2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
75 struct btrfs_fs_info *info;
78 struct list_head list;
79 struct btrfs_work work;
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
87 struct async_submit_bio {
90 struct list_head list;
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
95 unsigned long bio_flags;
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
101 struct btrfs_work work;
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
133 static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
152 void __init btrfs_init_lockdep(void)
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
169 struct btrfs_lockdep_keyset *ks;
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
188 static struct extent_map *btree_get_extent(struct inode *inode,
189 struct page *page, size_t pg_offset, u64 start, u64 len,
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
196 read_lock(&em_tree->lock);
197 em = lookup_extent_mapping(em_tree, start, len);
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 read_unlock(&em_tree->lock);
204 read_unlock(&em_tree->lock);
206 em = alloc_extent_map();
208 em = ERR_PTR(-ENOMEM);
213 em->block_len = (u64)-1;
215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
217 write_lock(&em_tree->lock);
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
224 em = lookup_extent_mapping(em_tree, start, len);
228 em = lookup_extent_mapping(em_tree, failed_start,
236 write_unlock(&em_tree->lock);
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
246 return crc32c(seed, data, len);
249 void btrfs_csum_final(u32 crc, char *result)
251 put_unaligned_le32(~crc, result);
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
267 unsigned long map_start;
268 unsigned long map_len;
271 unsigned long inline_result;
273 len = buf->len - offset;
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
290 result = (char *)&inline_result;
293 btrfs_csum_final(crc, result);
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299 memcpy(&found, result, csum_size);
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
313 write_extent_buffer(buf, result, 0, csum_size);
315 if (result != (char *)&inline_result)
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
330 struct extent_state *cached_state = NULL;
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
352 clear_extent_buffer_uptodate(eb);
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
365 u64 start, u64 parent_transid)
367 struct extent_io_tree *io_tree;
372 int failed_mirror = 0;
374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
377 ret = read_extent_buffer_pages(io_tree, eb, start,
379 btree_get_extent, mirror_num);
381 if (!verify_parent_transid(io_tree, eb,
389 * This buffer's crc is fine, but its contents are corrupted, so
390 * there is no reason to read the other copies, they won't be
393 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
396 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
401 if (!failed_mirror) {
403 failed_mirror = eb->read_mirror;
407 if (mirror_num == failed_mirror)
410 if (mirror_num > num_copies)
414 if (failed && !ret && failed_mirror)
415 repair_eb_io_failure(root, eb, failed_mirror);
421 * checksum a dirty tree block before IO. This has extra checks to make sure
422 * we only fill in the checksum field in the first page of a multi-page block
425 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
427 struct extent_io_tree *tree;
428 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
430 struct extent_buffer *eb;
432 tree = &BTRFS_I(page->mapping->host)->io_tree;
434 eb = (struct extent_buffer *)page->private;
435 if (page != eb->pages[0])
437 found_start = btrfs_header_bytenr(eb);
438 if (found_start != start) {
442 if (eb->pages[0] != page) {
446 if (!PageUptodate(page)) {
450 csum_tree_block(root, eb, 0);
454 static int check_tree_block_fsid(struct btrfs_root *root,
455 struct extent_buffer *eb)
457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 u8 fsid[BTRFS_UUID_SIZE];
461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
468 fs_devices = fs_devices->seed;
473 #define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
479 static noinline int check_leaf(struct btrfs_root *root,
480 struct extent_buffer *leaf)
482 struct btrfs_key key;
483 struct btrfs_key leaf_key;
484 u32 nritems = btrfs_header_nritems(leaf);
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root)) {
493 CORRUPT("invalid item offset size pair", leaf, root, 0);
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
504 for (slot = 0; slot < nritems - 1; slot++) {
505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 CORRUPT("bad key order", leaf, root, slot);
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
519 if (btrfs_item_offset_nr(leaf, slot) !=
520 btrfs_item_end_nr(leaf, slot + 1)) {
521 CORRUPT("slot offset bad", leaf, root, slot);
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
530 if (btrfs_item_end_nr(leaf, slot) >
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("slot end outside of leaf", leaf, root, slot);
540 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
541 struct page *page, int max_walk)
543 struct extent_buffer *eb;
544 u64 start = page_offset(page);
548 if (start < max_walk)
551 min_start = start - max_walk;
553 while (start >= min_start) {
554 eb = find_extent_buffer(tree, start, 0);
557 * we found an extent buffer and it contains our page
560 if (eb->start <= target &&
561 eb->start + eb->len > target)
564 /* we found an extent buffer that wasn't for us */
565 free_extent_buffer(eb);
570 start -= PAGE_CACHE_SIZE;
575 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
576 struct extent_state *state, int mirror)
578 struct extent_io_tree *tree;
581 struct extent_buffer *eb;
582 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
589 tree = &BTRFS_I(page->mapping->host)->io_tree;
590 eb = (struct extent_buffer *)page->private;
592 /* the pending IO might have been the only thing that kept this buffer
593 * in memory. Make sure we have a ref for all this other checks
595 extent_buffer_get(eb);
597 reads_done = atomic_dec_and_test(&eb->io_pages);
601 eb->read_mirror = mirror;
602 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607 found_start = btrfs_header_bytenr(eb);
608 if (found_start != eb->start) {
609 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
611 (unsigned long long)found_start,
612 (unsigned long long)eb->start);
616 if (check_tree_block_fsid(root, eb)) {
617 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
618 (unsigned long long)eb->start);
622 found_level = btrfs_header_level(eb);
624 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
627 ret = csum_tree_block(root, eb, 1);
634 * If this is a leaf block and it is corrupt, set the corrupt bit so
635 * that we don't try and read the other copies of this block, just
638 if (found_level == 0 && check_leaf(root, eb)) {
639 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
644 set_extent_buffer_uptodate(eb);
646 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
647 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
648 btree_readahead_hook(root, eb, eb->start, ret);
652 clear_extent_buffer_uptodate(eb);
653 free_extent_buffer(eb);
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
660 struct extent_buffer *eb;
661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
663 eb = (struct extent_buffer *)page->private;
664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665 eb->read_mirror = failed_mirror;
666 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
667 btree_readahead_hook(root, eb, eb->start, -EIO);
668 return -EIO; /* we fixed nothing */
671 static void end_workqueue_bio(struct bio *bio, int err)
673 struct end_io_wq *end_io_wq = bio->bi_private;
674 struct btrfs_fs_info *fs_info;
676 fs_info = end_io_wq->info;
677 end_io_wq->error = err;
678 end_io_wq->work.func = end_workqueue_fn;
679 end_io_wq->work.flags = 0;
681 if (bio->bi_rw & REQ_WRITE) {
682 if (end_io_wq->metadata == 1)
683 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685 else if (end_io_wq->metadata == 2)
686 btrfs_queue_worker(&fs_info->endio_freespace_worker,
689 btrfs_queue_worker(&fs_info->endio_write_workers,
692 if (end_io_wq->metadata)
693 btrfs_queue_worker(&fs_info->endio_meta_workers,
696 btrfs_queue_worker(&fs_info->endio_workers,
702 * For the metadata arg you want
705 * 1 - if normal metadta
706 * 2 - if writing to the free space cache area
708 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
711 struct end_io_wq *end_io_wq;
712 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
716 end_io_wq->private = bio->bi_private;
717 end_io_wq->end_io = bio->bi_end_io;
718 end_io_wq->info = info;
719 end_io_wq->error = 0;
720 end_io_wq->bio = bio;
721 end_io_wq->metadata = metadata;
723 bio->bi_private = end_io_wq;
724 bio->bi_end_io = end_workqueue_bio;
728 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
730 unsigned long limit = min_t(unsigned long,
731 info->workers.max_workers,
732 info->fs_devices->open_devices);
736 static void run_one_async_start(struct btrfs_work *work)
738 struct async_submit_bio *async;
741 async = container_of(work, struct async_submit_bio, work);
742 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
743 async->mirror_num, async->bio_flags,
749 static void run_one_async_done(struct btrfs_work *work)
751 struct btrfs_fs_info *fs_info;
752 struct async_submit_bio *async;
755 async = container_of(work, struct async_submit_bio, work);
756 fs_info = BTRFS_I(async->inode)->root->fs_info;
758 limit = btrfs_async_submit_limit(fs_info);
759 limit = limit * 2 / 3;
761 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
762 waitqueue_active(&fs_info->async_submit_wait))
763 wake_up(&fs_info->async_submit_wait);
765 /* If an error occured we just want to clean up the bio and move on */
767 bio_endio(async->bio, async->error);
771 async->submit_bio_done(async->inode, async->rw, async->bio,
772 async->mirror_num, async->bio_flags,
776 static void run_one_async_free(struct btrfs_work *work)
778 struct async_submit_bio *async;
780 async = container_of(work, struct async_submit_bio, work);
784 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
785 int rw, struct bio *bio, int mirror_num,
786 unsigned long bio_flags,
788 extent_submit_bio_hook_t *submit_bio_start,
789 extent_submit_bio_hook_t *submit_bio_done)
791 struct async_submit_bio *async;
793 async = kmalloc(sizeof(*async), GFP_NOFS);
797 async->inode = inode;
800 async->mirror_num = mirror_num;
801 async->submit_bio_start = submit_bio_start;
802 async->submit_bio_done = submit_bio_done;
804 async->work.func = run_one_async_start;
805 async->work.ordered_func = run_one_async_done;
806 async->work.ordered_free = run_one_async_free;
808 async->work.flags = 0;
809 async->bio_flags = bio_flags;
810 async->bio_offset = bio_offset;
814 atomic_inc(&fs_info->nr_async_submits);
817 btrfs_set_work_high_prio(&async->work);
819 btrfs_queue_worker(&fs_info->workers, &async->work);
821 while (atomic_read(&fs_info->async_submit_draining) &&
822 atomic_read(&fs_info->nr_async_submits)) {
823 wait_event(fs_info->async_submit_wait,
824 (atomic_read(&fs_info->nr_async_submits) == 0));
830 static int btree_csum_one_bio(struct bio *bio)
832 struct bio_vec *bvec = bio->bi_io_vec;
834 struct btrfs_root *root;
837 WARN_ON(bio->bi_vcnt <= 0);
838 while (bio_index < bio->bi_vcnt) {
839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840 ret = csum_dirty_buffer(root, bvec->bv_page);
849 static int __btree_submit_bio_start(struct inode *inode, int rw,
850 struct bio *bio, int mirror_num,
851 unsigned long bio_flags,
855 * when we're called for a write, we're already in the async
856 * submission context. Just jump into btrfs_map_bio
858 return btree_csum_one_bio(bio);
861 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
862 int mirror_num, unsigned long bio_flags,
866 * when we're called for a write, we're already in the async
867 * submission context. Just jump into btrfs_map_bio
869 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
872 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
873 int mirror_num, unsigned long bio_flags,
878 if (!(rw & REQ_WRITE)) {
881 * called for a read, do the setup so that checksum validation
882 * can happen in the async kernel threads
884 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
888 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
893 * kthread helpers are used to submit writes so that checksumming
894 * can happen in parallel across all CPUs
896 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
897 inode, rw, bio, mirror_num, 0,
899 __btree_submit_bio_start,
900 __btree_submit_bio_done);
903 #ifdef CONFIG_MIGRATION
904 static int btree_migratepage(struct address_space *mapping,
905 struct page *newpage, struct page *page,
906 enum migrate_mode mode)
909 * we can't safely write a btree page from here,
910 * we haven't done the locking hook
915 * Buffers may be managed in a filesystem specific way.
