vfs: make fchmodat retry once on ESTALE errors
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37
38 #undef SCRAMBLE_DELAYED_REFS
39
40 /*
41  * control flags for do_chunk_alloc's force field
42  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
43  * if we really need one.
44  *
45  * CHUNK_ALLOC_LIMITED means to only try and allocate one
46  * if we have very few chunks already allocated.  This is
47  * used as part of the clustering code to help make sure
48  * we have a good pool of storage to cluster in, without
49  * filling the FS with empty chunks
50  *
51  * CHUNK_ALLOC_FORCE means it must try to allocate one
52  *
53  */
54 enum {
55         CHUNK_ALLOC_NO_FORCE = 0,
56         CHUNK_ALLOC_LIMITED = 1,
57         CHUNK_ALLOC_FORCE = 2,
58 };
59
60 /*
61  * Control how reservations are dealt with.
62  *
63  * RESERVE_FREE - freeing a reservation.
64  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
65  *   ENOSPC accounting
66  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
67  *   bytes_may_use as the ENOSPC accounting is done elsewhere
68  */
69 enum {
70         RESERVE_FREE = 0,
71         RESERVE_ALLOC = 1,
72         RESERVE_ALLOC_NO_ACCOUNT = 2,
73 };
74
75 static int update_block_group(struct btrfs_trans_handle *trans,
76                               struct btrfs_root *root,
77                               u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79                                 struct btrfs_root *root,
80                                 u64 bytenr, u64 num_bytes, u64 parent,
81                                 u64 root_objectid, u64 owner_objectid,
82                                 u64 owner_offset, int refs_to_drop,
83                                 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85                                     struct extent_buffer *leaf,
86                                     struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88                                       struct btrfs_root *root,
89                                       u64 parent, u64 root_objectid,
90                                       u64 flags, u64 owner, u64 offset,
91                                       struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93                                      struct btrfs_root *root,
94                                      u64 parent, u64 root_objectid,
95                                      u64 flags, struct btrfs_disk_key *key,
96                                      int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98                           struct btrfs_root *extent_root, u64 flags,
99                           int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101                          struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103                             int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105                                        u64 num_bytes, int reserve);
106
107 static noinline int
108 block_group_cache_done(struct btrfs_block_group_cache *cache)
109 {
110         smp_mb();
111         return cache->cached == BTRFS_CACHE_FINISHED;
112 }
113
114 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
115 {
116         return (cache->flags & bits) == bits;
117 }
118
119 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
120 {
121         atomic_inc(&cache->count);
122 }
123
124 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
125 {
126         if (atomic_dec_and_test(&cache->count)) {
127                 WARN_ON(cache->pinned > 0);
128                 WARN_ON(cache->reserved > 0);
129                 kfree(cache->free_space_ctl);
130                 kfree(cache);
131         }
132 }
133
134 /*
135  * this adds the block group to the fs_info rb tree for the block group
136  * cache
137  */
138 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
139                                 struct btrfs_block_group_cache *block_group)
140 {
141         struct rb_node **p;
142         struct rb_node *parent = NULL;
143         struct btrfs_block_group_cache *cache;
144
145         spin_lock(&info->block_group_cache_lock);
146         p = &info->block_group_cache_tree.rb_node;
147
148         while (*p) {
149                 parent = *p;
150                 cache = rb_entry(parent, struct btrfs_block_group_cache,
151                                  cache_node);
152                 if (block_group->key.objectid < cache->key.objectid) {
153                         p = &(*p)->rb_left;
154                 } else if (block_group->key.objectid > cache->key.objectid) {
155                         p = &(*p)->rb_right;
156                 } else {
157                         spin_unlock(&info->block_group_cache_lock);
158                         return -EEXIST;
159                 }
160         }
161
162         rb_link_node(&block_group->cache_node, parent, p);
163         rb_insert_color(&block_group->cache_node,
164                         &info->block_group_cache_tree);
165         spin_unlock(&info->block_group_cache_lock);
166
167         return 0;
168 }
169
170 /*
171  * This will return the block group at or after bytenr if contains is 0, else
172  * it will return the block group that contains the bytenr
173  */
174 static struct btrfs_block_group_cache *
175 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
176                               int contains)
177 {
178         struct btrfs_block_group_cache *cache, *ret = NULL;
179         struct rb_node *n;
180         u64 end, start;
181
182         spin_lock(&info->block_group_cache_lock);
183         n = info->block_group_cache_tree.rb_node;
184
185         while (n) {
186                 cache = rb_entry(n, struct btrfs_block_group_cache,
187                                  cache_node);
188                 end = cache->key.objectid + cache->key.offset - 1;
189                 start = cache->key.objectid;
190
191                 if (bytenr < start) {
192                         if (!contains && (!ret || start < ret->key.objectid))
193                                 ret = cache;
194                         n = n->rb_left;
195                 } else if (bytenr > start) {
196                         if (contains && bytenr <= end) {
197                                 ret = cache;
198                                 break;
199                         }
200                         n = n->rb_right;
201                 } else {
202                         ret = cache;
203                         break;
204                 }
205         }
206         if (ret)
207                 btrfs_get_block_group(ret);
208         spin_unlock(&info->block_group_cache_lock);
209
210         return ret;
211 }
212
213 static int add_excluded_extent(struct btrfs_root *root,
214                                u64 start, u64 num_bytes)
215 {
216         u64 end = start + num_bytes - 1;
217         set_extent_bits(&root->fs_info->freed_extents[0],
218                         start, end, EXTENT_UPTODATE, GFP_NOFS);
219         set_extent_bits(&root->fs_info->freed_extents[1],
220                         start, end, EXTENT_UPTODATE, GFP_NOFS);
221         return 0;
222 }
223
224 static void free_excluded_extents(struct btrfs_root *root,
225                                   struct btrfs_block_group_cache *cache)
226 {
227         u64 start, end;
228
229         start = cache->key.objectid;
230         end = start + cache->key.offset - 1;
231
232         clear_extent_bits(&root->fs_info->freed_extents[0],
233                           start, end, EXTENT_UPTODATE, GFP_NOFS);
234         clear_extent_bits(&root->fs_info->freed_extents[1],
235                           start, end, EXTENT_UPTODATE, GFP_NOFS);
236 }
237
238 static int exclude_super_stripes(struct btrfs_root *root,
239                                  struct btrfs_block_group_cache *cache)
240 {
241         u64 bytenr;
242         u64 *logical;
243         int stripe_len;
244         int i, nr, ret;
245
246         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
247                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
248                 cache->bytes_super += stripe_len;
249                 ret = add_excluded_extent(root, cache->key.objectid,
250                                           stripe_len);
251                 BUG_ON(ret); /* -ENOMEM */
252         }
253
254         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
255                 bytenr = btrfs_sb_offset(i);
256                 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
257                                        cache->key.objectid, bytenr,
258                                        0, &logical, &nr, &stripe_len);
259                 BUG_ON(ret); /* -ENOMEM */
260
261                 while (nr--) {
262                         cache->bytes_super += stripe_len;
263                         ret = add_excluded_extent(root, logical[nr],
264                                                   stripe_len);
265                         BUG_ON(ret); /* -ENOMEM */
266                 }
267
268                 kfree(logical);
269         }
270         return 0;
271 }
272
273 static struct btrfs_caching_control *
274 get_caching_control(struct btrfs_block_group_cache *cache)
275 {
276         struct btrfs_caching_control *ctl;
277
278         spin_lock(&cache->lock);
279         if (cache->cached != BTRFS_CACHE_STARTED) {
280                 spin_unlock(&cache->lock);
281                 return NULL;
282         }
283
284         /* We're loading it the fast way, so we don't have a caching_ctl. */
285         if (!cache->caching_ctl) {
286                 spin_unlock(&cache->lock);
287                 return NULL;
288         }
289
290         ctl = cache->caching_ctl;
291         atomic_inc(&ctl->count);
292         spin_unlock(&cache->lock);
293         return ctl;
294 }
295
296 static void put_caching_control(struct btrfs_caching_control *ctl)
297 {
298         if (atomic_dec_and_test(&ctl->count))
299                 kfree(ctl);
300 }
301
302 /*
303  * this is only called by cache_block_group, since we could have freed extents
304  * we need to check the pinned_extents for any extents that can't be used yet
305  * since their free space will be released as soon as the transaction commits.
306  */
307 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
308                               struct btrfs_fs_info *info, u64 start, u64 end)
309 {
310         u64 extent_start, extent_end, size, total_added = 0;
311         int ret;
312
313         while (start < end) {
314                 ret = find_first_extent_bit(info->pinned_extents, start,
315                                             &extent_start, &extent_end,
316                                             EXTENT_DIRTY | EXTENT_UPTODATE,
317                                             NULL);
318                 if (ret)
319                         break;
320
321                 if (extent_start <= start) {
322                         start = extent_end + 1;
323                 } else if (extent_start > start && extent_start < end) {
324                         size = extent_start - start;
325                         total_added += size;
326                         ret = btrfs_add_free_space(block_group, start,
327                                                    size);
328                         BUG_ON(ret); /* -ENOMEM or logic error */
329                         start = extent_end + 1;
330                 } else {
331                         break;
332                 }
333         }
334
335         if (start < end) {
336                 size = end - start;
337                 total_added += size;
338                 ret = btrfs_add_free_space(block_group, start, size);
339                 BUG_ON(ret); /* -ENOMEM or logic error */
340         }
341
342         return total_added;
343 }
344
345 static noinline void caching_thread(struct btrfs_work *work)
346 {
347         struct btrfs_block_group_cache *block_group;
348         struct btrfs_fs_info *fs_info;
349         struct btrfs_caching_control *caching_ctl;
350         struct btrfs_root *extent_root;
351         struct btrfs_path *path;
352         struct extent_buffer *leaf;
353         struct btrfs_key key;
354         u64 total_found = 0;
355         u64 last = 0;
356         u32 nritems;
357         int ret = 0;
358
359         caching_ctl = container_of(work, struct btrfs_caching_control, work);
360         block_group = caching_ctl->block_group;
361         fs_info = block_group->fs_info;
362         extent_root = fs_info->extent_root;
363
364         path = btrfs_alloc_path();
365         if (!path)
366                 goto out;
367
368         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
369
370         /*
371          * We don't want to deadlock with somebody trying to allocate a new
372          * extent for the extent root while also trying to search the extent
373          * root to add free space.  So we skip locking and search the commit
374          * root, since its read-only
375          */
376         path->skip_locking = 1;
377         path->search_commit_root = 1;
378         path->reada = 1;
379
380         key.objectid = last;
381         key.offset = 0;
382         key.type = BTRFS_EXTENT_ITEM_KEY;
383 again:
384         mutex_lock(&caching_ctl->mutex);
385         /* need to make sure the commit_root doesn't disappear */
386         down_read(&fs_info->extent_commit_sem);
387
388         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
389         if (ret < 0)
390                 goto err;
391
392         leaf = path->nodes[0];
393         nritems = btrfs_header_nritems(leaf);
394
395         while (1) {
396                 if (btrfs_fs_closing(fs_info) > 1) {
397                         last = (u64)-1;
398                         break;
399                 }
400
401                 if (path->slots[0] < nritems) {
402                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
403                 } else {
404                         ret = find_next_key(path, 0, &key);
405                         if (ret)
406                                 break;
407
408                         if (need_resched() ||
409                             btrfs_next_leaf(extent_root, path)) {
410                                 caching_ctl->progress = last;
411                                 btrfs_release_path(path);
412                                 up_read(&fs_info->extent_commit_sem);
413                                 mutex_unlock(&caching_ctl->mutex);
414                                 cond_resched();
415                                 goto again;
416                         }
417                         leaf = path->nodes[0];
418                         nritems = btrfs_header_nritems(leaf);
419                         continue;
420                 }
421
422                 if (key.objectid < block_group->key.objectid) {
423                         path->slots[0]++;
424                         continue;
425                 }
426
427                 if (key.objectid >= block_group->key.objectid +
428                     block_group->key.offset)
429                         break;
430
431                 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
432                         total_found += add_new_free_space(block_group,
433                                                           fs_info, last,
434                                                           key.objectid);
435                         last = key.objectid + key.offset;
436
437                         if (total_found > (1024 * 1024 * 2)) {
438                                 total_found = 0;
439                                 wake_up(&caching_ctl->wait);
440                         }
441                 }
442                 path->slots[0]++;
443         }
444         ret = 0;
445
446         total_found += add_new_free_space(block_group, fs_info, last,
447                                           block_group->key.objectid +
448                                           block_group->key.offset);
449         caching_ctl->progress = (u64)-1;
450
451         spin_lock(&block_group->lock);
452         block_group->caching_ctl = NULL;
453         block_group->cached = BTRFS_CACHE_FINISHED;
454         spin_unlock(&block_group->lock);
455
456 err:
457         btrfs_free_path(path);
458         up_read(&fs_info->extent_commit_sem);
459
460         free_excluded_extents(extent_root, block_group);
461
462         mutex_unlock(&caching_ctl->mutex);
463 out:
464         wake_up(&caching_ctl->wait);
465
466         put_caching_control(caching_ctl);
467         btrfs_put_block_group(block_group);
468 }
469
470 static int cache_block_group(struct btrfs_block_group_cache *cache,
471                              struct btrfs_trans_handle *trans,
472                              struct btrfs_root *root,
473                              int load_cache_only)
474 {
475         DEFINE_WAIT(wait);
476         struct btrfs_fs_info *fs_info = cache->fs_info;
477         struct btrfs_caching_control *caching_ctl;
478         int ret = 0;
479
480         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
481         if (!caching_ctl)
482                 return -ENOMEM;
483
484         INIT_LIST_HEAD(&caching_ctl->list);
485         mutex_init(&caching_ctl->mutex);
486         init_waitqueue_head(&caching_ctl->wait);
487         caching_ctl->block_group = cache;
488         caching_ctl->progress = cache->key.objectid;
489         atomic_set(&caching_ctl->count, 1);
490         caching_ctl->work.func = caching_thread;
491
492         spin_lock(&cache->lock);
493         /*
494          * This should be a rare occasion, but this could happen I think in the
495          * case where one thread starts to load the space cache info, and then
496          * some other thread starts a transaction commit which tries to do an
497          * allocation while the other thread is still loading the space cache
498          * info.  The previous loop should have kept us from choosing this block
499          * group, but if we've moved to the state where we will wait on caching
500          * block groups we need to first check if we're doing a fast load here,
501          * so we can wait for it to finish, otherwise we could end up allocating
502          * from a block group who's cache gets evicted for one reason or
503          * another.
504          */
505         while (cache->cached == BTRFS_CACHE_FAST) {
506                 struct btrfs_caching_control *ctl;
507
508                 ctl = cache->caching_ctl;
509                 atomic_inc(&ctl->count);
510                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
511                 spin_unlock(&cache->lock);
512
513                 schedule();
514
515                 finish_wait(&ctl->wait, &wait);
516                 put_caching_control(ctl);
517                 spin_lock(&cache->lock);
518         }
519
520         if (cache->cached != BTRFS_CACHE_NO) {
521                 spin_unlock(&cache->lock);
522                 kfree(caching_ctl);
523                 return 0;
524         }
525         WARN_ON(cache->caching_ctl);
526         cache->caching_ctl = caching_ctl;
527         cache->cached = BTRFS_CACHE_FAST;
528         spin_unlock(&cache->lock);
529
530         /*
531          * We can't do the read from on-disk cache during a commit since we need
532          * to have the normal tree locking.  Also if we are currently trying to
533          * allocate blocks for the tree root we can't do the fast caching since
534          * we likely hold important locks.
535          */
536         if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
537                 ret = load_free_space_cache(fs_info, cache);
538
539                 spin_lock(&cache->lock);
540                 if (ret == 1) {
541                         cache->caching_ctl = NULL;
542                         cache->cached = BTRFS_CACHE_FINISHED;
543                         cache->last_byte_to_unpin = (u64)-1;
544                 } else {
545                         if (load_cache_only) {
546                                 cache->caching_ctl = NULL;
547                                 cache->cached = BTRFS_CACHE_NO;
548                         } else {
549                                 cache->cached = BTRFS_CACHE_STARTED;
550                         }
551                 }
552                 spin_unlock(&cache->lock);
553                 wake_up(&caching_ctl->wait);
554                 if (ret == 1) {
555                         put_caching_control(caching_ctl);
556                         free_excluded_extents(fs_info->extent_root, cache);
557                         return 0;
558                 }
559         } else {
560                 /*
561                  * We are not going to do the fast caching, set cached to the
562                  * appropriate value and wakeup any waiters.
563                  */
564                 spin_lock(&cache->lock);
565                 if (load_cache_only) {
566                         cache->caching_ctl = NULL;
567                         cache->cached = BTRFS_CACHE_NO;
568                 } else {
569                         cache->cached = BTRFS_CACHE_STARTED;
570                 }
571                 spin_unlock(&cache->lock);
572                 wake_up(&caching_ctl->wait);
573         }
574
575         if (load_cache_only) {
576                 put_caching_control(caching_ctl);
577                 return 0;
578         }
579
580         down_write(&fs_info->extent_commit_sem);
581         atomic_inc(&caching_ctl->count);
582         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
583         up_write(&fs_info->extent_commit_sem);
584
585         btrfs_get_block_group(cache);
586
587         btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
588
589         return ret;
590 }
591
592 /*
593  * return the block group that starts at or after bytenr
594  */
595 static struct btrfs_block_group_cache *
596 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
597 {
598         struct btrfs_block_group_cache *cache;
599
600         cache = block_group_cache_tree_search(info, bytenr, 0);
601
602         return cache;
603 }
604
605 /*
606  * return the block group that contains the given bytenr
607  */
608 struct btrfs_block_group_cache *btrfs_lookup_block_group(
609                                                  struct btrfs_fs_info *info,
610                                                  u64 bytenr)
611 {
612         struct btrfs_block_group_cache *cache;
613
614         cache = block_group_cache_tree_search(info, bytenr, 1);
615
616         return cache;
617 }
618
619 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
620                                                   u64 flags)
621 {
622         struct list_head *head = &info->space_info;
623         struct btrfs_space_info *found;
624
625         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
626
627         rcu_read_lock();
628         list_for_each_entry_rcu(found, head, list) {
629                 if (found->flags & flags) {
630                         rcu_read_unlock();
631                         return found;
632                 }
633         }
634         rcu_read_unlock();
635         return NULL;
636 }
637
638 /*
639  * after adding space to the filesystem, we need to clear the full flags
640  * on all the space infos.
641  */
642 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
643 {
644         struct list_head *head = &info->space_info;
645         struct btrfs_space_info *found;
646
647         rcu_read_lock();
648         list_for_each_entry_rcu(found, head, list)
649                 found->full = 0;
650         rcu_read_unlock();
651 }
652
653 u64 btrfs_find_block_group(struct btrfs_root *root,
654                            u64 search_start, u64 search_hint, int owner)
655 {
656         struct btrfs_block_group_cache *cache;
657         u64 used;
658         u64 last = max(search_hint, search_start);
659         u64 group_start = 0;
660         int full_search = 0;
661         int factor = 9;
662         int wrapped = 0;
663 again:
664         while (1) {
665                 cache = btrfs_lookup_first_block_group(root->fs_info, last);
666                 if (!cache)
667                         break;
668
669                 spin_lock(&cache->lock);
670                 last = cache->key.objectid + cache->key.offset;
671                 used = btrfs_block_group_used(&cache->item);
672
673                 if ((full_search || !cache->ro) &&
674                     block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
675                         if (used + cache->pinned + cache->reserved <
676                             div_factor(cache->key.offset, factor)) {
677                                 group_start = cache->key.objectid;
678                                 spin_unlock(&cache->lock);
679                                 btrfs_put_block_group(cache);
680                                 goto found;
681                         }
682                 }
683                 spin_unlock(&cache->lock);
684                 btrfs_put_block_group(cache);
685                 cond_resched();
686         }
687         if (!wrapped) {
688                 last = search_start;
689                 wrapped = 1;
690                 goto again;
691         }
692         if (!full_search && factor < 10) {
693                 last = search_start;
694                 full_search = 1;
695                 factor = 10;
696                 goto again;
697         }
698 found:
699         return group_start;
700 }
701
702 /* simple helper to search for an existing extent at a given offset */
703 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
704 {
705         int ret;
706         struct btrfs_key key;
707         struct btrfs_path *path;
708
709         path = btrfs_alloc_path();
710         if (!path)
711                 return -ENOMEM;
712
713         key.objectid = start;
714         key.offset = len;
715         btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
716         ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
717                                 0, 0);
718         btrfs_free_path(path);
719         return ret;
720 }
721
722 /*
723  * helper function to lookup reference count and flags of extent.
724  *
725  * the head node for delayed ref is used to store the sum of all the
726  * reference count modifications queued up in the rbtree. the head
727  * node may also store the extent flags to set. This way you can check
728  * to see what the reference count and extent flags would be if all of
729  * the delayed refs are not processed.
730  */
731 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
732                              struct btrfs_root *root, u64 bytenr,
733                              u64 num_bytes, u64 *refs, u64 *flags)
734 {
735         struct btrfs_delayed_ref_head *head;
736         struct btrfs_delayed_ref_root *delayed_refs;
737         struct btrfs_path *path;
738         struct btrfs_extent_item *ei;
739         struct extent_buffer *leaf;
740         struct btrfs_key key;
741         u32 item_size;
742         u64 num_refs;
743         u64 extent_flags;
744         int ret;
745
746         path = btrfs_alloc_path();
747         if (!path)
748                 return -ENOMEM;
749
750         key.objectid = bytenr;
751         key.type = BTRFS_EXTENT_ITEM_KEY;
752         key.offset = num_bytes;
753         if (!trans) {
754                 path->skip_locking = 1;
755                 path->search_commit_root = 1;
756         }
757 again:
758         ret = btrfs_search_slot(trans, root->fs_info->extent_root,
759                                 &key, path, 0, 0);
760         if (ret < 0)
761                 goto out_free;
762
763         if (ret == 0) {
764                 leaf = path->nodes[0];
765                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
766                 if (item_size >= sizeof(*ei)) {
767                         ei = btrfs_item_ptr(leaf, path->slots[0],
768                                             struct btrfs_extent_item);
769                         num_refs = btrfs_extent_refs(leaf, ei);
770                         extent_flags = btrfs_extent_flags(leaf, ei);
771                 } else {
772 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
773                         struct btrfs_extent_item_v0 *ei0;
774                         BUG_ON(item_size != sizeof(*ei0));
775                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
776                                              struct btrfs_extent_item_v0);
777                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
778                         /* FIXME: this isn't correct for data */
779                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
780 #else
781                         BUG();
782 #endif
783                 }
784                 BUG_ON(num_refs == 0);
785         } else {
786                 num_refs = 0;
787                 extent_flags = 0;
788                 ret = 0;
789         }
790
791         if (!trans)
792                 goto out;
793
794         delayed_refs = &trans->transaction->delayed_refs;
795         spin_lock(&delayed_refs->lock);
796         head = btrfs_find_delayed_ref_head(trans, bytenr);
797         if (head) {
798                 if (!mutex_trylock(&head->mutex)) {
799                         atomic_inc(&head->node.refs);
800                         spin_unlock(&delayed_refs->lock);
801
802                         btrfs_release_path(path);
803
804                         /*
805                          * Mutex was contended, block until it's released and try
806                          * again
807                          */
808                         mutex_lock(&head->mutex);
809                         mutex_unlock(&head->mutex);
810                         btrfs_put_delayed_ref(&head->node);
811                         goto again;
812                 }
813                 if (head->extent_op && head->extent_op->update_flags)
814                         extent_flags |= head->extent_op->flags_to_set;
815                 else
816                         BUG_ON(num_refs == 0);
817
818                 num_refs += head->node.ref_mod;
819                 mutex_unlock(&head->mutex);
820         }
821         spin_unlock(&delayed_refs->lock);
822 out:
823         WARN_ON(num_refs == 0);
824         if (refs)
825                 *refs = num_refs;
826         if (flags)
827                 *flags = extent_flags;
828 out_free:
829         btrfs_free_path(path);
830         return ret;
831 }
832
833 /*
834  * Back reference rules.  Back refs have three main goals:
835  *
836  * 1) differentiate between all holders of references to an extent so that
837  *    when a reference is dropped we can make sure it was a valid reference
838  *    before freeing the extent.
839  *
840  * 2) Provide enough information to quickly find the holders of an extent
841  *    if we notice a given block is corrupted or bad.
842  *
843  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
844  *    maintenance.  This is actually the same as #2, but with a slightly
845  *    different use case.
846  *
847  * There are two kinds of back refs. The implicit back refs is optimized
848  * for pointers in non-shared tree blocks. For a given pointer in a block,
849  * back refs of this kind provide information about the block's owner tree
850  * and the pointer's key. These information allow us to find the block by
851  * b-tree searching. The full back refs is for pointers in tree blocks not
852  * referenced by their owner trees. The location of tree block is recorded
853  * in the back refs. Actually the full back refs is generic, and can be
854  * used in all cases the implicit back refs is used. The major shortcoming
855  * of the full back refs is its overhead. Every time a tree block gets
856  * COWed, we have to update back refs entry for all pointers in it.
857  *
858  * For a newly allocated tree block, we use implicit back refs for
859  * pointers in it. This means most tree related operations only involve
860  * implicit back refs. For a tree block created in old transaction, the
861  * only way to drop a reference to it is COW it. So we can detect the
862  * event that tree block loses its owner tree's reference and do the
863  * back refs conversion.
864  *
865  * When a tree block is COW'd through a tree, there are four cases:
866  *
867  * The reference count of the block is one and the tree is the block's
868  * owner tree. Nothing to do in this case.
869  *
870  * The reference count of the block is one and the tree is not the
871  * block's owner tree. In this case, full back refs is used for pointers
872  * in the block. Remove these full back refs, add implicit back refs for
873  * every pointers in the new block.
874  *
875  * The reference count of the block is greater than one and the tree is
876  * the block's owner tree. In this case, implicit back refs is used for
877  * pointers in the block. Add full back refs for every pointers in the
878  * block, increase lower level extents' reference counts. The original
879  * implicit back refs are entailed to the new block.
880  *
881  * The reference count of the block is greater than one and the tree is
882  * not the block's owner tree. Add implicit back refs for every pointer in
883  * the new block, increase lower level extents' reference count.
884  *
885  * Back Reference Key composing:
886  *
887  * The key objectid corresponds to the first byte in the extent,
888  * The key type is used to differentiate between types of back refs.
889  * There are different meanings of the key offset for different types
890  * of back refs.
891  *
892  * File extents can be referenced by:
893  *
894  * - multiple snapshots, subvolumes, or different generations in one subvol
895  * - different files inside a single subvolume
896  * - different offsets inside a file (bookend extents in file.c)
897  *
898  * The extent ref structure for the implicit back refs has fields for:
899  *
900  * - Objectid of the subvolume root
901  * - objectid of the file holding the reference
902  * - original offset in the file
903  * - how many bookend extents
904  *
905  * The key offset for the implicit back refs is hash of the first
906  * three fields.
907  *
908  * The extent ref structure for the full back refs has field for:
909  *
910  * - number of pointers in the tree leaf
911  *
912  * The key offset for the implicit back refs is the first byte of
913  * the tree leaf
914  *
915  * When a file extent is allocated, The implicit back refs is used.
916  * the fields are filled in:
917  *
918  *     (root_key.objectid, inode objectid, offset in file, 1)
919  *
920  * When a file extent is removed file truncation, we find the
921  * corresponding implicit back refs and check the following fields:
922  *
923  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
924  *
925  * Btree extents can be referenced by:
926  *
927  * - Different subvolumes
928  *
929  * Both the implicit back refs and the full back refs for tree blocks
930  * only consist of key. The key offset for the implicit back refs is
931  * objectid of block's owner tree. The key offset for the full back refs
932  * is the first byte of parent block.
933  *
934  * When implicit back refs is used, information about the lowest key and
935  * level of the tree block are required. These information are stored in
936  * tree block info structure.
