2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
64 * Control how reservations are dealt with.
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
83 struct btrfs_delayed_ref_node *node, u64 parent,
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
86 struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 return (cache->flags & bits) == bits;
128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 atomic_inc(&cache->count);
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
144 * this adds the block group to the fs_info rb tree for the block group
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 if (block_group->key.objectid < cache->key.objectid) {
163 } else if (block_group->key.objectid > cache->key.objectid) {
166 spin_unlock(&info->block_group_cache_lock);
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
178 spin_unlock(&info->block_group_cache_lock);
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
191 struct btrfs_block_group_cache *cache, *ret = NULL;
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
199 cache = rb_entry(n, struct btrfs_block_group_cache,
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
224 spin_unlock(&info->block_group_cache_lock);
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE);
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE);
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
282 if (logical[nr] > cache->key.objectid +
286 if (logical[nr] + stripe_len <= cache->key.objectid)
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
315 struct btrfs_caching_control *ctl;
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
329 static void put_caching_control(struct btrfs_caching_control *ctl)
331 if (atomic_dec_and_test(&ctl->count))
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
364 u64 extent_start, extent_end, size, total_added = 0;
367 while (start < end) {
368 ret = find_first_extent_bit(info->pinned_extents, start,
369 &extent_start, &extent_end,
370 EXTENT_DIRTY | EXTENT_UPTODATE,
375 if (extent_start <= start) {
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
380 ret = btrfs_add_free_space(block_group, start,
382 BUG_ON(ret); /* -ENOMEM or logic error */
383 start = extent_end + 1;
392 ret = btrfs_add_free_space(block_group, start, size);
393 BUG_ON(ret); /* -ENOMEM or logic error */
399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_root *extent_root;
404 struct btrfs_path *path;
405 struct extent_buffer *leaf;
406 struct btrfs_key key;
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
417 path = btrfs_alloc_path();
421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423 #ifdef CONFIG_BTRFS_DEBUG
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
438 path->skip_locking = 1;
439 path->search_commit_root = 1;
440 path->reada = READA_FORWARD;
444 key.type = BTRFS_EXTENT_ITEM_KEY;
447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
455 if (btrfs_fs_closing(fs_info) > 1) {
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
463 ret = find_next_key(path, 0, &key);
467 if (need_resched() ||
468 rwsem_is_contended(&fs_info->commit_root_sem)) {
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 up_read(&fs_info->commit_root_sem);
473 mutex_unlock(&caching_ctl->mutex);
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
480 ret = btrfs_next_leaf(extent_root, path);
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
490 if (key.objectid < last) {
493 key.type = BTRFS_EXTENT_ITEM_KEY;
496 caching_ctl->progress = last;
497 btrfs_release_path(path);
501 if (key.objectid < block_group->key.objectid) {
506 if (key.objectid >= block_group->key.objectid +
507 block_group->key.offset)
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
512 total_found += add_new_free_space(block_group,
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
517 fs_info->tree_root->nodesize;
519 last = key.objectid + key.offset;
521 if (total_found > CACHING_CTL_WAKE_UP) {
524 wake_up(&caching_ctl->wait);
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
534 caching_ctl->progress = (u64)-1;
537 btrfs_free_path(path);
541 static noinline void caching_thread(struct btrfs_work *work)
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
546 struct btrfs_root *extent_root;
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
552 extent_root = fs_info->extent_root;
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
560 ret = load_extent_tree_free(caching_ctl);
562 spin_lock(&block_group->lock);
563 block_group->caching_ctl = NULL;
564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565 spin_unlock(&block_group->lock);
567 #ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
582 caching_ctl->progress = (u64)-1;
584 up_read(&fs_info->commit_root_sem);
585 free_excluded_extents(fs_info->extent_root, block_group);
586 mutex_unlock(&caching_ctl->mutex);
588 wake_up(&caching_ctl->wait);
590 put_caching_control(caching_ctl);
591 btrfs_put_block_group(block_group);
594 static int cache_block_group(struct btrfs_block_group_cache *cache,
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
615 spin_lock(&cache->lock);
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654 mutex_lock(&caching_ctl->mutex);
655 ret = load_free_space_cache(fs_info, cache);
657 spin_lock(&cache->lock);
659 cache->caching_ctl = NULL;
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
662 caching_ctl->progress = (u64)-1;
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
668 cache->cached = BTRFS_CACHE_STARTED;
669 cache->has_caching_ctl = 1;
672 spin_unlock(&cache->lock);
673 #ifdef CONFIG_BTRFS_DEBUG
675 btrfs_should_fragment_free_space(fs_info->extent_root,
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
689 mutex_unlock(&caching_ctl->mutex);
691 wake_up(&caching_ctl->wait);
693 put_caching_control(caching_ctl);
694 free_excluded_extents(fs_info->extent_root, cache);
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
707 cache->cached = BTRFS_CACHE_STARTED;
708 cache->has_caching_ctl = 1;
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
719 down_write(&fs_info->commit_root_sem);
720 atomic_inc(&caching_ctl->count);
721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 up_write(&fs_info->commit_root_sem);
724 btrfs_get_block_group(cache);
726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
732 * return the block group that starts at or after bytenr
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 struct btrfs_block_group_cache *cache;
739 cache = block_group_cache_tree_search(info, bytenr, 0);
745 * return the block group that contains the given bytenr
747 struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
751 struct btrfs_block_group_cache *cache;
753 cache = block_group_cache_tree_search(info, bytenr, 1);
758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
761 struct list_head *head = &info->space_info;
762 struct btrfs_space_info *found;
764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
767 list_for_each_entry_rcu(found, head, list) {
768 if (found->flags & flags) {
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
787 list_for_each_entry_rcu(found, head, list)
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
796 struct btrfs_key key;
797 struct btrfs_path *path;
799 path = btrfs_alloc_path();
803 key.objectid = start;
805 key.type = BTRFS_EXTENT_ITEM_KEY;
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
808 btrfs_free_path(path);
813 * helper function to lookup reference count and flags of a tree block.
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
823 u64 offset, int metadata, u64 *refs, u64 *flags)
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
837 * If we don't have skinny metadata, don't bother doing anything
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841 offset = root->nodesize;
845 path = btrfs_alloc_path();
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
855 key.objectid = bytenr;
858 key.type = BTRFS_METADATA_ITEM_KEY;
860 key.type = BTRFS_EXTENT_ITEM_KEY;
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868 if (path->slots[0]) {
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
874 key.offset == root->nodesize)
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
900 BUG_ON(num_refs == 0);
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
918 btrfs_release_path(path);
921 * Mutex was contended, block until it's released and try
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
929 spin_lock(&head->lock);
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
933 BUG_ON(num_refs == 0);
935 num_refs += head->node.ref_mod;
936 spin_unlock(&head->lock);
937 mutex_unlock(&head->mutex);
939 spin_unlock(&delayed_refs->lock);
941 WARN_ON(num_refs == 0);
945 *flags = extent_flags;
947 btrfs_free_path(path);
952 * Back reference rules. Back refs have three main goals:
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
983 * When a tree block is COWed through a tree, there are four cases:
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1003 * Back Reference Key composing:
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1010 * File extents can be referenced by:
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
1013 * - different files inside a single subvolume
1014 * - different offsets inside a file (bookend extents in file.c)
1016 * The extent ref structure for the implicit back refs has fields for:
1018 * - Objectid of the subvolume root
1019 * - objectid of the file holding the reference
1020 * - original offset in the file
1021 * - how many bookend extents
1023 * The key offset for the implicit back refs is hash of the first
1026 * The extent ref structure for the full back refs has field for:
1028 * - number of pointers in the tree leaf
1030 * The key offset for the implicit back refs is the first byte of
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
1036 * (root_key.objectid, inode objectid, offset in file, 1)
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1043 * Btree extents can be referenced by:
1045 * - Different subvolumes
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
1068 struct btrfs_key key;
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1082 if (owner == (u64)-1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1088 BUG_ON(ret > 0); /* Corruption */
1089 leaf = path->nodes[0];
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1104 btrfs_release_path(path);
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1114 BUG_ON(ret); /* Corruption */
1116 btrfs_extend_item(root, path, new_size);
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1134 btrfs_mark_buffer_dirty(leaf);
1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1145 lenum = cpu_to_le64(root_objectid);
1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147 lenum = cpu_to_le64(owner);
1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149 lenum = cpu_to_le64(offset);
1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1163 static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1179 u64 owner, u64 offset)
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
1183 struct extent_buffer *leaf;
1189 key.objectid = bytenr;
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
1211 btrfs_release_path(path);
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1223 leaf = path->nodes[0];
1224 nritems = btrfs_header_nritems(leaf);
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1249 btrfs_release_path(path);
1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
1274 key.objectid = bytenr;
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1283 size = sizeof(struct btrfs_extent_data_ref);
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1290 leaf = path->nodes[0];
1292 struct btrfs_shared_data_ref *ref;
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_shared_data_ref);
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1310 btrfs_release_path(path);
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1314 if (ret && ret != -EEXIST)
1317 leaf = path->nodes[0];
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1333 btrfs_mark_buffer_dirty(leaf);
1336 btrfs_release_path(path);
1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
1343 int refs_to_drop, int *last_ref)
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
1348 struct extent_buffer *leaf;
1352 leaf = path->nodes[0];
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1393 btrfs_mark_buffer_dirty(leaf);
1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399 struct btrfs_extent_inline_ref *iref)
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1445 struct btrfs_key key;
1448 key.objectid = bytenr;
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
1462 btrfs_release_path(path);
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1478 struct btrfs_key key;
1481 key.objectid = bytenr;
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491 btrfs_release_path(path);
1495 static inline int extent_ref_type(u64 parent, u64 owner)
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1512 static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
1516 for (; level < BTRFS_MAX_LEVEL; level++) {
1517 if (!path->nodes[level])
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1571 key.objectid = bytenr;
1572 key.type = BTRFS_EXTENT_ITEM_KEY;
1573 key.offset = num_bytes;
1575 want = extent_ref_type(parent, owner);
1577 extra_size = btrfs_extent_inline_ref_size(want);
1578 path->keep_locks = 1;
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1614 key.objectid = bytenr;
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1622 if (ret && !insert) {
1625 } else if (WARN_ON(ret)) {
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648 BUG_ON(item_size < sizeof(*ei));
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657 ptr += sizeof(struct btrfs_tree_block_info);
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1672 ptr += btrfs_extent_inline_ref_size(type);
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1691 if (parent == ref_offset) {
1695 if (ref_offset < parent)
1698 if (root_objectid == ref_offset) {
1702 if (ref_offset < root_objectid)
1706 ptr += btrfs_extent_inline_ref_size(type);
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1737 * helper to add new inline back ref
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root *root,
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1751 unsigned long item_offset;
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1763 btrfs_extend_item(root, path, size);
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1797 btrfs_mark_buffer_dirty(leaf);
1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1815 btrfs_release_path(path);
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
1829 * helper to update/remove inline back ref
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root *root,
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1836 struct btrfs_delayed_extent_op *extent_op,
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1869 BUG_ON(refs_to_mod != -1);
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1890 btrfs_truncate_item(root, path, item_size, 1);
1892 btrfs_mark_buffer_dirty(leaf);
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1904 struct btrfs_extent_inline_ref *iref;
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912 update_inline_extent_backref(root, path, iref,
1913 refs_to_add, extent_op, NULL);
1914 } else if (ret == -ENOENT) {
1915 setup_inline_extent_backref(root, path, iref, parent,
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1923 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1942 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
1946 int refs_to_drop, int is_data, int *last_ref)
1950 BUG_ON(!is_data && refs_to_drop != 1);
1952 update_inline_extent_backref(root, path, iref,
1953 -refs_to_drop, NULL, last_ref);
1954 } else if (is_data) {
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1959 ret = btrfs_del_item(trans, root, path);
1964 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
1969 u64 bytes_left, end;
1970 u64 aligned_start = ALIGN(start, 1 << 9);
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1978 *discarded_bytes = 0;
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1998 * Superblock spans beginning of range. Adjust start and
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2007 bytes_left = end - start;
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2025 bytes_left = end - start;
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2032 *discarded_bytes += bytes_left;
2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
2041 u64 discarded_bytes = 0;
2042 struct btrfs_bio *bbio = NULL;
2046 * Avoid races with device replace and make sure our bbio has devices
2047 * associated to its stripes that don't go away while we are discarding.
2049 btrfs_bio_counter_inc_blocked(root->fs_info);
2050 /* Tell the block device(s) that the sectors can be discarded */
2051 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2052 bytenr, &num_bytes, &bbio, 0);
2053 /* Error condition is -ENOMEM */
2055 struct btrfs_bio_stripe *stripe = bbio->stripes;
2059 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2061 if (!stripe->dev->can_discard)
2064 ret = btrfs_issue_discard(stripe->dev->bdev,
2069 discarded_bytes += bytes;
2070 else if (ret != -EOPNOTSUPP)
2071 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2074 * Just in case we get back EOPNOTSUPP for some reason,
2075 * just ignore the return value so we don't screw up
2076 * people calling discard_extent.
2080 btrfs_put_bbio(bbio);
2082 btrfs_bio_counter_dec(root->fs_info);
2085 *actual_bytes = discarded_bytes;
2088 if (ret == -EOPNOTSUPP)
2093 /* Can return -ENOMEM */
2094 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *root,
2096 u64 bytenr, u64 num_bytes, u64 parent,
2097 u64 root_objectid, u64 owner, u64 offset)
2100 struct btrfs_fs_info *fs_info = root->fs_info;
2102 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2105 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2106 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2108 parent, root_objectid, (int)owner,
2109 BTRFS_ADD_DELAYED_REF, NULL);
2111 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2112 num_bytes, parent, root_objectid,
2114 BTRFS_ADD_DELAYED_REF, NULL);
2119 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
2121 struct btrfs_delayed_ref_node *node,
2122 u64 parent, u64 root_objectid,
2123 u64 owner, u64 offset, int refs_to_add,
2124 struct btrfs_delayed_extent_op *extent_op)
2126 struct btrfs_fs_info *fs_info = root->fs_info;
2127 struct btrfs_path *path;
2128 struct extent_buffer *leaf;
2129 struct btrfs_extent_item *item;
2130 struct btrfs_key key;
2131 u64 bytenr = node->bytenr;
2132 u64 num_bytes = node->num_bytes;
2136 path = btrfs_alloc_path();
2140 path->reada = READA_FORWARD;
2141 path->leave_spinning = 1;
2142 /* this will setup the path even if it fails to insert the back ref */
2143 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144 bytenr, num_bytes, parent,
2145 root_objectid, owner, offset,
2146 refs_to_add, extent_op);
2147 if ((ret < 0 && ret != -EAGAIN) || !ret)
2151 * Ok we had -EAGAIN which means we didn't have space to insert and
2152 * inline extent ref, so just update the reference count and add a
2155 leaf = path->nodes[0];
2156 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2157 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158 refs = btrfs_extent_refs(leaf, item);
2159 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2161 __run_delayed_extent_op(extent_op, leaf, item);
2163 btrfs_mark_buffer_dirty(leaf);
2164 btrfs_release_path(path);
2166 path->reada = READA_FORWARD;
2167 path->leave_spinning = 1;
2168 /* now insert the actual backref */
2169 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2170 path, bytenr, parent, root_objectid,
2171 owner, offset, refs_to_add);
2173 btrfs_abort_transaction(trans, root, ret);
2175 btrfs_free_path(path);
2179 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root,
2181 struct btrfs_delayed_ref_node *node,
2182 struct btrfs_delayed_extent_op *extent_op,
2183 int insert_reserved)
2186 struct btrfs_delayed_data_ref *ref;
2187 struct btrfs_key ins;
2192 ins.objectid = node->bytenr;
2193 ins.offset = node->num_bytes;
2194 ins.type = BTRFS_EXTENT_ITEM_KEY;
2196 ref = btrfs_delayed_node_to_data_ref(node);
2197 trace_run_delayed_data_ref(node, ref, node->action);
2199 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200 parent = ref->parent;
2201 ref_root = ref->root;
2203 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2205 flags |= extent_op->flags_to_set;
2206 ret = alloc_reserved_file_extent(trans, root,
2207 parent, ref_root, flags,
2208 ref->objectid, ref->offset,
2209 &ins, node->ref_mod);
2210 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2211 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2212 ref_root, ref->objectid,
2213 ref->offset, node->ref_mod,
2215 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2216 ret = __btrfs_free_extent(trans, root, node, parent,
2217 ref_root, ref->objectid,
2218 ref->offset, node->ref_mod,
2226 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227 struct extent_buffer *leaf,
2228 struct btrfs_extent_item *ei)
2230 u64 flags = btrfs_extent_flags(leaf, ei);
2231 if (extent_op->update_flags) {
2232 flags |= extent_op->flags_to_set;
2233 btrfs_set_extent_flags(leaf, ei, flags);
2236 if (extent_op->update_key) {
2237 struct btrfs_tree_block_info *bi;
2238 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239 bi = (struct btrfs_tree_block_info *)(ei + 1);
2240 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2244 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op)
2249 struct btrfs_key key;
2250 struct btrfs_path *path;
2251 struct btrfs_extent_item *ei;
2252 struct extent_buffer *leaf;
2256 int metadata = !extent_op->is_data;
2261 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2264 path = btrfs_alloc_path();
2268 key.objectid = node->bytenr;
2271 key.type = BTRFS_METADATA_ITEM_KEY;
2272 key.offset = extent_op->level;
2274 key.type = BTRFS_EXTENT_ITEM_KEY;
2275 key.offset = node->num_bytes;
2279 path->reada = READA_FORWARD;
2280 path->leave_spinning = 1;
2281 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2289 if (path->slots[0] > 0) {
2291 btrfs_item_key_to_cpu(path->nodes[0], &key,
2293 if (key.objectid == node->bytenr &&
2294 key.type == BTRFS_EXTENT_ITEM_KEY &&
2295 key.offset == node->num_bytes)
2299 btrfs_release_path(path);
2302 key.objectid = node->bytenr;
2303 key.offset = node->num_bytes;
2304 key.type = BTRFS_EXTENT_ITEM_KEY;
2313 leaf = path->nodes[0];
2314 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316 if (item_size < sizeof(*ei)) {
2317 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2327 BUG_ON(item_size < sizeof(*ei));
2328 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 __run_delayed_extent_op(extent_op, leaf, ei);
2331 btrfs_mark_buffer_dirty(leaf);
2333 btrfs_free_path(path);
2337 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338 struct btrfs_root *root,
2339 struct btrfs_delayed_ref_node *node,
2340 struct btrfs_delayed_extent_op *extent_op,
2341 int insert_reserved)
2344 struct btrfs_delayed_tree_ref *ref;
2345 struct btrfs_key ins;
2348 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2351 ref = btrfs_delayed_node_to_tree_ref(node);
2352 trace_run_delayed_tree_ref(node, ref, node->action);
2354 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355 parent = ref->parent;
2356 ref_root = ref->root;
2358 ins.objectid = node->bytenr;
2359 if (skinny_metadata) {
2360 ins.offset = ref->level;
2361 ins.type = BTRFS_METADATA_ITEM_KEY;
2363 ins.offset = node->num_bytes;
2364 ins.type = BTRFS_EXTENT_ITEM_KEY;
2367 BUG_ON(node->ref_mod != 1);
2368 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2369 BUG_ON(!extent_op || !extent_op->update_flags);
2370 ret = alloc_reserved_tree_block(trans, root,
2372 extent_op->flags_to_set,
2375 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2376 ret = __btrfs_inc_extent_ref(trans, root, node,
2380 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2381 ret = __btrfs_free_extent(trans, root, node,
2383 ref->level, 0, 1, extent_op);
2390 /* helper function to actually process a single delayed ref entry */
2391 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 struct btrfs_delayed_ref_node *node,
2394 struct btrfs_delayed_extent_op *extent_op,
2395 int insert_reserved)
2399 if (trans->aborted) {
2400 if (insert_reserved)
2401 btrfs_pin_extent(root, node->bytenr,
2402 node->num_bytes, 1);
2406 if (btrfs_delayed_ref_is_head(node)) {
2407 struct btrfs_delayed_ref_head *head;
2409 * we've hit the end of the chain and we were supposed
2410 * to insert this extent into the tree. But, it got
2411 * deleted before we ever needed to insert it, so all
2412 * we have to do is clean up the accounting
2415 head = btrfs_delayed_node_to_head(node);
2416 trace_run_delayed_ref_head(node, head, node->action);
2418 if (insert_reserved) {
2419 btrfs_pin_extent(root, node->bytenr,
2420 node->num_bytes, 1);
2421 if (head->is_data) {
2422 ret = btrfs_del_csums(trans, root,
2428 /* Also free its reserved qgroup space */
2429 btrfs_qgroup_free_delayed_ref(root->fs_info,
2430 head->qgroup_ref_root,
2431 head->qgroup_reserved);
2435 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2439 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441 ret = run_delayed_data_ref(trans, root, node, extent_op,
2448 static inline struct btrfs_delayed_ref_node *
2449 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2451 struct btrfs_delayed_ref_node *ref;
2453 if (list_empty(&head->ref_list))
2457 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458 * This is to prevent a ref count from going down to zero, which deletes
2459 * the extent item from the extent tree, when there still are references
2460 * to add, which would fail because they would not find the extent item.
2462 list_for_each_entry(ref, &head->ref_list, list) {
2463 if (ref->action == BTRFS_ADD_DELAYED_REF)
2467 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2472 * Returns 0 on success or if called with an already aborted transaction.
2473 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2475 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476 struct btrfs_root *root,
2479 struct btrfs_delayed_ref_root *delayed_refs;
2480 struct btrfs_delayed_ref_node *ref;
2481 struct btrfs_delayed_ref_head *locked_ref = NULL;
2482 struct btrfs_delayed_extent_op *extent_op;
2483 struct btrfs_fs_info *fs_info = root->fs_info;
2484 ktime_t start = ktime_get();
2486 unsigned long count = 0;
2487 unsigned long actual_count = 0;
2488 int must_insert_reserved = 0;
2490 delayed_refs = &trans->transaction->delayed_refs;
2496 spin_lock(&delayed_refs->lock);
2497 locked_ref = btrfs_select_ref_head(trans);
2499 spin_unlock(&delayed_refs->lock);
2503 /* grab the lock that says we are going to process
2504 * all the refs for this head */
2505 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2506 spin_unlock(&delayed_refs->lock);
2508 * we may have dropped the spin lock to get the head
2509 * mutex lock, and that might have given someone else
2510 * time to free the head. If that's true, it has been
2511 * removed from our list and we can move on.
2513 if (ret == -EAGAIN) {
2521 * We need to try and merge add/drops of the same ref since we
2522 * can run into issues with relocate dropping the implicit ref
2523 * and then it being added back again before the drop can
2524 * finish. If we merged anything we need to re-loop so we can
2526 * Or we can get node references of the same type that weren't
2527 * merged when created due to bumps in the tree mod seq, and
2528 * we need to merge them to prevent adding an inline extent
2529 * backref before dropping it (triggering a BUG_ON at
2530 * insert_inline_extent_backref()).
2532 spin_lock(&locked_ref->lock);
2533 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2537 * locked_ref is the head node, so we have to go one
2538 * node back for any delayed ref updates
2540 ref = select_delayed_ref(locked_ref);
2542 if (ref && ref->seq &&
2543 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2544 spin_unlock(&locked_ref->lock);
2545 btrfs_delayed_ref_unlock(locked_ref);
2546 spin_lock(&delayed_refs->lock);
2547 locked_ref->processing = 0;
2548 delayed_refs->num_heads_ready++;
2549 spin_unlock(&delayed_refs->lock);
2557 * record the must insert reserved flag before we
2558 * drop the spin lock.
2560 must_insert_reserved = locked_ref->must_insert_reserved;
2561 locked_ref->must_insert_reserved = 0;
2563 extent_op = locked_ref->extent_op;
2564 locked_ref->extent_op = NULL;
2569 /* All delayed refs have been processed, Go ahead
2570 * and send the head node to run_one_delayed_ref,
2571 * so that any accounting fixes can happen
2573 ref = &locked_ref->node;
2575 if (extent_op && must_insert_reserved) {
2576 btrfs_free_delayed_extent_op(extent_op);
2581 spin_unlock(&locked_ref->lock);
2582 ret = run_delayed_extent_op(trans, root,
2584 btrfs_free_delayed_extent_op(extent_op);
2588 * Need to reset must_insert_reserved if
2589 * there was an error so the abort stuff
2590 * can cleanup the reserved space
2593 if (must_insert_reserved)
2594 locked_ref->must_insert_reserved = 1;
2595 locked_ref->processing = 0;
2596 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2597 btrfs_delayed_ref_unlock(locked_ref);
2604 * Need to drop our head ref lock and re-acquire the
2605 * delayed ref lock and then re-check to make sure
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
2611 if (!list_empty(&locked_ref->ref_list) ||
2612 locked_ref->extent_op) {
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2618 delayed_refs->num_heads--;
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
2621 spin_unlock(&delayed_refs->lock);
2625 list_del(&ref->list);
2627 atomic_dec(&delayed_refs->num_entries);
2629 if (!btrfs_delayed_ref_is_head(ref)) {
2631 * when we play the delayed ref, also correct the
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2646 spin_unlock(&locked_ref->lock);
2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2649 must_insert_reserved);
2651 btrfs_free_delayed_extent_op(extent_op);
2653 locked_ref->processing = 0;
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2661 * If this node is a head, that means all the refs in this head
2662 * have been dealt with, and we will pick the next head to deal
2663 * with, so we must unlock the head and drop it from the cluster
2664 * list before we release it.
2666 if (btrfs_delayed_ref_is_head(ref)) {
2667 if (locked_ref->is_data &&
2668 locked_ref->total_ref_mod < 0) {
2669 spin_lock(&delayed_refs->lock);
2670 delayed_refs->pending_csums -= ref->num_bytes;
2671 spin_unlock(&delayed_refs->lock);
2673 btrfs_delayed_ref_unlock(locked_ref);
2676 btrfs_put_delayed_ref(ref);
2682 * We don't want to include ref heads since we can have empty ref heads
2683 * and those will drastically skew our runtime down since we just do
2684 * accounting, no actual extent tree updates.
2686 if (actual_count > 0) {
2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2691 * We weigh the current average higher than our current runtime
2692 * to avoid large swings in the average.
2694 spin_lock(&delayed_refs->lock);
2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2697 spin_unlock(&delayed_refs->lock);
2702 #ifdef SCRAMBLE_DELAYED_REFS
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2708 static u64 find_middle(struct rb_root *root)
2710 struct rb_node *n = root->rb_node;
2711 struct btrfs_delayed_ref_node *entry;
2714 u64 first = 0, last = 0;
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 first = entry->bytenr;
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 last = entry->bytenr;
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 WARN_ON(!entry->in_tree);
2732 middle = entry->bytenr;
2745 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 sizeof(struct btrfs_extent_inline_ref));
2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2755 * We don't ever fill up leaves all the way so multiply by 2 just to be
2756 * closer to what we're really going to want to use.
2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2765 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2768 u64 num_csums_per_leaf;
2771 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772 num_csums_per_leaf = div64_u64(csum_size,
2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 num_csums += num_csums_per_leaf - 1;
2776 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2780 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2781 struct btrfs_root *root)
2783 struct btrfs_block_rsv *global_rsv;
2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 u64 num_bytes, num_dirty_bgs_bytes;
2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 num_heads = heads_to_leaves(root, num_heads);
2793 num_bytes += (num_heads - 1) * root->nodesize;
2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2798 global_rsv = &root->fs_info->global_block_rsv;
2801 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 * wiggle room since running delayed refs can create more delayed refs.