916 * We must have no buffers or drop them.
918 if (page_has_private(page) &&
919 !try_to_release_page(page, GFP_KERNEL))
921 return migrate_page(mapping, newpage, page, mode);
926 static int btree_writepages(struct address_space *mapping,
927 struct writeback_control *wbc)
929 struct extent_io_tree *tree;
930 tree = &BTRFS_I(mapping->host)->io_tree;
931 if (wbc->sync_mode == WB_SYNC_NONE) {
932 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
934 unsigned long thresh = 32 * 1024 * 1024;
936 if (wbc->for_kupdate)
939 /* this is a bit racy, but that's ok */
940 num_dirty = root->fs_info->dirty_metadata_bytes;
941 if (num_dirty < thresh)
944 return btree_write_cache_pages(mapping, wbc);
947 static int btree_readpage(struct file *file, struct page *page)
949 struct extent_io_tree *tree;
950 tree = &BTRFS_I(page->mapping->host)->io_tree;
951 return extent_read_full_page(tree, page, btree_get_extent, 0);
954 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
956 if (PageWriteback(page) || PageDirty(page))
959 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
960 * slab allocation from alloc_extent_state down the callchain where
961 * it'd hit a BUG_ON as those flags are not allowed.
963 gfp_flags &= ~GFP_SLAB_BUG_MASK;
965 return try_release_extent_buffer(page, gfp_flags);
968 static void btree_invalidatepage(struct page *page, unsigned long offset)
970 struct extent_io_tree *tree;
971 tree = &BTRFS_I(page->mapping->host)->io_tree;
972 extent_invalidatepage(tree, page, offset);
973 btree_releasepage(page, GFP_NOFS);
974 if (PagePrivate(page)) {
975 printk(KERN_WARNING "btrfs warning page private not zero "
976 "on page %llu\n", (unsigned long long)page_offset(page));
977 ClearPagePrivate(page);
978 set_page_private(page, 0);
979 page_cache_release(page);
983 static int btree_set_page_dirty(struct page *page)
985 struct extent_buffer *eb;
987 BUG_ON(!PagePrivate(page));
988 eb = (struct extent_buffer *)page->private;
990 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
991 BUG_ON(!atomic_read(&eb->refs));
992 btrfs_assert_tree_locked(eb);
993 return __set_page_dirty_nobuffers(page);
996 static const struct address_space_operations btree_aops = {
997 .readpage = btree_readpage,
998 .writepages = btree_writepages,
999 .releasepage = btree_releasepage,
1000 .invalidatepage = btree_invalidatepage,
1001 #ifdef CONFIG_MIGRATION
1002 .migratepage = btree_migratepage,
1004 .set_page_dirty = btree_set_page_dirty,
1007 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1010 struct extent_buffer *buf = NULL;
1011 struct inode *btree_inode = root->fs_info->btree_inode;
1014 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1017 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1018 buf, 0, WAIT_NONE, btree_get_extent, 0);
1019 free_extent_buffer(buf);
1023 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1024 int mirror_num, struct extent_buffer **eb)
1026 struct extent_buffer *buf = NULL;
1027 struct inode *btree_inode = root->fs_info->btree_inode;
1028 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1031 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1035 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1037 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1038 btree_get_extent, mirror_num);
1040 free_extent_buffer(buf);
1044 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1045 free_extent_buffer(buf);
1047 } else if (extent_buffer_uptodate(buf)) {
1050 free_extent_buffer(buf);
1055 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1056 u64 bytenr, u32 blocksize)
1058 struct inode *btree_inode = root->fs_info->btree_inode;
1059 struct extent_buffer *eb;
1060 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1065 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1066 u64 bytenr, u32 blocksize)
1068 struct inode *btree_inode = root->fs_info->btree_inode;
1069 struct extent_buffer *eb;
1071 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1077 int btrfs_write_tree_block(struct extent_buffer *buf)
1079 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1080 buf->start + buf->len - 1);
1083 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1085 return filemap_fdatawait_range(buf->pages[0]->mapping,
1086 buf->start, buf->start + buf->len - 1);
1089 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1090 u32 blocksize, u64 parent_transid)
1092 struct extent_buffer *buf = NULL;
1095 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1099 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1104 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1105 struct extent_buffer *buf)
1107 if (btrfs_header_generation(buf) ==
1108 root->fs_info->running_transaction->transid) {
1109 btrfs_assert_tree_locked(buf);
1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1112 spin_lock(&root->fs_info->delalloc_lock);
1113 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1114 root->fs_info->dirty_metadata_bytes -= buf->len;
1116 spin_unlock(&root->fs_info->delalloc_lock);
1117 btrfs_panic(root->fs_info, -EOVERFLOW,
1118 "Can't clear %lu bytes from "
1119 " dirty_mdatadata_bytes (%llu)",
1121 root->fs_info->dirty_metadata_bytes);
1123 spin_unlock(&root->fs_info->delalloc_lock);
1126 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1127 btrfs_set_lock_blocking(buf);
1128 clear_extent_buffer_dirty(buf);
1132 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1133 u32 stripesize, struct btrfs_root *root,
1134 struct btrfs_fs_info *fs_info,
1138 root->commit_root = NULL;
1139 root->sectorsize = sectorsize;
1140 root->nodesize = nodesize;
1141 root->leafsize = leafsize;
1142 root->stripesize = stripesize;
1144 root->track_dirty = 0;
1146 root->orphan_item_inserted = 0;
1147 root->orphan_cleanup_state = 0;
1149 root->objectid = objectid;
1150 root->last_trans = 0;
1151 root->highest_objectid = 0;
1153 root->inode_tree = RB_ROOT;
1154 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1155 root->block_rsv = NULL;
1156 root->orphan_block_rsv = NULL;
1158 INIT_LIST_HEAD(&root->dirty_list);
1159 INIT_LIST_HEAD(&root->root_list);
1160 spin_lock_init(&root->orphan_lock);
1161 spin_lock_init(&root->inode_lock);
1162 spin_lock_init(&root->accounting_lock);
1163 mutex_init(&root->objectid_mutex);
1164 mutex_init(&root->log_mutex);
1165 init_waitqueue_head(&root->log_writer_wait);
1166 init_waitqueue_head(&root->log_commit_wait[0]);
1167 init_waitqueue_head(&root->log_commit_wait[1]);
1168 atomic_set(&root->log_commit[0], 0);
1169 atomic_set(&root->log_commit[1], 0);
1170 atomic_set(&root->log_writers, 0);
1171 atomic_set(&root->orphan_inodes, 0);
1172 root->log_batch = 0;
1173 root->log_transid = 0;
1174 root->last_log_commit = 0;
1175 extent_io_tree_init(&root->dirty_log_pages,
1176 fs_info->btree_inode->i_mapping);
1178 memset(&root->root_key, 0, sizeof(root->root_key));
1179 memset(&root->root_item, 0, sizeof(root->root_item));
1180 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1181 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1182 root->defrag_trans_start = fs_info->generation;
1183 init_completion(&root->kobj_unregister);
1184 root->defrag_running = 0;
1185 root->root_key.objectid = objectid;
1188 spin_lock_init(&root->root_times_lock);
1191 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1192 struct btrfs_fs_info *fs_info,
1194 struct btrfs_root *root)
1200 __setup_root(tree_root->nodesize, tree_root->leafsize,
1201 tree_root->sectorsize, tree_root->stripesize,
1202 root, fs_info, objectid);
1203 ret = btrfs_find_last_root(tree_root, objectid,
1204 &root->root_item, &root->root_key);
1210 generation = btrfs_root_generation(&root->root_item);
1211 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1212 root->commit_root = NULL;
1213 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1214 blocksize, generation);
1215 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1216 free_extent_buffer(root->node);
1220 root->commit_root = btrfs_root_node(root);
1224 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1226 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1228 root->fs_info = fs_info;
1232 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1233 struct btrfs_fs_info *fs_info,
1236 struct extent_buffer *leaf;
1237 struct btrfs_root *tree_root = fs_info->tree_root;
1238 struct btrfs_root *root;
1239 struct btrfs_key key;
1243 root = btrfs_alloc_root(fs_info);
1245 return ERR_PTR(-ENOMEM);
1247 __setup_root(tree_root->nodesize, tree_root->leafsize,
1248 tree_root->sectorsize, tree_root->stripesize,
1249 root, fs_info, objectid);
1250 root->root_key.objectid = objectid;
1251 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1252 root->root_key.offset = 0;
1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1255 0, objectid, NULL, 0, 0, 0);
1257 ret = PTR_ERR(leaf);
1261 bytenr = leaf->start;
1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 btrfs_set_header_bytenr(leaf, leaf->start);
1264 btrfs_set_header_generation(leaf, trans->transid);
1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 btrfs_set_header_owner(leaf, objectid);
1269 write_extent_buffer(leaf, fs_info->fsid,
1270 (unsigned long)btrfs_header_fsid(leaf),
1272 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1273 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1275 btrfs_mark_buffer_dirty(leaf);
1277 root->commit_root = btrfs_root_node(root);
1278 root->track_dirty = 1;
1281 root->root_item.flags = 0;
1282 root->root_item.byte_limit = 0;
1283 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1284 btrfs_set_root_generation(&root->root_item, trans->transid);
1285 btrfs_set_root_level(&root->root_item, 0);
1286 btrfs_set_root_refs(&root->root_item, 1);
1287 btrfs_set_root_used(&root->root_item, leaf->len);
1288 btrfs_set_root_last_snapshot(&root->root_item, 0);
1289 btrfs_set_root_dirid(&root->root_item, 0);
1290 root->root_item.drop_level = 0;
1292 key.objectid = objectid;
1293 key.type = BTRFS_ROOT_ITEM_KEY;
1295 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1299 btrfs_tree_unlock(leaf);
1303 return ERR_PTR(ret);
1308 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1309 struct btrfs_fs_info *fs_info)
1311 struct btrfs_root *root;
1312 struct btrfs_root *tree_root = fs_info->tree_root;
1313 struct extent_buffer *leaf;
1315 root = btrfs_alloc_root(fs_info);
1317 return ERR_PTR(-ENOMEM);
1319 __setup_root(tree_root->nodesize, tree_root->leafsize,
1320 tree_root->sectorsize, tree_root->stripesize,
1321 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1323 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1324 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1325 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1327 * log trees do not get reference counted because they go away
1328 * before a real commit is actually done. They do store pointers
1329 * to file data extents, and those reference counts still get
1330 * updated (along with back refs to the log tree).
