1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
22 #include "print-tree.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
36 #include "rcu-string.h"
38 #include "dev-replace.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 struct btrfs_delayed_ref_node *node, u64 parent,
45 u64 root_objectid, u64 owner_objectid,
46 u64 owner_offset, int refs_to_drop,
47 struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 struct extent_buffer *leaf,
50 struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_delayed_ref_node *node,
57 struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 struct btrfs_key *key);
61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
63 return (cache->flags & bits) == bits;
66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 u64 start, u64 num_bytes)
69 u64 end = start + num_bytes - 1;
70 set_extent_bits(&fs_info->excluded_extents, start, end,
75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
77 struct btrfs_fs_info *fs_info = cache->fs_info;
81 end = start + cache->length - 1;
83 clear_extent_bits(&fs_info->excluded_extents, start, end,
87 /* simple helper to search for an existing data extent at a given offset */
88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
92 struct btrfs_path *path;
94 path = btrfs_alloc_path();
100 key.type = BTRFS_EXTENT_ITEM_KEY;
101 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
102 btrfs_free_path(path);
107 * helper function to lookup reference count and flags of a tree block.
109 * the head node for delayed ref is used to store the sum of all the
110 * reference count modifications queued up in the rbtree. the head
111 * node may also store the extent flags to set. This way you can check
112 * to see what the reference count and extent flags would be if all of
113 * the delayed refs are not processed.
115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
116 struct btrfs_fs_info *fs_info, u64 bytenr,
117 u64 offset, int metadata, u64 *refs, u64 *flags)
119 struct btrfs_delayed_ref_head *head;
120 struct btrfs_delayed_ref_root *delayed_refs;
121 struct btrfs_path *path;
122 struct btrfs_extent_item *ei;
123 struct extent_buffer *leaf;
124 struct btrfs_key key;
131 * If we don't have skinny metadata, don't bother doing anything
134 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
135 offset = fs_info->nodesize;
139 path = btrfs_alloc_path();
144 path->skip_locking = 1;
145 path->search_commit_root = 1;
149 key.objectid = bytenr;
152 key.type = BTRFS_METADATA_ITEM_KEY;
154 key.type = BTRFS_EXTENT_ITEM_KEY;
156 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
160 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
161 if (path->slots[0]) {
163 btrfs_item_key_to_cpu(path->nodes[0], &key,
165 if (key.objectid == bytenr &&
166 key.type == BTRFS_EXTENT_ITEM_KEY &&
167 key.offset == fs_info->nodesize)
173 leaf = path->nodes[0];
174 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
175 if (item_size >= sizeof(*ei)) {
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_extent_item);
178 num_refs = btrfs_extent_refs(leaf, ei);
179 extent_flags = btrfs_extent_flags(leaf, ei);
182 btrfs_print_v0_err(fs_info);
184 btrfs_abort_transaction(trans, ret);
186 btrfs_handle_fs_error(fs_info, ret, NULL);
191 BUG_ON(num_refs == 0);
201 delayed_refs = &trans->transaction->delayed_refs;
202 spin_lock(&delayed_refs->lock);
203 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
205 if (!mutex_trylock(&head->mutex)) {
206 refcount_inc(&head->refs);
207 spin_unlock(&delayed_refs->lock);
209 btrfs_release_path(path);
212 * Mutex was contended, block until it's released and try
215 mutex_lock(&head->mutex);
216 mutex_unlock(&head->mutex);
217 btrfs_put_delayed_ref_head(head);
220 spin_lock(&head->lock);
221 if (head->extent_op && head->extent_op->update_flags)
222 extent_flags |= head->extent_op->flags_to_set;
224 BUG_ON(num_refs == 0);
226 num_refs += head->ref_mod;
227 spin_unlock(&head->lock);
228 mutex_unlock(&head->mutex);
230 spin_unlock(&delayed_refs->lock);
232 WARN_ON(num_refs == 0);
236 *flags = extent_flags;
238 btrfs_free_path(path);
243 * Back reference rules. Back refs have three main goals:
245 * 1) differentiate between all holders of references to an extent so that
246 * when a reference is dropped we can make sure it was a valid reference
247 * before freeing the extent.
249 * 2) Provide enough information to quickly find the holders of an extent
250 * if we notice a given block is corrupted or bad.
252 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
253 * maintenance. This is actually the same as #2, but with a slightly
254 * different use case.
256 * There are two kinds of back refs. The implicit back refs is optimized
257 * for pointers in non-shared tree blocks. For a given pointer in a block,
258 * back refs of this kind provide information about the block's owner tree
259 * and the pointer's key. These information allow us to find the block by
260 * b-tree searching. The full back refs is for pointers in tree blocks not
261 * referenced by their owner trees. The location of tree block is recorded
262 * in the back refs. Actually the full back refs is generic, and can be
263 * used in all cases the implicit back refs is used. The major shortcoming
264 * of the full back refs is its overhead. Every time a tree block gets
265 * COWed, we have to update back refs entry for all pointers in it.
267 * For a newly allocated tree block, we use implicit back refs for
268 * pointers in it. This means most tree related operations only involve
269 * implicit back refs. For a tree block created in old transaction, the
270 * only way to drop a reference to it is COW it. So we can detect the
271 * event that tree block loses its owner tree's reference and do the
272 * back refs conversion.
274 * When a tree block is COWed through a tree, there are four cases:
276 * The reference count of the block is one and the tree is the block's
277 * owner tree. Nothing to do in this case.
279 * The reference count of the block is one and the tree is not the
280 * block's owner tree. In this case, full back refs is used for pointers
281 * in the block. Remove these full back refs, add implicit back refs for
282 * every pointers in the new block.
284 * The reference count of the block is greater than one and the tree is
285 * the block's owner tree. In this case, implicit back refs is used for
286 * pointers in the block. Add full back refs for every pointers in the
287 * block, increase lower level extents' reference counts. The original
288 * implicit back refs are entailed to the new block.
290 * The reference count of the block is greater than one and the tree is
291 * not the block's owner tree. Add implicit back refs for every pointer in
292 * the new block, increase lower level extents' reference count.
294 * Back Reference Key composing:
296 * The key objectid corresponds to the first byte in the extent,
297 * The key type is used to differentiate between types of back refs.
298 * There are different meanings of the key offset for different types
301 * File extents can be referenced by:
303 * - multiple snapshots, subvolumes, or different generations in one subvol
304 * - different files inside a single subvolume
305 * - different offsets inside a file (bookend extents in file.c)
307 * The extent ref structure for the implicit back refs has fields for:
309 * - Objectid of the subvolume root
310 * - objectid of the file holding the reference
311 * - original offset in the file
312 * - how many bookend extents
314 * The key offset for the implicit back refs is hash of the first
317 * The extent ref structure for the full back refs has field for:
319 * - number of pointers in the tree leaf
321 * The key offset for the implicit back refs is the first byte of
324 * When a file extent is allocated, The implicit back refs is used.
325 * the fields are filled in:
327 * (root_key.objectid, inode objectid, offset in file, 1)
329 * When a file extent is removed file truncation, we find the
330 * corresponding implicit back refs and check the following fields:
332 * (btrfs_header_owner(leaf), inode objectid, offset in file)
334 * Btree extents can be referenced by:
336 * - Different subvolumes
338 * Both the implicit back refs and the full back refs for tree blocks
339 * only consist of key. The key offset for the implicit back refs is
340 * objectid of block's owner tree. The key offset for the full back refs
341 * is the first byte of parent block.
343 * When implicit back refs is used, information about the lowest key and
344 * level of the tree block are required. These information are stored in
345 * tree block info structure.
349 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
350 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
351 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
354 struct btrfs_extent_inline_ref *iref,
355 enum btrfs_inline_ref_type is_data)
357 int type = btrfs_extent_inline_ref_type(eb, iref);
358 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
360 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
361 type == BTRFS_SHARED_BLOCK_REF_KEY ||
362 type == BTRFS_SHARED_DATA_REF_KEY ||
363 type == BTRFS_EXTENT_DATA_REF_KEY) {
364 if (is_data == BTRFS_REF_TYPE_BLOCK) {
365 if (type == BTRFS_TREE_BLOCK_REF_KEY)
367 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
370 * Every shared one has parent tree block,
371 * which must be aligned to sector size.
374 IS_ALIGNED(offset, eb->fs_info->sectorsize))
377 } else if (is_data == BTRFS_REF_TYPE_DATA) {
378 if (type == BTRFS_EXTENT_DATA_REF_KEY)
380 if (type == BTRFS_SHARED_DATA_REF_KEY) {
383 * Every shared one has parent tree block,
384 * which must be aligned to sector size.
387 IS_ALIGNED(offset, eb->fs_info->sectorsize))
391 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
396 btrfs_print_leaf((struct extent_buffer *)eb);
397 btrfs_err(eb->fs_info,
398 "eb %llu iref 0x%lx invalid extent inline ref type %d",
399 eb->start, (unsigned long)iref, type);
402 return BTRFS_REF_TYPE_INVALID;
405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
407 u32 high_crc = ~(u32)0;
408 u32 low_crc = ~(u32)0;
411 lenum = cpu_to_le64(root_objectid);
412 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
413 lenum = cpu_to_le64(owner);
414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
415 lenum = cpu_to_le64(offset);
416 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
418 return ((u64)high_crc << 31) ^ (u64)low_crc;
421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
422 struct btrfs_extent_data_ref *ref)
424 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
425 btrfs_extent_data_ref_objectid(leaf, ref),
426 btrfs_extent_data_ref_offset(leaf, ref));
429 static int match_extent_data_ref(struct extent_buffer *leaf,
430 struct btrfs_extent_data_ref *ref,
431 u64 root_objectid, u64 owner, u64 offset)
433 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
434 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
435 btrfs_extent_data_ref_offset(leaf, ref) != offset)
440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
441 struct btrfs_path *path,
442 u64 bytenr, u64 parent,
444 u64 owner, u64 offset)
446 struct btrfs_root *root = trans->fs_info->extent_root;
447 struct btrfs_key key;
448 struct btrfs_extent_data_ref *ref;
449 struct extent_buffer *leaf;
455 key.objectid = bytenr;
457 key.type = BTRFS_SHARED_DATA_REF_KEY;
460 key.type = BTRFS_EXTENT_DATA_REF_KEY;
461 key.offset = hash_extent_data_ref(root_objectid,
466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
478 leaf = path->nodes[0];
479 nritems = btrfs_header_nritems(leaf);
481 if (path->slots[0] >= nritems) {
482 ret = btrfs_next_leaf(root, path);
488 leaf = path->nodes[0];
489 nritems = btrfs_header_nritems(leaf);
493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
494 if (key.objectid != bytenr ||
495 key.type != BTRFS_EXTENT_DATA_REF_KEY)
498 ref = btrfs_item_ptr(leaf, path->slots[0],
499 struct btrfs_extent_data_ref);
501 if (match_extent_data_ref(leaf, ref, root_objectid,
504 btrfs_release_path(path);
516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
517 struct btrfs_path *path,
518 u64 bytenr, u64 parent,
519 u64 root_objectid, u64 owner,
520 u64 offset, int refs_to_add)
522 struct btrfs_root *root = trans->fs_info->extent_root;
523 struct btrfs_key key;
524 struct extent_buffer *leaf;
529 key.objectid = bytenr;
531 key.type = BTRFS_SHARED_DATA_REF_KEY;
533 size = sizeof(struct btrfs_shared_data_ref);
535 key.type = BTRFS_EXTENT_DATA_REF_KEY;
536 key.offset = hash_extent_data_ref(root_objectid,
538 size = sizeof(struct btrfs_extent_data_ref);
541 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
542 if (ret && ret != -EEXIST)
545 leaf = path->nodes[0];
547 struct btrfs_shared_data_ref *ref;
548 ref = btrfs_item_ptr(leaf, path->slots[0],
549 struct btrfs_shared_data_ref);
551 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
553 num_refs = btrfs_shared_data_ref_count(leaf, ref);
554 num_refs += refs_to_add;
555 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
558 struct btrfs_extent_data_ref *ref;
559 while (ret == -EEXIST) {
560 ref = btrfs_item_ptr(leaf, path->slots[0],
561 struct btrfs_extent_data_ref);
562 if (match_extent_data_ref(leaf, ref, root_objectid,
565 btrfs_release_path(path);
567 ret = btrfs_insert_empty_item(trans, root, path, &key,
569 if (ret && ret != -EEXIST)
572 leaf = path->nodes[0];
574 ref = btrfs_item_ptr(leaf, path->slots[0],
575 struct btrfs_extent_data_ref);
577 btrfs_set_extent_data_ref_root(leaf, ref,
579 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
580 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
581 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
583 num_refs = btrfs_extent_data_ref_count(leaf, ref);
584 num_refs += refs_to_add;
585 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
588 btrfs_mark_buffer_dirty(leaf);
591 btrfs_release_path(path);
595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
596 struct btrfs_path *path,
597 int refs_to_drop, int *last_ref)
599 struct btrfs_key key;
600 struct btrfs_extent_data_ref *ref1 = NULL;
601 struct btrfs_shared_data_ref *ref2 = NULL;
602 struct extent_buffer *leaf;
606 leaf = path->nodes[0];
607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
609 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
610 ref1 = btrfs_item_ptr(leaf, path->slots[0],
611 struct btrfs_extent_data_ref);
612 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
613 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
614 ref2 = btrfs_item_ptr(leaf, path->slots[0],
615 struct btrfs_shared_data_ref);
616 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
617 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
618 btrfs_print_v0_err(trans->fs_info);
619 btrfs_abort_transaction(trans, -EINVAL);
625 BUG_ON(num_refs < refs_to_drop);
626 num_refs -= refs_to_drop;
629 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
632 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
633 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
634 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
635 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
636 btrfs_mark_buffer_dirty(leaf);
641 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
642 struct btrfs_extent_inline_ref *iref)
644 struct btrfs_key key;
645 struct extent_buffer *leaf;
646 struct btrfs_extent_data_ref *ref1;
647 struct btrfs_shared_data_ref *ref2;
651 leaf = path->nodes[0];
652 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
654 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
657 * If type is invalid, we should have bailed out earlier than
660 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
661 ASSERT(type != BTRFS_REF_TYPE_INVALID);
662 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
663 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
664 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
666 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
667 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
669 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
670 ref1 = btrfs_item_ptr(leaf, path->slots[0],
671 struct btrfs_extent_data_ref);
672 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
673 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
674 ref2 = btrfs_item_ptr(leaf, path->slots[0],
675 struct btrfs_shared_data_ref);
676 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
684 struct btrfs_path *path,
685 u64 bytenr, u64 parent,
688 struct btrfs_root *root = trans->fs_info->extent_root;
689 struct btrfs_key key;
692 key.objectid = bytenr;
694 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
697 key.type = BTRFS_TREE_BLOCK_REF_KEY;
698 key.offset = root_objectid;
701 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
708 struct btrfs_path *path,
709 u64 bytenr, u64 parent,
712 struct btrfs_key key;
715 key.objectid = bytenr;
717 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
720 key.type = BTRFS_TREE_BLOCK_REF_KEY;
721 key.offset = root_objectid;
724 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
726 btrfs_release_path(path);
730 static inline int extent_ref_type(u64 parent, u64 owner)
733 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
735 type = BTRFS_SHARED_BLOCK_REF_KEY;
737 type = BTRFS_TREE_BLOCK_REF_KEY;
740 type = BTRFS_SHARED_DATA_REF_KEY;
742 type = BTRFS_EXTENT_DATA_REF_KEY;
747 static int find_next_key(struct btrfs_path *path, int level,
748 struct btrfs_key *key)
751 for (; level < BTRFS_MAX_LEVEL; level++) {
752 if (!path->nodes[level])
754 if (path->slots[level] + 1 >=
755 btrfs_header_nritems(path->nodes[level]))
758 btrfs_item_key_to_cpu(path->nodes[level], key,
759 path->slots[level] + 1);
761 btrfs_node_key_to_cpu(path->nodes[level], key,
762 path->slots[level] + 1);
769 * look for inline back ref. if back ref is found, *ref_ret is set
770 * to the address of inline back ref, and 0 is returned.
772 * if back ref isn't found, *ref_ret is set to the address where it
773 * should be inserted, and -ENOENT is returned.
775 * if insert is true and there are too many inline back refs, the path
776 * points to the extent item, and -EAGAIN is returned.
778 * NOTE: inline back refs are ordered in the same way that back ref
779 * items in the tree are ordered.
781 static noinline_for_stack
782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
783 struct btrfs_path *path,
784 struct btrfs_extent_inline_ref **ref_ret,
785 u64 bytenr, u64 num_bytes,
786 u64 parent, u64 root_objectid,
787 u64 owner, u64 offset, int insert)
789 struct btrfs_fs_info *fs_info = trans->fs_info;
790 struct btrfs_root *root = fs_info->extent_root;
791 struct btrfs_key key;
792 struct extent_buffer *leaf;
793 struct btrfs_extent_item *ei;
794 struct btrfs_extent_inline_ref *iref;
804 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
807 key.objectid = bytenr;
808 key.type = BTRFS_EXTENT_ITEM_KEY;
809 key.offset = num_bytes;
811 want = extent_ref_type(parent, owner);
813 extra_size = btrfs_extent_inline_ref_size(want);
814 path->search_for_extension = 1;
815 path->keep_locks = 1;
820 * Owner is our level, so we can just add one to get the level for the
821 * block we are interested in.