2804 if (global_rsv->space_info->full) {
2805 num_dirty_bgs_bytes <<= 1;
2809 spin_lock(&global_rsv->lock);
2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2812 spin_unlock(&global_rsv->lock);
2816 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root)
2819 struct btrfs_fs_info *fs_info = root->fs_info;
2821 atomic_read(&trans->transaction->delayed_refs.num_entries);
2826 avg_runtime = fs_info->avg_delayed_ref_runtime;
2827 val = num_entries * avg_runtime;
2828 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2830 if (val >= NSEC_PER_SEC / 2)
2833 return btrfs_check_space_for_delayed_refs(trans, root);
2836 struct async_delayed_refs {
2837 struct btrfs_root *root;
2841 struct completion wait;
2842 struct btrfs_work work;
2845 static void delayed_ref_async_start(struct btrfs_work *work)
2847 struct async_delayed_refs *async;
2848 struct btrfs_trans_handle *trans;
2851 async = container_of(work, struct async_delayed_refs, work);
2853 trans = btrfs_join_transaction(async->root);
2854 if (IS_ERR(trans)) {
2855 async->error = PTR_ERR(trans);
2860 * trans->sync means that when we call end_transaction, we won't
2861 * wait on delayed refs
2864 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2868 ret = btrfs_end_transaction(trans, async->root);
2869 if (ret && !async->error)
2873 complete(&async->wait);
2878 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2879 unsigned long count, int wait)
2881 struct async_delayed_refs *async;
2884 async = kmalloc(sizeof(*async), GFP_NOFS);
2888 async->root = root->fs_info->tree_root;
2889 async->count = count;
2895 init_completion(&async->wait);
2897 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2898 delayed_ref_async_start, NULL, NULL);
2900 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2903 wait_for_completion(&async->wait);
2912 * this starts processing the delayed reference count updates and
2913 * extent insertions we have queued up so far. count can be
2914 * 0, which means to process everything in the tree at the start
2915 * of the run (but not newly added entries), or it can be some target
2916 * number you'd like to process.
2918 * Returns 0 on success or if called with an aborted transaction
2919 * Returns <0 on error and aborts the transaction
2921 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2922 struct btrfs_root *root, unsigned long count)
2924 struct rb_node *node;
2925 struct btrfs_delayed_ref_root *delayed_refs;
2926 struct btrfs_delayed_ref_head *head;
2928 int run_all = count == (unsigned long)-1;
2929 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2931 /* We'll clean this up in btrfs_cleanup_transaction */
2935 if (root->fs_info->creating_free_space_tree)
2938 if (root == root->fs_info->extent_root)
2939 root = root->fs_info->tree_root;
2941 delayed_refs = &trans->transaction->delayed_refs;
2943 count = atomic_read(&delayed_refs->num_entries) * 2;
2946 #ifdef SCRAMBLE_DELAYED_REFS
2947 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2949 trans->can_flush_pending_bgs = false;
2950 ret = __btrfs_run_delayed_refs(trans, root, count);
2952 btrfs_abort_transaction(trans, root, ret);
2957 if (!list_empty(&trans->new_bgs))
2958 btrfs_create_pending_block_groups(trans, root);
2960 spin_lock(&delayed_refs->lock);
2961 node = rb_first(&delayed_refs->href_root);
2963 spin_unlock(&delayed_refs->lock);
2966 count = (unsigned long)-1;
2969 head = rb_entry(node, struct btrfs_delayed_ref_head,
2971 if (btrfs_delayed_ref_is_head(&head->node)) {
2972 struct btrfs_delayed_ref_node *ref;
2975 atomic_inc(&ref->refs);
2977 spin_unlock(&delayed_refs->lock);
2979 * Mutex was contended, block until it's
2980 * released and try again
2982 mutex_lock(&head->mutex);
2983 mutex_unlock(&head->mutex);
2985 btrfs_put_delayed_ref(ref);
2991 node = rb_next(node);
2993 spin_unlock(&delayed_refs->lock);
2998 assert_qgroups_uptodate(trans);
2999 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3003 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *root,
3005 u64 bytenr, u64 num_bytes, u64 flags,
3006 int level, int is_data)
3008 struct btrfs_delayed_extent_op *extent_op;
3011 extent_op = btrfs_alloc_delayed_extent_op();
3015 extent_op->flags_to_set = flags;
3016 extent_op->update_flags = true;
3017 extent_op->update_key = false;
3018 extent_op->is_data = is_data ? true : false;
3019 extent_op->level = level;
3021 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3022 num_bytes, extent_op);
3024 btrfs_free_delayed_extent_op(extent_op);
3028 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3029 struct btrfs_root *root,
3030 struct btrfs_path *path,
3031 u64 objectid, u64 offset, u64 bytenr)
3033 struct btrfs_delayed_ref_head *head;
3034 struct btrfs_delayed_ref_node *ref;
3035 struct btrfs_delayed_data_ref *data_ref;
3036 struct btrfs_delayed_ref_root *delayed_refs;
3039 delayed_refs = &trans->transaction->delayed_refs;
3040 spin_lock(&delayed_refs->lock);
3041 head = btrfs_find_delayed_ref_head(trans, bytenr);
3043 spin_unlock(&delayed_refs->lock);
3047 if (!mutex_trylock(&head->mutex)) {
3048 atomic_inc(&head->node.refs);
3049 spin_unlock(&delayed_refs->lock);
3051 btrfs_release_path(path);
3054 * Mutex was contended, block until it's released and let
3057 mutex_lock(&head->mutex);
3058 mutex_unlock(&head->mutex);
3059 btrfs_put_delayed_ref(&head->node);
3062 spin_unlock(&delayed_refs->lock);
3064 spin_lock(&head->lock);
3065 list_for_each_entry(ref, &head->ref_list, list) {
3066 /* If it's a shared ref we know a cross reference exists */
3067 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3072 data_ref = btrfs_delayed_node_to_data_ref(ref);
3075 * If our ref doesn't match the one we're currently looking at
3076 * then we have a cross reference.
3078 if (data_ref->root != root->root_key.objectid ||
3079 data_ref->objectid != objectid ||
3080 data_ref->offset != offset) {
3085 spin_unlock(&head->lock);
3086 mutex_unlock(&head->mutex);
3090 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3091 struct btrfs_root *root,
3092 struct btrfs_path *path,
3093 u64 objectid, u64 offset, u64 bytenr)
3095 struct btrfs_root *extent_root = root->fs_info->extent_root;
3096 struct extent_buffer *leaf;
3097 struct btrfs_extent_data_ref *ref;
3098 struct btrfs_extent_inline_ref *iref;
3099 struct btrfs_extent_item *ei;
3100 struct btrfs_key key;
3104 key.objectid = bytenr;
3105 key.offset = (u64)-1;
3106 key.type = BTRFS_EXTENT_ITEM_KEY;
3108 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3111 BUG_ON(ret == 0); /* Corruption */
3114 if (path->slots[0] == 0)
3118 leaf = path->nodes[0];
3119 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3121 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3125 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3126 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3127 if (item_size < sizeof(*ei)) {
3128 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3132 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3134 if (item_size != sizeof(*ei) +
3135 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3138 if (btrfs_extent_generation(leaf, ei) <=
3139 btrfs_root_last_snapshot(&root->root_item))
3142 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3143 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3144 BTRFS_EXTENT_DATA_REF_KEY)
3147 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3148 if (btrfs_extent_refs(leaf, ei) !=
3149 btrfs_extent_data_ref_count(leaf, ref) ||
3150 btrfs_extent_data_ref_root(leaf, ref) !=
3151 root->root_key.objectid ||
3152 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3153 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3161 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3162 struct btrfs_root *root,
3163 u64 objectid, u64 offset, u64 bytenr)
3165 struct btrfs_path *path;
3169 path = btrfs_alloc_path();
3174 ret = check_committed_ref(trans, root, path, objectid,
3176 if (ret && ret != -ENOENT)
3179 ret2 = check_delayed_ref(trans, root, path, objectid,
3181 } while (ret2 == -EAGAIN);
3183 if (ret2 && ret2 != -ENOENT) {
3188 if (ret != -ENOENT || ret2 != -ENOENT)
3191 btrfs_free_path(path);
3192 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3197 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3198 struct btrfs_root *root,
3199 struct extent_buffer *buf,
3200 int full_backref, int inc)
3207 struct btrfs_key key;
3208 struct btrfs_file_extent_item *fi;
3212 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3213 u64, u64, u64, u64, u64, u64);
3216 if (btrfs_test_is_dummy_root(root))
3219 ref_root = btrfs_header_owner(buf);
3220 nritems = btrfs_header_nritems(buf);
3221 level = btrfs_header_level(buf);
3223 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3227 process_func = btrfs_inc_extent_ref;
3229 process_func = btrfs_free_extent;
3232 parent = buf->start;
3236 for (i = 0; i < nritems; i++) {
3238 btrfs_item_key_to_cpu(buf, &key, i);
3239 if (key.type != BTRFS_EXTENT_DATA_KEY)
3241 fi = btrfs_item_ptr(buf, i,
3242 struct btrfs_file_extent_item);
3243 if (btrfs_file_extent_type(buf, fi) ==
3244 BTRFS_FILE_EXTENT_INLINE)
3246 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3250 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3251 key.offset -= btrfs_file_extent_offset(buf, fi);
3252 ret = process_func(trans, root, bytenr, num_bytes,
3253 parent, ref_root, key.objectid,
3258 bytenr = btrfs_node_blockptr(buf, i);
3259 num_bytes = root->nodesize;
3260 ret = process_func(trans, root, bytenr, num_bytes,
3261 parent, ref_root, level - 1, 0);
3271 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3272 struct extent_buffer *buf, int full_backref)
3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3277 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3278 struct extent_buffer *buf, int full_backref)
3280 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3283 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3284 struct btrfs_root *root,
3285 struct btrfs_path *path,
3286 struct btrfs_block_group_cache *cache)
3289 struct btrfs_root *extent_root = root->fs_info->extent_root;
3291 struct extent_buffer *leaf;
3293 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3300 leaf = path->nodes[0];
3301 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3302 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3303 btrfs_mark_buffer_dirty(leaf);
3305 btrfs_release_path(path);
3310 static struct btrfs_block_group_cache *
3311 next_block_group(struct btrfs_root *root,
3312 struct btrfs_block_group_cache *cache)
3314 struct rb_node *node;
3316 spin_lock(&root->fs_info->block_group_cache_lock);
3318 /* If our block group was removed, we need a full search. */
3319 if (RB_EMPTY_NODE(&cache->cache_node)) {
3320 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3322 spin_unlock(&root->fs_info->block_group_cache_lock);
3323 btrfs_put_block_group(cache);
3324 cache = btrfs_lookup_first_block_group(root->fs_info,
3328 node = rb_next(&cache->cache_node);
3329 btrfs_put_block_group(cache);
3331 cache = rb_entry(node, struct btrfs_block_group_cache,
3333 btrfs_get_block_group(cache);
3336 spin_unlock(&root->fs_info->block_group_cache_lock);
3340 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3341 struct btrfs_trans_handle *trans,
3342 struct btrfs_path *path)
3344 struct btrfs_root *root = block_group->fs_info->tree_root;
3345 struct inode *inode = NULL;
3347 int dcs = BTRFS_DC_ERROR;
3353 * If this block group is smaller than 100 megs don't bother caching the
3356 if (block_group->key.offset < (100 * SZ_1M)) {
3357 spin_lock(&block_group->lock);
3358 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3359 spin_unlock(&block_group->lock);
3366 inode = lookup_free_space_inode(root, block_group, path);
3367 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3368 ret = PTR_ERR(inode);
3369 btrfs_release_path(path);
3373 if (IS_ERR(inode)) {
3377 if (block_group->ro)
3380 ret = create_free_space_inode(root, trans, block_group, path);
3386 /* We've already setup this transaction, go ahead and exit */
3387 if (block_group->cache_generation == trans->transid &&
3388 i_size_read(inode)) {
3389 dcs = BTRFS_DC_SETUP;
3394 * We want to set the generation to 0, that way if anything goes wrong
3395 * from here on out we know not to trust this cache when we load up next
3398 BTRFS_I(inode)->generation = 0;
3399 ret = btrfs_update_inode(trans, root, inode);
3402 * So theoretically we could recover from this, simply set the
3403 * super cache generation to 0 so we know to invalidate the
3404 * cache, but then we'd have to keep track of the block groups
3405 * that fail this way so we know we _have_ to reset this cache
3406 * before the next commit or risk reading stale cache. So to
3407 * limit our exposure to horrible edge cases lets just abort the
3408 * transaction, this only happens in really bad situations
3411 btrfs_abort_transaction(trans, root, ret);
3416 if (i_size_read(inode) > 0) {
3417 ret = btrfs_check_trunc_cache_free_space(root,
3418 &root->fs_info->global_block_rsv);
3422 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3427 spin_lock(&block_group->lock);
3428 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3429 !btrfs_test_opt(root, SPACE_CACHE)) {
3431 * don't bother trying to write stuff out _if_
3432 * a) we're not cached,
3433 * b) we're with nospace_cache mount option.
3435 dcs = BTRFS_DC_WRITTEN;
3436 spin_unlock(&block_group->lock);
3439 spin_unlock(&block_group->lock);
3442 * We hit an ENOSPC when setting up the cache in this transaction, just
3443 * skip doing the setup, we've already cleared the cache so we're safe.
3445 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3451 * Try to preallocate enough space based on how big the block group is.
3452 * Keep in mind this has to include any pinned space which could end up
3453 * taking up quite a bit since it's not folded into the other space
3456 num_pages = div_u64(block_group->key.offset, SZ_256M);
3461 num_pages *= PAGE_SIZE;
3463 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3467 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3468 num_pages, num_pages,
3471 * Our cache requires contiguous chunks so that we don't modify a bunch
3472 * of metadata or split extents when writing the cache out, which means
3473 * we can enospc if we are heavily fragmented in addition to just normal
3474 * out of space conditions. So if we hit this just skip setting up any
3475 * other block groups for this transaction, maybe we'll unpin enough
3476 * space the next time around.
3479 dcs = BTRFS_DC_SETUP;
3480 else if (ret == -ENOSPC)
3481 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3482 btrfs_free_reserved_data_space(inode, 0, num_pages);
3487 btrfs_release_path(path);
3489 spin_lock(&block_group->lock);
3490 if (!ret && dcs == BTRFS_DC_SETUP)
3491 block_group->cache_generation = trans->transid;
3492 block_group->disk_cache_state = dcs;
3493 spin_unlock(&block_group->lock);
3498 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *root)
3501 struct btrfs_block_group_cache *cache, *tmp;
3502 struct btrfs_transaction *cur_trans = trans->transaction;
3503 struct btrfs_path *path;
3505 if (list_empty(&cur_trans->dirty_bgs) ||
3506 !btrfs_test_opt(root, SPACE_CACHE))
3509 path = btrfs_alloc_path();
3513 /* Could add new block groups, use _safe just in case */
3514 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3516 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3517 cache_save_setup(cache, trans, path);
3520 btrfs_free_path(path);
3525 * transaction commit does final block group cache writeback during a
3526 * critical section where nothing is allowed to change the FS. This is
3527 * required in order for the cache to actually match the block group,
3528 * but can introduce a lot of latency into the commit.
3530 * So, btrfs_start_dirty_block_groups is here to kick off block group
3531 * cache IO. There's a chance we'll have to redo some of it if the
3532 * block group changes again during the commit, but it greatly reduces
3533 * the commit latency by getting rid of the easy block groups while
3534 * we're still allowing others to join the commit.
3536 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3537 struct btrfs_root *root)
3539 struct btrfs_block_group_cache *cache;
3540 struct btrfs_transaction *cur_trans = trans->transaction;
3543 struct btrfs_path *path = NULL;
3545 struct list_head *io = &cur_trans->io_bgs;
3546 int num_started = 0;
3549 spin_lock(&cur_trans->dirty_bgs_lock);
3550 if (list_empty(&cur_trans->dirty_bgs)) {
3551 spin_unlock(&cur_trans->dirty_bgs_lock);
3554 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3555 spin_unlock(&cur_trans->dirty_bgs_lock);
3559 * make sure all the block groups on our dirty list actually
3562 btrfs_create_pending_block_groups(trans, root);
3565 path = btrfs_alloc_path();
3571 * cache_write_mutex is here only to save us from balance or automatic
3572 * removal of empty block groups deleting this block group while we are
3573 * writing out the cache
3575 mutex_lock(&trans->transaction->cache_write_mutex);
3576 while (!list_empty(&dirty)) {
3577 cache = list_first_entry(&dirty,
3578 struct btrfs_block_group_cache,
3581 * this can happen if something re-dirties a block
3582 * group that is already under IO. Just wait for it to
3583 * finish and then do it all again
3585 if (!list_empty(&cache->io_list)) {
3586 list_del_init(&cache->io_list);
3587 btrfs_wait_cache_io(root, trans, cache,
3588 &cache->io_ctl, path,
3589 cache->key.objectid);
3590 btrfs_put_block_group(cache);
3595 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3596 * if it should update the cache_state. Don't delete
3597 * until after we wait.
3599 * Since we're not running in the commit critical section
3600 * we need the dirty_bgs_lock to protect from update_block_group
3602 spin_lock(&cur_trans->dirty_bgs_lock);
3603 list_del_init(&cache->dirty_list);
3604 spin_unlock(&cur_trans->dirty_bgs_lock);
3608 cache_save_setup(cache, trans, path);
3610 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3611 cache->io_ctl.inode = NULL;
3612 ret = btrfs_write_out_cache(root, trans, cache, path);
3613 if (ret == 0 && cache->io_ctl.inode) {
3618 * the cache_write_mutex is protecting
3621 list_add_tail(&cache->io_list, io);
3624 * if we failed to write the cache, the
3625 * generation will be bad and life goes on
3631 ret = write_one_cache_group(trans, root, path, cache);
3633 * Our block group might still be attached to the list
3634 * of new block groups in the transaction handle of some
3635 * other task (struct btrfs_trans_handle->new_bgs). This
3636 * means its block group item isn't yet in the extent
3637 * tree. If this happens ignore the error, as we will
3638 * try again later in the critical section of the
3639 * transaction commit.
3641 if (ret == -ENOENT) {
3643 spin_lock(&cur_trans->dirty_bgs_lock);
3644 if (list_empty(&cache->dirty_list)) {
3645 list_add_tail(&cache->dirty_list,
3646 &cur_trans->dirty_bgs);
3647 btrfs_get_block_group(cache);
3649 spin_unlock(&cur_trans->dirty_bgs_lock);
3651 btrfs_abort_transaction(trans, root, ret);
3655 /* if its not on the io list, we need to put the block group */
3657 btrfs_put_block_group(cache);
3663 * Avoid blocking other tasks for too long. It might even save
3664 * us from writing caches for block groups that are going to be
3667 mutex_unlock(&trans->transaction->cache_write_mutex);
3668 mutex_lock(&trans->transaction->cache_write_mutex);
3670 mutex_unlock(&trans->transaction->cache_write_mutex);
3673 * go through delayed refs for all the stuff we've just kicked off
3674 * and then loop back (just once)
3676 ret = btrfs_run_delayed_refs(trans, root, 0);
3677 if (!ret && loops == 0) {
3679 spin_lock(&cur_trans->dirty_bgs_lock);
3680 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3682 * dirty_bgs_lock protects us from concurrent block group
3683 * deletes too (not just cache_write_mutex).
3685 if (!list_empty(&dirty)) {
3686 spin_unlock(&cur_trans->dirty_bgs_lock);
3689 spin_unlock(&cur_trans->dirty_bgs_lock);
3692 btrfs_free_path(path);
3696 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3697 struct btrfs_root *root)
3699 struct btrfs_block_group_cache *cache;
3700 struct btrfs_transaction *cur_trans = trans->transaction;
3703 struct btrfs_path *path;
3704 struct list_head *io = &cur_trans->io_bgs;
3705 int num_started = 0;
3707 path = btrfs_alloc_path();
3712 * Even though we are in the critical section of the transaction commit,
3713 * we can still have concurrent tasks adding elements to this
3714 * transaction's list of dirty block groups. These tasks correspond to
3715 * endio free space workers started when writeback finishes for a
3716 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3717 * allocate new block groups as a result of COWing nodes of the root
3718 * tree when updating the free space inode. The writeback for the space
3719 * caches is triggered by an earlier call to
3720 * btrfs_start_dirty_block_groups() and iterations of the following
3722 * Also we want to do the cache_save_setup first and then run the
3723 * delayed refs to make sure we have the best chance at doing this all
3726 spin_lock(&cur_trans->dirty_bgs_lock);
3727 while (!list_empty(&cur_trans->dirty_bgs)) {
3728 cache = list_first_entry(&cur_trans->dirty_bgs,
3729 struct btrfs_block_group_cache,
3733 * this can happen if cache_save_setup re-dirties a block
3734 * group that is already under IO. Just wait for it to
3735 * finish and then do it all again
3737 if (!list_empty(&cache->io_list)) {
3738 spin_unlock(&cur_trans->dirty_bgs_lock);
3739 list_del_init(&cache->io_list);
3740 btrfs_wait_cache_io(root, trans, cache,
3741 &cache->io_ctl, path,
3742 cache->key.objectid);
3743 btrfs_put_block_group(cache);
3744 spin_lock(&cur_trans->dirty_bgs_lock);
3748 * don't remove from the dirty list until after we've waited
3751 list_del_init(&cache->dirty_list);
3752 spin_unlock(&cur_trans->dirty_bgs_lock);
3755 cache_save_setup(cache, trans, path);
3758 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3760 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3761 cache->io_ctl.inode = NULL;
3762 ret = btrfs_write_out_cache(root, trans, cache, path);
3763 if (ret == 0 && cache->io_ctl.inode) {
3766 list_add_tail(&cache->io_list, io);
3769 * if we failed to write the cache, the
3770 * generation will be bad and life goes on
3776 ret = write_one_cache_group(trans, root, path, cache);
3778 * One of the free space endio workers might have
3779 * created a new block group while updating a free space
3780 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3781 * and hasn't released its transaction handle yet, in
3782 * which case the new block group is still attached to
3783 * its transaction handle and its creation has not
3784 * finished yet (no block group item in the extent tree
3785 * yet, etc). If this is the case, wait for all free
3786 * space endio workers to finish and retry. This is a
3787 * a very rare case so no need for a more efficient and
3790 if (ret == -ENOENT) {
3791 wait_event(cur_trans->writer_wait,
3792 atomic_read(&cur_trans->num_writers) == 1);
3793 ret = write_one_cache_group(trans, root, path,
3797 btrfs_abort_transaction(trans, root, ret);
3800 /* if its not on the io list, we need to put the block group */
3802 btrfs_put_block_group(cache);
3803 spin_lock(&cur_trans->dirty_bgs_lock);
3805 spin_unlock(&cur_trans->dirty_bgs_lock);
3807 while (!list_empty(io)) {
3808 cache = list_first_entry(io, struct btrfs_block_group_cache,
3810 list_del_init(&cache->io_list);
3811 btrfs_wait_cache_io(root, trans, cache,
3812 &cache->io_ctl, path, cache->key.objectid);
3813 btrfs_put_block_group(cache);
3816 btrfs_free_path(path);
3820 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3822 struct btrfs_block_group_cache *block_group;
3825 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3826 if (!block_group || block_group->ro)
3829 btrfs_put_block_group(block_group);
3833 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3835 struct btrfs_block_group_cache *bg;
3838 bg = btrfs_lookup_block_group(fs_info, bytenr);
3842 spin_lock(&bg->lock);
3846 atomic_inc(&bg->nocow_writers);
3847 spin_unlock(&bg->lock);
3849 /* no put on block group, done by btrfs_dec_nocow_writers */
3851 btrfs_put_block_group(bg);
3857 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3859 struct btrfs_block_group_cache *bg;
3861 bg = btrfs_lookup_block_group(fs_info, bytenr);
3863 if (atomic_dec_and_test(&bg->nocow_writers))
3864 wake_up_atomic_t(&bg->nocow_writers);
3866 * Once for our lookup and once for the lookup done by a previous call
3867 * to btrfs_inc_nocow_writers()
3869 btrfs_put_block_group(bg);
3870 btrfs_put_block_group(bg);
3873 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3879 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3881 wait_on_atomic_t(&bg->nocow_writers,
3882 btrfs_wait_nocow_writers_atomic_t,
3883 TASK_UNINTERRUPTIBLE);
3886 static const char *alloc_name(u64 flags)
3889 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3891 case BTRFS_BLOCK_GROUP_METADATA:
3893 case BTRFS_BLOCK_GROUP_DATA:
3895 case BTRFS_BLOCK_GROUP_SYSTEM:
3899 return "invalid-combination";
3903 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3904 u64 total_bytes, u64 bytes_used,
3905 struct btrfs_space_info **space_info)
3907 struct btrfs_space_info *found;
3912 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3913 BTRFS_BLOCK_GROUP_RAID10))
3918 found = __find_space_info(info, flags);
3920 spin_lock(&found->lock);
3921 found->total_bytes += total_bytes;
3922 found->disk_total += total_bytes * factor;
3923 found->bytes_used += bytes_used;
3924 found->disk_used += bytes_used * factor;
3925 if (total_bytes > 0)
3927 spin_unlock(&found->lock);
3928 *space_info = found;
3931 found = kzalloc(sizeof(*found), GFP_NOFS);
3935 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3941 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3942 INIT_LIST_HEAD(&found->block_groups[i]);
3943 init_rwsem(&found->groups_sem);
3944 spin_lock_init(&found->lock);
3945 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3946 found->total_bytes = total_bytes;
3947 found->disk_total = total_bytes * factor;
3948 found->bytes_used = bytes_used;
3949 found->disk_used = bytes_used * factor;
3950 found->bytes_pinned = 0;
3951 found->bytes_reserved = 0;
3952 found->bytes_readonly = 0;
3953 found->bytes_may_use = 0;
3955 found->max_extent_size = 0;
3956 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3957 found->chunk_alloc = 0;
3959 init_waitqueue_head(&found->wait);
3960 INIT_LIST_HEAD(&found->ro_bgs);
3962 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3963 info->space_info_kobj, "%s",
3964 alloc_name(found->flags));
3970 *space_info = found;
3971 list_add_rcu(&found->list, &info->space_info);
3972 if (flags & BTRFS_BLOCK_GROUP_DATA)
3973 info->data_sinfo = found;
3978 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3980 u64 extra_flags = chunk_to_extended(flags) &
3981 BTRFS_EXTENDED_PROFILE_MASK;
3983 write_seqlock(&fs_info->profiles_lock);
3984 if (flags & BTRFS_BLOCK_GROUP_DATA)
3985 fs_info->avail_data_alloc_bits |= extra_flags;
3986 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3987 fs_info->avail_metadata_alloc_bits |= extra_flags;
3988 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3989 fs_info->avail_system_alloc_bits |= extra_flags;
3990 write_sequnlock(&fs_info->profiles_lock);
3994 * returns target flags in extended format or 0 if restripe for this
3995 * chunk_type is not in progress
3997 * should be called with either volume_mutex or balance_lock held
3999 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4001 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4007 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4008 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4009 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4010 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4011 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4012 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4013 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4014 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4015 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4022 * @flags: available profiles in extended format (see ctree.h)
4024 * Returns reduced profile in chunk format. If profile changing is in
4025 * progress (either running or paused) picks the target profile (if it's
4026 * already available), otherwise falls back to plain reducing.