1334 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1335 BTRFS_TREE_LOG_OBJECTID, NULL,
1339 return ERR_CAST(leaf);
1342 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1343 btrfs_set_header_bytenr(leaf, leaf->start);
1344 btrfs_set_header_generation(leaf, trans->transid);
1345 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1346 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1349 write_extent_buffer(root->node, root->fs_info->fsid,
1350 (unsigned long)btrfs_header_fsid(root->node),
1352 btrfs_mark_buffer_dirty(root->node);
1353 btrfs_tree_unlock(root->node);
1357 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1358 struct btrfs_fs_info *fs_info)
1360 struct btrfs_root *log_root;
1362 log_root = alloc_log_tree(trans, fs_info);
1363 if (IS_ERR(log_root))
1364 return PTR_ERR(log_root);
1365 WARN_ON(fs_info->log_root_tree);
1366 fs_info->log_root_tree = log_root;
1370 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root)
1373 struct btrfs_root *log_root;
1374 struct btrfs_inode_item *inode_item;
1376 log_root = alloc_log_tree(trans, root->fs_info);
1377 if (IS_ERR(log_root))
1378 return PTR_ERR(log_root);
1380 log_root->last_trans = trans->transid;
1381 log_root->root_key.offset = root->root_key.objectid;
1383 inode_item = &log_root->root_item.inode;
1384 inode_item->generation = cpu_to_le64(1);
1385 inode_item->size = cpu_to_le64(3);
1386 inode_item->nlink = cpu_to_le32(1);
1387 inode_item->nbytes = cpu_to_le64(root->leafsize);
1388 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1390 btrfs_set_root_node(&log_root->root_item, log_root->node);
1392 WARN_ON(root->log_root);
1393 root->log_root = log_root;
1394 root->log_transid = 0;
1395 root->last_log_commit = 0;
1399 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1400 struct btrfs_key *location)
1402 struct btrfs_root *root;
1403 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1404 struct btrfs_path *path;
1405 struct extent_buffer *l;
1411 root = btrfs_alloc_root(fs_info);
1413 return ERR_PTR(-ENOMEM);
1414 if (location->offset == (u64)-1) {
1415 ret = find_and_setup_root(tree_root, fs_info,
1416 location->objectid, root);
1419 return ERR_PTR(ret);
1424 __setup_root(tree_root->nodesize, tree_root->leafsize,
1425 tree_root->sectorsize, tree_root->stripesize,
1426 root, fs_info, location->objectid);
1428 path = btrfs_alloc_path();
1431 return ERR_PTR(-ENOMEM);
1433 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1436 slot = path->slots[0];
1437 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1438 memcpy(&root->root_key, location, sizeof(*location));
1440 btrfs_free_path(path);
1445 return ERR_PTR(ret);
1448 generation = btrfs_root_generation(&root->root_item);
1449 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1450 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1451 blocksize, generation);
1452 root->commit_root = btrfs_root_node(root);
1453 BUG_ON(!root->node); /* -ENOMEM */
1455 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1457 btrfs_check_and_init_root_item(&root->root_item);
1463 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1464 struct btrfs_key *location)
1466 struct btrfs_root *root;
1469 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1470 return fs_info->tree_root;
1471 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1472 return fs_info->extent_root;
1473 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1474 return fs_info->chunk_root;
1475 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1476 return fs_info->dev_root;
1477 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1478 return fs_info->csum_root;
1479 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1480 return fs_info->quota_root ? fs_info->quota_root :
1483 spin_lock(&fs_info->fs_roots_radix_lock);
1484 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1485 (unsigned long)location->objectid);
1486 spin_unlock(&fs_info->fs_roots_radix_lock);
1490 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1494 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1495 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1497 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1502 btrfs_init_free_ino_ctl(root);
1503 mutex_init(&root->fs_commit_mutex);
1504 spin_lock_init(&root->cache_lock);
1505 init_waitqueue_head(&root->cache_wait);
1507 ret = get_anon_bdev(&root->anon_dev);
1511 if (btrfs_root_refs(&root->root_item) == 0) {
1516 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1520 root->orphan_item_inserted = 1;
1522 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1526 spin_lock(&fs_info->fs_roots_radix_lock);
1527 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1528 (unsigned long)root->root_key.objectid,
1533 spin_unlock(&fs_info->fs_roots_radix_lock);
1534 radix_tree_preload_end();
1536 if (ret == -EEXIST) {
1543 ret = btrfs_find_dead_roots(fs_info->tree_root,
1544 root->root_key.objectid);
1549 return ERR_PTR(ret);
1552 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1554 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1556 struct btrfs_device *device;
1557 struct backing_dev_info *bdi;
1560 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1563 bdi = blk_get_backing_dev_info(device->bdev);
1564 if (bdi && bdi_congested(bdi, bdi_bits)) {
1574 * If this fails, caller must call bdi_destroy() to get rid of the
1577 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1581 bdi->capabilities = BDI_CAP_MAP_COPY;
1582 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1586 bdi->ra_pages = default_backing_dev_info.ra_pages;
1587 bdi->congested_fn = btrfs_congested_fn;
1588 bdi->congested_data = info;
1593 * called by the kthread helper functions to finally call the bio end_io
1594 * functions. This is where read checksum verification actually happens
1596 static void end_workqueue_fn(struct btrfs_work *work)
1599 struct end_io_wq *end_io_wq;
1600 struct btrfs_fs_info *fs_info;
1603 end_io_wq = container_of(work, struct end_io_wq, work);
1604 bio = end_io_wq->bio;
1605 fs_info = end_io_wq->info;
1607 error = end_io_wq->error;
1608 bio->bi_private = end_io_wq->private;
1609 bio->bi_end_io = end_io_wq->end_io;
1611 bio_endio(bio, error);
1614 static int cleaner_kthread(void *arg)
1616 struct btrfs_root *root = arg;
1619 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1620 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1621 btrfs_run_delayed_iputs(root);
1622 btrfs_clean_old_snapshots(root);
1623 mutex_unlock(&root->fs_info->cleaner_mutex);
1624 btrfs_run_defrag_inodes(root->fs_info);
1627 if (!try_to_freeze()) {
1628 set_current_state(TASK_INTERRUPTIBLE);
1629 if (!kthread_should_stop())
1631 __set_current_state(TASK_RUNNING);
1633 } while (!kthread_should_stop());
1637 static int transaction_kthread(void *arg)
1639 struct btrfs_root *root = arg;
1640 struct btrfs_trans_handle *trans;
1641 struct btrfs_transaction *cur;
1644 unsigned long delay;
1648 cannot_commit = false;
1650 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1652 spin_lock(&root->fs_info->trans_lock);
1653 cur = root->fs_info->running_transaction;
1655 spin_unlock(&root->fs_info->trans_lock);
1659 now = get_seconds();
1660 if (!cur->blocked &&
1661 (now < cur->start_time || now - cur->start_time < 30)) {
1662 spin_unlock(&root->fs_info->trans_lock);
1666 transid = cur->transid;
1667 spin_unlock(&root->fs_info->trans_lock);
1669 /* If the file system is aborted, this will always fail. */
1670 trans = btrfs_join_transaction(root);
1671 if (IS_ERR(trans)) {
1672 cannot_commit = true;
1675 if (transid == trans->transid) {
1676 btrfs_commit_transaction(trans, root);
1678 btrfs_end_transaction(trans, root);
1681 wake_up_process(root->fs_info->cleaner_kthread);
1682 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1684 if (!try_to_freeze()) {
1685 set_current_state(TASK_INTERRUPTIBLE);
1686 if (!kthread_should_stop() &&
1687 (!btrfs_transaction_blocked(root->fs_info) ||
1689 schedule_timeout(delay);
1690 __set_current_state(TASK_RUNNING);
1692 } while (!kthread_should_stop());
1697 * this will find the highest generation in the array of
1698 * root backups. The index of the highest array is returned,
1699 * or -1 if we can't find anything.