823 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
824 key.type = BTRFS_METADATA_ITEM_KEY;
829 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
836 * We may be a newly converted file system which still has the old fat
837 * extent entries for metadata, so try and see if we have one of those.
839 if (ret > 0 && skinny_metadata) {
840 skinny_metadata = false;
841 if (path->slots[0]) {
843 btrfs_item_key_to_cpu(path->nodes[0], &key,
845 if (key.objectid == bytenr &&
846 key.type == BTRFS_EXTENT_ITEM_KEY &&
847 key.offset == num_bytes)
851 key.objectid = bytenr;
852 key.type = BTRFS_EXTENT_ITEM_KEY;
853 key.offset = num_bytes;
854 btrfs_release_path(path);
859 if (ret && !insert) {
862 } else if (WARN_ON(ret)) {
867 leaf = path->nodes[0];
868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 if (unlikely(item_size < sizeof(*ei))) {
871 btrfs_print_v0_err(fs_info);
872 btrfs_abort_transaction(trans, err);
876 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
877 flags = btrfs_extent_flags(leaf, ei);
879 ptr = (unsigned long)(ei + 1);
880 end = (unsigned long)ei + item_size;
882 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
883 ptr += sizeof(struct btrfs_tree_block_info);
887 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
888 needed = BTRFS_REF_TYPE_DATA;
890 needed = BTRFS_REF_TYPE_BLOCK;
898 iref = (struct btrfs_extent_inline_ref *)ptr;
899 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
900 if (type == BTRFS_REF_TYPE_INVALID) {
908 ptr += btrfs_extent_inline_ref_size(type);
912 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
913 struct btrfs_extent_data_ref *dref;
914 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
915 if (match_extent_data_ref(leaf, dref, root_objectid,
920 if (hash_extent_data_ref_item(leaf, dref) <
921 hash_extent_data_ref(root_objectid, owner, offset))
925 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
927 if (parent == ref_offset) {
931 if (ref_offset < parent)
934 if (root_objectid == ref_offset) {
938 if (ref_offset < root_objectid)
942 ptr += btrfs_extent_inline_ref_size(type);
944 if (err == -ENOENT && insert) {
945 if (item_size + extra_size >=
946 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
951 * To add new inline back ref, we have to make sure
952 * there is no corresponding back ref item.
953 * For simplicity, we just do not add new inline back
954 * ref if there is any kind of item for this block
956 if (find_next_key(path, 0, &key) == 0 &&
957 key.objectid == bytenr &&
958 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
963 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 path->keep_locks = 0;
967 path->search_for_extension = 0;
968 btrfs_unlock_up_safe(path, 1);
974 * helper to add new inline back ref
976 static noinline_for_stack
977 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
978 struct btrfs_path *path,
979 struct btrfs_extent_inline_ref *iref,
980 u64 parent, u64 root_objectid,
981 u64 owner, u64 offset, int refs_to_add,
982 struct btrfs_delayed_extent_op *extent_op)
984 struct extent_buffer *leaf;
985 struct btrfs_extent_item *ei;
988 unsigned long item_offset;
993 leaf = path->nodes[0];
994 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
995 item_offset = (unsigned long)iref - (unsigned long)ei;
997 type = extent_ref_type(parent, owner);
998 size = btrfs_extent_inline_ref_size(type);
1000 btrfs_extend_item(path, size);
1002 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1003 refs = btrfs_extent_refs(leaf, ei);
1004 refs += refs_to_add;
1005 btrfs_set_extent_refs(leaf, ei, refs);
1007 __run_delayed_extent_op(extent_op, leaf, ei);
1009 ptr = (unsigned long)ei + item_offset;
1010 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1011 if (ptr < end - size)
1012 memmove_extent_buffer(leaf, ptr + size, ptr,
1015 iref = (struct btrfs_extent_inline_ref *)ptr;
1016 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1017 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1018 struct btrfs_extent_data_ref *dref;
1019 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1020 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1021 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1022 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1023 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1024 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1025 struct btrfs_shared_data_ref *sref;
1026 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1027 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1028 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1029 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1032 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1034 btrfs_mark_buffer_dirty(leaf);
1037 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1038 struct btrfs_path *path,
1039 struct btrfs_extent_inline_ref **ref_ret,
1040 u64 bytenr, u64 num_bytes, u64 parent,
1041 u64 root_objectid, u64 owner, u64 offset)
1045 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1046 num_bytes, parent, root_objectid,
1051 btrfs_release_path(path);
1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1059 root_objectid, owner, offset);
1065 * helper to update/remove inline back ref
1067 static noinline_for_stack
1068 void update_inline_extent_backref(struct btrfs_path *path,
1069 struct btrfs_extent_inline_ref *iref,
1071 struct btrfs_delayed_extent_op *extent_op,
1074 struct extent_buffer *leaf = path->nodes[0];
1075 struct btrfs_extent_item *ei;
1076 struct btrfs_extent_data_ref *dref = NULL;
1077 struct btrfs_shared_data_ref *sref = NULL;
1085 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1086 refs = btrfs_extent_refs(leaf, ei);
1087 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1088 refs += refs_to_mod;
1089 btrfs_set_extent_refs(leaf, ei, refs);
1091 __run_delayed_extent_op(extent_op, leaf, ei);
1094 * If type is invalid, we should have bailed out after
1095 * lookup_inline_extent_backref().
1097 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1098 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1100 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1101 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1102 refs = btrfs_extent_data_ref_count(leaf, dref);
1103 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1104 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1105 refs = btrfs_shared_data_ref_count(leaf, sref);
1108 BUG_ON(refs_to_mod != -1);
1111 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1112 refs += refs_to_mod;
1115 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1116 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1118 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1121 size = btrfs_extent_inline_ref_size(type);
1122 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1123 ptr = (unsigned long)iref;
1124 end = (unsigned long)ei + item_size;
1125 if (ptr + size < end)
1126 memmove_extent_buffer(leaf, ptr, ptr + size,
1129 btrfs_truncate_item(path, item_size, 1);
1131 btrfs_mark_buffer_dirty(leaf);
1134 static noinline_for_stack
1135 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1136 struct btrfs_path *path,
1137 u64 bytenr, u64 num_bytes, u64 parent,
1138 u64 root_objectid, u64 owner,
1139 u64 offset, int refs_to_add,
1140 struct btrfs_delayed_extent_op *extent_op)
1142 struct btrfs_extent_inline_ref *iref;
1145 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1146 num_bytes, parent, root_objectid,
1150 * We're adding refs to a tree block we already own, this
1151 * should not happen at all.
1153 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1154 btrfs_crit(trans->fs_info,
1155 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1156 bytenr, num_bytes, root_objectid);
1157 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1159 btrfs_crit(trans->fs_info,
1160 "path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1161 btrfs_print_leaf(path->nodes[0]);
1165 update_inline_extent_backref(path, iref, refs_to_add,
1167 } else if (ret == -ENOENT) {
1168 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1169 root_objectid, owner, offset,
1170 refs_to_add, extent_op);
1176 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1177 struct btrfs_path *path,
1178 struct btrfs_extent_inline_ref *iref,
1179 int refs_to_drop, int is_data, int *last_ref)
1183 BUG_ON(!is_data && refs_to_drop != 1);
1185 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1187 } else if (is_data) {
1188 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1192 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1197 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1198 u64 *discarded_bytes)
1201 u64 bytes_left, end;
1202 u64 aligned_start = ALIGN(start, 1 << 9);
1204 if (WARN_ON(start != aligned_start)) {
1205 len -= aligned_start - start;
1206 len = round_down(len, 1 << 9);
1207 start = aligned_start;
1210 *discarded_bytes = 0;
1218 /* Skip any superblocks on this device. */
1219 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1220 u64 sb_start = btrfs_sb_offset(j);
1221 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1222 u64 size = sb_start - start;
1224 if (!in_range(sb_start, start, bytes_left) &&
1225 !in_range(sb_end, start, bytes_left) &&
1226 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1230 * Superblock spans beginning of range. Adjust start and
1233 if (sb_start <= start) {
1234 start += sb_end - start;
1239 bytes_left = end - start;
1244 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1247 *discarded_bytes += size;
1248 else if (ret != -EOPNOTSUPP)
1257 bytes_left = end - start;
1261 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1264 *discarded_bytes += bytes_left;
1269 static int do_discard_extent(struct btrfs_io_stripe *stripe, u64 *bytes)
1271 struct btrfs_device *dev = stripe->dev;
1272 struct btrfs_fs_info *fs_info = dev->fs_info;
1273 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1274 u64 phys = stripe->physical;
1275 u64 len = stripe->length;
1279 /* Zone reset on a zoned filesystem */
1280 if (btrfs_can_zone_reset(dev, phys, len)) {
1283 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1287 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1288 dev != dev_replace->srcdev)
1291 src_disc = discarded;
1293 /* Send to replace target as well */
1294 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1296 discarded += src_disc;
1297 } else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) {
1298 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1309 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1310 u64 num_bytes, u64 *actual_bytes)
1313 u64 discarded_bytes = 0;
1314 u64 end = bytenr + num_bytes;
1316 struct btrfs_io_context *bioc = NULL;
1319 * Avoid races with device replace and make sure our bioc has devices
1320 * associated to its stripes that don't go away while we are discarding.
1322 btrfs_bio_counter_inc_blocked(fs_info);
1324 struct btrfs_io_stripe *stripe;
1327 num_bytes = end - cur;
1328 /* Tell the block device(s) that the sectors can be discarded */
1329 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1330 &num_bytes, &bioc, 0);
1332 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1333 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1334 * thus we can't continue anyway.
1339 stripe = bioc->stripes;
1340 for (i = 0; i < bioc->num_stripes; i++, stripe++) {
1342 struct btrfs_device *device = stripe->dev;
1344 if (!device->bdev) {
1345 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1349 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1352 ret = do_discard_extent(stripe, &bytes);
1354 discarded_bytes += bytes;
1355 } else if (ret != -EOPNOTSUPP) {
1357 * Logic errors or -ENOMEM, or -EIO, but
1358 * unlikely to happen.
1360 * And since there are two loops, explicitly
1361 * go to out to avoid confusion.
1363 btrfs_put_bioc(bioc);
1368 * Just in case we get back EOPNOTSUPP for some reason,
1369 * just ignore the return value so we don't screw up
1370 * people calling discard_extent.
1374 btrfs_put_bioc(bioc);
1378 btrfs_bio_counter_dec(fs_info);
1381 *actual_bytes = discarded_bytes;
1384 if (ret == -EOPNOTSUPP)
1389 /* Can return -ENOMEM */
1390 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1391 struct btrfs_ref *generic_ref)
1393 struct btrfs_fs_info *fs_info = trans->fs_info;
1396 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1397 generic_ref->action);
1398 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1399 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1401 if (generic_ref->type == BTRFS_REF_METADATA)
1402 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1404 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1406 btrfs_ref_tree_mod(fs_info, generic_ref);
1412 * __btrfs_inc_extent_ref - insert backreference for a given extent
1414 * The counterpart is in __btrfs_free_extent(), with examples and more details
1417 * @trans: Handle of transaction
1419 * @node: The delayed ref node used to get the bytenr/length for
1420 * extent whose references are incremented.
1422 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1423 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1424 * bytenr of the parent block. Since new extents are always
1425 * created with indirect references, this will only be the case
1426 * when relocating a shared extent. In that case, root_objectid
1427 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1430 * @root_objectid: The id of the root where this modification has originated,
1431 * this can be either one of the well-known metadata trees or
1432 * the subvolume id which references this extent.
1434 * @owner: For data extents it is the inode number of the owning file.
1435 * For metadata extents this parameter holds the level in the
1436 * tree of the extent.
1438 * @offset: For metadata extents the offset is ignored and is currently
1439 * always passed as 0. For data extents it is the fileoffset
1440 * this extent belongs to.
1442 * @refs_to_add Number of references to add
1444 * @extent_op Pointer to a structure, holding information necessary when
1445 * updating a tree block's flags
1448 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1449 struct btrfs_delayed_ref_node *node,
1450 u64 parent, u64 root_objectid,
1451 u64 owner, u64 offset, int refs_to_add,
1452 struct btrfs_delayed_extent_op *extent_op)
1454 struct btrfs_path *path;
1455 struct extent_buffer *leaf;
1456 struct btrfs_extent_item *item;
1457 struct btrfs_key key;
1458 u64 bytenr = node->bytenr;
1459 u64 num_bytes = node->num_bytes;
1463 path = btrfs_alloc_path();
1467 /* this will setup the path even if it fails to insert the back ref */
1468 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1469 parent, root_objectid, owner,
1470 offset, refs_to_add, extent_op);
1471 if ((ret < 0 && ret != -EAGAIN) || !ret)
1475 * Ok we had -EAGAIN which means we didn't have space to insert and
1476 * inline extent ref, so just update the reference count and add a
1479 leaf = path->nodes[0];
1480 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1481 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1482 refs = btrfs_extent_refs(leaf, item);
1483 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1485 __run_delayed_extent_op(extent_op, leaf, item);
1487 btrfs_mark_buffer_dirty(leaf);
1488 btrfs_release_path(path);
1490 /* now insert the actual backref */
1491 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1492 BUG_ON(refs_to_add != 1);
1493 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1496 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1497 root_objectid, owner, offset,
1501 btrfs_abort_transaction(trans, ret);
1503 btrfs_free_path(path);
1507 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1508 struct btrfs_delayed_ref_node *node,
1509 struct btrfs_delayed_extent_op *extent_op,
1510 int insert_reserved)
1513 struct btrfs_delayed_data_ref *ref;
1514 struct btrfs_key ins;
1519 ins.objectid = node->bytenr;
1520 ins.offset = node->num_bytes;
1521 ins.type = BTRFS_EXTENT_ITEM_KEY;
1523 ref = btrfs_delayed_node_to_data_ref(node);
1524 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1526 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1527 parent = ref->parent;
1528 ref_root = ref->root;
1530 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1532 flags |= extent_op->flags_to_set;
1533 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1534 flags, ref->objectid,
1537 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1538 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1539 ref->objectid, ref->offset,
1540 node->ref_mod, extent_op);
1541 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1542 ret = __btrfs_free_extent(trans, node, parent,
1543 ref_root, ref->objectid,
1544 ref->offset, node->ref_mod,
1552 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1553 struct extent_buffer *leaf,
1554 struct btrfs_extent_item *ei)
1556 u64 flags = btrfs_extent_flags(leaf, ei);
1557 if (extent_op->update_flags) {
1558 flags |= extent_op->flags_to_set;
1559 btrfs_set_extent_flags(leaf, ei, flags);
1562 if (extent_op->update_key) {
1563 struct btrfs_tree_block_info *bi;
1564 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1565 bi = (struct btrfs_tree_block_info *)(ei + 1);
1566 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1570 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1571 struct btrfs_delayed_ref_head *head,
1572 struct btrfs_delayed_extent_op *extent_op)
1574 struct btrfs_fs_info *fs_info = trans->fs_info;
1575 struct btrfs_key key;
1576 struct btrfs_path *path;
1577 struct btrfs_extent_item *ei;
1578 struct extent_buffer *leaf;
1582 int metadata = !extent_op->is_data;
1584 if (TRANS_ABORTED(trans))
1587 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1590 path = btrfs_alloc_path();
1594 key.objectid = head->bytenr;
1597 key.type = BTRFS_METADATA_ITEM_KEY;
1598 key.offset = extent_op->level;
1600 key.type = BTRFS_EXTENT_ITEM_KEY;
1601 key.offset = head->num_bytes;
1605 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1612 if (path->slots[0] > 0) {
1614 btrfs_item_key_to_cpu(path->nodes[0], &key,
1616 if (key.objectid == head->bytenr &&
1617 key.type == BTRFS_EXTENT_ITEM_KEY &&
1618 key.offset == head->num_bytes)
1622 btrfs_release_path(path);
1625 key.objectid = head->bytenr;
1626 key.offset = head->num_bytes;
1627 key.type = BTRFS_EXTENT_ITEM_KEY;
1636 leaf = path->nodes[0];
1637 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1639 if (unlikely(item_size < sizeof(*ei))) {
1641 btrfs_print_v0_err(fs_info);
1642 btrfs_abort_transaction(trans, err);
1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 __run_delayed_extent_op(extent_op, leaf, ei);
1649 btrfs_mark_buffer_dirty(leaf);
1651 btrfs_free_path(path);
1655 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1656 struct btrfs_delayed_ref_node *node,
1657 struct btrfs_delayed_extent_op *extent_op,
1658 int insert_reserved)
1661 struct btrfs_delayed_tree_ref *ref;
1665 ref = btrfs_delayed_node_to_tree_ref(node);
1666 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1668 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1669 parent = ref->parent;
1670 ref_root = ref->root;
1672 if (node->ref_mod != 1) {
1673 btrfs_err(trans->fs_info,
1674 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1675 node->bytenr, node->ref_mod, node->action, ref_root,
1679 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1680 BUG_ON(!extent_op || !extent_op->update_flags);
1681 ret = alloc_reserved_tree_block(trans, node, extent_op);
1682 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1683 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1684 ref->level, 0, 1, extent_op);
1685 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1686 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1687 ref->level, 0, 1, extent_op);
1694 /* helper function to actually process a single delayed ref entry */
1695 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1696 struct btrfs_delayed_ref_node *node,
1697 struct btrfs_delayed_extent_op *extent_op,
1698 int insert_reserved)
1702 if (TRANS_ABORTED(trans)) {
1703 if (insert_reserved)
1704 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1708 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1709 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1710 ret = run_delayed_tree_ref(trans, node, extent_op,
1712 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1713 node->type == BTRFS_SHARED_DATA_REF_KEY)
1714 ret = run_delayed_data_ref(trans, node, extent_op,
1718 if (ret && insert_reserved)
1719 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1721 btrfs_err(trans->fs_info,
1722 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1723 node->bytenr, node->num_bytes, node->type,
1724 node->action, node->ref_mod, ret);
1728 static inline struct btrfs_delayed_ref_node *
1729 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1731 struct btrfs_delayed_ref_node *ref;
1733 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1737 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1738 * This is to prevent a ref count from going down to zero, which deletes
1739 * the extent item from the extent tree, when there still are references
1740 * to add, which would fail because they would not find the extent item.