4028 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4030 u64 num_devices = root->fs_info->fs_devices->rw_devices;
4036 * see if restripe for this chunk_type is in progress, if so
4037 * try to reduce to the target profile
4039 spin_lock(&root->fs_info->balance_lock);
4040 target = get_restripe_target(root->fs_info, flags);
4042 /* pick target profile only if it's already available */
4043 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4044 spin_unlock(&root->fs_info->balance_lock);
4045 return extended_to_chunk(target);
4048 spin_unlock(&root->fs_info->balance_lock);
4050 /* First, mask out the RAID levels which aren't possible */
4051 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4052 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4053 allowed |= btrfs_raid_group[raid_type];
4057 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4058 allowed = BTRFS_BLOCK_GROUP_RAID6;
4059 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4060 allowed = BTRFS_BLOCK_GROUP_RAID5;
4061 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4062 allowed = BTRFS_BLOCK_GROUP_RAID10;
4063 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4064 allowed = BTRFS_BLOCK_GROUP_RAID1;
4065 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4066 allowed = BTRFS_BLOCK_GROUP_RAID0;
4068 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4070 return extended_to_chunk(flags | allowed);
4073 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4080 seq = read_seqbegin(&root->fs_info->profiles_lock);
4082 if (flags & BTRFS_BLOCK_GROUP_DATA)
4083 flags |= root->fs_info->avail_data_alloc_bits;
4084 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4085 flags |= root->fs_info->avail_system_alloc_bits;
4086 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4087 flags |= root->fs_info->avail_metadata_alloc_bits;
4088 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4090 return btrfs_reduce_alloc_profile(root, flags);
4093 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4099 flags = BTRFS_BLOCK_GROUP_DATA;
4100 else if (root == root->fs_info->chunk_root)
4101 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4103 flags = BTRFS_BLOCK_GROUP_METADATA;
4105 ret = get_alloc_profile(root, flags);
4109 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4111 struct btrfs_space_info *data_sinfo;
4112 struct btrfs_root *root = BTRFS_I(inode)->root;
4113 struct btrfs_fs_info *fs_info = root->fs_info;
4116 int need_commit = 2;
4117 int have_pinned_space;
4119 /* make sure bytes are sectorsize aligned */
4120 bytes = ALIGN(bytes, root->sectorsize);
4122 if (btrfs_is_free_space_inode(inode)) {
4124 ASSERT(current->journal_info);
4127 data_sinfo = fs_info->data_sinfo;
4132 /* make sure we have enough space to handle the data first */
4133 spin_lock(&data_sinfo->lock);
4134 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4135 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4136 data_sinfo->bytes_may_use;
4138 if (used + bytes > data_sinfo->total_bytes) {
4139 struct btrfs_trans_handle *trans;
4142 * if we don't have enough free bytes in this space then we need
4143 * to alloc a new chunk.
4145 if (!data_sinfo->full) {
4148 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4149 spin_unlock(&data_sinfo->lock);
4151 alloc_target = btrfs_get_alloc_profile(root, 1);
4153 * It is ugly that we don't call nolock join
4154 * transaction for the free space inode case here.
4155 * But it is safe because we only do the data space
4156 * reservation for the free space cache in the
4157 * transaction context, the common join transaction
4158 * just increase the counter of the current transaction
4159 * handler, doesn't try to acquire the trans_lock of
4162 trans = btrfs_join_transaction(root);
4164 return PTR_ERR(trans);
4166 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4168 CHUNK_ALLOC_NO_FORCE);
4169 btrfs_end_transaction(trans, root);
4174 have_pinned_space = 1;
4180 data_sinfo = fs_info->data_sinfo;
4186 * If we don't have enough pinned space to deal with this
4187 * allocation, and no removed chunk in current transaction,
4188 * don't bother committing the transaction.
4190 have_pinned_space = percpu_counter_compare(
4191 &data_sinfo->total_bytes_pinned,
4192 used + bytes - data_sinfo->total_bytes);
4193 spin_unlock(&data_sinfo->lock);
4195 /* commit the current transaction and try again */
4198 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4201 if (need_commit > 0) {
4202 btrfs_start_delalloc_roots(fs_info, 0, -1);
4203 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4206 trans = btrfs_join_transaction(root);
4208 return PTR_ERR(trans);
4209 if (have_pinned_space >= 0 ||
4210 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4211 &trans->transaction->flags) ||
4213 ret = btrfs_commit_transaction(trans, root);
4217 * The cleaner kthread might still be doing iput
4218 * operations. Wait for it to finish so that
4219 * more space is released.
4221 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4222 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4225 btrfs_end_transaction(trans, root);
4229 trace_btrfs_space_reservation(root->fs_info,
4230 "space_info:enospc",
4231 data_sinfo->flags, bytes, 1);
4234 data_sinfo->bytes_may_use += bytes;
4235 trace_btrfs_space_reservation(root->fs_info, "space_info",
4236 data_sinfo->flags, bytes, 1);
4237 spin_unlock(&data_sinfo->lock);
4243 * New check_data_free_space() with ability for precious data reservation
4244 * Will replace old btrfs_check_data_free_space(), but for patch split,
4245 * add a new function first and then replace it.
4247 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4249 struct btrfs_root *root = BTRFS_I(inode)->root;
4252 /* align the range */
4253 len = round_up(start + len, root->sectorsize) -
4254 round_down(start, root->sectorsize);
4255 start = round_down(start, root->sectorsize);
4257 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4262 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4264 * TODO: Find a good method to avoid reserve data space for NOCOW
4265 * range, but don't impact performance on quota disable case.
4267 ret = btrfs_qgroup_reserve_data(inode, start, len);
4272 * Called if we need to clear a data reservation for this inode
4273 * Normally in a error case.
4275 * This one will *NOT* use accurate qgroup reserved space API, just for case
4276 * which we can't sleep and is sure it won't affect qgroup reserved space.
4277 * Like clear_bit_hook().
4279 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4282 struct btrfs_root *root = BTRFS_I(inode)->root;
4283 struct btrfs_space_info *data_sinfo;
4285 /* Make sure the range is aligned to sectorsize */
4286 len = round_up(start + len, root->sectorsize) -
4287 round_down(start, root->sectorsize);
4288 start = round_down(start, root->sectorsize);
4290 data_sinfo = root->fs_info->data_sinfo;
4291 spin_lock(&data_sinfo->lock);
4292 if (WARN_ON(data_sinfo->bytes_may_use < len))
4293 data_sinfo->bytes_may_use = 0;
4295 data_sinfo->bytes_may_use -= len;
4296 trace_btrfs_space_reservation(root->fs_info, "space_info",
4297 data_sinfo->flags, len, 0);
4298 spin_unlock(&data_sinfo->lock);
4302 * Called if we need to clear a data reservation for this inode
4303 * Normally in a error case.
4305 * This one will handle the per-inode data rsv map for accurate reserved
4308 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4310 btrfs_free_reserved_data_space_noquota(inode, start, len);
4311 btrfs_qgroup_free_data(inode, start, len);
4314 static void force_metadata_allocation(struct btrfs_fs_info *info)
4316 struct list_head *head = &info->space_info;
4317 struct btrfs_space_info *found;
4320 list_for_each_entry_rcu(found, head, list) {
4321 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4322 found->force_alloc = CHUNK_ALLOC_FORCE;
4327 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4329 return (global->size << 1);
4332 static int should_alloc_chunk(struct btrfs_root *root,
4333 struct btrfs_space_info *sinfo, int force)
4335 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4336 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4337 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4340 if (force == CHUNK_ALLOC_FORCE)
4344 * We need to take into account the global rsv because for all intents
4345 * and purposes it's used space. Don't worry about locking the
4346 * global_rsv, it doesn't change except when the transaction commits.
4348 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4349 num_allocated += calc_global_rsv_need_space(global_rsv);
4352 * in limited mode, we want to have some free space up to
4353 * about 1% of the FS size.
4355 if (force == CHUNK_ALLOC_LIMITED) {
4356 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4357 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4359 if (num_bytes - num_allocated < thresh)
4363 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4368 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4372 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4373 BTRFS_BLOCK_GROUP_RAID0 |
4374 BTRFS_BLOCK_GROUP_RAID5 |
4375 BTRFS_BLOCK_GROUP_RAID6))
4376 num_dev = root->fs_info->fs_devices->rw_devices;
4377 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4380 num_dev = 1; /* DUP or single */
4386 * If @is_allocation is true, reserve space in the system space info necessary
4387 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4390 void check_system_chunk(struct btrfs_trans_handle *trans,
4391 struct btrfs_root *root,
4394 struct btrfs_space_info *info;
4401 * Needed because we can end up allocating a system chunk and for an
4402 * atomic and race free space reservation in the chunk block reserve.
4404 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4406 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4407 spin_lock(&info->lock);
4408 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4409 info->bytes_reserved - info->bytes_readonly -
4410 info->bytes_may_use;
4411 spin_unlock(&info->lock);
4413 num_devs = get_profile_num_devs(root, type);
4415 /* num_devs device items to update and 1 chunk item to add or remove */
4416 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4417 btrfs_calc_trans_metadata_size(root, 1);
4419 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4420 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4421 left, thresh, type);
4422 dump_space_info(info, 0, 0);
4425 if (left < thresh) {
4428 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4430 * Ignore failure to create system chunk. We might end up not
4431 * needing it, as we might not need to COW all nodes/leafs from
4432 * the paths we visit in the chunk tree (they were already COWed
4433 * or created in the current transaction for example).
4435 ret = btrfs_alloc_chunk(trans, root, flags);
4439 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4440 &root->fs_info->chunk_block_rsv,
4441 thresh, BTRFS_RESERVE_NO_FLUSH);
4443 trans->chunk_bytes_reserved += thresh;
4447 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4448 struct btrfs_root *extent_root, u64 flags, int force)
4450 struct btrfs_space_info *space_info;
4451 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4452 int wait_for_alloc = 0;
4455 /* Don't re-enter if we're already allocating a chunk */
4456 if (trans->allocating_chunk)
4459 space_info = __find_space_info(extent_root->fs_info, flags);
4461 ret = update_space_info(extent_root->fs_info, flags,
4463 BUG_ON(ret); /* -ENOMEM */
4465 BUG_ON(!space_info); /* Logic error */
4468 spin_lock(&space_info->lock);
4469 if (force < space_info->force_alloc)
4470 force = space_info->force_alloc;
4471 if (space_info->full) {
4472 if (should_alloc_chunk(extent_root, space_info, force))
4476 spin_unlock(&space_info->lock);
4480 if (!should_alloc_chunk(extent_root, space_info, force)) {
4481 spin_unlock(&space_info->lock);
4483 } else if (space_info->chunk_alloc) {
4486 space_info->chunk_alloc = 1;
4489 spin_unlock(&space_info->lock);
4491 mutex_lock(&fs_info->chunk_mutex);
4494 * The chunk_mutex is held throughout the entirety of a chunk
4495 * allocation, so once we've acquired the chunk_mutex we know that the
4496 * other guy is done and we need to recheck and see if we should
4499 if (wait_for_alloc) {
4500 mutex_unlock(&fs_info->chunk_mutex);
4505 trans->allocating_chunk = true;
4508 * If we have mixed data/metadata chunks we want to make sure we keep
4509 * allocating mixed chunks instead of individual chunks.
4511 if (btrfs_mixed_space_info(space_info))
4512 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4515 * if we're doing a data chunk, go ahead and make sure that
4516 * we keep a reasonable number of metadata chunks allocated in the
4519 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4520 fs_info->data_chunk_allocations++;
4521 if (!(fs_info->data_chunk_allocations %
4522 fs_info->metadata_ratio))
4523 force_metadata_allocation(fs_info);
4527 * Check if we have enough space in SYSTEM chunk because we may need
4528 * to update devices.
4530 check_system_chunk(trans, extent_root, flags);
4532 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4533 trans->allocating_chunk = false;
4535 spin_lock(&space_info->lock);
4536 if (ret < 0 && ret != -ENOSPC)
4539 space_info->full = 1;
4543 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4545 space_info->chunk_alloc = 0;
4546 spin_unlock(&space_info->lock);
4547 mutex_unlock(&fs_info->chunk_mutex);
4549 * When we allocate a new chunk we reserve space in the chunk block
4550 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4551 * add new nodes/leafs to it if we end up needing to do it when
4552 * inserting the chunk item and updating device items as part of the
4553 * second phase of chunk allocation, performed by
4554 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4555 * large number of new block groups to create in our transaction
4556 * handle's new_bgs list to avoid exhausting the chunk block reserve
4557 * in extreme cases - like having a single transaction create many new
4558 * block groups when starting to write out the free space caches of all
4559 * the block groups that were made dirty during the lifetime of the
4562 if (trans->can_flush_pending_bgs &&
4563 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4564 btrfs_create_pending_block_groups(trans, trans->root);
4565 btrfs_trans_release_chunk_metadata(trans);
4570 static int can_overcommit(struct btrfs_root *root,
4571 struct btrfs_space_info *space_info, u64 bytes,
4572 enum btrfs_reserve_flush_enum flush)
4574 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4575 u64 profile = btrfs_get_alloc_profile(root, 0);
4580 used = space_info->bytes_used + space_info->bytes_reserved +
4581 space_info->bytes_pinned + space_info->bytes_readonly;
4584 * We only want to allow over committing if we have lots of actual space
4585 * free, but if we don't have enough space to handle the global reserve
4586 * space then we could end up having a real enospc problem when trying
4587 * to allocate a chunk or some other such important allocation.
4589 spin_lock(&global_rsv->lock);
4590 space_size = calc_global_rsv_need_space(global_rsv);
4591 spin_unlock(&global_rsv->lock);
4592 if (used + space_size >= space_info->total_bytes)
4595 used += space_info->bytes_may_use;
4597 spin_lock(&root->fs_info->free_chunk_lock);
4598 avail = root->fs_info->free_chunk_space;
4599 spin_unlock(&root->fs_info->free_chunk_lock);
4602 * If we have dup, raid1 or raid10 then only half of the free
4603 * space is actually useable. For raid56, the space info used
4604 * doesn't include the parity drive, so we don't have to
4607 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4608 BTRFS_BLOCK_GROUP_RAID1 |
4609 BTRFS_BLOCK_GROUP_RAID10))
4613 * If we aren't flushing all things, let us overcommit up to
4614 * 1/2th of the space. If we can flush, don't let us overcommit
4615 * too much, let it overcommit up to 1/8 of the space.
4617 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4622 if (used + bytes < space_info->total_bytes + avail)
4627 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4628 unsigned long nr_pages, int nr_items)
4630 struct super_block *sb = root->fs_info->sb;
4632 if (down_read_trylock(&sb->s_umount)) {
4633 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4634 up_read(&sb->s_umount);
4637 * We needn't worry the filesystem going from r/w to r/o though
4638 * we don't acquire ->s_umount mutex, because the filesystem
4639 * should guarantee the delalloc inodes list be empty after
4640 * the filesystem is readonly(all dirty pages are written to
4643 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4644 if (!current->journal_info)
4645 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4650 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4655 bytes = btrfs_calc_trans_metadata_size(root, 1);
4656 nr = (int)div64_u64(to_reclaim, bytes);
4662 #define EXTENT_SIZE_PER_ITEM SZ_256K
4665 * shrink metadata reservation for delalloc
4667 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4670 struct btrfs_block_rsv *block_rsv;
4671 struct btrfs_space_info *space_info;
4672 struct btrfs_trans_handle *trans;
4676 unsigned long nr_pages;
4679 enum btrfs_reserve_flush_enum flush;
4681 /* Calc the number of the pages we need flush for space reservation */
4682 items = calc_reclaim_items_nr(root, to_reclaim);
4683 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4685 trans = (struct btrfs_trans_handle *)current->journal_info;
4686 block_rsv = &root->fs_info->delalloc_block_rsv;
4687 space_info = block_rsv->space_info;
4689 delalloc_bytes = percpu_counter_sum_positive(
4690 &root->fs_info->delalloc_bytes);
4691 if (delalloc_bytes == 0) {
4695 btrfs_wait_ordered_roots(root->fs_info, items,
4701 while (delalloc_bytes && loops < 3) {
4702 max_reclaim = min(delalloc_bytes, to_reclaim);
4703 nr_pages = max_reclaim >> PAGE_SHIFT;
4704 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4706 * We need to wait for the async pages to actually start before
4709 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4713 if (max_reclaim <= nr_pages)
4716 max_reclaim -= nr_pages;
4718 wait_event(root->fs_info->async_submit_wait,
4719 atomic_read(&root->fs_info->async_delalloc_pages) <=
4723 flush = BTRFS_RESERVE_FLUSH_ALL;
4725 flush = BTRFS_RESERVE_NO_FLUSH;
4726 spin_lock(&space_info->lock);
4727 if (can_overcommit(root, space_info, orig, flush)) {
4728 spin_unlock(&space_info->lock);
4731 spin_unlock(&space_info->lock);
4734 if (wait_ordered && !trans) {
4735 btrfs_wait_ordered_roots(root->fs_info, items,
4738 time_left = schedule_timeout_killable(1);
4742 delalloc_bytes = percpu_counter_sum_positive(
4743 &root->fs_info->delalloc_bytes);
4748 * maybe_commit_transaction - possibly commit the transaction if its ok to
4749 * @root - the root we're allocating for
4750 * @bytes - the number of bytes we want to reserve
4751 * @force - force the commit
4753 * This will check to make sure that committing the transaction will actually
4754 * get us somewhere and then commit the transaction if it does. Otherwise it
4755 * will return -ENOSPC.
4757 static int may_commit_transaction(struct btrfs_root *root,
4758 struct btrfs_space_info *space_info,
4759 u64 bytes, int force)
4761 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4762 struct btrfs_trans_handle *trans;
4764 trans = (struct btrfs_trans_handle *)current->journal_info;
4771 /* See if there is enough pinned space to make this reservation */
4772 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4777 * See if there is some space in the delayed insertion reservation for
4780 if (space_info != delayed_rsv->space_info)
4783 spin_lock(&delayed_rsv->lock);
4784 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4785 bytes - delayed_rsv->size) >= 0) {
4786 spin_unlock(&delayed_rsv->lock);
4789 spin_unlock(&delayed_rsv->lock);
4792 trans = btrfs_join_transaction(root);
4796 return btrfs_commit_transaction(trans, root);
4800 FLUSH_DELAYED_ITEMS_NR = 1,
4801 FLUSH_DELAYED_ITEMS = 2,
4803 FLUSH_DELALLOC_WAIT = 4,
4808 static int flush_space(struct btrfs_root *root,
4809 struct btrfs_space_info *space_info, u64 num_bytes,
4810 u64 orig_bytes, int state)
4812 struct btrfs_trans_handle *trans;
4817 case FLUSH_DELAYED_ITEMS_NR:
4818 case FLUSH_DELAYED_ITEMS:
4819 if (state == FLUSH_DELAYED_ITEMS_NR)
4820 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4824 trans = btrfs_join_transaction(root);
4825 if (IS_ERR(trans)) {
4826 ret = PTR_ERR(trans);
4829 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4830 btrfs_end_transaction(trans, root);
4832 case FLUSH_DELALLOC:
4833 case FLUSH_DELALLOC_WAIT:
4834 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4835 state == FLUSH_DELALLOC_WAIT);
4838 trans = btrfs_join_transaction(root);
4839 if (IS_ERR(trans)) {
4840 ret = PTR_ERR(trans);
4843 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4844 btrfs_get_alloc_profile(root, 0),
4845 CHUNK_ALLOC_NO_FORCE);
4846 btrfs_end_transaction(trans, root);
4851 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4862 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4863 struct btrfs_space_info *space_info)
4869 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4870 spin_lock(&space_info->lock);
4871 if (can_overcommit(root, space_info, to_reclaim,
4872 BTRFS_RESERVE_FLUSH_ALL)) {
4877 used = space_info->bytes_used + space_info->bytes_reserved +
4878 space_info->bytes_pinned + space_info->bytes_readonly +
4879 space_info->bytes_may_use;
4880 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4881 expected = div_factor_fine(space_info->total_bytes, 95);
4883 expected = div_factor_fine(space_info->total_bytes, 90);
4885 if (used > expected)
4886 to_reclaim = used - expected;
4889 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4890 space_info->bytes_reserved);
4892 spin_unlock(&space_info->lock);
4897 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4898 struct btrfs_fs_info *fs_info, u64 used)
4900 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4902 /* If we're just plain full then async reclaim just slows us down. */
4903 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4906 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4907 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4910 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4911 struct btrfs_fs_info *fs_info,
4916 spin_lock(&space_info->lock);
4918 * We run out of space and have not got any free space via flush_space,
4919 * so don't bother doing async reclaim.
4921 if (flush_state > COMMIT_TRANS && space_info->full) {
4922 spin_unlock(&space_info->lock);
4926 used = space_info->bytes_used + space_info->bytes_reserved +
4927 space_info->bytes_pinned + space_info->bytes_readonly +
4928 space_info->bytes_may_use;
4929 if (need_do_async_reclaim(space_info, fs_info, used)) {
4930 spin_unlock(&space_info->lock);
4933 spin_unlock(&space_info->lock);
4938 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4940 struct btrfs_fs_info *fs_info;
4941 struct btrfs_space_info *space_info;
4945 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4946 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4948 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4953 flush_state = FLUSH_DELAYED_ITEMS_NR;
4955 flush_space(fs_info->fs_root, space_info, to_reclaim,
4956 to_reclaim, flush_state);
4958 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4961 } while (flush_state < COMMIT_TRANS);
4964 void btrfs_init_async_reclaim_work(struct work_struct *work)
4966 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4970 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4971 * @root - the root we're allocating for
4972 * @block_rsv - the block_rsv we're allocating for
4973 * @orig_bytes - the number of bytes we want
4974 * @flush - whether or not we can flush to make our reservation
4976 * This will reserve orig_bytes number of bytes from the space info associated
4977 * with the block_rsv. If there is not enough space it will make an attempt to
4978 * flush out space to make room. It will do this by flushing delalloc if
4979 * possible or committing the transaction. If flush is 0 then no attempts to
4980 * regain reservations will be made and this will fail if there is not enough
4983 static int reserve_metadata_bytes(struct btrfs_root *root,
4984 struct btrfs_block_rsv *block_rsv,
4986 enum btrfs_reserve_flush_enum flush)
4988 struct btrfs_space_info *space_info = block_rsv->space_info;
4990 u64 num_bytes = orig_bytes;
4991 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4993 bool flushing = false;
4997 spin_lock(&space_info->lock);
4999 * We only want to wait if somebody other than us is flushing and we
5000 * are actually allowed to flush all things.
5002 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5003 space_info->flush) {
5004 spin_unlock(&space_info->lock);
5006 * If we have a trans handle we can't wait because the flusher
5007 * may have to commit the transaction, which would mean we would
5008 * deadlock since we are waiting for the flusher to finish, but
5009 * hold the current transaction open.
5011 if (current->journal_info)
5013 ret = wait_event_killable(space_info->wait, !space_info->flush);
5014 /* Must have been killed, return */
5018 spin_lock(&space_info->lock);
5022 used = space_info->bytes_used + space_info->bytes_reserved +
5023 space_info->bytes_pinned + space_info->bytes_readonly +
5024 space_info->bytes_may_use;
5027 * The idea here is that we've not already over-reserved the block group
5028 * then we can go ahead and save our reservation first and then start
5029 * flushing if we need to. Otherwise if we've already overcommitted
5030 * lets start flushing stuff first and then come back and try to make
5033 if (used <= space_info->total_bytes) {
5034 if (used + orig_bytes <= space_info->total_bytes) {
5035 space_info->bytes_may_use += orig_bytes;
5036 trace_btrfs_space_reservation(root->fs_info,
5037 "space_info", space_info->flags, orig_bytes, 1);
5041 * Ok set num_bytes to orig_bytes since we aren't
5042 * overocmmitted, this way we only try and reclaim what
5045 num_bytes = orig_bytes;
5049 * Ok we're over committed, set num_bytes to the overcommitted
5050 * amount plus the amount of bytes that we need for this
5053 num_bytes = used - space_info->total_bytes +
5057 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5058 space_info->bytes_may_use += orig_bytes;
5059 trace_btrfs_space_reservation(root->fs_info, "space_info",
5060 space_info->flags, orig_bytes,
5066 * Couldn't make our reservation, save our place so while we're trying
5067 * to reclaim space we can actually use it instead of somebody else
5068 * stealing it from us.
5070 * We make the other tasks wait for the flush only when we can flush
5073 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5075 space_info->flush = 1;
5076 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5079 * We will do the space reservation dance during log replay,
5080 * which means we won't have fs_info->fs_root set, so don't do
5081 * the async reclaim as we will panic.
5083 if (!root->fs_info->log_root_recovering &&
5084 need_do_async_reclaim(space_info, root->fs_info, used) &&
5085 !work_busy(&root->fs_info->async_reclaim_work))
5086 queue_work(system_unbound_wq,
5087 &root->fs_info->async_reclaim_work);
5089 spin_unlock(&space_info->lock);
5091 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5094 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5099 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5100 * would happen. So skip delalloc flush.