1701 * We check to make sure the array is valid by comparing the
1702 * generation of the latest root in the array with the generation
1703 * in the super block. If they don't match we pitch it.
1705 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1708 int newest_index = -1;
1709 struct btrfs_root_backup *root_backup;
1712 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1713 root_backup = info->super_copy->super_roots + i;
1714 cur = btrfs_backup_tree_root_gen(root_backup);
1715 if (cur == newest_gen)
1719 /* check to see if we actually wrapped around */
1720 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1721 root_backup = info->super_copy->super_roots;
1722 cur = btrfs_backup_tree_root_gen(root_backup);
1723 if (cur == newest_gen)
1726 return newest_index;
1731 * find the oldest backup so we know where to store new entries
1732 * in the backup array. This will set the backup_root_index
1733 * field in the fs_info struct
1735 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1738 int newest_index = -1;
1740 newest_index = find_newest_super_backup(info, newest_gen);
1741 /* if there was garbage in there, just move along */
1742 if (newest_index == -1) {
1743 info->backup_root_index = 0;
1745 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1750 * copy all the root pointers into the super backup array.
1751 * this will bump the backup pointer by one when it is
1754 static void backup_super_roots(struct btrfs_fs_info *info)
1757 struct btrfs_root_backup *root_backup;
1760 next_backup = info->backup_root_index;
1761 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1762 BTRFS_NUM_BACKUP_ROOTS;
1765 * just overwrite the last backup if we're at the same generation
1766 * this happens only at umount
1768 root_backup = info->super_for_commit->super_roots + last_backup;
1769 if (btrfs_backup_tree_root_gen(root_backup) ==
1770 btrfs_header_generation(info->tree_root->node))
1771 next_backup = last_backup;
1773 root_backup = info->super_for_commit->super_roots + next_backup;
1776 * make sure all of our padding and empty slots get zero filled
1777 * regardless of which ones we use today
1779 memset(root_backup, 0, sizeof(*root_backup));
1781 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1783 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1784 btrfs_set_backup_tree_root_gen(root_backup,
1785 btrfs_header_generation(info->tree_root->node));
1787 btrfs_set_backup_tree_root_level(root_backup,
1788 btrfs_header_level(info->tree_root->node));
1790 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1791 btrfs_set_backup_chunk_root_gen(root_backup,
1792 btrfs_header_generation(info->chunk_root->node));
1793 btrfs_set_backup_chunk_root_level(root_backup,
1794 btrfs_header_level(info->chunk_root->node));
1796 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1797 btrfs_set_backup_extent_root_gen(root_backup,
1798 btrfs_header_generation(info->extent_root->node));
1799 btrfs_set_backup_extent_root_level(root_backup,
1800 btrfs_header_level(info->extent_root->node));
1803 * we might commit during log recovery, which happens before we set
1804 * the fs_root. Make sure it is valid before we fill it in.
1806 if (info->fs_root && info->fs_root->node) {
1807 btrfs_set_backup_fs_root(root_backup,
1808 info->fs_root->node->start);
1809 btrfs_set_backup_fs_root_gen(root_backup,
1810 btrfs_header_generation(info->fs_root->node));
1811 btrfs_set_backup_fs_root_level(root_backup,
1812 btrfs_header_level(info->fs_root->node));
1815 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1816 btrfs_set_backup_dev_root_gen(root_backup,
1817 btrfs_header_generation(info->dev_root->node));
1818 btrfs_set_backup_dev_root_level(root_backup,
1819 btrfs_header_level(info->dev_root->node));
1821 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1822 btrfs_set_backup_csum_root_gen(root_backup,
1823 btrfs_header_generation(info->csum_root->node));
1824 btrfs_set_backup_csum_root_level(root_backup,
1825 btrfs_header_level(info->csum_root->node));
1827 btrfs_set_backup_total_bytes(root_backup,
1828 btrfs_super_total_bytes(info->super_copy));
1829 btrfs_set_backup_bytes_used(root_backup,
1830 btrfs_super_bytes_used(info->super_copy));
1831 btrfs_set_backup_num_devices(root_backup,
1832 btrfs_super_num_devices(info->super_copy));
1835 * if we don't copy this out to the super_copy, it won't get remembered
1836 * for the next commit
1838 memcpy(&info->super_copy->super_roots,
1839 &info->super_for_commit->super_roots,
1840 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1844 * this copies info out of the root backup array and back into
1845 * the in-memory super block. It is meant to help iterate through
1846 * the array, so you send it the number of backups you've already
1847 * tried and the last backup index you used.
1849 * this returns -1 when it has tried all the backups
1851 static noinline int next_root_backup(struct btrfs_fs_info *info,
1852 struct btrfs_super_block *super,
1853 int *num_backups_tried, int *backup_index)
1855 struct btrfs_root_backup *root_backup;
1856 int newest = *backup_index;
1858 if (*num_backups_tried == 0) {
1859 u64 gen = btrfs_super_generation(super);
1861 newest = find_newest_super_backup(info, gen);
1865 *backup_index = newest;
1866 *num_backups_tried = 1;
1867 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1868 /* we've tried all the backups, all done */
1871 /* jump to the next oldest backup */
1872 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1873 BTRFS_NUM_BACKUP_ROOTS;
1874 *backup_index = newest;
1875 *num_backups_tried += 1;
1877 root_backup = super->super_roots + newest;
1879 btrfs_set_super_generation(super,
1880 btrfs_backup_tree_root_gen(root_backup));
1881 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1882 btrfs_set_super_root_level(super,
1883 btrfs_backup_tree_root_level(root_backup));
1884 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1887 * fixme: the total bytes and num_devices need to match or we should
1890 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1891 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1895 /* helper to cleanup tree roots */
1896 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1898 free_extent_buffer(info->tree_root->node);
1899 free_extent_buffer(info->tree_root->commit_root);
1900 free_extent_buffer(info->dev_root->node);
1901 free_extent_buffer(info->dev_root->commit_root);
1902 free_extent_buffer(info->extent_root->node);
1903 free_extent_buffer(info->extent_root->commit_root);
1904 free_extent_buffer(info->csum_root->node);
1905 free_extent_buffer(info->csum_root->commit_root);
1906 if (info->quota_root) {
1907 free_extent_buffer(info->quota_root->node);
1908 free_extent_buffer(info->quota_root->commit_root);
1911 info->tree_root->node = NULL;
1912 info->tree_root->commit_root = NULL;
1913 info->dev_root->node = NULL;
1914 info->dev_root->commit_root = NULL;
1915 info->extent_root->node = NULL;
1916 info->extent_root->commit_root = NULL;
1917 info->csum_root->node = NULL;
1918 info->csum_root->commit_root = NULL;
1919 if (info->quota_root) {
1920 info->quota_root->node = NULL;
1921 info->quota_root->commit_root = NULL;
1925 free_extent_buffer(info->chunk_root->node);
1926 free_extent_buffer(info->chunk_root->commit_root);
1927 info->chunk_root->node = NULL;
1928 info->chunk_root->commit_root = NULL;
1933 int open_ctree(struct super_block *sb,
1934 struct btrfs_fs_devices *fs_devices,
1944 struct btrfs_key location;
1945 struct buffer_head *bh;
1946 struct btrfs_super_block *disk_super;
1947 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1948 struct btrfs_root *tree_root;
1949 struct btrfs_root *extent_root;
1950 struct btrfs_root *csum_root;
1951 struct btrfs_root *chunk_root;
1952 struct btrfs_root *dev_root;
1953 struct btrfs_root *quota_root;
1954 struct btrfs_root *log_tree_root;
1957 int num_backups_tried = 0;
1958 int backup_index = 0;
1960 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1961 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1962 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1963 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1964 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1965 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1967 if (!tree_root || !extent_root || !csum_root ||
1968 !chunk_root || !dev_root || !quota_root) {
1973 ret = init_srcu_struct(&fs_info->subvol_srcu);
1979 ret = setup_bdi(fs_info, &fs_info->bdi);
1985 fs_info->btree_inode = new_inode(sb);
1986 if (!fs_info->btree_inode) {
1991 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1993 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1994 INIT_LIST_HEAD(&fs_info->trans_list);
1995 INIT_LIST_HEAD(&fs_info->dead_roots);
1996 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1997 INIT_LIST_HEAD(&fs_info->hashers);
1998 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1999 INIT_LIST_HEAD(&fs_info->ordered_operations);
2000 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2001 spin_lock_init(&fs_info->delalloc_lock);
2002 spin_lock_init(&fs_info->trans_lock);
2003 spin_lock_init(&fs_info->ref_cache_lock);
2004 spin_lock_init(&fs_info->fs_roots_radix_lock);
2005 spin_lock_init(&fs_info->delayed_iput_lock);
2006 spin_lock_init(&fs_info->defrag_inodes_lock);
2007 spin_lock_init(&fs_info->free_chunk_lock);
2008 spin_lock_init(&fs_info->tree_mod_seq_lock);
2009 rwlock_init(&fs_info->tree_mod_log_lock);
2010 mutex_init(&fs_info->reloc_mutex);
2012 init_completion(&fs_info->kobj_unregister);
2013 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2014 INIT_LIST_HEAD(&fs_info->space_info);
2015 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2016 btrfs_mapping_init(&fs_info->mapping_tree);
2017 btrfs_init_block_rsv(&fs_info->global_block_rsv);
2018 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2019 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2020 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2021 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