937  */
938
939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
940 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
941                                   struct btrfs_root *root,
942                                   struct btrfs_path *path,
943                                   u64 owner, u32 extra_size)
944 {
945         struct btrfs_extent_item *item;
946         struct btrfs_extent_item_v0 *ei0;
947         struct btrfs_extent_ref_v0 *ref0;
948         struct btrfs_tree_block_info *bi;
949         struct extent_buffer *leaf;
950         struct btrfs_key key;
951         struct btrfs_key found_key;
952         u32 new_size = sizeof(*item);
953         u64 refs;
954         int ret;
955
956         leaf = path->nodes[0];
957         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
958
959         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
960         ei0 = btrfs_item_ptr(leaf, path->slots[0],
961                              struct btrfs_extent_item_v0);
962         refs = btrfs_extent_refs_v0(leaf, ei0);
963
964         if (owner == (u64)-1) {
965                 while (1) {
966                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
967                                 ret = btrfs_next_leaf(root, path);
968                                 if (ret < 0)
969                                         return ret;
970                                 BUG_ON(ret > 0); /* Corruption */
971                                 leaf = path->nodes[0];
972                         }
973                         btrfs_item_key_to_cpu(leaf, &found_key,
974                                               path->slots[0]);
975                         BUG_ON(key.objectid != found_key.objectid);
976                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
977                                 path->slots[0]++;
978                                 continue;
979                         }
980                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
981                                               struct btrfs_extent_ref_v0);
982                         owner = btrfs_ref_objectid_v0(leaf, ref0);
983                         break;
984                 }
985         }
986         btrfs_release_path(path);
987
988         if (owner < BTRFS_FIRST_FREE_OBJECTID)
989                 new_size += sizeof(*bi);
990
991         new_size -= sizeof(*ei0);
992         ret = btrfs_search_slot(trans, root, &key, path,
993                                 new_size + extra_size, 1);
994         if (ret < 0)
995                 return ret;
996         BUG_ON(ret); /* Corruption */
997
998         btrfs_extend_item(trans, root, path, new_size);
999
1000         leaf = path->nodes[0];
1001         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1002         btrfs_set_extent_refs(leaf, item, refs);
1003         /* FIXME: get real generation */
1004         btrfs_set_extent_generation(leaf, item, 0);
1005         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1006                 btrfs_set_extent_flags(leaf, item,
1007                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1008                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1009                 bi = (struct btrfs_tree_block_info *)(item + 1);
1010                 /* FIXME: get first key of the block */
1011                 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1012                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1013         } else {
1014                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1015         }
1016         btrfs_mark_buffer_dirty(leaf);
1017         return 0;
1018 }
1019 #endif
1020
1021 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1022 {
1023         u32 high_crc = ~(u32)0;
1024         u32 low_crc = ~(u32)0;
1025         __le64 lenum;
1026
1027         lenum = cpu_to_le64(root_objectid);
1028         high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1029         lenum = cpu_to_le64(owner);
1030         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1031         lenum = cpu_to_le64(offset);
1032         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1033
1034         return ((u64)high_crc << 31) ^ (u64)low_crc;
1035 }
1036
1037 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1038                                      struct btrfs_extent_data_ref *ref)
1039 {
1040         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1041                                     btrfs_extent_data_ref_objectid(leaf, ref),
1042                                     btrfs_extent_data_ref_offset(leaf, ref));
1043 }
1044
1045 static int match_extent_data_ref(struct extent_buffer *leaf,
1046                                  struct btrfs_extent_data_ref *ref,
1047                                  u64 root_objectid, u64 owner, u64 offset)
1048 {
1049         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1050             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1051             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1052                 return 0;
1053         return 1;
1054 }
1055
1056 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1057                                            struct btrfs_root *root,
1058                                            struct btrfs_path *path,
1059                                            u64 bytenr, u64 parent,
1060                                            u64 root_objectid,
1061                                            u64 owner, u64 offset)
1062 {
1063         struct btrfs_key key;
1064         struct btrfs_extent_data_ref *ref;
1065         struct extent_buffer *leaf;
1066         u32 nritems;
1067         int ret;
1068         int recow;
1069         int err = -ENOENT;
1070
1071         key.objectid = bytenr;
1072         if (parent) {
1073                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1074                 key.offset = parent;
1075         } else {
1076                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1077                 key.offset = hash_extent_data_ref(root_objectid,
1078                                                   owner, offset);
1079         }
1080 again:
1081         recow = 0;
1082         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1083         if (ret < 0) {
1084                 err = ret;
1085                 goto fail;
1086         }
1087
1088         if (parent) {
1089                 if (!ret)
1090                         return 0;
1091 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1092                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1093                 btrfs_release_path(path);
1094                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1095                 if (ret < 0) {
1096                         err = ret;
1097                         goto fail;
1098                 }
1099                 if (!ret)
1100                         return 0;
1101 #endif
1102                 goto fail;
1103         }
1104
1105         leaf = path->nodes[0];
1106         nritems = btrfs_header_nritems(leaf);
1107         while (1) {
1108                 if (path->slots[0] >= nritems) {
1109                         ret = btrfs_next_leaf(root, path);
1110                         if (ret < 0)
1111                                 err = ret;
1112                         if (ret)
1113                                 goto fail;
1114
1115                         leaf = path->nodes[0];
1116                         nritems = btrfs_header_nritems(leaf);
1117                         recow = 1;
1118                 }
1119
1120                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1121                 if (key.objectid != bytenr ||
1122                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1123                         goto fail;
1124
1125                 ref = btrfs_item_ptr(leaf, path->slots[0],
1126                                      struct btrfs_extent_data_ref);
1127
1128                 if (match_extent_data_ref(leaf, ref, root_objectid,
1129                                           owner, offset)) {
1130                         if (recow) {
1131                                 btrfs_release_path(path);
1132                                 goto again;
1133                         }
1134                         err = 0;
1135                         break;
1136                 }
1137                 path->slots[0]++;
1138         }
1139 fail:
1140         return err;
1141 }
1142
1143 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1144                                            struct btrfs_root *root,
1145                                            struct btrfs_path *path,
1146                                            u64 bytenr, u64 parent,
1147                                            u64 root_objectid, u64 owner,
1148                                            u64 offset, int refs_to_add)
1149 {
1150         struct btrfs_key key;
1151         struct extent_buffer *leaf;
1152         u32 size;
1153         u32 num_refs;
1154         int ret;
1155
1156         key.objectid = bytenr;
1157         if (parent) {
1158                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1159                 key.offset = parent;
1160                 size = sizeof(struct btrfs_shared_data_ref);
1161         } else {
1162                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1163                 key.offset = hash_extent_data_ref(root_objectid,
1164                                                   owner, offset);
1165                 size = sizeof(struct btrfs_extent_data_ref);
1166         }
1167
1168         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1169         if (ret && ret != -EEXIST)
1170                 goto fail;
1171
1172         leaf = path->nodes[0];
1173         if (parent) {
1174                 struct btrfs_shared_data_ref *ref;
1175                 ref = btrfs_item_ptr(leaf, path->slots[0],
1176                                      struct btrfs_shared_data_ref);
1177                 if (ret == 0) {
1178                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1179                 } else {
1180                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1181                         num_refs += refs_to_add;
1182                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1183                 }
1184         } else {
1185                 struct btrfs_extent_data_ref *ref;
1186                 while (ret == -EEXIST) {
1187                         ref = btrfs_item_ptr(leaf, path->slots[0],
1188                                              struct btrfs_extent_data_ref);
1189                         if (match_extent_data_ref(leaf, ref, root_objectid,
1190                                                   owner, offset))
1191                                 break;
1192                         btrfs_release_path(path);
1193                         key.offset++;
1194                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1195                                                       size);
1196                         if (ret && ret != -EEXIST)
1197                                 goto fail;
1198
1199                         leaf = path->nodes[0];
1200                 }
1201                 ref = btrfs_item_ptr(leaf, path->slots[0],
1202                                      struct btrfs_extent_data_ref);
1203                 if (ret == 0) {
1204                         btrfs_set_extent_data_ref_root(leaf, ref,
1205                                                        root_objectid);
1206                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1207                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1208                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1209                 } else {
1210                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1211                         num_refs += refs_to_add;
1212                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1213                 }
1214         }
1215         btrfs_mark_buffer_dirty(leaf);
1216         ret = 0;
1217 fail:
1218         btrfs_release_path(path);
1219         return ret;
1220 }
1221
1222 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1223                                            struct btrfs_root *root,
1224                                            struct btrfs_path *path,
1225                                            int refs_to_drop)
1226 {
1227         struct btrfs_key key;
1228         struct btrfs_extent_data_ref *ref1 = NULL;
1229         struct btrfs_shared_data_ref *ref2 = NULL;
1230         struct extent_buffer *leaf;
1231         u32 num_refs = 0;
1232         int ret = 0;
1233
1234         leaf = path->nodes[0];
1235         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1236
1237         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1238                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1239                                       struct btrfs_extent_data_ref);
1240                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1241         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1242                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1243                                       struct btrfs_shared_data_ref);
1244                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1246         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1247                 struct btrfs_extent_ref_v0 *ref0;
1248                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1249                                       struct btrfs_extent_ref_v0);
1250                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1251 #endif
1252         } else {
1253                 BUG();
1254         }
1255
1256         BUG_ON(num_refs < refs_to_drop);
1257         num_refs -= refs_to_drop;
1258
1259         if (num_refs == 0) {
1260                 ret = btrfs_del_item(trans, root, path);
1261         } else {
1262                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1263                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1264                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1265                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1267                 else {
1268                         struct btrfs_extent_ref_v0 *ref0;
1269                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1270                                         struct btrfs_extent_ref_v0);
1271                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1272                 }
1273 #endif
1274                 btrfs_mark_buffer_dirty(leaf);
1275         }
1276         return ret;
1277 }
1278
1279 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1280                                           struct btrfs_path *path,
1281                                           struct btrfs_extent_inline_ref *iref)
1282 {
1283         struct btrfs_key key;
1284         struct extent_buffer *leaf;
1285         struct btrfs_extent_data_ref *ref1;
1286         struct btrfs_shared_data_ref *ref2;
1287         u32 num_refs = 0;
1288
1289         leaf = path->nodes[0];
1290         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1291         if (iref) {
1292                 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1293                     BTRFS_EXTENT_DATA_REF_KEY) {
1294                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1295                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1296                 } else {
1297                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1298                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1299                 }
1300         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302                                       struct btrfs_extent_data_ref);
1303                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306                                       struct btrfs_shared_data_ref);
1307                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1309         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1310                 struct btrfs_extent_ref_v0 *ref0;
1311                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1312                                       struct btrfs_extent_ref_v0);
1313                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1314 #endif
1315         } else {
1316                 WARN_ON(1);
1317         }
1318         return num_refs;
1319 }
1320
1321 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1322                                           struct btrfs_root *root,
1323                                           struct btrfs_path *path,
1324                                           u64 bytenr, u64 parent,
1325                                           u64 root_objectid)
1326 {
1327         struct btrfs_key key;
1328         int ret;
1329
1330         key.objectid = bytenr;
1331         if (parent) {
1332                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1333                 key.offset = parent;
1334         } else {
1335                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1336                 key.offset = root_objectid;
1337         }
1338
1339         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1340         if (ret > 0)
1341                 ret = -ENOENT;
1342 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1343         if (ret == -ENOENT && parent) {
1344                 btrfs_release_path(path);
1345                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1346                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1347                 if (ret > 0)
1348                         ret = -ENOENT;
1349         }
1350 #endif
1351         return ret;
1352 }
1353
1354 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1355                                           struct btrfs_root *root,
1356                                           struct btrfs_path *path,
1357                                           u64 bytenr, u64 parent,
1358                                           u64 root_objectid)
1359 {
1360         struct btrfs_key key;
1361         int ret;
1362
1363         key.objectid = bytenr;
1364         if (parent) {
1365                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1366                 key.offset = parent;
1367         } else {
1368                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1369                 key.offset = root_objectid;
1370         }
1371
1372         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1373         btrfs_release_path(path);
1374         return ret;
1375 }
1376
1377 static inline int extent_ref_type(u64 parent, u64 owner)
1378 {
1379         int type;
1380         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1381                 if (parent > 0)
1382                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1383                 else
1384                         type = BTRFS_TREE_BLOCK_REF_KEY;
1385         } else {
1386                 if (parent > 0)
1387                         type = BTRFS_SHARED_DATA_REF_KEY;
1388                 else
1389                         type = BTRFS_EXTENT_DATA_REF_KEY;
1390         }
1391         return type;
1392 }
1393
1394 static int find_next_key(struct btrfs_path *path, int level,
1395                          struct btrfs_key *key)
1396
1397 {
1398         for (; level < BTRFS_MAX_LEVEL; level++) {
1399                 if (!path->nodes[level])
1400                         break;
1401                 if (path->slots[level] + 1 >=
1402                     btrfs_header_nritems(path->nodes[level]))
1403                         continue;
1404                 if (level == 0)
1405                         btrfs_item_key_to_cpu(path->nodes[level], key,
1406                                               path->slots[level] + 1);
1407                 else
1408                         btrfs_node_key_to_cpu(path->nodes[level], key,
1409                                               path->slots[level] + 1);
1410                 return 0;
1411         }
1412         return 1;
1413 }
1414
1415 /*
1416  * look for inline back ref. if back ref is found, *ref_ret is set
1417  * to the address of inline back ref, and 0 is returned.
1418  *
1419  * if back ref isn't found, *ref_ret is set to the address where it
1420  * should be inserted, and -ENOENT is returned.
1421  *
1422  * if insert is true and there are too many inline back refs, the path
1423  * points to the extent item, and -EAGAIN is returned.
1424  *
1425  * NOTE: inline back refs are ordered in the same way that back ref
1426  *       items in the tree are ordered.
1427  */
1428 static noinline_for_stack
1429 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1430                                  struct btrfs_root *root,
1431                                  struct btrfs_path *path,
1432                                  struct btrfs_extent_inline_ref **ref_ret,
1433                                  u64 bytenr, u64 num_bytes,
1434                                  u64 parent, u64 root_objectid,
1435                                  u64 owner, u64 offset, int insert)
1436 {
1437         struct btrfs_key key;
1438         struct extent_buffer *leaf;
1439         struct btrfs_extent_item *ei;
1440         struct btrfs_extent_inline_ref *iref;
1441         u64 flags;
1442         u64 item_size;
1443         unsigned long ptr;
1444         unsigned long end;
1445         int extra_size;
1446         int type;
1447         int want;
1448         int ret;
1449         int err = 0;
1450
1451         key.objectid = bytenr;
1452         key.type = BTRFS_EXTENT_ITEM_KEY;
1453         key.offset = num_bytes;
1454
1455         want = extent_ref_type(parent, owner);
1456         if (insert) {
1457                 extra_size = btrfs_extent_inline_ref_size(want);
1458                 path->keep_locks = 1;
1459         } else
1460                 extra_size = -1;
1461         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1462         if (ret < 0) {
1463                 err = ret;
1464                 goto out;
1465         }
1466         if (ret && !insert) {
1467                 err = -ENOENT;
1468                 goto out;
1469         }
1470         BUG_ON(ret); /* Corruption */
1471
1472         leaf = path->nodes[0];
1473         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1474 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1475         if (item_size < sizeof(*ei)) {
1476                 if (!insert) {
1477                         err = -ENOENT;
1478                         goto out;
1479                 }
1480                 ret = convert_extent_item_v0(trans, root, path, owner,
1481                                              extra_size);
1482                 if (ret < 0) {
1483                         err = ret;
1484                         goto out;
1485                 }
1486                 leaf = path->nodes[0];
1487                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1488         }
1489 #endif
1490         BUG_ON(item_size < sizeof(*ei));
1491
1492         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1493         flags = btrfs_extent_flags(leaf, ei);
1494
1495         ptr = (unsigned long)(ei + 1);
1496         end = (unsigned long)ei + item_size;
1497
1498         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1499                 ptr += sizeof(struct btrfs_tree_block_info);
1500                 BUG_ON(ptr > end);
1501         } else {
1502                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1503         }
1504
1505         err = -ENOENT;
1506         while (1) {
1507                 if (ptr >= end) {
1508                         WARN_ON(ptr > end);
1509                         break;
1510                 }
1511                 iref = (struct btrfs_extent_inline_ref *)ptr;
1512                 type = btrfs_extent_inline_ref_type(leaf, iref);
1513                 if (want < type)
1514                         break;
1515                 if (want > type) {
1516                         ptr += btrfs_extent_inline_ref_size(type);
1517                         continue;
1518                 }
1519
1520                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1521                         struct btrfs_extent_data_ref *dref;
1522                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1523                         if (match_extent_data_ref(leaf, dref, root_objectid,
1524                                                   owner, offset)) {
1525                                 err = 0;
1526                                 break;
1527                         }
1528                         if (hash_extent_data_ref_item(leaf, dref) <
1529                             hash_extent_data_ref(root_objectid, owner, offset))
1530                                 break;
1531                 } else {
1532                         u64 ref_offset;
1533                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1534                         if (parent > 0) {
1535                                 if (parent == ref_offset) {
1536                                         err = 0;
1537                                         break;
1538                                 }
1539                                 if (ref_offset < parent)
1540                                         break;
1541                         } else {
1542                                 if (root_objectid == ref_offset) {
1543                                         err = 0;
1544                                         break;
1545                                 }
1546                                 if (ref_offset < root_objectid)
1547                                         break;
1548                         }
1549                 }
1550                 ptr += btrfs_extent_inline_ref_size(type);
1551         }
1552         if (err == -ENOENT && insert) {
1553                 if (item_size + extra_size >=
1554                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1555                         err = -EAGAIN;
1556                         goto out;
1557                 }
1558                 /*
1559                  * To add new inline back ref, we have to make sure
1560                  * there is no corresponding back ref item.
1561                  * For simplicity, we just do not add new inline back
1562                  * ref if there is any kind of item for this block
1563                  */
1564                 if (find_next_key(path, 0, &key) == 0 &&
1565                     key.objectid == bytenr &&
1566                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1567                         err = -EAGAIN;
1568                         goto out;
1569                 }
1570         }
1571         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1572 out:
1573         if (insert) {
1574                 path->keep_locks = 0;
1575                 btrfs_unlock_up_safe(path, 1);
1576         }
1577         return err;
1578 }
1579
1580 /*
1581  * helper to add new inline back ref
1582  */
1583 static noinline_for_stack
1584 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1585                                  struct btrfs_root *root,
1586                                  struct btrfs_path *path,
1587                                  struct btrfs_extent_inline_ref *iref,
1588                                  u64 parent, u64 root_objectid,
1589                                  u64 owner, u64 offset, int refs_to_add,
1590                                  struct btrfs_delayed_extent_op *extent_op)
1591 {
1592         struct extent_buffer *leaf;
1593         struct btrfs_extent_item *ei;
1594         unsigned long ptr;
1595         unsigned long end;
1596         unsigned long item_offset;
1597         u64 refs;
1598         int size;
1599         int type;
1600
1601         leaf = path->nodes[0];
1602         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1603         item_offset = (unsigned long)iref - (unsigned long)ei;
1604
1605         type = extent_ref_type(parent, owner);
1606         size = btrfs_extent_inline_ref_size(type);
1607
1608         btrfs_extend_item(trans, root, path, size);
1609
1610         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1611         refs = btrfs_extent_refs(leaf, ei);
1612         refs += refs_to_add;
1613         btrfs_set_extent_refs(leaf, ei, refs);
1614         if (extent_op)
1615                 __run_delayed_extent_op(extent_op, leaf, ei);
1616
1617         ptr = (unsigned long)ei + item_offset;
1618         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1619         if (ptr < end - size)
1620                 memmove_extent_buffer(leaf, ptr + size, ptr,
1621                                       end - size - ptr);
1622
1623         iref = (struct btrfs_extent_inline_ref *)ptr;
1624         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1625         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1626                 struct btrfs_extent_data_ref *dref;
1627                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1628                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1629                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1630                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1631                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1632         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1633                 struct btrfs_shared_data_ref *sref;
1634                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1635                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1636                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1637         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1638                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1639         } else {
1640                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1641         }
1642         btrfs_mark_buffer_dirty(leaf);
1643 }
1644
1645 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1646                                  struct btrfs_root *root,
1647                                  struct btrfs_path *path,
1648                                  struct btrfs_extent_inline_ref **ref_ret,
1649                                  u64 bytenr, u64 num_bytes, u64 parent,
1650                                  u64 root_objectid, u64 owner, u64 offset)
1651 {
1652         int ret;
1653
1654         ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1655                                            bytenr, num_bytes, parent,
1656                                            root_objectid, owner, offset, 0);
1657         if (ret != -ENOENT)
1658                 return ret;
1659
1660         btrfs_release_path(path);
1661         *ref_ret = NULL;
1662
1663         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1664                 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1665                                             root_objectid);
1666         } else {
1667                 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1668                                              root_objectid, owner, offset);
1669         }
1670         return ret;
1671 }
1672
1673 /*
1674  * helper to update/remove inline back ref
1675  */
1676 static noinline_for_stack
1677 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1678                                   struct btrfs_root *root,
1679                                   struct btrfs_path *path,
1680                                   struct btrfs_extent_inline_ref *iref,
1681                                   int refs_to_mod,
1682                                   struct btrfs_delayed_extent_op *extent_op)
1683 {
1684         struct extent_buffer *leaf;
1685         struct btrfs_extent_item *ei;
1686         struct btrfs_extent_data_ref *dref = NULL;
1687         struct btrfs_shared_data_ref *sref = NULL;
1688         unsigned long ptr;
1689         unsigned long end;
1690         u32 item_size;
1691         int size;
1692         int type;
1693         u64 refs;
1694
1695         leaf = path->nodes[0];
1696         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1697         refs = btrfs_extent_refs(leaf, ei);
1698         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1699         refs += refs_to_mod;
1700         btrfs_set_extent_refs(leaf, ei, refs);
1701         if (extent_op)
1702                 __run_delayed_extent_op(extent_op, leaf, ei);
1703
1704         type = btrfs_extent_inline_ref_type(leaf, iref);
1705
1706         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1708                 refs = btrfs_extent_data_ref_count(leaf, dref);
1709         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711                 refs = btrfs_shared_data_ref_count(leaf, sref);
1712         } else {
1713                 refs = 1;
1714                 BUG_ON(refs_to_mod != -1);
1715         }
1716
1717         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1718         refs += refs_to_mod;
1719
1720         if (refs > 0) {
1721                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1722                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1723                 else
1724                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1725         } else {
1726                 size =  btrfs_extent_inline_ref_size(type);
1727                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1728                 ptr = (unsigned long)iref;
1729                 end = (unsigned long)ei + item_size;
1730                 if (ptr + size < end)
1731                         memmove_extent_buffer(leaf, ptr, ptr + size,
1732                                               end - ptr - size);
1733                 item_size -= size;
1734                 btrfs_truncate_item(trans, root, path, item_size, 1);
1735         }
1736         btrfs_mark_buffer_dirty(leaf);
1737 }
1738
1739 static noinline_for_stack
1740 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1741                                  struct btrfs_root *root,
1742                                  struct btrfs_path *path,
1743                                  u64 bytenr, u64 num_bytes, u64 parent,
1744                                  u64 root_objectid, u64 owner,
1745                                  u64 offset, int refs_to_add,
1746                                  struct btrfs_delayed_extent_op *extent_op)
1747 {
1748         struct btrfs_extent_inline_ref *iref;
1749         int ret;
1750
1751         ret = lookup_inline_extent_backref(trans, root, path, &iref,
1752                                            bytenr, num_bytes, parent,
1753                                            root_objectid, owner, offset, 1);
1754         if (ret == 0) {
1755                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1756                 update_inline_extent_backref(trans, root, path, iref,
1757                                              refs_to_add, extent_op);
1758         } else if (ret == -ENOENT) {
1759                 setup_inline_extent_backref(trans, root, path, iref, parent,
1760                                             root_objectid, owner, offset,
1761                                             refs_to_add, extent_op);
1762                 ret = 0;
1763         }
1764         return ret;
1765 }
1766
1767 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1768                                  struct btrfs_root *root,
1769                                  struct btrfs_path *path,
1770                                  u64 bytenr, u64 parent, u64 root_objectid,
1771                                  u64 owner, u64 offset, int refs_to_add)
1772 {
1773         int ret;
1774         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1775                 BUG_ON(refs_to_add != 1);
1776                 ret = insert_tree_block_ref(trans, root, path, bytenr,
1777                                             parent, root_objectid);
1778         } else {
1779                 ret = insert_extent_data_ref(trans, root, path, bytenr,
1780                                              parent, root_objectid,
1781                                              owner, offset, refs_to_add);
1782         }
1783         return ret;
1784 }
1785
1786 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1787                                  struct btrfs_root *root,
1788                                  struct btrfs_path *path,
1789                                  struct btrfs_extent_inline_ref *iref,
1790                                  int refs_to_drop, int is_data)
1791 {
1792         int ret = 0;
1793
1794         BUG_ON(!is_data && refs_to_drop != 1);
1795         if (iref) {
1796                 update_inline_extent_backref(trans, root, path, iref,
1797                                              -refs_to_drop, NULL);
1798         } else if (is_data) {
1799                 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1800         } else {
1801                 ret = btrfs_del_item(trans, root, path);
1802         }
1803         return ret;
1804 }
1805
1806 static int btrfs_issue_discard(struct block_device *bdev,
1807                                 u64 start, u64 len)
1808 {
1809         return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1810 }
1811
1812 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1813                                 u64 num_bytes, u64 *actual_bytes)
1814 {
1815         int ret;
1816         u64 discarded_bytes = 0;
1817         struct btrfs_bio *bbio = NULL;
1818
1819
1820         /* Tell the block device(s) that the sectors can be discarded */
1821         ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1822                               bytenr, &num_bytes, &bbio, 0);
1823         /* Error condition is -ENOMEM */
1824         if (!ret) {
1825                 struct btrfs_bio_stripe *stripe = bbio->stripes;
1826                 int i;
1827
1828
1829                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1830                         if (!stripe->dev->can_discard)
1831                                 continue;
1832
1833                         ret = btrfs_issue_discard(stripe->dev->bdev,
1834                                                   stripe->physical,
1835                                                   stripe->length);
1836                         if (!ret)
1837                                 discarded_bytes += stripe->length;
1838                         else if (ret != -EOPNOTSUPP)
1839                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1840
1841                         /*
1842                          * Just in case we get back EOPNOTSUPP for some reason,
1843                          * just ignore the return value so we don't screw up
1844                          * people calling discard_extent.
1845                          */
1846                         ret = 0;
1847                 }
1848                 kfree(bbio);
1849         }
1850
1851         if (actual_bytes)
1852                 *actual_bytes = discarded_bytes;
1853
1854
1855         return ret;
1856 }
1857
1858 /* Can return -ENOMEM */
1859 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1860                          struct btrfs_root *root,
1861                          u64 bytenr, u64 num_bytes, u64 parent,
1862                          u64 root_objectid, u64 owner, u64 offset, int for_cow)
1863 {
1864         int ret;
1865         struct btrfs_fs_info *fs_info = root->fs_info;
1866
1867         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1868                root_objectid == BTRFS_TREE_LOG_OBJECTID);
1869
1870         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1871                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1872                                         num_bytes,
1873                                         parent, root_objectid, (int)owner,
1874                                         BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1875         } else {
1876                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1877                                         num_bytes,
1878                                         parent, root_objectid, owner, offset,
1879                                         BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1880         }
1881         return ret;
1882 }
1883
1884 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1885                                   struct btrfs_root *root,
1886                                   u64 bytenr, u64 num_bytes,
1887                                   u64 parent, u64 root_objectid,
1888                                   u64 owner, u64 offset, int refs_to_add,
1889                                   struct btrfs_delayed_extent_op *extent_op)
1890 {
1891         struct btrfs_path *path;
1892         struct extent_buffer *leaf;
1893         struct btrfs_extent_item *item;
1894         u64 refs;
1895         int ret;
1896         int err = 0;
1897
1898         path = btrfs_alloc_path();
1899         if (!path)
1900                 return -ENOMEM;
1901
1902         path->reada = 1;
1903         path->leave_spinning = 1;
1904         /* this will setup the path even if it fails to insert the back ref */
1905         ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1906                                            path, bytenr, num_bytes, parent,
1907                                            root_objectid, owner, offset,
1908                                            refs_to_add, extent_op);
1909         if (ret == 0)
1910                 goto out;
1911
1912         if (ret != -EAGAIN) {
1913                 err = ret;
1914                 goto out;
1915         }
1916
1917         leaf = path->nodes[0];
1918         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1919         refs = btrfs_extent_refs(leaf, item);
1920         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1921         if (extent_op)
1922                 __run_delayed_extent_op(extent_op, leaf, item);
1923
1924         btrfs_mark_buffer_dirty(leaf);
1925         btrfs_release_path(path);
1926
1927         path->reada = 1;
1928         path->leave_spinning = 1;
1929
1930         /* now insert the actual backref */
1931         ret = insert_extent_backref(trans, root->fs_info->extent_root,
1932                                     path, bytenr, parent, root_objectid,
1933                                     owner, offset, refs_to_add);
1934         if (ret)
1935                 btrfs_abort_transaction(trans, root, ret);
1936 out:
1937         btrfs_free_path(path);
1938         return err;
1939 }
1940
1941 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1942                                 struct btrfs_root *root,
1943                                 struct btrfs_delayed_ref_node *node,
1944                                 struct btrfs_delayed_extent_op *extent_op,
1945                                 int insert_reserved)
1946 {
1947         int ret = 0;
1948         struct btrfs_delayed_data_ref *ref;
1949         struct btrfs_key ins;
1950         u64 parent = 0;
1951         u64 ref_root = 0;
1952         u64 flags = 0;
1953
1954         ins.objectid = node->bytenr;
1955         ins.offset = node->num_bytes;
1956         ins.type = BTRFS_EXTENT_ITEM_KEY;
1957
1958         ref = btrfs_delayed_node_to_data_ref(node);
1959         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1960                 parent = ref->parent;
1961         else
1962                 ref_root = ref->root;
1963
1964         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1965                 if (extent_op) {
1966                         BUG_ON(extent_op->update_key);
1967                         flags |= extent_op->flags_to_set;
1968                 }
1969                 ret = alloc_reserved_file_extent(trans, root,
1970                                                  parent, ref_root, flags,
1971                                                  ref->objectid, ref->offset,
1972                                                  &ins, node->ref_mod);
1973         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1974                 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1975                                              node->num_bytes, parent,
1976                                              ref_root, ref->objectid,
1977                                              ref->offset, node->ref_mod,
1978                                              extent_op);
1979         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1980                 ret = __btrfs_free_extent(trans, root, node->bytenr,
1981                                           node->num_bytes, parent,
1982                                           ref_root, ref->objectid,
1983                                           ref->offset, node->ref_mod,
1984                                           extent_op);
1985         } else {
1986                 BUG();
1987         }
1988         return ret;
1989 }
1990
1991 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1992                                     struct extent_buffer *leaf,
1993                                     struct btrfs_extent_item *ei)
1994 {
1995         u64 flags = btrfs_extent_flags(leaf, ei);
1996         if (extent_op->update_flags) {
1997                 flags |= extent_op->flags_to_set;
1998                 btrfs_set_extent_flags(leaf, ei, flags);
1999         }
2000
2001         if (extent_op->update_key) {
2002                 struct btrfs_tree_block_info *bi;
2003                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2004                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2005                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2006         }
2007 }
2008
2009 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2010                                  struct btrfs_root *root,
2011                                  struct btrfs_delayed_ref_node *node,
2012                                  struct btrfs_delayed_extent_op *extent_op)
2013 {
2014         struct btrfs_key key;
2015         struct btrfs_path *path;
2016         struct btrfs_extent_item *ei;
2017         struct extent_buffer *leaf;
2018         u32 item_size;
2019         int ret;
2020         int err = 0;
2021
2022         if (trans->aborted)
2023                 return 0;
2024
2025         path = btrfs_alloc_path();
2026         if (!path)
2027                 return -ENOMEM;
2028
2029         key.objectid = node->bytenr;
2030         key.type = BTRFS_EXTENT_ITEM_KEY;
2031         key.offset = node->num_bytes;
2032
2033         path->reada = 1;
2034         path->leave_spinning = 1;
2035         ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2036                                 path, 0, 1);
2037         if (ret < 0) {
2038                 err = ret;
2039                 goto out;
2040         }
2041         if (ret > 0) {
2042                 err = -EIO;
2043                 goto out;
2044         }
2045
2046         leaf = path->nodes[0];
2047         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2048 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2049         if (item_size < sizeof(*ei)) {
2050                 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2051                                              path, (u64)-1, 0);
2052                 if (ret < 0) {
2053                         err = ret;
2054                         goto out;
2055                 }
2056                 leaf = path->nodes[0];
2057                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2058         }
2059 #endif
2060         BUG_ON(item_size < sizeof(*ei));
2061         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2062         __run_delayed_extent_op(extent_op, leaf, ei);
2063
2064         btrfs_mark_buffer_dirty(leaf);
2065 out:
2066         btrfs_free_path(path);
2067         return err;
2068 }
2069
2070 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2071                                 struct btrfs_root *root,
2072                                 struct btrfs_delayed_ref_node *node,
2073                                 struct btrfs_delayed_extent_op *extent_op,
2074                                 int insert_reserved)
2075 {
2076         int ret = 0;
2077         struct btrfs_delayed_tree_ref *ref;
2078         struct btrfs_key ins;
2079         u64 parent = 0;
2080         u64 ref_root = 0;
2081
2082         ins.objectid = node->bytenr;
2083         ins.offset = node->num_bytes;
2084         ins.type = BTRFS_EXTENT_ITEM_KEY;
2085
2086         ref = btrfs_delayed_node_to_tree_ref(node);
2087         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2088                 parent = ref->parent;
2089         else
2090                 ref_root = ref->root;
2091
2092         BUG_ON(node->ref_mod != 1);
2093         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2094                 BUG_ON(!extent_op || !extent_op->update_flags ||
2095                        !extent_op->update_key);
2096                 ret = alloc_reserved_tree_block(trans, root,
2097                                                 parent, ref_root,
2098                                                 extent_op->flags_to_set,
2099                                                 &extent_op->key,
2100                                                 ref->level, &ins);
2101         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2102                 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2103                                              node->num_bytes, parent, ref_root,
2104                                              ref->level, 0, 1, extent_op);
2105         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2106                 ret = __btrfs_free_extent(trans, root, node->bytenr,
2107                                           node->num_bytes, parent, ref_root,
2108                                           ref->level, 0, 1, extent_op);
2109         } else {
2110                 BUG();
2111         }
2112         return ret;
2113 }
2114
2115 /* helper function to actually process a single delayed ref entry */
2116 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2117                                struct btrfs_root *root,
2118                                struct btrfs_delayed_ref_node *node,
2119                                struct btrfs_delayed_extent_op *extent_op,
2120                                int insert_reserved)
2121 {
2122         int ret = 0;
2123
2124         if (trans->aborted)
2125                 return 0;
2126
2127         if (btrfs_delayed_ref_is_head(node)) {
2128                 struct btrfs_delayed_ref_head *head;
2129                 /*
2130                  * we've hit the end of the chain and we were supposed
2131                  * to insert this extent into the tree.  But, it got
2132                  * deleted before we ever needed to insert it, so all
2133                  * we have to do is clean up the accounting
2134                  */
2135                 BUG_ON(extent_op);
2136                 head = btrfs_delayed_node_to_head(node);
2137                 if (insert_reserved) {
2138                         btrfs_pin_extent(root, node->bytenr,
2139                                          node->num_bytes, 1);
2140                         if (head->is_data) {
2141                                 ret = btrfs_del_csums(trans, root,
2142                                                       node->bytenr,
2143                                                       node->num_bytes);
2144                         }
2145                 }
2146                 mutex_unlock(&head->mutex);
2147                 return ret;
2148         }
2149
2150         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2151             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2152                 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2153                                            insert_reserved);
2154         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2155                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2156                 ret = run_delayed_data_ref(trans, root, node, extent_op,
2157                                            insert_reserved);
2158         else
2159                 BUG();
2160         return ret;
2161 }
2162
2163 static noinline struct btrfs_delayed_ref_node *
2164 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2165 {
2166         struct rb_node *node;
2167         struct btrfs_delayed_ref_node *ref;
2168         int action = BTRFS_ADD_DELAYED_REF;
2169 again:
2170         /*
2171          * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2172          * this prevents ref count from going down to zero when
2173          * there still are pending delayed ref.