1742 if (!list_empty(&head->ref_add_list))
1743 return list_first_entry(&head->ref_add_list,
1744 struct btrfs_delayed_ref_node, add_list);
1746 ref = rb_entry(rb_first_cached(&head->ref_tree),
1747 struct btrfs_delayed_ref_node, ref_node);
1748 ASSERT(list_empty(&ref->add_list));
1752 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1753 struct btrfs_delayed_ref_head *head)
1755 spin_lock(&delayed_refs->lock);
1756 head->processing = 0;
1757 delayed_refs->num_heads_ready++;
1758 spin_unlock(&delayed_refs->lock);
1759 btrfs_delayed_ref_unlock(head);
1762 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1763 struct btrfs_delayed_ref_head *head)
1765 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1770 if (head->must_insert_reserved) {
1771 head->extent_op = NULL;
1772 btrfs_free_delayed_extent_op(extent_op);
1778 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1779 struct btrfs_delayed_ref_head *head)
1781 struct btrfs_delayed_extent_op *extent_op;
1784 extent_op = cleanup_extent_op(head);
1787 head->extent_op = NULL;
1788 spin_unlock(&head->lock);
1789 ret = run_delayed_extent_op(trans, head, extent_op);
1790 btrfs_free_delayed_extent_op(extent_op);
1791 return ret ? ret : 1;
1794 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1795 struct btrfs_delayed_ref_root *delayed_refs,
1796 struct btrfs_delayed_ref_head *head)
1798 int nr_items = 1; /* Dropping this ref head update. */
1801 * We had csum deletions accounted for in our delayed refs rsv, we need
1802 * to drop the csum leaves for this update from our delayed_refs_rsv.
1804 if (head->total_ref_mod < 0 && head->is_data) {
1805 spin_lock(&delayed_refs->lock);
1806 delayed_refs->pending_csums -= head->num_bytes;
1807 spin_unlock(&delayed_refs->lock);
1808 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1811 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1814 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1815 struct btrfs_delayed_ref_head *head)
1818 struct btrfs_fs_info *fs_info = trans->fs_info;
1819 struct btrfs_delayed_ref_root *delayed_refs;
1822 delayed_refs = &trans->transaction->delayed_refs;
1824 ret = run_and_cleanup_extent_op(trans, head);
1826 unselect_delayed_ref_head(delayed_refs, head);
1827 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1834 * Need to drop our head ref lock and re-acquire the delayed ref lock
1835 * and then re-check to make sure nobody got added.
1837 spin_unlock(&head->lock);
1838 spin_lock(&delayed_refs->lock);
1839 spin_lock(&head->lock);
1840 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1841 spin_unlock(&head->lock);
1842 spin_unlock(&delayed_refs->lock);
1845 btrfs_delete_ref_head(delayed_refs, head);
1846 spin_unlock(&head->lock);
1847 spin_unlock(&delayed_refs->lock);
1849 if (head->must_insert_reserved) {
1850 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1851 if (head->is_data) {
1852 ret = btrfs_del_csums(trans, fs_info->csum_root,
1853 head->bytenr, head->num_bytes);
1857 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1859 trace_run_delayed_ref_head(fs_info, head, 0);
1860 btrfs_delayed_ref_unlock(head);
1861 btrfs_put_delayed_ref_head(head);
1865 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1866 struct btrfs_trans_handle *trans)
1868 struct btrfs_delayed_ref_root *delayed_refs =
1869 &trans->transaction->delayed_refs;
1870 struct btrfs_delayed_ref_head *head = NULL;
1873 spin_lock(&delayed_refs->lock);
1874 head = btrfs_select_ref_head(delayed_refs);
1876 spin_unlock(&delayed_refs->lock);
1881 * Grab the lock that says we are going to process all the refs for
1884 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1885 spin_unlock(&delayed_refs->lock);
1888 * We may have dropped the spin lock to get the head mutex lock, and
1889 * that might have given someone else time to free the head. If that's
1890 * true, it has been removed from our list and we can move on.
1893 head = ERR_PTR(-EAGAIN);
1898 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1899 struct btrfs_delayed_ref_head *locked_ref,
1900 unsigned long *run_refs)
1902 struct btrfs_fs_info *fs_info = trans->fs_info;
1903 struct btrfs_delayed_ref_root *delayed_refs;
1904 struct btrfs_delayed_extent_op *extent_op;
1905 struct btrfs_delayed_ref_node *ref;
1906 int must_insert_reserved = 0;
1909 delayed_refs = &trans->transaction->delayed_refs;
1911 lockdep_assert_held(&locked_ref->mutex);
1912 lockdep_assert_held(&locked_ref->lock);
1914 while ((ref = select_delayed_ref(locked_ref))) {
1916 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1917 spin_unlock(&locked_ref->lock);
1918 unselect_delayed_ref_head(delayed_refs, locked_ref);
1924 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1925 RB_CLEAR_NODE(&ref->ref_node);
1926 if (!list_empty(&ref->add_list))
1927 list_del(&ref->add_list);
1929 * When we play the delayed ref, also correct the ref_mod on
1932 switch (ref->action) {
1933 case BTRFS_ADD_DELAYED_REF:
1934 case BTRFS_ADD_DELAYED_EXTENT:
1935 locked_ref->ref_mod -= ref->ref_mod;
1937 case BTRFS_DROP_DELAYED_REF:
1938 locked_ref->ref_mod += ref->ref_mod;
1943 atomic_dec(&delayed_refs->num_entries);
1946 * Record the must_insert_reserved flag before we drop the
1949 must_insert_reserved = locked_ref->must_insert_reserved;
1950 locked_ref->must_insert_reserved = 0;
1952 extent_op = locked_ref->extent_op;
1953 locked_ref->extent_op = NULL;
1954 spin_unlock(&locked_ref->lock);
1956 ret = run_one_delayed_ref(trans, ref, extent_op,
1957 must_insert_reserved);
1959 btrfs_free_delayed_extent_op(extent_op);
1961 unselect_delayed_ref_head(delayed_refs, locked_ref);
1962 btrfs_put_delayed_ref(ref);
1966 btrfs_put_delayed_ref(ref);
1969 spin_lock(&locked_ref->lock);
1970 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1977 * Returns 0 on success or if called with an already aborted transaction.
1978 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1980 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1983 struct btrfs_fs_info *fs_info = trans->fs_info;
1984 struct btrfs_delayed_ref_root *delayed_refs;
1985 struct btrfs_delayed_ref_head *locked_ref = NULL;
1986 ktime_t start = ktime_get();
1988 unsigned long count = 0;
1989 unsigned long actual_count = 0;
1991 delayed_refs = &trans->transaction->delayed_refs;
1994 locked_ref = btrfs_obtain_ref_head(trans);
1995 if (IS_ERR_OR_NULL(locked_ref)) {
1996 if (PTR_ERR(locked_ref) == -EAGAIN) {
2005 * We need to try and merge add/drops of the same ref since we
2006 * can run into issues with relocate dropping the implicit ref
2007 * and then it being added back again before the drop can
2008 * finish. If we merged anything we need to re-loop so we can
2010 * Or we can get node references of the same type that weren't
2011 * merged when created due to bumps in the tree mod seq, and
2012 * we need to merge them to prevent adding an inline extent
2013 * backref before dropping it (triggering a BUG_ON at
2014 * insert_inline_extent_backref()).
2016 spin_lock(&locked_ref->lock);
2017 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2019 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2021 if (ret < 0 && ret != -EAGAIN) {
2023 * Error, btrfs_run_delayed_refs_for_head already
2024 * unlocked everything so just bail out
2029 * Success, perform the usual cleanup of a processed
2032 ret = cleanup_ref_head(trans, locked_ref);
2034 /* We dropped our lock, we need to loop. */
2043 * Either success case or btrfs_run_delayed_refs_for_head
2044 * returned -EAGAIN, meaning we need to select another head
2049 } while ((nr != -1 && count < nr) || locked_ref);
2052 * We don't want to include ref heads since we can have empty ref heads
2053 * and those will drastically skew our runtime down since we just do
2054 * accounting, no actual extent tree updates.
2056 if (actual_count > 0) {
2057 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2061 * We weigh the current average higher than our current runtime
2062 * to avoid large swings in the average.
2064 spin_lock(&delayed_refs->lock);
2065 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2066 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2067 spin_unlock(&delayed_refs->lock);
2072 #ifdef SCRAMBLE_DELAYED_REFS
2074 * Normally delayed refs get processed in ascending bytenr order. This
2075 * correlates in most cases to the order added. To expose dependencies on this
2076 * order, we start to process the tree in the middle instead of the beginning
2078 static u64 find_middle(struct rb_root *root)
2080 struct rb_node *n = root->rb_node;
2081 struct btrfs_delayed_ref_node *entry;
2084 u64 first = 0, last = 0;
2088 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2089 first = entry->bytenr;
2093 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2094 last = entry->bytenr;
2099 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2100 WARN_ON(!entry->in_tree);
2102 middle = entry->bytenr;
2116 * this starts processing the delayed reference count updates and
2117 * extent insertions we have queued up so far. count can be
2118 * 0, which means to process everything in the tree at the start
2119 * of the run (but not newly added entries), or it can be some target
2120 * number you'd like to process.
2122 * Returns 0 on success or if called with an aborted transaction
2123 * Returns <0 on error and aborts the transaction
2125 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2126 unsigned long count)
2128 struct btrfs_fs_info *fs_info = trans->fs_info;
2129 struct rb_node *node;
2130 struct btrfs_delayed_ref_root *delayed_refs;
2131 struct btrfs_delayed_ref_head *head;
2133 int run_all = count == (unsigned long)-1;
2135 /* We'll clean this up in btrfs_cleanup_transaction */
2136 if (TRANS_ABORTED(trans))
2139 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2142 delayed_refs = &trans->transaction->delayed_refs;
2144 count = delayed_refs->num_heads_ready;
2147 #ifdef SCRAMBLE_DELAYED_REFS
2148 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2150 ret = __btrfs_run_delayed_refs(trans, count);
2152 btrfs_abort_transaction(trans, ret);
2157 btrfs_create_pending_block_groups(trans);
2159 spin_lock(&delayed_refs->lock);
2160 node = rb_first_cached(&delayed_refs->href_root);
2162 spin_unlock(&delayed_refs->lock);
2165 head = rb_entry(node, struct btrfs_delayed_ref_head,
2167 refcount_inc(&head->refs);
2168 spin_unlock(&delayed_refs->lock);
2170 /* Mutex was contended, block until it's released and retry. */
2171 mutex_lock(&head->mutex);
2172 mutex_unlock(&head->mutex);
2174 btrfs_put_delayed_ref_head(head);
2182 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2183 struct extent_buffer *eb, u64 flags,
2184 int level, int is_data)
2186 struct btrfs_delayed_extent_op *extent_op;
2189 extent_op = btrfs_alloc_delayed_extent_op();
2193 extent_op->flags_to_set = flags;
2194 extent_op->update_flags = true;
2195 extent_op->update_key = false;
2196 extent_op->is_data = is_data ? true : false;
2197 extent_op->level = level;
2199 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2201 btrfs_free_delayed_extent_op(extent_op);
2205 static noinline int check_delayed_ref(struct btrfs_root *root,
2206 struct btrfs_path *path,
2207 u64 objectid, u64 offset, u64 bytenr)
2209 struct btrfs_delayed_ref_head *head;
2210 struct btrfs_delayed_ref_node *ref;
2211 struct btrfs_delayed_data_ref *data_ref;
2212 struct btrfs_delayed_ref_root *delayed_refs;
2213 struct btrfs_transaction *cur_trans;
2214 struct rb_node *node;
2217 spin_lock(&root->fs_info->trans_lock);
2218 cur_trans = root->fs_info->running_transaction;
2220 refcount_inc(&cur_trans->use_count);
2221 spin_unlock(&root->fs_info->trans_lock);
2225 delayed_refs = &cur_trans->delayed_refs;
2226 spin_lock(&delayed_refs->lock);
2227 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2229 spin_unlock(&delayed_refs->lock);
2230 btrfs_put_transaction(cur_trans);
2234 if (!mutex_trylock(&head->mutex)) {
2235 refcount_inc(&head->refs);
2236 spin_unlock(&delayed_refs->lock);
2238 btrfs_release_path(path);
2241 * Mutex was contended, block until it's released and let
2244 mutex_lock(&head->mutex);
2245 mutex_unlock(&head->mutex);
2246 btrfs_put_delayed_ref_head(head);
2247 btrfs_put_transaction(cur_trans);
2250 spin_unlock(&delayed_refs->lock);
2252 spin_lock(&head->lock);
2254 * XXX: We should replace this with a proper search function in the
2257 for (node = rb_first_cached(&head->ref_tree); node;
2258 node = rb_next(node)) {
2259 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2260 /* If it's a shared ref we know a cross reference exists */
2261 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2266 data_ref = btrfs_delayed_node_to_data_ref(ref);
2269 * If our ref doesn't match the one we're currently looking at
2270 * then we have a cross reference.
2272 if (data_ref->root != root->root_key.objectid ||
2273 data_ref->objectid != objectid ||
2274 data_ref->offset != offset) {
2279 spin_unlock(&head->lock);
2280 mutex_unlock(&head->mutex);
2281 btrfs_put_transaction(cur_trans);
2285 static noinline int check_committed_ref(struct btrfs_root *root,
2286 struct btrfs_path *path,
2287 u64 objectid, u64 offset, u64 bytenr,
2290 struct btrfs_fs_info *fs_info = root->fs_info;
2291 struct btrfs_root *extent_root = fs_info->extent_root;
2292 struct extent_buffer *leaf;
2293 struct btrfs_extent_data_ref *ref;
2294 struct btrfs_extent_inline_ref *iref;
2295 struct btrfs_extent_item *ei;
2296 struct btrfs_key key;
2301 key.objectid = bytenr;
2302 key.offset = (u64)-1;
2303 key.type = BTRFS_EXTENT_ITEM_KEY;
2305 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2308 BUG_ON(ret == 0); /* Corruption */
2311 if (path->slots[0] == 0)
2315 leaf = path->nodes[0];
2316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2318 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2322 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2323 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2325 /* If extent item has more than 1 inline ref then it's shared */
2326 if (item_size != sizeof(*ei) +
2327 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2331 * If extent created before last snapshot => it's shared unless the
2332 * snapshot has been deleted. Use the heuristic if strict is false.