5102 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5103 (flush_state == FLUSH_DELALLOC ||
5104 flush_state == FLUSH_DELALLOC_WAIT))
5105 flush_state = ALLOC_CHUNK;
5109 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5110 flush_state < COMMIT_TRANS)
5112 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5113 flush_state <= COMMIT_TRANS)
5117 if (ret == -ENOSPC &&
5118 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5119 struct btrfs_block_rsv *global_rsv =
5120 &root->fs_info->global_block_rsv;
5122 if (block_rsv != global_rsv &&
5123 !block_rsv_use_bytes(global_rsv, orig_bytes))
5127 trace_btrfs_space_reservation(root->fs_info,
5128 "space_info:enospc",
5129 space_info->flags, orig_bytes, 1);
5131 spin_lock(&space_info->lock);
5132 space_info->flush = 0;
5133 wake_up_all(&space_info->wait);
5134 spin_unlock(&space_info->lock);
5139 static struct btrfs_block_rsv *get_block_rsv(
5140 const struct btrfs_trans_handle *trans,
5141 const struct btrfs_root *root)
5143 struct btrfs_block_rsv *block_rsv = NULL;
5145 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5146 (root == root->fs_info->csum_root && trans->adding_csums) ||
5147 (root == root->fs_info->uuid_root))
5148 block_rsv = trans->block_rsv;
5151 block_rsv = root->block_rsv;
5154 block_rsv = &root->fs_info->empty_block_rsv;
5159 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5163 spin_lock(&block_rsv->lock);
5164 if (block_rsv->reserved >= num_bytes) {
5165 block_rsv->reserved -= num_bytes;
5166 if (block_rsv->reserved < block_rsv->size)
5167 block_rsv->full = 0;
5170 spin_unlock(&block_rsv->lock);
5174 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5175 u64 num_bytes, int update_size)
5177 spin_lock(&block_rsv->lock);
5178 block_rsv->reserved += num_bytes;
5180 block_rsv->size += num_bytes;
5181 else if (block_rsv->reserved >= block_rsv->size)
5182 block_rsv->full = 1;
5183 spin_unlock(&block_rsv->lock);
5186 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5187 struct btrfs_block_rsv *dest, u64 num_bytes,
5190 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5193 if (global_rsv->space_info != dest->space_info)
5196 spin_lock(&global_rsv->lock);
5197 min_bytes = div_factor(global_rsv->size, min_factor);
5198 if (global_rsv->reserved < min_bytes + num_bytes) {
5199 spin_unlock(&global_rsv->lock);
5202 global_rsv->reserved -= num_bytes;
5203 if (global_rsv->reserved < global_rsv->size)
5204 global_rsv->full = 0;
5205 spin_unlock(&global_rsv->lock);
5207 block_rsv_add_bytes(dest, num_bytes, 1);
5211 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5212 struct btrfs_block_rsv *block_rsv,
5213 struct btrfs_block_rsv *dest, u64 num_bytes)
5215 struct btrfs_space_info *space_info = block_rsv->space_info;
5217 spin_lock(&block_rsv->lock);
5218 if (num_bytes == (u64)-1)
5219 num_bytes = block_rsv->size;
5220 block_rsv->size -= num_bytes;
5221 if (block_rsv->reserved >= block_rsv->size) {
5222 num_bytes = block_rsv->reserved - block_rsv->size;
5223 block_rsv->reserved = block_rsv->size;
5224 block_rsv->full = 1;
5228 spin_unlock(&block_rsv->lock);
5230 if (num_bytes > 0) {
5232 spin_lock(&dest->lock);
5236 bytes_to_add = dest->size - dest->reserved;
5237 bytes_to_add = min(num_bytes, bytes_to_add);
5238 dest->reserved += bytes_to_add;
5239 if (dest->reserved >= dest->size)
5241 num_bytes -= bytes_to_add;
5243 spin_unlock(&dest->lock);
5246 spin_lock(&space_info->lock);
5247 space_info->bytes_may_use -= num_bytes;
5248 trace_btrfs_space_reservation(fs_info, "space_info",
5249 space_info->flags, num_bytes, 0);
5250 spin_unlock(&space_info->lock);
5255 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5256 struct btrfs_block_rsv *dst, u64 num_bytes)
5260 ret = block_rsv_use_bytes(src, num_bytes);
5264 block_rsv_add_bytes(dst, num_bytes, 1);
5268 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5270 memset(rsv, 0, sizeof(*rsv));
5271 spin_lock_init(&rsv->lock);
5275 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5276 unsigned short type)
5278 struct btrfs_block_rsv *block_rsv;
5279 struct btrfs_fs_info *fs_info = root->fs_info;
5281 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5285 btrfs_init_block_rsv(block_rsv, type);
5286 block_rsv->space_info = __find_space_info(fs_info,
5287 BTRFS_BLOCK_GROUP_METADATA);
5291 void btrfs_free_block_rsv(struct btrfs_root *root,
5292 struct btrfs_block_rsv *rsv)
5296 btrfs_block_rsv_release(root, rsv, (u64)-1);
5300 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5305 int btrfs_block_rsv_add(struct btrfs_root *root,
5306 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5307 enum btrfs_reserve_flush_enum flush)
5314 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5316 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5323 int btrfs_block_rsv_check(struct btrfs_root *root,
5324 struct btrfs_block_rsv *block_rsv, int min_factor)
5332 spin_lock(&block_rsv->lock);
5333 num_bytes = div_factor(block_rsv->size, min_factor);
5334 if (block_rsv->reserved >= num_bytes)
5336 spin_unlock(&block_rsv->lock);
5341 int btrfs_block_rsv_refill(struct btrfs_root *root,
5342 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5343 enum btrfs_reserve_flush_enum flush)
5351 spin_lock(&block_rsv->lock);
5352 num_bytes = min_reserved;
5353 if (block_rsv->reserved >= num_bytes)
5356 num_bytes -= block_rsv->reserved;
5357 spin_unlock(&block_rsv->lock);
5362 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5364 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5371 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5372 struct btrfs_block_rsv *dst_rsv,
5375 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5378 void btrfs_block_rsv_release(struct btrfs_root *root,
5379 struct btrfs_block_rsv *block_rsv,
5382 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5383 if (global_rsv == block_rsv ||
5384 block_rsv->space_info != global_rsv->space_info)
5386 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5391 * helper to calculate size of global block reservation.
5392 * the desired value is sum of space used by extent tree,
5393 * checksum tree and root tree
5395 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5397 struct btrfs_space_info *sinfo;
5401 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5403 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5404 spin_lock(&sinfo->lock);
5405 data_used = sinfo->bytes_used;
5406 spin_unlock(&sinfo->lock);
5408 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5409 spin_lock(&sinfo->lock);
5410 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5412 meta_used = sinfo->bytes_used;
5413 spin_unlock(&sinfo->lock);
5415 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5417 num_bytes += div_u64(data_used + meta_used, 50);
5419 if (num_bytes * 3 > meta_used)
5420 num_bytes = div_u64(meta_used, 3);
5422 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5425 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5427 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5428 struct btrfs_space_info *sinfo = block_rsv->space_info;
5431 num_bytes = calc_global_metadata_size(fs_info);
5433 spin_lock(&sinfo->lock);
5434 spin_lock(&block_rsv->lock);
5436 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5438 if (block_rsv->reserved < block_rsv->size) {
5439 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5440 sinfo->bytes_reserved + sinfo->bytes_readonly +
5441 sinfo->bytes_may_use;
5442 if (sinfo->total_bytes > num_bytes) {
5443 num_bytes = sinfo->total_bytes - num_bytes;
5444 num_bytes = min(num_bytes,
5445 block_rsv->size - block_rsv->reserved);
5446 block_rsv->reserved += num_bytes;
5447 sinfo->bytes_may_use += num_bytes;
5448 trace_btrfs_space_reservation(fs_info, "space_info",
5449 sinfo->flags, num_bytes,
5452 } else if (block_rsv->reserved > block_rsv->size) {
5453 num_bytes = block_rsv->reserved - block_rsv->size;
5454 sinfo->bytes_may_use -= num_bytes;
5455 trace_btrfs_space_reservation(fs_info, "space_info",
5456 sinfo->flags, num_bytes, 0);
5457 block_rsv->reserved = block_rsv->size;
5460 if (block_rsv->reserved == block_rsv->size)
5461 block_rsv->full = 1;
5463 block_rsv->full = 0;
5465 spin_unlock(&block_rsv->lock);
5466 spin_unlock(&sinfo->lock);
5469 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5471 struct btrfs_space_info *space_info;
5473 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5474 fs_info->chunk_block_rsv.space_info = space_info;
5476 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5477 fs_info->global_block_rsv.space_info = space_info;
5478 fs_info->delalloc_block_rsv.space_info = space_info;
5479 fs_info->trans_block_rsv.space_info = space_info;
5480 fs_info->empty_block_rsv.space_info = space_info;
5481 fs_info->delayed_block_rsv.space_info = space_info;
5483 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5484 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5485 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5486 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5487 if (fs_info->quota_root)
5488 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5489 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5491 update_global_block_rsv(fs_info);
5494 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5496 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5498 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5499 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5500 WARN_ON(fs_info->trans_block_rsv.size > 0);
5501 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5502 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5503 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5504 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5505 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5508 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5509 struct btrfs_root *root)
5511 if (!trans->block_rsv)
5514 if (!trans->bytes_reserved)
5517 trace_btrfs_space_reservation(root->fs_info, "transaction",
5518 trans->transid, trans->bytes_reserved, 0);
5519 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5520 trans->bytes_reserved = 0;
5524 * To be called after all the new block groups attached to the transaction
5525 * handle have been created (btrfs_create_pending_block_groups()).
5527 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5529 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5531 if (!trans->chunk_bytes_reserved)
5534 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5536 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5537 trans->chunk_bytes_reserved);
5538 trans->chunk_bytes_reserved = 0;
5541 /* Can only return 0 or -ENOSPC */
5542 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5543 struct inode *inode)
5545 struct btrfs_root *root = BTRFS_I(inode)->root;
5546 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5547 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5550 * We need to hold space in order to delete our orphan item once we've
5551 * added it, so this takes the reservation so we can release it later
5552 * when we are truly done with the orphan item.
5554 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5555 trace_btrfs_space_reservation(root->fs_info, "orphan",
5556 btrfs_ino(inode), num_bytes, 1);
5557 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5560 void btrfs_orphan_release_metadata(struct inode *inode)
5562 struct btrfs_root *root = BTRFS_I(inode)->root;
5563 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5564 trace_btrfs_space_reservation(root->fs_info, "orphan",
5565 btrfs_ino(inode), num_bytes, 0);
5566 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5570 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5571 * root: the root of the parent directory
5572 * rsv: block reservation
5573 * items: the number of items that we need do reservation
5574 * qgroup_reserved: used to return the reserved size in qgroup
5576 * This function is used to reserve the space for snapshot/subvolume
5577 * creation and deletion. Those operations are different with the
5578 * common file/directory operations, they change two fs/file trees
5579 * and root tree, the number of items that the qgroup reserves is
5580 * different with the free space reservation. So we can not use
5581 * the space reservation mechanism in start_transaction().
5583 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5584 struct btrfs_block_rsv *rsv,
5586 u64 *qgroup_reserved,
5587 bool use_global_rsv)
5591 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5593 if (root->fs_info->quota_enabled) {
5594 /* One for parent inode, two for dir entries */
5595 num_bytes = 3 * root->nodesize;
5596 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5603 *qgroup_reserved = num_bytes;
5605 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5606 rsv->space_info = __find_space_info(root->fs_info,
5607 BTRFS_BLOCK_GROUP_METADATA);
5608 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5609 BTRFS_RESERVE_FLUSH_ALL);
5611 if (ret == -ENOSPC && use_global_rsv)
5612 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5614 if (ret && *qgroup_reserved)
5615 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5620 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5621 struct btrfs_block_rsv *rsv,
5622 u64 qgroup_reserved)
5624 btrfs_block_rsv_release(root, rsv, (u64)-1);
5628 * drop_outstanding_extent - drop an outstanding extent
5629 * @inode: the inode we're dropping the extent for
5630 * @num_bytes: the number of bytes we're releasing.
5632 * This is called when we are freeing up an outstanding extent, either called
5633 * after an error or after an extent is written. This will return the number of
5634 * reserved extents that need to be freed. This must be called with
5635 * BTRFS_I(inode)->lock held.
5637 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5639 unsigned drop_inode_space = 0;
5640 unsigned dropped_extents = 0;
5641 unsigned num_extents = 0;
5643 num_extents = (unsigned)div64_u64(num_bytes +
5644 BTRFS_MAX_EXTENT_SIZE - 1,
5645 BTRFS_MAX_EXTENT_SIZE);
5646 ASSERT(num_extents);
5647 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5648 BTRFS_I(inode)->outstanding_extents -= num_extents;
5650 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5651 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5652 &BTRFS_I(inode)->runtime_flags))
5653 drop_inode_space = 1;
5656 * If we have more or the same amount of outstanding extents than we have
5657 * reserved then we need to leave the reserved extents count alone.
5659 if (BTRFS_I(inode)->outstanding_extents >=
5660 BTRFS_I(inode)->reserved_extents)
5661 return drop_inode_space;
5663 dropped_extents = BTRFS_I(inode)->reserved_extents -
5664 BTRFS_I(inode)->outstanding_extents;
5665 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5666 return dropped_extents + drop_inode_space;
5670 * calc_csum_metadata_size - return the amount of metadata space that must be
5671 * reserved/freed for the given bytes.
5672 * @inode: the inode we're manipulating
5673 * @num_bytes: the number of bytes in question
5674 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5676 * This adjusts the number of csum_bytes in the inode and then returns the
5677 * correct amount of metadata that must either be reserved or freed. We
5678 * calculate how many checksums we can fit into one leaf and then divide the
5679 * number of bytes that will need to be checksumed by this value to figure out
5680 * how many checksums will be required. If we are adding bytes then the number
5681 * may go up and we will return the number of additional bytes that must be
5682 * reserved. If it is going down we will return the number of bytes that must
5685 * This must be called with BTRFS_I(inode)->lock held.
5687 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5690 struct btrfs_root *root = BTRFS_I(inode)->root;
5691 u64 old_csums, num_csums;
5693 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5694 BTRFS_I(inode)->csum_bytes == 0)
5697 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5699 BTRFS_I(inode)->csum_bytes += num_bytes;
5701 BTRFS_I(inode)->csum_bytes -= num_bytes;
5702 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5704 /* No change, no need to reserve more */
5705 if (old_csums == num_csums)
5709 return btrfs_calc_trans_metadata_size(root,
5710 num_csums - old_csums);
5712 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5715 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5717 struct btrfs_root *root = BTRFS_I(inode)->root;
5718 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5721 unsigned nr_extents = 0;
5722 int extra_reserve = 0;
5723 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5725 bool delalloc_lock = true;
5729 /* If we are a free space inode we need to not flush since we will be in
5730 * the middle of a transaction commit. We also don't need the delalloc
5731 * mutex since we won't race with anybody. We need this mostly to make
5732 * lockdep shut its filthy mouth.
5734 if (btrfs_is_free_space_inode(inode)) {
5735 flush = BTRFS_RESERVE_NO_FLUSH;
5736 delalloc_lock = false;
5739 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5740 btrfs_transaction_in_commit(root->fs_info))
5741 schedule_timeout(1);
5744 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5746 num_bytes = ALIGN(num_bytes, root->sectorsize);
5748 spin_lock(&BTRFS_I(inode)->lock);
5749 nr_extents = (unsigned)div64_u64(num_bytes +
5750 BTRFS_MAX_EXTENT_SIZE - 1,
5751 BTRFS_MAX_EXTENT_SIZE);
5752 BTRFS_I(inode)->outstanding_extents += nr_extents;
5755 if (BTRFS_I(inode)->outstanding_extents >
5756 BTRFS_I(inode)->reserved_extents)
5757 nr_extents = BTRFS_I(inode)->outstanding_extents -
5758 BTRFS_I(inode)->reserved_extents;
5761 * Add an item to reserve for updating the inode when we complete the
5764 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5765 &BTRFS_I(inode)->runtime_flags)) {
5770 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5771 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5772 csum_bytes = BTRFS_I(inode)->csum_bytes;
5773 spin_unlock(&BTRFS_I(inode)->lock);
5775 if (root->fs_info->quota_enabled) {
5776 ret = btrfs_qgroup_reserve_meta(root,
5777 nr_extents * root->nodesize);
5782 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5783 if (unlikely(ret)) {
5784 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5788 spin_lock(&BTRFS_I(inode)->lock);
5789 if (extra_reserve) {
5790 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5791 &BTRFS_I(inode)->runtime_flags);
5794 BTRFS_I(inode)->reserved_extents += nr_extents;
5795 spin_unlock(&BTRFS_I(inode)->lock);
5798 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5801 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5802 btrfs_ino(inode), to_reserve, 1);
5803 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5808 spin_lock(&BTRFS_I(inode)->lock);
5809 dropped = drop_outstanding_extent(inode, num_bytes);
5811 * If the inodes csum_bytes is the same as the original
5812 * csum_bytes then we know we haven't raced with any free()ers
5813 * so we can just reduce our inodes csum bytes and carry on.
5815 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5816 calc_csum_metadata_size(inode, num_bytes, 0);
5818 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5822 * This is tricky, but first we need to figure out how much we
5823 * freed from any free-ers that occurred during this
5824 * reservation, so we reset ->csum_bytes to the csum_bytes
5825 * before we dropped our lock, and then call the free for the
5826 * number of bytes that were freed while we were trying our
5829 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5830 BTRFS_I(inode)->csum_bytes = csum_bytes;
5831 to_free = calc_csum_metadata_size(inode, bytes, 0);
5835 * Now we need to see how much we would have freed had we not
5836 * been making this reservation and our ->csum_bytes were not
5837 * artificially inflated.
5839 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5840 bytes = csum_bytes - orig_csum_bytes;
5841 bytes = calc_csum_metadata_size(inode, bytes, 0);
5844 * Now reset ->csum_bytes to what it should be. If bytes is
5845 * more than to_free then we would have freed more space had we
5846 * not had an artificially high ->csum_bytes, so we need to free
5847 * the remainder. If bytes is the same or less then we don't
5848 * need to do anything, the other free-ers did the correct
5851 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5852 if (bytes > to_free)
5853 to_free = bytes - to_free;
5857 spin_unlock(&BTRFS_I(inode)->lock);
5859 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5862 btrfs_block_rsv_release(root, block_rsv, to_free);
5863 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5864 btrfs_ino(inode), to_free, 0);
5867 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5872 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5873 * @inode: the inode to release the reservation for
5874 * @num_bytes: the number of bytes we're releasing
5876 * This will release the metadata reservation for an inode. This can be called
5877 * once we complete IO for a given set of bytes to release their metadata
5880 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5882 struct btrfs_root *root = BTRFS_I(inode)->root;
5886 num_bytes = ALIGN(num_bytes, root->sectorsize);
5887 spin_lock(&BTRFS_I(inode)->lock);
5888 dropped = drop_outstanding_extent(inode, num_bytes);
5891 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5892 spin_unlock(&BTRFS_I(inode)->lock);
5894 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5896 if (btrfs_test_is_dummy_root(root))
5899 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5900 btrfs_ino(inode), to_free, 0);
5902 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5907 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5909 * @inode: inode we're writing to
5910 * @start: start range we are writing to
5911 * @len: how long the range we are writing to
5913 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5915 * This will do the following things
5917 * o reserve space in data space info for num bytes
5918 * and reserve precious corresponding qgroup space
5919 * (Done in check_data_free_space)
5921 * o reserve space for metadata space, based on the number of outstanding
5922 * extents and how much csums will be needed
5923 * also reserve metadata space in a per root over-reserve method.
5924 * o add to the inodes->delalloc_bytes
5925 * o add it to the fs_info's delalloc inodes list.
5926 * (Above 3 all done in delalloc_reserve_metadata)
5928 * Return 0 for success
5929 * Return <0 for error(-ENOSPC or -EQUOT)
5931 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5935 ret = btrfs_check_data_free_space(inode, start, len);
5938 ret = btrfs_delalloc_reserve_metadata(inode, len);
5940 btrfs_free_reserved_data_space(inode, start, len);
5945 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5946 * @inode: inode we're releasing space for
5947 * @start: start position of the space already reserved
5948 * @len: the len of the space already reserved
5950 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5951 * called in the case that we don't need the metadata AND data reservations
5952 * anymore. So if there is an error or we insert an inline extent.
5954 * This function will release the metadata space that was not used and will
5955 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5956 * list if there are no delalloc bytes left.
5957 * Also it will handle the qgroup reserved space.
5959 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5961 btrfs_delalloc_release_metadata(inode, len);
5962 btrfs_free_reserved_data_space(inode, start, len);
5965 static int update_block_group(struct btrfs_trans_handle *trans,
5966 struct btrfs_root *root, u64 bytenr,
5967 u64 num_bytes, int alloc)
5969 struct btrfs_block_group_cache *cache = NULL;
5970 struct btrfs_fs_info *info = root->fs_info;
5971 u64 total = num_bytes;
5976 /* block accounting for super block */
5977 spin_lock(&info->delalloc_root_lock);
5978 old_val = btrfs_super_bytes_used(info->super_copy);
5980 old_val += num_bytes;
5982 old_val -= num_bytes;
5983 btrfs_set_super_bytes_used(info->super_copy, old_val);
5984 spin_unlock(&info->delalloc_root_lock);
5987 cache = btrfs_lookup_block_group(info, bytenr);
5990 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5991 BTRFS_BLOCK_GROUP_RAID1 |
5992 BTRFS_BLOCK_GROUP_RAID10))
5997 * If this block group has free space cache written out, we
5998 * need to make sure to load it if we are removing space. This
5999 * is because we need the unpinning stage to actually add the
6000 * space back to the block group, otherwise we will leak space.
6002 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6003 cache_block_group(cache, 1);
6005 byte_in_group = bytenr - cache->key.objectid;
6006 WARN_ON(byte_in_group > cache->key.offset);
6008 spin_lock(&cache->space_info->lock);
6009 spin_lock(&cache->lock);
6011 if (btrfs_test_opt(root, SPACE_CACHE) &&
6012 cache->disk_cache_state < BTRFS_DC_CLEAR)
6013 cache->disk_cache_state = BTRFS_DC_CLEAR;
6015 old_val = btrfs_block_group_used(&cache->item);
6016 num_bytes = min(total, cache->key.offset - byte_in_group);
6018 old_val += num_bytes;
6019 btrfs_set_block_group_used(&cache->item, old_val);
6020 cache->reserved -= num_bytes;
6021 cache->space_info->bytes_reserved -= num_bytes;
6022 cache->space_info->bytes_used += num_bytes;
6023 cache->space_info->disk_used += num_bytes * factor;
6024 spin_unlock(&cache->lock);
6025 spin_unlock(&cache->space_info->lock);
6027 old_val -= num_bytes;
6028 btrfs_set_block_group_used(&cache->item, old_val);
6029 cache->pinned += num_bytes;
6030 cache->space_info->bytes_pinned += num_bytes;
6031 cache->space_info->bytes_used -= num_bytes;
6032 cache->space_info->disk_used -= num_bytes * factor;
6033 spin_unlock(&cache->lock);
6034 spin_unlock(&cache->space_info->lock);
6036 set_extent_dirty(info->pinned_extents,
6037 bytenr, bytenr + num_bytes - 1,
6038 GFP_NOFS | __GFP_NOFAIL);
6041 spin_lock(&trans->transaction->dirty_bgs_lock);
6042 if (list_empty(&cache->dirty_list)) {
6043 list_add_tail(&cache->dirty_list,
6044 &trans->transaction->dirty_bgs);
6045 trans->transaction->num_dirty_bgs++;
6046 btrfs_get_block_group(cache);
6048 spin_unlock(&trans->transaction->dirty_bgs_lock);
6051 * No longer have used bytes in this block group, queue it for
6052 * deletion. We do this after adding the block group to the
6053 * dirty list to avoid races between cleaner kthread and space
6056 if (!alloc && old_val == 0) {
6057 spin_lock(&info->unused_bgs_lock);
6058 if (list_empty(&cache->bg_list)) {
6059 btrfs_get_block_group(cache);
6060 list_add_tail(&cache->bg_list,
6063 spin_unlock(&info->unused_bgs_lock);
6066 btrfs_put_block_group(cache);
6068 bytenr += num_bytes;
6073 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6075 struct btrfs_block_group_cache *cache;
6078 spin_lock(&root->fs_info->block_group_cache_lock);
6079 bytenr = root->fs_info->first_logical_byte;
6080 spin_unlock(&root->fs_info->block_group_cache_lock);
6082 if (bytenr < (u64)-1)
6085 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6089 bytenr = cache->key.objectid;
6090 btrfs_put_block_group(cache);
6095 static int pin_down_extent(struct btrfs_root *root,
6096 struct btrfs_block_group_cache *cache,
6097 u64 bytenr, u64 num_bytes, int reserved)
6099 spin_lock(&cache->space_info->lock);
6100 spin_lock(&cache->lock);
6101 cache->pinned += num_bytes;
6102 cache->space_info->bytes_pinned += num_bytes;
6104 cache->reserved -= num_bytes;
6105 cache->space_info->bytes_reserved -= num_bytes;
6107 spin_unlock(&cache->lock);
6108 spin_unlock(&cache->space_info->lock);
6110 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6111 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6113 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6118 * this function must be called within transaction
6120 int btrfs_pin_extent(struct btrfs_root *root,
6121 u64 bytenr, u64 num_bytes, int reserved)
6123 struct btrfs_block_group_cache *cache;
6125 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6126 BUG_ON(!cache); /* Logic error */
6128 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6130 btrfs_put_block_group(cache);
6135 * this function must be called within transaction
6137 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6138 u64 bytenr, u64 num_bytes)
6140 struct btrfs_block_group_cache *cache;
6143 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6148 * pull in the free space cache (if any) so that our pin
6149 * removes the free space from the cache. We have load_only set
6150 * to one because the slow code to read in the free extents does check
6151 * the pinned extents.
6153 cache_block_group(cache, 1);
6155 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6157 /* remove us from the free space cache (if we're there at all) */
6158 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6159 btrfs_put_block_group(cache);
6163 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6166 struct btrfs_block_group_cache *block_group;
6167 struct btrfs_caching_control *caching_ctl;
6169 block_group = btrfs_lookup_block_group(root->fs_info, start);
6173 cache_block_group(block_group, 0);
6174 caching_ctl = get_caching_control(block_group);
6178 BUG_ON(!block_group_cache_done(block_group));
6179 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6181 mutex_lock(&caching_ctl->mutex);
6183 if (start >= caching_ctl->progress) {
6184 ret = add_excluded_extent(root, start, num_bytes);
6185 } else if (start + num_bytes <= caching_ctl->progress) {
6186 ret = btrfs_remove_free_space(block_group,
6189 num_bytes = caching_ctl->progress - start;
6190 ret = btrfs_remove_free_space(block_group,
6195 num_bytes = (start + num_bytes) -
6196 caching_ctl->progress;
6197 start = caching_ctl->progress;
6198 ret = add_excluded_extent(root, start, num_bytes);
6201 mutex_unlock(&caching_ctl->mutex);
6202 put_caching_control(caching_ctl);
6204 btrfs_put_block_group(block_group);
6208 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6209 struct extent_buffer *eb)
6211 struct btrfs_file_extent_item *item;
6212 struct btrfs_key key;
6216 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6219 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6220 btrfs_item_key_to_cpu(eb, &key, i);
6221 if (key.type != BTRFS_EXTENT_DATA_KEY)
6223 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6224 found_type = btrfs_file_extent_type(eb, item);
6225 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6227 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6229 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6230 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6231 __exclude_logged_extent(log, key.objectid, key.offset);
6238 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6240 atomic_inc(&bg->reservations);
6243 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6246 struct btrfs_block_group_cache *bg;
6248 bg = btrfs_lookup_block_group(fs_info, start);
6250 if (atomic_dec_and_test(&bg->reservations))
6251 wake_up_atomic_t(&bg->reservations);
6252 btrfs_put_block_group(bg);
6255 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6261 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6263 struct btrfs_space_info *space_info = bg->space_info;
6267 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6271 * Our block group is read only but before we set it to read only,
6272 * some task might have had allocated an extent from it already, but it
6273 * has not yet created a respective ordered extent (and added it to a
6274 * root's list of ordered extents).
6275 * Therefore wait for any task currently allocating extents, since the
6276 * block group's reservations counter is incremented while a read lock
6277 * on the groups' semaphore is held and decremented after releasing
6278 * the read access on that semaphore and creating the ordered extent.
6280 down_write(&space_info->groups_sem);
6281 up_write(&space_info->groups_sem);
6283 wait_on_atomic_t(&bg->reservations,
6284 btrfs_wait_bg_reservations_atomic_t,
6285 TASK_UNINTERRUPTIBLE);
6289 * btrfs_update_reserved_bytes - update the block_group and space info counters
6290 * @cache: The cache we are manipulating
6291 * @num_bytes: The number of bytes in question
6292 * @reserve: One of the reservation enums
6293 * @delalloc: The blocks are allocated for the delalloc write
6295 * This is called by the allocator when it reserves space, or by somebody who is
6296 * freeing space that was never actually used on disk. For example if you
6297 * reserve some space for a new leaf in transaction A and before transaction A
6298 * commits you free that leaf, you call this with reserve set to 0 in order to
6299 * clear the reservation.