2174          */
2175         node = rb_prev(&head->node.rb_node);
2176         while (1) {
2177                 if (!node)
2178                         break;
2179                 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2180                                 rb_node);
2181                 if (ref->bytenr != head->node.bytenr)
2182                         break;
2183                 if (ref->action == action)
2184                         return ref;
2185                 node = rb_prev(node);
2186         }
2187         if (action == BTRFS_ADD_DELAYED_REF) {
2188                 action = BTRFS_DROP_DELAYED_REF;
2189                 goto again;
2190         }
2191         return NULL;
2192 }
2193
2194 /*
2195  * Returns 0 on success or if called with an already aborted transaction.
2196  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2197  */
2198 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2199                                        struct btrfs_root *root,
2200                                        struct list_head *cluster)
2201 {
2202         struct btrfs_delayed_ref_root *delayed_refs;
2203         struct btrfs_delayed_ref_node *ref;
2204         struct btrfs_delayed_ref_head *locked_ref = NULL;
2205         struct btrfs_delayed_extent_op *extent_op;
2206         struct btrfs_fs_info *fs_info = root->fs_info;
2207         int ret;
2208         int count = 0;
2209         int must_insert_reserved = 0;
2210
2211         delayed_refs = &trans->transaction->delayed_refs;
2212         while (1) {
2213                 if (!locked_ref) {
2214                         /* pick a new head ref from the cluster list */
2215                         if (list_empty(cluster))
2216                                 break;
2217
2218                         locked_ref = list_entry(cluster->next,
2219                                      struct btrfs_delayed_ref_head, cluster);
2220
2221                         /* grab the lock that says we are going to process
2222                          * all the refs for this head */
2223                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2224
2225                         /*
2226                          * we may have dropped the spin lock to get the head
2227                          * mutex lock, and that might have given someone else
2228                          * time to free the head.  If that's true, it has been
2229                          * removed from our list and we can move on.
2230                          */
2231                         if (ret == -EAGAIN) {
2232                                 locked_ref = NULL;
2233                                 count++;
2234                                 continue;
2235                         }
2236                 }
2237
2238                 /*
2239                  * We need to try and merge add/drops of the same ref since we
2240                  * can run into issues with relocate dropping the implicit ref
2241                  * and then it being added back again before the drop can
2242                  * finish.  If we merged anything we need to re-loop so we can
2243                  * get a good ref.
2244                  */
2245                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2246                                          locked_ref);
2247
2248                 /*
2249                  * locked_ref is the head node, so we have to go one
2250                  * node back for any delayed ref updates
2251                  */
2252                 ref = select_delayed_ref(locked_ref);
2253
2254                 if (ref && ref->seq &&
2255                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2256                         /*
2257                          * there are still refs with lower seq numbers in the
2258                          * process of being added. Don't run this ref yet.
2259                          */
2260                         list_del_init(&locked_ref->cluster);
2261                         mutex_unlock(&locked_ref->mutex);
2262                         locked_ref = NULL;
2263                         delayed_refs->num_heads_ready++;
2264                         spin_unlock(&delayed_refs->lock);
2265                         cond_resched();
2266                         spin_lock(&delayed_refs->lock);
2267                         continue;
2268                 }
2269
2270                 /*
2271                  * record the must insert reserved flag before we
2272                  * drop the spin lock.
2273                  */
2274                 must_insert_reserved = locked_ref->must_insert_reserved;
2275                 locked_ref->must_insert_reserved = 0;
2276
2277                 extent_op = locked_ref->extent_op;
2278                 locked_ref->extent_op = NULL;
2279
2280                 if (!ref) {
2281                         /* All delayed refs have been processed, Go ahead
2282                          * and send the head node to run_one_delayed_ref,
2283                          * so that any accounting fixes can happen
2284                          */
2285                         ref = &locked_ref->node;
2286
2287                         if (extent_op && must_insert_reserved) {
2288                                 kfree(extent_op);
2289                                 extent_op = NULL;
2290                         }
2291
2292                         if (extent_op) {
2293                                 spin_unlock(&delayed_refs->lock);
2294
2295                                 ret = run_delayed_extent_op(trans, root,
2296                                                             ref, extent_op);
2297                                 kfree(extent_op);
2298
2299                                 if (ret) {
2300                                         list_del_init(&locked_ref->cluster);
2301                                         mutex_unlock(&locked_ref->mutex);
2302
2303                                         printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2304                                         spin_lock(&delayed_refs->lock);
2305                                         return ret;
2306                                 }
2307
2308                                 goto next;
2309                         }
2310
2311                         list_del_init(&locked_ref->cluster);
2312                         locked_ref = NULL;
2313                 }
2314
2315                 ref->in_tree = 0;
2316                 rb_erase(&ref->rb_node, &delayed_refs->root);
2317                 delayed_refs->num_entries--;
2318                 if (locked_ref) {
2319                         /*
2320                          * when we play the delayed ref, also correct the
2321                          * ref_mod on head
2322                          */
2323                         switch (ref->action) {
2324                         case BTRFS_ADD_DELAYED_REF:
2325                         case BTRFS_ADD_DELAYED_EXTENT:
2326                                 locked_ref->node.ref_mod -= ref->ref_mod;
2327                                 break;
2328                         case BTRFS_DROP_DELAYED_REF:
2329                                 locked_ref->node.ref_mod += ref->ref_mod;
2330                                 break;
2331                         default:
2332                                 WARN_ON(1);
2333                         }
2334                 }
2335                 spin_unlock(&delayed_refs->lock);
2336
2337                 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2338                                           must_insert_reserved);
2339
2340                 btrfs_put_delayed_ref(ref);
2341                 kfree(extent_op);
2342                 count++;
2343
2344                 if (ret) {
2345                         if (locked_ref) {
2346                                 list_del_init(&locked_ref->cluster);
2347                                 mutex_unlock(&locked_ref->mutex);
2348                         }
2349                         printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2350                         spin_lock(&delayed_refs->lock);
2351                         return ret;
2352                 }
2353
2354 next:
2355                 cond_resched();
2356                 spin_lock(&delayed_refs->lock);
2357         }
2358         return count;
2359 }
2360
2361 #ifdef SCRAMBLE_DELAYED_REFS
2362 /*
2363  * Normally delayed refs get processed in ascending bytenr order. This
2364  * correlates in most cases to the order added. To expose dependencies on this
2365  * order, we start to process the tree in the middle instead of the beginning
2366  */
2367 static u64 find_middle(struct rb_root *root)
2368 {
2369         struct rb_node *n = root->rb_node;
2370         struct btrfs_delayed_ref_node *entry;
2371         int alt = 1;
2372         u64 middle;
2373         u64 first = 0, last = 0;
2374
2375         n = rb_first(root);
2376         if (n) {
2377                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2378                 first = entry->bytenr;
2379         }
2380         n = rb_last(root);
2381         if (n) {
2382                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2383                 last = entry->bytenr;
2384         }
2385         n = root->rb_node;
2386
2387         while (n) {
2388                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2389                 WARN_ON(!entry->in_tree);
2390
2391                 middle = entry->bytenr;
2392
2393                 if (alt)
2394                         n = n->rb_left;
2395                 else
2396                         n = n->rb_right;
2397
2398                 alt = 1 - alt;
2399         }
2400         return middle;
2401 }
2402 #endif
2403
2404 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2405                                          struct btrfs_fs_info *fs_info)
2406 {
2407         struct qgroup_update *qgroup_update;
2408         int ret = 0;
2409
2410         if (list_empty(&trans->qgroup_ref_list) !=
2411             !trans->delayed_ref_elem.seq) {
2412                 /* list without seq or seq without list */
2413                 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2414                         list_empty(&trans->qgroup_ref_list) ? "" : " not",
2415                         trans->delayed_ref_elem.seq);
2416                 BUG();
2417         }
2418
2419         if (!trans->delayed_ref_elem.seq)
2420                 return 0;
2421
2422         while (!list_empty(&trans->qgroup_ref_list)) {
2423                 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2424                                                  struct qgroup_update, list);
2425                 list_del(&qgroup_update->list);
2426                 if (!ret)
2427                         ret = btrfs_qgroup_account_ref(
2428                                         trans, fs_info, qgroup_update->node,
2429                                         qgroup_update->extent_op);
2430                 kfree(qgroup_update);
2431         }
2432
2433         btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2434
2435         return ret;
2436 }
2437
2438 /*
2439  * this starts processing the delayed reference count updates and
2440  * extent insertions we have queued up so far.  count can be
2441  * 0, which means to process everything in the tree at the start
2442  * of the run (but not newly added entries), or it can be some target
2443  * number you'd like to process.
2444  *
2445  * Returns 0 on success or if called with an aborted transaction
2446  * Returns <0 on error and aborts the transaction
2447  */
2448 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2449                            struct btrfs_root *root, unsigned long count)
2450 {
2451         struct rb_node *node;
2452         struct btrfs_delayed_ref_root *delayed_refs;
2453         struct btrfs_delayed_ref_node *ref;
2454         struct list_head cluster;
2455         int ret;
2456         u64 delayed_start;
2457         int run_all = count == (unsigned long)-1;
2458         int run_most = 0;
2459         int loops;
2460
2461         /* We'll clean this up in btrfs_cleanup_transaction */
2462         if (trans->aborted)
2463                 return 0;
2464
2465         if (root == root->fs_info->extent_root)
2466                 root = root->fs_info->tree_root;
2467
2468         btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2469
2470         delayed_refs = &trans->transaction->delayed_refs;
2471         INIT_LIST_HEAD(&cluster);
2472 again:
2473         loops = 0;
2474         spin_lock(&delayed_refs->lock);
2475
2476 #ifdef SCRAMBLE_DELAYED_REFS
2477         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2478 #endif
2479
2480         if (count == 0) {
2481                 count = delayed_refs->num_entries * 2;
2482                 run_most = 1;
2483         }
2484         while (1) {
2485                 if (!(run_all || run_most) &&
2486                     delayed_refs->num_heads_ready < 64)
2487                         break;
2488
2489                 /*
2490                  * go find something we can process in the rbtree.  We start at
2491                  * the beginning of the tree, and then build a cluster
2492                  * of refs to process starting at the first one we are able to
2493                  * lock
2494                  */
2495                 delayed_start = delayed_refs->run_delayed_start;
2496                 ret = btrfs_find_ref_cluster(trans, &cluster,
2497                                              delayed_refs->run_delayed_start);
2498                 if (ret)
2499                         break;
2500
2501                 ret = run_clustered_refs(trans, root, &cluster);
2502                 if (ret < 0) {
2503                         spin_unlock(&delayed_refs->lock);
2504                         btrfs_abort_transaction(trans, root, ret);
2505                         return ret;
2506                 }
2507
2508                 count -= min_t(unsigned long, ret, count);
2509
2510                 if (count == 0)
2511                         break;
2512
2513                 if (delayed_start >= delayed_refs->run_delayed_start) {
2514                         if (loops == 0) {
2515                                 /*
2516                                  * btrfs_find_ref_cluster looped. let's do one
2517                                  * more cycle. if we don't run any delayed ref
2518                                  * during that cycle (because we can't because
2519                                  * all of them are blocked), bail out.
2520                                  */
2521                                 loops = 1;
2522                         } else {
2523                                 /*
2524                                  * no runnable refs left, stop trying
2525                                  */
2526                                 BUG_ON(run_all);
2527                                 break;
2528                         }
2529                 }
2530                 if (ret) {
2531                         /* refs were run, let's reset staleness detection */
2532                         loops = 0;
2533                 }
2534         }
2535
2536         if (run_all) {
2537                 if (!list_empty(&trans->new_bgs)) {
2538                         spin_unlock(&delayed_refs->lock);
2539                         btrfs_create_pending_block_groups(trans, root);
2540                         spin_lock(&delayed_refs->lock);
2541                 }
2542
2543                 node = rb_first(&delayed_refs->root);
2544                 if (!node)
2545                         goto out;
2546                 count = (unsigned long)-1;
2547
2548                 while (node) {
2549                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
2550                                        rb_node);
2551                         if (btrfs_delayed_ref_is_head(ref)) {
2552                                 struct btrfs_delayed_ref_head *head;
2553
2554                                 head = btrfs_delayed_node_to_head(ref);
2555                                 atomic_inc(&ref->refs);
2556
2557                                 spin_unlock(&delayed_refs->lock);
2558                                 /*
2559                                  * Mutex was contended, block until it's
2560                                  * released and try again
2561                                  */
2562                                 mutex_lock(&head->mutex);
2563                                 mutex_unlock(&head->mutex);
2564
2565                                 btrfs_put_delayed_ref(ref);
2566                                 cond_resched();
2567                                 goto again;
2568                         }
2569                         node = rb_next(node);
2570                 }
2571                 spin_unlock(&delayed_refs->lock);
2572                 schedule_timeout(1);
2573                 goto again;
2574         }
2575 out:
2576         spin_unlock(&delayed_refs->lock);
2577         assert_qgroups_uptodate(trans);
2578         return 0;
2579 }
2580
2581 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2582                                 struct btrfs_root *root,
2583                                 u64 bytenr, u64 num_bytes, u64 flags,
2584                                 int is_data)
2585 {
2586         struct btrfs_delayed_extent_op *extent_op;
2587         int ret;
2588
2589         extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2590         if (!extent_op)
2591                 return -ENOMEM;
2592
2593         extent_op->flags_to_set = flags;
2594         extent_op->update_flags = 1;
2595         extent_op->update_key = 0;
2596         extent_op->is_data = is_data ? 1 : 0;
2597
2598         ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2599                                           num_bytes, extent_op);
2600         if (ret)
2601                 kfree(extent_op);
2602         return ret;
2603 }
2604
2605 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2606                                       struct btrfs_root *root,
2607                                       struct btrfs_path *path,
2608                                       u64 objectid, u64 offset, u64 bytenr)
2609 {
2610         struct btrfs_delayed_ref_head *head;
2611         struct btrfs_delayed_ref_node *ref;
2612         struct btrfs_delayed_data_ref *data_ref;
2613         struct btrfs_delayed_ref_root *delayed_refs;
2614         struct rb_node *node;
2615         int ret = 0;
2616
2617         ret = -ENOENT;
2618         delayed_refs = &trans->transaction->delayed_refs;
2619         spin_lock(&delayed_refs->lock);
2620         head = btrfs_find_delayed_ref_head(trans, bytenr);
2621         if (!head)
2622                 goto out;
2623
2624         if (!mutex_trylock(&head->mutex)) {
2625                 atomic_inc(&head->node.refs);
2626                 spin_unlock(&delayed_refs->lock);
2627
2628                 btrfs_release_path(path);
2629
2630                 /*
2631                  * Mutex was contended, block until it's released and let
2632                  * caller try again
2633                  */
2634                 mutex_lock(&head->mutex);
2635                 mutex_unlock(&head->mutex);
2636                 btrfs_put_delayed_ref(&head->node);
2637                 return -EAGAIN;
2638         }
2639
2640         node = rb_prev(&head->node.rb_node);
2641         if (!node)
2642                 goto out_unlock;
2643
2644         ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2645
2646         if (ref->bytenr != bytenr)
2647                 goto out_unlock;
2648
2649         ret = 1;
2650         if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2651                 goto out_unlock;
2652
2653         data_ref = btrfs_delayed_node_to_data_ref(ref);
2654
2655         node = rb_prev(node);
2656         if (node) {
2657                 int seq = ref->seq;
2658
2659                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2660                 if (ref->bytenr == bytenr && ref->seq == seq)
2661                         goto out_unlock;
2662         }
2663
2664         if (data_ref->root != root->root_key.objectid ||
2665             data_ref->objectid != objectid || data_ref->offset != offset)
2666                 goto out_unlock;
2667
2668         ret = 0;
2669 out_unlock:
2670         mutex_unlock(&head->mutex);
2671 out:
2672         spin_unlock(&delayed_refs->lock);
2673         return ret;
2674 }
2675
2676 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2677                                         struct btrfs_root *root,
2678                                         struct btrfs_path *path,
2679                                         u64 objectid, u64 offset, u64 bytenr)
2680 {
2681         struct btrfs_root *extent_root = root->fs_info->extent_root;
2682         struct extent_buffer *leaf;
2683         struct btrfs_extent_data_ref *ref;
2684         struct btrfs_extent_inline_ref *iref;
2685         struct btrfs_extent_item *ei;
2686         struct btrfs_key key;
2687         u32 item_size;
2688         int ret;
2689
2690         key.objectid = bytenr;
2691         key.offset = (u64)-1;
2692         key.type = BTRFS_EXTENT_ITEM_KEY;
2693
2694         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2695         if (ret < 0)
2696                 goto out;
2697         BUG_ON(ret == 0); /* Corruption */
2698
2699         ret = -ENOENT;
2700         if (path->slots[0] == 0)
2701                 goto out;
2702
2703         path->slots[0]--;
2704         leaf = path->nodes[0];
2705         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2706
2707         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2708                 goto out;
2709
2710         ret = 1;
2711         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2712 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2713         if (item_size < sizeof(*ei)) {
2714                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2715                 goto out;
2716         }
2717 #endif
2718         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2719
2720         if (item_size != sizeof(*ei) +
2721             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2722                 goto out;
2723
2724         if (btrfs_extent_generation(leaf, ei) <=
2725             btrfs_root_last_snapshot(&root->root_item))
2726                 goto out;
2727
2728         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2729         if (btrfs_extent_inline_ref_type(leaf, iref) !=
2730             BTRFS_EXTENT_DATA_REF_KEY)
2731                 goto out;
2732
2733         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2734         if (btrfs_extent_refs(leaf, ei) !=
2735             btrfs_extent_data_ref_count(leaf, ref) ||
2736             btrfs_extent_data_ref_root(leaf, ref) !=
2737             root->root_key.objectid ||
2738             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2739             btrfs_extent_data_ref_offset(leaf, ref) != offset)
2740                 goto out;
2741
2742         ret = 0;
2743 out:
2744         return ret;
2745 }
2746
2747 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2748                           struct btrfs_root *root,
2749                           u64 objectid, u64 offset, u64 bytenr)
2750 {
2751         struct btrfs_path *path;
2752         int ret;
2753         int ret2;
2754
2755         path = btrfs_alloc_path();
2756         if (!path)
2757                 return -ENOENT;
2758
2759         do {
2760                 ret = check_committed_ref(trans, root, path, objectid,
2761                                           offset, bytenr);
2762                 if (ret && ret != -ENOENT)
2763                         goto out;
2764
2765                 ret2 = check_delayed_ref(trans, root, path, objectid,
2766                                          offset, bytenr);
2767         } while (ret2 == -EAGAIN);
2768
2769         if (ret2 && ret2 != -ENOENT) {
2770                 ret = ret2;
2771                 goto out;
2772         }
2773
2774         if (ret != -ENOENT || ret2 != -ENOENT)
2775                 ret = 0;
2776 out:
2777         btrfs_free_path(path);
2778         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2779                 WARN_ON(ret > 0);
2780         return ret;
2781 }
2782
2783 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2784                            struct btrfs_root *root,
2785                            struct extent_buffer *buf,
2786                            int full_backref, int inc, int for_cow)
2787 {
2788         u64 bytenr;
2789         u64 num_bytes;
2790         u64 parent;
2791         u64 ref_root;
2792         u32 nritems;
2793         struct btrfs_key key;
2794         struct btrfs_file_extent_item *fi;
2795         int i;
2796         int level;
2797         int ret = 0;
2798         int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2799                             u64, u64, u64, u64, u64, u64, int);
2800
2801         ref_root = btrfs_header_owner(buf);
2802         nritems = btrfs_header_nritems(buf);
2803         level = btrfs_header_level(buf);
2804
2805         if (!root->ref_cows && level == 0)
2806                 return 0;
2807
2808         if (inc)
2809                 process_func = btrfs_inc_extent_ref;
2810         else
2811                 process_func = btrfs_free_extent;
2812
2813         if (full_backref)
2814                 parent = buf->start;
2815         else
2816                 parent = 0;
2817
2818         for (i = 0; i < nritems; i++) {
2819                 if (level == 0) {
2820                         btrfs_item_key_to_cpu(buf, &key, i);
2821                         if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2822                                 continue;
2823                         fi = btrfs_item_ptr(buf, i,
2824                                             struct btrfs_file_extent_item);
2825                         if (btrfs_file_extent_type(buf, fi) ==
2826                             BTRFS_FILE_EXTENT_INLINE)
2827                                 continue;
2828                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2829                         if (bytenr == 0)
2830                                 continue;
2831
2832                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2833                         key.offset -= btrfs_file_extent_offset(buf, fi);
2834                         ret = process_func(trans, root, bytenr, num_bytes,
2835                                            parent, ref_root, key.objectid,
2836                                            key.offset, for_cow);
2837                         if (ret)
2838                                 goto fail;
2839                 } else {
2840                         bytenr = btrfs_node_blockptr(buf, i);
2841                         num_bytes = btrfs_level_size(root, level - 1);
2842                         ret = process_func(trans, root, bytenr, num_bytes,
2843                                            parent, ref_root, level - 1, 0,
2844                                            for_cow);
2845                         if (ret)
2846                                 goto fail;
2847                 }
2848         }
2849         return 0;
2850 fail:
2851         return ret;
2852 }
2853
2854 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2855                   struct extent_buffer *buf, int full_backref, int for_cow)
2856 {
2857         return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2858 }
2859
2860 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2861                   struct extent_buffer *buf, int full_backref, int for_cow)
2862 {
2863         return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2864 }
2865
2866 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2867                                  struct btrfs_root *root,
2868                                  struct btrfs_path *path,
2869                                  struct btrfs_block_group_cache *cache)
2870 {
2871         int ret;
2872         struct btrfs_root *extent_root = root->fs_info->extent_root;
2873         unsigned long bi;
2874         struct extent_buffer *leaf;
2875
2876         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2877         if (ret < 0)
2878                 goto fail;
2879         BUG_ON(ret); /* Corruption */
2880
2881         leaf = path->nodes[0];
2882         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2883         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2884         btrfs_mark_buffer_dirty(leaf);
2885         btrfs_release_path(path);
2886 fail:
2887         if (ret) {
2888                 btrfs_abort_transaction(trans, root, ret);
2889                 return ret;
2890         }
2891         return 0;
2892
2893 }
2894
2895 static struct btrfs_block_group_cache *
2896 next_block_group(struct btrfs_root *root,
2897                  struct btrfs_block_group_cache *cache)
2898 {
2899         struct rb_node *node;
2900         spin_lock(&root->fs_info->block_group_cache_lock);
2901         node = rb_next(&cache->cache_node);
2902         btrfs_put_block_group(cache);
2903         if (node) {
2904                 cache = rb_entry(node, struct btrfs_block_group_cache,
2905                                  cache_node);
2906                 btrfs_get_block_group(cache);
2907         } else
2908                 cache = NULL;
2909         spin_unlock(&root->fs_info->block_group_cache_lock);
2910         return cache;
2911 }
2912
2913 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2914                             struct btrfs_trans_handle *trans,
2915                             struct btrfs_path *path)
2916 {
2917         struct btrfs_root *root = block_group->fs_info->tree_root;
2918         struct inode *inode = NULL;
2919         u64 alloc_hint = 0;
2920         int dcs = BTRFS_DC_ERROR;
2921         int num_pages = 0;
2922         int retries = 0;
2923         int ret = 0;
2924
2925         /*
2926          * If this block group is smaller than 100 megs don't bother caching the
2927          * block group.
2928          */
2929         if (block_group->key.offset < (100 * 1024 * 1024)) {
2930                 spin_lock(&block_group->lock);
2931                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2932                 spin_unlock(&block_group->lock);
2933                 return 0;
2934         }
2935
2936 again:
2937         inode = lookup_free_space_inode(root, block_group, path);
2938         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2939                 ret = PTR_ERR(inode);
2940                 btrfs_release_path(path);
2941                 goto out;
2942         }
2943
2944         if (IS_ERR(inode)) {
2945                 BUG_ON(retries);
2946                 retries++;
2947
2948                 if (block_group->ro)
2949                         goto out_free;
2950
2951                 ret = create_free_space_inode(root, trans, block_group, path);
2952                 if (ret)
2953                         goto out_free;
2954                 goto again;
2955         }
2956
2957         /* We've already setup this transaction, go ahead and exit */
2958         if (block_group->cache_generation == trans->transid &&
2959             i_size_read(inode)) {
2960                 dcs = BTRFS_DC_SETUP;
2961                 goto out_put;
2962         }
2963
2964         /*
2965          * We want to set the generation to 0, that way if anything goes wrong
2966          * from here on out we know not to trust this cache when we load up next
2967          * time.
2968          */
2969         BTRFS_I(inode)->generation = 0;
2970         ret = btrfs_update_inode(trans, root, inode);
2971         WARN_ON(ret);
2972
2973         if (i_size_read(inode) > 0) {
2974                 ret = btrfs_truncate_free_space_cache(root, trans, path,
2975                                                       inode);
2976                 if (ret)
2977                         goto out_put;
2978         }
2979
2980         spin_lock(&block_group->lock);
2981         if (block_group->cached != BTRFS_CACHE_FINISHED ||
2982             !btrfs_test_opt(root, SPACE_CACHE)) {
2983                 /*
2984                  * don't bother trying to write stuff out _if_
2985                  * a) we're not cached,
2986                  * b) we're with nospace_cache mount option.
2987                  */
2988                 dcs = BTRFS_DC_WRITTEN;
2989                 spin_unlock(&block_group->lock);
2990                 goto out_put;
2991         }
2992         spin_unlock(&block_group->lock);
2993
2994         /*
2995          * Try to preallocate enough space based on how big the block group is.
2996          * Keep in mind this has to include any pinned space which could end up
2997          * taking up quite a bit since it's not folded into the other space
2998          * cache.
2999          */
3000         num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3001         if (!num_pages)
3002                 num_pages = 1;
3003
3004         num_pages *= 16;
3005         num_pages *= PAGE_CACHE_SIZE;
3006
3007         ret = btrfs_check_data_free_space(inode, num_pages);
3008         if (ret)
3009                 goto out_put;
3010
3011         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3012                                               num_pages, num_pages,
3013                                               &alloc_hint);
3014         if (!ret)
3015                 dcs = BTRFS_DC_SETUP;
3016         btrfs_free_reserved_data_space(inode, num_pages);
3017
3018 out_put:
3019         iput(inode);
3020 out_free:
3021         btrfs_release_path(path);
3022 out:
3023         spin_lock(&block_group->lock);
3024         if (!ret && dcs == BTRFS_DC_SETUP)
3025                 block_group->cache_generation = trans->transid;
3026         block_group->disk_cache_state = dcs;
3027         spin_unlock(&block_group->lock);
3028
3029         return ret;
3030 }
3031
3032 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3033                                    struct btrfs_root *root)
3034 {
3035         struct btrfs_block_group_cache *cache;
3036         int err = 0;
3037         struct btrfs_path *path;
3038         u64 last = 0;
3039
3040         path = btrfs_alloc_path();
3041         if (!path)
3042                 return -ENOMEM;
3043
3044 again:
3045         while (1) {
3046                 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3047                 while (cache) {
3048                         if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3049                                 break;
3050                         cache = next_block_group(root, cache);
3051                 }
3052                 if (!cache) {
3053                         if (last == 0)
3054                                 break;
3055                         last = 0;
3056                         continue;
3057                 }
3058                 err = cache_save_setup(cache, trans, path);
3059                 last = cache->key.objectid + cache->key.offset;
3060                 btrfs_put_block_group(cache);
3061         }
3062
3063         while (1) {
3064                 if (last == 0) {
3065                         err = btrfs_run_delayed_refs(trans, root,
3066                                                      (unsigned long)-1);
3067                         if (err) /* File system offline */
3068                                 goto out;
3069                 }
3070
3071                 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3072                 while (cache) {
3073                         if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3074                                 btrfs_put_block_group(cache);
3075                                 goto again;
3076                         }
3077
3078                         if (cache->dirty)
3079                                 break;
3080                         cache = next_block_group(root, cache);
3081                 }
3082                 if (!cache) {
3083                         if (last == 0)
3084                                 break;
3085                         last = 0;
3086                         continue;
3087                 }
3088
3089                 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3090                         cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3091                 cache->dirty = 0;
3092                 last = cache->key.objectid + cache->key.offset;
3093
3094                 err = write_one_cache_group(trans, root, path, cache);
3095                 if (err) /* File system offline */
3096                         goto out;
3097
3098                 btrfs_put_block_group(cache);
3099         }
3100
3101         while (1) {
3102                 /*
3103                  * I don't think this is needed since we're just marking our
3104                  * preallocated extent as written, but just in case it can't
3105                  * hurt.
3106                  */
3107                 if (last == 0) {
3108                         err = btrfs_run_delayed_refs(trans, root,
3109                                                      (unsigned long)-1);
3110                         if (err) /* File system offline */
3111                                 goto out;
3112                 }
3113
3114                 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3115                 while (cache) {
3116                         /*
3117                          * Really this shouldn't happen, but it could if we
3118                          * couldn't write the entire preallocated extent and
3119                          * splitting the extent resulted in a new block.
3120                          */
3121                         if (cache->dirty) {
3122                                 btrfs_put_block_group(cache);
3123                                 goto again;
3124                         }
3125                         if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3126                                 break;
3127                         cache = next_block_group(root, cache);
3128                 }
3129                 if (!cache) {
3130                         if (last == 0)
3131                                 break;
3132                         last = 0;
3133                         continue;
3134                 }
3135
3136                 err = btrfs_write_out_cache(root, trans, cache, path);
3137
3138                 /*
3139                  * If we didn't have an error then the cache state is still
3140                  * NEED_WRITE, so we can set it to WRITTEN.
3141                  */
3142                 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3143                         cache->disk_cache_state = BTRFS_DC_WRITTEN;
3144                 last = cache->key.objectid + cache->key.offset;
3145                 btrfs_put_block_group(cache);
3146         }
3147 out:
3148
3149         btrfs_free_path(path);
3150         return err;
3151 }
3152
3153 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3154 {
3155         struct btrfs_block_group_cache *block_group;
3156         int readonly = 0;
3157
3158         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3159         if (!block_group || block_group->ro)
3160                 readonly = 1;
3161         if (block_group)
3162                 btrfs_put_block_group(block_group);
3163         return readonly;
3164 }
3165
3166 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3167                              u64 total_bytes, u64 bytes_used,
3168                              struct btrfs_space_info **space_info)
3169 {
3170         struct btrfs_space_info *found;
3171         int i;
3172         int factor;
3173
3174         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3175                      BTRFS_BLOCK_GROUP_RAID10))
3176                 factor = 2;
3177         else
3178                 factor = 1;
3179
3180         found = __find_space_info(info, flags);
3181         if (found) {
3182                 spin_lock(&found->lock);
3183                 found->total_bytes += total_bytes;
3184                 found->disk_total += total_bytes * factor;
3185                 found->bytes_used += bytes_used;
3186                 found->disk_used += bytes_used * factor;
3187                 found->full = 0;
3188                 spin_unlock(&found->lock);
3189                 *space_info = found;
3190                 return 0;
3191         }
3192         found = kzalloc(sizeof(*found), GFP_NOFS);
3193         if (!found)
3194                 return -ENOMEM;
3195
3196         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3197                 INIT_LIST_HEAD(&found->block_groups[i]);
3198         init_rwsem(&found->groups_sem);
3199         spin_lock_init(&found->lock);
3200         found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3201         found->total_bytes = total_bytes;
3202         found->disk_total = total_bytes * factor;
3203         found->bytes_used = bytes_used;
3204         found->disk_used = bytes_used * factor;
3205         found->bytes_pinned = 0;
3206         found->bytes_reserved = 0;
3207         found->bytes_readonly = 0;
3208         found->bytes_may_use = 0;
3209         found->full = 0;
3210         found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3211         found->chunk_alloc = 0;
3212         found->flush = 0;
3213         init_waitqueue_head(&found->wait);
3214         *space_info = found;
3215         list_add_rcu(&found->list, &info->space_info);
3216         if (flags & BTRFS_BLOCK_GROUP_DATA)
3217                 info->data_sinfo = found;
3218         return 0;
3219 }
3220
3221 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3222 {
3223         u64 extra_flags = chunk_to_extended(flags) &
3224                                 BTRFS_EXTENDED_PROFILE_MASK;
3225
3226         if (flags & BTRFS_BLOCK_GROUP_DATA)
3227                 fs_info->avail_data_alloc_bits |= extra_flags;
3228         if (flags & BTRFS_BLOCK_GROUP_METADATA)
3229                 fs_info->avail_metadata_alloc_bits |= extra_flags;
3230         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3231                 fs_info->avail_system_alloc_bits |= extra_flags;
3232 }
3233
3234 /*
3235  * returns target flags in extended format or 0 if restripe for this
3236  * chunk_type is not in progress
3237  *
3238  * should be called with either volume_mutex or balance_lock held
3239  */
3240 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3241 {
3242         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3243         u64 target = 0;
3244
3245         if (!bctl)
3246                 return 0;
3247
3248         if (flags & BTRFS_BLOCK_GROUP_DATA &&
3249             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3250                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3251         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3252                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3253                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3254         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3255                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3256                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3257         }
3258
3259         return target;
3260 }
3261
3262 /*
3263  * @flags: available profiles in extended format (see ctree.h)
3264  *
3265  * Returns reduced profile in chunk format.  If profile changing is in
3266  * progress (either running or paused) picks the target profile (if it's
3267  * already available), otherwise falls back to plain reducing.