2335 (btrfs_extent_generation(leaf, ei) <=
2336 btrfs_root_last_snapshot(&root->root_item)))
2339 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2341 /* If this extent has SHARED_DATA_REF then it's shared */
2342 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2343 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2346 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2347 if (btrfs_extent_refs(leaf, ei) !=
2348 btrfs_extent_data_ref_count(leaf, ref) ||
2349 btrfs_extent_data_ref_root(leaf, ref) !=
2350 root->root_key.objectid ||
2351 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2352 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2360 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2361 u64 bytenr, bool strict)
2363 struct btrfs_path *path;
2366 path = btrfs_alloc_path();
2371 ret = check_committed_ref(root, path, objectid,
2372 offset, bytenr, strict);
2373 if (ret && ret != -ENOENT)
2376 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2377 } while (ret == -EAGAIN);
2380 btrfs_free_path(path);
2381 if (btrfs_is_data_reloc_root(root))
2386 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2387 struct btrfs_root *root,
2388 struct extent_buffer *buf,
2389 int full_backref, int inc)
2391 struct btrfs_fs_info *fs_info = root->fs_info;
2397 struct btrfs_key key;
2398 struct btrfs_file_extent_item *fi;
2399 struct btrfs_ref generic_ref = { 0 };
2400 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2406 if (btrfs_is_testing(fs_info))
2409 ref_root = btrfs_header_owner(buf);
2410 nritems = btrfs_header_nritems(buf);
2411 level = btrfs_header_level(buf);
2413 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2417 parent = buf->start;
2421 action = BTRFS_ADD_DELAYED_REF;
2423 action = BTRFS_DROP_DELAYED_REF;
2425 for (i = 0; i < nritems; i++) {
2427 btrfs_item_key_to_cpu(buf, &key, i);
2428 if (key.type != BTRFS_EXTENT_DATA_KEY)
2430 fi = btrfs_item_ptr(buf, i,
2431 struct btrfs_file_extent_item);
2432 if (btrfs_file_extent_type(buf, fi) ==
2433 BTRFS_FILE_EXTENT_INLINE)
2435 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2439 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2440 key.offset -= btrfs_file_extent_offset(buf, fi);
2441 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2443 generic_ref.real_root = root->root_key.objectid;
2444 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2445 key.offset, root->root_key.objectid,
2447 generic_ref.skip_qgroup = for_reloc;
2449 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2451 ret = btrfs_free_extent(trans, &generic_ref);
2455 bytenr = btrfs_node_blockptr(buf, i);
2456 num_bytes = fs_info->nodesize;
2457 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2459 generic_ref.real_root = root->root_key.objectid;
2460 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2461 root->root_key.objectid, for_reloc);
2462 generic_ref.skip_qgroup = for_reloc;
2464 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2466 ret = btrfs_free_extent(trans, &generic_ref);
2476 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2477 struct extent_buffer *buf, int full_backref)
2479 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2482 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2483 struct extent_buffer *buf, int full_backref)
2485 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2488 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2490 struct btrfs_fs_info *fs_info = root->fs_info;
2495 flags = BTRFS_BLOCK_GROUP_DATA;
2496 else if (root == fs_info->chunk_root)
2497 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2499 flags = BTRFS_BLOCK_GROUP_METADATA;
2501 ret = btrfs_get_alloc_profile(fs_info, flags);
2505 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2507 struct btrfs_block_group *cache;
2510 spin_lock(&fs_info->block_group_cache_lock);
2511 bytenr = fs_info->first_logical_byte;
2512 spin_unlock(&fs_info->block_group_cache_lock);
2514 if (bytenr < (u64)-1)
2517 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2521 bytenr = cache->start;
2522 btrfs_put_block_group(cache);
2527 static int pin_down_extent(struct btrfs_trans_handle *trans,
2528 struct btrfs_block_group *cache,
2529 u64 bytenr, u64 num_bytes, int reserved)
2531 struct btrfs_fs_info *fs_info = cache->fs_info;
2533 spin_lock(&cache->space_info->lock);
2534 spin_lock(&cache->lock);
2535 cache->pinned += num_bytes;
2536 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2539 cache->reserved -= num_bytes;
2540 cache->space_info->bytes_reserved -= num_bytes;
2542 spin_unlock(&cache->lock);
2543 spin_unlock(&cache->space_info->lock);
2545 set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2546 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2550 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2551 u64 bytenr, u64 num_bytes, int reserved)
2553 struct btrfs_block_group *cache;
2555 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2556 BUG_ON(!cache); /* Logic error */
2558 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2560 btrfs_put_block_group(cache);
2565 * this function must be called within transaction
2567 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2568 u64 bytenr, u64 num_bytes)
2570 struct btrfs_block_group *cache;
2573 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2578 * Fully cache the free space first so that our pin removes the free space
2581 ret = btrfs_cache_block_group(cache, true);
2585 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2587 /* remove us from the free space cache (if we're there at all) */
2588 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2590 btrfs_put_block_group(cache);
2594 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2595 u64 start, u64 num_bytes)
2598 struct btrfs_block_group *block_group;
2600 block_group = btrfs_lookup_block_group(fs_info, start);
2604 ret = btrfs_cache_block_group(block_group, true);
2608 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2610 btrfs_put_block_group(block_group);
2614 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2616 struct btrfs_fs_info *fs_info = eb->fs_info;
2617 struct btrfs_file_extent_item *item;
2618 struct btrfs_key key;
2623 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2626 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2627 btrfs_item_key_to_cpu(eb, &key, i);
2628 if (key.type != BTRFS_EXTENT_DATA_KEY)
2630 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2631 found_type = btrfs_file_extent_type(eb, item);
2632 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2634 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2636 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2637 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2638 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2647 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2649 atomic_inc(&bg->reservations);
2653 * Returns the free cluster for the given space info and sets empty_cluster to
2654 * what it should be based on the mount options.
2656 static struct btrfs_free_cluster *
2657 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2658 struct btrfs_space_info *space_info, u64 *empty_cluster)
2660 struct btrfs_free_cluster *ret = NULL;
2663 if (btrfs_mixed_space_info(space_info))
2666 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2667 ret = &fs_info->meta_alloc_cluster;
2668 if (btrfs_test_opt(fs_info, SSD))
2669 *empty_cluster = SZ_2M;
2671 *empty_cluster = SZ_64K;
2672 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2673 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2674 *empty_cluster = SZ_2M;
2675 ret = &fs_info->data_alloc_cluster;
2681 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2683 const bool return_free_space)
2685 struct btrfs_block_group *cache = NULL;
2686 struct btrfs_space_info *space_info;
2687 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2688 struct btrfs_free_cluster *cluster = NULL;
2690 u64 total_unpinned = 0;
2691 u64 empty_cluster = 0;
2694 while (start <= end) {
2697 start >= cache->start + cache->length) {
2699 btrfs_put_block_group(cache);
2701 cache = btrfs_lookup_block_group(fs_info, start);
2702 BUG_ON(!cache); /* Logic error */
2704 cluster = fetch_cluster_info(fs_info,
2707 empty_cluster <<= 1;
2710 len = cache->start + cache->length - start;
2711 len = min(len, end + 1 - start);
2713 down_read(&fs_info->commit_root_sem);
2714 if (start < cache->last_byte_to_unpin && return_free_space) {
2715 u64 add_len = min(len, cache->last_byte_to_unpin - start);
2717 btrfs_add_free_space(cache, start, add_len);
2719 up_read(&fs_info->commit_root_sem);
2722 total_unpinned += len;
2723 space_info = cache->space_info;
2726 * If this space cluster has been marked as fragmented and we've
2727 * unpinned enough in this block group to potentially allow a
2728 * cluster to be created inside of it go ahead and clear the
2731 if (cluster && cluster->fragmented &&
2732 total_unpinned > empty_cluster) {
2733 spin_lock(&cluster->lock);
2734 cluster->fragmented = 0;
2735 spin_unlock(&cluster->lock);
2738 spin_lock(&space_info->lock);
2739 spin_lock(&cache->lock);
2740 cache->pinned -= len;
2741 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2742 space_info->max_extent_size = 0;
2744 space_info->bytes_readonly += len;
2746 } else if (btrfs_is_zoned(fs_info)) {
2747 /* Need reset before reusing in a zoned block group */
2748 space_info->bytes_zone_unusable += len;
2751 spin_unlock(&cache->lock);
2752 if (!readonly && return_free_space &&
2753 global_rsv->space_info == space_info) {
2756 spin_lock(&global_rsv->lock);
2757 if (!global_rsv->full) {
2758 to_add = min(len, global_rsv->size -
2759 global_rsv->reserved);
2760 global_rsv->reserved += to_add;
2761 btrfs_space_info_update_bytes_may_use(fs_info,
2762 space_info, to_add);
2763 if (global_rsv->reserved >= global_rsv->size)
2764 global_rsv->full = 1;
2767 spin_unlock(&global_rsv->lock);
2769 /* Add to any tickets we may have */
2770 if (!readonly && return_free_space && len)
2771 btrfs_try_granting_tickets(fs_info, space_info);
2772 spin_unlock(&space_info->lock);
2776 btrfs_put_block_group(cache);
2780 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2782 struct btrfs_fs_info *fs_info = trans->fs_info;
2783 struct btrfs_block_group *block_group, *tmp;
2784 struct list_head *deleted_bgs;
2785 struct extent_io_tree *unpin;
2790 unpin = &trans->transaction->pinned_extents;
2792 while (!TRANS_ABORTED(trans)) {
2793 struct extent_state *cached_state = NULL;
2795 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2796 ret = find_first_extent_bit(unpin, 0, &start, &end,
2797 EXTENT_DIRTY, &cached_state);
2799 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2803 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2804 ret = btrfs_discard_extent(fs_info, start,
2805 end + 1 - start, NULL);
2807 clear_extent_dirty(unpin, start, end, &cached_state);
2808 unpin_extent_range(fs_info, start, end, true);
2809 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2810 free_extent_state(cached_state);
2814 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2815 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2816 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2820 * Transaction is finished. We don't need the lock anymore. We
2821 * do need to clean up the block groups in case of a transaction
2824 deleted_bgs = &trans->transaction->deleted_bgs;
2825 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2829 if (!TRANS_ABORTED(trans))
2830 ret = btrfs_discard_extent(fs_info,
2832 block_group->length,
2835 list_del_init(&block_group->bg_list);
2836 btrfs_unfreeze_block_group(block_group);
2837 btrfs_put_block_group(block_group);
2840 const char *errstr = btrfs_decode_error(ret);
2842 "discard failed while removing blockgroup: errno=%d %s",
2851 * Drop one or more refs of @node.
2853 * 1. Locate the extent refs.
2854 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2855 * Locate it, then reduce the refs number or remove the ref line completely.
2857 * 2. Update the refs count in EXTENT/METADATA_ITEM
2859 * Inline backref case:
2861 * in extent tree we have:
2863 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2864 * refs 2 gen 6 flags DATA
2865 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2866 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2868 * This function gets called with:
2870 * node->bytenr = 13631488
2871 * node->num_bytes = 1048576
2872 * root_objectid = FS_TREE
2873 * owner_objectid = 257
2877 * Then we should get some like:
2879 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2880 * refs 1 gen 6 flags DATA
2881 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2883 * Keyed backref case:
2885 * in extent tree we have:
2887 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2888 * refs 754 gen 6 flags DATA
2890 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2891 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2893 * This function get called with:
2895 * node->bytenr = 13631488
2896 * node->num_bytes = 1048576
2897 * root_objectid = FS_TREE
2898 * owner_objectid = 866
2902 * Then we should get some like:
2904 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2905 * refs 753 gen 6 flags DATA
2907 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2909 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2910 struct btrfs_delayed_ref_node *node, u64 parent,
2911 u64 root_objectid, u64 owner_objectid,
2912 u64 owner_offset, int refs_to_drop,
2913 struct btrfs_delayed_extent_op *extent_op)
2915 struct btrfs_fs_info *info = trans->fs_info;
2916 struct btrfs_key key;
2917 struct btrfs_path *path;
2918 struct btrfs_root *extent_root = info->extent_root;
2919 struct extent_buffer *leaf;
2920 struct btrfs_extent_item *ei;
2921 struct btrfs_extent_inline_ref *iref;
2924 int extent_slot = 0;
2925 int found_extent = 0;
2929 u64 bytenr = node->bytenr;
2930 u64 num_bytes = node->num_bytes;
2932 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2934 path = btrfs_alloc_path();
2938 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2940 if (!is_data && refs_to_drop != 1) {
2942 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2943 node->bytenr, refs_to_drop);
2945 btrfs_abort_transaction(trans, ret);
2950 skinny_metadata = false;
2952 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2953 parent, root_objectid, owner_objectid,
2957 * Either the inline backref or the SHARED_DATA_REF/
2958 * SHARED_BLOCK_REF is found
2960 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2961 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2963 extent_slot = path->slots[0];
2964 while (extent_slot >= 0) {
2965 btrfs_item_key_to_cpu(path->nodes[0], &key,
2967 if (key.objectid != bytenr)
2969 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2970 key.offset == num_bytes) {
2974 if (key.type == BTRFS_METADATA_ITEM_KEY &&
2975 key.offset == owner_objectid) {
2980 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
2981 if (path->slots[0] - extent_slot > 5)
2986 if (!found_extent) {
2989 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
2990 btrfs_abort_transaction(trans, -EUCLEAN);
2993 /* Must be SHARED_* item, remove the backref first */
2994 ret = remove_extent_backref(trans, path, NULL,
2996 is_data, &last_ref);
2998 btrfs_abort_transaction(trans, ret);
3001 btrfs_release_path(path);
3003 /* Slow path to locate EXTENT/METADATA_ITEM */
3004 key.objectid = bytenr;
3005 key.type = BTRFS_EXTENT_ITEM_KEY;
3006 key.offset = num_bytes;
3008 if (!is_data && skinny_metadata) {
3009 key.type = BTRFS_METADATA_ITEM_KEY;
3010 key.offset = owner_objectid;
3013 ret = btrfs_search_slot(trans, extent_root,
3015 if (ret > 0 && skinny_metadata && path->slots[0]) {
3017 * Couldn't find our skinny metadata item,
3018 * see if we have ye olde extent item.
3021 btrfs_item_key_to_cpu(path->nodes[0], &key,
3023 if (key.objectid == bytenr &&
3024 key.type == BTRFS_EXTENT_ITEM_KEY &&
3025 key.offset == num_bytes)
3029 if (ret > 0 && skinny_metadata) {
3030 skinny_metadata = false;
3031 key.objectid = bytenr;
3032 key.type = BTRFS_EXTENT_ITEM_KEY;
3033 key.offset = num_bytes;
3034 btrfs_release_path(path);
3035 ret = btrfs_search_slot(trans, extent_root,
3041 "umm, got %d back from search, was looking for %llu",
3044 btrfs_print_leaf(path->nodes[0]);
3047 btrfs_abort_transaction(trans, ret);
3050 extent_slot = path->slots[0];
3052 } else if (WARN_ON(ret == -ENOENT)) {
3053 btrfs_print_leaf(path->nodes[0]);
3055 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3056 bytenr, parent, root_objectid, owner_objectid,
3058 btrfs_abort_transaction(trans, ret);
3061 btrfs_abort_transaction(trans, ret);
3065 leaf = path->nodes[0];
3066 item_size = btrfs_item_size_nr(leaf, extent_slot);
3067 if (unlikely(item_size < sizeof(*ei))) {
3069 btrfs_print_v0_err(info);
3070 btrfs_abort_transaction(trans, ret);
3073 ei = btrfs_item_ptr(leaf, extent_slot,
3074 struct btrfs_extent_item);
3075 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3076 key.type == BTRFS_EXTENT_ITEM_KEY) {
3077 struct btrfs_tree_block_info *bi;
3078 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3080 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3081 key.objectid, key.type, key.offset,
3082 owner_objectid, item_size,
3083 sizeof(*ei) + sizeof(*bi));
3084 btrfs_abort_transaction(trans, -EUCLEAN);
3087 bi = (struct btrfs_tree_block_info *)(ei + 1);
3088 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3091 refs = btrfs_extent_refs(leaf, ei);
3092 if (refs < refs_to_drop) {
3094 "trying to drop %d refs but we only have %llu for bytenr %llu",
3095 refs_to_drop, refs, bytenr);
3096 btrfs_abort_transaction(trans, -EUCLEAN);
3099 refs -= refs_to_drop;
3103 __run_delayed_extent_op(extent_op, leaf, ei);
3105 * In the case of inline back ref, reference count will
3106 * be updated by remove_extent_backref
3109 if (!found_extent) {
3111 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3112 btrfs_abort_transaction(trans, -EUCLEAN);
3116 btrfs_set_extent_refs(leaf, ei, refs);
3117 btrfs_mark_buffer_dirty(leaf);
3120 ret = remove_extent_backref(trans, path, iref,
3121 refs_to_drop, is_data,
3124 btrfs_abort_transaction(trans, ret);
3129 /* In this branch refs == 1 */
3131 if (is_data && refs_to_drop !=
3132 extent_data_ref_count(path, iref)) {
3134 "invalid refs_to_drop, current refs %u refs_to_drop %u",
3135 extent_data_ref_count(path, iref),
3137 btrfs_abort_transaction(trans, -EUCLEAN);
3141 if (path->slots[0] != extent_slot) {
3143 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3144 key.objectid, key.type,
3146 btrfs_abort_transaction(trans, -EUCLEAN);
3151 * No inline ref, we must be at SHARED_* item,
3152 * And it's single ref, it must be:
3153 * | extent_slot ||extent_slot + 1|
3154 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3156 if (path->slots[0] != extent_slot + 1) {
3158 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3159 btrfs_abort_transaction(trans, -EUCLEAN);
3162 path->slots[0] = extent_slot;
3168 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3171 btrfs_abort_transaction(trans, ret);
3174 btrfs_release_path(path);
3177 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3180 btrfs_abort_transaction(trans, ret);
3185 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3187 btrfs_abort_transaction(trans, ret);
3191 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3193 btrfs_abort_transaction(trans, ret);
3197 btrfs_release_path(path);
3200 btrfs_free_path(path);
3204 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3205 * dump for debug build.