6301 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6302 * ENOSPC accounting. For data we handle the reservation through clearing the
6303 * delalloc bits in the io_tree. We have to do this since we could end up
6304 * allocating less disk space for the amount of data we have reserved in the
6305 * case of compression.
6307 * If this is a reservation and the block group has become read only we cannot
6308 * make the reservation and return -EAGAIN, otherwise this function always
6311 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6312 u64 num_bytes, int reserve, int delalloc)
6314 struct btrfs_space_info *space_info = cache->space_info;
6317 spin_lock(&space_info->lock);
6318 spin_lock(&cache->lock);
6319 if (reserve != RESERVE_FREE) {
6323 cache->reserved += num_bytes;
6324 space_info->bytes_reserved += num_bytes;
6325 if (reserve == RESERVE_ALLOC) {
6326 trace_btrfs_space_reservation(cache->fs_info,
6327 "space_info", space_info->flags,
6329 space_info->bytes_may_use -= num_bytes;
6333 cache->delalloc_bytes += num_bytes;
6337 space_info->bytes_readonly += num_bytes;
6338 cache->reserved -= num_bytes;
6339 space_info->bytes_reserved -= num_bytes;
6342 cache->delalloc_bytes -= num_bytes;
6344 spin_unlock(&cache->lock);
6345 spin_unlock(&space_info->lock);
6349 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6350 struct btrfs_root *root)
6352 struct btrfs_fs_info *fs_info = root->fs_info;
6353 struct btrfs_caching_control *next;
6354 struct btrfs_caching_control *caching_ctl;
6355 struct btrfs_block_group_cache *cache;
6357 down_write(&fs_info->commit_root_sem);
6359 list_for_each_entry_safe(caching_ctl, next,
6360 &fs_info->caching_block_groups, list) {
6361 cache = caching_ctl->block_group;
6362 if (block_group_cache_done(cache)) {
6363 cache->last_byte_to_unpin = (u64)-1;
6364 list_del_init(&caching_ctl->list);
6365 put_caching_control(caching_ctl);
6367 cache->last_byte_to_unpin = caching_ctl->progress;
6371 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6372 fs_info->pinned_extents = &fs_info->freed_extents[1];
6374 fs_info->pinned_extents = &fs_info->freed_extents[0];
6376 up_write(&fs_info->commit_root_sem);
6378 update_global_block_rsv(fs_info);
6382 * Returns the free cluster for the given space info and sets empty_cluster to
6383 * what it should be based on the mount options.
6385 static struct btrfs_free_cluster *
6386 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6389 struct btrfs_free_cluster *ret = NULL;
6390 bool ssd = btrfs_test_opt(root, SSD);
6393 if (btrfs_mixed_space_info(space_info))
6397 *empty_cluster = SZ_2M;
6398 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6399 ret = &root->fs_info->meta_alloc_cluster;
6401 *empty_cluster = SZ_64K;
6402 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6403 ret = &root->fs_info->data_alloc_cluster;
6409 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6410 const bool return_free_space)
6412 struct btrfs_fs_info *fs_info = root->fs_info;
6413 struct btrfs_block_group_cache *cache = NULL;
6414 struct btrfs_space_info *space_info;
6415 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6416 struct btrfs_free_cluster *cluster = NULL;
6418 u64 total_unpinned = 0;
6419 u64 empty_cluster = 0;
6422 while (start <= end) {
6425 start >= cache->key.objectid + cache->key.offset) {
6427 btrfs_put_block_group(cache);
6429 cache = btrfs_lookup_block_group(fs_info, start);
6430 BUG_ON(!cache); /* Logic error */
6432 cluster = fetch_cluster_info(root,
6435 empty_cluster <<= 1;
6438 len = cache->key.objectid + cache->key.offset - start;
6439 len = min(len, end + 1 - start);
6441 if (start < cache->last_byte_to_unpin) {
6442 len = min(len, cache->last_byte_to_unpin - start);
6443 if (return_free_space)
6444 btrfs_add_free_space(cache, start, len);
6448 total_unpinned += len;
6449 space_info = cache->space_info;
6452 * If this space cluster has been marked as fragmented and we've
6453 * unpinned enough in this block group to potentially allow a
6454 * cluster to be created inside of it go ahead and clear the
6457 if (cluster && cluster->fragmented &&
6458 total_unpinned > empty_cluster) {
6459 spin_lock(&cluster->lock);
6460 cluster->fragmented = 0;
6461 spin_unlock(&cluster->lock);
6464 spin_lock(&space_info->lock);
6465 spin_lock(&cache->lock);
6466 cache->pinned -= len;
6467 space_info->bytes_pinned -= len;
6468 space_info->max_extent_size = 0;
6469 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6471 space_info->bytes_readonly += len;
6474 spin_unlock(&cache->lock);
6475 if (!readonly && global_rsv->space_info == space_info) {
6476 spin_lock(&global_rsv->lock);
6477 if (!global_rsv->full) {
6478 len = min(len, global_rsv->size -
6479 global_rsv->reserved);
6480 global_rsv->reserved += len;
6481 space_info->bytes_may_use += len;
6482 if (global_rsv->reserved >= global_rsv->size)
6483 global_rsv->full = 1;
6485 spin_unlock(&global_rsv->lock);
6487 spin_unlock(&space_info->lock);
6491 btrfs_put_block_group(cache);
6495 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6496 struct btrfs_root *root)
6498 struct btrfs_fs_info *fs_info = root->fs_info;
6499 struct btrfs_block_group_cache *block_group, *tmp;
6500 struct list_head *deleted_bgs;
6501 struct extent_io_tree *unpin;
6506 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6507 unpin = &fs_info->freed_extents[1];
6509 unpin = &fs_info->freed_extents[0];
6511 while (!trans->aborted) {
6512 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6513 ret = find_first_extent_bit(unpin, 0, &start, &end,
6514 EXTENT_DIRTY, NULL);
6516 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6520 if (btrfs_test_opt(root, DISCARD))
6521 ret = btrfs_discard_extent(root, start,
6522 end + 1 - start, NULL);
6524 clear_extent_dirty(unpin, start, end);
6525 unpin_extent_range(root, start, end, true);
6526 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6531 * Transaction is finished. We don't need the lock anymore. We
6532 * do need to clean up the block groups in case of a transaction
6535 deleted_bgs = &trans->transaction->deleted_bgs;
6536 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6540 if (!trans->aborted)
6541 ret = btrfs_discard_extent(root,
6542 block_group->key.objectid,
6543 block_group->key.offset,
6546 list_del_init(&block_group->bg_list);
6547 btrfs_put_block_group_trimming(block_group);
6548 btrfs_put_block_group(block_group);
6551 const char *errstr = btrfs_decode_error(ret);
6553 "Discard failed while removing blockgroup: errno=%d %s\n",
6561 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6562 u64 owner, u64 root_objectid)
6564 struct btrfs_space_info *space_info;
6567 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6568 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6569 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6571 flags = BTRFS_BLOCK_GROUP_METADATA;
6573 flags = BTRFS_BLOCK_GROUP_DATA;
6576 space_info = __find_space_info(fs_info, flags);
6577 BUG_ON(!space_info); /* Logic bug */
6578 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6582 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6583 struct btrfs_root *root,
6584 struct btrfs_delayed_ref_node *node, u64 parent,
6585 u64 root_objectid, u64 owner_objectid,
6586 u64 owner_offset, int refs_to_drop,
6587 struct btrfs_delayed_extent_op *extent_op)
6589 struct btrfs_key key;
6590 struct btrfs_path *path;
6591 struct btrfs_fs_info *info = root->fs_info;
6592 struct btrfs_root *extent_root = info->extent_root;
6593 struct extent_buffer *leaf;
6594 struct btrfs_extent_item *ei;
6595 struct btrfs_extent_inline_ref *iref;
6598 int extent_slot = 0;
6599 int found_extent = 0;
6603 u64 bytenr = node->bytenr;
6604 u64 num_bytes = node->num_bytes;
6606 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6609 path = btrfs_alloc_path();
6613 path->reada = READA_FORWARD;
6614 path->leave_spinning = 1;
6616 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6617 BUG_ON(!is_data && refs_to_drop != 1);
6620 skinny_metadata = 0;
6622 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6623 bytenr, num_bytes, parent,
6624 root_objectid, owner_objectid,
6627 extent_slot = path->slots[0];
6628 while (extent_slot >= 0) {
6629 btrfs_item_key_to_cpu(path->nodes[0], &key,
6631 if (key.objectid != bytenr)
6633 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6634 key.offset == num_bytes) {
6638 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6639 key.offset == owner_objectid) {
6643 if (path->slots[0] - extent_slot > 5)
6647 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6648 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6649 if (found_extent && item_size < sizeof(*ei))
6652 if (!found_extent) {
6654 ret = remove_extent_backref(trans, extent_root, path,
6656 is_data, &last_ref);
6658 btrfs_abort_transaction(trans, extent_root, ret);
6661 btrfs_release_path(path);
6662 path->leave_spinning = 1;
6664 key.objectid = bytenr;
6665 key.type = BTRFS_EXTENT_ITEM_KEY;
6666 key.offset = num_bytes;
6668 if (!is_data && skinny_metadata) {
6669 key.type = BTRFS_METADATA_ITEM_KEY;
6670 key.offset = owner_objectid;
6673 ret = btrfs_search_slot(trans, extent_root,
6675 if (ret > 0 && skinny_metadata && path->slots[0]) {
6677 * Couldn't find our skinny metadata item,
6678 * see if we have ye olde extent item.
6681 btrfs_item_key_to_cpu(path->nodes[0], &key,
6683 if (key.objectid == bytenr &&
6684 key.type == BTRFS_EXTENT_ITEM_KEY &&
6685 key.offset == num_bytes)
6689 if (ret > 0 && skinny_metadata) {
6690 skinny_metadata = false;
6691 key.objectid = bytenr;
6692 key.type = BTRFS_EXTENT_ITEM_KEY;
6693 key.offset = num_bytes;
6694 btrfs_release_path(path);
6695 ret = btrfs_search_slot(trans, extent_root,
6700 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6703 btrfs_print_leaf(extent_root,
6707 btrfs_abort_transaction(trans, extent_root, ret);
6710 extent_slot = path->slots[0];
6712 } else if (WARN_ON(ret == -ENOENT)) {
6713 btrfs_print_leaf(extent_root, path->nodes[0]);
6715 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6716 bytenr, parent, root_objectid, owner_objectid,
6718 btrfs_abort_transaction(trans, extent_root, ret);
6721 btrfs_abort_transaction(trans, extent_root, ret);
6725 leaf = path->nodes[0];
6726 item_size = btrfs_item_size_nr(leaf, extent_slot);
6727 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6728 if (item_size < sizeof(*ei)) {
6729 BUG_ON(found_extent || extent_slot != path->slots[0]);
6730 ret = convert_extent_item_v0(trans, extent_root, path,
6733 btrfs_abort_transaction(trans, extent_root, ret);
6737 btrfs_release_path(path);
6738 path->leave_spinning = 1;
6740 key.objectid = bytenr;
6741 key.type = BTRFS_EXTENT_ITEM_KEY;
6742 key.offset = num_bytes;
6744 ret = btrfs_search_slot(trans, extent_root, &key, path,
6747 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6749 btrfs_print_leaf(extent_root, path->nodes[0]);
6752 btrfs_abort_transaction(trans, extent_root, ret);
6756 extent_slot = path->slots[0];
6757 leaf = path->nodes[0];
6758 item_size = btrfs_item_size_nr(leaf, extent_slot);
6761 BUG_ON(item_size < sizeof(*ei));
6762 ei = btrfs_item_ptr(leaf, extent_slot,
6763 struct btrfs_extent_item);
6764 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6765 key.type == BTRFS_EXTENT_ITEM_KEY) {
6766 struct btrfs_tree_block_info *bi;
6767 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6768 bi = (struct btrfs_tree_block_info *)(ei + 1);
6769 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6772 refs = btrfs_extent_refs(leaf, ei);
6773 if (refs < refs_to_drop) {
6774 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6775 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6777 btrfs_abort_transaction(trans, extent_root, ret);
6780 refs -= refs_to_drop;
6784 __run_delayed_extent_op(extent_op, leaf, ei);
6786 * In the case of inline back ref, reference count will
6787 * be updated by remove_extent_backref
6790 BUG_ON(!found_extent);
6792 btrfs_set_extent_refs(leaf, ei, refs);
6793 btrfs_mark_buffer_dirty(leaf);
6796 ret = remove_extent_backref(trans, extent_root, path,
6798 is_data, &last_ref);
6800 btrfs_abort_transaction(trans, extent_root, ret);
6804 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6808 BUG_ON(is_data && refs_to_drop !=
6809 extent_data_ref_count(path, iref));
6811 BUG_ON(path->slots[0] != extent_slot);
6813 BUG_ON(path->slots[0] != extent_slot + 1);
6814 path->slots[0] = extent_slot;
6820 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6823 btrfs_abort_transaction(trans, extent_root, ret);
6826 btrfs_release_path(path);
6829 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6831 btrfs_abort_transaction(trans, extent_root, ret);
6836 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6839 btrfs_abort_transaction(trans, extent_root, ret);
6843 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6845 btrfs_abort_transaction(trans, extent_root, ret);
6849 btrfs_release_path(path);
6852 btrfs_free_path(path);
6857 * when we free an block, it is possible (and likely) that we free the last
6858 * delayed ref for that extent as well. This searches the delayed ref tree for
6859 * a given extent, and if there are no other delayed refs to be processed, it
6860 * removes it from the tree.
6862 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6863 struct btrfs_root *root, u64 bytenr)
6865 struct btrfs_delayed_ref_head *head;
6866 struct btrfs_delayed_ref_root *delayed_refs;
6869 delayed_refs = &trans->transaction->delayed_refs;
6870 spin_lock(&delayed_refs->lock);
6871 head = btrfs_find_delayed_ref_head(trans, bytenr);
6873 goto out_delayed_unlock;
6875 spin_lock(&head->lock);
6876 if (!list_empty(&head->ref_list))
6879 if (head->extent_op) {
6880 if (!head->must_insert_reserved)
6882 btrfs_free_delayed_extent_op(head->extent_op);
6883 head->extent_op = NULL;
6887 * waiting for the lock here would deadlock. If someone else has it
6888 * locked they are already in the process of dropping it anyway
6890 if (!mutex_trylock(&head->mutex))
6894 * at this point we have a head with no other entries. Go
6895 * ahead and process it.
6897 head->node.in_tree = 0;
6898 rb_erase(&head->href_node, &delayed_refs->href_root);
6900 atomic_dec(&delayed_refs->num_entries);
6903 * we don't take a ref on the node because we're removing it from the
6904 * tree, so we just steal the ref the tree was holding.
6906 delayed_refs->num_heads--;
6907 if (head->processing == 0)
6908 delayed_refs->num_heads_ready--;
6909 head->processing = 0;
6910 spin_unlock(&head->lock);
6911 spin_unlock(&delayed_refs->lock);
6913 BUG_ON(head->extent_op);
6914 if (head->must_insert_reserved)
6917 mutex_unlock(&head->mutex);
6918 btrfs_put_delayed_ref(&head->node);
6921 spin_unlock(&head->lock);
6924 spin_unlock(&delayed_refs->lock);
6928 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6929 struct btrfs_root *root,
6930 struct extent_buffer *buf,
6931 u64 parent, int last_ref)
6936 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6937 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6938 buf->start, buf->len,
6939 parent, root->root_key.objectid,
6940 btrfs_header_level(buf),
6941 BTRFS_DROP_DELAYED_REF, NULL);
6942 BUG_ON(ret); /* -ENOMEM */
6948 if (btrfs_header_generation(buf) == trans->transid) {
6949 struct btrfs_block_group_cache *cache;
6951 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6952 ret = check_ref_cleanup(trans, root, buf->start);
6957 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6959 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6960 pin_down_extent(root, cache, buf->start, buf->len, 1);
6961 btrfs_put_block_group(cache);
6965 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6967 btrfs_add_free_space(cache, buf->start, buf->len);
6968 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6969 btrfs_put_block_group(cache);
6970 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6975 add_pinned_bytes(root->fs_info, buf->len,
6976 btrfs_header_level(buf),
6977 root->root_key.objectid);
6980 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6983 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6986 /* Can return -ENOMEM */
6987 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6988 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6989 u64 owner, u64 offset)
6992 struct btrfs_fs_info *fs_info = root->fs_info;
6994 if (btrfs_test_is_dummy_root(root))
6997 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7000 * tree log blocks never actually go into the extent allocation
7001 * tree, just update pinning info and exit early.
7003 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7004 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7005 /* unlocks the pinned mutex */
7006 btrfs_pin_extent(root, bytenr, num_bytes, 1);
7008 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7009 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7011 parent, root_objectid, (int)owner,
7012 BTRFS_DROP_DELAYED_REF, NULL);
7014 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7016 parent, root_objectid, owner,
7018 BTRFS_DROP_DELAYED_REF, NULL);
7024 * when we wait for progress in the block group caching, its because
7025 * our allocation attempt failed at least once. So, we must sleep
7026 * and let some progress happen before we try again.
7028 * This function will sleep at least once waiting for new free space to
7029 * show up, and then it will check the block group free space numbers
7030 * for our min num_bytes. Another option is to have it go ahead
7031 * and look in the rbtree for a free extent of a given size, but this
7034 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7035 * any of the information in this block group.
7037 static noinline void
7038 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7041 struct btrfs_caching_control *caching_ctl;
7043 caching_ctl = get_caching_control(cache);
7047 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7048 (cache->free_space_ctl->free_space >= num_bytes));
7050 put_caching_control(caching_ctl);
7054 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7056 struct btrfs_caching_control *caching_ctl;
7059 caching_ctl = get_caching_control(cache);
7061 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7063 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7064 if (cache->cached == BTRFS_CACHE_ERROR)
7066 put_caching_control(caching_ctl);
7070 int __get_raid_index(u64 flags)
7072 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7073 return BTRFS_RAID_RAID10;
7074 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7075 return BTRFS_RAID_RAID1;
7076 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7077 return BTRFS_RAID_DUP;
7078 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7079 return BTRFS_RAID_RAID0;
7080 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7081 return BTRFS_RAID_RAID5;
7082 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7083 return BTRFS_RAID_RAID6;
7085 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7088 int get_block_group_index(struct btrfs_block_group_cache *cache)
7090 return __get_raid_index(cache->flags);
7093 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7094 [BTRFS_RAID_RAID10] = "raid10",
7095 [BTRFS_RAID_RAID1] = "raid1",
7096 [BTRFS_RAID_DUP] = "dup",
7097 [BTRFS_RAID_RAID0] = "raid0",
7098 [BTRFS_RAID_SINGLE] = "single",
7099 [BTRFS_RAID_RAID5] = "raid5",
7100 [BTRFS_RAID_RAID6] = "raid6",
7103 static const char *get_raid_name(enum btrfs_raid_types type)
7105 if (type >= BTRFS_NR_RAID_TYPES)
7108 return btrfs_raid_type_names[type];
7111 enum btrfs_loop_type {
7112 LOOP_CACHING_NOWAIT = 0,
7113 LOOP_CACHING_WAIT = 1,
7114 LOOP_ALLOC_CHUNK = 2,
7115 LOOP_NO_EMPTY_SIZE = 3,
7119 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7123 down_read(&cache->data_rwsem);
7127 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7130 btrfs_get_block_group(cache);
7132 down_read(&cache->data_rwsem);
7135 static struct btrfs_block_group_cache *
7136 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7137 struct btrfs_free_cluster *cluster,
7140 struct btrfs_block_group_cache *used_bg = NULL;
7142 spin_lock(&cluster->refill_lock);
7144 used_bg = cluster->block_group;
7148 if (used_bg == block_group)
7151 btrfs_get_block_group(used_bg);
7156 if (down_read_trylock(&used_bg->data_rwsem))
7159 spin_unlock(&cluster->refill_lock);
7161 down_read(&used_bg->data_rwsem);
7163 spin_lock(&cluster->refill_lock);
7164 if (used_bg == cluster->block_group)
7167 up_read(&used_bg->data_rwsem);
7168 btrfs_put_block_group(used_bg);
7173 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7177 up_read(&cache->data_rwsem);
7178 btrfs_put_block_group(cache);
7182 * walks the btree of allocated extents and find a hole of a given size.
7183 * The key ins is changed to record the hole:
7184 * ins->objectid == start position
7185 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7186 * ins->offset == the size of the hole.
7187 * Any available blocks before search_start are skipped.
7189 * If there is no suitable free space, we will record the max size of
7190 * the free space extent currently.
7192 static noinline int find_free_extent(struct btrfs_root *orig_root,
7193 u64 num_bytes, u64 empty_size,
7194 u64 hint_byte, struct btrfs_key *ins,
7195 u64 flags, int delalloc)
7198 struct btrfs_root *root = orig_root->fs_info->extent_root;
7199 struct btrfs_free_cluster *last_ptr = NULL;
7200 struct btrfs_block_group_cache *block_group = NULL;
7201 u64 search_start = 0;
7202 u64 max_extent_size = 0;
7203 u64 empty_cluster = 0;
7204 struct btrfs_space_info *space_info;
7206 int index = __get_raid_index(flags);
7207 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7208 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7209 bool failed_cluster_refill = false;
7210 bool failed_alloc = false;
7211 bool use_cluster = true;
7212 bool have_caching_bg = false;
7213 bool orig_have_caching_bg = false;
7214 bool full_search = false;
7216 WARN_ON(num_bytes < root->sectorsize);
7217 ins->type = BTRFS_EXTENT_ITEM_KEY;
7221 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7223 space_info = __find_space_info(root->fs_info, flags);
7225 btrfs_err(root->fs_info, "No space info for %llu", flags);
7230 * If our free space is heavily fragmented we may not be able to make
7231 * big contiguous allocations, so instead of doing the expensive search
7232 * for free space, simply return ENOSPC with our max_extent_size so we
7233 * can go ahead and search for a more manageable chunk.
7235 * If our max_extent_size is large enough for our allocation simply
7236 * disable clustering since we will likely not be able to find enough
7237 * space to create a cluster and induce latency trying.
7239 if (unlikely(space_info->max_extent_size)) {
7240 spin_lock(&space_info->lock);
7241 if (space_info->max_extent_size &&
7242 num_bytes > space_info->max_extent_size) {
7243 ins->offset = space_info->max_extent_size;
7244 spin_unlock(&space_info->lock);
7246 } else if (space_info->max_extent_size) {
7247 use_cluster = false;
7249 spin_unlock(&space_info->lock);
7252 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7254 spin_lock(&last_ptr->lock);
7255 if (last_ptr->block_group)
7256 hint_byte = last_ptr->window_start;
7257 if (last_ptr->fragmented) {
7259 * We still set window_start so we can keep track of the
7260 * last place we found an allocation to try and save
7263 hint_byte = last_ptr->window_start;
7264 use_cluster = false;
7266 spin_unlock(&last_ptr->lock);
7269 search_start = max(search_start, first_logical_byte(root, 0));
7270 search_start = max(search_start, hint_byte);
7271 if (search_start == hint_byte) {
7272 block_group = btrfs_lookup_block_group(root->fs_info,
7275 * we don't want to use the block group if it doesn't match our
7276 * allocation bits, or if its not cached.
7278 * However if we are re-searching with an ideal block group
7279 * picked out then we don't care that the block group is cached.
7281 if (block_group && block_group_bits(block_group, flags) &&
7282 block_group->cached != BTRFS_CACHE_NO) {
7283 down_read(&space_info->groups_sem);
7284 if (list_empty(&block_group->list) ||
7287 * someone is removing this block group,
7288 * we can't jump into the have_block_group
7289 * target because our list pointers are not
7292 btrfs_put_block_group(block_group);
7293 up_read(&space_info->groups_sem);
7295 index = get_block_group_index(block_group);
7296 btrfs_lock_block_group(block_group, delalloc);
7297 goto have_block_group;
7299 } else if (block_group) {
7300 btrfs_put_block_group(block_group);
7304 have_caching_bg = false;
7305 if (index == 0 || index == __get_raid_index(flags))
7307 down_read(&space_info->groups_sem);
7308 list_for_each_entry(block_group, &space_info->block_groups[index],
7313 btrfs_grab_block_group(block_group, delalloc);
7314 search_start = block_group->key.objectid;
7317 * this can happen if we end up cycling through all the
7318 * raid types, but we want to make sure we only allocate
7319 * for the proper type.
7321 if (!block_group_bits(block_group, flags)) {
7322 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7323 BTRFS_BLOCK_GROUP_RAID1 |
7324 BTRFS_BLOCK_GROUP_RAID5 |
7325 BTRFS_BLOCK_GROUP_RAID6 |
7326 BTRFS_BLOCK_GROUP_RAID10;
7329 * if they asked for extra copies and this block group
7330 * doesn't provide them, bail. This does allow us to
7331 * fill raid0 from raid1.