3268  */
3269 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3270 {
3271         /*
3272          * we add in the count of missing devices because we want
3273          * to make sure that any RAID levels on a degraded FS
3274          * continue to be honored.
3275          */
3276         u64 num_devices = root->fs_info->fs_devices->rw_devices +
3277                 root->fs_info->fs_devices->missing_devices;
3278         u64 target;
3279
3280         /*
3281          * see if restripe for this chunk_type is in progress, if so
3282          * try to reduce to the target profile
3283          */
3284         spin_lock(&root->fs_info->balance_lock);
3285         target = get_restripe_target(root->fs_info, flags);
3286         if (target) {
3287                 /* pick target profile only if it's already available */
3288                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3289                         spin_unlock(&root->fs_info->balance_lock);
3290                         return extended_to_chunk(target);
3291                 }
3292         }
3293         spin_unlock(&root->fs_info->balance_lock);
3294
3295         if (num_devices == 1)
3296                 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3297         if (num_devices < 4)
3298                 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3299
3300         if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3301             (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3302                       BTRFS_BLOCK_GROUP_RAID10))) {
3303                 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3304         }
3305
3306         if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3307             (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3308                 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3309         }
3310
3311         if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3312             ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3313              (flags & BTRFS_BLOCK_GROUP_RAID10) |
3314              (flags & BTRFS_BLOCK_GROUP_DUP))) {
3315                 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3316         }
3317
3318         return extended_to_chunk(flags);
3319 }
3320
3321 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3322 {
3323         if (flags & BTRFS_BLOCK_GROUP_DATA)
3324                 flags |= root->fs_info->avail_data_alloc_bits;
3325         else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3326                 flags |= root->fs_info->avail_system_alloc_bits;
3327         else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3328                 flags |= root->fs_info->avail_metadata_alloc_bits;
3329
3330         return btrfs_reduce_alloc_profile(root, flags);
3331 }
3332
3333 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3334 {
3335         u64 flags;
3336
3337         if (data)
3338                 flags = BTRFS_BLOCK_GROUP_DATA;
3339         else if (root == root->fs_info->chunk_root)
3340                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3341         else
3342                 flags = BTRFS_BLOCK_GROUP_METADATA;
3343
3344         return get_alloc_profile(root, flags);
3345 }
3346
3347 /*
3348  * This will check the space that the inode allocates from to make sure we have
3349  * enough space for bytes.
3350  */
3351 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3352 {
3353         struct btrfs_space_info *data_sinfo;
3354         struct btrfs_root *root = BTRFS_I(inode)->root;
3355         struct btrfs_fs_info *fs_info = root->fs_info;
3356         u64 used;
3357         int ret = 0, committed = 0, alloc_chunk = 1;
3358
3359         /* make sure bytes are sectorsize aligned */
3360         bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3361
3362         if (root == root->fs_info->tree_root ||
3363             BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3364                 alloc_chunk = 0;
3365                 committed = 1;
3366         }
3367
3368         data_sinfo = fs_info->data_sinfo;
3369         if (!data_sinfo)
3370                 goto alloc;
3371
3372 again:
3373         /* make sure we have enough space to handle the data first */
3374         spin_lock(&data_sinfo->lock);
3375         used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3376                 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3377                 data_sinfo->bytes_may_use;
3378
3379         if (used + bytes > data_sinfo->total_bytes) {
3380                 struct btrfs_trans_handle *trans;
3381
3382                 /*
3383                  * if we don't have enough free bytes in this space then we need
3384                  * to alloc a new chunk.
3385                  */
3386                 if (!data_sinfo->full && alloc_chunk) {
3387                         u64 alloc_target;
3388
3389                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3390                         spin_unlock(&data_sinfo->lock);
3391 alloc:
3392                         alloc_target = btrfs_get_alloc_profile(root, 1);
3393                         trans = btrfs_join_transaction(root);
3394                         if (IS_ERR(trans))
3395                                 return PTR_ERR(trans);
3396
3397                         ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3398                                              alloc_target,
3399                                              CHUNK_ALLOC_NO_FORCE);
3400                         btrfs_end_transaction(trans, root);
3401                         if (ret < 0) {
3402                                 if (ret != -ENOSPC)
3403                                         return ret;
3404                                 else
3405                                         goto commit_trans;
3406                         }
3407
3408                         if (!data_sinfo)
3409                                 data_sinfo = fs_info->data_sinfo;
3410
3411                         goto again;
3412                 }
3413
3414                 /*
3415                  * If we have less pinned bytes than we want to allocate then
3416                  * don't bother committing the transaction, it won't help us.
3417                  */
3418                 if (data_sinfo->bytes_pinned < bytes)
3419                         committed = 1;
3420                 spin_unlock(&data_sinfo->lock);
3421
3422                 /* commit the current transaction and try again */
3423 commit_trans:
3424                 if (!committed &&
3425                     !atomic_read(&root->fs_info->open_ioctl_trans)) {
3426                         committed = 1;
3427                         trans = btrfs_join_transaction(root);
3428                         if (IS_ERR(trans))
3429                                 return PTR_ERR(trans);
3430                         ret = btrfs_commit_transaction(trans, root);
3431                         if (ret)
3432                                 return ret;
3433                         goto again;
3434                 }
3435
3436                 return -ENOSPC;
3437         }
3438         data_sinfo->bytes_may_use += bytes;
3439         trace_btrfs_space_reservation(root->fs_info, "space_info",
3440                                       data_sinfo->flags, bytes, 1);
3441         spin_unlock(&data_sinfo->lock);
3442
3443         return 0;
3444 }
3445
3446 /*
3447  * Called if we need to clear a data reservation for this inode.
3448  */
3449 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3450 {
3451         struct btrfs_root *root = BTRFS_I(inode)->root;
3452         struct btrfs_space_info *data_sinfo;
3453
3454         /* make sure bytes are sectorsize aligned */
3455         bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3456
3457         data_sinfo = root->fs_info->data_sinfo;
3458         spin_lock(&data_sinfo->lock);
3459         data_sinfo->bytes_may_use -= bytes;
3460         trace_btrfs_space_reservation(root->fs_info, "space_info",
3461                                       data_sinfo->flags, bytes, 0);
3462         spin_unlock(&data_sinfo->lock);
3463 }
3464
3465 static void force_metadata_allocation(struct btrfs_fs_info *info)
3466 {
3467         struct list_head *head = &info->space_info;
3468         struct btrfs_space_info *found;
3469
3470         rcu_read_lock();
3471         list_for_each_entry_rcu(found, head, list) {
3472                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3473                         found->force_alloc = CHUNK_ALLOC_FORCE;
3474         }
3475         rcu_read_unlock();
3476 }
3477
3478 static int should_alloc_chunk(struct btrfs_root *root,
3479                               struct btrfs_space_info *sinfo, int force)
3480 {
3481         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3482         u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3483         u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3484         u64 thresh;
3485
3486         if (force == CHUNK_ALLOC_FORCE)
3487                 return 1;
3488
3489         /*
3490          * We need to take into account the global rsv because for all intents
3491          * and purposes it's used space.  Don't worry about locking the
3492          * global_rsv, it doesn't change except when the transaction commits.
3493          */
3494         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3495                 num_allocated += global_rsv->size;
3496
3497         /*
3498          * in limited mode, we want to have some free space up to
3499          * about 1% of the FS size.
3500          */
3501         if (force == CHUNK_ALLOC_LIMITED) {
3502                 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3503                 thresh = max_t(u64, 64 * 1024 * 1024,
3504                                div_factor_fine(thresh, 1));
3505
3506                 if (num_bytes - num_allocated < thresh)
3507                         return 1;
3508         }
3509
3510         if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3511                 return 0;
3512         return 1;
3513 }
3514
3515 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3516 {
3517         u64 num_dev;
3518
3519         if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3520             type & BTRFS_BLOCK_GROUP_RAID0)
3521                 num_dev = root->fs_info->fs_devices->rw_devices;
3522         else if (type & BTRFS_BLOCK_GROUP_RAID1)
3523                 num_dev = 2;
3524         else
3525                 num_dev = 1;    /* DUP or single */
3526
3527         /* metadata for updaing devices and chunk tree */
3528         return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3529 }
3530
3531 static void check_system_chunk(struct btrfs_trans_handle *trans,
3532                                struct btrfs_root *root, u64 type)
3533 {
3534         struct btrfs_space_info *info;
3535         u64 left;
3536         u64 thresh;
3537
3538         info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3539         spin_lock(&info->lock);
3540         left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3541                 info->bytes_reserved - info->bytes_readonly;
3542         spin_unlock(&info->lock);
3543
3544         thresh = get_system_chunk_thresh(root, type);
3545         if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3546                 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3547                        left, thresh, type);
3548                 dump_space_info(info, 0, 0);
3549         }
3550
3551         if (left < thresh) {
3552                 u64 flags;
3553
3554                 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3555                 btrfs_alloc_chunk(trans, root, flags);
3556         }
3557 }
3558
3559 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3560                           struct btrfs_root *extent_root, u64 flags, int force)
3561 {
3562         struct btrfs_space_info *space_info;
3563         struct btrfs_fs_info *fs_info = extent_root->fs_info;
3564         int wait_for_alloc = 0;
3565         int ret = 0;
3566
3567         space_info = __find_space_info(extent_root->fs_info, flags);
3568         if (!space_info) {
3569                 ret = update_space_info(extent_root->fs_info, flags,
3570                                         0, 0, &space_info);
3571                 BUG_ON(ret); /* -ENOMEM */
3572         }
3573         BUG_ON(!space_info); /* Logic error */
3574
3575 again:
3576         spin_lock(&space_info->lock);
3577         if (force < space_info->force_alloc)
3578                 force = space_info->force_alloc;
3579         if (space_info->full) {
3580                 spin_unlock(&space_info->lock);
3581                 return 0;
3582         }
3583
3584         if (!should_alloc_chunk(extent_root, space_info, force)) {
3585                 spin_unlock(&space_info->lock);
3586                 return 0;
3587         } else if (space_info->chunk_alloc) {
3588                 wait_for_alloc = 1;
3589         } else {
3590                 space_info->chunk_alloc = 1;
3591         }
3592
3593         spin_unlock(&space_info->lock);
3594
3595         mutex_lock(&fs_info->chunk_mutex);
3596
3597         /*
3598          * The chunk_mutex is held throughout the entirety of a chunk
3599          * allocation, so once we've acquired the chunk_mutex we know that the
3600          * other guy is done and we need to recheck and see if we should
3601          * allocate.
3602          */
3603         if (wait_for_alloc) {
3604                 mutex_unlock(&fs_info->chunk_mutex);
3605                 wait_for_alloc = 0;
3606                 goto again;
3607         }
3608
3609         /*
3610          * If we have mixed data/metadata chunks we want to make sure we keep
3611          * allocating mixed chunks instead of individual chunks.
3612          */
3613         if (btrfs_mixed_space_info(space_info))
3614                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3615
3616         /*
3617          * if we're doing a data chunk, go ahead and make sure that
3618          * we keep a reasonable number of metadata chunks allocated in the
3619          * FS as well.
3620          */
3621         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3622                 fs_info->data_chunk_allocations++;
3623                 if (!(fs_info->data_chunk_allocations %
3624                       fs_info->metadata_ratio))
3625                         force_metadata_allocation(fs_info);
3626         }
3627
3628         /*
3629          * Check if we have enough space in SYSTEM chunk because we may need
3630          * to update devices.
3631          */
3632         check_system_chunk(trans, extent_root, flags);
3633
3634         ret = btrfs_alloc_chunk(trans, extent_root, flags);
3635         if (ret < 0 && ret != -ENOSPC)
3636                 goto out;
3637
3638         spin_lock(&space_info->lock);
3639         if (ret)
3640                 space_info->full = 1;
3641         else
3642                 ret = 1;
3643
3644         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3645         space_info->chunk_alloc = 0;
3646         spin_unlock(&space_info->lock);
3647 out:
3648         mutex_unlock(&fs_info->chunk_mutex);
3649         return ret;
3650 }
3651
3652 static int can_overcommit(struct btrfs_root *root,
3653                           struct btrfs_space_info *space_info, u64 bytes,
3654                           enum btrfs_reserve_flush_enum flush)
3655 {
3656         u64 profile = btrfs_get_alloc_profile(root, 0);
3657         u64 avail;
3658         u64 used;
3659
3660         used = space_info->bytes_used + space_info->bytes_reserved +
3661                 space_info->bytes_pinned + space_info->bytes_readonly +
3662                 space_info->bytes_may_use;
3663
3664         spin_lock(&root->fs_info->free_chunk_lock);
3665         avail = root->fs_info->free_chunk_space;
3666         spin_unlock(&root->fs_info->free_chunk_lock);
3667
3668         /*
3669          * If we have dup, raid1 or raid10 then only half of the free
3670          * space is actually useable.
3671          */
3672         if (profile & (BTRFS_BLOCK_GROUP_DUP |
3673                        BTRFS_BLOCK_GROUP_RAID1 |
3674                        BTRFS_BLOCK_GROUP_RAID10))
3675                 avail >>= 1;
3676
3677         /*
3678          * If we aren't flushing all things, let us overcommit up to
3679          * 1/2th of the space. If we can flush, don't let us overcommit
3680          * too much, let it overcommit up to 1/8 of the space.
3681          */
3682         if (flush == BTRFS_RESERVE_FLUSH_ALL)
3683                 avail >>= 3;
3684         else
3685                 avail >>= 1;
3686
3687         if (used + bytes < space_info->total_bytes + avail)
3688                 return 1;
3689         return 0;
3690 }
3691
3692 static int writeback_inodes_sb_nr_if_idle_safe(struct super_block *sb,
3693                                                unsigned long nr_pages,
3694                                                enum wb_reason reason)
3695 {
3696         if (!writeback_in_progress(sb->s_bdi) &&
3697             down_read_trylock(&sb->s_umount)) {
3698                 writeback_inodes_sb_nr(sb, nr_pages, reason);
3699                 up_read(&sb->s_umount);
3700                 return 1;
3701         }
3702
3703         return 0;
3704 }
3705
3706 /*
3707  * shrink metadata reservation for delalloc
3708  */
3709 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3710                             bool wait_ordered)
3711 {
3712         struct btrfs_block_rsv *block_rsv;
3713         struct btrfs_space_info *space_info;
3714         struct btrfs_trans_handle *trans;
3715         u64 delalloc_bytes;
3716         u64 max_reclaim;
3717         long time_left;
3718         unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3719         int loops = 0;
3720         enum btrfs_reserve_flush_enum flush;
3721
3722         trans = (struct btrfs_trans_handle *)current->journal_info;
3723         block_rsv = &root->fs_info->delalloc_block_rsv;
3724         space_info = block_rsv->space_info;
3725
3726         smp_mb();
3727         delalloc_bytes = root->fs_info->delalloc_bytes;
3728         if (delalloc_bytes == 0) {
3729                 if (trans)
3730                         return;
3731                 btrfs_wait_ordered_extents(root, 0);
3732                 return;
3733         }
3734
3735         while (delalloc_bytes && loops < 3) {
3736                 max_reclaim = min(delalloc_bytes, to_reclaim);
3737                 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3738                 writeback_inodes_sb_nr_if_idle_safe(root->fs_info->sb,
3739                                                     nr_pages,
3740                                                     WB_REASON_FS_FREE_SPACE);
3741
3742                 /*
3743                  * We need to wait for the async pages to actually start before
3744                  * we do anything.
3745                  */
3746                 wait_event(root->fs_info->async_submit_wait,
3747                            !atomic_read(&root->fs_info->async_delalloc_pages));
3748
3749                 if (!trans)
3750                         flush = BTRFS_RESERVE_FLUSH_ALL;
3751                 else
3752                         flush = BTRFS_RESERVE_NO_FLUSH;
3753                 spin_lock(&space_info->lock);
3754                 if (can_overcommit(root, space_info, orig, flush)) {
3755                         spin_unlock(&space_info->lock);
3756                         break;
3757                 }
3758                 spin_unlock(&space_info->lock);
3759
3760                 loops++;
3761                 if (wait_ordered && !trans) {
3762                         btrfs_wait_ordered_extents(root, 0);
3763                 } else {
3764                         time_left = schedule_timeout_killable(1);
3765                         if (time_left)
3766                                 break;
3767                 }
3768                 smp_mb();
3769                 delalloc_bytes = root->fs_info->delalloc_bytes;
3770         }
3771 }
3772
3773 /**
3774  * maybe_commit_transaction - possibly commit the transaction if its ok to
3775  * @root - the root we're allocating for
3776  * @bytes - the number of bytes we want to reserve
3777  * @force - force the commit
3778  *
3779  * This will check to make sure that committing the transaction will actually
3780  * get us somewhere and then commit the transaction if it does.  Otherwise it
3781  * will return -ENOSPC.
3782  */
3783 static int may_commit_transaction(struct btrfs_root *root,
3784                                   struct btrfs_space_info *space_info,
3785                                   u64 bytes, int force)
3786 {
3787         struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3788         struct btrfs_trans_handle *trans;
3789
3790         trans = (struct btrfs_trans_handle *)current->journal_info;
3791         if (trans)
3792                 return -EAGAIN;
3793
3794         if (force)
3795                 goto commit;
3796
3797         /* See if there is enough pinned space to make this reservation */
3798         spin_lock(&space_info->lock);
3799         if (space_info->bytes_pinned >= bytes) {
3800                 spin_unlock(&space_info->lock);
3801                 goto commit;
3802         }
3803         spin_unlock(&space_info->lock);
3804
3805         /*
3806          * See if there is some space in the delayed insertion reservation for
3807          * this reservation.
3808          */
3809         if (space_info != delayed_rsv->space_info)
3810                 return -ENOSPC;
3811
3812         spin_lock(&space_info->lock);
3813         spin_lock(&delayed_rsv->lock);
3814         if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3815                 spin_unlock(&delayed_rsv->lock);
3816                 spin_unlock(&space_info->lock);
3817                 return -ENOSPC;
3818         }
3819         spin_unlock(&delayed_rsv->lock);
3820         spin_unlock(&space_info->lock);
3821
3822 commit:
3823         trans = btrfs_join_transaction(root);
3824         if (IS_ERR(trans))
3825                 return -ENOSPC;
3826
3827         return btrfs_commit_transaction(trans, root);
3828 }
3829
3830 enum flush_state {
3831         FLUSH_DELAYED_ITEMS_NR  =       1,
3832         FLUSH_DELAYED_ITEMS     =       2,
3833         FLUSH_DELALLOC          =       3,
3834         FLUSH_DELALLOC_WAIT     =       4,
3835         ALLOC_CHUNK             =       5,
3836         COMMIT_TRANS            =       6,
3837 };
3838
3839 static int flush_space(struct btrfs_root *root,
3840                        struct btrfs_space_info *space_info, u64 num_bytes,
3841                        u64 orig_bytes, int state)
3842 {
3843         struct btrfs_trans_handle *trans;
3844         int nr;
3845         int ret = 0;
3846
3847         switch (state) {
3848         case FLUSH_DELAYED_ITEMS_NR:
3849         case FLUSH_DELAYED_ITEMS:
3850                 if (state == FLUSH_DELAYED_ITEMS_NR) {
3851                         u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3852
3853                         nr = (int)div64_u64(num_bytes, bytes);
3854                         if (!nr)
3855                                 nr = 1;
3856                         nr *= 2;
3857                 } else {
3858                         nr = -1;
3859                 }
3860                 trans = btrfs_join_transaction(root);
3861                 if (IS_ERR(trans)) {
3862                         ret = PTR_ERR(trans);
3863                         break;
3864                 }
3865                 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3866                 btrfs_end_transaction(trans, root);
3867                 break;
3868         case FLUSH_DELALLOC:
3869         case FLUSH_DELALLOC_WAIT:
3870                 shrink_delalloc(root, num_bytes, orig_bytes,
3871                                 state == FLUSH_DELALLOC_WAIT);
3872                 break;
3873         case ALLOC_CHUNK:
3874                 trans = btrfs_join_transaction(root);
3875                 if (IS_ERR(trans)) {
3876                         ret = PTR_ERR(trans);
3877                         break;
3878                 }
3879                 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3880                                      btrfs_get_alloc_profile(root, 0),
3881                                      CHUNK_ALLOC_NO_FORCE);
3882                 btrfs_end_transaction(trans, root);
3883                 if (ret == -ENOSPC)
3884                         ret = 0;
3885                 break;
3886         case COMMIT_TRANS:
3887                 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3888                 break;
3889         default:
3890                 ret = -ENOSPC;
3891                 break;
3892         }
3893
3894         return ret;
3895 }
3896 /**
3897  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3898  * @root - the root we're allocating for
3899  * @block_rsv - the block_rsv we're allocating for
3900  * @orig_bytes - the number of bytes we want
3901  * @flush - whether or not we can flush to make our reservation
3902  *
3903  * This will reserve orgi_bytes number of bytes from the space info associated
3904  * with the block_rsv.  If there is not enough space it will make an attempt to
3905  * flush out space to make room.  It will do this by flushing delalloc if
3906  * possible or committing the transaction.  If flush is 0 then no attempts to
3907  * regain reservations will be made and this will fail if there is not enough
3908  * space already.
3909  */
3910 static int reserve_metadata_bytes(struct btrfs_root *root,
3911                                   struct btrfs_block_rsv *block_rsv,
3912                                   u64 orig_bytes,
3913                                   enum btrfs_reserve_flush_enum flush)
3914 {
3915         struct btrfs_space_info *space_info = block_rsv->space_info;
3916         u64 used;
3917         u64 num_bytes = orig_bytes;
3918         int flush_state = FLUSH_DELAYED_ITEMS_NR;
3919         int ret = 0;
3920         bool flushing = false;
3921
3922 again:
3923         ret = 0;
3924         spin_lock(&space_info->lock);
3925         /*
3926          * We only want to wait if somebody other than us is flushing and we
3927          * are actually allowed to flush all things.
3928          */
3929         while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
3930                space_info->flush) {
3931                 spin_unlock(&space_info->lock);
3932                 /*
3933                  * If we have a trans handle we can't wait because the flusher
3934                  * may have to commit the transaction, which would mean we would
3935                  * deadlock since we are waiting for the flusher to finish, but
3936                  * hold the current transaction open.
3937                  */
3938                 if (current->journal_info)
3939                         return -EAGAIN;
3940                 ret = wait_event_killable(space_info->wait, !space_info->flush);
3941                 /* Must have been killed, return */
3942                 if (ret)
3943                         return -EINTR;
3944
3945                 spin_lock(&space_info->lock);
3946         }
3947
3948         ret = -ENOSPC;
3949         used = space_info->bytes_used + space_info->bytes_reserved +
3950                 space_info->bytes_pinned + space_info->bytes_readonly +
3951                 space_info->bytes_may_use;
3952
3953         /*
3954          * The idea here is that we've not already over-reserved the block group
3955          * then we can go ahead and save our reservation first and then start
3956          * flushing if we need to.  Otherwise if we've already overcommitted
3957          * lets start flushing stuff first and then come back and try to make
3958          * our reservation.
3959          */
3960         if (used <= space_info->total_bytes) {
3961                 if (used + orig_bytes <= space_info->total_bytes) {
3962                         space_info->bytes_may_use += orig_bytes;
3963                         trace_btrfs_space_reservation(root->fs_info,
3964                                 "space_info", space_info->flags, orig_bytes, 1);
3965                         ret = 0;
3966                 } else {
3967                         /*
3968                          * Ok set num_bytes to orig_bytes since we aren't
3969                          * overocmmitted, this way we only try and reclaim what
3970                          * we need.
3971                          */
3972                         num_bytes = orig_bytes;
3973                 }
3974         } else {
3975                 /*
3976                  * Ok we're over committed, set num_bytes to the overcommitted
3977                  * amount plus the amount of bytes that we need for this
3978                  * reservation.
3979                  */
3980                 num_bytes = used - space_info->total_bytes +
3981                         (orig_bytes * 2);
3982         }
3983
3984         if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
3985                 space_info->bytes_may_use += orig_bytes;
3986                 trace_btrfs_space_reservation(root->fs_info, "space_info",
3987                                               space_info->flags, orig_bytes,
3988                                               1);
3989                 ret = 0;
3990         }
3991
3992         /*
3993          * Couldn't make our reservation, save our place so while we're trying
3994          * to reclaim space we can actually use it instead of somebody else
3995          * stealing it from us.
3996          *
3997          * We make the other tasks wait for the flush only when we can flush
3998          * all things.
3999          */
4000         if (ret && flush == BTRFS_RESERVE_FLUSH_ALL) {
4001                 flushing = true;
4002                 space_info->flush = 1;
4003         }
4004
4005         spin_unlock(&space_info->lock);
4006
4007         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4008                 goto out;
4009
4010         ret = flush_space(root, space_info, num_bytes, orig_bytes,
4011                           flush_state);
4012         flush_state++;
4013
4014         /*
4015          * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4016          * would happen. So skip delalloc flush.
4017          */
4018         if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4019             (flush_state == FLUSH_DELALLOC ||
4020              flush_state == FLUSH_DELALLOC_WAIT))
4021                 flush_state = ALLOC_CHUNK;
4022
4023         if (!ret)
4024                 goto again;
4025         else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4026                  flush_state < COMMIT_TRANS)
4027                 goto again;
4028         else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4029                  flush_state <= COMMIT_TRANS)
4030                 goto again;
4031
4032 out:
4033         if (flushing) {
4034                 spin_lock(&space_info->lock);
4035                 space_info->flush = 0;
4036                 wake_up_all(&space_info->wait);
4037                 spin_unlock(&space_info->lock);
4038         }
4039         return ret;
4040 }
4041
4042 static struct btrfs_block_rsv *get_block_rsv(
4043                                         const struct btrfs_trans_handle *trans,
4044                                         const struct btrfs_root *root)
4045 {
4046         struct btrfs_block_rsv *block_rsv = NULL;
4047
4048         if (root->ref_cows)
4049                 block_rsv = trans->block_rsv;
4050
4051         if (root == root->fs_info->csum_root && trans->adding_csums)
4052                 block_rsv = trans->block_rsv;
4053
4054         if (!block_rsv)
4055                 block_rsv = root->block_rsv;
4056
4057         if (!block_rsv)
4058                 block_rsv = &root->fs_info->empty_block_rsv;
4059
4060         return block_rsv;
4061 }
4062
4063 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4064                                u64 num_bytes)
4065 {
4066         int ret = -ENOSPC;
4067         spin_lock(&block_rsv->lock);
4068         if (block_rsv->reserved >= num_bytes) {
4069                 block_rsv->reserved -= num_bytes;
4070                 if (block_rsv->reserved < block_rsv->size)
4071                         block_rsv->full = 0;
4072                 ret = 0;
4073         }
4074         spin_unlock(&block_rsv->lock);
4075         return ret;
4076 }
4077
4078 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4079                                 u64 num_bytes, int update_size)
4080 {
4081         spin_lock(&block_rsv->lock);
4082         block_rsv->reserved += num_bytes;
4083         if (update_size)
4084                 block_rsv->size += num_bytes;
4085         else if (block_rsv->reserved >= block_rsv->size)
4086                 block_rsv->full = 1;
4087         spin_unlock(&block_rsv->lock);
4088 }
4089
4090 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4091                                     struct btrfs_block_rsv *block_rsv,
4092                                     struct btrfs_block_rsv *dest, u64 num_bytes)
4093 {
4094         struct btrfs_space_info *space_info = block_rsv->space_info;
4095
4096         spin_lock(&block_rsv->lock);
4097         if (num_bytes == (u64)-1)
4098                 num_bytes = block_rsv->size;
4099         block_rsv->size -= num_bytes;
4100         if (block_rsv->reserved >= block_rsv->size) {
4101                 num_bytes = block_rsv->reserved - block_rsv->size;
4102                 block_rsv->reserved = block_rsv->size;
4103                 block_rsv->full = 1;
4104         } else {
4105                 num_bytes = 0;
4106         }
4107         spin_unlock(&block_rsv->lock);
4108
4109         if (num_bytes > 0) {
4110                 if (dest) {
4111                         spin_lock(&dest->lock);
4112                         if (!dest->full) {
4113                                 u64 bytes_to_add;
4114
4115                                 bytes_to_add = dest->size - dest->reserved;
4116                                 bytes_to_add = min(num_bytes, bytes_to_add);
4117                                 dest->reserved += bytes_to_add;
4118                                 if (dest->reserved >= dest->size)
4119                                         dest->full = 1;
4120                                 num_bytes -= bytes_to_add;
4121                         }
4122                         spin_unlock(&dest->lock);
4123                 }
4124                 if (num_bytes) {
4125                         spin_lock(&space_info->lock);
4126                         space_info->bytes_may_use -= num_bytes;
4127                         trace_btrfs_space_reservation(fs_info, "space_info",
4128                                         space_info->flags, num_bytes, 0);
4129                         space_info->reservation_progress++;
4130                         spin_unlock(&space_info->lock);
4131                 }
4132         }
4133 }
4134
4135 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4136                                    struct btrfs_block_rsv *dst, u64 num_bytes)
4137 {
4138         int ret;
4139
4140         ret = block_rsv_use_bytes(src, num_bytes);
4141         if (ret)
4142                 return ret;
4143
4144         block_rsv_add_bytes(dst, num_bytes, 1);
4145         return 0;
4146 }
4147
4148 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4149 {
4150         memset(rsv, 0, sizeof(*rsv));
4151         spin_lock_init(&rsv->lock);
4152         rsv->type = type;
4153 }
4154
4155 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4156                                               unsigned short type)
4157 {
4158         struct btrfs_block_rsv *block_rsv;
4159         struct btrfs_fs_info *fs_info = root->fs_info;
4160
4161         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4162         if (!block_rsv)
4163                 return NULL;
4164
4165         btrfs_init_block_rsv(block_rsv, type);
4166         block_rsv->space_info = __find_space_info(fs_info,
4167                                                   BTRFS_BLOCK_GROUP_METADATA);
4168         return block_rsv;
4169 }
4170
4171 void btrfs_free_block_rsv(struct btrfs_root *root,
4172                           struct btrfs_block_rsv *rsv)
4173 {
4174         if (!rsv)
4175                 return;
4176         btrfs_block_rsv_release(root, rsv, (u64)-1);
4177         kfree(rsv);
4178 }
4179
4180 int btrfs_block_rsv_add(struct btrfs_root *root,
4181                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4182                         enum btrfs_reserve_flush_enum flush)
4183 {
4184         int ret;
4185
4186         if (num_bytes == 0)
4187                 return 0;
4188
4189         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4190         if (!ret) {
4191                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4192                 return 0;
4193         }
4194
4195         return ret;
4196 }
4197
4198 int btrfs_block_rsv_check(struct btrfs_root *root,
4199                           struct btrfs_block_rsv *block_rsv, int min_factor)
4200 {
4201         u64 num_bytes = 0;
4202         int ret = -ENOSPC;
4203
4204         if (!block_rsv)
4205                 return 0;
4206
4207         spin_lock(&block_rsv->lock);
4208         num_bytes = div_factor(block_rsv->size, min_factor);
4209         if (block_rsv->reserved >= num_bytes)
4210                 ret = 0;
4211         spin_unlock(&block_rsv->lock);
4212
4213         return ret;
4214 }
4215
4216 int btrfs_block_rsv_refill(struct btrfs_root *root,
4217                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4218                            enum btrfs_reserve_flush_enum flush)
4219 {
4220         u64 num_bytes = 0;
4221         int ret = -ENOSPC;
4222
4223         if (!block_rsv)
4224                 return 0;
4225
4226         spin_lock(&block_rsv->lock);
4227         num_bytes = min_reserved;
4228         if (block_rsv->reserved >= num_bytes)
4229                 ret = 0;
4230         else
4231                 num_bytes -= block_rsv->reserved;
4232         spin_unlock(&block_rsv->lock);
4233
4234         if (!ret)
4235                 return 0;
4236
4237         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4238         if (!ret) {
4239                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4240                 return 0;
4241         }
4242
4243         return ret;
4244 }
4245
4246 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4247                             struct btrfs_block_rsv *dst_rsv,
4248                             u64 num_bytes)
4249 {
4250         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4251 }
4252
4253 void btrfs_block_rsv_release(struct btrfs_root *root,
4254                              struct btrfs_block_rsv *block_rsv,
4255                              u64 num_bytes)
4256 {
4257         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4258         if (global_rsv->full || global_rsv == block_rsv ||
4259             block_rsv->space_info != global_rsv->space_info)
4260                 global_rsv = NULL;
4261         block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4262                                 num_bytes);
4263 }
4264
4265 /*
4266  * helper to calculate size of global block reservation.