2022 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
2023 atomic_set(&fs_info->nr_async_submits, 0);
2024 atomic_set(&fs_info->async_delalloc_pages, 0);
2025 atomic_set(&fs_info->async_submit_draining, 0);
2026 atomic_set(&fs_info->nr_async_bios, 0);
2027 atomic_set(&fs_info->defrag_running, 0);
2028 atomic_set(&fs_info->tree_mod_seq, 0);
2030 fs_info->max_inline = 8192 * 1024;
2031 fs_info->metadata_ratio = 0;
2032 fs_info->defrag_inodes = RB_ROOT;
2033 fs_info->trans_no_join = 0;
2034 fs_info->free_chunk_space = 0;
2035 fs_info->tree_mod_log = RB_ROOT;
2037 /* readahead state */
2038 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2039 spin_lock_init(&fs_info->reada_lock);
2041 fs_info->thread_pool_size = min_t(unsigned long,
2042 num_online_cpus() + 2, 8);
2044 INIT_LIST_HEAD(&fs_info->ordered_extents);
2045 spin_lock_init(&fs_info->ordered_extent_lock);
2046 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2048 if (!fs_info->delayed_root) {
2052 btrfs_init_delayed_root(fs_info->delayed_root);
2054 mutex_init(&fs_info->scrub_lock);
2055 atomic_set(&fs_info->scrubs_running, 0);
2056 atomic_set(&fs_info->scrub_pause_req, 0);
2057 atomic_set(&fs_info->scrubs_paused, 0);
2058 atomic_set(&fs_info->scrub_cancel_req, 0);
2059 init_waitqueue_head(&fs_info->scrub_pause_wait);
2060 init_rwsem(&fs_info->scrub_super_lock);
2061 fs_info->scrub_workers_refcnt = 0;
2062 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2063 fs_info->check_integrity_print_mask = 0;
2066 spin_lock_init(&fs_info->balance_lock);
2067 mutex_init(&fs_info->balance_mutex);
2068 atomic_set(&fs_info->balance_running, 0);
2069 atomic_set(&fs_info->balance_pause_req, 0);
2070 atomic_set(&fs_info->balance_cancel_req, 0);
2071 fs_info->balance_ctl = NULL;
2072 init_waitqueue_head(&fs_info->balance_wait_q);
2074 sb->s_blocksize = 4096;
2075 sb->s_blocksize_bits = blksize_bits(4096);
2076 sb->s_bdi = &fs_info->bdi;
2078 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2079 set_nlink(fs_info->btree_inode, 1);
2081 * we set the i_size on the btree inode to the max possible int.
2082 * the real end of the address space is determined by all of
2083 * the devices in the system
2085 fs_info->btree_inode->i_size = OFFSET_MAX;
2086 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2087 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2089 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2090 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2091 fs_info->btree_inode->i_mapping);
2092 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2093 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2095 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2097 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2098 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2099 sizeof(struct btrfs_key));
2100 set_bit(BTRFS_INODE_DUMMY,
2101 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2102 insert_inode_hash(fs_info->btree_inode);
2104 spin_lock_init(&fs_info->block_group_cache_lock);
2105 fs_info->block_group_cache_tree = RB_ROOT;
2107 extent_io_tree_init(&fs_info->freed_extents[0],
2108 fs_info->btree_inode->i_mapping);
2109 extent_io_tree_init(&fs_info->freed_extents[1],
2110 fs_info->btree_inode->i_mapping);
2111 fs_info->pinned_extents = &fs_info->freed_extents[0];
2112 fs_info->do_barriers = 1;
2115 mutex_init(&fs_info->ordered_operations_mutex);
2116 mutex_init(&fs_info->tree_log_mutex);
2117 mutex_init(&fs_info->chunk_mutex);
2118 mutex_init(&fs_info->transaction_kthread_mutex);
2119 mutex_init(&fs_info->cleaner_mutex);
2120 mutex_init(&fs_info->volume_mutex);
2121 init_rwsem(&fs_info->extent_commit_sem);
2122 init_rwsem(&fs_info->cleanup_work_sem);
2123 init_rwsem(&fs_info->subvol_sem);
2125 spin_lock_init(&fs_info->qgroup_lock);
2126 fs_info->qgroup_tree = RB_ROOT;
2127 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2128 fs_info->qgroup_seq = 1;
2129 fs_info->quota_enabled = 0;
2130 fs_info->pending_quota_state = 0;
2132 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2133 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2135 init_waitqueue_head(&fs_info->transaction_throttle);
2136 init_waitqueue_head(&fs_info->transaction_wait);
2137 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2138 init_waitqueue_head(&fs_info->async_submit_wait);
2140 __setup_root(4096, 4096, 4096, 4096, tree_root,
2141 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2143 invalidate_bdev(fs_devices->latest_bdev);
2144 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2150 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2151 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2152 sizeof(*fs_info->super_for_commit));
2155 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2157 disk_super = fs_info->super_copy;
2158 if (!btrfs_super_root(disk_super))
2161 /* check FS state, whether FS is broken. */
2162 fs_info->fs_state |= btrfs_super_flags(disk_super);
2164 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2166 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2172 * run through our array of backup supers and setup
2173 * our ring pointer to the oldest one
2175 generation = btrfs_super_generation(disk_super);
2176 find_oldest_super_backup(fs_info, generation);
2179 * In the long term, we'll store the compression type in the super
2180 * block, and it'll be used for per file compression control.
2182 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2184 ret = btrfs_parse_options(tree_root, options);
2190 features = btrfs_super_incompat_flags(disk_super) &
2191 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2193 printk(KERN_ERR "BTRFS: couldn't mount because of "
2194 "unsupported optional features (%Lx).\n",
2195 (unsigned long long)features);
2200 if (btrfs_super_leafsize(disk_super) !=
2201 btrfs_super_nodesize(disk_super)) {
2202 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2203 "blocksizes don't match. node %d leaf %d\n",
2204 btrfs_super_nodesize(disk_super),
2205 btrfs_super_leafsize(disk_super));
2209 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2210 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2211 "blocksize (%d) was too large\n",
2212 btrfs_super_leafsize(disk_super));
2217 features = btrfs_super_incompat_flags(disk_super);
2218 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2219 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2220 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2223 * flag our filesystem as having big metadata blocks if
2224 * they are bigger than the page size
2226 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2227 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2228 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2229 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2232 nodesize = btrfs_super_nodesize(disk_super);
2233 leafsize = btrfs_super_leafsize(disk_super);
2234 sectorsize = btrfs_super_sectorsize(disk_super);
2235 stripesize = btrfs_super_stripesize(disk_super);
2238 * mixed block groups end up with duplicate but slightly offset
2239 * extent buffers for the same range. It leads to corruptions
2241 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2242 (sectorsize != leafsize)) {
2243 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2244 "are not allowed for mixed block groups on %s\n",
2249 btrfs_set_super_incompat_flags(disk_super, features);
2251 features = btrfs_super_compat_ro_flags(disk_super) &
2252 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2253 if (!(sb->s_flags & MS_RDONLY) && features) {
2254 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2255 "unsupported option features (%Lx).\n",
2256 (unsigned long long)features);
2261 btrfs_init_workers(&fs_info->generic_worker,
2262 "genwork", 1, NULL);
2264 btrfs_init_workers(&fs_info->workers, "worker",
2265 fs_info->thread_pool_size,
2266 &fs_info->generic_worker);
2268 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2269 fs_info->thread_pool_size,
2270 &fs_info->generic_worker);
2272 btrfs_init_workers(&fs_info->submit_workers, "submit",
2273 min_t(u64, fs_devices->num_devices,
2274 fs_info->thread_pool_size),
2275 &fs_info->generic_worker);
2277 btrfs_init_workers(&fs_info->caching_workers, "cache",
2278 2, &fs_info->generic_worker);
2280 /* a higher idle thresh on the submit workers makes it much more
2281 * likely that bios will be send down in a sane order to the
2284 fs_info->submit_workers.idle_thresh = 64;
2286 fs_info->workers.idle_thresh = 16;
2287 fs_info->workers.ordered = 1;
2289 fs_info->delalloc_workers.idle_thresh = 2;
2290 fs_info->delalloc_workers.ordered = 1;
2292 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2293 &fs_info->generic_worker);
2294 btrfs_init_workers(&fs_info->endio_workers, "endio",
2295 fs_info->thread_pool_size,
2296 &fs_info->generic_worker);
2297 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2298 fs_info->thread_pool_size,
2299 &fs_info->generic_worker);
2300 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2301 "endio-meta-write", fs_info->thread_pool_size,
2302 &fs_info->generic_worker);
2303 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2304 fs_info->thread_pool_size,
2305 &fs_info->generic_worker);
2306 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2307 1, &fs_info->generic_worker);
2308 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2309 fs_info->thread_pool_size,
2310 &fs_info->generic_worker);
2311 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2312 fs_info->thread_pool_size,
2313 &fs_info->generic_worker);
2316 * endios are largely parallel and should have a very
2319 fs_info->endio_workers.idle_thresh = 4;
2320 fs_info->endio_meta_workers.idle_thresh = 4;
2322 fs_info->endio_write_workers.idle_thresh = 2;
2323 fs_info->endio_meta_write_workers.idle_thresh = 2;
2324 fs_info->readahead_workers.idle_thresh = 2;
2327 * btrfs_start_workers can really only fail because of ENOMEM so just
2328 * return -ENOMEM if any of these fail.