7333 if ((flags & extra) && !(block_group->flags & extra))
7338 cached = block_group_cache_done(block_group);
7339 if (unlikely(!cached)) {
7340 have_caching_bg = true;
7341 ret = cache_block_group(block_group, 0);
7346 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7348 if (unlikely(block_group->ro))
7352 * Ok we want to try and use the cluster allocator, so
7355 if (last_ptr && use_cluster) {
7356 struct btrfs_block_group_cache *used_block_group;
7357 unsigned long aligned_cluster;
7359 * the refill lock keeps out other
7360 * people trying to start a new cluster
7362 used_block_group = btrfs_lock_cluster(block_group,
7365 if (!used_block_group)
7366 goto refill_cluster;
7368 if (used_block_group != block_group &&
7369 (used_block_group->ro ||
7370 !block_group_bits(used_block_group, flags)))
7371 goto release_cluster;
7373 offset = btrfs_alloc_from_cluster(used_block_group,
7376 used_block_group->key.objectid,
7379 /* we have a block, we're done */
7380 spin_unlock(&last_ptr->refill_lock);
7381 trace_btrfs_reserve_extent_cluster(root,
7383 search_start, num_bytes);
7384 if (used_block_group != block_group) {
7385 btrfs_release_block_group(block_group,
7387 block_group = used_block_group;
7392 WARN_ON(last_ptr->block_group != used_block_group);
7394 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7395 * set up a new clusters, so lets just skip it
7396 * and let the allocator find whatever block
7397 * it can find. If we reach this point, we
7398 * will have tried the cluster allocator
7399 * plenty of times and not have found
7400 * anything, so we are likely way too
7401 * fragmented for the clustering stuff to find
7404 * However, if the cluster is taken from the
7405 * current block group, release the cluster
7406 * first, so that we stand a better chance of
7407 * succeeding in the unclustered
7409 if (loop >= LOOP_NO_EMPTY_SIZE &&
7410 used_block_group != block_group) {
7411 spin_unlock(&last_ptr->refill_lock);
7412 btrfs_release_block_group(used_block_group,
7414 goto unclustered_alloc;
7418 * this cluster didn't work out, free it and
7421 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7423 if (used_block_group != block_group)
7424 btrfs_release_block_group(used_block_group,
7427 if (loop >= LOOP_NO_EMPTY_SIZE) {
7428 spin_unlock(&last_ptr->refill_lock);
7429 goto unclustered_alloc;
7432 aligned_cluster = max_t(unsigned long,
7433 empty_cluster + empty_size,
7434 block_group->full_stripe_len);
7436 /* allocate a cluster in this block group */
7437 ret = btrfs_find_space_cluster(root, block_group,
7438 last_ptr, search_start,
7443 * now pull our allocation out of this
7446 offset = btrfs_alloc_from_cluster(block_group,
7452 /* we found one, proceed */
7453 spin_unlock(&last_ptr->refill_lock);
7454 trace_btrfs_reserve_extent_cluster(root,
7455 block_group, search_start,
7459 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7460 && !failed_cluster_refill) {
7461 spin_unlock(&last_ptr->refill_lock);
7463 failed_cluster_refill = true;
7464 wait_block_group_cache_progress(block_group,
7465 num_bytes + empty_cluster + empty_size);
7466 goto have_block_group;
7470 * at this point we either didn't find a cluster
7471 * or we weren't able to allocate a block from our
7472 * cluster. Free the cluster we've been trying
7473 * to use, and go to the next block group
7475 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7476 spin_unlock(&last_ptr->refill_lock);
7482 * We are doing an unclustered alloc, set the fragmented flag so
7483 * we don't bother trying to setup a cluster again until we get
7486 if (unlikely(last_ptr)) {
7487 spin_lock(&last_ptr->lock);
7488 last_ptr->fragmented = 1;
7489 spin_unlock(&last_ptr->lock);
7491 spin_lock(&block_group->free_space_ctl->tree_lock);
7493 block_group->free_space_ctl->free_space <
7494 num_bytes + empty_cluster + empty_size) {
7495 if (block_group->free_space_ctl->free_space >
7498 block_group->free_space_ctl->free_space;
7499 spin_unlock(&block_group->free_space_ctl->tree_lock);
7502 spin_unlock(&block_group->free_space_ctl->tree_lock);
7504 offset = btrfs_find_space_for_alloc(block_group, search_start,
7505 num_bytes, empty_size,
7508 * If we didn't find a chunk, and we haven't failed on this
7509 * block group before, and this block group is in the middle of
7510 * caching and we are ok with waiting, then go ahead and wait
7511 * for progress to be made, and set failed_alloc to true.
7513 * If failed_alloc is true then we've already waited on this
7514 * block group once and should move on to the next block group.
7516 if (!offset && !failed_alloc && !cached &&
7517 loop > LOOP_CACHING_NOWAIT) {
7518 wait_block_group_cache_progress(block_group,
7519 num_bytes + empty_size);
7520 failed_alloc = true;
7521 goto have_block_group;
7522 } else if (!offset) {
7526 search_start = ALIGN(offset, root->stripesize);
7528 /* move on to the next group */
7529 if (search_start + num_bytes >
7530 block_group->key.objectid + block_group->key.offset) {
7531 btrfs_add_free_space(block_group, offset, num_bytes);
7535 if (offset < search_start)
7536 btrfs_add_free_space(block_group, offset,
7537 search_start - offset);
7538 BUG_ON(offset > search_start);
7540 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7541 alloc_type, delalloc);
7542 if (ret == -EAGAIN) {
7543 btrfs_add_free_space(block_group, offset, num_bytes);
7546 btrfs_inc_block_group_reservations(block_group);
7548 /* we are all good, lets return */
7549 ins->objectid = search_start;
7550 ins->offset = num_bytes;
7552 trace_btrfs_reserve_extent(orig_root, block_group,
7553 search_start, num_bytes);
7554 btrfs_release_block_group(block_group, delalloc);
7557 failed_cluster_refill = false;
7558 failed_alloc = false;
7559 BUG_ON(index != get_block_group_index(block_group));
7560 btrfs_release_block_group(block_group, delalloc);
7562 up_read(&space_info->groups_sem);
7564 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7565 && !orig_have_caching_bg)
7566 orig_have_caching_bg = true;
7568 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7571 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7575 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7576 * caching kthreads as we move along
7577 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7578 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7579 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7582 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7584 if (loop == LOOP_CACHING_NOWAIT) {
7586 * We want to skip the LOOP_CACHING_WAIT step if we
7587 * don't have any uncached bgs and we've already done a
7588 * full search through.
7590 if (orig_have_caching_bg || !full_search)
7591 loop = LOOP_CACHING_WAIT;
7593 loop = LOOP_ALLOC_CHUNK;
7598 if (loop == LOOP_ALLOC_CHUNK) {
7599 struct btrfs_trans_handle *trans;
7602 trans = current->journal_info;
7606 trans = btrfs_join_transaction(root);
7608 if (IS_ERR(trans)) {
7609 ret = PTR_ERR(trans);
7613 ret = do_chunk_alloc(trans, root, flags,
7617 * If we can't allocate a new chunk we've already looped
7618 * through at least once, move on to the NO_EMPTY_SIZE
7622 loop = LOOP_NO_EMPTY_SIZE;
7625 * Do not bail out on ENOSPC since we
7626 * can do more things.
7628 if (ret < 0 && ret != -ENOSPC)
7629 btrfs_abort_transaction(trans,
7634 btrfs_end_transaction(trans, root);
7639 if (loop == LOOP_NO_EMPTY_SIZE) {
7641 * Don't loop again if we already have no empty_size and
7644 if (empty_size == 0 &&
7645 empty_cluster == 0) {
7654 } else if (!ins->objectid) {
7656 } else if (ins->objectid) {
7657 if (!use_cluster && last_ptr) {
7658 spin_lock(&last_ptr->lock);
7659 last_ptr->window_start = ins->objectid;
7660 spin_unlock(&last_ptr->lock);
7665 if (ret == -ENOSPC) {
7666 spin_lock(&space_info->lock);
7667 space_info->max_extent_size = max_extent_size;
7668 spin_unlock(&space_info->lock);
7669 ins->offset = max_extent_size;
7674 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7675 int dump_block_groups)
7677 struct btrfs_block_group_cache *cache;
7680 spin_lock(&info->lock);
7681 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7683 info->total_bytes - info->bytes_used - info->bytes_pinned -
7684 info->bytes_reserved - info->bytes_readonly,
7685 (info->full) ? "" : "not ");
7686 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7687 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7688 info->total_bytes, info->bytes_used, info->bytes_pinned,
7689 info->bytes_reserved, info->bytes_may_use,
7690 info->bytes_readonly);
7691 spin_unlock(&info->lock);
7693 if (!dump_block_groups)
7696 down_read(&info->groups_sem);
7698 list_for_each_entry(cache, &info->block_groups[index], list) {
7699 spin_lock(&cache->lock);
7700 printk(KERN_INFO "BTRFS: "
7701 "block group %llu has %llu bytes, "
7702 "%llu used %llu pinned %llu reserved %s\n",
7703 cache->key.objectid, cache->key.offset,
7704 btrfs_block_group_used(&cache->item), cache->pinned,
7705 cache->reserved, cache->ro ? "[readonly]" : "");
7706 btrfs_dump_free_space(cache, bytes);
7707 spin_unlock(&cache->lock);
7709 if (++index < BTRFS_NR_RAID_TYPES)
7711 up_read(&info->groups_sem);
7714 int btrfs_reserve_extent(struct btrfs_root *root,
7715 u64 num_bytes, u64 min_alloc_size,
7716 u64 empty_size, u64 hint_byte,
7717 struct btrfs_key *ins, int is_data, int delalloc)
7719 bool final_tried = num_bytes == min_alloc_size;
7723 flags = btrfs_get_alloc_profile(root, is_data);
7725 WARN_ON(num_bytes < root->sectorsize);
7726 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7728 if (!ret && !is_data) {
7729 btrfs_dec_block_group_reservations(root->fs_info,
7731 } else if (ret == -ENOSPC) {
7732 if (!final_tried && ins->offset) {
7733 num_bytes = min(num_bytes >> 1, ins->offset);
7734 num_bytes = round_down(num_bytes, root->sectorsize);
7735 num_bytes = max(num_bytes, min_alloc_size);
7736 if (num_bytes == min_alloc_size)
7739 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7740 struct btrfs_space_info *sinfo;
7742 sinfo = __find_space_info(root->fs_info, flags);
7743 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7746 dump_space_info(sinfo, num_bytes, 1);
7753 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7755 int pin, int delalloc)
7757 struct btrfs_block_group_cache *cache;
7760 cache = btrfs_lookup_block_group(root->fs_info, start);
7762 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7768 pin_down_extent(root, cache, start, len, 1);
7770 if (btrfs_test_opt(root, DISCARD))
7771 ret = btrfs_discard_extent(root, start, len, NULL);
7772 btrfs_add_free_space(cache, start, len);
7773 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7776 btrfs_put_block_group(cache);
7778 trace_btrfs_reserved_extent_free(root, start, len);
7783 int btrfs_free_reserved_extent(struct btrfs_root *root,
7784 u64 start, u64 len, int delalloc)
7786 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7789 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7792 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7795 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7796 struct btrfs_root *root,
7797 u64 parent, u64 root_objectid,
7798 u64 flags, u64 owner, u64 offset,
7799 struct btrfs_key *ins, int ref_mod)
7802 struct btrfs_fs_info *fs_info = root->fs_info;
7803 struct btrfs_extent_item *extent_item;
7804 struct btrfs_extent_inline_ref *iref;
7805 struct btrfs_path *path;
7806 struct extent_buffer *leaf;
7811 type = BTRFS_SHARED_DATA_REF_KEY;
7813 type = BTRFS_EXTENT_DATA_REF_KEY;
7815 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7817 path = btrfs_alloc_path();
7821 path->leave_spinning = 1;
7822 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7825 btrfs_free_path(path);
7829 leaf = path->nodes[0];
7830 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7831 struct btrfs_extent_item);
7832 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7833 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7834 btrfs_set_extent_flags(leaf, extent_item,
7835 flags | BTRFS_EXTENT_FLAG_DATA);
7837 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7838 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7840 struct btrfs_shared_data_ref *ref;
7841 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7842 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7843 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7845 struct btrfs_extent_data_ref *ref;
7846 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7847 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7848 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7849 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7850 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7853 btrfs_mark_buffer_dirty(path->nodes[0]);
7854 btrfs_free_path(path);
7856 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7861 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7862 if (ret) { /* -ENOENT, logic error */
7863 btrfs_err(fs_info, "update block group failed for %llu %llu",
7864 ins->objectid, ins->offset);
7867 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7871 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7872 struct btrfs_root *root,
7873 u64 parent, u64 root_objectid,
7874 u64 flags, struct btrfs_disk_key *key,
7875 int level, struct btrfs_key *ins)
7878 struct btrfs_fs_info *fs_info = root->fs_info;
7879 struct btrfs_extent_item *extent_item;
7880 struct btrfs_tree_block_info *block_info;
7881 struct btrfs_extent_inline_ref *iref;
7882 struct btrfs_path *path;
7883 struct extent_buffer *leaf;
7884 u32 size = sizeof(*extent_item) + sizeof(*iref);
7885 u64 num_bytes = ins->offset;
7886 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7889 if (!skinny_metadata)
7890 size += sizeof(*block_info);
7892 path = btrfs_alloc_path();
7894 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7899 path->leave_spinning = 1;
7900 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7903 btrfs_free_path(path);
7904 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7909 leaf = path->nodes[0];
7910 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7911 struct btrfs_extent_item);
7912 btrfs_set_extent_refs(leaf, extent_item, 1);
7913 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7914 btrfs_set_extent_flags(leaf, extent_item,
7915 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7917 if (skinny_metadata) {
7918 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7919 num_bytes = root->nodesize;
7921 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7922 btrfs_set_tree_block_key(leaf, block_info, key);
7923 btrfs_set_tree_block_level(leaf, block_info, level);
7924 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7928 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7929 btrfs_set_extent_inline_ref_type(leaf, iref,
7930 BTRFS_SHARED_BLOCK_REF_KEY);
7931 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7933 btrfs_set_extent_inline_ref_type(leaf, iref,
7934 BTRFS_TREE_BLOCK_REF_KEY);
7935 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7938 btrfs_mark_buffer_dirty(leaf);
7939 btrfs_free_path(path);
7941 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7946 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7948 if (ret) { /* -ENOENT, logic error */
7949 btrfs_err(fs_info, "update block group failed for %llu %llu",
7950 ins->objectid, ins->offset);
7954 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7958 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7959 struct btrfs_root *root,
7960 u64 root_objectid, u64 owner,
7961 u64 offset, u64 ram_bytes,
7962 struct btrfs_key *ins)
7966 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7968 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7970 root_objectid, owner, offset,
7971 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7977 * this is used by the tree logging recovery code. It records that
7978 * an extent has been allocated and makes sure to clear the free
7979 * space cache bits as well
7981 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7982 struct btrfs_root *root,
7983 u64 root_objectid, u64 owner, u64 offset,
7984 struct btrfs_key *ins)
7987 struct btrfs_block_group_cache *block_group;
7990 * Mixed block groups will exclude before processing the log so we only
7991 * need to do the exclude dance if this fs isn't mixed.
7993 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7994 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7999 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8003 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
8004 RESERVE_ALLOC_NO_ACCOUNT, 0);
8005 BUG_ON(ret); /* logic error */
8006 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8007 0, owner, offset, ins, 1);
8008 btrfs_put_block_group(block_group);
8012 static struct extent_buffer *
8013 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8014 u64 bytenr, int level)
8016 struct extent_buffer *buf;
8018 buf = btrfs_find_create_tree_block(root, bytenr);
8022 btrfs_set_header_generation(buf, trans->transid);
8023 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8024 btrfs_tree_lock(buf);
8025 clean_tree_block(trans, root->fs_info, buf);
8026 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8028 btrfs_set_lock_blocking(buf);
8029 set_extent_buffer_uptodate(buf);
8031 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8032 buf->log_index = root->log_transid % 2;
8034 * we allow two log transactions at a time, use different
8035 * EXENT bit to differentiate dirty pages.
8037 if (buf->log_index == 0)
8038 set_extent_dirty(&root->dirty_log_pages, buf->start,
8039 buf->start + buf->len - 1, GFP_NOFS);
8041 set_extent_new(&root->dirty_log_pages, buf->start,
8042 buf->start + buf->len - 1);
8044 buf->log_index = -1;
8045 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8046 buf->start + buf->len - 1, GFP_NOFS);
8048 trans->dirty = true;
8049 /* this returns a buffer locked for blocking */
8053 static struct btrfs_block_rsv *
8054 use_block_rsv(struct btrfs_trans_handle *trans,
8055 struct btrfs_root *root, u32 blocksize)
8057 struct btrfs_block_rsv *block_rsv;
8058 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8060 bool global_updated = false;
8062 block_rsv = get_block_rsv(trans, root);
8064 if (unlikely(block_rsv->size == 0))
8067 ret = block_rsv_use_bytes(block_rsv, blocksize);
8071 if (block_rsv->failfast)
8072 return ERR_PTR(ret);
8074 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8075 global_updated = true;
8076 update_global_block_rsv(root->fs_info);
8080 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8081 static DEFINE_RATELIMIT_STATE(_rs,
8082 DEFAULT_RATELIMIT_INTERVAL * 10,
8083 /*DEFAULT_RATELIMIT_BURST*/ 1);
8084 if (__ratelimit(&_rs))
8086 "BTRFS: block rsv returned %d\n", ret);
8089 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8090 BTRFS_RESERVE_NO_FLUSH);
8094 * If we couldn't reserve metadata bytes try and use some from
8095 * the global reserve if its space type is the same as the global
8098 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8099 block_rsv->space_info == global_rsv->space_info) {
8100 ret = block_rsv_use_bytes(global_rsv, blocksize);
8104 return ERR_PTR(ret);
8107 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8108 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8110 block_rsv_add_bytes(block_rsv, blocksize, 0);
8111 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8115 * finds a free extent and does all the dirty work required for allocation
8116 * returns the tree buffer or an ERR_PTR on error.
8118 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8119 struct btrfs_root *root,
8120 u64 parent, u64 root_objectid,
8121 struct btrfs_disk_key *key, int level,
8122 u64 hint, u64 empty_size)
8124 struct btrfs_key ins;
8125 struct btrfs_block_rsv *block_rsv;
8126 struct extent_buffer *buf;
8127 struct btrfs_delayed_extent_op *extent_op;
8130 u32 blocksize = root->nodesize;
8131 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8134 if (btrfs_test_is_dummy_root(root)) {
8135 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8138 root->alloc_bytenr += blocksize;
8142 block_rsv = use_block_rsv(trans, root, blocksize);
8143 if (IS_ERR(block_rsv))
8144 return ERR_CAST(block_rsv);
8146 ret = btrfs_reserve_extent(root, blocksize, blocksize,
8147 empty_size, hint, &ins, 0, 0);
8151 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8154 goto out_free_reserved;
8157 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8159 parent = ins.objectid;
8160 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8164 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8165 extent_op = btrfs_alloc_delayed_extent_op();
8171 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8173 memset(&extent_op->key, 0, sizeof(extent_op->key));
8174 extent_op->flags_to_set = flags;
8175 extent_op->update_key = skinny_metadata ? false : true;
8176 extent_op->update_flags = true;
8177 extent_op->is_data = false;
8178 extent_op->level = level;
8180 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8181 ins.objectid, ins.offset,
8182 parent, root_objectid, level,
8183 BTRFS_ADD_DELAYED_EXTENT,
8186 goto out_free_delayed;
8191 btrfs_free_delayed_extent_op(extent_op);
8193 free_extent_buffer(buf);
8195 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8197 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8198 return ERR_PTR(ret);
8201 struct walk_control {
8202 u64 refs[BTRFS_MAX_LEVEL];
8203 u64 flags[BTRFS_MAX_LEVEL];
8204 struct btrfs_key update_progress;
8215 #define DROP_REFERENCE 1
8216 #define UPDATE_BACKREF 2
8218 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8219 struct btrfs_root *root,
8220 struct walk_control *wc,
8221 struct btrfs_path *path)
8229 struct btrfs_key key;
8230 struct extent_buffer *eb;
8235 if (path->slots[wc->level] < wc->reada_slot) {
8236 wc->reada_count = wc->reada_count * 2 / 3;
8237 wc->reada_count = max(wc->reada_count, 2);
8239 wc->reada_count = wc->reada_count * 3 / 2;
8240 wc->reada_count = min_t(int, wc->reada_count,
8241 BTRFS_NODEPTRS_PER_BLOCK(root));
8244 eb = path->nodes[wc->level];
8245 nritems = btrfs_header_nritems(eb);
8246 blocksize = root->nodesize;
8248 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8249 if (nread >= wc->reada_count)
8253 bytenr = btrfs_node_blockptr(eb, slot);
8254 generation = btrfs_node_ptr_generation(eb, slot);
8256 if (slot == path->slots[wc->level])
8259 if (wc->stage == UPDATE_BACKREF &&
8260 generation <= root->root_key.offset)
8263 /* We don't lock the tree block, it's OK to be racy here */
8264 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8265 wc->level - 1, 1, &refs,
8267 /* We don't care about errors in readahead. */
8272 if (wc->stage == DROP_REFERENCE) {
8276 if (wc->level == 1 &&
8277 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8279 if (!wc->update_ref ||
8280 generation <= root->root_key.offset)
8282 btrfs_node_key_to_cpu(eb, &key, slot);
8283 ret = btrfs_comp_cpu_keys(&key,
8284 &wc->update_progress);
8288 if (wc->level == 1 &&
8289 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8293 readahead_tree_block(root, bytenr);
8296 wc->reada_slot = slot;
8300 * These may not be seen by the usual inc/dec ref code so we have to
8303 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8304 struct btrfs_root *root, u64 bytenr,
8307 struct btrfs_qgroup_extent_record *qrecord;
8308 struct btrfs_delayed_ref_root *delayed_refs;
8310 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8314 qrecord->bytenr = bytenr;
8315 qrecord->num_bytes = num_bytes;
8316 qrecord->old_roots = NULL;
8318 delayed_refs = &trans->transaction->delayed_refs;
8319 spin_lock(&delayed_refs->lock);
8320 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8322 spin_unlock(&delayed_refs->lock);
8327 static int account_leaf_items(struct btrfs_trans_handle *trans,
8328 struct btrfs_root *root,
8329 struct extent_buffer *eb)
8331 int nr = btrfs_header_nritems(eb);
8332 int i, extent_type, ret;
8333 struct btrfs_key key;
8334 struct btrfs_file_extent_item *fi;
8335 u64 bytenr, num_bytes;
8337 /* We can be called directly from walk_up_proc() */
8338 if (!root->fs_info->quota_enabled)
8341 for (i = 0; i < nr; i++) {
8342 btrfs_item_key_to_cpu(eb, &key, i);
8344 if (key.type != BTRFS_EXTENT_DATA_KEY)
8347 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8348 /* filter out non qgroup-accountable extents */
8349 extent_type = btrfs_file_extent_type(eb, fi);
8351 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8354 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8358 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8360 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8368 * Walk up the tree from the bottom, freeing leaves and any interior
8369 * nodes which have had all slots visited. If a node (leaf or
8370 * interior) is freed, the node above it will have it's slot
8371 * incremented. The root node will never be freed.
8373 * At the end of this function, we should have a path which has all
8374 * slots incremented to the next position for a search. If we need to
8375 * read a new node it will be NULL and the node above it will have the
8376 * correct slot selected for a later read.
8378 * If we increment the root nodes slot counter past the number of
8379 * elements, 1 is returned to signal completion of the search.
8381 static int adjust_slots_upwards(struct btrfs_root *root,
8382 struct btrfs_path *path, int root_level)
8386 struct extent_buffer *eb;
8388 if (root_level == 0)
8391 while (level <= root_level) {
8392 eb = path->nodes[level];
8393 nr = btrfs_header_nritems(eb);
8394 path->slots[level]++;
8395 slot = path->slots[level];
8396 if (slot >= nr || level == 0) {
8398 * Don't free the root - we will detect this
8399 * condition after our loop and return a
8400 * positive value for caller to stop walking the tree.
8402 if (level != root_level) {
8403 btrfs_tree_unlock_rw(eb, path->locks[level]);
8404 path->locks[level] = 0;
8406 free_extent_buffer(eb);
8407 path->nodes[level] = NULL;
8408 path->slots[level] = 0;
8412 * We have a valid slot to walk back down
8413 * from. Stop here so caller can process these
8422 eb = path->nodes[root_level];
8423 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8430 * root_eb is the subtree root and is locked before this function is called.
8432 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8433 struct btrfs_root *root,
8434 struct extent_buffer *root_eb,
8440 struct extent_buffer *eb = root_eb;
8441 struct btrfs_path *path = NULL;
8443 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8444 BUG_ON(root_eb == NULL);
8446 if (!root->fs_info->quota_enabled)
8449 if (!extent_buffer_uptodate(root_eb)) {
8450 ret = btrfs_read_buffer(root_eb, root_gen);
8455 if (root_level == 0) {
8456 ret = account_leaf_items(trans, root, root_eb);
8460 path = btrfs_alloc_path();
8465 * Walk down the tree. Missing extent blocks are filled in as
8466 * we go. Metadata is accounted every time we read a new
8469 * When we reach a leaf, we account for file extent items in it,
8470 * walk back up the tree (adjusting slot pointers as we go)
8471 * and restart the search process.
8473 extent_buffer_get(root_eb); /* For path */
8474 path->nodes[root_level] = root_eb;
8475 path->slots[root_level] = 0;
8476 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8479 while (level >= 0) {
8480 if (path->nodes[level] == NULL) {
8485 /* We need to get child blockptr/gen from
8486 * parent before we can read it. */
8487 eb = path->nodes[level + 1];
8488 parent_slot = path->slots[level + 1];
8489 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8490 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8492 eb = read_tree_block(root, child_bytenr, child_gen);
8496 } else if (!extent_buffer_uptodate(eb)) {
8497 free_extent_buffer(eb);
8502 path->nodes[level] = eb;
8503 path->slots[level] = 0;
8505 btrfs_tree_read_lock(eb);
8506 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8507 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8509 ret = record_one_subtree_extent(trans, root, child_bytenr,
8516 ret = account_leaf_items(trans, root, path->nodes[level]);
8520 /* Nonzero return here means we completed our search */
8521 ret = adjust_slots_upwards(root, path, root_level);
8525 /* Restart search with new slots */
8534 btrfs_free_path(path);
8540 * helper to process tree block while walking down the tree.
8542 * when wc->stage == UPDATE_BACKREF, this function updates
8543 * back refs for pointers in the block.
8545 * NOTE: return value 1 means we should stop walking down.
8547 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8548 struct btrfs_root *root,
8549 struct btrfs_path *path,
8550 struct walk_control *wc, int lookup_info)
8552 int level = wc->level;
8553 struct extent_buffer *eb = path->nodes[level];
8554 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8557 if (wc->stage == UPDATE_BACKREF &&
8558 btrfs_header_owner(eb) != root->root_key.objectid)
8562 * when reference count of tree block is 1, it won't increase
8563 * again. once full backref flag is set, we never clear it.
8566 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8567 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8568 BUG_ON(!path->locks[level]);
8569 ret = btrfs_lookup_extent_info(trans, root,
8570 eb->start, level, 1,
8573 BUG_ON(ret == -ENOMEM);
8576 BUG_ON(wc->refs[level] == 0);
8579 if (wc->stage == DROP_REFERENCE) {
8580 if (wc->refs[level] > 1)
8583 if (path->locks[level] && !wc->keep_locks) {
8584 btrfs_tree_unlock_rw(eb, path->locks[level]);
8585 path->locks[level] = 0;
8590 /* wc->stage == UPDATE_BACKREF */
8591 if (!(wc->flags[level] & flag)) {
8592 BUG_ON(!path->locks[level]);
8593 ret = btrfs_inc_ref(trans, root, eb, 1);
8594 BUG_ON(ret); /* -ENOMEM */
8595 ret = btrfs_dec_ref(trans, root, eb, 0);
8596 BUG_ON(ret); /* -ENOMEM */
8597 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8599 btrfs_header_level(eb), 0);
8600 BUG_ON(ret); /* -ENOMEM */
8601 wc->flags[level] |= flag;
8605 * the block is shared by multiple trees, so it's not good to
8606 * keep the tree lock
8608 if (path->locks[level] && level > 0) {
8609 btrfs_tree_unlock_rw(eb, path->locks[level]);
8610 path->locks[level] = 0;
8616 * helper to process tree block pointer.
8618 * when wc->stage == DROP_REFERENCE, this function checks
8619 * reference count of the block pointed to. if the block
8620 * is shared and we need update back refs for the subtree
8621 * rooted at the block, this function changes wc->stage to
8622 * UPDATE_BACKREF. if the block is shared and there is no
8623 * need to update back, this function drops the reference
8626 * NOTE: return value 1 means we should stop walking down.