4267  * the desired value is sum of space used by extent tree,
4268  * checksum tree and root tree
4269  */
4270 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4271 {
4272         struct btrfs_space_info *sinfo;
4273         u64 num_bytes;
4274         u64 meta_used;
4275         u64 data_used;
4276         int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4277
4278         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4279         spin_lock(&sinfo->lock);
4280         data_used = sinfo->bytes_used;
4281         spin_unlock(&sinfo->lock);
4282
4283         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4284         spin_lock(&sinfo->lock);
4285         if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4286                 data_used = 0;
4287         meta_used = sinfo->bytes_used;
4288         spin_unlock(&sinfo->lock);
4289
4290         num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4291                     csum_size * 2;
4292         num_bytes += div64_u64(data_used + meta_used, 50);
4293
4294         if (num_bytes * 3 > meta_used)
4295                 num_bytes = div64_u64(meta_used, 3);
4296
4297         return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4298 }
4299
4300 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4301 {
4302         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4303         struct btrfs_space_info *sinfo = block_rsv->space_info;
4304         u64 num_bytes;
4305
4306         num_bytes = calc_global_metadata_size(fs_info);
4307
4308         spin_lock(&sinfo->lock);
4309         spin_lock(&block_rsv->lock);
4310
4311         block_rsv->size = num_bytes;
4312
4313         num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4314                     sinfo->bytes_reserved + sinfo->bytes_readonly +
4315                     sinfo->bytes_may_use;
4316
4317         if (sinfo->total_bytes > num_bytes) {
4318                 num_bytes = sinfo->total_bytes - num_bytes;
4319                 block_rsv->reserved += num_bytes;
4320                 sinfo->bytes_may_use += num_bytes;
4321                 trace_btrfs_space_reservation(fs_info, "space_info",
4322                                       sinfo->flags, num_bytes, 1);
4323         }
4324
4325         if (block_rsv->reserved >= block_rsv->size) {
4326                 num_bytes = block_rsv->reserved - block_rsv->size;
4327                 sinfo->bytes_may_use -= num_bytes;
4328                 trace_btrfs_space_reservation(fs_info, "space_info",
4329                                       sinfo->flags, num_bytes, 0);
4330                 sinfo->reservation_progress++;
4331                 block_rsv->reserved = block_rsv->size;
4332                 block_rsv->full = 1;
4333         }
4334
4335         spin_unlock(&block_rsv->lock);
4336         spin_unlock(&sinfo->lock);
4337 }
4338
4339 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4340 {
4341         struct btrfs_space_info *space_info;
4342
4343         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4344         fs_info->chunk_block_rsv.space_info = space_info;
4345
4346         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4347         fs_info->global_block_rsv.space_info = space_info;
4348         fs_info->delalloc_block_rsv.space_info = space_info;
4349         fs_info->trans_block_rsv.space_info = space_info;
4350         fs_info->empty_block_rsv.space_info = space_info;
4351         fs_info->delayed_block_rsv.space_info = space_info;
4352
4353         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4354         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4355         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4356         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4357         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4358
4359         update_global_block_rsv(fs_info);
4360 }
4361
4362 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4363 {
4364         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4365                                 (u64)-1);
4366         WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4367         WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4368         WARN_ON(fs_info->trans_block_rsv.size > 0);
4369         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4370         WARN_ON(fs_info->chunk_block_rsv.size > 0);
4371         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4372         WARN_ON(fs_info->delayed_block_rsv.size > 0);
4373         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4374 }
4375
4376 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4377                                   struct btrfs_root *root)
4378 {
4379         if (!trans->block_rsv)
4380                 return;
4381
4382         if (!trans->bytes_reserved)
4383                 return;
4384
4385         trace_btrfs_space_reservation(root->fs_info, "transaction",
4386                                       trans->transid, trans->bytes_reserved, 0);
4387         btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4388         trans->bytes_reserved = 0;
4389 }
4390
4391 /* Can only return 0 or -ENOSPC */
4392 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4393                                   struct inode *inode)
4394 {
4395         struct btrfs_root *root = BTRFS_I(inode)->root;
4396         struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4397         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4398
4399         /*
4400          * We need to hold space in order to delete our orphan item once we've
4401          * added it, so this takes the reservation so we can release it later
4402          * when we are truly done with the orphan item.
4403          */
4404         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4405         trace_btrfs_space_reservation(root->fs_info, "orphan",
4406                                       btrfs_ino(inode), num_bytes, 1);
4407         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4408 }
4409
4410 void btrfs_orphan_release_metadata(struct inode *inode)
4411 {
4412         struct btrfs_root *root = BTRFS_I(inode)->root;
4413         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4414         trace_btrfs_space_reservation(root->fs_info, "orphan",
4415                                       btrfs_ino(inode), num_bytes, 0);
4416         btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4417 }
4418
4419 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4420                                 struct btrfs_pending_snapshot *pending)
4421 {
4422         struct btrfs_root *root = pending->root;
4423         struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4424         struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4425         /*
4426          * two for root back/forward refs, two for directory entries,
4427          * one for root of the snapshot and one for parent inode.
4428          */
4429         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6);
4430         dst_rsv->space_info = src_rsv->space_info;
4431         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4432 }
4433
4434 /**
4435  * drop_outstanding_extent - drop an outstanding extent
4436  * @inode: the inode we're dropping the extent for
4437  *
4438  * This is called when we are freeing up an outstanding extent, either called
4439  * after an error or after an extent is written.  This will return the number of
4440  * reserved extents that need to be freed.  This must be called with
4441  * BTRFS_I(inode)->lock held.
4442  */
4443 static unsigned drop_outstanding_extent(struct inode *inode)
4444 {
4445         unsigned drop_inode_space = 0;
4446         unsigned dropped_extents = 0;
4447
4448         BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4449         BTRFS_I(inode)->outstanding_extents--;
4450
4451         if (BTRFS_I(inode)->outstanding_extents == 0 &&
4452             test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4453                                &BTRFS_I(inode)->runtime_flags))
4454                 drop_inode_space = 1;
4455
4456         /*
4457          * If we have more or the same amount of outsanding extents than we have
4458          * reserved then we need to leave the reserved extents count alone.
4459          */
4460         if (BTRFS_I(inode)->outstanding_extents >=
4461             BTRFS_I(inode)->reserved_extents)
4462                 return drop_inode_space;
4463
4464         dropped_extents = BTRFS_I(inode)->reserved_extents -
4465                 BTRFS_I(inode)->outstanding_extents;
4466         BTRFS_I(inode)->reserved_extents -= dropped_extents;
4467         return dropped_extents + drop_inode_space;
4468 }
4469
4470 /**
4471  * calc_csum_metadata_size - return the amount of metada space that must be
4472  *      reserved/free'd for the given bytes.
4473  * @inode: the inode we're manipulating
4474  * @num_bytes: the number of bytes in question
4475  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4476  *
4477  * This adjusts the number of csum_bytes in the inode and then returns the
4478  * correct amount of metadata that must either be reserved or freed.  We
4479  * calculate how many checksums we can fit into one leaf and then divide the
4480  * number of bytes that will need to be checksumed by this value to figure out
4481  * how many checksums will be required.  If we are adding bytes then the number
4482  * may go up and we will return the number of additional bytes that must be
4483  * reserved.  If it is going down we will return the number of bytes that must
4484  * be freed.
4485  *
4486  * This must be called with BTRFS_I(inode)->lock held.
4487  */
4488 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4489                                    int reserve)
4490 {
4491         struct btrfs_root *root = BTRFS_I(inode)->root;
4492         u64 csum_size;
4493         int num_csums_per_leaf;
4494         int num_csums;
4495         int old_csums;
4496
4497         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4498             BTRFS_I(inode)->csum_bytes == 0)
4499                 return 0;
4500
4501         old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4502         if (reserve)
4503                 BTRFS_I(inode)->csum_bytes += num_bytes;
4504         else
4505                 BTRFS_I(inode)->csum_bytes -= num_bytes;
4506         csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4507         num_csums_per_leaf = (int)div64_u64(csum_size,
4508                                             sizeof(struct btrfs_csum_item) +
4509                                             sizeof(struct btrfs_disk_key));
4510         num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4511         num_csums = num_csums + num_csums_per_leaf - 1;
4512         num_csums = num_csums / num_csums_per_leaf;
4513
4514         old_csums = old_csums + num_csums_per_leaf - 1;
4515         old_csums = old_csums / num_csums_per_leaf;
4516
4517         /* No change, no need to reserve more */
4518         if (old_csums == num_csums)
4519                 return 0;
4520
4521         if (reserve)
4522                 return btrfs_calc_trans_metadata_size(root,
4523                                                       num_csums - old_csums);
4524
4525         return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4526 }
4527
4528 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4529 {
4530         struct btrfs_root *root = BTRFS_I(inode)->root;
4531         struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4532         u64 to_reserve = 0;
4533         u64 csum_bytes;
4534         unsigned nr_extents = 0;
4535         int extra_reserve = 0;
4536         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4537         int ret;
4538         bool delalloc_lock = true;
4539
4540         /* If we are a free space inode we need to not flush since we will be in
4541          * the middle of a transaction commit.  We also don't need the delalloc
4542          * mutex since we won't race with anybody.  We need this mostly to make
4543          * lockdep shut its filthy mouth.
4544          */
4545         if (btrfs_is_free_space_inode(inode)) {
4546                 flush = BTRFS_RESERVE_NO_FLUSH;
4547                 delalloc_lock = false;
4548         }
4549
4550         if (flush != BTRFS_RESERVE_NO_FLUSH &&
4551             btrfs_transaction_in_commit(root->fs_info))
4552                 schedule_timeout(1);
4553
4554         if (delalloc_lock)
4555                 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4556
4557         num_bytes = ALIGN(num_bytes, root->sectorsize);
4558
4559         spin_lock(&BTRFS_I(inode)->lock);
4560         BTRFS_I(inode)->outstanding_extents++;
4561
4562         if (BTRFS_I(inode)->outstanding_extents >
4563             BTRFS_I(inode)->reserved_extents)
4564                 nr_extents = BTRFS_I(inode)->outstanding_extents -
4565                         BTRFS_I(inode)->reserved_extents;
4566
4567         /*
4568          * Add an item to reserve for updating the inode when we complete the
4569          * delalloc io.
4570          */
4571         if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4572                       &BTRFS_I(inode)->runtime_flags)) {
4573                 nr_extents++;
4574                 extra_reserve = 1;
4575         }
4576
4577         to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4578         to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4579         csum_bytes = BTRFS_I(inode)->csum_bytes;
4580         spin_unlock(&BTRFS_I(inode)->lock);
4581
4582         if (root->fs_info->quota_enabled) {
4583                 ret = btrfs_qgroup_reserve(root, num_bytes +
4584                                            nr_extents * root->leafsize);
4585                 if (ret) {
4586                         spin_lock(&BTRFS_I(inode)->lock);
4587                         calc_csum_metadata_size(inode, num_bytes, 0);
4588                         spin_unlock(&BTRFS_I(inode)->lock);
4589                         if (delalloc_lock)
4590                                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4591                         return ret;
4592                 }
4593         }
4594
4595         ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4596         if (ret) {
4597                 u64 to_free = 0;
4598                 unsigned dropped;
4599
4600                 spin_lock(&BTRFS_I(inode)->lock);
4601                 dropped = drop_outstanding_extent(inode);
4602                 /*
4603                  * If the inodes csum_bytes is the same as the original
4604                  * csum_bytes then we know we haven't raced with any free()ers
4605                  * so we can just reduce our inodes csum bytes and carry on.
4606                  * Otherwise we have to do the normal free thing to account for
4607                  * the case that the free side didn't free up its reserve
4608                  * because of this outstanding reservation.
4609                  */
4610                 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4611                         calc_csum_metadata_size(inode, num_bytes, 0);
4612                 else
4613                         to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4614                 spin_unlock(&BTRFS_I(inode)->lock);
4615                 if (dropped)
4616                         to_free += btrfs_calc_trans_metadata_size(root, dropped);
4617
4618                 if (to_free) {
4619                         btrfs_block_rsv_release(root, block_rsv, to_free);
4620                         trace_btrfs_space_reservation(root->fs_info,
4621                                                       "delalloc",
4622                                                       btrfs_ino(inode),
4623                                                       to_free, 0);
4624                 }
4625                 if (root->fs_info->quota_enabled) {
4626                         btrfs_qgroup_free(root, num_bytes +
4627                                                 nr_extents * root->leafsize);
4628                 }
4629                 if (delalloc_lock)
4630                         mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4631                 return ret;
4632         }
4633
4634         spin_lock(&BTRFS_I(inode)->lock);
4635         if (extra_reserve) {
4636                 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4637                         &BTRFS_I(inode)->runtime_flags);
4638                 nr_extents--;
4639         }
4640         BTRFS_I(inode)->reserved_extents += nr_extents;
4641         spin_unlock(&BTRFS_I(inode)->lock);
4642
4643         if (delalloc_lock)
4644                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4645
4646         if (to_reserve)
4647                 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4648                                               btrfs_ino(inode), to_reserve, 1);
4649         block_rsv_add_bytes(block_rsv, to_reserve, 1);
4650
4651         return 0;
4652 }
4653
4654 /**
4655  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4656  * @inode: the inode to release the reservation for
4657  * @num_bytes: the number of bytes we're releasing
4658  *
4659  * This will release the metadata reservation for an inode.  This can be called
4660  * once we complete IO for a given set of bytes to release their metadata
4661  * reservations.
4662  */
4663 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4664 {
4665         struct btrfs_root *root = BTRFS_I(inode)->root;
4666         u64 to_free = 0;
4667         unsigned dropped;
4668
4669         num_bytes = ALIGN(num_bytes, root->sectorsize);
4670         spin_lock(&BTRFS_I(inode)->lock);
4671         dropped = drop_outstanding_extent(inode);
4672
4673         to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4674         spin_unlock(&BTRFS_I(inode)->lock);
4675         if (dropped > 0)
4676                 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4677
4678         trace_btrfs_space_reservation(root->fs_info, "delalloc",
4679                                       btrfs_ino(inode), to_free, 0);
4680         if (root->fs_info->quota_enabled) {
4681                 btrfs_qgroup_free(root, num_bytes +
4682                                         dropped * root->leafsize);
4683         }
4684
4685         btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4686                                 to_free);
4687 }
4688
4689 /**
4690  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4691  * @inode: inode we're writing to
4692  * @num_bytes: the number of bytes we want to allocate
4693  *
4694  * This will do the following things
4695  *
4696  * o reserve space in the data space info for num_bytes
4697  * o reserve space in the metadata space info based on number of outstanding
4698  *   extents and how much csums will be needed
4699  * o add to the inodes ->delalloc_bytes
4700  * o add it to the fs_info's delalloc inodes list.
4701  *
4702  * This will return 0 for success and -ENOSPC if there is no space left.
4703  */
4704 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4705 {
4706         int ret;
4707
4708         ret = btrfs_check_data_free_space(inode, num_bytes);
4709         if (ret)
4710                 return ret;
4711
4712         ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4713         if (ret) {
4714                 btrfs_free_reserved_data_space(inode, num_bytes);
4715                 return ret;
4716         }
4717
4718         return 0;
4719 }
4720
4721 /**
4722  * btrfs_delalloc_release_space - release data and metadata space for delalloc
4723  * @inode: inode we're releasing space for
4724  * @num_bytes: the number of bytes we want to free up
4725  *
4726  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
4727  * called in the case that we don't need the metadata AND data reservations
4728  * anymore.  So if there is an error or we insert an inline extent.
4729  *
4730  * This function will release the metadata space that was not used and will
4731  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4732  * list if there are no delalloc bytes left.
4733  */
4734 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4735 {
4736         btrfs_delalloc_release_metadata(inode, num_bytes);
4737         btrfs_free_reserved_data_space(inode, num_bytes);
4738 }
4739
4740 static int update_block_group(struct btrfs_trans_handle *trans,
4741                               struct btrfs_root *root,
4742                               u64 bytenr, u64 num_bytes, int alloc)
4743 {
4744         struct btrfs_block_group_cache *cache = NULL;
4745         struct btrfs_fs_info *info = root->fs_info;
4746         u64 total = num_bytes;
4747         u64 old_val;
4748         u64 byte_in_group;
4749         int factor;
4750
4751         /* block accounting for super block */
4752         spin_lock(&info->delalloc_lock);
4753         old_val = btrfs_super_bytes_used(info->super_copy);
4754         if (alloc)
4755                 old_val += num_bytes;
4756         else
4757                 old_val -= num_bytes;
4758         btrfs_set_super_bytes_used(info->super_copy, old_val);
4759         spin_unlock(&info->delalloc_lock);
4760
4761         while (total) {
4762                 cache = btrfs_lookup_block_group(info, bytenr);
4763                 if (!cache)
4764                         return -ENOENT;
4765                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4766                                     BTRFS_BLOCK_GROUP_RAID1 |
4767                                     BTRFS_BLOCK_GROUP_RAID10))
4768                         factor = 2;
4769                 else
4770                         factor = 1;
4771                 /*
4772                  * If this block group has free space cache written out, we
4773                  * need to make sure to load it if we are removing space.  This
4774                  * is because we need the unpinning stage to actually add the
4775                  * space back to the block group, otherwise we will leak space.
4776                  */
4777                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4778                         cache_block_group(cache, trans, NULL, 1);
4779
4780                 byte_in_group = bytenr - cache->key.objectid;
4781                 WARN_ON(byte_in_group > cache->key.offset);
4782
4783                 spin_lock(&cache->space_info->lock);
4784                 spin_lock(&cache->lock);
4785
4786                 if (btrfs_test_opt(root, SPACE_CACHE) &&
4787                     cache->disk_cache_state < BTRFS_DC_CLEAR)
4788                         cache->disk_cache_state = BTRFS_DC_CLEAR;
4789
4790                 cache->dirty = 1;
4791                 old_val = btrfs_block_group_used(&cache->item);
4792                 num_bytes = min(total, cache->key.offset - byte_in_group);
4793                 if (alloc) {
4794                         old_val += num_bytes;
4795                         btrfs_set_block_group_used(&cache->item, old_val);
4796                         cache->reserved -= num_bytes;
4797                         cache->space_info->bytes_reserved -= num_bytes;
4798                         cache->space_info->bytes_used += num_bytes;
4799                         cache->space_info->disk_used += num_bytes * factor;
4800                         spin_unlock(&cache->lock);
4801                         spin_unlock(&cache->space_info->lock);
4802                 } else {
4803                         old_val -= num_bytes;
4804                         btrfs_set_block_group_used(&cache->item, old_val);
4805                         cache->pinned += num_bytes;
4806                         cache->space_info->bytes_pinned += num_bytes;
4807                         cache->space_info->bytes_used -= num_bytes;
4808                         cache->space_info->disk_used -= num_bytes * factor;
4809                         spin_unlock(&cache->lock);
4810                         spin_unlock(&cache->space_info->lock);
4811
4812                         set_extent_dirty(info->pinned_extents,
4813                                          bytenr, bytenr + num_bytes - 1,
4814                                          GFP_NOFS | __GFP_NOFAIL);
4815                 }
4816                 btrfs_put_block_group(cache);
4817                 total -= num_bytes;
4818                 bytenr += num_bytes;
4819         }
4820         return 0;
4821 }
4822
4823 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4824 {
4825         struct btrfs_block_group_cache *cache;
4826         u64 bytenr;
4827
4828         cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4829         if (!cache)
4830                 return 0;
4831
4832         bytenr = cache->key.objectid;
4833         btrfs_put_block_group(cache);
4834
4835         return bytenr;
4836 }
4837
4838 static int pin_down_extent(struct btrfs_root *root,
4839                            struct btrfs_block_group_cache *cache,
4840                            u64 bytenr, u64 num_bytes, int reserved)
4841 {
4842         spin_lock(&cache->space_info->lock);
4843         spin_lock(&cache->lock);
4844         cache->pinned += num_bytes;
4845         cache->space_info->bytes_pinned += num_bytes;
4846         if (reserved) {
4847                 cache->reserved -= num_bytes;
4848                 cache->space_info->bytes_reserved -= num_bytes;
4849         }
4850         spin_unlock(&cache->lock);
4851         spin_unlock(&cache->space_info->lock);
4852
4853         set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4854                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4855         return 0;
4856 }
4857
4858 /*
4859  * this function must be called within transaction
4860  */
4861 int btrfs_pin_extent(struct btrfs_root *root,
4862                      u64 bytenr, u64 num_bytes, int reserved)
4863 {
4864         struct btrfs_block_group_cache *cache;
4865
4866         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4867         BUG_ON(!cache); /* Logic error */
4868
4869         pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4870
4871         btrfs_put_block_group(cache);
4872         return 0;
4873 }
4874
4875 /*
4876  * this function must be called within transaction
4877  */
4878 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4879                                     struct btrfs_root *root,
4880                                     u64 bytenr, u64 num_bytes)
4881 {
4882         struct btrfs_block_group_cache *cache;
4883
4884         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4885         BUG_ON(!cache); /* Logic error */
4886
4887         /*
4888          * pull in the free space cache (if any) so that our pin
4889          * removes the free space from the cache.  We have load_only set
4890          * to one because the slow code to read in the free extents does check
4891          * the pinned extents.
4892          */
4893         cache_block_group(cache, trans, root, 1);
4894
4895         pin_down_extent(root, cache, bytenr, num_bytes, 0);
4896
4897         /* remove us from the free space cache (if we're there at all) */
4898         btrfs_remove_free_space(cache, bytenr, num_bytes);
4899         btrfs_put_block_group(cache);
4900         return 0;
4901 }
4902
4903 /**
4904  * btrfs_update_reserved_bytes - update the block_group and space info counters
4905  * @cache:      The cache we are manipulating
4906  * @num_bytes:  The number of bytes in question
4907  * @reserve:    One of the reservation enums
4908  *
4909  * This is called by the allocator when it reserves space, or by somebody who is
4910  * freeing space that was never actually used on disk.  For example if you
4911  * reserve some space for a new leaf in transaction A and before transaction A
4912  * commits you free that leaf, you call this with reserve set to 0 in order to
4913  * clear the reservation.
4914  *
4915  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4916  * ENOSPC accounting.  For data we handle the reservation through clearing the
4917  * delalloc bits in the io_tree.  We have to do this since we could end up
4918  * allocating less disk space for the amount of data we have reserved in the
4919  * case of compression.
4920  *
4921  * If this is a reservation and the block group has become read only we cannot
4922  * make the reservation and return -EAGAIN, otherwise this function always
4923  * succeeds.
4924  */
4925 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4926                                        u64 num_bytes, int reserve)
4927 {
4928         struct btrfs_space_info *space_info = cache->space_info;
4929         int ret = 0;
4930
4931         spin_lock(&space_info->lock);
4932         spin_lock(&cache->lock);
4933         if (reserve != RESERVE_FREE) {
4934                 if (cache->ro) {
4935                         ret = -EAGAIN;
4936                 } else {
4937                         cache->reserved += num_bytes;
4938                         space_info->bytes_reserved += num_bytes;
4939                         if (reserve == RESERVE_ALLOC) {
4940                                 trace_btrfs_space_reservation(cache->fs_info,
4941                                                 "space_info", space_info->flags,
4942                                                 num_bytes, 0);
4943                                 space_info->bytes_may_use -= num_bytes;
4944                         }
4945                 }
4946         } else {
4947                 if (cache->ro)
4948                         space_info->bytes_readonly += num_bytes;
4949                 cache->reserved -= num_bytes;
4950                 space_info->bytes_reserved -= num_bytes;
4951                 space_info->reservation_progress++;
4952         }
4953         spin_unlock(&cache->lock);
4954         spin_unlock(&space_info->lock);
4955         return ret;
4956 }
4957
4958 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4959                                 struct btrfs_root *root)
4960 {
4961         struct btrfs_fs_info *fs_info = root->fs_info;
4962         struct btrfs_caching_control *next;
4963         struct btrfs_caching_control *caching_ctl;
4964         struct btrfs_block_group_cache *cache;
4965
4966         down_write(&fs_info->extent_commit_sem);
4967
4968         list_for_each_entry_safe(caching_ctl, next,
4969                                  &fs_info->caching_block_groups, list) {
4970                 cache = caching_ctl->block_group;
4971                 if (block_group_cache_done(cache)) {
4972                         cache->last_byte_to_unpin = (u64)-1;
4973                         list_del_init(&caching_ctl->list);
4974                         put_caching_control(caching_ctl);
4975                 } else {
4976                         cache->last_byte_to_unpin = caching_ctl->progress;
4977                 }
4978         }
4979
4980         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4981                 fs_info->pinned_extents = &fs_info->freed_extents[1];
4982         else
4983                 fs_info->pinned_extents = &fs_info->freed_extents[0];
4984
4985         up_write(&fs_info->extent_commit_sem);
4986
4987         update_global_block_rsv(fs_info);
4988 }
4989
4990 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4991 {
4992         struct btrfs_fs_info *fs_info = root->fs_info;
4993         struct btrfs_block_group_cache *cache = NULL;
4994         struct btrfs_space_info *space_info;
4995         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4996         u64 len;
4997         bool readonly;
4998
4999         while (start <= end) {
5000                 readonly = false;
5001                 if (!cache ||
5002                     start >= cache->key.objectid + cache->key.offset) {
5003                         if (cache)
5004                                 btrfs_put_block_group(cache);
5005                         cache = btrfs_lookup_block_group(fs_info, start);
5006                         BUG_ON(!cache); /* Logic error */
5007                 }
5008
5009                 len = cache->key.objectid + cache->key.offset - start;
5010                 len = min(len, end + 1 - start);
5011
5012                 if (start < cache->last_byte_to_unpin) {
5013                         len = min(len, cache->last_byte_to_unpin - start);
5014                         btrfs_add_free_space(cache, start, len);
5015                 }
5016
5017                 start += len;
5018                 space_info = cache->space_info;
5019
5020                 spin_lock(&space_info->lock);
5021                 spin_lock(&cache->lock);
5022                 cache->pinned -= len;
5023                 space_info->bytes_pinned -= len;
5024                 if (cache->ro) {
5025                         space_info->bytes_readonly += len;
5026                         readonly = true;
5027                 }
5028                 spin_unlock(&cache->lock);
5029                 if (!readonly && global_rsv->space_info == space_info) {
5030                         spin_lock(&global_rsv->lock);
5031                         if (!global_rsv->full) {
5032                                 len = min(len, global_rsv->size -
5033                                           global_rsv->reserved);
5034                                 global_rsv->reserved += len;
5035                                 space_info->bytes_may_use += len;
5036                                 if (global_rsv->reserved >= global_rsv->size)
5037                                         global_rsv->full = 1;
5038                         }
5039                         spin_unlock(&global_rsv->lock);
5040                 }
5041                 spin_unlock(&space_info->lock);
5042         }
5043
5044         if (cache)
5045                 btrfs_put_block_group(cache);
5046         return 0;
5047 }
5048
5049 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5050                                struct btrfs_root *root)
5051 {
5052         struct btrfs_fs_info *fs_info = root->fs_info;
5053         struct extent_io_tree *unpin;
5054         u64 start;
5055         u64 end;
5056         int ret;
5057
5058         if (trans->aborted)
5059                 return 0;
5060
5061         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5062                 unpin = &fs_info->freed_extents[1];
5063         else
5064                 unpin = &fs_info->freed_extents[0];
5065
5066         while (1) {
5067                 ret = find_first_extent_bit(unpin, 0, &start, &end,
5068                                             EXTENT_DIRTY, NULL);
5069                 if (ret)
5070                         break;
5071
5072                 if (btrfs_test_opt(root, DISCARD))
5073                         ret = btrfs_discard_extent(root, start,
5074                                                    end + 1 - start, NULL);
5075
5076                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5077                 unpin_extent_range(root, start, end);
5078                 cond_resched();
5079         }
5080
5081         return 0;
5082 }
5083
5084 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5085                                 struct btrfs_root *root,
5086                                 u64 bytenr, u64 num_bytes, u64 parent,
5087                                 u64 root_objectid, u64 owner_objectid,
5088                                 u64 owner_offset, int refs_to_drop,
5089                                 struct btrfs_delayed_extent_op *extent_op)
5090 {
5091         struct btrfs_key key;
5092         struct btrfs_path *path;
5093         struct btrfs_fs_info *info = root->fs_info;
5094         struct btrfs_root *extent_root = info->extent_root;
5095         struct extent_buffer *leaf;
5096         struct btrfs_extent_item *ei;
5097         struct btrfs_extent_inline_ref *iref;
5098         int ret;
5099         int is_data;
5100         int extent_slot = 0;
5101         int found_extent = 0;
5102         int num_to_del = 1;
5103         u32 item_size;
5104         u64 refs;
5105
5106         path = btrfs_alloc_path();
5107         if (!path)
5108                 return -ENOMEM;
5109
5110         path->reada = 1;
5111         path->leave_spinning = 1;
5112
5113         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5114         BUG_ON(!is_data && refs_to_drop != 1);
5115
5116         ret = lookup_extent_backref(trans, extent_root, path, &iref,
5117                                     bytenr, num_bytes, parent,
5118                                     root_objectid, owner_objectid,
5119                                     owner_offset);
5120         if (ret == 0) {
5121                 extent_slot = path->slots[0];
5122                 while (extent_slot >= 0) {
5123                         btrfs_item_key_to_cpu(path->nodes[0], &key,
5124                                               extent_slot);
5125                         if (key.objectid != bytenr)
5126                                 break;
5127                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5128                             key.offset == num_bytes) {
5129                                 found_extent = 1;
5130                                 break;
5131                         }
5132                         if (path->slots[0] - extent_slot > 5)
5133                                 break;
5134                         extent_slot--;
5135                 }
5136 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5137                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5138                 if (found_extent && item_size < sizeof(*ei))
5139                         found_extent = 0;
5140 #endif
5141                 if (!found_extent) {
5142                         BUG_ON(iref);
5143                         ret = remove_extent_backref(trans, extent_root, path,
5144                                                     NULL, refs_to_drop,
5145                                                     is_data);
5146                         if (ret) {
5147                                 btrfs_abort_transaction(trans, extent_root, ret);
5148                                 goto out;
5149                         }
5150                         btrfs_release_path(path);
5151                         path->leave_spinning = 1;
5152
5153                         key.objectid = bytenr;
5154                         key.type = BTRFS_EXTENT_ITEM_KEY;
5155                         key.offset = num_bytes;
5156
5157                         ret = btrfs_search_slot(trans, extent_root,
5158                                                 &key, path, -1, 1);
5159                         if (ret) {
5160                                 printk(KERN_ERR "umm, got %d back from search"
5161                                        ", was looking for %llu\n", ret,
5162                                        (unsigned long long)bytenr);
5163                                 if (ret > 0)
5164                                         btrfs_print_leaf(extent_root,
5165                                                          path->nodes[0]);
5166                         }
5167                         if (ret < 0) {
5168                                 btrfs_abort_transaction(trans, extent_root, ret);
5169                                 goto out;
5170                         }
5171                         extent_slot = path->slots[0];
5172                 }
5173         } else if (ret == -ENOENT) {
5174                 btrfs_print_leaf(extent_root, path->nodes[0]);
5175                 WARN_ON(1);
5176                 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5177                        "parent %llu root %llu  owner %llu offset %llu\n",
5178                        (unsigned long long)bytenr,
5179                        (unsigned long long)parent,
5180                        (unsigned long long)root_objectid,
5181                        (unsigned long long)owner_objectid,
5182                        (unsigned long long)owner_offset);
5183         } else {
5184                 btrfs_abort_transaction(trans, extent_root, ret);
5185                 goto out;
5186         }
5187
5188         leaf = path->nodes[0];
5189         item_size = btrfs_item_size_nr(leaf, extent_slot);
5190 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5191         if (item_size < sizeof(*ei)) {
5192                 BUG_ON(found_extent || extent_slot != path->slots[0]);
5193                 ret = convert_extent_item_v0(trans, extent_root, path,
5194                                              owner_objectid, 0);
5195                 if (ret < 0) {
5196                         btrfs_abort_transaction(trans, extent_root, ret);
5197                         goto out;
5198                 }
5199
5200                 btrfs_release_path(path);
5201                 path->leave_spinning = 1;
5202
5203                 key.objectid = bytenr;
5204                 key.type = BTRFS_EXTENT_ITEM_KEY;
5205                 key.offset = num_bytes;
5206
5207                 ret = btrfs_search_slot(trans, extent_root, &key, path,
5208                                         -1, 1);
5209                 if (ret) {
5210                         printk(KERN_ERR "umm, got %d back from search"
5211                                ", was looking for %llu\n", ret,
5212                                (unsigned long long)bytenr);
5213                         btrfs_print_leaf(extent_root, path->nodes[0]);
5214                 }
5215                 if (ret < 0) {
5216                         btrfs_abort_transaction(trans, extent_root, ret);
5217                         goto out;
5218                 }
5219
5220                 extent_slot = path->slots[0];
5221                 leaf = path->nodes[0];
5222                 item_size = btrfs_item_size_nr(leaf, extent_slot);
5223         }
5224 #endif
5225         BUG_ON(item_size < sizeof(*ei));
5226         ei = btrfs_item_ptr(leaf, extent_slot,
5227                             struct btrfs_extent_item);
5228         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5229                 struct btrfs_tree_block_info *bi;
5230                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5231                 bi = (struct btrfs_tree_block_info *)(ei + 1);
5232                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5233         }
5234
5235         refs = btrfs_extent_refs(leaf, ei);
5236         BUG_ON(refs < refs_to_drop);
5237         refs -= refs_to_drop;
5238
5239         if (refs > 0) {
5240                 if (extent_op)
5241                         __run_delayed_extent_op(extent_op, leaf, ei);
5242                 /*
5243                  * In the case of inline back ref, reference count will
5244                  * be updated by remove_extent_backref
5245                  */
5246                 if (iref) {
5247                         BUG_ON(!found_extent);
5248                 } else {
5249                         btrfs_set_extent_refs(leaf, ei, refs);
5250                         btrfs_mark_buffer_dirty(leaf);
5251                 }
5252                 if (found_extent) {
5253                         ret = remove_extent_backref(trans, extent_root, path,
5254                                                     iref, refs_to_drop,
5255                                                     is_data);
5256                         if (ret) {
5257                                 btrfs_abort_transaction(trans, extent_root, ret);
5258                                 goto out;
5259                         }
5260                 }
5261         } else {
5262                 if (found_extent) {
5263                         BUG_ON(is_data && refs_to_drop !=
5264                                extent_data_ref_count(root, path, iref));
5265                         if (iref) {
5266                                 BUG_ON(path->slots[0] != extent_slot);
5267                         } else {
5268                                 BUG_ON(path->slots[0] != extent_slot + 1);
5269                                 path->slots[0] = extent_slot;
5270                                 num_to_del = 2;
5271                         }
5272                 }
5273
5274                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5275                                       num_to_del);
5276                 if (ret) {
5277                         btrfs_abort_transaction(trans, extent_root, ret);
5278                         goto out;
5279                 }
5280                 btrfs_release_path(path);
5281
5282                 if (is_data) {
5283                         ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5284                         if (ret) {
5285                                 btrfs_abort_transaction(trans, extent_root, ret);
5286                                 goto out;
5287                         }
5288                 }
5289
5290                 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5291                 if (ret) {
5292                         btrfs_abort_transaction(trans, extent_root, ret);
5293                         goto out;
5294                 }
5295         }
5296 out:
5297         btrfs_free_path(path);
5298         return ret;
5299 }
5300
5301 /*
5302  * when we free an block, it is possible (and likely) that we free the last
5303  * delayed ref for that extent as well.  This searches the delayed ref tree for
5304  * a given extent, and if there are no other delayed refs to be processed, it
5305  * removes it from the tree.