2330 ret = btrfs_start_workers(&fs_info->workers);
2331 ret |= btrfs_start_workers(&fs_info->generic_worker);
2332 ret |= btrfs_start_workers(&fs_info->submit_workers);
2333 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2334 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2335 ret |= btrfs_start_workers(&fs_info->endio_workers);
2336 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2337 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2338 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2339 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2340 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2341 ret |= btrfs_start_workers(&fs_info->caching_workers);
2342 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2345 goto fail_sb_buffer;
2348 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2349 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2350 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2352 tree_root->nodesize = nodesize;
2353 tree_root->leafsize = leafsize;
2354 tree_root->sectorsize = sectorsize;
2355 tree_root->stripesize = stripesize;
2357 sb->s_blocksize = sectorsize;
2358 sb->s_blocksize_bits = blksize_bits(sectorsize);
2360 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2361 sizeof(disk_super->magic))) {
2362 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2363 goto fail_sb_buffer;
2366 if (sectorsize != PAGE_SIZE) {
2367 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2368 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2369 goto fail_sb_buffer;
2372 mutex_lock(&fs_info->chunk_mutex);
2373 ret = btrfs_read_sys_array(tree_root);
2374 mutex_unlock(&fs_info->chunk_mutex);
2376 printk(KERN_WARNING "btrfs: failed to read the system "
2377 "array on %s\n", sb->s_id);
2378 goto fail_sb_buffer;
2381 blocksize = btrfs_level_size(tree_root,
2382 btrfs_super_chunk_root_level(disk_super));
2383 generation = btrfs_super_chunk_root_generation(disk_super);
2385 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2386 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2388 chunk_root->node = read_tree_block(chunk_root,
2389 btrfs_super_chunk_root(disk_super),
2390 blocksize, generation);
2391 BUG_ON(!chunk_root->node); /* -ENOMEM */
2392 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2393 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2395 goto fail_tree_roots;
2397 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2398 chunk_root->commit_root = btrfs_root_node(chunk_root);
2400 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2401 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2404 ret = btrfs_read_chunk_tree(chunk_root);
2406 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2408 goto fail_tree_roots;
2411 btrfs_close_extra_devices(fs_devices);
2413 if (!fs_devices->latest_bdev) {
2414 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2416 goto fail_tree_roots;
2420 blocksize = btrfs_level_size(tree_root,
2421 btrfs_super_root_level(disk_super));
2422 generation = btrfs_super_generation(disk_super);
2424 tree_root->node = read_tree_block(tree_root,
2425 btrfs_super_root(disk_super),
2426 blocksize, generation);
2427 if (!tree_root->node ||
2428 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2429 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2432 goto recovery_tree_root;
2435 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2436 tree_root->commit_root = btrfs_root_node(tree_root);
2438 ret = find_and_setup_root(tree_root, fs_info,
2439 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2441 goto recovery_tree_root;
2442 extent_root->track_dirty = 1;
2444 ret = find_and_setup_root(tree_root, fs_info,
2445 BTRFS_DEV_TREE_OBJECTID, dev_root);
2447 goto recovery_tree_root;
2448 dev_root->track_dirty = 1;
2450 ret = find_and_setup_root(tree_root, fs_info,
2451 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2453 goto recovery_tree_root;
2454 csum_root->track_dirty = 1;
2456 ret = find_and_setup_root(tree_root, fs_info,
2457 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2460 quota_root = fs_info->quota_root = NULL;
2462 quota_root->track_dirty = 1;
2463 fs_info->quota_enabled = 1;
2464 fs_info->pending_quota_state = 1;
2467 fs_info->generation = generation;
2468 fs_info->last_trans_committed = generation;
2470 ret = btrfs_recover_balance(fs_info);
2472 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2473 goto fail_block_groups;
2476 ret = btrfs_init_dev_stats(fs_info);
2478 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2480 goto fail_block_groups;
2483 ret = btrfs_init_space_info(fs_info);
2485 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2486 goto fail_block_groups;
2489 ret = btrfs_read_block_groups(extent_root);
2491 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2492 goto fail_block_groups;
2495 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2497 if (IS_ERR(fs_info->cleaner_kthread))
2498 goto fail_block_groups;
2500 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2502 "btrfs-transaction");
2503 if (IS_ERR(fs_info->transaction_kthread))
2506 if (!btrfs_test_opt(tree_root, SSD) &&
2507 !btrfs_test_opt(tree_root, NOSSD) &&
2508 !fs_info->fs_devices->rotating) {
2509 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2511 btrfs_set_opt(fs_info->mount_opt, SSD);
2514 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2515 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2516 ret = btrfsic_mount(tree_root, fs_devices,
2517 btrfs_test_opt(tree_root,
2518 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2520 fs_info->check_integrity_print_mask);
2522 printk(KERN_WARNING "btrfs: failed to initialize"
2523 " integrity check module %s\n", sb->s_id);
2526 ret = btrfs_read_qgroup_config(fs_info);
2528 goto fail_trans_kthread;
2530 /* do not make disk changes in broken FS */
2531 if (btrfs_super_log_root(disk_super) != 0) {
2532 u64 bytenr = btrfs_super_log_root(disk_super);
2534 if (fs_devices->rw_devices == 0) {
2535 printk(KERN_WARNING "Btrfs log replay required "
2541 btrfs_level_size(tree_root,
2542 btrfs_super_log_root_level(disk_super));
2544 log_tree_root = btrfs_alloc_root(fs_info);
2545 if (!log_tree_root) {
2550 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2551 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2553 log_tree_root->node = read_tree_block(tree_root, bytenr,
2556 /* returns with log_tree_root freed on success */
2557 ret = btrfs_recover_log_trees(log_tree_root);
2559 btrfs_error(tree_root->fs_info, ret,
2560 "Failed to recover log tree");
2561 free_extent_buffer(log_tree_root->node);
2562 kfree(log_tree_root);
2563 goto fail_trans_kthread;
2566 if (sb->s_flags & MS_RDONLY) {
2567 ret = btrfs_commit_super(tree_root);
2569 goto fail_trans_kthread;
2573 ret = btrfs_find_orphan_roots(tree_root);
2575 goto fail_trans_kthread;
2577 if (!(sb->s_flags & MS_RDONLY)) {
2578 ret = btrfs_cleanup_fs_roots(fs_info);
2580 goto fail_trans_kthread;
2582 ret = btrfs_recover_relocation(tree_root);
2585 "btrfs: failed to recover relocation\n");
2591 location.objectid = BTRFS_FS_TREE_OBJECTID;
2592 location.type = BTRFS_ROOT_ITEM_KEY;
2593 location.offset = (u64)-1;
2595 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2596 if (!fs_info->fs_root)
2598 if (IS_ERR(fs_info->fs_root)) {
2599 err = PTR_ERR(fs_info->fs_root);
2603 if (sb->s_flags & MS_RDONLY)
2606 down_read(&fs_info->cleanup_work_sem);
2607 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2608 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2609 up_read(&fs_info->cleanup_work_sem);
2610 close_ctree(tree_root);
2613 up_read(&fs_info->cleanup_work_sem);
2615 ret = btrfs_resume_balance_async(fs_info);
2617 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2618 close_ctree(tree_root);
2625 btrfs_free_qgroup_config(fs_info);
2627 kthread_stop(fs_info->transaction_kthread);
2629 kthread_stop(fs_info->cleaner_kthread);
2632 * make sure we're done with the btree inode before we stop our
2635 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2636 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2639 btrfs_free_block_groups(fs_info);
2642 free_root_pointers(fs_info, 1);
2645 btrfs_stop_workers(&fs_info->generic_worker);
2646 btrfs_stop_workers(&fs_info->readahead_workers);
2647 btrfs_stop_workers(&fs_info->fixup_workers);
2648 btrfs_stop_workers(&fs_info->delalloc_workers);
2649 btrfs_stop_workers(&fs_info->workers);
2650 btrfs_stop_workers(&fs_info->endio_workers);
2651 btrfs_stop_workers(&fs_info->endio_meta_workers);
2652 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2653 btrfs_stop_workers(&fs_info->endio_write_workers);
2654 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2655 btrfs_stop_workers(&fs_info->submit_workers);
2656 btrfs_stop_workers(&fs_info->delayed_workers);
2657 btrfs_stop_workers(&fs_info->caching_workers);
2660 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2662 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2663 iput(fs_info->btree_inode);
2665 bdi_destroy(&fs_info->bdi);
2667 cleanup_srcu_struct(&fs_info->subvol_srcu);
2669 btrfs_close_devices(fs_info->fs_devices);
2673 if (!btrfs_test_opt(tree_root, RECOVERY))
2674 goto fail_tree_roots;
2676 free_root_pointers(fs_info, 0);
2678 /* don't use the log in recovery mode, it won't be valid */
2679 btrfs_set_super_log_root(disk_super, 0);
2681 /* we can't trust the free space cache either */
2682 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2684 ret = next_root_backup(fs_info, fs_info->super_copy,
2685 &num_backups_tried, &backup_index);
2687 goto fail_block_groups;
2688 goto retry_root_backup;
2691 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2694 set_buffer_uptodate(bh);
2696 struct btrfs_device *device = (struct btrfs_device *)
2699 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2700 "I/O error on %s\n",
2701 rcu_str_deref(device->name));
2702 /* note, we dont' set_buffer_write_io_error because we have
2703 * our own ways of dealing with the IO errors
2705 clear_buffer_uptodate(bh);
2706 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2712 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2714 struct buffer_head *bh;
2715 struct buffer_head *latest = NULL;
2716 struct btrfs_super_block *super;
2721 /* we would like to check all the supers, but that would make
2722 * a btrfs mount succeed after a mkfs from a different FS.