8628 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8629 struct btrfs_root *root,
8630 struct btrfs_path *path,
8631 struct walk_control *wc, int *lookup_info)
8637 struct btrfs_key key;
8638 struct extent_buffer *next;
8639 int level = wc->level;
8642 bool need_account = false;
8644 generation = btrfs_node_ptr_generation(path->nodes[level],
8645 path->slots[level]);
8647 * if the lower level block was created before the snapshot
8648 * was created, we know there is no need to update back refs
8651 if (wc->stage == UPDATE_BACKREF &&
8652 generation <= root->root_key.offset) {
8657 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8658 blocksize = root->nodesize;
8660 next = btrfs_find_tree_block(root->fs_info, bytenr);
8662 next = btrfs_find_create_tree_block(root, bytenr);
8664 return PTR_ERR(next);
8666 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8670 btrfs_tree_lock(next);
8671 btrfs_set_lock_blocking(next);
8673 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8674 &wc->refs[level - 1],
8675 &wc->flags[level - 1]);
8677 btrfs_tree_unlock(next);
8681 if (unlikely(wc->refs[level - 1] == 0)) {
8682 btrfs_err(root->fs_info, "Missing references.");
8687 if (wc->stage == DROP_REFERENCE) {
8688 if (wc->refs[level - 1] > 1) {
8689 need_account = true;
8691 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8694 if (!wc->update_ref ||
8695 generation <= root->root_key.offset)
8698 btrfs_node_key_to_cpu(path->nodes[level], &key,
8699 path->slots[level]);
8700 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8704 wc->stage = UPDATE_BACKREF;
8705 wc->shared_level = level - 1;
8709 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8713 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8714 btrfs_tree_unlock(next);
8715 free_extent_buffer(next);
8721 if (reada && level == 1)
8722 reada_walk_down(trans, root, wc, path);
8723 next = read_tree_block(root, bytenr, generation);
8725 return PTR_ERR(next);
8726 } else if (!extent_buffer_uptodate(next)) {
8727 free_extent_buffer(next);
8730 btrfs_tree_lock(next);
8731 btrfs_set_lock_blocking(next);
8735 BUG_ON(level != btrfs_header_level(next));
8736 path->nodes[level] = next;
8737 path->slots[level] = 0;
8738 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8744 wc->refs[level - 1] = 0;
8745 wc->flags[level - 1] = 0;
8746 if (wc->stage == DROP_REFERENCE) {
8747 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8748 parent = path->nodes[level]->start;
8750 BUG_ON(root->root_key.objectid !=
8751 btrfs_header_owner(path->nodes[level]));
8756 ret = account_shared_subtree(trans, root, next,
8757 generation, level - 1);
8759 btrfs_err_rl(root->fs_info,
8761 "%d accounting shared subtree. Quota "
8762 "is out of sync, rescan required.",
8766 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8767 root->root_key.objectid, level - 1, 0);
8768 BUG_ON(ret); /* -ENOMEM */
8770 btrfs_tree_unlock(next);
8771 free_extent_buffer(next);
8777 * helper to process tree block while walking up the tree.
8779 * when wc->stage == DROP_REFERENCE, this function drops
8780 * reference count on the block.
8782 * when wc->stage == UPDATE_BACKREF, this function changes
8783 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8784 * to UPDATE_BACKREF previously while processing the block.
8786 * NOTE: return value 1 means we should stop walking up.
8788 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8789 struct btrfs_root *root,
8790 struct btrfs_path *path,
8791 struct walk_control *wc)
8794 int level = wc->level;
8795 struct extent_buffer *eb = path->nodes[level];
8798 if (wc->stage == UPDATE_BACKREF) {
8799 BUG_ON(wc->shared_level < level);
8800 if (level < wc->shared_level)
8803 ret = find_next_key(path, level + 1, &wc->update_progress);
8807 wc->stage = DROP_REFERENCE;
8808 wc->shared_level = -1;
8809 path->slots[level] = 0;
8812 * check reference count again if the block isn't locked.
8813 * we should start walking down the tree again if reference
8816 if (!path->locks[level]) {
8818 btrfs_tree_lock(eb);
8819 btrfs_set_lock_blocking(eb);
8820 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8822 ret = btrfs_lookup_extent_info(trans, root,
8823 eb->start, level, 1,
8827 btrfs_tree_unlock_rw(eb, path->locks[level]);
8828 path->locks[level] = 0;
8831 BUG_ON(wc->refs[level] == 0);
8832 if (wc->refs[level] == 1) {
8833 btrfs_tree_unlock_rw(eb, path->locks[level]);
8834 path->locks[level] = 0;
8840 /* wc->stage == DROP_REFERENCE */
8841 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8843 if (wc->refs[level] == 1) {
8845 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8846 ret = btrfs_dec_ref(trans, root, eb, 1);
8848 ret = btrfs_dec_ref(trans, root, eb, 0);
8849 BUG_ON(ret); /* -ENOMEM */
8850 ret = account_leaf_items(trans, root, eb);
8852 btrfs_err_rl(root->fs_info,
8854 "%d accounting leaf items. Quota "
8855 "is out of sync, rescan required.",
8859 /* make block locked assertion in clean_tree_block happy */
8860 if (!path->locks[level] &&
8861 btrfs_header_generation(eb) == trans->transid) {
8862 btrfs_tree_lock(eb);
8863 btrfs_set_lock_blocking(eb);
8864 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8866 clean_tree_block(trans, root->fs_info, eb);
8869 if (eb == root->node) {
8870 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8873 BUG_ON(root->root_key.objectid !=
8874 btrfs_header_owner(eb));
8876 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8877 parent = path->nodes[level + 1]->start;
8879 BUG_ON(root->root_key.objectid !=
8880 btrfs_header_owner(path->nodes[level + 1]));
8883 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8885 wc->refs[level] = 0;
8886 wc->flags[level] = 0;
8890 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8891 struct btrfs_root *root,
8892 struct btrfs_path *path,
8893 struct walk_control *wc)
8895 int level = wc->level;
8896 int lookup_info = 1;
8899 while (level >= 0) {
8900 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8907 if (path->slots[level] >=
8908 btrfs_header_nritems(path->nodes[level]))
8911 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8913 path->slots[level]++;
8922 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8923 struct btrfs_root *root,
8924 struct btrfs_path *path,
8925 struct walk_control *wc, int max_level)
8927 int level = wc->level;
8930 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8931 while (level < max_level && path->nodes[level]) {
8933 if (path->slots[level] + 1 <
8934 btrfs_header_nritems(path->nodes[level])) {
8935 path->slots[level]++;
8938 ret = walk_up_proc(trans, root, path, wc);
8942 if (path->locks[level]) {
8943 btrfs_tree_unlock_rw(path->nodes[level],
8944 path->locks[level]);
8945 path->locks[level] = 0;
8947 free_extent_buffer(path->nodes[level]);
8948 path->nodes[level] = NULL;
8956 * drop a subvolume tree.
8958 * this function traverses the tree freeing any blocks that only
8959 * referenced by the tree.
8961 * when a shared tree block is found. this function decreases its
8962 * reference count by one. if update_ref is true, this function
8963 * also make sure backrefs for the shared block and all lower level
8964 * blocks are properly updated.
8966 * If called with for_reloc == 0, may exit early with -EAGAIN
8968 int btrfs_drop_snapshot(struct btrfs_root *root,
8969 struct btrfs_block_rsv *block_rsv, int update_ref,
8972 struct btrfs_path *path;
8973 struct btrfs_trans_handle *trans;
8974 struct btrfs_root *tree_root = root->fs_info->tree_root;
8975 struct btrfs_root_item *root_item = &root->root_item;
8976 struct walk_control *wc;
8977 struct btrfs_key key;
8981 bool root_dropped = false;
8983 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8985 path = btrfs_alloc_path();
8991 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8993 btrfs_free_path(path);
8998 trans = btrfs_start_transaction(tree_root, 0);
8999 if (IS_ERR(trans)) {
9000 err = PTR_ERR(trans);
9005 trans->block_rsv = block_rsv;
9007 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9008 level = btrfs_header_level(root->node);
9009 path->nodes[level] = btrfs_lock_root_node(root);
9010 btrfs_set_lock_blocking(path->nodes[level]);
9011 path->slots[level] = 0;
9012 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9013 memset(&wc->update_progress, 0,
9014 sizeof(wc->update_progress));
9016 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9017 memcpy(&wc->update_progress, &key,
9018 sizeof(wc->update_progress));
9020 level = root_item->drop_level;
9022 path->lowest_level = level;
9023 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9024 path->lowest_level = 0;
9032 * unlock our path, this is safe because only this
9033 * function is allowed to delete this snapshot
9035 btrfs_unlock_up_safe(path, 0);
9037 level = btrfs_header_level(root->node);
9039 btrfs_tree_lock(path->nodes[level]);
9040 btrfs_set_lock_blocking(path->nodes[level]);
9041 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9043 ret = btrfs_lookup_extent_info(trans, root,
9044 path->nodes[level]->start,
9045 level, 1, &wc->refs[level],
9051 BUG_ON(wc->refs[level] == 0);
9053 if (level == root_item->drop_level)
9056 btrfs_tree_unlock(path->nodes[level]);
9057 path->locks[level] = 0;
9058 WARN_ON(wc->refs[level] != 1);
9064 wc->shared_level = -1;
9065 wc->stage = DROP_REFERENCE;
9066 wc->update_ref = update_ref;
9068 wc->for_reloc = for_reloc;
9069 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9073 ret = walk_down_tree(trans, root, path, wc);
9079 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9086 BUG_ON(wc->stage != DROP_REFERENCE);
9090 if (wc->stage == DROP_REFERENCE) {
9092 btrfs_node_key(path->nodes[level],
9093 &root_item->drop_progress,
9094 path->slots[level]);
9095 root_item->drop_level = level;
9098 BUG_ON(wc->level == 0);
9099 if (btrfs_should_end_transaction(trans, tree_root) ||
9100 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9101 ret = btrfs_update_root(trans, tree_root,
9105 btrfs_abort_transaction(trans, tree_root, ret);
9110 btrfs_end_transaction_throttle(trans, tree_root);
9111 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9112 pr_debug("BTRFS: drop snapshot early exit\n");
9117 trans = btrfs_start_transaction(tree_root, 0);
9118 if (IS_ERR(trans)) {
9119 err = PTR_ERR(trans);
9123 trans->block_rsv = block_rsv;
9126 btrfs_release_path(path);
9130 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9132 btrfs_abort_transaction(trans, tree_root, ret);
9136 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9137 ret = btrfs_find_root(tree_root, &root->root_key, path,
9140 btrfs_abort_transaction(trans, tree_root, ret);
9143 } else if (ret > 0) {
9144 /* if we fail to delete the orphan item this time
9145 * around, it'll get picked up the next time.
9147 * The most common failure here is just -ENOENT.
9149 btrfs_del_orphan_item(trans, tree_root,
9150 root->root_key.objectid);
9154 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9155 btrfs_add_dropped_root(trans, root);
9157 free_extent_buffer(root->node);
9158 free_extent_buffer(root->commit_root);
9159 btrfs_put_fs_root(root);
9161 root_dropped = true;
9163 btrfs_end_transaction_throttle(trans, tree_root);
9166 btrfs_free_path(path);
9169 * So if we need to stop dropping the snapshot for whatever reason we
9170 * need to make sure to add it back to the dead root list so that we
9171 * keep trying to do the work later. This also cleans up roots if we
9172 * don't have it in the radix (like when we recover after a power fail
9173 * or unmount) so we don't leak memory.
9175 if (!for_reloc && root_dropped == false)
9176 btrfs_add_dead_root(root);
9177 if (err && err != -EAGAIN)
9178 btrfs_handle_fs_error(root->fs_info, err, NULL);
9183 * drop subtree rooted at tree block 'node'.
9185 * NOTE: this function will unlock and release tree block 'node'
9186 * only used by relocation code
9188 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9189 struct btrfs_root *root,
9190 struct extent_buffer *node,
9191 struct extent_buffer *parent)
9193 struct btrfs_path *path;
9194 struct walk_control *wc;
9200 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9202 path = btrfs_alloc_path();
9206 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9208 btrfs_free_path(path);
9212 btrfs_assert_tree_locked(parent);
9213 parent_level = btrfs_header_level(parent);
9214 extent_buffer_get(parent);
9215 path->nodes[parent_level] = parent;
9216 path->slots[parent_level] = btrfs_header_nritems(parent);
9218 btrfs_assert_tree_locked(node);
9219 level = btrfs_header_level(node);
9220 path->nodes[level] = node;
9221 path->slots[level] = 0;
9222 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9224 wc->refs[parent_level] = 1;
9225 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9227 wc->shared_level = -1;
9228 wc->stage = DROP_REFERENCE;
9232 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9235 wret = walk_down_tree(trans, root, path, wc);
9241 wret = walk_up_tree(trans, root, path, wc, parent_level);
9249 btrfs_free_path(path);
9253 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9259 * if restripe for this chunk_type is on pick target profile and
9260 * return, otherwise do the usual balance
9262 stripped = get_restripe_target(root->fs_info, flags);
9264 return extended_to_chunk(stripped);
9266 num_devices = root->fs_info->fs_devices->rw_devices;
9268 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9269 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9270 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9272 if (num_devices == 1) {
9273 stripped |= BTRFS_BLOCK_GROUP_DUP;
9274 stripped = flags & ~stripped;
9276 /* turn raid0 into single device chunks */
9277 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9280 /* turn mirroring into duplication */
9281 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9282 BTRFS_BLOCK_GROUP_RAID10))
9283 return stripped | BTRFS_BLOCK_GROUP_DUP;
9285 /* they already had raid on here, just return */
9286 if (flags & stripped)
9289 stripped |= BTRFS_BLOCK_GROUP_DUP;
9290 stripped = flags & ~stripped;
9292 /* switch duplicated blocks with raid1 */
9293 if (flags & BTRFS_BLOCK_GROUP_DUP)
9294 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9296 /* this is drive concat, leave it alone */
9302 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9304 struct btrfs_space_info *sinfo = cache->space_info;
9306 u64 min_allocable_bytes;
9310 * We need some metadata space and system metadata space for
9311 * allocating chunks in some corner cases until we force to set
9312 * it to be readonly.
9315 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9317 min_allocable_bytes = SZ_1M;
9319 min_allocable_bytes = 0;
9321 spin_lock(&sinfo->lock);
9322 spin_lock(&cache->lock);
9330 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9331 cache->bytes_super - btrfs_block_group_used(&cache->item);
9333 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9334 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9335 min_allocable_bytes <= sinfo->total_bytes) {
9336 sinfo->bytes_readonly += num_bytes;
9338 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9342 spin_unlock(&cache->lock);
9343 spin_unlock(&sinfo->lock);
9347 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9348 struct btrfs_block_group_cache *cache)
9351 struct btrfs_trans_handle *trans;
9356 trans = btrfs_join_transaction(root);
9358 return PTR_ERR(trans);
9361 * we're not allowed to set block groups readonly after the dirty
9362 * block groups cache has started writing. If it already started,
9363 * back off and let this transaction commit
9365 mutex_lock(&root->fs_info->ro_block_group_mutex);
9366 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9367 u64 transid = trans->transid;
9369 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9370 btrfs_end_transaction(trans, root);
9372 ret = btrfs_wait_for_commit(root, transid);
9379 * if we are changing raid levels, try to allocate a corresponding
9380 * block group with the new raid level.
9382 alloc_flags = update_block_group_flags(root, cache->flags);
9383 if (alloc_flags != cache->flags) {
9384 ret = do_chunk_alloc(trans, root, alloc_flags,
9387 * ENOSPC is allowed here, we may have enough space
9388 * already allocated at the new raid level to
9397 ret = inc_block_group_ro(cache, 0);
9400 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9401 ret = do_chunk_alloc(trans, root, alloc_flags,
9405 ret = inc_block_group_ro(cache, 0);
9407 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9408 alloc_flags = update_block_group_flags(root, cache->flags);
9409 lock_chunks(root->fs_info->chunk_root);
9410 check_system_chunk(trans, root, alloc_flags);
9411 unlock_chunks(root->fs_info->chunk_root);
9413 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9415 btrfs_end_transaction(trans, root);
9419 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9420 struct btrfs_root *root, u64 type)
9422 u64 alloc_flags = get_alloc_profile(root, type);
9423 return do_chunk_alloc(trans, root, alloc_flags,
9428 * helper to account the unused space of all the readonly block group in the
9429 * space_info. takes mirrors into account.
9431 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9433 struct btrfs_block_group_cache *block_group;
9437 /* It's df, we don't care if it's racy */
9438 if (list_empty(&sinfo->ro_bgs))
9441 spin_lock(&sinfo->lock);
9442 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9443 spin_lock(&block_group->lock);
9445 if (!block_group->ro) {
9446 spin_unlock(&block_group->lock);
9450 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9451 BTRFS_BLOCK_GROUP_RAID10 |
9452 BTRFS_BLOCK_GROUP_DUP))
9457 free_bytes += (block_group->key.offset -
9458 btrfs_block_group_used(&block_group->item)) *
9461 spin_unlock(&block_group->lock);
9463 spin_unlock(&sinfo->lock);
9468 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9469 struct btrfs_block_group_cache *cache)
9471 struct btrfs_space_info *sinfo = cache->space_info;
9476 spin_lock(&sinfo->lock);
9477 spin_lock(&cache->lock);
9479 num_bytes = cache->key.offset - cache->reserved -
9480 cache->pinned - cache->bytes_super -
9481 btrfs_block_group_used(&cache->item);
9482 sinfo->bytes_readonly -= num_bytes;
9483 list_del_init(&cache->ro_list);
9485 spin_unlock(&cache->lock);
9486 spin_unlock(&sinfo->lock);
9490 * checks to see if its even possible to relocate this block group.
9492 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9493 * ok to go ahead and try.
9495 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9497 struct btrfs_block_group_cache *block_group;
9498 struct btrfs_space_info *space_info;
9499 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9500 struct btrfs_device *device;
9501 struct btrfs_trans_handle *trans;
9511 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9513 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9515 /* odd, couldn't find the block group, leave it alone */
9518 btrfs_warn(root->fs_info,
9519 "can't find block group for bytenr %llu",
9524 min_free = btrfs_block_group_used(&block_group->item);
9526 /* no bytes used, we're good */
9530 space_info = block_group->space_info;
9531 spin_lock(&space_info->lock);
9533 full = space_info->full;
9536 * if this is the last block group we have in this space, we can't
9537 * relocate it unless we're able to allocate a new chunk below.
9539 * Otherwise, we need to make sure we have room in the space to handle
9540 * all of the extents from this block group. If we can, we're good
9542 if ((space_info->total_bytes != block_group->key.offset) &&
9543 (space_info->bytes_used + space_info->bytes_reserved +
9544 space_info->bytes_pinned + space_info->bytes_readonly +
9545 min_free < space_info->total_bytes)) {
9546 spin_unlock(&space_info->lock);
9549 spin_unlock(&space_info->lock);
9552 * ok we don't have enough space, but maybe we have free space on our
9553 * devices to allocate new chunks for relocation, so loop through our
9554 * alloc devices and guess if we have enough space. if this block
9555 * group is going to be restriped, run checks against the target
9556 * profile instead of the current one.
9568 target = get_restripe_target(root->fs_info, block_group->flags);
9570 index = __get_raid_index(extended_to_chunk(target));
9573 * this is just a balance, so if we were marked as full
9574 * we know there is no space for a new chunk
9578 btrfs_warn(root->fs_info,
9579 "no space to alloc new chunk for block group %llu",
9580 block_group->key.objectid);
9584 index = get_block_group_index(block_group);
9587 if (index == BTRFS_RAID_RAID10) {
9591 } else if (index == BTRFS_RAID_RAID1) {
9593 } else if (index == BTRFS_RAID_DUP) {
9596 } else if (index == BTRFS_RAID_RAID0) {
9597 dev_min = fs_devices->rw_devices;
9598 min_free = div64_u64(min_free, dev_min);
9601 /* We need to do this so that we can look at pending chunks */
9602 trans = btrfs_join_transaction(root);
9603 if (IS_ERR(trans)) {
9604 ret = PTR_ERR(trans);
9608 mutex_lock(&root->fs_info->chunk_mutex);
9609 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9613 * check to make sure we can actually find a chunk with enough
9614 * space to fit our block group in.
9616 if (device->total_bytes > device->bytes_used + min_free &&
9617 !device->is_tgtdev_for_dev_replace) {
9618 ret = find_free_dev_extent(trans, device, min_free,
9623 if (dev_nr >= dev_min)
9629 if (debug && ret == -1)
9630 btrfs_warn(root->fs_info,
9631 "no space to allocate a new chunk for block group %llu",
9632 block_group->key.objectid);
9633 mutex_unlock(&root->fs_info->chunk_mutex);
9634 btrfs_end_transaction(trans, root);
9636 btrfs_put_block_group(block_group);
9640 static int find_first_block_group(struct btrfs_root *root,
9641 struct btrfs_path *path, struct btrfs_key *key)
9644 struct btrfs_key found_key;
9645 struct extent_buffer *leaf;
9648 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9653 slot = path->slots[0];
9654 leaf = path->nodes[0];
9655 if (slot >= btrfs_header_nritems(leaf)) {
9656 ret = btrfs_next_leaf(root, path);
9663 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9665 if (found_key.objectid >= key->objectid &&
9666 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9676 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9678 struct btrfs_block_group_cache *block_group;
9682 struct inode *inode;
9684 block_group = btrfs_lookup_first_block_group(info, last);
9685 while (block_group) {
9686 spin_lock(&block_group->lock);
9687 if (block_group->iref)
9689 spin_unlock(&block_group->lock);
9690 block_group = next_block_group(info->tree_root,
9700 inode = block_group->inode;
9701 block_group->iref = 0;
9702 block_group->inode = NULL;
9703 spin_unlock(&block_group->lock);
9705 last = block_group->key.objectid + block_group->key.offset;
9706 btrfs_put_block_group(block_group);
9710 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9712 struct btrfs_block_group_cache *block_group;
9713 struct btrfs_space_info *space_info;
9714 struct btrfs_caching_control *caching_ctl;
9717 down_write(&info->commit_root_sem);
9718 while (!list_empty(&info->caching_block_groups)) {
9719 caching_ctl = list_entry(info->caching_block_groups.next,
9720 struct btrfs_caching_control, list);
9721 list_del(&caching_ctl->list);
9722 put_caching_control(caching_ctl);
9724 up_write(&info->commit_root_sem);
9726 spin_lock(&info->unused_bgs_lock);
9727 while (!list_empty(&info->unused_bgs)) {
9728 block_group = list_first_entry(&info->unused_bgs,
9729 struct btrfs_block_group_cache,
9731 list_del_init(&block_group->bg_list);
9732 btrfs_put_block_group(block_group);
9734 spin_unlock(&info->unused_bgs_lock);
9736 spin_lock(&info->block_group_cache_lock);
9737 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9738 block_group = rb_entry(n, struct btrfs_block_group_cache,
9740 rb_erase(&block_group->cache_node,
9741 &info->block_group_cache_tree);
9742 RB_CLEAR_NODE(&block_group->cache_node);
9743 spin_unlock(&info->block_group_cache_lock);
9745 down_write(&block_group->space_info->groups_sem);
9746 list_del(&block_group->list);
9747 up_write(&block_group->space_info->groups_sem);
9749 if (block_group->cached == BTRFS_CACHE_STARTED)
9750 wait_block_group_cache_done(block_group);
9753 * We haven't cached this block group, which means we could
9754 * possibly have excluded extents on this block group.
9756 if (block_group->cached == BTRFS_CACHE_NO ||
9757 block_group->cached == BTRFS_CACHE_ERROR)
9758 free_excluded_extents(info->extent_root, block_group);
9760 btrfs_remove_free_space_cache(block_group);
9761 btrfs_put_block_group(block_group);
9763 spin_lock(&info->block_group_cache_lock);
9765 spin_unlock(&info->block_group_cache_lock);
9767 /* now that all the block groups are freed, go through and
9768 * free all the space_info structs. This is only called during
9769 * the final stages of unmount, and so we know nobody is
9770 * using them. We call synchronize_rcu() once before we start,
9771 * just to be on the safe side.
9775 release_global_block_rsv(info);
9777 while (!list_empty(&info->space_info)) {
9780 space_info = list_entry(info->space_info.next,
9781 struct btrfs_space_info,
9783 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9784 if (WARN_ON(space_info->bytes_pinned > 0 ||
9785 space_info->bytes_reserved > 0 ||
9786 space_info->bytes_may_use > 0)) {
9787 dump_space_info(space_info, 0, 0);
9790 list_del(&space_info->list);
9791 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9792 struct kobject *kobj;
9793 kobj = space_info->block_group_kobjs[i];
9794 space_info->block_group_kobjs[i] = NULL;
9800 kobject_del(&space_info->kobj);
9801 kobject_put(&space_info->kobj);
9806 static void __link_block_group(struct btrfs_space_info *space_info,
9807 struct btrfs_block_group_cache *cache)
9809 int index = get_block_group_index(cache);
9812 down_write(&space_info->groups_sem);
9813 if (list_empty(&space_info->block_groups[index]))
9815 list_add_tail(&cache->list, &space_info->block_groups[index]);
9816 up_write(&space_info->groups_sem);
9819 struct raid_kobject *rkobj;
9822 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9825 rkobj->raid_type = index;
9826 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9827 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9828 "%s", get_raid_name(index));
9830 kobject_put(&rkobj->kobj);
9833 space_info->block_group_kobjs[index] = &rkobj->kobj;
9838 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9841 static struct btrfs_block_group_cache *
9842 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9844 struct btrfs_block_group_cache *cache;
9846 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9850 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9852 if (!cache->free_space_ctl) {
9857 cache->key.objectid = start;
9858 cache->key.offset = size;
9859 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9861 cache->sectorsize = root->sectorsize;
9862 cache->fs_info = root->fs_info;
9863 cache->full_stripe_len = btrfs_full_stripe_len(root,
9864 &root->fs_info->mapping_tree,
9866 set_free_space_tree_thresholds(cache);
9868 atomic_set(&cache->count, 1);
9869 spin_lock_init(&cache->lock);
9870 init_rwsem(&cache->data_rwsem);
9871 INIT_LIST_HEAD(&cache->list);
9872 INIT_LIST_HEAD(&cache->cluster_list);
9873 INIT_LIST_HEAD(&cache->bg_list);
9874 INIT_LIST_HEAD(&cache->ro_list);
9875 INIT_LIST_HEAD(&cache->dirty_list);
9876 INIT_LIST_HEAD(&cache->io_list);
9877 btrfs_init_free_space_ctl(cache);
9878 atomic_set(&cache->trimming, 0);
9879 mutex_init(&cache->free_space_lock);
9884 int btrfs_read_block_groups(struct btrfs_root *root)
9886 struct btrfs_path *path;
9888 struct btrfs_block_group_cache *cache;
9889 struct btrfs_fs_info *info = root->fs_info;
9890 struct btrfs_space_info *space_info;
9891 struct btrfs_key key;
9892 struct btrfs_key found_key;
9893 struct extent_buffer *leaf;
9897 root = info->extent_root;
9900 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9901 path = btrfs_alloc_path();
9904 path->reada = READA_FORWARD;
9906 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9907 if (btrfs_test_opt(root, SPACE_CACHE) &&
9908 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9910 if (btrfs_test_opt(root, CLEAR_CACHE))
9914 ret = find_first_block_group(root, path, &key);
9920 leaf = path->nodes[0];
9921 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9923 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9932 * When we mount with old space cache, we need to
9933 * set BTRFS_DC_CLEAR and set dirty flag.
9935 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9936 * truncate the old free space cache inode and
9938 * b) Setting 'dirty flag' makes sure that we flush
9939 * the new space cache info onto disk.