5306  */
5307 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5308                                       struct btrfs_root *root, u64 bytenr)
5309 {
5310         struct btrfs_delayed_ref_head *head;
5311         struct btrfs_delayed_ref_root *delayed_refs;
5312         struct btrfs_delayed_ref_node *ref;
5313         struct rb_node *node;
5314         int ret = 0;
5315
5316         delayed_refs = &trans->transaction->delayed_refs;
5317         spin_lock(&delayed_refs->lock);
5318         head = btrfs_find_delayed_ref_head(trans, bytenr);
5319         if (!head)
5320                 goto out;
5321
5322         node = rb_prev(&head->node.rb_node);
5323         if (!node)
5324                 goto out;
5325
5326         ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5327
5328         /* there are still entries for this ref, we can't drop it */
5329         if (ref->bytenr == bytenr)
5330                 goto out;
5331
5332         if (head->extent_op) {
5333                 if (!head->must_insert_reserved)
5334                         goto out;
5335                 kfree(head->extent_op);
5336                 head->extent_op = NULL;
5337         }
5338
5339         /*
5340          * waiting for the lock here would deadlock.  If someone else has it
5341          * locked they are already in the process of dropping it anyway
5342          */
5343         if (!mutex_trylock(&head->mutex))
5344                 goto out;
5345
5346         /*
5347          * at this point we have a head with no other entries.  Go
5348          * ahead and process it.
5349          */
5350         head->node.in_tree = 0;
5351         rb_erase(&head->node.rb_node, &delayed_refs->root);
5352
5353         delayed_refs->num_entries--;
5354
5355         /*
5356          * we don't take a ref on the node because we're removing it from the
5357          * tree, so we just steal the ref the tree was holding.
5358          */
5359         delayed_refs->num_heads--;
5360         if (list_empty(&head->cluster))
5361                 delayed_refs->num_heads_ready--;
5362
5363         list_del_init(&head->cluster);
5364         spin_unlock(&delayed_refs->lock);
5365
5366         BUG_ON(head->extent_op);
5367         if (head->must_insert_reserved)
5368                 ret = 1;
5369
5370         mutex_unlock(&head->mutex);
5371         btrfs_put_delayed_ref(&head->node);
5372         return ret;
5373 out:
5374         spin_unlock(&delayed_refs->lock);
5375         return 0;
5376 }
5377
5378 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5379                            struct btrfs_root *root,
5380                            struct extent_buffer *buf,
5381                            u64 parent, int last_ref)
5382 {
5383         struct btrfs_block_group_cache *cache = NULL;
5384         int ret;
5385
5386         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5387                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5388                                         buf->start, buf->len,
5389                                         parent, root->root_key.objectid,
5390                                         btrfs_header_level(buf),
5391                                         BTRFS_DROP_DELAYED_REF, NULL, 0);
5392                 BUG_ON(ret); /* -ENOMEM */
5393         }
5394
5395         if (!last_ref)
5396                 return;
5397
5398         cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5399
5400         if (btrfs_header_generation(buf) == trans->transid) {
5401                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5402                         ret = check_ref_cleanup(trans, root, buf->start);
5403                         if (!ret)
5404                                 goto out;
5405                 }
5406
5407                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5408                         pin_down_extent(root, cache, buf->start, buf->len, 1);
5409                         goto out;
5410                 }
5411
5412                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5413
5414                 btrfs_add_free_space(cache, buf->start, buf->len);
5415                 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5416         }
5417 out:
5418         /*
5419          * Deleting the buffer, clear the corrupt flag since it doesn't matter
5420          * anymore.
5421          */
5422         clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5423         btrfs_put_block_group(cache);
5424 }
5425
5426 /* Can return -ENOMEM */
5427 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5428                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5429                       u64 owner, u64 offset, int for_cow)
5430 {
5431         int ret;
5432         struct btrfs_fs_info *fs_info = root->fs_info;
5433
5434         /*
5435          * tree log blocks never actually go into the extent allocation
5436          * tree, just update pinning info and exit early.
5437          */
5438         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5439                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5440                 /* unlocks the pinned mutex */
5441                 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5442                 ret = 0;
5443         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5444                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5445                                         num_bytes,
5446                                         parent, root_objectid, (int)owner,
5447                                         BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5448         } else {
5449                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5450                                                 num_bytes,
5451                                                 parent, root_objectid, owner,
5452                                                 offset, BTRFS_DROP_DELAYED_REF,
5453                                                 NULL, for_cow);
5454         }
5455         return ret;
5456 }
5457
5458 static u64 stripe_align(struct btrfs_root *root, u64 val)
5459 {
5460         u64 mask = ((u64)root->stripesize - 1);
5461         u64 ret = (val + mask) & ~mask;
5462         return ret;
5463 }
5464
5465 /*
5466  * when we wait for progress in the block group caching, its because
5467  * our allocation attempt failed at least once.  So, we must sleep
5468  * and let some progress happen before we try again.
5469  *
5470  * This function will sleep at least once waiting for new free space to
5471  * show up, and then it will check the block group free space numbers
5472  * for our min num_bytes.  Another option is to have it go ahead
5473  * and look in the rbtree for a free extent of a given size, but this
5474  * is a good start.
5475  */
5476 static noinline int
5477 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5478                                 u64 num_bytes)
5479 {
5480         struct btrfs_caching_control *caching_ctl;
5481         DEFINE_WAIT(wait);
5482
5483         caching_ctl = get_caching_control(cache);
5484         if (!caching_ctl)
5485                 return 0;
5486
5487         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5488                    (cache->free_space_ctl->free_space >= num_bytes));
5489
5490         put_caching_control(caching_ctl);
5491         return 0;
5492 }
5493
5494 static noinline int
5495 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5496 {
5497         struct btrfs_caching_control *caching_ctl;
5498         DEFINE_WAIT(wait);
5499
5500         caching_ctl = get_caching_control(cache);
5501         if (!caching_ctl)
5502                 return 0;
5503
5504         wait_event(caching_ctl->wait, block_group_cache_done(cache));
5505
5506         put_caching_control(caching_ctl);
5507         return 0;
5508 }
5509
5510 int __get_raid_index(u64 flags)
5511 {
5512         int index;
5513
5514         if (flags & BTRFS_BLOCK_GROUP_RAID10)
5515                 index = 0;
5516         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5517                 index = 1;
5518         else if (flags & BTRFS_BLOCK_GROUP_DUP)
5519                 index = 2;
5520         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5521                 index = 3;
5522         else
5523                 index = 4;
5524
5525         return index;
5526 }
5527
5528 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5529 {
5530         return __get_raid_index(cache->flags);
5531 }
5532
5533 enum btrfs_loop_type {
5534         LOOP_CACHING_NOWAIT = 0,
5535         LOOP_CACHING_WAIT = 1,
5536         LOOP_ALLOC_CHUNK = 2,
5537         LOOP_NO_EMPTY_SIZE = 3,
5538 };
5539
5540 /*
5541  * walks the btree of allocated extents and find a hole of a given size.
5542  * The key ins is changed to record the hole:
5543  * ins->objectid == block start
5544  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5545  * ins->offset == number of blocks
5546  * Any available blocks before search_start are skipped.
5547  */
5548 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5549                                      struct btrfs_root *orig_root,
5550                                      u64 num_bytes, u64 empty_size,
5551                                      u64 hint_byte, struct btrfs_key *ins,
5552                                      u64 data)
5553 {
5554         int ret = 0;
5555         struct btrfs_root *root = orig_root->fs_info->extent_root;
5556         struct btrfs_free_cluster *last_ptr = NULL;
5557         struct btrfs_block_group_cache *block_group = NULL;
5558         struct btrfs_block_group_cache *used_block_group;
5559         u64 search_start = 0;
5560         int empty_cluster = 2 * 1024 * 1024;
5561         struct btrfs_space_info *space_info;
5562         int loop = 0;
5563         int index = 0;
5564         int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5565                 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5566         bool found_uncached_bg = false;
5567         bool failed_cluster_refill = false;
5568         bool failed_alloc = false;
5569         bool use_cluster = true;
5570         bool have_caching_bg = false;
5571
5572         WARN_ON(num_bytes < root->sectorsize);
5573         btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5574         ins->objectid = 0;
5575         ins->offset = 0;
5576
5577         trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5578
5579         space_info = __find_space_info(root->fs_info, data);
5580         if (!space_info) {
5581                 printk(KERN_ERR "No space info for %llu\n", data);
5582                 return -ENOSPC;
5583         }
5584
5585         /*
5586          * If the space info is for both data and metadata it means we have a
5587          * small filesystem and we can't use the clustering stuff.
5588          */
5589         if (btrfs_mixed_space_info(space_info))
5590                 use_cluster = false;
5591
5592         if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5593                 last_ptr = &root->fs_info->meta_alloc_cluster;
5594                 if (!btrfs_test_opt(root, SSD))
5595                         empty_cluster = 64 * 1024;
5596         }
5597
5598         if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5599             btrfs_test_opt(root, SSD)) {
5600                 last_ptr = &root->fs_info->data_alloc_cluster;
5601         }
5602
5603         if (last_ptr) {
5604                 spin_lock(&last_ptr->lock);
5605                 if (last_ptr->block_group)
5606                         hint_byte = last_ptr->window_start;
5607                 spin_unlock(&last_ptr->lock);
5608         }
5609
5610         search_start = max(search_start, first_logical_byte(root, 0));
5611         search_start = max(search_start, hint_byte);
5612
5613         if (!last_ptr)
5614                 empty_cluster = 0;
5615
5616         if (search_start == hint_byte) {
5617                 block_group = btrfs_lookup_block_group(root->fs_info,
5618                                                        search_start);
5619                 used_block_group = block_group;
5620                 /*
5621                  * we don't want to use the block group if it doesn't match our
5622                  * allocation bits, or if its not cached.
5623                  *
5624                  * However if we are re-searching with an ideal block group
5625                  * picked out then we don't care that the block group is cached.
5626                  */
5627                 if (block_group && block_group_bits(block_group, data) &&
5628                     block_group->cached != BTRFS_CACHE_NO) {
5629                         down_read(&space_info->groups_sem);
5630                         if (list_empty(&block_group->list) ||
5631                             block_group->ro) {
5632                                 /*
5633                                  * someone is removing this block group,
5634                                  * we can't jump into the have_block_group
5635                                  * target because our list pointers are not
5636                                  * valid
5637                                  */
5638                                 btrfs_put_block_group(block_group);
5639                                 up_read(&space_info->groups_sem);
5640                         } else {
5641                                 index = get_block_group_index(block_group);
5642                                 goto have_block_group;
5643                         }
5644                 } else if (block_group) {
5645                         btrfs_put_block_group(block_group);
5646                 }
5647         }
5648 search:
5649         have_caching_bg = false;
5650         down_read(&space_info->groups_sem);
5651         list_for_each_entry(block_group, &space_info->block_groups[index],
5652                             list) {
5653                 u64 offset;
5654                 int cached;
5655
5656                 used_block_group = block_group;
5657                 btrfs_get_block_group(block_group);
5658                 search_start = block_group->key.objectid;
5659
5660                 /*
5661                  * this can happen if we end up cycling through all the
5662                  * raid types, but we want to make sure we only allocate
5663                  * for the proper type.
5664                  */
5665                 if (!block_group_bits(block_group, data)) {
5666                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
5667                                 BTRFS_BLOCK_GROUP_RAID1 |
5668                                 BTRFS_BLOCK_GROUP_RAID10;
5669
5670                         /*
5671                          * if they asked for extra copies and this block group
5672                          * doesn't provide them, bail.  This does allow us to
5673                          * fill raid0 from raid1.
5674                          */
5675                         if ((data & extra) && !(block_group->flags & extra))
5676                                 goto loop;
5677                 }
5678
5679 have_block_group:
5680                 cached = block_group_cache_done(block_group);
5681                 if (unlikely(!cached)) {
5682                         found_uncached_bg = true;
5683                         ret = cache_block_group(block_group, trans,
5684                                                 orig_root, 0);
5685                         BUG_ON(ret < 0);
5686                         ret = 0;
5687                 }
5688
5689                 if (unlikely(block_group->ro))
5690                         goto loop;
5691
5692                 /*
5693                  * Ok we want to try and use the cluster allocator, so
5694                  * lets look there
5695                  */
5696                 if (last_ptr) {
5697                         /*
5698                          * the refill lock keeps out other
5699                          * people trying to start a new cluster
5700                          */
5701                         spin_lock(&last_ptr->refill_lock);
5702                         used_block_group = last_ptr->block_group;
5703                         if (used_block_group != block_group &&
5704                             (!used_block_group ||
5705                              used_block_group->ro ||
5706                              !block_group_bits(used_block_group, data))) {
5707                                 used_block_group = block_group;
5708                                 goto refill_cluster;
5709                         }
5710
5711                         if (used_block_group != block_group)
5712                                 btrfs_get_block_group(used_block_group);
5713
5714                         offset = btrfs_alloc_from_cluster(used_block_group,
5715                           last_ptr, num_bytes, used_block_group->key.objectid);
5716                         if (offset) {
5717                                 /* we have a block, we're done */
5718                                 spin_unlock(&last_ptr->refill_lock);
5719                                 trace_btrfs_reserve_extent_cluster(root,
5720                                         block_group, search_start, num_bytes);
5721                                 goto checks;
5722                         }
5723
5724                         WARN_ON(last_ptr->block_group != used_block_group);
5725                         if (used_block_group != block_group) {
5726                                 btrfs_put_block_group(used_block_group);
5727                                 used_block_group = block_group;
5728                         }
5729 refill_cluster:
5730                         BUG_ON(used_block_group != block_group);
5731                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5732                          * set up a new clusters, so lets just skip it
5733                          * and let the allocator find whatever block
5734                          * it can find.  If we reach this point, we
5735                          * will have tried the cluster allocator
5736                          * plenty of times and not have found
5737                          * anything, so we are likely way too
5738                          * fragmented for the clustering stuff to find
5739                          * anything.
5740                          *
5741                          * However, if the cluster is taken from the
5742                          * current block group, release the cluster
5743                          * first, so that we stand a better chance of
5744                          * succeeding in the unclustered
5745                          * allocation.  */
5746                         if (loop >= LOOP_NO_EMPTY_SIZE &&
5747                             last_ptr->block_group != block_group) {
5748                                 spin_unlock(&last_ptr->refill_lock);
5749                                 goto unclustered_alloc;
5750                         }
5751
5752                         /*
5753                          * this cluster didn't work out, free it and
5754                          * start over
5755                          */
5756                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
5757
5758                         if (loop >= LOOP_NO_EMPTY_SIZE) {
5759                                 spin_unlock(&last_ptr->refill_lock);
5760                                 goto unclustered_alloc;
5761                         }
5762
5763                         /* allocate a cluster in this block group */
5764                         ret = btrfs_find_space_cluster(trans, root,
5765                                                block_group, last_ptr,
5766                                                search_start, num_bytes,
5767                                                empty_cluster + empty_size);
5768                         if (ret == 0) {
5769                                 /*
5770                                  * now pull our allocation out of this
5771                                  * cluster
5772                                  */
5773                                 offset = btrfs_alloc_from_cluster(block_group,
5774                                                   last_ptr, num_bytes,
5775                                                   search_start);
5776                                 if (offset) {
5777                                         /* we found one, proceed */
5778                                         spin_unlock(&last_ptr->refill_lock);
5779                                         trace_btrfs_reserve_extent_cluster(root,
5780                                                 block_group, search_start,
5781                                                 num_bytes);
5782                                         goto checks;
5783                                 }
5784                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
5785                                    && !failed_cluster_refill) {
5786                                 spin_unlock(&last_ptr->refill_lock);
5787
5788                                 failed_cluster_refill = true;
5789                                 wait_block_group_cache_progress(block_group,
5790                                        num_bytes + empty_cluster + empty_size);
5791                                 goto have_block_group;
5792                         }
5793
5794                         /*
5795                          * at this point we either didn't find a cluster
5796                          * or we weren't able to allocate a block from our
5797                          * cluster.  Free the cluster we've been trying
5798                          * to use, and go to the next block group
5799                          */
5800                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
5801                         spin_unlock(&last_ptr->refill_lock);
5802                         goto loop;
5803                 }
5804
5805 unclustered_alloc:
5806                 spin_lock(&block_group->free_space_ctl->tree_lock);
5807                 if (cached &&
5808                     block_group->free_space_ctl->free_space <
5809                     num_bytes + empty_cluster + empty_size) {
5810                         spin_unlock(&block_group->free_space_ctl->tree_lock);
5811                         goto loop;
5812                 }
5813                 spin_unlock(&block_group->free_space_ctl->tree_lock);
5814
5815                 offset = btrfs_find_space_for_alloc(block_group, search_start,
5816                                                     num_bytes, empty_size);
5817                 /*
5818                  * If we didn't find a chunk, and we haven't failed on this
5819                  * block group before, and this block group is in the middle of
5820                  * caching and we are ok with waiting, then go ahead and wait
5821                  * for progress to be made, and set failed_alloc to true.
5822                  *
5823                  * If failed_alloc is true then we've already waited on this
5824                  * block group once and should move on to the next block group.
5825                  */
5826                 if (!offset && !failed_alloc && !cached &&
5827                     loop > LOOP_CACHING_NOWAIT) {
5828                         wait_block_group_cache_progress(block_group,
5829                                                 num_bytes + empty_size);
5830                         failed_alloc = true;
5831                         goto have_block_group;
5832                 } else if (!offset) {
5833                         if (!cached)
5834                                 have_caching_bg = true;
5835                         goto loop;
5836                 }
5837 checks:
5838                 search_start = stripe_align(root, offset);
5839
5840                 /* move on to the next group */
5841                 if (search_start + num_bytes >
5842                     used_block_group->key.objectid + used_block_group->key.offset) {
5843                         btrfs_add_free_space(used_block_group, offset, num_bytes);
5844                         goto loop;
5845                 }
5846
5847                 if (offset < search_start)
5848                         btrfs_add_free_space(used_block_group, offset,
5849                                              search_start - offset);
5850                 BUG_ON(offset > search_start);
5851
5852                 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5853                                                   alloc_type);
5854                 if (ret == -EAGAIN) {
5855                         btrfs_add_free_space(used_block_group, offset, num_bytes);
5856                         goto loop;
5857                 }
5858
5859                 /* we are all good, lets return */
5860                 ins->objectid = search_start;
5861                 ins->offset = num_bytes;
5862
5863                 trace_btrfs_reserve_extent(orig_root, block_group,
5864                                            search_start, num_bytes);
5865                 if (used_block_group != block_group)
5866                         btrfs_put_block_group(used_block_group);
5867                 btrfs_put_block_group(block_group);
5868                 break;
5869 loop:
5870                 failed_cluster_refill = false;
5871                 failed_alloc = false;
5872                 BUG_ON(index != get_block_group_index(block_group));
5873                 if (used_block_group != block_group)
5874                         btrfs_put_block_group(used_block_group);
5875                 btrfs_put_block_group(block_group);
5876         }
5877         up_read(&space_info->groups_sem);
5878
5879         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5880                 goto search;
5881
5882         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5883                 goto search;
5884
5885         /*
5886          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5887          *                      caching kthreads as we move along
5888          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5889          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5890          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5891          *                      again
5892          */
5893         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5894                 index = 0;
5895                 loop++;
5896                 if (loop == LOOP_ALLOC_CHUNK) {
5897                         ret = do_chunk_alloc(trans, root, data,
5898                                              CHUNK_ALLOC_FORCE);
5899                         /*
5900                          * Do not bail out on ENOSPC since we
5901                          * can do more things.
5902                          */
5903                         if (ret < 0 && ret != -ENOSPC) {
5904                                 btrfs_abort_transaction(trans,
5905                                                         root, ret);
5906                                 goto out;
5907                         }
5908                 }
5909
5910                 if (loop == LOOP_NO_EMPTY_SIZE) {
5911                         empty_size = 0;
5912                         empty_cluster = 0;
5913                 }
5914
5915                 goto search;
5916         } else if (!ins->objectid) {
5917                 ret = -ENOSPC;
5918         } else if (ins->objectid) {
5919                 ret = 0;
5920         }
5921 out:
5922
5923         return ret;
5924 }
5925
5926 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5927                             int dump_block_groups)
5928 {
5929         struct btrfs_block_group_cache *cache;
5930         int index = 0;
5931
5932         spin_lock(&info->lock);
5933         printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5934                (unsigned long long)info->flags,
5935                (unsigned long long)(info->total_bytes - info->bytes_used -
5936                                     info->bytes_pinned - info->bytes_reserved -
5937                                     info->bytes_readonly),
5938                (info->full) ? "" : "not ");
5939         printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5940                "reserved=%llu, may_use=%llu, readonly=%llu\n",
5941                (unsigned long long)info->total_bytes,
5942                (unsigned long long)info->bytes_used,
5943                (unsigned long long)info->bytes_pinned,
5944                (unsigned long long)info->bytes_reserved,
5945                (unsigned long long)info->bytes_may_use,
5946                (unsigned long long)info->bytes_readonly);
5947         spin_unlock(&info->lock);
5948
5949         if (!dump_block_groups)
5950                 return;
5951
5952         down_read(&info->groups_sem);
5953 again:
5954         list_for_each_entry(cache, &info->block_groups[index], list) {
5955                 spin_lock(&cache->lock);
5956                 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5957                        (unsigned long long)cache->key.objectid,
5958                        (unsigned long long)cache->key.offset,
5959                        (unsigned long long)btrfs_block_group_used(&cache->item),
5960                        (unsigned long long)cache->pinned,
5961                        (unsigned long long)cache->reserved,
5962                        cache->ro ? "[readonly]" : "");
5963                 btrfs_dump_free_space(cache, bytes);
5964                 spin_unlock(&cache->lock);
5965         }
5966         if (++index < BTRFS_NR_RAID_TYPES)
5967                 goto again;
5968         up_read(&info->groups_sem);
5969 }
5970
5971 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5972                          struct btrfs_root *root,
5973                          u64 num_bytes, u64 min_alloc_size,
5974                          u64 empty_size, u64 hint_byte,
5975                          struct btrfs_key *ins, u64 data)
5976 {
5977         bool final_tried = false;
5978         int ret;
5979
5980         data = btrfs_get_alloc_profile(root, data);
5981 again:
5982         WARN_ON(num_bytes < root->sectorsize);
5983         ret = find_free_extent(trans, root, num_bytes, empty_size,
5984                                hint_byte, ins, data);
5985
5986         if (ret == -ENOSPC) {
5987                 if (!final_tried) {
5988                         num_bytes = num_bytes >> 1;
5989                         num_bytes = num_bytes & ~(root->sectorsize - 1);
5990                         num_bytes = max(num_bytes, min_alloc_size);
5991                         if (num_bytes == min_alloc_size)
5992                                 final_tried = true;
5993                         goto again;
5994                 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5995                         struct btrfs_space_info *sinfo;
5996
5997                         sinfo = __find_space_info(root->fs_info, data);
5998                         printk(KERN_ERR "btrfs allocation failed flags %llu, "
5999                                "wanted %llu\n", (unsigned long long)data,
6000                                (unsigned long long)num_bytes);
6001                         if (sinfo)
6002                                 dump_space_info(sinfo, num_bytes, 1);
6003                 }
6004         }
6005
6006         trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6007
6008         return ret;
6009 }
6010
6011 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6012                                         u64 start, u64 len, int pin)
6013 {
6014         struct btrfs_block_group_cache *cache;
6015         int ret = 0;
6016
6017         cache = btrfs_lookup_block_group(root->fs_info, start);
6018         if (!cache) {
6019                 printk(KERN_ERR "Unable to find block group for %llu\n",
6020                        (unsigned long long)start);
6021                 return -ENOSPC;
6022         }
6023
6024         if (btrfs_test_opt(root, DISCARD))
6025                 ret = btrfs_discard_extent(root, start, len, NULL);
6026
6027         if (pin)
6028                 pin_down_extent(root, cache, start, len, 1);
6029         else {
6030                 btrfs_add_free_space(cache, start, len);
6031                 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6032         }
6033         btrfs_put_block_group(cache);
6034
6035         trace_btrfs_reserved_extent_free(root, start, len);
6036
6037         return ret;
6038 }
6039
6040 int btrfs_free_reserved_extent(struct btrfs_root *root,
6041                                         u64 start, u64 len)
6042 {
6043         return __btrfs_free_reserved_extent(root, start, len, 0);
6044 }
6045
6046 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6047                                        u64 start, u64 len)
6048 {
6049         return __btrfs_free_reserved_extent(root, start, len, 1);
6050 }
6051
6052 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6053                                       struct btrfs_root *root,
6054                                       u64 parent, u64 root_objectid,
6055                                       u64 flags, u64 owner, u64 offset,
6056                                       struct btrfs_key *ins, int ref_mod)
6057 {
6058         int ret;
6059         struct btrfs_fs_info *fs_info = root->fs_info;
6060         struct btrfs_extent_item *extent_item;
6061         struct btrfs_extent_inline_ref *iref;
6062         struct btrfs_path *path;
6063         struct extent_buffer *leaf;
6064         int type;
6065         u32 size;
6066
6067         if (parent > 0)
6068                 type = BTRFS_SHARED_DATA_REF_KEY;
6069         else
6070                 type = BTRFS_EXTENT_DATA_REF_KEY;
6071
6072         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6073
6074         path = btrfs_alloc_path();
6075         if (!path)
6076                 return -ENOMEM;
6077
6078         path->leave_spinning = 1;
6079         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6080                                       ins, size);
6081         if (ret) {
6082                 btrfs_free_path(path);
6083                 return ret;
6084         }
6085
6086         leaf = path->nodes[0];
6087         extent_item = btrfs_item_ptr(leaf, path->slots[0],
6088                                      struct btrfs_extent_item);
6089         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6090         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6091         btrfs_set_extent_flags(leaf, extent_item,
6092                                flags | BTRFS_EXTENT_FLAG_DATA);
6093
6094         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6095         btrfs_set_extent_inline_ref_type(leaf, iref, type);
6096         if (parent > 0) {
6097                 struct btrfs_shared_data_ref *ref;
6098                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6099                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6100                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6101         } else {
6102                 struct btrfs_extent_data_ref *ref;
6103                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6104                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6105                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6106                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6107                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6108         }
6109
6110         btrfs_mark_buffer_dirty(path->nodes[0]);
6111         btrfs_free_path(path);
6112
6113         ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6114         if (ret) { /* -ENOENT, logic error */
6115                 printk(KERN_ERR "btrfs update block group failed for %llu "
6116                        "%llu\n", (unsigned long long)ins->objectid,
6117                        (unsigned long long)ins->offset);
6118                 BUG();
6119         }
6120         return ret;
6121 }
6122
6123 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6124                                      struct btrfs_root *root,
6125                                      u64 parent, u64 root_objectid,
6126                                      u64 flags, struct btrfs_disk_key *key,
6127                                      int level, struct btrfs_key *ins)
6128 {
6129         int ret;
6130         struct btrfs_fs_info *fs_info = root->fs_info;
6131         struct btrfs_extent_item *extent_item;
6132         struct btrfs_tree_block_info *block_info;
6133         struct btrfs_extent_inline_ref *iref;
6134         struct btrfs_path *path;
6135         struct extent_buffer *leaf;
6136         u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6137
6138         path = btrfs_alloc_path();
6139         if (!path)
6140                 return -ENOMEM;
6141
6142         path->leave_spinning = 1;
6143         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6144                                       ins, size);
6145         if (ret) {
6146                 btrfs_free_path(path);
6147                 return ret;
6148         }
6149
6150         leaf = path->nodes[0];
6151         extent_item = btrfs_item_ptr(leaf, path->slots[0],
6152                                      struct btrfs_extent_item);
6153         btrfs_set_extent_refs(leaf, extent_item, 1);
6154         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6155         btrfs_set_extent_flags(leaf, extent_item,
6156                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6157         block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6158
6159         btrfs_set_tree_block_key(leaf, block_info, key);
6160         btrfs_set_tree_block_level(leaf, block_info, level);
6161
6162         iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6163         if (parent > 0) {
6164                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6165                 btrfs_set_extent_inline_ref_type(leaf, iref,
6166                                                  BTRFS_SHARED_BLOCK_REF_KEY);
6167                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6168         } else {
6169                 btrfs_set_extent_inline_ref_type(leaf, iref,
6170                                                  BTRFS_TREE_BLOCK_REF_KEY);
6171                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6172         }
6173
6174         btrfs_mark_buffer_dirty(leaf);
6175         btrfs_free_path(path);
6176
6177         ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6178         if (ret) { /* -ENOENT, logic error */
6179                 printk(KERN_ERR "btrfs update block group failed for %llu "
6180                        "%llu\n", (unsigned long long)ins->objectid,
6181                        (unsigned long long)ins->offset);
6182                 BUG();
6183         }
6184         return ret;
6185 }
6186
6187 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6188                                      struct btrfs_root *root,
6189                                      u64 root_objectid, u64 owner,
6190                                      u64 offset, struct btrfs_key *ins)
6191 {
6192         int ret;
6193
6194         BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6195
6196         ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6197                                          ins->offset, 0,
6198                                          root_objectid, owner, offset,
6199                                          BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6200         return ret;
6201 }
6202
6203 /*
6204  * this is used by the tree logging recovery code.  It records that
6205  * an extent has been allocated and makes sure to clear the free
6206  * space cache bits as well
6207  */
6208 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6209                                    struct btrfs_root *root,
6210                                    u64 root_objectid, u64 owner, u64 offset,
6211                                    struct btrfs_key *ins)
6212 {
6213         int ret;
6214         struct btrfs_block_group_cache *block_group;
6215         struct btrfs_caching_control *caching_ctl;
6216         u64 start = ins->objectid;
6217         u64 num_bytes = ins->offset;
6218
6219         block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6220         cache_block_group(block_group, trans, NULL, 0);
6221         caching_ctl = get_caching_control(block_group);
6222
6223         if (!caching_ctl) {
6224                 BUG_ON(!block_group_cache_done(block_group));
6225                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6226                 BUG_ON(ret); /* -ENOMEM */
6227         } else {
6228                 mutex_lock(&caching_ctl->mutex);
6229
6230                 if (start >= caching_ctl->progress) {
6231                         ret = add_excluded_extent(root, start, num_bytes);
6232                         BUG_ON(ret); /* -ENOMEM */
6233                 } else if (start + num_bytes <= caching_ctl->progress) {
6234                         ret = btrfs_remove_free_space(block_group,
6235                                                       start, num_bytes);
6236                         BUG_ON(ret); /* -ENOMEM */
6237                 } else {
6238                         num_bytes = caching_ctl->progress - start;
6239                         ret = btrfs_remove_free_space(block_group,
6240                                                       start, num_bytes);
6241                         BUG_ON(ret); /* -ENOMEM */
6242
6243                         start = caching_ctl->progress;
6244                         num_bytes = ins->objectid + ins->offset -
6245                                     caching_ctl->progress;
6246                         ret = add_excluded_extent(root, start, num_bytes);
6247                         BUG_ON(ret); /* -ENOMEM */
6248                 }
6249
6250                 mutex_unlock(&caching_ctl->mutex);
6251                 put_caching_control(caching_ctl);
6252         }
6253
6254         ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6255                                           RESERVE_ALLOC_NO_ACCOUNT);
6256         BUG_ON(ret); /* logic error */
6257         btrfs_put_block_group(block_group);
6258         ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6259                                          0, owner, offset, ins, 1);
6260         return ret;
6261 }
6262
6263 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6264                                             struct btrfs_root *root,
6265                                             u64 bytenr, u32 blocksize,
6266                                             int level)
6267 {
6268         struct extent_buffer *buf;
6269
6270         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6271         if (!buf)
6272                 return ERR_PTR(-ENOMEM);
6273         btrfs_set_header_generation(buf, trans->transid);
6274         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6275         btrfs_tree_lock(buf);
6276         clean_tree_block(trans, root, buf);
6277         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6278
6279         btrfs_set_lock_blocking(buf);
6280         btrfs_set_buffer_uptodate(buf);
6281
6282         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6283                 /*
6284                  * we allow two log transactions at a time, use different
6285                  * EXENT bit to differentiate dirty pages.