2723 * So, we need to add a special mount option to scan for
2724 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2726 for (i = 0; i < 1; i++) {
2727 bytenr = btrfs_sb_offset(i);
2728 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2730 bh = __bread(bdev, bytenr / 4096, 4096);
2734 super = (struct btrfs_super_block *)bh->b_data;
2735 if (btrfs_super_bytenr(super) != bytenr ||
2736 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2737 sizeof(super->magic))) {
2742 if (!latest || btrfs_super_generation(super) > transid) {
2745 transid = btrfs_super_generation(super);
2754 * this should be called twice, once with wait == 0 and
2755 * once with wait == 1. When wait == 0 is done, all the buffer heads
2756 * we write are pinned.
2758 * They are released when wait == 1 is done.
2759 * max_mirrors must be the same for both runs, and it indicates how
2760 * many supers on this one device should be written.
2762 * max_mirrors == 0 means to write them all.
2764 static int write_dev_supers(struct btrfs_device *device,
2765 struct btrfs_super_block *sb,
2766 int do_barriers, int wait, int max_mirrors)
2768 struct buffer_head *bh;
2775 if (max_mirrors == 0)
2776 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2778 for (i = 0; i < max_mirrors; i++) {
2779 bytenr = btrfs_sb_offset(i);
2780 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2784 bh = __find_get_block(device->bdev, bytenr / 4096,
2785 BTRFS_SUPER_INFO_SIZE);
2788 if (!buffer_uptodate(bh))
2791 /* drop our reference */
2794 /* drop the reference from the wait == 0 run */
2798 btrfs_set_super_bytenr(sb, bytenr);
2801 crc = btrfs_csum_data(NULL, (char *)sb +
2802 BTRFS_CSUM_SIZE, crc,
2803 BTRFS_SUPER_INFO_SIZE -
2805 btrfs_csum_final(crc, sb->csum);
2808 * one reference for us, and we leave it for the
2811 bh = __getblk(device->bdev, bytenr / 4096,
2812 BTRFS_SUPER_INFO_SIZE);
2813 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2815 /* one reference for submit_bh */
2818 set_buffer_uptodate(bh);
2820 bh->b_end_io = btrfs_end_buffer_write_sync;
2821 bh->b_private = device;
2825 * we fua the first super. The others we allow
2828 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2832 return errors < i ? 0 : -1;
2836 * endio for the write_dev_flush, this will wake anyone waiting
2837 * for the barrier when it is done
2839 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2842 if (err == -EOPNOTSUPP)
2843 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2844 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2846 if (bio->bi_private)
2847 complete(bio->bi_private);
2852 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2853 * sent down. With wait == 1, it waits for the previous flush.
2855 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2858 static int write_dev_flush(struct btrfs_device *device, int wait)
2863 if (device->nobarriers)
2867 bio = device->flush_bio;
2871 wait_for_completion(&device->flush_wait);
2873 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2874 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2875 rcu_str_deref(device->name));
2876 device->nobarriers = 1;
2878 if (!bio_flagged(bio, BIO_UPTODATE)) {
2880 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2881 btrfs_dev_stat_inc_and_print(device,
2882 BTRFS_DEV_STAT_FLUSH_ERRS);
2885 /* drop the reference from the wait == 0 run */
2887 device->flush_bio = NULL;
2893 * one reference for us, and we leave it for the
2896 device->flush_bio = NULL;
2897 bio = bio_alloc(GFP_NOFS, 0);
2901 bio->bi_end_io = btrfs_end_empty_barrier;
2902 bio->bi_bdev = device->bdev;
2903 init_completion(&device->flush_wait);
2904 bio->bi_private = &device->flush_wait;
2905 device->flush_bio = bio;
2908 btrfsic_submit_bio(WRITE_FLUSH, bio);
2914 * send an empty flush down to each device in parallel,
2915 * then wait for them
2917 static int barrier_all_devices(struct btrfs_fs_info *info)
2919 struct list_head *head;
2920 struct btrfs_device *dev;
2924 /* send down all the barriers */
2925 head = &info->fs_devices->devices;
2926 list_for_each_entry_rcu(dev, head, dev_list) {
2931 if (!dev->in_fs_metadata || !dev->writeable)
2934 ret = write_dev_flush(dev, 0);
2939 /* wait for all the barriers */
2940 list_for_each_entry_rcu(dev, head, dev_list) {
2945 if (!dev->in_fs_metadata || !dev->writeable)
2948 ret = write_dev_flush(dev, 1);
2957 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2959 struct list_head *head;
2960 struct btrfs_device *dev;
2961 struct btrfs_super_block *sb;
2962 struct btrfs_dev_item *dev_item;
2966 int total_errors = 0;
2969 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2970 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2971 backup_super_roots(root->fs_info);
2973 sb = root->fs_info->super_for_commit;
2974 dev_item = &sb->dev_item;
2976 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2977 head = &root->fs_info->fs_devices->devices;
2980 barrier_all_devices(root->fs_info);
2982 list_for_each_entry_rcu(dev, head, dev_list) {
2987 if (!dev->in_fs_metadata || !dev->writeable)
2990 btrfs_set_stack_device_generation(dev_item, 0);
2991 btrfs_set_stack_device_type(dev_item, dev->type);
2992 btrfs_set_stack_device_id(dev_item, dev->devid);
2993 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2994 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2995 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2996 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2997 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2998 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2999 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3001 flags = btrfs_super_flags(sb);
3002 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3004 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3008 if (total_errors > max_errors) {
3009 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3012 /* This shouldn't happen. FUA is masked off if unsupported */
3017 list_for_each_entry_rcu(dev, head, dev_list) {
3020 if (!dev->in_fs_metadata || !dev->writeable)
3023 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3027 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3028 if (total_errors > max_errors) {
3029 btrfs_error(root->fs_info, -EIO,
3030 "%d errors while writing supers", total_errors);
3036 int write_ctree_super(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root, int max_mirrors)
3041 ret = write_all_supers(root, max_mirrors);
3045 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3047 spin_lock(&fs_info->fs_roots_radix_lock);
3048 radix_tree_delete(&fs_info->fs_roots_radix,
3049 (unsigned long)root->root_key.objectid);
3050 spin_unlock(&fs_info->fs_roots_radix_lock);
3052 if (btrfs_root_refs(&root->root_item) == 0)
3053 synchronize_srcu(&fs_info->subvol_srcu);
3055 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3056 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3060 static void free_fs_root(struct btrfs_root *root)
3062 iput(root->cache_inode);
3063 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3065 free_anon_bdev(root->anon_dev);
3066 free_extent_buffer(root->node);
3067 free_extent_buffer(root->commit_root);
3068 kfree(root->free_ino_ctl);
3069 kfree(root->free_ino_pinned);
3074 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3077 struct btrfs_root *gang[8];
3080 while (!list_empty(&fs_info->dead_roots)) {
3081 gang[0] = list_entry(fs_info->dead_roots.next,
3082 struct btrfs_root, root_list);
3083 list_del(&gang[0]->root_list);
3085 if (gang[0]->in_radix) {
3086 btrfs_free_fs_root(fs_info, gang[0]);
3088 free_extent_buffer(gang[0]->node);
3089 free_extent_buffer(gang[0]->commit_root);
3095 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3100 for (i = 0; i < ret; i++)
3101 btrfs_free_fs_root(fs_info, gang[i]);
3105 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3107 u64 root_objectid = 0;
3108 struct btrfs_root *gang[8];
3113 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3114 (void **)gang, root_objectid,
3119 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3120 for (i = 0; i < ret; i++) {
3123 root_objectid = gang[i]->root_key.objectid;
3124 err = btrfs_orphan_cleanup(gang[i]);
3133 int btrfs_commit_super(struct btrfs_root *root)
3135 struct btrfs_trans_handle *trans;
3138 mutex_lock(&root->fs_info->cleaner_mutex);
3139 btrfs_run_delayed_iputs(root);
3140 btrfs_clean_old_snapshots(root);
3141 mutex_unlock(&root->fs_info->cleaner_mutex);
3143 /* wait until ongoing cleanup work done */
3144 down_write(&root->fs_info->cleanup_work_sem);
3145 up_write(&root->fs_info->cleanup_work_sem);
3147 trans = btrfs_join_transaction(root);
3149 return PTR_ERR(trans);
3150 ret = btrfs_commit_transaction(trans, root);
3153 /* run commit again to drop the original snapshot */
3154 trans = btrfs_join_transaction(root);
3156 return PTR_ERR(trans);
3157 ret = btrfs_commit_transaction(trans, root);
3160 ret = btrfs_write_and_wait_transaction(NULL, root);
3162 btrfs_error(root->fs_info, ret,
3163 "Failed to sync btree inode to disk.");
3167 ret = write_ctree_super(NULL, root, 0);
3171 int close_ctree(struct btrfs_root *root)
3173 struct btrfs_fs_info *fs_info = root->fs_info;
3176 fs_info->closing = 1;
3179 /* pause restriper - we want to resume on mount */
3180 btrfs_pause_balance(root->fs_info);
3182 btrfs_scrub_cancel(root);
3184 /* wait for any defraggers to finish */
3185 wait_event(fs_info->transaction_wait,
3186 (atomic_read(&fs_info->defrag_running) == 0));
