *path;
5561 struct btrfs_trans_handle *trans;
5562 struct btrfs_root *tree_root = fs_info->tree_root;
5563 struct btrfs_root_item *root_item = &root->root_item;
5564 struct walk_control *wc;
5565 struct btrfs_key key;
5569 bool root_dropped = false;
5570 bool unfinished_drop = false;
5572 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5574 path = btrfs_alloc_path();
5580 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5582 btrfs_free_path(path);
5588 * Use join to avoid potential EINTR from transaction start. See
5589 * wait_reserve_ticket and the whole reservation callchain.
5592 trans = btrfs_join_transaction(tree_root);
5594 trans = btrfs_start_transaction(tree_root, 0);
5595 if (IS_ERR(trans)) {
5596 err = PTR_ERR(trans);
5600 err = btrfs_run_delayed_items(trans);
5605 * This will help us catch people modifying the fs tree while we're
5606 * dropping it. It is unsafe to mess with the fs tree while it's being
5607 * dropped as we unlock the root node and parent nodes as we walk down
5608 * the tree, assuming nothing will change. If something does change
5609 * then we'll have stale information and drop references to blocks we've
5612 set_bit(BTRFS_ROOT_DELETING, &root->state);
5613 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5615 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5616 level = btrfs_header_level(root->node);
5617 path->nodes[level] = btrfs_lock_root_node(root);
5618 path->slots[level] = 0;
5619 path->locks[level] = BTRFS_WRITE_LOCK;
5620 memset(&wc->update_progress, 0,
5621 sizeof(wc->update_progress));
5623 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5624 memcpy(&wc->update_progress, &key,
5625 sizeof(wc->update_progress));
5627 level = btrfs_root_drop_level(root_item);
5629 path->lowest_level = level;
5630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5631 path->lowest_level = 0;
5639 * unlock our path, this is safe because only this
5640 * function is allowed to delete this snapshot
5642 btrfs_unlock_up_safe(path, 0);
5644 level = btrfs_header_level(root->node);
5646 btrfs_tree_lock(path->nodes[level]);
5647 path->locks[level] = BTRFS_WRITE_LOCK;
5649 ret = btrfs_lookup_extent_info(trans, fs_info,
5650 path->nodes[level]->start,
5651 level, 1, &wc->refs[level],
5657 BUG_ON(wc->refs[level] == 0);
5659 if (level == btrfs_root_drop_level(root_item))
5662 btrfs_tree_unlock(path->nodes[level]);
5663 path->locks[level] = 0;
5664 WARN_ON(wc->refs[level] != 1);
5669 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5671 wc->shared_level = -1;
5672 wc->stage = DROP_REFERENCE;
5673 wc->update_ref = update_ref;
5675 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5679 ret = walk_down_tree(trans, root, path, wc);
5681 btrfs_abort_transaction(trans, ret);
5686 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5688 btrfs_abort_transaction(trans, ret);
5694 BUG_ON(wc->stage != DROP_REFERENCE);
5698 if (wc->stage == DROP_REFERENCE) {
5699 wc->drop_level = wc->level;
5700 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5702 path->slots[wc->drop_level]);
5704 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5705 &wc->drop_progress);
5706 btrfs_set_root_drop_level(root_item, wc->drop_level);
5708 BUG_ON(wc->level == 0);
5709 if (btrfs_should_end_transaction(trans) ||
5710 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5711 ret = btrfs_update_root(trans, tree_root,
5715 btrfs_abort_transaction(trans, ret);
5721 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5723 btrfs_end_transaction_throttle(trans);
5724 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5725 btrfs_debug(fs_info,
5726 "drop snapshot early exit");
5732 * Use join to avoid potential EINTR from transaction
5733 * start. See wait_reserve_ticket and the whole
5734 * reservation callchain.
5737 trans = btrfs_join_transaction(tree_root);
5739 trans = btrfs_start_transaction(tree_root, 0);
5740 if (IS_ERR(trans)) {
5741 err = PTR_ERR(trans);
5746 btrfs_release_path(path);
5750 ret = btrfs_del_root(trans, &root->root_key);
5752 btrfs_abort_transaction(trans, ret);
5757 if (!is_reloc_root) {
5758 ret = btrfs_find_root(tree_root, &root->root_key, path,
5761 btrfs_abort_transaction(trans, ret);
5764 } else if (ret > 0) {
5765 /* if we fail to delete the orphan item this time
5766 * around, it'll get picked up the next time.
5768 * The most common failure here is just -ENOENT.
5770 btrfs_del_orphan_item(trans, tree_root,
5771 root->root_key.objectid);
5776 * This subvolume is going to be completely dropped, and won't be
5777 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5778 * commit transaction time. So free it here manually.
5780 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5781 btrfs_qgroup_free_meta_all_pertrans(root);
5783 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5784 btrfs_add_dropped_root(trans, root);
5786 btrfs_put_root(root);
5787 root_dropped = true;
5790 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5792 btrfs_end_transaction_throttle(trans);
5795 btrfs_free_path(path);
5798 * We were an unfinished drop root, check to see if there are any
5799 * pending, and if not clear and wake up any waiters.
5801 if (!err && unfinished_drop)
5802 btrfs_maybe_wake_unfinished_drop(fs_info);
5805 * So if we need to stop dropping the snapshot for whatever reason we
5806 * need to make sure to add it back to the dead root list so that we
5807 * keep trying to do the work later. This also cleans up roots if we
5808 * don't have it in the radix (like when we recover after a power fail
5809 * or unmount) so we don't leak memory.