9941 if (btrfs_test_opt(root, SPACE_CACHE))
9942 cache->disk_cache_state = BTRFS_DC_CLEAR;
9945 read_extent_buffer(leaf, &cache->item,
9946 btrfs_item_ptr_offset(leaf, path->slots[0]),
9947 sizeof(cache->item));
9948 cache->flags = btrfs_block_group_flags(&cache->item);
9950 key.objectid = found_key.objectid + found_key.offset;
9951 btrfs_release_path(path);
9954 * We need to exclude the super stripes now so that the space
9955 * info has super bytes accounted for, otherwise we'll think
9956 * we have more space than we actually do.
9958 ret = exclude_super_stripes(root, cache);
9961 * We may have excluded something, so call this just in
9964 free_excluded_extents(root, cache);
9965 btrfs_put_block_group(cache);
9970 * check for two cases, either we are full, and therefore
9971 * don't need to bother with the caching work since we won't
9972 * find any space, or we are empty, and we can just add all
9973 * the space in and be done with it. This saves us _alot_ of
9974 * time, particularly in the full case.
9976 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9977 cache->last_byte_to_unpin = (u64)-1;
9978 cache->cached = BTRFS_CACHE_FINISHED;
9979 free_excluded_extents(root, cache);
9980 } else if (btrfs_block_group_used(&cache->item) == 0) {
9981 cache->last_byte_to_unpin = (u64)-1;
9982 cache->cached = BTRFS_CACHE_FINISHED;
9983 add_new_free_space(cache, root->fs_info,
9985 found_key.objectid +
9987 free_excluded_extents(root, cache);
9990 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9992 btrfs_remove_free_space_cache(cache);
9993 btrfs_put_block_group(cache);
9997 ret = update_space_info(info, cache->flags, found_key.offset,
9998 btrfs_block_group_used(&cache->item),
10001 btrfs_remove_free_space_cache(cache);
10002 spin_lock(&info->block_group_cache_lock);
10003 rb_erase(&cache->cache_node,
10004 &info->block_group_cache_tree);
10005 RB_CLEAR_NODE(&cache->cache_node);
10006 spin_unlock(&info->block_group_cache_lock);
10007 btrfs_put_block_group(cache);
10011 cache->space_info = space_info;
10012 spin_lock(&cache->space_info->lock);
10013 cache->space_info->bytes_readonly += cache->bytes_super;
10014 spin_unlock(&cache->space_info->lock);
10016 __link_block_group(space_info, cache);
10018 set_avail_alloc_bits(root->fs_info, cache->flags);
10019 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10020 inc_block_group_ro(cache, 1);
10021 } else if (btrfs_block_group_used(&cache->item) == 0) {
10022 spin_lock(&info->unused_bgs_lock);
10023 /* Should always be true but just in case. */
10024 if (list_empty(&cache->bg_list)) {
10025 btrfs_get_block_group(cache);
10026 list_add_tail(&cache->bg_list,
10027 &info->unused_bgs);
10029 spin_unlock(&info->unused_bgs_lock);
10033 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10034 if (!(get_alloc_profile(root, space_info->flags) &
10035 (BTRFS_BLOCK_GROUP_RAID10 |
10036 BTRFS_BLOCK_GROUP_RAID1 |
10037 BTRFS_BLOCK_GROUP_RAID5 |
10038 BTRFS_BLOCK_GROUP_RAID6 |
10039 BTRFS_BLOCK_GROUP_DUP)))
10042 * avoid allocating from un-mirrored block group if there are
10043 * mirrored block groups.
10045 list_for_each_entry(cache,
10046 &space_info->block_groups[BTRFS_RAID_RAID0],
10048 inc_block_group_ro(cache, 1);
10049 list_for_each_entry(cache,
10050 &space_info->block_groups[BTRFS_RAID_SINGLE],
10052 inc_block_group_ro(cache, 1);
10055 init_global_block_rsv(info);
10058 btrfs_free_path(path);
10062 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10063 struct btrfs_root *root)
10065 struct btrfs_block_group_cache *block_group, *tmp;
10066 struct btrfs_root *extent_root = root->fs_info->extent_root;
10067 struct btrfs_block_group_item item;
10068 struct btrfs_key key;
10070 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10072 trans->can_flush_pending_bgs = false;
10073 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10077 spin_lock(&block_group->lock);
10078 memcpy(&item, &block_group->item, sizeof(item));
10079 memcpy(&key, &block_group->key, sizeof(key));
10080 spin_unlock(&block_group->lock);
10082 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10085 btrfs_abort_transaction(trans, extent_root, ret);
10086 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10087 key.objectid, key.offset);
10089 btrfs_abort_transaction(trans, extent_root, ret);
10090 add_block_group_free_space(trans, root->fs_info, block_group);
10091 /* already aborted the transaction if it failed. */
10093 list_del_init(&block_group->bg_list);
10095 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10098 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10099 struct btrfs_root *root, u64 bytes_used,
10100 u64 type, u64 chunk_objectid, u64 chunk_offset,
10104 struct btrfs_root *extent_root;
10105 struct btrfs_block_group_cache *cache;
10107 extent_root = root->fs_info->extent_root;
10109 btrfs_set_log_full_commit(root->fs_info, trans);
10111 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10115 btrfs_set_block_group_used(&cache->item, bytes_used);
10116 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10117 btrfs_set_block_group_flags(&cache->item, type);
10119 cache->flags = type;
10120 cache->last_byte_to_unpin = (u64)-1;
10121 cache->cached = BTRFS_CACHE_FINISHED;
10122 cache->needs_free_space = 1;
10123 ret = exclude_super_stripes(root, cache);
10126 * We may have excluded something, so call this just in
10129 free_excluded_extents(root, cache);
10130 btrfs_put_block_group(cache);
10134 add_new_free_space(cache, root->fs_info, chunk_offset,
10135 chunk_offset + size);
10137 free_excluded_extents(root, cache);
10139 #ifdef CONFIG_BTRFS_DEBUG
10140 if (btrfs_should_fragment_free_space(root, cache)) {
10141 u64 new_bytes_used = size - bytes_used;
10143 bytes_used += new_bytes_used >> 1;
10144 fragment_free_space(root, cache);
10148 * Call to ensure the corresponding space_info object is created and
10149 * assigned to our block group, but don't update its counters just yet.
10150 * We want our bg to be added to the rbtree with its ->space_info set.
10152 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10153 &cache->space_info);
10155 btrfs_remove_free_space_cache(cache);
10156 btrfs_put_block_group(cache);
10160 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10162 btrfs_remove_free_space_cache(cache);
10163 btrfs_put_block_group(cache);
10168 * Now that our block group has its ->space_info set and is inserted in
10169 * the rbtree, update the space info's counters.
10171 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10172 &cache->space_info);
10174 btrfs_remove_free_space_cache(cache);
10175 spin_lock(&root->fs_info->block_group_cache_lock);
10176 rb_erase(&cache->cache_node,
10177 &root->fs_info->block_group_cache_tree);
10178 RB_CLEAR_NODE(&cache->cache_node);
10179 spin_unlock(&root->fs_info->block_group_cache_lock);
10180 btrfs_put_block_group(cache);
10183 update_global_block_rsv(root->fs_info);
10185 spin_lock(&cache->space_info->lock);
10186 cache->space_info->bytes_readonly += cache->bytes_super;
10187 spin_unlock(&cache->space_info->lock);
10189 __link_block_group(cache->space_info, cache);
10191 list_add_tail(&cache->bg_list, &trans->new_bgs);
10193 set_avail_alloc_bits(extent_root->fs_info, type);
10198 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10200 u64 extra_flags = chunk_to_extended(flags) &
10201 BTRFS_EXTENDED_PROFILE_MASK;
10203 write_seqlock(&fs_info->profiles_lock);
10204 if (flags & BTRFS_BLOCK_GROUP_DATA)
10205 fs_info->avail_data_alloc_bits &= ~extra_flags;
10206 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10207 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10208 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10209 fs_info->avail_system_alloc_bits &= ~extra_flags;
10210 write_sequnlock(&fs_info->profiles_lock);
10213 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10214 struct btrfs_root *root, u64 group_start,
10215 struct extent_map *em)
10217 struct btrfs_path *path;
10218 struct btrfs_block_group_cache *block_group;
10219 struct btrfs_free_cluster *cluster;
10220 struct btrfs_root *tree_root = root->fs_info->tree_root;
10221 struct btrfs_key key;
10222 struct inode *inode;
10223 struct kobject *kobj = NULL;
10227 struct btrfs_caching_control *caching_ctl = NULL;
10230 root = root->fs_info->extent_root;
10232 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10233 BUG_ON(!block_group);
10234 BUG_ON(!block_group->ro);
10237 * Free the reserved super bytes from this block group before
10240 free_excluded_extents(root, block_group);
10242 memcpy(&key, &block_group->key, sizeof(key));
10243 index = get_block_group_index(block_group);
10244 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10245 BTRFS_BLOCK_GROUP_RAID1 |
10246 BTRFS_BLOCK_GROUP_RAID10))
10251 /* make sure this block group isn't part of an allocation cluster */
10252 cluster = &root->fs_info->data_alloc_cluster;
10253 spin_lock(&cluster->refill_lock);
10254 btrfs_return_cluster_to_free_space(block_group, cluster);
10255 spin_unlock(&cluster->refill_lock);
10258 * make sure this block group isn't part of a metadata
10259 * allocation cluster
10261 cluster = &root->fs_info->meta_alloc_cluster;
10262 spin_lock(&cluster->refill_lock);
10263 btrfs_return_cluster_to_free_space(block_group, cluster);
10264 spin_unlock(&cluster->refill_lock);
10266 path = btrfs_alloc_path();
10273 * get the inode first so any iput calls done for the io_list
10274 * aren't the final iput (no unlinks allowed now)
10276 inode = lookup_free_space_inode(tree_root, block_group, path);
10278 mutex_lock(&trans->transaction->cache_write_mutex);
10280 * make sure our free spache cache IO is done before remove the
10283 spin_lock(&trans->transaction->dirty_bgs_lock);
10284 if (!list_empty(&block_group->io_list)) {
10285 list_del_init(&block_group->io_list);
10287 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10289 spin_unlock(&trans->transaction->dirty_bgs_lock);
10290 btrfs_wait_cache_io(root, trans, block_group,
10291 &block_group->io_ctl, path,
10292 block_group->key.objectid);
10293 btrfs_put_block_group(block_group);
10294 spin_lock(&trans->transaction->dirty_bgs_lock);
10297 if (!list_empty(&block_group->dirty_list)) {
10298 list_del_init(&block_group->dirty_list);
10299 btrfs_put_block_group(block_group);
10301 spin_unlock(&trans->transaction->dirty_bgs_lock);
10302 mutex_unlock(&trans->transaction->cache_write_mutex);
10304 if (!IS_ERR(inode)) {
10305 ret = btrfs_orphan_add(trans, inode);
10307 btrfs_add_delayed_iput(inode);
10310 clear_nlink(inode);
10311 /* One for the block groups ref */
10312 spin_lock(&block_group->lock);
10313 if (block_group->iref) {
10314 block_group->iref = 0;
10315 block_group->inode = NULL;
10316 spin_unlock(&block_group->lock);
10319 spin_unlock(&block_group->lock);
10321 /* One for our lookup ref */
10322 btrfs_add_delayed_iput(inode);
10325 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10326 key.offset = block_group->key.objectid;
10329 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10333 btrfs_release_path(path);
10335 ret = btrfs_del_item(trans, tree_root, path);
10338 btrfs_release_path(path);
10341 spin_lock(&root->fs_info->block_group_cache_lock);
10342 rb_erase(&block_group->cache_node,
10343 &root->fs_info->block_group_cache_tree);
10344 RB_CLEAR_NODE(&block_group->cache_node);
10346 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10347 root->fs_info->first_logical_byte = (u64)-1;
10348 spin_unlock(&root->fs_info->block_group_cache_lock);
10350 down_write(&block_group->space_info->groups_sem);
10352 * we must use list_del_init so people can check to see if they
10353 * are still on the list after taking the semaphore
10355 list_del_init(&block_group->list);
10356 if (list_empty(&block_group->space_info->block_groups[index])) {
10357 kobj = block_group->space_info->block_group_kobjs[index];
10358 block_group->space_info->block_group_kobjs[index] = NULL;
10359 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10361 up_write(&block_group->space_info->groups_sem);
10367 if (block_group->has_caching_ctl)
10368 caching_ctl = get_caching_control(block_group);
10369 if (block_group->cached == BTRFS_CACHE_STARTED)
10370 wait_block_group_cache_done(block_group);
10371 if (block_group->has_caching_ctl) {
10372 down_write(&root->fs_info->commit_root_sem);
10373 if (!caching_ctl) {
10374 struct btrfs_caching_control *ctl;
10376 list_for_each_entry(ctl,
10377 &root->fs_info->caching_block_groups, list)
10378 if (ctl->block_group == block_group) {
10380 atomic_inc(&caching_ctl->count);
10385 list_del_init(&caching_ctl->list);
10386 up_write(&root->fs_info->commit_root_sem);
10388 /* Once for the caching bgs list and once for us. */
10389 put_caching_control(caching_ctl);
10390 put_caching_control(caching_ctl);
10394 spin_lock(&trans->transaction->dirty_bgs_lock);
10395 if (!list_empty(&block_group->dirty_list)) {
10398 if (!list_empty(&block_group->io_list)) {
10401 spin_unlock(&trans->transaction->dirty_bgs_lock);
10402 btrfs_remove_free_space_cache(block_group);
10404 spin_lock(&block_group->space_info->lock);
10405 list_del_init(&block_group->ro_list);
10407 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10408 WARN_ON(block_group->space_info->total_bytes
10409 < block_group->key.offset);
10410 WARN_ON(block_group->space_info->bytes_readonly
10411 < block_group->key.offset);
10412 WARN_ON(block_group->space_info->disk_total
10413 < block_group->key.offset * factor);
10415 block_group->space_info->total_bytes -= block_group->key.offset;
10416 block_group->space_info->bytes_readonly -= block_group->key.offset;
10417 block_group->space_info->disk_total -= block_group->key.offset * factor;
10419 spin_unlock(&block_group->space_info->lock);
10421 memcpy(&key, &block_group->key, sizeof(key));
10424 if (!list_empty(&em->list)) {
10425 /* We're in the transaction->pending_chunks list. */
10426 free_extent_map(em);
10428 spin_lock(&block_group->lock);
10429 block_group->removed = 1;
10431 * At this point trimming can't start on this block group, because we
10432 * removed the block group from the tree fs_info->block_group_cache_tree
10433 * so no one can't find it anymore and even if someone already got this
10434 * block group before we removed it from the rbtree, they have already
10435 * incremented block_group->trimming - if they didn't, they won't find
10436 * any free space entries because we already removed them all when we
10437 * called btrfs_remove_free_space_cache().
10439 * And we must not remove the extent map from the fs_info->mapping_tree
10440 * to prevent the same logical address range and physical device space
10441 * ranges from being reused for a new block group. This is because our
10442 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10443 * completely transactionless, so while it is trimming a range the
10444 * currently running transaction might finish and a new one start,
10445 * allowing for new block groups to be created that can reuse the same
10446 * physical device locations unless we take this special care.
10448 * There may also be an implicit trim operation if the file system
10449 * is mounted with -odiscard. The same protections must remain
10450 * in place until the extents have been discarded completely when
10451 * the transaction commit has completed.
10453 remove_em = (atomic_read(&block_group->trimming) == 0);
10455 * Make sure a trimmer task always sees the em in the pinned_chunks list
10456 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10457 * before checking block_group->removed).
10461 * Our em might be in trans->transaction->pending_chunks which
10462 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10463 * and so is the fs_info->pinned_chunks list.
10465 * So at this point we must be holding the chunk_mutex to avoid
10466 * any races with chunk allocation (more specifically at
10467 * volumes.c:contains_pending_extent()), to ensure it always
10468 * sees the em, either in the pending_chunks list or in the
10469 * pinned_chunks list.
10471 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10473 spin_unlock(&block_group->lock);
10476 struct extent_map_tree *em_tree;
10478 em_tree = &root->fs_info->mapping_tree.map_tree;
10479 write_lock(&em_tree->lock);
10481 * The em might be in the pending_chunks list, so make sure the
10482 * chunk mutex is locked, since remove_extent_mapping() will
10483 * delete us from that list.
10485 remove_extent_mapping(em_tree, em);
10486 write_unlock(&em_tree->lock);
10487 /* once for the tree */
10488 free_extent_map(em);
10491 unlock_chunks(root);
10493 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10497 btrfs_put_block_group(block_group);
10498 btrfs_put_block_group(block_group);
10500 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10506 ret = btrfs_del_item(trans, root, path);
10508 btrfs_free_path(path);
10512 struct btrfs_trans_handle *
10513 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10514 const u64 chunk_offset)
10516 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10517 struct extent_map *em;
10518 struct map_lookup *map;
10519 unsigned int num_items;
10521 read_lock(&em_tree->lock);
10522 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10523 read_unlock(&em_tree->lock);
10524 ASSERT(em && em->start == chunk_offset);
10527 * We need to reserve 3 + N units from the metadata space info in order
10528 * to remove a block group (done at btrfs_remove_chunk() and at
10529 * btrfs_remove_block_group()), which are used for:
10531 * 1 unit for adding the free space inode's orphan (located in the tree
10533 * 1 unit for deleting the block group item (located in the extent
10535 * 1 unit for deleting the free space item (located in tree of tree
10537 * N units for deleting N device extent items corresponding to each
10538 * stripe (located in the device tree).
10540 * In order to remove a block group we also need to reserve units in the
10541 * system space info in order to update the chunk tree (update one or
10542 * more device items and remove one chunk item), but this is done at
10543 * btrfs_remove_chunk() through a call to check_system_chunk().
10545 map = em->map_lookup;
10546 num_items = 3 + map->num_stripes;
10547 free_extent_map(em);
10549 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10554 * Process the unused_bgs list and remove any that don't have any allocated
10555 * space inside of them.
10557 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10559 struct btrfs_block_group_cache *block_group;
10560 struct btrfs_space_info *space_info;
10561 struct btrfs_root *root = fs_info->extent_root;
10562 struct btrfs_trans_handle *trans;
10565 if (!fs_info->open)
10568 spin_lock(&fs_info->unused_bgs_lock);
10569 while (!list_empty(&fs_info->unused_bgs)) {
10573 block_group = list_first_entry(&fs_info->unused_bgs,
10574 struct btrfs_block_group_cache,
10576 list_del_init(&block_group->bg_list);
10578 space_info = block_group->space_info;
10580 if (ret || btrfs_mixed_space_info(space_info)) {
10581 btrfs_put_block_group(block_group);
10584 spin_unlock(&fs_info->unused_bgs_lock);
10586 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10588 /* Don't want to race with allocators so take the groups_sem */
10589 down_write(&space_info->groups_sem);
10590 spin_lock(&block_group->lock);
10591 if (block_group->reserved ||
10592 btrfs_block_group_used(&block_group->item) ||
10594 list_is_singular(&block_group->list)) {
10596 * We want to bail if we made new allocations or have
10597 * outstanding allocations in this block group. We do
10598 * the ro check in case balance is currently acting on
10599 * this block group.
10601 spin_unlock(&block_group->lock);
10602 up_write(&space_info->groups_sem);
10605 spin_unlock(&block_group->lock);
10607 /* We don't want to force the issue, only flip if it's ok. */
10608 ret = inc_block_group_ro(block_group, 0);
10609 up_write(&space_info->groups_sem);
10616 * Want to do this before we do anything else so we can recover
10617 * properly if we fail to join the transaction.
10619 trans = btrfs_start_trans_remove_block_group(fs_info,
10620 block_group->key.objectid);
10621 if (IS_ERR(trans)) {
10622 btrfs_dec_block_group_ro(root, block_group);
10623 ret = PTR_ERR(trans);
10628 * We could have pending pinned extents for this block group,
10629 * just delete them, we don't care about them anymore.
10631 start = block_group->key.objectid;
10632 end = start + block_group->key.offset - 1;
10634 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10635 * btrfs_finish_extent_commit(). If we are at transaction N,
10636 * another task might be running finish_extent_commit() for the
10637 * previous transaction N - 1, and have seen a range belonging
10638 * to the block group in freed_extents[] before we were able to
10639 * clear the whole block group range from freed_extents[]. This
10640 * means that task can lookup for the block group after we
10641 * unpinned it from freed_extents[] and removed it, leading to
10642 * a BUG_ON() at btrfs_unpin_extent_range().
10644 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10645 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10648 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10649 btrfs_dec_block_group_ro(root, block_group);
10652 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10655 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10656 btrfs_dec_block_group_ro(root, block_group);
10659 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10661 /* Reset pinned so btrfs_put_block_group doesn't complain */
10662 spin_lock(&space_info->lock);
10663 spin_lock(&block_group->lock);
10665 space_info->bytes_pinned -= block_group->pinned;
10666 space_info->bytes_readonly += block_group->pinned;
10667 percpu_counter_add(&space_info->total_bytes_pinned,
10668 -block_group->pinned);
10669 block_group->pinned = 0;
10671 spin_unlock(&block_group->lock);
10672 spin_unlock(&space_info->lock);
10674 /* DISCARD can flip during remount */
10675 trimming = btrfs_test_opt(root, DISCARD);
10677 /* Implicit trim during transaction commit. */
10679 btrfs_get_block_group_trimming(block_group);
10682 * Btrfs_remove_chunk will abort the transaction if things go
10685 ret = btrfs_remove_chunk(trans, root,
10686 block_group->key.objectid);
10690 btrfs_put_block_group_trimming(block_group);
10695 * If we're not mounted with -odiscard, we can just forget
10696 * about this block group. Otherwise we'll need to wait
10697 * until transaction commit to do the actual discard.
10700 spin_lock(&fs_info->unused_bgs_lock);
10702 * A concurrent scrub might have added us to the list
10703 * fs_info->unused_bgs, so use a list_move operation
10704 * to add the block group to the deleted_bgs list.
10706 list_move(&block_group->bg_list,
10707 &trans->transaction->deleted_bgs);
10708 spin_unlock(&fs_info->unused_bgs_lock);
10709 btrfs_get_block_group(block_group);
10712 btrfs_end_transaction(trans, root);
10714 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10715 btrfs_put_block_group(block_group);
10716 spin_lock(&fs_info->unused_bgs_lock);
10718 spin_unlock(&fs_info->unused_bgs_lock);
10721 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10723 struct btrfs_space_info *space_info;
10724 struct btrfs_super_block *disk_super;
10730 disk_super = fs_info->super_copy;
10731 if (!btrfs_super_root(disk_super))
10734 features = btrfs_super_incompat_flags(disk_super);
10735 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10738 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10739 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10744 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10745 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10747 flags = BTRFS_BLOCK_GROUP_METADATA;
10748 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10752 flags = BTRFS_BLOCK_GROUP_DATA;
10753 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10759 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10761 return unpin_extent_range(root, start, end, false);
10765 * It used to be that old block groups would be left around forever.
10766 * Iterating over them would be enough to trim unused space. Since we
10767 * now automatically remove them, we also need to iterate over unallocated
10770 * We don't want a transaction for this since the discard may take a
10771 * substantial amount of time. We don't require that a transaction be
10772 * running, but we do need to take a running transaction into account
10773 * to ensure that we're not discarding chunks that were released in
10774 * the current transaction.
10776 * Holding the chunks lock will prevent other threads from allocating
10777 * or releasing chunks, but it won't prevent a running transaction
10778 * from committing and releasing the memory that the pending chunks
10779 * list head uses. For that, we need to take a reference to the
10782 static int btrfs_trim_free_extents(struct btrfs_device *device,
10783 u64 minlen, u64 *trimmed)
10785 u64 start = 0, len = 0;
10790 /* Not writeable = nothing to do. */
10791 if (!device->writeable)
10794 /* No free space = nothing to do. */
10795 if (device->total_bytes <= device->bytes_used)
10801 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10802 struct btrfs_transaction *trans;
10805 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10809 down_read(&fs_info->commit_root_sem);
10811 spin_lock(&fs_info->trans_lock);
10812 trans = fs_info->running_transaction;
10814 atomic_inc(&trans->use_count);
10815 spin_unlock(&fs_info->trans_lock);
10817 ret = find_free_dev_extent_start(trans, device, minlen, start,
10820 btrfs_put_transaction(trans);
10823 up_read(&fs_info->commit_root_sem);
10824 mutex_unlock(&fs_info->chunk_mutex);
10825 if (ret == -ENOSPC)
10830 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10831 up_read(&fs_info->commit_root_sem);
10832 mutex_unlock(&fs_info->chunk_mutex);
10840 if (fatal_signal_pending(current)) {
10841 ret = -ERESTARTSYS;
10851 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10853 struct btrfs_fs_info *fs_info = root->fs_info;
10854 struct btrfs_block_group_cache *cache = NULL;
10855 struct btrfs_device *device;
10856 struct list_head *devices;
10861 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10865 * try to trim all FS space, our block group may start from non-zero.
10867 if (range->len == total_bytes)
10868 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10870 cache = btrfs_lookup_block_group(fs_info, range->start);
10873 if (cache->key.objectid >= (range->start + range->len)) {
10874 btrfs_put_block_group(cache);
10878 start = max(range->start, cache->key.objectid);
10879 end = min(range->start + range->len,
10880 cache->key.objectid + cache->key.offset);
10882 if (end - start >= range->minlen) {
10883 if (!block_group_cache_done(cache)) {
10884 ret = cache_block_group(cache, 0);
10886 btrfs_put_block_group(cache);
10889 ret = wait_block_group_cache_done(cache);
10891 btrfs_put_block_group(cache);
10895 ret = btrfs_trim_block_group(cache,
10901 trimmed += group_trimmed;
10903 btrfs_put_block_group(cache);
10908 cache = next_block_group(fs_info->tree_root, cache);
10911 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10912 devices = &root->fs_info->fs_devices->alloc_list;
10913 list_for_each_entry(device, devices, dev_alloc_list) {
10914 ret = btrfs_trim_free_extents(device, range->minlen,
10919 trimmed += group_trimmed;
10921 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10923 range->len = trimmed;
10928 * btrfs_{start,end}_write_no_snapshoting() are similar to
10929 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10930 * data into the page cache through nocow before the subvolume is snapshoted,
10931 * but flush the data into disk after the snapshot creation, or to prevent
10932 * operations while snapshoting is ongoing and that cause the snapshot to be
10933 * inconsistent (writes followed by expanding truncates for example).
10935 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10937 percpu_counter_dec(&root->subv_writers->counter);
10939 * Make sure counter is updated before we wake up waiters.
10942 if (waitqueue_active(&root->subv_writers->wait))
10943 wake_up(&root->subv_writers->wait);
10946 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10948 if (atomic_read(&root->will_be_snapshoted))
10951 percpu_counter_inc(&root->subv_writers->counter);
10953 * Make sure counter is updated before we check for snapshot creation.
10956 if (atomic_read(&root->will_be_snapshoted)) {
10957 btrfs_end_write_no_snapshoting(root);
10963 static int wait_snapshoting_atomic_t(atomic_t *a)
10969 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10974 ret = btrfs_start_write_no_snapshoting(root);
10977 wait_on_atomic_t(&root->will_be_snapshoted,
10978 wait_snapshoting_atomic_t,
10979 TASK_UNINTERRUPTIBLE);