3207 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3208 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3209 path->slots[0], extent_slot);
3210 btrfs_print_leaf(path->nodes[0]);
3213 btrfs_free_path(path);
3218 * when we free an block, it is possible (and likely) that we free the last
3219 * delayed ref for that extent as well. This searches the delayed ref tree for
3220 * a given extent, and if there are no other delayed refs to be processed, it
3221 * removes it from the tree.
3223 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3226 struct btrfs_delayed_ref_head *head;
3227 struct btrfs_delayed_ref_root *delayed_refs;
3230 delayed_refs = &trans->transaction->delayed_refs;
3231 spin_lock(&delayed_refs->lock);
3232 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3234 goto out_delayed_unlock;
3236 spin_lock(&head->lock);
3237 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3240 if (cleanup_extent_op(head) != NULL)
3244 * waiting for the lock here would deadlock. If someone else has it
3245 * locked they are already in the process of dropping it anyway
3247 if (!mutex_trylock(&head->mutex))
3250 btrfs_delete_ref_head(delayed_refs, head);
3251 head->processing = 0;
3253 spin_unlock(&head->lock);
3254 spin_unlock(&delayed_refs->lock);
3256 BUG_ON(head->extent_op);
3257 if (head->must_insert_reserved)
3260 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3261 mutex_unlock(&head->mutex);
3262 btrfs_put_delayed_ref_head(head);
3265 spin_unlock(&head->lock);
3268 spin_unlock(&delayed_refs->lock);
3272 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3274 struct extent_buffer *buf,
3275 u64 parent, int last_ref)
3277 struct btrfs_fs_info *fs_info = trans->fs_info;
3278 struct btrfs_ref generic_ref = { 0 };
3281 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3282 buf->start, buf->len, parent);
3283 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3286 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3287 btrfs_ref_tree_mod(fs_info, &generic_ref);
3288 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3289 BUG_ON(ret); /* -ENOMEM */
3292 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3293 struct btrfs_block_group *cache;
3294 bool must_pin = false;
3296 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3297 ret = check_ref_cleanup(trans, buf->start);
3299 btrfs_redirty_list_add(trans->transaction, buf);
3304 cache = btrfs_lookup_block_group(fs_info, buf->start);
3306 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3307 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3308 btrfs_put_block_group(cache);
3313 * If there are tree mod log users we may have recorded mod log
3314 * operations for this node. If we re-allocate this node we
3315 * could replay operations on this node that happened when it
3316 * existed in a completely different root. For example if it
3317 * was part of root A, then was reallocated to root B, and we
3318 * are doing a btrfs_old_search_slot(root b), we could replay
3319 * operations that happened when the block was part of root A,
3320 * giving us an inconsistent view of the btree.
3322 * We are safe from races here because at this point no other
3323 * node or root points to this extent buffer, so if after this
3324 * check a new tree mod log user joins we will not have an
3325 * existing log of operations on this node that we have to
3328 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3331 if (must_pin || btrfs_is_zoned(fs_info)) {
3332 btrfs_redirty_list_add(trans->transaction, buf);
3333 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3334 btrfs_put_block_group(cache);
3338 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3340 btrfs_add_free_space(cache, buf->start, buf->len);
3341 btrfs_free_reserved_bytes(cache, buf->len, 0);
3342 btrfs_put_block_group(cache);
3343 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3348 * Deleting the buffer, clear the corrupt flag since it doesn't
3351 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3355 /* Can return -ENOMEM */
3356 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3358 struct btrfs_fs_info *fs_info = trans->fs_info;
3361 if (btrfs_is_testing(fs_info))
3365 * tree log blocks never actually go into the extent allocation
3366 * tree, just update pinning info and exit early.
3368 if ((ref->type == BTRFS_REF_METADATA &&
3369 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3370 (ref->type == BTRFS_REF_DATA &&
3371 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3372 /* unlocks the pinned mutex */
3373 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3375 } else if (ref->type == BTRFS_REF_METADATA) {
3376 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3378 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3381 if (!((ref->type == BTRFS_REF_METADATA &&
3382 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3383 (ref->type == BTRFS_REF_DATA &&
3384 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3385 btrfs_ref_tree_mod(fs_info, ref);
3390 enum btrfs_loop_type {
3391 LOOP_CACHING_NOWAIT,
3398 btrfs_lock_block_group(struct btrfs_block_group *cache,
3402 down_read(&cache->data_rwsem);
3405 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3408 btrfs_get_block_group(cache);
3410 down_read(&cache->data_rwsem);
3413 static struct btrfs_block_group *btrfs_lock_cluster(
3414 struct btrfs_block_group *block_group,
3415 struct btrfs_free_cluster *cluster,
3417 __acquires(&cluster->refill_lock)
3419 struct btrfs_block_group *used_bg = NULL;
3421 spin_lock(&cluster->refill_lock);
3423 used_bg = cluster->block_group;
3427 if (used_bg == block_group)
3430 btrfs_get_block_group(used_bg);
3435 if (down_read_trylock(&used_bg->data_rwsem))
3438 spin_unlock(&cluster->refill_lock);
3440 /* We should only have one-level nested. */
3441 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3443 spin_lock(&cluster->refill_lock);
3444 if (used_bg == cluster->block_group)
3447 up_read(&used_bg->data_rwsem);
3448 btrfs_put_block_group(used_bg);
3453 btrfs_release_block_group(struct btrfs_block_group *cache,
3457 up_read(&cache->data_rwsem);
3458 btrfs_put_block_group(cache);
3461 enum btrfs_extent_allocation_policy {
3462 BTRFS_EXTENT_ALLOC_CLUSTERED,
3463 BTRFS_EXTENT_ALLOC_ZONED,
3467 * Structure used internally for find_free_extent() function. Wraps needed
3470 struct find_free_extent_ctl {
3471 /* Basic allocation info */
3477 /* Where to start the search inside the bg */
3480 /* For clustered allocation */
3482 struct btrfs_free_cluster *last_ptr;
3485 bool have_caching_bg;
3486 bool orig_have_caching_bg;
3488 /* Allocation is called for tree-log */
3491 /* Allocation is called for data relocation */
3492 bool for_data_reloc;
3494 /* RAID index, converted from flags */
3498 * Current loop number, check find_free_extent_update_loop() for details
3503 * Whether we're refilling a cluster, if true we need to re-search
3504 * current block group but don't try to refill the cluster again.
3506 bool retry_clustered;
3509 * Whether we're updating free space cache, if true we need to re-search
3510 * current block group but don't try updating free space cache again.
3512 bool retry_unclustered;
3514 /* If current block group is cached */
3517 /* Max contiguous hole found */
3518 u64 max_extent_size;
3520 /* Total free space from free space cache, not always contiguous */
3521 u64 total_free_space;
3526 /* Hint where to start looking for an empty space */
3529 /* Allocation policy */
3530 enum btrfs_extent_allocation_policy policy;
3535 * Helper function for find_free_extent().
3537 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3538 * Return -EAGAIN to inform caller that we need to re-search this block group
3539 * Return >0 to inform caller that we find nothing
3540 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3542 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3543 struct find_free_extent_ctl *ffe_ctl,
3544 struct btrfs_block_group **cluster_bg_ret)
3546 struct btrfs_block_group *cluster_bg;
3547 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3548 u64 aligned_cluster;
3552 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3554 goto refill_cluster;
3555 if (cluster_bg != bg && (cluster_bg->ro ||
3556 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3557 goto release_cluster;
3559 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3560 ffe_ctl->num_bytes, cluster_bg->start,
3561 &ffe_ctl->max_extent_size);
3563 /* We have a block, we're done */
3564 spin_unlock(&last_ptr->refill_lock);
3565 trace_btrfs_reserve_extent_cluster(cluster_bg,
3566 ffe_ctl->search_start, ffe_ctl->num_bytes);
3567 *cluster_bg_ret = cluster_bg;
3568 ffe_ctl->found_offset = offset;
3571 WARN_ON(last_ptr->block_group != cluster_bg);
3575 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3576 * lets just skip it and let the allocator find whatever block it can
3577 * find. If we reach this point, we will have tried the cluster
3578 * allocator plenty of times and not have found anything, so we are
3579 * likely way too fragmented for the clustering stuff to find anything.
3581 * However, if the cluster is taken from the current block group,
3582 * release the cluster first, so that we stand a better chance of
3583 * succeeding in the unclustered allocation.
3585 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3586 spin_unlock(&last_ptr->refill_lock);
3587 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3591 /* This cluster didn't work out, free it and start over */
3592 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3594 if (cluster_bg != bg)
3595 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3598 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3599 spin_unlock(&last_ptr->refill_lock);
3603 aligned_cluster = max_t(u64,
3604 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3605 bg->full_stripe_len);
3606 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3607 ffe_ctl->num_bytes, aligned_cluster);
3609 /* Now pull our allocation out of this cluster */
3610 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3611 ffe_ctl->num_bytes, ffe_ctl->search_start,
3612 &ffe_ctl->max_extent_size);
3614 /* We found one, proceed */
3615 spin_unlock(&last_ptr->refill_lock);
3616 trace_btrfs_reserve_extent_cluster(bg,
3617 ffe_ctl->search_start,
3618 ffe_ctl->num_bytes);
3619 ffe_ctl->found_offset = offset;
3622 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3623 !ffe_ctl->retry_clustered) {
3624 spin_unlock(&last_ptr->refill_lock);
3626 ffe_ctl->retry_clustered = true;
3627 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3628 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3632 * At this point we either didn't find a cluster or we weren't able to
3633 * allocate a block from our cluster. Free the cluster we've been
3634 * trying to use, and go to the next block group.
3636 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3637 spin_unlock(&last_ptr->refill_lock);
3642 * Return >0 to inform caller that we find nothing
3643 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3644 * Return -EAGAIN to inform caller that we need to re-search this block group
3646 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3647 struct find_free_extent_ctl *ffe_ctl)
3649 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3653 * We are doing an unclustered allocation, set the fragmented flag so
3654 * we don't bother trying to setup a cluster again until we get more
3657 if (unlikely(last_ptr)) {
3658 spin_lock(&last_ptr->lock);
3659 last_ptr->fragmented = 1;
3660 spin_unlock(&last_ptr->lock);
3662 if (ffe_ctl->cached) {
3663 struct btrfs_free_space_ctl *free_space_ctl;
3665 free_space_ctl = bg->free_space_ctl;
3666 spin_lock(&free_space_ctl->tree_lock);
3667 if (free_space_ctl->free_space <
3668 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3669 ffe_ctl->empty_size) {
3670 ffe_ctl->total_free_space = max_t(u64,
3671 ffe_ctl->total_free_space,
3672 free_space_ctl->free_space);
3673 spin_unlock(&free_space_ctl->tree_lock);
3676 spin_unlock(&free_space_ctl->tree_lock);
3679 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3680 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3681 &ffe_ctl->max_extent_size);
3684 * If we didn't find a chunk, and we haven't failed on this block group
3685 * before, and this block group is in the middle of caching and we are
3686 * ok with waiting, then go ahead and wait for progress to be made, and
3687 * set @retry_unclustered to true.
3689 * If @retry_unclustered is true then we've already waited on this
3690 * block group once and should move on to the next block group.
3692 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3693 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3694 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3695 ffe_ctl->empty_size);
3696 ffe_ctl->retry_unclustered = true;
3698 } else if (!offset) {
3701 ffe_ctl->found_offset = offset;
3705 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3706 struct find_free_extent_ctl *ffe_ctl,
3707 struct btrfs_block_group **bg_ret)
3711 /* We want to try and use the cluster allocator, so lets look there */
3712 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3713 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3714 if (ret >= 0 || ret == -EAGAIN)
3716 /* ret == -ENOENT case falls through */
3719 return find_free_extent_unclustered(block_group, ffe_ctl);
3723 * Tree-log block group locking
3724 * ============================
3726 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3727 * indicates the starting address of a block group, which is reserved only
3728 * for tree-log metadata.
3735 * fs_info::treelog_bg_lock
3739 * Simple allocator for sequential-only block group. It only allows sequential
3740 * allocation. No need to play with trees. This function also reserves the
3741 * bytes as in btrfs_add_reserved_bytes.
3743 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3744 struct find_free_extent_ctl *ffe_ctl,
3745 struct btrfs_block_group **bg_ret)
3747 struct btrfs_fs_info *fs_info = block_group->fs_info;
3748 struct btrfs_space_info *space_info = block_group->space_info;
3749 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3750 u64 start = block_group->start;
3751 u64 num_bytes = ffe_ctl->num_bytes;
3753 u64 bytenr = block_group->start;
3755 u64 data_reloc_bytenr;
3759 ASSERT(btrfs_is_zoned(block_group->fs_info));
3762 * Do not allow non-tree-log blocks in the dedicated tree-log block
3763 * group, and vice versa.
3765 spin_lock(&fs_info->treelog_bg_lock);
3766 log_bytenr = fs_info->treelog_bg;
3767 skip = log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3768 (!ffe_ctl->for_treelog && bytenr == log_bytenr));
3769 spin_unlock(&fs_info->treelog_bg_lock);
3774 * Do not allow non-relocation blocks in the dedicated relocation block
3775 * group, and vice versa.
3777 spin_lock(&fs_info->relocation_bg_lock);
3778 data_reloc_bytenr = fs_info->data_reloc_bg;
3779 if (data_reloc_bytenr &&
3780 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3781 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3783 spin_unlock(&fs_info->relocation_bg_lock);
3787 spin_lock(&space_info->lock);
3788 spin_lock(&block_group->lock);
3789 spin_lock(&fs_info->treelog_bg_lock);
3790 spin_lock(&fs_info->relocation_bg_lock);
3792 ASSERT(!ffe_ctl->for_treelog ||
3793 block_group->start == fs_info->treelog_bg ||
3794 fs_info->treelog_bg == 0);
3795 ASSERT(!ffe_ctl->for_data_reloc ||
3796 block_group->start == fs_info->data_reloc_bg ||
3797 fs_info->data_reloc_bg == 0);
3799 if (block_group->ro || block_group->zoned_data_reloc_ongoing) {
3805 * Do not allow currently using block group to be tree-log dedicated
3808 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3809 (block_group->used || block_group->reserved)) {
3815 * Do not allow currently used block group to be the data relocation
3816 * dedicated block group.
3818 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3819 (block_group->used || block_group->reserved)) {
3824 avail = block_group->length - block_group->alloc_offset;
3825 if (avail < num_bytes) {
3826 if (ffe_ctl->max_extent_size < avail) {
3828 * With sequential allocator, free space is always
3831 ffe_ctl->max_extent_size = avail;
3832 ffe_ctl->total_free_space = avail;
3838 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3839 fs_info->treelog_bg = block_group->start;
3841 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3842 fs_info->data_reloc_bg = block_group->start;
3844 ffe_ctl->found_offset = start + block_group->alloc_offset;
3845 block_group->alloc_offset += num_bytes;
3846 spin_lock(&ctl->tree_lock);
3847 ctl->free_space -= num_bytes;
3848 spin_unlock(&ctl->tree_lock);
3851 * We do not check if found_offset is aligned to stripesize. The
3852 * address is anyway rewritten when using zone append writing.
3855 ffe_ctl->search_start = ffe_ctl->found_offset;
3858 if (ret && ffe_ctl->for_treelog)
3859 fs_info->treelog_bg = 0;
3860 if (ret && ffe_ctl->for_data_reloc &&
3861 fs_info->data_reloc_bg == block_group->start) {
3863 * Do not allow further allocations from this block group.
3864 * Compared to increasing the ->ro, setting the
3865 * ->zoned_data_reloc_ongoing flag still allows nocow
3866 * writers to come in. See btrfs_inc_nocow_writers().
3868 * We need to disable an allocation to avoid an allocation of
3869 * regular (non-relocation data) extent. With mix of relocation
3870 * extents and regular extents, we can dispatch WRITE commands
3871 * (for relocation extents) and ZONE APPEND commands (for
3872 * regular extents) at the same time to the same zone, which
3873 * easily break the write pointer.