5811 if (!for_reloc && !root_dropped)
5812 btrfs_add_dead_root(root);
5817 * drop subtree rooted at tree block 'node'.
5819 * NOTE: this function will unlock and release tree block 'node'
5820 * only used by relocation code
5822 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5823 struct btrfs_root *root,
5824 struct extent_buffer *node,
5825 struct extent_buffer *parent)
5827 struct btrfs_fs_info *fs_info = root->fs_info;
5828 struct btrfs_path *path;
5829 struct walk_control *wc;
5835 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5837 path = btrfs_alloc_path();
5841 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5843 btrfs_free_path(path);
5847 btrfs_assert_tree_write_locked(parent);
5848 parent_level = btrfs_header_level(parent);
5849 atomic_inc(&parent->refs);
5850 path->nodes[parent_level] = parent;
5851 path->slots[parent_level] = btrfs_header_nritems(parent);
5853 btrfs_assert_tree_write_locked(node);
5854 level = btrfs_header_level(node);
5855 path->nodes[level] = node;
5856 path->slots[level] = 0;
5857 path->locks[level] = BTRFS_WRITE_LOCK;
5859 wc->refs[parent_level] = 1;
5860 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5862 wc->shared_level = -1;
5863 wc->stage = DROP_REFERENCE;
5866 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5869 wret = walk_down_tree(trans, root, path, wc);
5875 wret = walk_up_tree(trans, root, path, wc, parent_level);
5883 btrfs_free_path(path);
5887 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5890 return unpin_extent_range(fs_info, start, end, false);
5894 * It used to be that old block groups would be left around forever.
5895 * Iterating over them would be enough to trim unused space. Since we
5896 * now automatically remove them, we also need to iterate over unallocated
5899 * We don't want a transaction for this since the discard may take a
5900 * substantial amount of time. We don't require that a transaction be
5901 * running, but we do need to take a running transaction into account
5902 * to ensure that we're not discarding chunks that were released or
5903 * allocated in the current transaction.
5905 * Holding the chunks lock will prevent other threads from allocating
5906 * or releasing chunks, but it won't prevent a running transaction
5907 * from committing and releasing the memory that the pending chunks
5908 * list head uses. For that, we need to take a reference to the
5909 * transaction and hold the commit root sem. We only need to hold
5910 * it while performing the free space search since we have already
5911 * held back allocations.
5913 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5915 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5920 /* Discard not supported = nothing to do. */
5921 if (!bdev_max_discard_sectors(device->bdev))
5924 /* Not writable = nothing to do. */
5925 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5928 /* No free space = nothing to do. */
5929 if (device->total_bytes <= device->bytes_used)
5935 struct btrfs_fs_info *fs_info = device->fs_info;
5938 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5942 find_first_clear_extent_bit(&device->alloc_state, start,
5944 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5946 /* Check if there are any CHUNK_* bits left */
5947 if (start > device->total_bytes) {
5948 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5949 btrfs_warn_in_rcu(fs_info,
5950 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5951 start, end - start + 1,
5952 btrfs_dev_name(device),
5953 device->total_bytes);
5954 mutex_unlock(&fs_info->chunk_mutex);
5959 /* Ensure we skip the reserved space on each device. */
5960 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
5963 * If find_first_clear_extent_bit find a range that spans the
5964 * end of the device it will set end to -1, in this case it's up
5965 * to the caller to trim the value to the size of the device.
5967 end = min(end, device->total_bytes - 1);
5969 len = end - start + 1;
5971 /* We didn't find any extents */
5973 mutex_unlock(&fs_info->chunk_mutex);
5978 ret = btrfs_issue_discard(device->bdev, start, len,
5981 set_extent_bit(&device->alloc_state, start,
5982 start + bytes - 1, CHUNK_TRIMMED, NULL);
5983 mutex_unlock(&fs_info->chunk_mutex);
5991 if (fatal_signal_pending(current)) {
6003 * Trim the whole filesystem by:
6004 * 1) trimming the free space in each block group
6005 * 2) trimming the unallocated space on each device
6007 * This will also continue trimming even if a block group or device encounters
6008 * an error. The return value will be the last error, or 0 if nothing bad
6011 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6013 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6014 struct btrfs_block_group *cache = NULL;
6015 struct btrfs_device *device;
6017 u64 range_end = U64_MAX;
6027 if (range->start == U64_MAX)
6031 * Check range overflow if range->len is set.
6032 * The default range->len is U64_MAX.
6034 if (range->len != U64_MAX &&
6035 check_add_overflow(range->start, range->len, &range_end))
6038 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6039 for (; cache; cache = btrfs_next_block_group(cache)) {
6040 if (cache->start >= range_end) {
6041 btrfs_put_block_group(cache);
6045 start = max(range->start, cache->start);
6046 end = min(range_end, cache->start + cache->length);
6048 if (end - start >= range->minlen) {
6049 if (!btrfs_block_group_done(cache)) {
6050 ret = btrfs_cache_block_group(cache, true);
6057 ret = btrfs_trim_block_group(cache,
6063 trimmed += group_trimmed;
6074 "failed to trim %llu block group(s), last error %d",
6077 mutex_lock(&fs_devices->device_list_mutex);
6078 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6079 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6082 ret = btrfs_trim_free_extents(device, &group_trimmed);
6089 trimmed += group_trimmed;
6091 mutex_unlock(&fs_devices->device_list_mutex);
6095 "failed to trim %llu device(s), last error %d",
6096 dev_failed, dev_ret);
6097 range->len = trimmed;