6286                  */
6287                 if (root->log_transid % 2 == 0)
6288                         set_extent_dirty(&root->dirty_log_pages, buf->start,
6289                                         buf->start + buf->len - 1, GFP_NOFS);
6290                 else
6291                         set_extent_new(&root->dirty_log_pages, buf->start,
6292                                         buf->start + buf->len - 1, GFP_NOFS);
6293         } else {
6294                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6295                          buf->start + buf->len - 1, GFP_NOFS);
6296         }
6297         trans->blocks_used++;
6298         /* this returns a buffer locked for blocking */
6299         return buf;
6300 }
6301
6302 static struct btrfs_block_rsv *
6303 use_block_rsv(struct btrfs_trans_handle *trans,
6304               struct btrfs_root *root, u32 blocksize)
6305 {
6306         struct btrfs_block_rsv *block_rsv;
6307         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6308         int ret;
6309
6310         block_rsv = get_block_rsv(trans, root);
6311
6312         if (block_rsv->size == 0) {
6313                 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6314                                              BTRFS_RESERVE_NO_FLUSH);
6315                 /*
6316                  * If we couldn't reserve metadata bytes try and use some from
6317                  * the global reserve.
6318                  */
6319                 if (ret && block_rsv != global_rsv) {
6320                         ret = block_rsv_use_bytes(global_rsv, blocksize);
6321                         if (!ret)
6322                                 return global_rsv;
6323                         return ERR_PTR(ret);
6324                 } else if (ret) {
6325                         return ERR_PTR(ret);
6326                 }
6327                 return block_rsv;
6328         }
6329
6330         ret = block_rsv_use_bytes(block_rsv, blocksize);
6331         if (!ret)
6332                 return block_rsv;
6333         if (ret && !block_rsv->failfast) {
6334                 static DEFINE_RATELIMIT_STATE(_rs,
6335                                 DEFAULT_RATELIMIT_INTERVAL,
6336                                 /*DEFAULT_RATELIMIT_BURST*/ 2);
6337                 if (__ratelimit(&_rs))
6338                         WARN(1, KERN_DEBUG "btrfs: block rsv returned %d\n",
6339                              ret);
6340                 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6341                                              BTRFS_RESERVE_NO_FLUSH);
6342                 if (!ret) {
6343                         return block_rsv;
6344                 } else if (ret && block_rsv != global_rsv) {
6345                         ret = block_rsv_use_bytes(global_rsv, blocksize);
6346                         if (!ret)
6347                                 return global_rsv;
6348                 }
6349         }
6350
6351         return ERR_PTR(-ENOSPC);
6352 }
6353
6354 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6355                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
6356 {
6357         block_rsv_add_bytes(block_rsv, blocksize, 0);
6358         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6359 }
6360
6361 /*
6362  * finds a free extent and does all the dirty work required for allocation
6363  * returns the key for the extent through ins, and a tree buffer for
6364  * the first block of the extent through buf.
6365  *
6366  * returns the tree buffer or NULL.
6367  */
6368 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6369                                         struct btrfs_root *root, u32 blocksize,
6370                                         u64 parent, u64 root_objectid,
6371                                         struct btrfs_disk_key *key, int level,
6372                                         u64 hint, u64 empty_size)
6373 {
6374         struct btrfs_key ins;
6375         struct btrfs_block_rsv *block_rsv;
6376         struct extent_buffer *buf;
6377         u64 flags = 0;
6378         int ret;
6379
6380
6381         block_rsv = use_block_rsv(trans, root, blocksize);
6382         if (IS_ERR(block_rsv))
6383                 return ERR_CAST(block_rsv);
6384
6385         ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6386                                    empty_size, hint, &ins, 0);
6387         if (ret) {
6388                 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6389                 return ERR_PTR(ret);
6390         }
6391
6392         buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6393                                     blocksize, level);
6394         BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6395
6396         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6397                 if (parent == 0)
6398                         parent = ins.objectid;
6399                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6400         } else
6401                 BUG_ON(parent > 0);
6402
6403         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6404                 struct btrfs_delayed_extent_op *extent_op;
6405                 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6406                 BUG_ON(!extent_op); /* -ENOMEM */
6407                 if (key)
6408                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
6409                 else
6410                         memset(&extent_op->key, 0, sizeof(extent_op->key));
6411                 extent_op->flags_to_set = flags;
6412                 extent_op->update_key = 1;
6413                 extent_op->update_flags = 1;
6414                 extent_op->is_data = 0;
6415
6416                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6417                                         ins.objectid,
6418                                         ins.offset, parent, root_objectid,
6419                                         level, BTRFS_ADD_DELAYED_EXTENT,
6420                                         extent_op, 0);
6421                 BUG_ON(ret); /* -ENOMEM */
6422         }
6423         return buf;
6424 }
6425
6426 struct walk_control {
6427         u64 refs[BTRFS_MAX_LEVEL];
6428         u64 flags[BTRFS_MAX_LEVEL];
6429         struct btrfs_key update_progress;
6430         int stage;
6431         int level;
6432         int shared_level;
6433         int update_ref;
6434         int keep_locks;
6435         int reada_slot;
6436         int reada_count;
6437         int for_reloc;
6438 };
6439
6440 #define DROP_REFERENCE  1
6441 #define UPDATE_BACKREF  2
6442
6443 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6444                                      struct btrfs_root *root,
6445                                      struct walk_control *wc,
6446                                      struct btrfs_path *path)
6447 {
6448         u64 bytenr;
6449         u64 generation;
6450         u64 refs;
6451         u64 flags;
6452         u32 nritems;
6453         u32 blocksize;
6454         struct btrfs_key key;
6455         struct extent_buffer *eb;
6456         int ret;
6457         int slot;
6458         int nread = 0;
6459
6460         if (path->slots[wc->level] < wc->reada_slot) {
6461                 wc->reada_count = wc->reada_count * 2 / 3;
6462                 wc->reada_count = max(wc->reada_count, 2);
6463         } else {
6464                 wc->reada_count = wc->reada_count * 3 / 2;
6465                 wc->reada_count = min_t(int, wc->reada_count,
6466                                         BTRFS_NODEPTRS_PER_BLOCK(root));
6467         }
6468
6469         eb = path->nodes[wc->level];
6470         nritems = btrfs_header_nritems(eb);
6471         blocksize = btrfs_level_size(root, wc->level - 1);
6472
6473         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6474                 if (nread >= wc->reada_count)
6475                         break;
6476
6477                 cond_resched();
6478                 bytenr = btrfs_node_blockptr(eb, slot);
6479                 generation = btrfs_node_ptr_generation(eb, slot);
6480
6481                 if (slot == path->slots[wc->level])
6482                         goto reada;
6483
6484                 if (wc->stage == UPDATE_BACKREF &&
6485                     generation <= root->root_key.offset)
6486                         continue;
6487
6488                 /* We don't lock the tree block, it's OK to be racy here */
6489                 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6490                                                &refs, &flags);
6491                 /* We don't care about errors in readahead. */
6492                 if (ret < 0)
6493                         continue;
6494                 BUG_ON(refs == 0);
6495
6496                 if (wc->stage == DROP_REFERENCE) {
6497                         if (refs == 1)
6498                                 goto reada;
6499
6500                         if (wc->level == 1 &&
6501                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6502                                 continue;
6503                         if (!wc->update_ref ||
6504                             generation <= root->root_key.offset)
6505                                 continue;
6506                         btrfs_node_key_to_cpu(eb, &key, slot);
6507                         ret = btrfs_comp_cpu_keys(&key,
6508                                                   &wc->update_progress);
6509                         if (ret < 0)
6510                                 continue;
6511                 } else {
6512                         if (wc->level == 1 &&
6513                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6514                                 continue;
6515                 }
6516 reada:
6517                 ret = readahead_tree_block(root, bytenr, blocksize,
6518                                            generation);
6519                 if (ret)
6520                         break;
6521                 nread++;
6522         }
6523         wc->reada_slot = slot;
6524 }
6525
6526 /*
6527  * hepler to process tree block while walking down the tree.
6528  *
6529  * when wc->stage == UPDATE_BACKREF, this function updates
6530  * back refs for pointers in the block.
6531  *
6532  * NOTE: return value 1 means we should stop walking down.
6533  */
6534 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6535                                    struct btrfs_root *root,
6536                                    struct btrfs_path *path,
6537                                    struct walk_control *wc, int lookup_info)
6538 {
6539         int level = wc->level;
6540         struct extent_buffer *eb = path->nodes[level];
6541         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6542         int ret;
6543
6544         if (wc->stage == UPDATE_BACKREF &&
6545             btrfs_header_owner(eb) != root->root_key.objectid)
6546                 return 1;
6547
6548         /*
6549          * when reference count of tree block is 1, it won't increase
6550          * again. once full backref flag is set, we never clear it.
6551          */
6552         if (lookup_info &&
6553             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6554              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6555                 BUG_ON(!path->locks[level]);
6556                 ret = btrfs_lookup_extent_info(trans, root,
6557                                                eb->start, eb->len,
6558                                                &wc->refs[level],
6559                                                &wc->flags[level]);
6560                 BUG_ON(ret == -ENOMEM);
6561                 if (ret)
6562                         return ret;
6563                 BUG_ON(wc->refs[level] == 0);
6564         }
6565
6566         if (wc->stage == DROP_REFERENCE) {
6567                 if (wc->refs[level] > 1)
6568                         return 1;
6569
6570                 if (path->locks[level] && !wc->keep_locks) {
6571                         btrfs_tree_unlock_rw(eb, path->locks[level]);
6572                         path->locks[level] = 0;
6573                 }
6574                 return 0;
6575         }
6576
6577         /* wc->stage == UPDATE_BACKREF */
6578         if (!(wc->flags[level] & flag)) {
6579                 BUG_ON(!path->locks[level]);
6580                 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6581                 BUG_ON(ret); /* -ENOMEM */
6582                 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6583                 BUG_ON(ret); /* -ENOMEM */
6584                 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6585                                                   eb->len, flag, 0);
6586                 BUG_ON(ret); /* -ENOMEM */
6587                 wc->flags[level] |= flag;
6588         }
6589
6590         /*
6591          * the block is shared by multiple trees, so it's not good to
6592          * keep the tree lock
6593          */
6594         if (path->locks[level] && level > 0) {
6595                 btrfs_tree_unlock_rw(eb, path->locks[level]);
6596                 path->locks[level] = 0;
6597         }
6598         return 0;
6599 }
6600
6601 /*
6602  * hepler to process tree block pointer.
6603  *
6604  * when wc->stage == DROP_REFERENCE, this function checks
6605  * reference count of the block pointed to. if the block
6606  * is shared and we need update back refs for the subtree
6607  * rooted at the block, this function changes wc->stage to
6608  * UPDATE_BACKREF. if the block is shared and there is no
6609  * need to update back, this function drops the reference
6610  * to the block.
6611  *
6612  * NOTE: return value 1 means we should stop walking down.
6613  */
6614 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6615                                  struct btrfs_root *root,
6616                                  struct btrfs_path *path,
6617                                  struct walk_control *wc, int *lookup_info)
6618 {
6619         u64 bytenr;
6620         u64 generation;
6621         u64 parent;
6622         u32 blocksize;
6623         struct btrfs_key key;
6624         struct extent_buffer *next;
6625         int level = wc->level;
6626         int reada = 0;
6627         int ret = 0;
6628
6629         generation = btrfs_node_ptr_generation(path->nodes[level],
6630                                                path->slots[level]);
6631         /*
6632          * if the lower level block was created before the snapshot
6633          * was created, we know there is no need to update back refs
6634          * for the subtree
6635          */
6636         if (wc->stage == UPDATE_BACKREF &&
6637             generation <= root->root_key.offset) {
6638                 *lookup_info = 1;
6639                 return 1;
6640         }
6641
6642         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6643         blocksize = btrfs_level_size(root, level - 1);
6644
6645         next = btrfs_find_tree_block(root, bytenr, blocksize);
6646         if (!next) {
6647                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6648                 if (!next)
6649                         return -ENOMEM;
6650                 reada = 1;
6651         }
6652         btrfs_tree_lock(next);
6653         btrfs_set_lock_blocking(next);
6654
6655         ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6656                                        &wc->refs[level - 1],
6657                                        &wc->flags[level - 1]);
6658         if (ret < 0) {
6659                 btrfs_tree_unlock(next);
6660                 return ret;
6661         }
6662
6663         BUG_ON(wc->refs[level - 1] == 0);
6664         *lookup_info = 0;
6665
6666         if (wc->stage == DROP_REFERENCE) {
6667                 if (wc->refs[level - 1] > 1) {
6668                         if (level == 1 &&
6669                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6670                                 goto skip;
6671
6672                         if (!wc->update_ref ||
6673                             generation <= root->root_key.offset)
6674                                 goto skip;
6675
6676                         btrfs_node_key_to_cpu(path->nodes[level], &key,
6677                                               path->slots[level]);
6678                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6679                         if (ret < 0)
6680                                 goto skip;
6681
6682                         wc->stage = UPDATE_BACKREF;
6683                         wc->shared_level = level - 1;
6684                 }
6685         } else {
6686                 if (level == 1 &&
6687                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6688                         goto skip;
6689         }
6690
6691         if (!btrfs_buffer_uptodate(next, generation, 0)) {
6692                 btrfs_tree_unlock(next);
6693                 free_extent_buffer(next);
6694                 next = NULL;
6695                 *lookup_info = 1;
6696         }
6697
6698         if (!next) {
6699                 if (reada && level == 1)
6700                         reada_walk_down(trans, root, wc, path);
6701                 next = read_tree_block(root, bytenr, blocksize, generation);
6702                 if (!next)
6703                         return -EIO;
6704                 btrfs_tree_lock(next);
6705                 btrfs_set_lock_blocking(next);
6706         }
6707
6708         level--;
6709         BUG_ON(level != btrfs_header_level(next));
6710         path->nodes[level] = next;
6711         path->slots[level] = 0;
6712         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6713         wc->level = level;
6714         if (wc->level == 1)
6715                 wc->reada_slot = 0;
6716         return 0;
6717 skip:
6718         wc->refs[level - 1] = 0;
6719         wc->flags[level - 1] = 0;
6720         if (wc->stage == DROP_REFERENCE) {
6721                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6722                         parent = path->nodes[level]->start;
6723                 } else {
6724                         BUG_ON(root->root_key.objectid !=
6725                                btrfs_header_owner(path->nodes[level]));
6726                         parent = 0;
6727                 }
6728
6729                 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6730                                 root->root_key.objectid, level - 1, 0, 0);
6731                 BUG_ON(ret); /* -ENOMEM */
6732         }
6733         btrfs_tree_unlock(next);
6734         free_extent_buffer(next);
6735         *lookup_info = 1;
6736         return 1;
6737 }
6738
6739 /*
6740  * hepler to process tree block while walking up the tree.
6741  *
6742  * when wc->stage == DROP_REFERENCE, this function drops
6743  * reference count on the block.
6744  *
6745  * when wc->stage == UPDATE_BACKREF, this function changes
6746  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6747  * to UPDATE_BACKREF previously while processing the block.
6748  *
6749  * NOTE: return value 1 means we should stop walking up.
6750  */
6751 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6752                                  struct btrfs_root *root,
6753                                  struct btrfs_path *path,
6754                                  struct walk_control *wc)
6755 {
6756         int ret;
6757         int level = wc->level;
6758         struct extent_buffer *eb = path->nodes[level];
6759         u64 parent = 0;
6760
6761         if (wc->stage == UPDATE_BACKREF) {
6762                 BUG_ON(wc->shared_level < level);
6763                 if (level < wc->shared_level)
6764                         goto out;
6765
6766                 ret = find_next_key(path, level + 1, &wc->update_progress);
6767                 if (ret > 0)
6768                         wc->update_ref = 0;
6769
6770                 wc->stage = DROP_REFERENCE;
6771                 wc->shared_level = -1;
6772                 path->slots[level] = 0;
6773
6774                 /*
6775                  * check reference count again if the block isn't locked.
6776                  * we should start walking down the tree again if reference
6777                  * count is one.
6778                  */
6779                 if (!path->locks[level]) {
6780                         BUG_ON(level == 0);
6781                         btrfs_tree_lock(eb);
6782                         btrfs_set_lock_blocking(eb);
6783                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6784
6785                         ret = btrfs_lookup_extent_info(trans, root,
6786                                                        eb->start, eb->len,
6787                                                        &wc->refs[level],
6788                                                        &wc->flags[level]);
6789                         if (ret < 0) {
6790                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
6791                                 return ret;
6792                         }
6793                         BUG_ON(wc->refs[level] == 0);
6794                         if (wc->refs[level] == 1) {
6795                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
6796                                 return 1;
6797                         }
6798                 }
6799         }
6800
6801         /* wc->stage == DROP_REFERENCE */
6802         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6803
6804         if (wc->refs[level] == 1) {
6805                 if (level == 0) {
6806                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6807                                 ret = btrfs_dec_ref(trans, root, eb, 1,
6808                                                     wc->for_reloc);
6809                         else
6810                                 ret = btrfs_dec_ref(trans, root, eb, 0,
6811                                                     wc->for_reloc);
6812                         BUG_ON(ret); /* -ENOMEM */
6813                 }
6814                 /* make block locked assertion in clean_tree_block happy */
6815                 if (!path->locks[level] &&
6816                     btrfs_header_generation(eb) == trans->transid) {
6817                         btrfs_tree_lock(eb);
6818                         btrfs_set_lock_blocking(eb);
6819                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6820                 }
6821                 clean_tree_block(trans, root, eb);
6822         }
6823
6824         if (eb == root->node) {
6825                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6826                         parent = eb->start;
6827                 else
6828                         BUG_ON(root->root_key.objectid !=
6829                                btrfs_header_owner(eb));
6830         } else {
6831                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6832                         parent = path->nodes[level + 1]->start;
6833                 else
6834                         BUG_ON(root->root_key.objectid !=
6835                                btrfs_header_owner(path->nodes[level + 1]));
6836         }
6837
6838         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6839 out:
6840         wc->refs[level] = 0;
6841         wc->flags[level] = 0;
6842         return 0;
6843 }
6844
6845 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6846                                    struct btrfs_root *root,
6847                                    struct btrfs_path *path,
6848                                    struct walk_control *wc)
6849 {
6850         int level = wc->level;
6851         int lookup_info = 1;
6852         int ret;
6853
6854         while (level >= 0) {
6855                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6856                 if (ret > 0)
6857                         break;
6858
6859                 if (level == 0)
6860                         break;
6861
6862                 if (path->slots[level] >=
6863                     btrfs_header_nritems(path->nodes[level]))
6864                         break;
6865
6866                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6867                 if (ret > 0) {
6868                         path->slots[level]++;
6869                         continue;
6870                 } else if (ret < 0)
6871                         return ret;
6872                 level = wc->level;
6873         }
6874         return 0;
6875 }
6876
6877 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6878                                  struct btrfs_root *root,
6879                                  struct btrfs_path *path,
6880                                  struct walk_control *wc, int max_level)
6881 {
6882         int level = wc->level;
6883         int ret;
6884
6885         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6886         while (level < max_level && path->nodes[level]) {
6887                 wc->level = level;
6888                 if (path->slots[level] + 1 <
6889                     btrfs_header_nritems(path->nodes[level])) {
6890                         path->slots[level]++;
6891                         return 0;
6892                 } else {
6893                         ret = walk_up_proc(trans, root, path, wc);
6894                         if (ret > 0)
6895                                 return 0;
6896
6897                         if (path->locks[level]) {
6898                                 btrfs_tree_unlock_rw(path->nodes[level],
6899                                                      path->locks[level]);
6900                                 path->locks[level] = 0;
6901                         }
6902                         free_extent_buffer(path->nodes[level]);
6903                         path->nodes[level] = NULL;
6904                         level++;
6905                 }
6906         }
6907         return 1;
6908 }
6909
6910 /*
6911  * drop a subvolume tree.
6912  *
6913  * this function traverses the tree freeing any blocks that only
6914  * referenced by the tree.
6915  *
6916  * when a shared tree block is found. this function decreases its
6917  * reference count by one. if update_ref is true, this function
6918  * also make sure backrefs for the shared block and all lower level
6919  * blocks are properly updated.
6920  */
6921 int btrfs_drop_snapshot(struct btrfs_root *root,
6922                          struct btrfs_block_rsv *block_rsv, int update_ref,
6923                          int for_reloc)
6924 {
6925         struct btrfs_path *path;
6926         struct btrfs_trans_handle *trans;
6927         struct btrfs_root *tree_root = root->fs_info->tree_root;
6928         struct btrfs_root_item *root_item = &root->root_item;
6929         struct walk_control *wc;
6930         struct btrfs_key key;
6931         int err = 0;
6932         int ret;
6933         int level;
6934
6935         path = btrfs_alloc_path();
6936         if (!path) {
6937                 err = -ENOMEM;
6938                 goto out;
6939         }
6940
6941         wc = kzalloc(sizeof(*wc), GFP_NOFS);
6942         if (!wc) {
6943                 btrfs_free_path(path);
6944                 err = -ENOMEM;
6945                 goto out;
6946         }
6947
6948         trans = btrfs_start_transaction(tree_root, 0);
6949         if (IS_ERR(trans)) {
6950                 err = PTR_ERR(trans);
6951                 goto out_free;
6952         }
6953
6954         if (block_rsv)
6955                 trans->block_rsv = block_rsv;
6956
6957         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6958                 level = btrfs_header_level(root->node);
6959                 path->nodes[level] = btrfs_lock_root_node(root);
6960                 btrfs_set_lock_blocking(path->nodes[level]);
6961                 path->slots[level] = 0;
6962                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6963                 memset(&wc->update_progress, 0,
6964                        sizeof(wc->update_progress));
6965         } else {
6966                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6967                 memcpy(&wc->update_progress, &key,
6968                        sizeof(wc->update_progress));
6969
6970                 level = root_item->drop_level;
6971                 BUG_ON(level == 0);
6972                 path->lowest_level = level;
6973                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6974                 path->lowest_level = 0;
6975                 if (ret < 0) {
6976                         err = ret;
6977                         goto out_end_trans;
6978                 }
6979                 WARN_ON(ret > 0);
6980
6981                 /*
6982                  * unlock our path, this is safe because only this
6983                  * function is allowed to delete this snapshot
6984                  */
6985                 btrfs_unlock_up_safe(path, 0);
6986
6987                 level = btrfs_header_level(root->node);
6988                 while (1) {
6989                         btrfs_tree_lock(path->nodes[level]);
6990                         btrfs_set_lock_blocking(path->nodes[level]);
6991
6992                         ret = btrfs_lookup_extent_info(trans, root,
6993                                                 path->nodes[level]->start,
6994                                                 path->nodes[level]->len,
6995                                                 &wc->refs[level],
6996                                                 &wc->flags[level]);
6997                         if (ret < 0) {
6998                                 err = ret;
6999                                 goto out_end_trans;
7000                         }
7001                         BUG_ON(wc->refs[level] == 0);
7002
7003                         if (level == root_item->drop_level)
7004                                 break;
7005
7006                         btrfs_tree_unlock(path->nodes[level]);
7007                         WARN_ON(wc->refs[level] != 1);
7008                         level--;
7009                 }
7010         }
7011
7012         wc->level = level;
7013         wc->shared_level = -1;
7014         wc->stage = DROP_REFERENCE;
7015         wc->update_ref = update_ref;
7016         wc->keep_locks = 0;
7017         wc->for_reloc = for_reloc;
7018         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7019
7020         while (1) {
7021                 ret = walk_down_tree(trans, root, path, wc);
7022                 if (ret < 0) {
7023                         err = ret;
7024                         break;
7025                 }
7026
7027                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7028                 if (ret < 0) {
7029                         err = ret;
7030                         break;
7031                 }
7032
7033                 if (ret > 0) {
7034                         BUG_ON(wc->stage != DROP_REFERENCE);
7035                         break;
7036                 }
7037
7038                 if (wc->stage == DROP_REFERENCE) {
7039                         level = wc->level;
7040                         btrfs_node_key(path->nodes[level],
7041                                        &root_item->drop_progress,
7042                                        path->slots[level]);
7043                         root_item->drop_level = level;
7044                 }
7045
7046                 BUG_ON(wc->level == 0);
7047                 if (btrfs_should_end_transaction(trans, tree_root)) {
7048                         ret = btrfs_update_root(trans, tree_root,
7049                                                 &root->root_key,
7050                                                 root_item);
7051                         if (ret) {
7052                                 btrfs_abort_transaction(trans, tree_root, ret);
7053                                 err = ret;
7054                                 goto out_end_trans;
7055                         }
7056
7057                         btrfs_end_transaction_throttle(trans, tree_root);
7058                         trans = btrfs_start_transaction(tree_root, 0);
7059                         if (IS_ERR(trans)) {
7060                                 err = PTR_ERR(trans);
7061                                 goto out_free;
7062                         }
7063                         if (block_rsv)
7064                                 trans->block_rsv = block_rsv;
7065                 }
7066         }
7067         btrfs_release_path(path);
7068         if (err)
7069                 goto out_end_trans;
7070
7071         ret = btrfs_del_root(trans, tree_root, &root->root_key);
7072         if (ret) {
7073                 btrfs_abort_transaction(trans, tree_root, ret);
7074                 goto out_end_trans;
7075         }
7076
7077         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7078                 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7079                                            NULL, NULL);
7080                 if (ret < 0) {
7081                         btrfs_abort_transaction(trans, tree_root, ret);
7082                         err = ret;
7083                         goto out_end_trans;
7084                 } else if (ret > 0) {
7085                         /* if we fail to delete the orphan item this time
7086                          * around, it'll get picked up the next time.
7087                          *
7088                          * The most common failure here is just -ENOENT.
7089                          */
7090                         btrfs_del_orphan_item(trans, tree_root,
7091                                               root->root_key.objectid);
7092                 }
7093         }
7094
7095         if (root->in_radix) {
7096                 btrfs_free_fs_root(tree_root->fs_info, root);
7097         } else {
7098                 free_extent_buffer(root->node);
7099                 free_extent_buffer(root->commit_root);
7100                 kfree(root);
7101         }
7102 out_end_trans:
7103         btrfs_end_transaction_throttle(trans, tree_root);
7104 out_free:
7105         kfree(wc);
7106         btrfs_free_path(path);
7107 out:
7108         if (err)
7109                 btrfs_std_error(root->fs_info, err);
7110         return err;
7111 }
7112
7113 /*
7114  * drop subtree rooted at tree block 'node'.
7115  *
7116  * NOTE: this function will unlock and release tree block 'node'
7117  * only used by relocation code
7118  */
7119 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7120                         struct btrfs_root *root,
7121                         struct extent_buffer *node,
7122                         struct extent_buffer *parent)
7123 {
7124         struct btrfs_path *path;
7125         struct walk_control *wc;
7126         int level;
7127         int parent_level;
7128         int ret = 0;
7129         int wret;
7130
7131         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7132
7133         path = btrfs_alloc_path();
7134         if (!path)
7135                 return -ENOMEM;
7136
7137         wc = kzalloc(sizeof(*wc), GFP_NOFS);
7138         if (!wc) {
7139                 btrfs_free_path(path);
7140                 return -ENOMEM;
7141         }
7142
7143         btrfs_assert_tree_locked(parent);
7144         parent_level = btrfs_header_level(parent);
7145         extent_buffer_get(parent);
7146         path->nodes[parent_level] = parent;
7147         path->slots[parent_level] = btrfs_header_nritems(parent);
7148
7149         btrfs_assert_tree_locked(node);
7150         level = btrfs_header_level(node);
7151         path->nodes[level] = node;
7152         path->slots[level] = 0;
7153         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7154
7155         wc->refs[parent_level] = 1;
7156         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7157         wc->level = level;
7158         wc->shared_level = -1;
7159         wc->stage = DROP_REFERENCE;
7160         wc->update_ref = 0;
7161         wc->keep_locks = 1;
7162         wc->for_reloc = 1;
7163         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7164
7165         while (1) {
7166                 wret = walk_down_tree(trans, root, path, wc);
7167                 if (wret < 0) {
7168                         ret = wret;
7169                         break;
7170                 }
7171
7172                 wret = walk_up_tree(trans, root, path, wc, parent_level);
7173                 if (wret < 0)
7174                         ret = wret;
7175                 if (wret != 0)
7176                         break;
7177         }
7178
7179         kfree(wc);
7180         btrfs_free_path(path);
7181         return ret;
7182 }
7183
7184 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7185 {
7186         u64 num_devices;
7187         u64 stripped;
7188
7189         /*
7190          * if restripe for this chunk_type is on pick target profile and
7191          * return, otherwise do the usual balance
7192          */
7193         stripped = get_restripe_target(root->fs_info, flags);
7194         if (stripped)
7195                 return extended_to_chunk(stripped);
7196
7197         /*
7198          * we add in the count of missing devices because we want
7199          * to make sure that any RAID levels on a degraded FS
7200          * continue to be honored.