3875 block_group->zoned_data_reloc_ongoing = 1;
3876 fs_info->data_reloc_bg = 0;
3878 spin_unlock(&fs_info->relocation_bg_lock);
3879 spin_unlock(&fs_info->treelog_bg_lock);
3880 spin_unlock(&block_group->lock);
3881 spin_unlock(&space_info->lock);
3885 static int do_allocation(struct btrfs_block_group *block_group,
3886 struct find_free_extent_ctl *ffe_ctl,
3887 struct btrfs_block_group **bg_ret)
3889 switch (ffe_ctl->policy) {
3890 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3891 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3892 case BTRFS_EXTENT_ALLOC_ZONED:
3893 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3899 static void release_block_group(struct btrfs_block_group *block_group,
3900 struct find_free_extent_ctl *ffe_ctl,
3903 switch (ffe_ctl->policy) {
3904 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3905 ffe_ctl->retry_clustered = false;
3906 ffe_ctl->retry_unclustered = false;
3908 case BTRFS_EXTENT_ALLOC_ZONED:
3915 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3917 btrfs_release_block_group(block_group, delalloc);
3920 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3921 struct btrfs_key *ins)
3923 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3925 if (!ffe_ctl->use_cluster && last_ptr) {
3926 spin_lock(&last_ptr->lock);
3927 last_ptr->window_start = ins->objectid;
3928 spin_unlock(&last_ptr->lock);
3932 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3933 struct btrfs_key *ins)
3935 switch (ffe_ctl->policy) {
3936 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3937 found_extent_clustered(ffe_ctl, ins);
3939 case BTRFS_EXTENT_ALLOC_ZONED:
3947 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3949 switch (ffe_ctl->policy) {
3950 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3952 * If we can't allocate a new chunk we've already looped through
3953 * at least once, move on to the NO_EMPTY_SIZE case.
3955 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3957 case BTRFS_EXTENT_ALLOC_ZONED:
3966 * Return >0 means caller needs to re-search for free extent
3967 * Return 0 means we have the needed free extent.
3968 * Return <0 means we failed to locate any free extent.
3970 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3971 struct btrfs_key *ins,
3972 struct find_free_extent_ctl *ffe_ctl,
3975 struct btrfs_root *root = fs_info->extent_root;
3978 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3979 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3980 ffe_ctl->orig_have_caching_bg = true;
3982 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3983 ffe_ctl->have_caching_bg)
3986 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3989 if (ins->objectid) {
3990 found_extent(ffe_ctl, ins);
3995 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3996 * caching kthreads as we move along
3997 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3998 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3999 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4002 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4004 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4006 * We want to skip the LOOP_CACHING_WAIT step if we
4007 * don't have any uncached bgs and we've already done a
4008 * full search through.
4010 if (ffe_ctl->orig_have_caching_bg || !full_search)
4011 ffe_ctl->loop = LOOP_CACHING_WAIT;
4013 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4018 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4019 struct btrfs_trans_handle *trans;
4022 trans = current->journal_info;
4026 trans = btrfs_join_transaction(root);
4028 if (IS_ERR(trans)) {
4029 ret = PTR_ERR(trans);
4033 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4036 /* Do not bail out on ENOSPC since we can do more. */
4038 ret = chunk_allocation_failed(ffe_ctl);
4040 btrfs_abort_transaction(trans, ret);
4044 btrfs_end_transaction(trans);
4049 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4050 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4054 * Don't loop again if we already have no empty_size and
4057 if (ffe_ctl->empty_size == 0 &&
4058 ffe_ctl->empty_cluster == 0)
4060 ffe_ctl->empty_size = 0;
4061 ffe_ctl->empty_cluster = 0;
4068 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4069 struct find_free_extent_ctl *ffe_ctl,
4070 struct btrfs_space_info *space_info,
4071 struct btrfs_key *ins)
4074 * If our free space is heavily fragmented we may not be able to make
4075 * big contiguous allocations, so instead of doing the expensive search
4076 * for free space, simply return ENOSPC with our max_extent_size so we
4077 * can go ahead and search for a more manageable chunk.
4079 * If our max_extent_size is large enough for our allocation simply
4080 * disable clustering since we will likely not be able to find enough
4081 * space to create a cluster and induce latency trying.
4083 if (space_info->max_extent_size) {
4084 spin_lock(&space_info->lock);
4085 if (space_info->max_extent_size &&
4086 ffe_ctl->num_bytes > space_info->max_extent_size) {
4087 ins->offset = space_info->max_extent_size;
4088 spin_unlock(&space_info->lock);
4090 } else if (space_info->max_extent_size) {
4091 ffe_ctl->use_cluster = false;
4093 spin_unlock(&space_info->lock);
4096 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4097 &ffe_ctl->empty_cluster);
4098 if (ffe_ctl->last_ptr) {
4099 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4101 spin_lock(&last_ptr->lock);
4102 if (last_ptr->block_group)
4103 ffe_ctl->hint_byte = last_ptr->window_start;
4104 if (last_ptr->fragmented) {
4106 * We still set window_start so we can keep track of the
4107 * last place we found an allocation to try and save
4110 ffe_ctl->hint_byte = last_ptr->window_start;
4111 ffe_ctl->use_cluster = false;
4113 spin_unlock(&last_ptr->lock);
4119 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4120 struct find_free_extent_ctl *ffe_ctl,
4121 struct btrfs_space_info *space_info,
4122 struct btrfs_key *ins)
4124 switch (ffe_ctl->policy) {
4125 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4126 return prepare_allocation_clustered(fs_info, ffe_ctl,
4128 case BTRFS_EXTENT_ALLOC_ZONED:
4129 if (ffe_ctl->for_treelog) {
4130 spin_lock(&fs_info->treelog_bg_lock);
4131 if (fs_info->treelog_bg)
4132 ffe_ctl->hint_byte = fs_info->treelog_bg;
4133 spin_unlock(&fs_info->treelog_bg_lock);
4135 if (ffe_ctl->for_data_reloc) {
4136 spin_lock(&fs_info->relocation_bg_lock);
4137 if (fs_info->data_reloc_bg)
4138 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4139 spin_unlock(&fs_info->relocation_bg_lock);
4148 * walks the btree of allocated extents and find a hole of a given size.
4149 * The key ins is changed to record the hole:
4150 * ins->objectid == start position
4151 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4152 * ins->offset == the size of the hole.
4153 * Any available blocks before search_start are skipped.
4155 * If there is no suitable free space, we will record the max size of
4156 * the free space extent currently.
4158 * The overall logic and call chain:
4160 * find_free_extent()
4161 * |- Iterate through all block groups
4162 * | |- Get a valid block group
4163 * | |- Try to do clustered allocation in that block group
4164 * | |- Try to do unclustered allocation in that block group
4165 * | |- Check if the result is valid
4166 * | | |- If valid, then exit
4167 * | |- Jump to next block group
4169 * |- Push harder to find free extents
4170 * |- If not found, re-iterate all block groups
4172 static noinline int find_free_extent(struct btrfs_root *root,
4173 u64 ram_bytes, u64 num_bytes, u64 empty_size,
4174 u64 hint_byte_orig, struct btrfs_key *ins,
4175 u64 flags, int delalloc)
4177 struct btrfs_fs_info *fs_info = root->fs_info;
4179 int cache_block_group_error = 0;
4180 struct btrfs_block_group *block_group = NULL;
4181 struct find_free_extent_ctl ffe_ctl = {0};
4182 struct btrfs_space_info *space_info;
4183 bool full_search = false;
4184 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4185 bool for_data_reloc = (btrfs_is_data_reloc_root(root) &&
4186 flags & BTRFS_BLOCK_GROUP_DATA);
4188 WARN_ON(num_bytes < fs_info->sectorsize);
4190 ffe_ctl.num_bytes = num_bytes;
4191 ffe_ctl.empty_size = empty_size;
4192 ffe_ctl.flags = flags;
4193 ffe_ctl.search_start = 0;
4194 ffe_ctl.delalloc = delalloc;
4195 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4196 ffe_ctl.have_caching_bg = false;
4197 ffe_ctl.orig_have_caching_bg = false;
4198 ffe_ctl.found_offset = 0;
4199 ffe_ctl.hint_byte = hint_byte_orig;
4200 ffe_ctl.for_treelog = for_treelog;
4201 ffe_ctl.for_data_reloc = for_data_reloc;
4202 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4204 /* For clustered allocation */
4205 ffe_ctl.retry_clustered = false;
4206 ffe_ctl.retry_unclustered = false;
4207 ffe_ctl.last_ptr = NULL;
4208 ffe_ctl.use_cluster = true;
4210 if (btrfs_is_zoned(fs_info))
4211 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_ZONED;
4213 ins->type = BTRFS_EXTENT_ITEM_KEY;
4217 trace_find_free_extent(root, num_bytes, empty_size, flags);
4219 space_info = btrfs_find_space_info(fs_info, flags);
4221 btrfs_err(fs_info, "No space info for %llu", flags);
4225 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4229 ffe_ctl.search_start = max(ffe_ctl.search_start,
4230 first_logical_byte(fs_info, 0));
4231 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4232 if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4233 block_group = btrfs_lookup_block_group(fs_info,
4234 ffe_ctl.search_start);
4236 * we don't want to use the block group if it doesn't match our
4237 * allocation bits, or if its not cached.
4239 * However if we are re-searching with an ideal block group
4240 * picked out then we don't care that the block group is cached.
4242 if (block_group && block_group_bits(block_group, flags) &&
4243 block_group->cached != BTRFS_CACHE_NO) {
4244 down_read(&space_info->groups_sem);
4245 if (list_empty(&block_group->list) ||
4248 * someone is removing this block group,
4249 * we can't jump into the have_block_group
4250 * target because our list pointers are not
4253 btrfs_put_block_group(block_group);
4254 up_read(&space_info->groups_sem);
4256 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4257 block_group->flags);
4258 btrfs_lock_block_group(block_group, delalloc);
4259 goto have_block_group;
4261 } else if (block_group) {
4262 btrfs_put_block_group(block_group);
4266 ffe_ctl.have_caching_bg = false;
4267 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4270 down_read(&space_info->groups_sem);
4271 list_for_each_entry(block_group,
4272 &space_info->block_groups[ffe_ctl.index], list) {
4273 struct btrfs_block_group *bg_ret;
4275 /* If the block group is read-only, we can skip it entirely. */
4276 if (unlikely(block_group->ro)) {
4278 btrfs_clear_treelog_bg(block_group);
4279 if (ffe_ctl.for_data_reloc)
4280 btrfs_clear_data_reloc_bg(block_group);
4284 btrfs_grab_block_group(block_group, delalloc);
4285 ffe_ctl.search_start = block_group->start;
4288 * this can happen if we end up cycling through all the
4289 * raid types, but we want to make sure we only allocate
4290 * for the proper type.
4292 if (!block_group_bits(block_group, flags)) {
4293 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4294 BTRFS_BLOCK_GROUP_RAID1_MASK |
4295 BTRFS_BLOCK_GROUP_RAID56_MASK |
4296 BTRFS_BLOCK_GROUP_RAID10;
4299 * if they asked for extra copies and this block group
4300 * doesn't provide them, bail. This does allow us to
4301 * fill raid0 from raid1.
4303 if ((flags & extra) && !(block_group->flags & extra))
4307 * This block group has different flags than we want.
4308 * It's possible that we have MIXED_GROUP flag but no
4309 * block group is mixed. Just skip such block group.
4311 btrfs_release_block_group(block_group, delalloc);
4316 ffe_ctl.cached = btrfs_block_group_done(block_group);
4317 if (unlikely(!ffe_ctl.cached)) {
4318 ffe_ctl.have_caching_bg = true;
4319 ret = btrfs_cache_block_group(block_group, false);
4322 * If we get ENOMEM here or something else we want to
4323 * try other block groups, because it may not be fatal.
4324 * However if we can't find anything else we need to
4325 * save our return here so that we return the actual
4326 * error that caused problems, not ENOSPC.
4329 if (!cache_block_group_error)
4330 cache_block_group_error = ret;
4337 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4341 ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4343 if (bg_ret && bg_ret != block_group) {
4344 btrfs_release_block_group(block_group, delalloc);
4345 block_group = bg_ret;
4347 } else if (ret == -EAGAIN) {
4348 goto have_block_group;
4349 } else if (ret > 0) {
4354 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4355 fs_info->stripesize);
4357 /* move on to the next group */
4358 if (ffe_ctl.search_start + num_bytes >
4359 block_group->start + block_group->length) {
4360 btrfs_add_free_space_unused(block_group,
4361 ffe_ctl.found_offset, num_bytes);
4365 if (ffe_ctl.found_offset < ffe_ctl.search_start)
4366 btrfs_add_free_space_unused(block_group,
4367 ffe_ctl.found_offset,
4368 ffe_ctl.search_start - ffe_ctl.found_offset);
4370 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4371 num_bytes, delalloc);
4372 if (ret == -EAGAIN) {
4373 btrfs_add_free_space_unused(block_group,
4374 ffe_ctl.found_offset, num_bytes);
4377 btrfs_inc_block_group_reservations(block_group);
4379 /* we are all good, lets return */
4380 ins->objectid = ffe_ctl.search_start;
4381 ins->offset = num_bytes;
4383 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4385 btrfs_release_block_group(block_group, delalloc);
4388 release_block_group(block_group, &ffe_ctl, delalloc);
4391 up_read(&space_info->groups_sem);
4393 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4397 if (ret == -ENOSPC && !cache_block_group_error) {
4399 * Use ffe_ctl->total_free_space as fallback if we can't find
4400 * any contiguous hole.
4402 if (!ffe_ctl.max_extent_size)
4403 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4404 spin_lock(&space_info->lock);
4405 space_info->max_extent_size = ffe_ctl.max_extent_size;
4406 spin_unlock(&space_info->lock);
4407 ins->offset = ffe_ctl.max_extent_size;
4408 } else if (ret == -ENOSPC) {
4409 ret = cache_block_group_error;
4415 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4416 * hole that is at least as big as @num_bytes.
4418 * @root - The root that will contain this extent
4420 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4421 * is used for accounting purposes. This value differs
4422 * from @num_bytes only in the case of compressed extents.
4424 * @num_bytes - Number of bytes to allocate on-disk.
4426 * @min_alloc_size - Indicates the minimum amount of space that the
4427 * allocator should try to satisfy. In some cases
4428 * @num_bytes may be larger than what is required and if
4429 * the filesystem is fragmented then allocation fails.
4430 * However, the presence of @min_alloc_size gives a
4431 * chance to try and satisfy the smaller allocation.
4433 * @empty_size - A hint that you plan on doing more COW. This is the
4434 * size in bytes the allocator should try to find free
4435 * next to the block it returns. This is just a hint and
4436 * may be ignored by the allocator.
4438 * @hint_byte - Hint to the allocator to start searching above the byte
4439 * address passed. It might be ignored.
4441 * @ins - This key is modified to record the found hole. It will
4442 * have the following values:
4443 * ins->objectid == start position
4444 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4445 * ins->offset == the size of the hole.
4447 * @is_data - Boolean flag indicating whether an extent is
4448 * allocated for data (true) or metadata (false)
4450 * @delalloc - Boolean flag indicating whether this allocation is for
4451 * delalloc or not. If 'true' data_rwsem of block groups
4452 * is going to be acquired.
4455 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4456 * case -ENOSPC is returned then @ins->offset will contain the size of the
4457 * largest available hole the allocator managed to find.
4459 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4460 u64 num_bytes, u64 min_alloc_size,
4461 u64 empty_size, u64 hint_byte,
4462 struct btrfs_key *ins, int is_data, int delalloc)
4464 struct btrfs_fs_info *fs_info = root->fs_info;
4465 bool final_tried = num_bytes == min_alloc_size;
4468 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4469 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4471 flags = get_alloc_profile_by_root(root, is_data);
4473 WARN_ON(num_bytes < fs_info->sectorsize);
4474 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4475 hint_byte, ins, flags, delalloc);
4476 if (!ret && !is_data) {
4477 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4478 } else if (ret == -ENOSPC) {
4479 if (!final_tried && ins->offset) {
4480 num_bytes = min(num_bytes >> 1, ins->offset);
4481 num_bytes = round_down(num_bytes,
4482 fs_info->sectorsize);
4483 num_bytes = max(num_bytes, min_alloc_size);
4484 ram_bytes = num_bytes;
4485 if (num_bytes == min_alloc_size)
4488 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4489 struct btrfs_space_info *sinfo;
4491 sinfo = btrfs_find_space_info(fs_info, flags);
4493 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4494 flags, num_bytes, for_treelog, for_data_reloc);
4496 btrfs_dump_space_info(fs_info, sinfo,
4504 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4505 u64 start, u64 len, int delalloc)
4507 struct btrfs_block_group *cache;
4509 cache = btrfs_lookup_block_group(fs_info, start);
4511 btrfs_err(fs_info, "Unable to find block group for %llu",
4516 btrfs_add_free_space(cache, start, len);
4517 btrfs_free_reserved_bytes(cache, len, delalloc);
4518 trace_btrfs_reserved_extent_free(fs_info, start, len);
4520 btrfs_put_block_group(cache);
4524 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4527 struct btrfs_block_group *cache;
4530 cache = btrfs_lookup_block_group(trans->fs_info, start);
4532 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4537 ret = pin_down_extent(trans, cache, start, len, 1);
4538 btrfs_put_block_group(cache);
4542 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4543 u64 parent, u64 root_objectid,
4544 u64 flags, u64 owner, u64 offset,
4545 struct btrfs_key *ins, int ref_mod)
4547 struct btrfs_fs_info *fs_info = trans->fs_info;
4549 struct btrfs_extent_item *extent_item;
4550 struct btrfs_extent_inline_ref *iref;
4551 struct btrfs_path *path;
4552 struct extent_buffer *leaf;
4557 type = BTRFS_SHARED_DATA_REF_KEY;
4559 type = BTRFS_EXTENT_DATA_REF_KEY;
4561 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4563 path = btrfs_alloc_path();
4567 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4570 btrfs_free_path(path);
4574 leaf = path->nodes[0];
4575 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4576 struct btrfs_extent_item);
4577 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4578 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4579 btrfs_set_extent_flags(leaf, extent_item,
4580 flags | BTRFS_EXTENT_FLAG_DATA);
4582 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4583 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4585 struct btrfs_shared_data_ref *ref;
4586 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4587 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4588 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4590 struct btrfs_extent_data_ref *ref;
4591 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4592 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4593 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4594 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4595 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4598 btrfs_mark_buffer_dirty(path->nodes[0]);
4599 btrfs_free_path(path);
4601 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4605 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4606 if (ret) { /* -ENOENT, logic error */
4607 btrfs_err(fs_info, "update block group failed for %llu %llu",
4608 ins->objectid, ins->offset);
4611 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4615 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4616 struct btrfs_delayed_ref_node *node,
4617 struct btrfs_delayed_extent_op *extent_op)
4619 struct btrfs_fs_info *fs_info = trans->fs_info;
4621 struct btrfs_extent_item *extent_item;
4622 struct btrfs_key extent_key;
4623 struct btrfs_tree_block_info *block_info;
4624 struct btrfs_extent_inline_ref *iref;
4625 struct btrfs_path *path;
4626 struct extent_buffer *leaf;
4627 struct btrfs_delayed_tree_ref *ref;
4628 u32 size = sizeof(*extent_item) + sizeof(*iref);
4630 u64 flags = extent_op->flags_to_set;
4631 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4633 ref = btrfs_delayed_node_to_tree_ref(node);
4635 extent_key.objectid = node->bytenr;
4636 if (skinny_metadata) {
4637 extent_key.offset = ref->level;
4638 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4639 num_bytes = fs_info->nodesize;
4641 extent_key.offset = node->num_bytes;
4642 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4643 size += sizeof(*block_info);
4644 num_bytes = node->num_bytes;
4647 path = btrfs_alloc_path();
4651 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4654 btrfs_free_path(path);
4658 leaf = path->nodes[0];
4659 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4660 struct btrfs_extent_item);
4661 btrfs_set_extent_refs(leaf, extent_item, 1);
4662 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4663 btrfs_set_extent_flags(leaf, extent_item,
4664 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4666 if (skinny_metadata) {
4667 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4669 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4670 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4671 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4672 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4675 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4676 btrfs_set_extent_inline_ref_type(leaf, iref,
4677 BTRFS_SHARED_BLOCK_REF_KEY);
4678 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4680 btrfs_set_extent_inline_ref_type(leaf, iref,
4681 BTRFS_TREE_BLOCK_REF_KEY);
4682 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4685 btrfs_mark_buffer_dirty(leaf);
4686 btrfs_free_path(path);
4688 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4693 ret = btrfs_update_block_group(trans, extent_key.objectid,
4694 fs_info->nodesize, 1);
4695 if (ret) { /* -ENOENT, logic error */
4696 btrfs_err(fs_info, "update block group failed for %llu %llu",
4697 extent_key.objectid, extent_key.offset);
4701 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4706 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4707 struct btrfs_root *root, u64 owner,
4708 u64 offset, u64 ram_bytes,
4709 struct btrfs_key *ins)
4711 struct btrfs_ref generic_ref = { 0 };
4713 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4715 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4716 ins->objectid, ins->offset, 0);
4717 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4719 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4721 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4725 * this is used by the tree logging recovery code. It records that
4726 * an extent has been allocated and makes sure to clear the free
4727 * space cache bits as well
4729 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4730 u64 root_objectid, u64 owner, u64 offset,
4731 struct btrfs_key *ins)
4733 struct btrfs_fs_info *fs_info = trans->fs_info;
4735 struct btrfs_block_group *block_group;
4736 struct btrfs_space_info *space_info;
4739 * Mixed block groups will exclude before processing the log so we only
4740 * need to do the exclude dance if this fs isn't mixed.
4742 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4743 ret = __exclude_logged_extent(fs_info, ins->objectid,
4749 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4753 space_info = block_group->space_info;
4754 spin_lock(&space_info->lock);
4755 spin_lock(&block_group->lock);
4756 space_info->bytes_reserved += ins->offset;
4757 block_group->reserved += ins->offset;
4758 spin_unlock(&block_group->lock);
4759 spin_unlock(&space_info->lock);
4761 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4764 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4765 btrfs_put_block_group(block_group);
4769 static struct extent_buffer *
4770 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4771 u64 bytenr, int level, u64 owner,
4772 enum btrfs_lock_nesting nest)
4774 struct btrfs_fs_info *fs_info = root->fs_info;
4775 struct extent_buffer *buf;
4776 u64 lockdep_owner = owner;
4778 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4783 * Extra safety check in case the extent tree is corrupted and extent
4784 * allocator chooses to use a tree block which is already used and
4787 if (buf->lock_owner == current->pid) {
4788 btrfs_err_rl(fs_info,
4789 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4790 buf->start, btrfs_header_owner(buf), current->pid);
4791 free_extent_buffer(buf);
4792 return ERR_PTR(-EUCLEAN);
4796 * The reloc trees are just snapshots, so we need them to appear to be
4797 * just like any other fs tree WRT lockdep.
4799 * The exception however is in replace_path() in relocation, where we
4800 * hold the lock on the original fs root and then search for the reloc
4801 * root. At that point we need to make sure any reloc root buffers are
4802 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4805 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4806 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4807 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4809 /* btrfs_clean_tree_block() accesses generation field. */
4810 btrfs_set_header_generation(buf, trans->transid);
4813 * This needs to stay, because we could allocate a freed block from an
4814 * old tree into a new tree, so we need to make sure this new block is
4815 * set to the appropriate level and owner.
4817 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4819 __btrfs_tree_lock(buf, nest);
4820 btrfs_clean_tree_block(buf);
4821 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4822 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4824 set_extent_buffer_uptodate(buf);
4826 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4827 btrfs_set_header_level(buf, level);
4828 btrfs_set_header_bytenr(buf, buf->start);
4829 btrfs_set_header_generation(buf, trans->transid);
4830 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4831 btrfs_set_header_owner(buf, owner);
4832 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4833 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4834 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4835 buf->log_index = root->log_transid % 2;
4837 * we allow two log transactions at a time, use different
4838 * EXTENT bit to differentiate dirty pages.
4840 if (buf->log_index == 0)
4841 set_extent_dirty(&root->dirty_log_pages, buf->start,
4842 buf->start + buf->len - 1, GFP_NOFS);
4844 set_extent_new(&root->dirty_log_pages, buf->start,
4845 buf->start + buf->len - 1);
4847 buf->log_index = -1;
4848 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4849 buf->start + buf->len - 1, GFP_NOFS);
4851 /* this returns a buffer locked for blocking */
4856 * finds a free extent and does all the dirty work required for allocation
4857 * returns the tree buffer or an ERR_PTR on error.
4859 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4860 struct btrfs_root *root,
4861 u64 parent, u64 root_objectid,
4862 const struct btrfs_disk_key *key,
4863 int level, u64 hint,
4865 enum btrfs_lock_nesting nest)
4867 struct btrfs_fs_info *fs_info = root->fs_info;
4868 struct btrfs_key ins;
4869 struct btrfs_block_rsv *block_rsv;
4870 struct extent_buffer *buf;
4871 struct btrfs_delayed_extent_op *extent_op;
4872 struct btrfs_ref generic_ref = { 0 };
4875 u32 blocksize = fs_info->nodesize;
4876 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4878 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4879 if (btrfs_is_testing(fs_info)) {
4880 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4881 level, root_objectid, nest);
4883 root->alloc_bytenr += blocksize;
4888 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4889 if (IS_ERR(block_rsv))
4890 return ERR_CAST(block_rsv);
4892 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4893 empty_size, hint, &ins, 0, 0);
4897 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4898 root_objectid, nest);
4901 goto out_free_reserved;
4904 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4906 parent = ins.objectid;
4907 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4911 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4912 extent_op = btrfs_alloc_delayed_extent_op();
4918 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4920 memset(&extent_op->key, 0, sizeof(extent_op->key));
4921 extent_op->flags_to_set = flags;
4922 extent_op->update_key = skinny_metadata ? false : true;
4923 extent_op->update_flags = true;
4924 extent_op->is_data = false;
4925 extent_op->level = level;
4927 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4928 ins.objectid, ins.offset, parent);
4929 generic_ref.real_root = root->root_key.objectid;
4930 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4931 root->root_key.objectid, false);
4932 btrfs_ref_tree_mod(fs_info, &generic_ref);
4933 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4935 goto out_free_delayed;
4940 btrfs_free_delayed_extent_op(extent_op);
4942 btrfs_tree_unlock(buf);
4943 free_extent_buffer(buf);
4945 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4947 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4948 return ERR_PTR(ret);
4951 struct walk_control {
4952 u64 refs[BTRFS_MAX_LEVEL];
4953 u64 flags[BTRFS_MAX_LEVEL];
4954 struct btrfs_key update_progress;
4955 struct btrfs_key drop_progress;
4967 #define DROP_REFERENCE 1
4968 #define UPDATE_BACKREF 2
4970 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4971 struct btrfs_root *root,
4972 struct walk_control *wc,
4973 struct btrfs_path *path)
4975 struct btrfs_fs_info *fs_info = root->fs_info;
4981 struct btrfs_key key;
4982 struct extent_buffer *eb;
4987 if (path->slots[wc->level] < wc->reada_slot) {
4988 wc->reada_count = wc->reada_count * 2 / 3;
4989 wc->reada_count = max(wc->reada_count, 2);
4991 wc->reada_count = wc->reada_count * 3 / 2;
4992 wc->reada_count = min_t(int, wc->reada_count,
4993 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4996 eb = path->nodes[wc->level];
4997 nritems = btrfs_header_nritems(eb);
4999 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5000 if (nread >= wc->reada_count)
5004 bytenr = btrfs_node_blockptr(eb, slot);
5005 generation = btrfs_node_ptr_generation(eb, slot);
5007 if (slot == path->slots[wc->level])
5010 if (wc->stage == UPDATE_BACKREF &&
5011 generation <= root->root_key.offset)
5014 /* We don't lock the tree block, it's OK to be racy here */
5015 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5016 wc->level - 1, 1, &refs,
5018 /* We don't care about errors in readahead. */
5023 if (wc->stage == DROP_REFERENCE) {
5027 if (wc->level == 1 &&
5028 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5030 if (!wc->update_ref ||
5031 generation <= root->root_key.offset)
5033 btrfs_node_key_to_cpu(eb, &key, slot);
5034 ret = btrfs_comp_cpu_keys(&key,
5035 &wc->update_progress);
5039 if (wc->level == 1 &&
5040 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5044 btrfs_readahead_node_child(eb, slot);
5047 wc->reada_slot = slot;
5051 * helper to process tree block while walking down the tree.
5053 * when wc->stage == UPDATE_BACKREF, this function updates
5054 * back refs for pointers in the block.
5056 * NOTE: return value 1 means we should stop walking down.
5058 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5059 struct btrfs_root *root,
5060 struct btrfs_path *path,
5061 struct walk_control *wc, int lookup_info)
5063 struct btrfs_fs_info *fs_info = root->fs_info;
5064 int level = wc->level;
5065 struct extent_buffer *eb = path->nodes[level];
5066 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5069 if (wc->stage == UPDATE_BACKREF &&
5070 btrfs_header_owner(eb) != root->root_key.objectid)
5074 * when reference count of tree block is 1, it won't increase
5075 * again. once full backref flag is set, we never clear it.
5078 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5079 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5080 BUG_ON(!path->locks[level]);
5081 ret = btrfs_lookup_extent_info(trans, fs_info,
5082 eb->start, level, 1,
5085 BUG_ON(ret == -ENOMEM);
5088 BUG_ON(wc->refs[level] == 0);
5091 if (wc->stage == DROP_REFERENCE) {
5092 if (wc->refs[level] > 1)
5095 if (path->locks[level] && !wc->keep_locks) {
5096 btrfs_tree_unlock_rw(eb, path->locks[level]);
5097 path->locks[level] = 0;
5102 /* wc->stage == UPDATE_BACKREF */
5103 if (!(wc->flags[level] & flag)) {
5104 BUG_ON(!path->locks[level]);
5105 ret = btrfs_inc_ref(trans, root, eb, 1);
5106 BUG_ON(ret); /* -ENOMEM */
5107 ret = btrfs_dec_ref(trans, root, eb, 0);
5108 BUG_ON(ret); /* -ENOMEM */
5109 ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5110 btrfs_header_level(eb), 0);
5111 BUG_ON(ret); /* -ENOMEM */
5112 wc->flags[level] |= flag;
5116 * the block is shared by multiple trees, so it's not good to
5117 * keep the tree lock
5119 if (path->locks[level] && level > 0) {
5120 btrfs_tree_unlock_rw(eb, path->locks[level]);
5121 path->locks[level] = 0;
5127 * This is used to verify a ref exists for this root to deal with a bug where we
5128 * would have a drop_progress key that hadn't been updated properly.
5130 static int check_ref_exists(struct btrfs_trans_handle *trans,
5131 struct btrfs_root *root, u64 bytenr, u64 parent,
5134 struct btrfs_path *path;
5135 struct btrfs_extent_inline_ref *iref;
5138 path = btrfs_alloc_path();
5142 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5143 root->fs_info->nodesize, parent,
5144 root->root_key.objectid, level, 0);
5145 btrfs_free_path(path);
5154 * helper to process tree block pointer.
5156 * when wc->stage == DROP_REFERENCE, this function checks
5157 * reference count of the block pointed to. if the block
5158 * is shared and we need update back refs for the subtree
5159 * rooted at the block, this function changes wc->stage to
5160 * UPDATE_BACKREF. if the block is shared and there is no
5161 * need to update back, this function drops the reference
5164 * NOTE: return value 1 means we should stop walking down.
5166 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5167 struct btrfs_root *root,
5168 struct btrfs_path *path,
5169 struct walk_control *wc, int *lookup_info)
5171 struct btrfs_fs_info *fs_info = root->fs_info;
5175 struct btrfs_key key;
5176 struct btrfs_key first_key;
5177 struct btrfs_ref ref = { 0 };
5178 struct extent_buffer *next;
5179 int level = wc->level;
5182 bool need_account = false;
5184 generation = btrfs_node_ptr_generation(path->nodes[level],
5185 path->slots[level]);
5187 * if the lower level block was created before the snapshot
5188 * was created, we know there is no need to update back refs
5191 if (wc->stage == UPDATE_BACKREF &&
5192 generation <= root->root_key.offset) {
5197 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5198 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5199 path->slots[level]);
5201 next = find_extent_buffer(fs_info, bytenr);
5203 next = btrfs_find_create_tree_block(fs_info, bytenr,
5204 root->root_key.objectid, level - 1);
5206 return PTR_ERR(next);
5209 btrfs_tree_lock(next);
5211 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5212 &wc->refs[level - 1],
5213 &wc->flags[level - 1]);
5217 if (unlikely(wc->refs[level - 1] == 0)) {
5218 btrfs_err(fs_info, "Missing references.");
5224 if (wc->stage == DROP_REFERENCE) {
5225 if (wc->refs[level - 1] > 1) {
5226 need_account = true;
5228 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5231 if (!wc->update_ref ||
5232 generation <= root->root_key.offset)
5235 btrfs_node_key_to_cpu(path->nodes[level], &key,
5236 path->slots[level]);
5237 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5241 wc->stage = UPDATE_BACKREF;
5242 wc->shared_level = level - 1;
5246 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5250 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5251 btrfs_tree_unlock(next);
5252 free_extent_buffer(next);
5258 if (reada && level == 1)
5259 reada_walk_down(trans, root, wc, path);
5260 next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5261 generation, level - 1, &first_key);
5263 return PTR_ERR(next);
5264 } else if (!extent_buffer_uptodate(next)) {
5265 free_extent_buffer(next);
5268 btrfs_tree_lock(next);
5272 ASSERT(level == btrfs_header_level(next));
5273 if (level != btrfs_header_level(next)) {
5274 btrfs_err(root->fs_info, "mismatched level");
5278 path->nodes[level] = next;
5279 path->slots[level] = 0;
5280 path->locks[level] = BTRFS_WRITE_LOCK;
5286 wc->refs[level - 1] = 0;
5287 wc->flags[level - 1] = 0;
5288 if (wc->stage == DROP_REFERENCE) {
5289 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5290 parent = path->nodes[level]->start;
5292 ASSERT(root->root_key.objectid ==
5293 btrfs_header_owner(path->nodes[level]));
5294 if (root->root_key.objectid !=
5295 btrfs_header_owner(path->nodes[level])) {
5296 btrfs_err(root->fs_info,
5297 "mismatched block owner");
5305 * If we had a drop_progress we need to verify the refs are set
5306 * as expected. If we find our ref then we know that from here
5307 * on out everything should be correct, and we can clear the
5310 if (wc->restarted) {
5311 ret = check_ref_exists(trans, root, bytenr, parent,
5322 * Reloc tree doesn't contribute to qgroup numbers, and we have
5323 * already accounted them at merge time (replace_path),
5324 * thus we could skip expensive subtree trace here.