7201          */
7202         num_devices = root->fs_info->fs_devices->rw_devices +
7203                 root->fs_info->fs_devices->missing_devices;
7204
7205         stripped = BTRFS_BLOCK_GROUP_RAID0 |
7206                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7207
7208         if (num_devices == 1) {
7209                 stripped |= BTRFS_BLOCK_GROUP_DUP;
7210                 stripped = flags & ~stripped;
7211
7212                 /* turn raid0 into single device chunks */
7213                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7214                         return stripped;
7215
7216                 /* turn mirroring into duplication */
7217                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7218                              BTRFS_BLOCK_GROUP_RAID10))
7219                         return stripped | BTRFS_BLOCK_GROUP_DUP;
7220         } else {
7221                 /* they already had raid on here, just return */
7222                 if (flags & stripped)
7223                         return flags;
7224
7225                 stripped |= BTRFS_BLOCK_GROUP_DUP;
7226                 stripped = flags & ~stripped;
7227
7228                 /* switch duplicated blocks with raid1 */
7229                 if (flags & BTRFS_BLOCK_GROUP_DUP)
7230                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
7231
7232                 /* this is drive concat, leave it alone */
7233         }
7234
7235         return flags;
7236 }
7237
7238 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7239 {
7240         struct btrfs_space_info *sinfo = cache->space_info;
7241         u64 num_bytes;
7242         u64 min_allocable_bytes;
7243         int ret = -ENOSPC;
7244
7245
7246         /*
7247          * We need some metadata space and system metadata space for
7248          * allocating chunks in some corner cases until we force to set
7249          * it to be readonly.
7250          */
7251         if ((sinfo->flags &
7252              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7253             !force)
7254                 min_allocable_bytes = 1 * 1024 * 1024;
7255         else
7256                 min_allocable_bytes = 0;
7257
7258         spin_lock(&sinfo->lock);
7259         spin_lock(&cache->lock);
7260
7261         if (cache->ro) {
7262                 ret = 0;
7263                 goto out;
7264         }
7265
7266         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7267                     cache->bytes_super - btrfs_block_group_used(&cache->item);
7268
7269         if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7270             sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7271             min_allocable_bytes <= sinfo->total_bytes) {
7272                 sinfo->bytes_readonly += num_bytes;
7273                 cache->ro = 1;
7274                 ret = 0;
7275         }
7276 out:
7277         spin_unlock(&cache->lock);
7278         spin_unlock(&sinfo->lock);
7279         return ret;
7280 }
7281
7282 int btrfs_set_block_group_ro(struct btrfs_root *root,
7283                              struct btrfs_block_group_cache *cache)
7284
7285 {
7286         struct btrfs_trans_handle *trans;
7287         u64 alloc_flags;
7288         int ret;
7289
7290         BUG_ON(cache->ro);
7291
7292         trans = btrfs_join_transaction(root);
7293         if (IS_ERR(trans))
7294                 return PTR_ERR(trans);
7295
7296         alloc_flags = update_block_group_flags(root, cache->flags);
7297         if (alloc_flags != cache->flags) {
7298                 ret = do_chunk_alloc(trans, root, alloc_flags,
7299                                      CHUNK_ALLOC_FORCE);
7300                 if (ret < 0)
7301                         goto out;
7302         }
7303
7304         ret = set_block_group_ro(cache, 0);
7305         if (!ret)
7306                 goto out;
7307         alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7308         ret = do_chunk_alloc(trans, root, alloc_flags,
7309                              CHUNK_ALLOC_FORCE);
7310         if (ret < 0)
7311                 goto out;
7312         ret = set_block_group_ro(cache, 0);
7313 out:
7314         btrfs_end_transaction(trans, root);
7315         return ret;
7316 }
7317
7318 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7319                             struct btrfs_root *root, u64 type)
7320 {
7321         u64 alloc_flags = get_alloc_profile(root, type);
7322         return do_chunk_alloc(trans, root, alloc_flags,
7323                               CHUNK_ALLOC_FORCE);
7324 }
7325
7326 /*
7327  * helper to account the unused space of all the readonly block group in the
7328  * list. takes mirrors into account.
7329  */
7330 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7331 {
7332         struct btrfs_block_group_cache *block_group;
7333         u64 free_bytes = 0;
7334         int factor;
7335
7336         list_for_each_entry(block_group, groups_list, list) {
7337                 spin_lock(&block_group->lock);
7338
7339                 if (!block_group->ro) {
7340                         spin_unlock(&block_group->lock);
7341                         continue;
7342                 }
7343
7344                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7345                                           BTRFS_BLOCK_GROUP_RAID10 |
7346                                           BTRFS_BLOCK_GROUP_DUP))
7347                         factor = 2;
7348                 else
7349                         factor = 1;
7350
7351                 free_bytes += (block_group->key.offset -
7352                                btrfs_block_group_used(&block_group->item)) *
7353                                factor;
7354
7355                 spin_unlock(&block_group->lock);
7356         }
7357
7358         return free_bytes;
7359 }
7360
7361 /*
7362  * helper to account the unused space of all the readonly block group in the
7363  * space_info. takes mirrors into account.
7364  */
7365 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7366 {
7367         int i;
7368         u64 free_bytes = 0;
7369
7370         spin_lock(&sinfo->lock);
7371
7372         for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7373                 if (!list_empty(&sinfo->block_groups[i]))
7374                         free_bytes += __btrfs_get_ro_block_group_free_space(
7375                                                 &sinfo->block_groups[i]);
7376
7377         spin_unlock(&sinfo->lock);
7378
7379         return free_bytes;
7380 }
7381
7382 void btrfs_set_block_group_rw(struct btrfs_root *root,
7383                               struct btrfs_block_group_cache *cache)
7384 {
7385         struct btrfs_space_info *sinfo = cache->space_info;
7386         u64 num_bytes;
7387
7388         BUG_ON(!cache->ro);
7389
7390         spin_lock(&sinfo->lock);
7391         spin_lock(&cache->lock);
7392         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7393                     cache->bytes_super - btrfs_block_group_used(&cache->item);
7394         sinfo->bytes_readonly -= num_bytes;
7395         cache->ro = 0;
7396         spin_unlock(&cache->lock);
7397         spin_unlock(&sinfo->lock);
7398 }
7399
7400 /*
7401  * checks to see if its even possible to relocate this block group.
7402  *
7403  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7404  * ok to go ahead and try.
7405  */
7406 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7407 {
7408         struct btrfs_block_group_cache *block_group;
7409         struct btrfs_space_info *space_info;
7410         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7411         struct btrfs_device *device;
7412         u64 min_free;
7413         u64 dev_min = 1;
7414         u64 dev_nr = 0;
7415         u64 target;
7416         int index;
7417         int full = 0;
7418         int ret = 0;
7419
7420         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7421
7422         /* odd, couldn't find the block group, leave it alone */
7423         if (!block_group)
7424                 return -1;
7425
7426         min_free = btrfs_block_group_used(&block_group->item);
7427
7428         /* no bytes used, we're good */
7429         if (!min_free)
7430                 goto out;
7431
7432         space_info = block_group->space_info;
7433         spin_lock(&space_info->lock);
7434
7435         full = space_info->full;
7436
7437         /*
7438          * if this is the last block group we have in this space, we can't
7439          * relocate it unless we're able to allocate a new chunk below.
7440          *
7441          * Otherwise, we need to make sure we have room in the space to handle
7442          * all of the extents from this block group.  If we can, we're good
7443          */
7444         if ((space_info->total_bytes != block_group->key.offset) &&
7445             (space_info->bytes_used + space_info->bytes_reserved +
7446              space_info->bytes_pinned + space_info->bytes_readonly +
7447              min_free < space_info->total_bytes)) {
7448                 spin_unlock(&space_info->lock);
7449                 goto out;
7450         }
7451         spin_unlock(&space_info->lock);
7452
7453         /*
7454          * ok we don't have enough space, but maybe we have free space on our
7455          * devices to allocate new chunks for relocation, so loop through our
7456          * alloc devices and guess if we have enough space.  if this block
7457          * group is going to be restriped, run checks against the target
7458          * profile instead of the current one.
7459          */
7460         ret = -1;
7461
7462         /*
7463          * index:
7464          *      0: raid10
7465          *      1: raid1
7466          *      2: dup
7467          *      3: raid0
7468          *      4: single
7469          */
7470         target = get_restripe_target(root->fs_info, block_group->flags);
7471         if (target) {
7472                 index = __get_raid_index(extended_to_chunk(target));
7473         } else {
7474                 /*
7475                  * this is just a balance, so if we were marked as full
7476                  * we know there is no space for a new chunk
7477                  */
7478                 if (full)
7479                         goto out;
7480
7481                 index = get_block_group_index(block_group);
7482         }
7483
7484         if (index == 0) {
7485                 dev_min = 4;
7486                 /* Divide by 2 */
7487                 min_free >>= 1;
7488         } else if (index == 1) {
7489                 dev_min = 2;
7490         } else if (index == 2) {
7491                 /* Multiply by 2 */
7492                 min_free <<= 1;
7493         } else if (index == 3) {
7494                 dev_min = fs_devices->rw_devices;
7495                 do_div(min_free, dev_min);
7496         }
7497
7498         mutex_lock(&root->fs_info->chunk_mutex);
7499         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7500                 u64 dev_offset;
7501
7502                 /*
7503                  * check to make sure we can actually find a chunk with enough
7504                  * space to fit our block group in.
7505                  */
7506                 if (device->total_bytes > device->bytes_used + min_free &&
7507                     !device->is_tgtdev_for_dev_replace) {
7508                         ret = find_free_dev_extent(device, min_free,
7509                                                    &dev_offset, NULL);
7510                         if (!ret)
7511                                 dev_nr++;
7512
7513                         if (dev_nr >= dev_min)
7514                                 break;
7515
7516                         ret = -1;
7517                 }
7518         }
7519         mutex_unlock(&root->fs_info->chunk_mutex);
7520 out:
7521         btrfs_put_block_group(block_group);
7522         return ret;
7523 }
7524
7525 static int find_first_block_group(struct btrfs_root *root,
7526                 struct btrfs_path *path, struct btrfs_key *key)
7527 {
7528         int ret = 0;
7529         struct btrfs_key found_key;
7530         struct extent_buffer *leaf;
7531         int slot;
7532
7533         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7534         if (ret < 0)
7535                 goto out;
7536
7537         while (1) {
7538                 slot = path->slots[0];
7539                 leaf = path->nodes[0];
7540                 if (slot >= btrfs_header_nritems(leaf)) {
7541                         ret = btrfs_next_leaf(root, path);
7542                         if (ret == 0)
7543                                 continue;
7544                         if (ret < 0)
7545                                 goto out;
7546                         break;
7547                 }
7548                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7549
7550                 if (found_key.objectid >= key->objectid &&
7551                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7552                         ret = 0;
7553                         goto out;
7554                 }
7555                 path->slots[0]++;
7556         }
7557 out:
7558         return ret;
7559 }
7560
7561 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7562 {
7563         struct btrfs_block_group_cache *block_group;
7564         u64 last = 0;
7565
7566         while (1) {
7567                 struct inode *inode;
7568
7569                 block_group = btrfs_lookup_first_block_group(info, last);
7570                 while (block_group) {
7571                         spin_lock(&block_group->lock);
7572                         if (block_group->iref)
7573                                 break;
7574                         spin_unlock(&block_group->lock);
7575                         block_group = next_block_group(info->tree_root,
7576                                                        block_group);
7577                 }
7578                 if (!block_group) {
7579                         if (last == 0)
7580                                 break;
7581                         last = 0;
7582                         continue;
7583                 }
7584
7585                 inode = block_group->inode;
7586                 block_group->iref = 0;
7587                 block_group->inode = NULL;
7588                 spin_unlock(&block_group->lock);
7589                 iput(inode);
7590                 last = block_group->key.objectid + block_group->key.offset;
7591                 btrfs_put_block_group(block_group);
7592         }
7593 }
7594
7595 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7596 {
7597         struct btrfs_block_group_cache *block_group;
7598         struct btrfs_space_info *space_info;
7599         struct btrfs_caching_control *caching_ctl;
7600         struct rb_node *n;
7601
7602         down_write(&info->extent_commit_sem);
7603         while (!list_empty(&info->caching_block_groups)) {
7604                 caching_ctl = list_entry(info->caching_block_groups.next,
7605                                          struct btrfs_caching_control, list);
7606                 list_del(&caching_ctl->list);
7607                 put_caching_control(caching_ctl);
7608         }
7609         up_write(&info->extent_commit_sem);
7610
7611         spin_lock(&info->block_group_cache_lock);
7612         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7613                 block_group = rb_entry(n, struct btrfs_block_group_cache,
7614                                        cache_node);
7615                 rb_erase(&block_group->cache_node,
7616                          &info->block_group_cache_tree);
7617                 spin_unlock(&info->block_group_cache_lock);
7618
7619                 down_write(&block_group->space_info->groups_sem);
7620                 list_del(&block_group->list);
7621                 up_write(&block_group->space_info->groups_sem);
7622
7623                 if (block_group->cached == BTRFS_CACHE_STARTED)
7624                         wait_block_group_cache_done(block_group);
7625
7626                 /*
7627                  * We haven't cached this block group, which means we could
7628                  * possibly have excluded extents on this block group.
7629                  */
7630                 if (block_group->cached == BTRFS_CACHE_NO)
7631                         free_excluded_extents(info->extent_root, block_group);
7632
7633                 btrfs_remove_free_space_cache(block_group);
7634                 btrfs_put_block_group(block_group);
7635
7636                 spin_lock(&info->block_group_cache_lock);
7637         }
7638         spin_unlock(&info->block_group_cache_lock);
7639
7640         /* now that all the block groups are freed, go through and
7641          * free all the space_info structs.  This is only called during
7642          * the final stages of unmount, and so we know nobody is
7643          * using them.  We call synchronize_rcu() once before we start,
7644          * just to be on the safe side.
7645          */
7646         synchronize_rcu();
7647
7648         release_global_block_rsv(info);
7649
7650         while(!list_empty(&info->space_info)) {
7651                 space_info = list_entry(info->space_info.next,
7652                                         struct btrfs_space_info,
7653                                         list);
7654                 if (space_info->bytes_pinned > 0 ||
7655                     space_info->bytes_reserved > 0 ||
7656                     space_info->bytes_may_use > 0) {
7657                         WARN_ON(1);
7658                         dump_space_info(space_info, 0, 0);
7659                 }
7660                 list_del(&space_info->list);
7661                 kfree(space_info);
7662         }
7663         return 0;
7664 }
7665
7666 static void __link_block_group(struct btrfs_space_info *space_info,
7667                                struct btrfs_block_group_cache *cache)
7668 {
7669         int index = get_block_group_index(cache);
7670
7671         down_write(&space_info->groups_sem);
7672         list_add_tail(&cache->list, &space_info->block_groups[index]);
7673         up_write(&space_info->groups_sem);
7674 }
7675
7676 int btrfs_read_block_groups(struct btrfs_root *root)
7677 {
7678         struct btrfs_path *path;
7679         int ret;
7680         struct btrfs_block_group_cache *cache;
7681         struct btrfs_fs_info *info = root->fs_info;
7682         struct btrfs_space_info *space_info;
7683         struct btrfs_key key;
7684         struct btrfs_key found_key;
7685         struct extent_buffer *leaf;
7686         int need_clear = 0;
7687         u64 cache_gen;
7688
7689         root = info->extent_root;
7690         key.objectid = 0;
7691         key.offset = 0;
7692         btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7693         path = btrfs_alloc_path();
7694         if (!path)
7695                 return -ENOMEM;
7696         path->reada = 1;
7697
7698         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7699         if (btrfs_test_opt(root, SPACE_CACHE) &&
7700             btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7701                 need_clear = 1;
7702         if (btrfs_test_opt(root, CLEAR_CACHE))
7703                 need_clear = 1;
7704
7705         while (1) {
7706                 ret = find_first_block_group(root, path, &key);
7707                 if (ret > 0)
7708                         break;
7709                 if (ret != 0)
7710                         goto error;
7711                 leaf = path->nodes[0];
7712                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7713                 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7714                 if (!cache) {
7715                         ret = -ENOMEM;
7716                         goto error;
7717                 }
7718                 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7719                                                 GFP_NOFS);
7720                 if (!cache->free_space_ctl) {
7721                         kfree(cache);
7722                         ret = -ENOMEM;
7723                         goto error;
7724                 }
7725
7726                 atomic_set(&cache->count, 1);
7727                 spin_lock_init(&cache->lock);
7728                 cache->fs_info = info;
7729                 INIT_LIST_HEAD(&cache->list);
7730                 INIT_LIST_HEAD(&cache->cluster_list);
7731
7732                 if (need_clear) {
7733                         /*
7734                          * When we mount with old space cache, we need to
7735                          * set BTRFS_DC_CLEAR and set dirty flag.
7736                          *
7737                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7738                          *    truncate the old free space cache inode and
7739                          *    setup a new one.
7740                          * b) Setting 'dirty flag' makes sure that we flush
7741                          *    the new space cache info onto disk.
7742                          */
7743                         cache->disk_cache_state = BTRFS_DC_CLEAR;
7744                         if (btrfs_test_opt(root, SPACE_CACHE))
7745                                 cache->dirty = 1;
7746                 }
7747
7748                 read_extent_buffer(leaf, &cache->item,
7749                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
7750                                    sizeof(cache->item));
7751                 memcpy(&cache->key, &found_key, sizeof(found_key));
7752
7753                 key.objectid = found_key.objectid + found_key.offset;
7754                 btrfs_release_path(path);
7755                 cache->flags = btrfs_block_group_flags(&cache->item);
7756                 cache->sectorsize = root->sectorsize;
7757
7758                 btrfs_init_free_space_ctl(cache);
7759
7760                 /*
7761                  * We need to exclude the super stripes now so that the space
7762                  * info has super bytes accounted for, otherwise we'll think
7763                  * we have more space than we actually do.
7764                  */
7765                 exclude_super_stripes(root, cache);
7766
7767                 /*
7768                  * check for two cases, either we are full, and therefore
7769                  * don't need to bother with the caching work since we won't
7770                  * find any space, or we are empty, and we can just add all
7771                  * the space in and be done with it.  This saves us _alot_ of
7772                  * time, particularly in the full case.
7773                  */
7774                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7775                         cache->last_byte_to_unpin = (u64)-1;
7776                         cache->cached = BTRFS_CACHE_FINISHED;
7777                         free_excluded_extents(root, cache);
7778                 } else if (btrfs_block_group_used(&cache->item) == 0) {
7779                         cache->last_byte_to_unpin = (u64)-1;
7780                         cache->cached = BTRFS_CACHE_FINISHED;
7781                         add_new_free_space(cache, root->fs_info,
7782                                            found_key.objectid,
7783                                            found_key.objectid +
7784                                            found_key.offset);
7785                         free_excluded_extents(root, cache);
7786                 }
7787
7788                 ret = update_space_info(info, cache->flags, found_key.offset,
7789                                         btrfs_block_group_used(&cache->item),
7790                                         &space_info);
7791                 BUG_ON(ret); /* -ENOMEM */
7792                 cache->space_info = space_info;
7793                 spin_lock(&cache->space_info->lock);
7794                 cache->space_info->bytes_readonly += cache->bytes_super;
7795                 spin_unlock(&cache->space_info->lock);
7796
7797                 __link_block_group(space_info, cache);
7798
7799                 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7800                 BUG_ON(ret); /* Logic error */
7801
7802                 set_avail_alloc_bits(root->fs_info, cache->flags);
7803                 if (btrfs_chunk_readonly(root, cache->key.objectid))
7804                         set_block_group_ro(cache, 1);
7805         }
7806
7807         list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7808                 if (!(get_alloc_profile(root, space_info->flags) &
7809                       (BTRFS_BLOCK_GROUP_RAID10 |
7810                        BTRFS_BLOCK_GROUP_RAID1 |
7811                        BTRFS_BLOCK_GROUP_DUP)))
7812                         continue;
7813                 /*
7814                  * avoid allocating from un-mirrored block group if there are
7815                  * mirrored block groups.
7816                  */
7817                 list_for_each_entry(cache, &space_info->block_groups[3], list)
7818                         set_block_group_ro(cache, 1);
7819                 list_for_each_entry(cache, &space_info->block_groups[4], list)
7820                         set_block_group_ro(cache, 1);
7821         }
7822
7823         init_global_block_rsv(info);
7824         ret = 0;
7825 error:
7826         btrfs_free_path(path);
7827         return ret;
7828 }
7829
7830 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
7831                                        struct btrfs_root *root)
7832 {
7833         struct btrfs_block_group_cache *block_group, *tmp;
7834         struct btrfs_root *extent_root = root->fs_info->extent_root;
7835         struct btrfs_block_group_item item;
7836         struct btrfs_key key;
7837         int ret = 0;
7838
7839         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
7840                                  new_bg_list) {
7841                 list_del_init(&block_group->new_bg_list);
7842
7843                 if (ret)
7844                         continue;
7845
7846                 spin_lock(&block_group->lock);
7847                 memcpy(&item, &block_group->item, sizeof(item));
7848                 memcpy(&key, &block_group->key, sizeof(key));
7849                 spin_unlock(&block_group->lock);
7850
7851                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
7852                                         sizeof(item));
7853                 if (ret)
7854                         btrfs_abort_transaction(trans, extent_root, ret);
7855         }
7856 }
7857
7858 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7859                            struct btrfs_root *root, u64 bytes_used,
7860                            u64 type, u64 chunk_objectid, u64 chunk_offset,
7861                            u64 size)
7862 {
7863         int ret;
7864         struct btrfs_root *extent_root;
7865         struct btrfs_block_group_cache *cache;
7866
7867         extent_root = root->fs_info->extent_root;
7868
7869         root->fs_info->last_trans_log_full_commit = trans->transid;
7870
7871         cache = kzalloc(sizeof(*cache), GFP_NOFS);
7872         if (!cache)
7873                 return -ENOMEM;
7874         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7875                                         GFP_NOFS);
7876         if (!cache->free_space_ctl) {
7877                 kfree(cache);
7878                 return -ENOMEM;
7879         }
7880
7881         cache->key.objectid = chunk_offset;
7882         cache->key.offset = size;
7883         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7884         cache->sectorsize = root->sectorsize;
7885         cache->fs_info = root->fs_info;
7886
7887         atomic_set(&cache->count, 1);
7888         spin_lock_init(&cache->lock);
7889         INIT_LIST_HEAD(&cache->list);
7890         INIT_LIST_HEAD(&cache->cluster_list);
7891         INIT_LIST_HEAD(&cache->new_bg_list);
7892
7893         btrfs_init_free_space_ctl(cache);
7894
7895         btrfs_set_block_group_used(&cache->item, bytes_used);
7896         btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7897         cache->flags = type;
7898         btrfs_set_block_group_flags(&cache->item, type);
7899
7900         cache->last_byte_to_unpin = (u64)-1;
7901         cache->cached = BTRFS_CACHE_FINISHED;
7902         exclude_super_stripes(root, cache);
7903
7904         add_new_free_space(cache, root->fs_info, chunk_offset,
7905                            chunk_offset + size);
7906
7907         free_excluded_extents(root, cache);
7908
7909         ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7910                                 &cache->space_info);
7911         BUG_ON(ret); /* -ENOMEM */
7912         update_global_block_rsv(root->fs_info);
7913
7914         spin_lock(&cache->space_info->lock);
7915         cache->space_info->bytes_readonly += cache->bytes_super;
7916         spin_unlock(&cache->space_info->lock);
7917
7918         __link_block_group(cache->space_info, cache);
7919
7920         ret = btrfs_add_block_group_cache(root->fs_info, cache);
7921         BUG_ON(ret); /* Logic error */
7922
7923         list_add_tail(&cache->new_bg_list, &trans->new_bgs);
7924
7925         set_avail_alloc_bits(extent_root->fs_info, type);
7926
7927         return 0;
7928 }
7929
7930 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7931 {
7932         u64 extra_flags = chunk_to_extended(flags) &
7933                                 BTRFS_EXTENDED_PROFILE_MASK;
7934
7935         if (flags & BTRFS_BLOCK_GROUP_DATA)
7936                 fs_info->avail_data_alloc_bits &= ~extra_flags;
7937         if (flags & BTRFS_BLOCK_GROUP_METADATA)
7938                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7939         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7940                 fs_info->avail_system_alloc_bits &= ~extra_flags;
7941 }
7942
7943 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7944                              struct btrfs_root *root, u64 group_start)
7945 {
7946         struct btrfs_path *path;
7947         struct btrfs_block_group_cache *block_group;
7948         struct btrfs_free_cluster *cluster;
7949         struct btrfs_root *tree_root = root->fs_info->tree_root;
7950         struct btrfs_key key;
7951         struct inode *inode;
7952         int ret;
7953         int index;
7954         int factor;
7955
7956         root = root->fs_info->extent_root;
7957
7958         block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7959         BUG_ON(!block_group);
7960         BUG_ON(!block_group->ro);
7961
7962         /*
7963          * Free the reserved super bytes from this block group before
7964          * remove it.
7965          */
7966         free_excluded_extents(root, block_group);
7967
7968         memcpy(&key, &block_group->key, sizeof(key));
7969         index = get_block_group_index(block_group);
7970         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7971                                   BTRFS_BLOCK_GROUP_RAID1 |
7972                                   BTRFS_BLOCK_GROUP_RAID10))
7973                 factor = 2;
7974         else
7975                 factor = 1;
7976
7977         /* make sure this block group isn't part of an allocation cluster */
7978         cluster = &root->fs_info->data_alloc_cluster;
7979         spin_lock(&cluster->refill_lock);
7980         btrfs_return_cluster_to_free_space(block_group, cluster);
7981         spin_unlock(&cluster->refill_lock);
7982
7983         /*
7984          * make sure this block group isn't part of a metadata
7985          * allocation cluster
7986          */
7987         cluster = &root->fs_info->meta_alloc_cluster;
7988         spin_lock(&cluster->refill_lock);
7989         btrfs_return_cluster_to_free_space(block_group, cluster);
7990         spin_unlock(&cluster->refill_lock);
7991
7992         path = btrfs_alloc_path();
7993         if (!path) {
7994                 ret = -ENOMEM;
7995                 goto out;
7996         }
7997
7998         inode = lookup_free_space_inode(tree_root, block_group, path);
7999         if (!IS_ERR(inode)) {
8000                 ret = btrfs_orphan_add(trans, inode);
8001                 if (ret) {
8002                         btrfs_add_delayed_iput(inode);
8003                         goto out;
8004                 }
8005                 clear_nlink(inode);
8006                 /* One for the block groups ref */
8007                 spin_lock(&block_group->lock);
8008                 if (block_group->iref) {
8009                         block_group->iref = 0;
8010                         block_group->inode = NULL;
8011                         spin_unlock(&block_group->lock);
8012                         iput(inode);
8013                 } else {
8014                         spin_unlock(&block_group->lock);
8015                 }
8016                 /* One for our lookup ref */
8017                 btrfs_add_delayed_iput(inode);
8018         }
8019
8020         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8021         key.offset = block_group->key.objectid;
8022         key.type = 0;
8023
8024         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8025         if (ret < 0)
8026                 goto out;
8027         if (ret > 0)
8028                 btrfs_release_path(path);
8029         if (ret == 0) {
8030                 ret = btrfs_del_item(trans, tree_root, path);
8031                 if (ret)
8032                         goto out;
8033                 btrfs_release_path(path);
8034         }
8035
8036         spin_lock(&root->fs_info->block_group_cache_lock);
8037         rb_erase(&block_group->cache_node,
8038                  &root->fs_info->block_group_cache_tree);
8039         spin_unlock(&root->fs_info->block_group_cache_lock);
8040
8041         down_write(&block_group->space_info->groups_sem);
8042         /*
8043          * we must use list_del_init so people can check to see if they
8044          * are still on the list after taking the semaphore
8045          */
8046         list_del_init(&block_group->list);
8047         if (list_empty(&block_group->space_info->block_groups[index]))
8048                 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8049         up_write(&block_group->space_info->groups_sem);
8050
8051         if (block_group->cached == BTRFS_CACHE_STARTED)
8052                 wait_block_group_cache_done(block_group);
8053
8054         btrfs_remove_free_space_cache(block_group);
8055
8056         spin_lock(&block_group->space_info->lock);
8057         block_group->space_info->total_bytes -= block_group->key.offset;
8058         block_group->space_info->bytes_readonly -= block_group->key.offset;
8059         block_group->space_info->disk_total -= block_group->key.offset * factor;
8060         spin_unlock(&block_group->space_info->lock);
8061
8062         memcpy(&key, &block_group->key, sizeof(key));
8063
8064         btrfs_clear_space_info_full(root->fs_info);
8065
8066         btrfs_put_block_group(block_group);
8067         btrfs_put_block_group(block_group);
8068
8069         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8070         if (ret > 0)
8071                 ret = -EIO;
8072         if (ret < 0)
8073                 goto out;
8074
8075         ret = btrfs_del_item(trans, root, path);
8076 out:
8077         btrfs_free_path(path);
8078         return ret;
8079 }
8080
8081 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8082 {
8083         struct btrfs_space_info *space_info;
8084         struct btrfs_super_block *disk_super;
8085         u64 features;
8086         u64 flags;
8087         int mixed = 0;
8088         int ret;
8089
8090         disk_super = fs_info->super_copy;
8091         if (!btrfs_super_root(disk_super))
8092                 return 1;
8093
8094         features = btrfs_super_incompat_flags(disk_super);
8095         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8096                 mixed = 1;
8097
8098         flags = BTRFS_BLOCK_GROUP_SYSTEM;
8099         ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8100         if (ret)
8101                 goto out;
8102
8103         if (mixed) {
8104                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8105                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8106         } else {
8107                 flags = BTRFS_BLOCK_GROUP_METADATA;
8108                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8109                 if (ret)
8110                         goto out;
8111
8112                 flags = BTRFS_BLOCK_GROUP_DATA;
8113                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8114         }
8115 out:
8116         return ret;
8117 }
8118
8119 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8120 {
8121         return unpin_extent_range(root, start, end);
8122 }
8123
8124 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8125                                u64 num_bytes, u64 *actual_bytes)
8126 {
8127         return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8128 }
8129
8130 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8131 {
8132         struct btrfs_fs_info *fs_info = root->fs_info;
8133         struct btrfs_block_group_cache *cache = NULL;
8134         u64 group_trimmed;
8135         u64 start;
8136         u64 end;
8137         u64 trimmed = 0;
8138         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8139         int ret = 0;
8140
8141         /*
8142          * try to trim all FS space, our block group may start from non-zero.
8143          */
8144         if (range->len == total_bytes)
8145                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8146         else
8147                 cache = btrfs_lookup_block_group(fs_info, range->start);
8148
8149         while (cache) {
8150                 if (cache->key.objectid >= (range->start + range->len)) {
8151                         btrfs_put_block_group(cache);
8152                         break;
8153                 }
8154
8155                 start = max(range->start, cache->key.objectid);
8156                 end = min(range->start + range->len,
8157                                 cache->key.objectid + cache->key.offset);
8158
8159                 if (end - start >= range->minlen) {
8160                         if (!block_group_cache_done(cache)) {
8161                                 ret = cache_block_group(cache, NULL, root, 0);
8162                                 if (!ret)
8163                                         wait_block_group_cache_done(cache);
8164                         }
8165                         ret = btrfs_trim_block_group(cache,
8166                                                      &group_trimmed,
8167                                                      start,
8168                                                      end,
8169                                                      range->minlen);
8170
8171                         trimmed += group_trimmed;
8172                         if (ret) {
8173                                 btrfs_put_block_group(cache);
8174                                 break;
8175                         }
8176                 }
8177
8178                 cache = next_block_group(fs_info->tree_root, cache);
8179         }
8180
8181         range->len = trimmed;
8182         return ret;
8183 }