5326 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5328 ret = btrfs_qgroup_trace_subtree(trans, next,
5329 generation, level - 1);
5331 btrfs_err_rl(fs_info,
5332 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5338 * We need to update the next key in our walk control so we can
5339 * update the drop_progress key accordingly. We don't care if
5340 * find_next_key doesn't find a key because that means we're at
5341 * the end and are going to clean up now.
5343 wc->drop_level = level;
5344 find_next_key(path, level, &wc->drop_progress);
5346 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5347 fs_info->nodesize, parent);
5348 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5350 ret = btrfs_free_extent(trans, &ref);
5359 btrfs_tree_unlock(next);
5360 free_extent_buffer(next);
5366 * helper to process tree block while walking up the tree.
5368 * when wc->stage == DROP_REFERENCE, this function drops
5369 * reference count on the block.
5371 * when wc->stage == UPDATE_BACKREF, this function changes
5372 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5373 * to UPDATE_BACKREF previously while processing the block.
5375 * NOTE: return value 1 means we should stop walking up.
5377 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5378 struct btrfs_root *root,
5379 struct btrfs_path *path,
5380 struct walk_control *wc)
5382 struct btrfs_fs_info *fs_info = root->fs_info;
5384 int level = wc->level;
5385 struct extent_buffer *eb = path->nodes[level];
5388 if (wc->stage == UPDATE_BACKREF) {
5389 BUG_ON(wc->shared_level < level);
5390 if (level < wc->shared_level)
5393 ret = find_next_key(path, level + 1, &wc->update_progress);
5397 wc->stage = DROP_REFERENCE;
5398 wc->shared_level = -1;
5399 path->slots[level] = 0;
5402 * check reference count again if the block isn't locked.
5403 * we should start walking down the tree again if reference
5406 if (!path->locks[level]) {
5408 btrfs_tree_lock(eb);
5409 path->locks[level] = BTRFS_WRITE_LOCK;
5411 ret = btrfs_lookup_extent_info(trans, fs_info,
5412 eb->start, level, 1,
5416 btrfs_tree_unlock_rw(eb, path->locks[level]);
5417 path->locks[level] = 0;
5420 BUG_ON(wc->refs[level] == 0);
5421 if (wc->refs[level] == 1) {
5422 btrfs_tree_unlock_rw(eb, path->locks[level]);
5423 path->locks[level] = 0;
5429 /* wc->stage == DROP_REFERENCE */
5430 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5432 if (wc->refs[level] == 1) {
5434 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5435 ret = btrfs_dec_ref(trans, root, eb, 1);
5437 ret = btrfs_dec_ref(trans, root, eb, 0);
5438 BUG_ON(ret); /* -ENOMEM */
5439 if (is_fstree(root->root_key.objectid)) {
5440 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5442 btrfs_err_rl(fs_info,
5443 "error %d accounting leaf items, quota is out of sync, rescan required",
5448 /* make block locked assertion in btrfs_clean_tree_block happy */
5449 if (!path->locks[level] &&
5450 btrfs_header_generation(eb) == trans->transid) {
5451 btrfs_tree_lock(eb);
5452 path->locks[level] = BTRFS_WRITE_LOCK;
5454 btrfs_clean_tree_block(eb);
5457 if (eb == root->node) {
5458 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5460 else if (root->root_key.objectid != btrfs_header_owner(eb))
5461 goto owner_mismatch;
5463 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5464 parent = path->nodes[level + 1]->start;
5465 else if (root->root_key.objectid !=
5466 btrfs_header_owner(path->nodes[level + 1]))
5467 goto owner_mismatch;
5470 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5471 wc->refs[level] == 1);
5473 wc->refs[level] = 0;
5474 wc->flags[level] = 0;
5478 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5479 btrfs_header_owner(eb), root->root_key.objectid);
5483 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5484 struct btrfs_root *root,
5485 struct btrfs_path *path,
5486 struct walk_control *wc)
5488 int level = wc->level;
5489 int lookup_info = 1;
5492 while (level >= 0) {
5493 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5500 if (path->slots[level] >=
5501 btrfs_header_nritems(path->nodes[level]))
5504 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5506 path->slots[level]++;
5515 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5516 struct btrfs_root *root,
5517 struct btrfs_path *path,
5518 struct walk_control *wc, int max_level)
5520 int level = wc->level;
5523 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5524 while (level < max_level && path->nodes[level]) {
5526 if (path->slots[level] + 1 <
5527 btrfs_header_nritems(path->nodes[level])) {
5528 path->slots[level]++;
5531 ret = walk_up_proc(trans, root, path, wc);
5537 if (path->locks[level]) {
5538 btrfs_tree_unlock_rw(path->nodes[level],
5539 path->locks[level]);
5540 path->locks[level] = 0;
5542 free_extent_buffer(path->nodes[level]);
5543 path->nodes[level] = NULL;
5551 * drop a subvolume tree.
5553 * this function traverses the tree freeing any blocks that only
5554 * referenced by the tree.
5556 * when a shared tree block is found. this function decreases its
5557 * reference count by one. if update_ref is true, this function
5558 * also make sure backrefs for the shared block and all lower level
5559 * blocks are properly updated.
5561 * If called with for_reloc == 0, may exit early with -EAGAIN
5563 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5565 struct btrfs_fs_info *fs_info = root->fs_info;
5566 struct btrfs_path *path;
5567 struct btrfs_trans_handle *trans;
5568 struct btrfs_root *tree_root = fs_info->tree_root;
5569 struct btrfs_root_item *root_item = &root->root_item;
5570 struct walk_control *wc;
5571 struct btrfs_key key;
5575 bool root_dropped = false;
5576 bool unfinished_drop = false;
5578 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5580 path = btrfs_alloc_path();
5586 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5588 btrfs_free_path(path);
5594 * Use join to avoid potential EINTR from transaction start. See
5595 * wait_reserve_ticket and the whole reservation callchain.
5598 trans = btrfs_join_transaction(tree_root);
5600 trans = btrfs_start_transaction(tree_root, 0);
5601 if (IS_ERR(trans)) {
5602 err = PTR_ERR(trans);
5606 err = btrfs_run_delayed_items(trans);
5611 * This will help us catch people modifying the fs tree while we're
5612 * dropping it. It is unsafe to mess with the fs tree while it's being
5613 * dropped as we unlock the root node and parent nodes as we walk down
5614 * the tree, assuming nothing will change. If something does change
5615 * then we'll have stale information and drop references to blocks we've
5618 set_bit(BTRFS_ROOT_DELETING, &root->state);
5619 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5621 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5622 level = btrfs_header_level(root->node);
5623 path->nodes[level] = btrfs_lock_root_node(root);
5624 path->slots[level] = 0;
5625 path->locks[level] = BTRFS_WRITE_LOCK;
5626 memset(&wc->update_progress, 0,
5627 sizeof(wc->update_progress));
5629 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5630 memcpy(&wc->update_progress, &key,
5631 sizeof(wc->update_progress));
5633 level = btrfs_root_drop_level(root_item);
5635 path->lowest_level = level;
5636 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5637 path->lowest_level = 0;
5645 * unlock our path, this is safe because only this
5646 * function is allowed to delete this snapshot
5648 btrfs_unlock_up_safe(path, 0);
5650 level = btrfs_header_level(root->node);
5652 btrfs_tree_lock(path->nodes[level]);
5653 path->locks[level] = BTRFS_WRITE_LOCK;
5655 ret = btrfs_lookup_extent_info(trans, fs_info,
5656 path->nodes[level]->start,
5657 level, 1, &wc->refs[level],
5663 BUG_ON(wc->refs[level] == 0);
5665 if (level == btrfs_root_drop_level(root_item))
5668 btrfs_tree_unlock(path->nodes[level]);
5669 path->locks[level] = 0;
5670 WARN_ON(wc->refs[level] != 1);
5675 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5677 wc->shared_level = -1;
5678 wc->stage = DROP_REFERENCE;
5679 wc->update_ref = update_ref;
5681 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5685 ret = walk_down_tree(trans, root, path, wc);
5691 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5698 BUG_ON(wc->stage != DROP_REFERENCE);
5702 if (wc->stage == DROP_REFERENCE) {
5703 wc->drop_level = wc->level;
5704 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5706 path->slots[wc->drop_level]);
5708 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5709 &wc->drop_progress);
5710 btrfs_set_root_drop_level(root_item, wc->drop_level);
5712 BUG_ON(wc->level == 0);
5713 if (btrfs_should_end_transaction(trans) ||
5714 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5715 ret = btrfs_update_root(trans, tree_root,
5719 btrfs_abort_transaction(trans, ret);
5724 btrfs_end_transaction_throttle(trans);
5725 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5726 btrfs_debug(fs_info,
5727 "drop snapshot early exit");
5733 * Use join to avoid potential EINTR from transaction
5734 * start. See wait_reserve_ticket and the whole
5735 * reservation callchain.
5738 trans = btrfs_join_transaction(tree_root);
5740 trans = btrfs_start_transaction(tree_root, 0);
5741 if (IS_ERR(trans)) {
5742 err = PTR_ERR(trans);
5747 btrfs_release_path(path);
5751 ret = btrfs_del_root(trans, &root->root_key);
5753 btrfs_abort_transaction(trans, ret);
5758 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5759 ret = btrfs_find_root(tree_root, &root->root_key, path,
5762 btrfs_abort_transaction(trans, ret);
5765 } else if (ret > 0) {
5766 /* if we fail to delete the orphan item this time
5767 * around, it'll get picked up the next time.
5769 * The most common failure here is just -ENOENT.
5771 btrfs_del_orphan_item(trans, tree_root,
5772 root->root_key.objectid);
5777 * This subvolume is going to be completely dropped, and won't be
5778 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5779 * commit transaction time. So free it here manually.
5781 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5782 btrfs_qgroup_free_meta_all_pertrans(root);
5784 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5785 btrfs_add_dropped_root(trans, root);
5787 btrfs_put_root(root);
5788 root_dropped = true;
5790 btrfs_end_transaction_throttle(trans);
5793 btrfs_free_path(path);
5796 * We were an unfinished drop root, check to see if there are any
5797 * pending, and if not clear and wake up any waiters.
5799 if (!err && unfinished_drop)
5800 btrfs_maybe_wake_unfinished_drop(fs_info);
5803 * So if we need to stop dropping the snapshot for whatever reason we
5804 * need to make sure to add it back to the dead root list so that we
5805 * keep trying to do the work later. This also cleans up roots if we
5806 * don't have it in the radix (like when we recover after a power fail
5807 * or unmount) so we don't leak memory.
5809 if (!for_reloc && !root_dropped)
5810 btrfs_add_dead_root(root);
5815 * drop subtree rooted at tree block 'node'.
5817 * NOTE: this function will unlock and release tree block 'node'
5818 * only used by relocation code
5820 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5821 struct btrfs_root *root,
5822 struct extent_buffer *node,
5823 struct extent_buffer *parent)
5825 struct btrfs_fs_info *fs_info = root->fs_info;
5826 struct btrfs_path *path;
5827 struct walk_control *wc;
5833 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5835 path = btrfs_alloc_path();
5839 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5841 btrfs_free_path(path);
5845 btrfs_assert_tree_locked(parent);
5846 parent_level = btrfs_header_level(parent);
5847 atomic_inc(&parent->refs);
5848 path->nodes[parent_level] = parent;
5849 path->slots[parent_level] = btrfs_header_nritems(parent);
5851 btrfs_assert_tree_locked(node);
5852 level = btrfs_header_level(node);
5853 path->nodes[level] = node;
5854 path->slots[level] = 0;
5855 path->locks[level] = BTRFS_WRITE_LOCK;
5857 wc->refs[parent_level] = 1;
5858 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5860 wc->shared_level = -1;
5861 wc->stage = DROP_REFERENCE;
5864 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5867 wret = walk_down_tree(trans, root, path, wc);
5873 wret = walk_up_tree(trans, root, path, wc, parent_level);
5881 btrfs_free_path(path);
5886 * helper to account the unused space of all the readonly block group in the
5887 * space_info. takes mirrors into account.
5889 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5891 struct btrfs_block_group *block_group;
5895 /* It's df, we don't care if it's racy */
5896 if (list_empty(&sinfo->ro_bgs))
5899 spin_lock(&sinfo->lock);
5900 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5901 spin_lock(&block_group->lock);
5903 if (!block_group->ro) {
5904 spin_unlock(&block_group->lock);
5908 factor = btrfs_bg_type_to_factor(block_group->flags);
5909 free_bytes += (block_group->length -
5910 block_group->used) * factor;
5912 spin_unlock(&block_group->lock);
5914 spin_unlock(&sinfo->lock);
5919 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5922 return unpin_extent_range(fs_info, start, end, false);
5926 * It used to be that old block groups would be left around forever.
5927 * Iterating over them would be enough to trim unused space. Since we
5928 * now automatically remove them, we also need to iterate over unallocated
5931 * We don't want a transaction for this since the discard may take a
5932 * substantial amount of time. We don't require that a transaction be
5933 * running, but we do need to take a running transaction into account
5934 * to ensure that we're not discarding chunks that were released or
5935 * allocated in the current transaction.
5937 * Holding the chunks lock will prevent other threads from allocating
5938 * or releasing chunks, but it won't prevent a running transaction
5939 * from committing and releasing the memory that the pending chunks
5940 * list head uses. For that, we need to take a reference to the
5941 * transaction and hold the commit root sem. We only need to hold
5942 * it while performing the free space search since we have already
5943 * held back allocations.
5945 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5947 u64 start = SZ_1M, len = 0, end = 0;
5952 /* Discard not supported = nothing to do. */
5953 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5956 /* Not writable = nothing to do. */
5957 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5960 /* No free space = nothing to do. */
5961 if (device->total_bytes <= device->bytes_used)
5967 struct btrfs_fs_info *fs_info = device->fs_info;
5970 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5974 find_first_clear_extent_bit(&device->alloc_state, start,
5976 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5978 /* Check if there are any CHUNK_* bits left */
5979 if (start > device->total_bytes) {
5980 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5981 btrfs_warn_in_rcu(fs_info,
5982 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5983 start, end - start + 1,
5984 rcu_str_deref(device->name),
5985 device->total_bytes);
5986 mutex_unlock(&fs_info->chunk_mutex);
5991 /* Ensure we skip the reserved area in the first 1M */
5992 start = max_t(u64, start, SZ_1M);
5995 * If find_first_clear_extent_bit find a range that spans the
5996 * end of the device it will set end to -1, in this case it's up
5997 * to the caller to trim the value to the size of the device.
5999 end = min(end, device->total_bytes - 1);
6001 len = end - start + 1;
6003 /* We didn't find any extents */
6005 mutex_unlock(&fs_info->chunk_mutex);
6010 ret = btrfs_issue_discard(device->bdev, start, len,
6013 set_extent_bits(&device->alloc_state, start,
6016 mutex_unlock(&fs_info->chunk_mutex);
6024 if (fatal_signal_pending(current)) {
6036 * Trim the whole filesystem by:
6037 * 1) trimming the free space in each block group
6038 * 2) trimming the unallocated space on each device
6040 * This will also continue trimming even if a block group or device encounters
6041 * an error. The return value will be the last error, or 0 if nothing bad
6044 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6046 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6047 struct btrfs_block_group *cache = NULL;
6048 struct btrfs_device *device;
6050 u64 range_end = U64_MAX;
6061 * Check range overflow if range->len is set.
6062 * The default range->len is U64_MAX.
6064 if (range->len != U64_MAX &&
6065 check_add_overflow(range->start, range->len, &range_end))
6068 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6069 for (; cache; cache = btrfs_next_block_group(cache)) {
6070 if (cache->start >= range_end) {
6071 btrfs_put_block_group(cache);
6075 start = max(range->start, cache->start);
6076 end = min(range_end, cache->start + cache->length);
6078 if (end - start >= range->minlen) {
6079 if (!btrfs_block_group_done(cache)) {
6080 ret = btrfs_cache_block_group(cache, true);
6087 ret = btrfs_trim_block_group(cache,
6093 trimmed += group_trimmed;
6104 "failed to trim %llu block group(s), last error %d",
6107 mutex_lock(&fs_devices->device_list_mutex);
6108 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6109 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6112 ret = btrfs_trim_free_extents(device, &group_trimmed);
6119 trimmed += group_trimmed;
6121 mutex_unlock(&fs_devices->device_list_mutex);
6125 "failed to trim %llu device(s), last error %d",
6126 dev_failed, dev_ret);
6127 range->len = trimmed;