3188 /* clear out the rbtree of defraggable inodes */
3189 btrfs_run_defrag_inodes(fs_info);
3191 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3192 ret = btrfs_commit_super(root);
3194 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3197 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3198 btrfs_error_commit_super(root);
3200 btrfs_put_block_group_cache(fs_info);
3202 kthread_stop(fs_info->transaction_kthread);
3203 kthread_stop(fs_info->cleaner_kthread);
3205 fs_info->closing = 2;
3208 btrfs_free_qgroup_config(root->fs_info);
3210 if (fs_info->delalloc_bytes) {
3211 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3212 (unsigned long long)fs_info->delalloc_bytes);
3214 if (fs_info->total_ref_cache_size) {
3215 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3216 (unsigned long long)fs_info->total_ref_cache_size);
3219 free_extent_buffer(fs_info->extent_root->node);
3220 free_extent_buffer(fs_info->extent_root->commit_root);
3221 free_extent_buffer(fs_info->tree_root->node);
3222 free_extent_buffer(fs_info->tree_root->commit_root);
3223 free_extent_buffer(fs_info->chunk_root->node);
3224 free_extent_buffer(fs_info->chunk_root->commit_root);
3225 free_extent_buffer(fs_info->dev_root->node);
3226 free_extent_buffer(fs_info->dev_root->commit_root);
3227 free_extent_buffer(fs_info->csum_root->node);
3228 free_extent_buffer(fs_info->csum_root->commit_root);
3229 if (fs_info->quota_root) {
3230 free_extent_buffer(fs_info->quota_root->node);
3231 free_extent_buffer(fs_info->quota_root->commit_root);
3234 btrfs_free_block_groups(fs_info);
3236 del_fs_roots(fs_info);
3238 iput(fs_info->btree_inode);
3240 btrfs_stop_workers(&fs_info->generic_worker);
3241 btrfs_stop_workers(&fs_info->fixup_workers);
3242 btrfs_stop_workers(&fs_info->delalloc_workers);
3243 btrfs_stop_workers(&fs_info->workers);
3244 btrfs_stop_workers(&fs_info->endio_workers);
3245 btrfs_stop_workers(&fs_info->endio_meta_workers);
3246 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3247 btrfs_stop_workers(&fs_info->endio_write_workers);
3248 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3249 btrfs_stop_workers(&fs_info->submit_workers);
3250 btrfs_stop_workers(&fs_info->delayed_workers);
3251 btrfs_stop_workers(&fs_info->caching_workers);
3252 btrfs_stop_workers(&fs_info->readahead_workers);
3254 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3255 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3256 btrfsic_unmount(root, fs_info->fs_devices);
3259 btrfs_close_devices(fs_info->fs_devices);
3260 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3262 bdi_destroy(&fs_info->bdi);
3263 cleanup_srcu_struct(&fs_info->subvol_srcu);
3268 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3272 struct inode *btree_inode = buf->pages[0]->mapping->host;
3274 ret = extent_buffer_uptodate(buf);
3278 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3279 parent_transid, atomic);
3285 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3287 return set_extent_buffer_uptodate(buf);
3290 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3292 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3293 u64 transid = btrfs_header_generation(buf);
3296 btrfs_assert_tree_locked(buf);
3297 if (transid != root->fs_info->generation) {
3298 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3299 "found %llu running %llu\n",
3300 (unsigned long long)buf->start,
3301 (unsigned long long)transid,
3302 (unsigned long long)root->fs_info->generation);
3305 was_dirty = set_extent_buffer_dirty(buf);
3307 spin_lock(&root->fs_info->delalloc_lock);
3308 root->fs_info->dirty_metadata_bytes += buf->len;
3309 spin_unlock(&root->fs_info->delalloc_lock);
3313 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3316 * looks as though older kernels can get into trouble with
3317 * this code, they end up stuck in balance_dirty_pages forever
3320 unsigned long thresh = 32 * 1024 * 1024;
3322 if (current->flags & PF_MEMALLOC)
3325 btrfs_balance_delayed_items(root);
3327 num_dirty = root->fs_info->dirty_metadata_bytes;
3329 if (num_dirty > thresh) {
3330 balance_dirty_pages_ratelimited_nr(
3331 root->fs_info->btree_inode->i_mapping, 1);
3336 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3339 * looks as though older kernels can get into trouble with
3340 * this code, they end up stuck in balance_dirty_pages forever
3343 unsigned long thresh = 32 * 1024 * 1024;
3345 if (current->flags & PF_MEMALLOC)
3348 num_dirty = root->fs_info->dirty_metadata_bytes;
3350 if (num_dirty > thresh) {
3351 balance_dirty_pages_ratelimited_nr(
3352 root->fs_info->btree_inode->i_mapping, 1);
3357 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3359 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3360 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3363 int btree_lock_page_hook(struct page *page, void *data,
3364 void (*flush_fn)(void *))
3366 struct inode *inode = page->mapping->host;
3367 struct btrfs_root *root = BTRFS_I(inode)->root;
3368 struct extent_buffer *eb;
3371 * We culled this eb but the page is still hanging out on the mapping,
3374 if (!PagePrivate(page))
3377 eb = (struct extent_buffer *)page->private;
3382 if (page != eb->pages[0])
3385 if (!btrfs_try_tree_write_lock(eb)) {
3387 btrfs_tree_lock(eb);
3389 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3391 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3392 spin_lock(&root->fs_info->delalloc_lock);
3393 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3394 root->fs_info->dirty_metadata_bytes -= eb->len;
3397 spin_unlock(&root->fs_info->delalloc_lock);
3400 btrfs_tree_unlock(eb);
3402 if (!trylock_page(page)) {
3409 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3412 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3413 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3423 void btrfs_error_commit_super(struct btrfs_root *root)
3425 mutex_lock(&root->fs_info->cleaner_mutex);
3426 btrfs_run_delayed_iputs(root);
3427 mutex_unlock(&root->fs_info->cleaner_mutex);
3429 down_write(&root->fs_info->cleanup_work_sem);
3430 up_write(&root->fs_info->cleanup_work_sem);
3432 /* cleanup FS via transaction */
3433 btrfs_cleanup_transaction(root);
3436 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3438 struct btrfs_inode *btrfs_inode;
3439 struct list_head splice;
3441 INIT_LIST_HEAD(&splice);
3443 mutex_lock(&root->fs_info->ordered_operations_mutex);
3444 spin_lock(&root->fs_info->ordered_extent_lock);
3446 list_splice_init(&root->fs_info->ordered_operations, &splice);
3447 while (!list_empty(&splice)) {
3448 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3449 ordered_operations);
3451 list_del_init(&btrfs_inode->ordered_operations);
3453 btrfs_invalidate_inodes(btrfs_inode->root);
3456 spin_unlock(&root->fs_info->ordered_extent_lock);
3457 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3460 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3462 struct list_head splice;
3463 struct btrfs_ordered_extent *ordered;
3464 struct inode *inode;
3466 INIT_LIST_HEAD(&splice);
3468 spin_lock(&root->fs_info->ordered_extent_lock);
3470 list_splice_init(&root->fs_info->ordered_extents, &splice);
3471 while (!list_empty(&splice)) {
3472 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3475 list_del_init(&ordered->root_extent_list);
3476 atomic_inc(&ordered->refs);
3478 /* the inode may be getting freed (in sys_unlink path). */
3479 inode = igrab(ordered->inode);
3481 spin_unlock(&root->fs_info->ordered_extent_lock);
3485 atomic_set(&ordered->refs, 1);
3486 btrfs_put_ordered_extent(ordered);
3488 spin_lock(&root->fs_info->ordered_extent_lock);
3491 spin_unlock(&root->fs_info->ordered_extent_lock);
3494 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3495 struct btrfs_root *root)
3497 struct rb_node *node;
3498 struct btrfs_delayed_ref_root *delayed_refs;
3499 struct btrfs_delayed_ref_node *ref;
3502 delayed_refs = &trans->delayed_refs;
3504 spin_lock(&delayed_refs->lock);
3505 if (delayed_refs->num_entries == 0) {
3506 spin_unlock(&delayed_refs->lock);
3507 printk(KERN_INFO "delayed_refs has NO entry\n");
3511 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3512 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3514 atomic_set(&ref->refs, 1);
3515 if (btrfs_delayed_ref_is_head(ref)) {
3516 struct btrfs_delayed_ref_head *head;
3518 head = btrfs_delayed_node_to_head(ref);
3519 if (!mutex_trylock(&head->mutex)) {
3520 atomic_inc(&ref->refs);
3521 spin_unlock(&delayed_refs->lock);
3523 /* Need to wait for the delayed ref to run */
3524 mutex_lock(&head->mutex);
3525 mutex_unlock(&head->mutex);
3526 btrfs_put_delayed_ref(ref);
3528 spin_lock(&delayed_refs->lock);
3532 kfree(head->extent_op);
3533 delayed_refs->num_heads--;
3534 if (list_empty(&head->cluster))
3535 delayed_refs->num_heads_ready--;
3536 list_del_init(&head->cluster);
3539 rb_erase(&ref->rb_node, &delayed_refs->root);
3540 delayed_refs->num_entries--;
3542 spin_unlock(&delayed_refs->lock);
3543 btrfs_put_delayed_ref(ref);
3546 spin_lock(&delayed_refs->lock);
3549 spin_unlock(&delayed_refs->lock);
3554 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3556 struct btrfs_pending_snapshot *snapshot;
3557 struct list_head splice;
3559 INIT_LIST_HEAD(&splice);
3561 list_splice_init(&t->pending_snapshots, &splice);
3563 while (!list_empty(&splice)) {
3564 snapshot = list_entry(splice.next,
3565 struct btrfs_pending_snapshot,
3568 list_del_init(&snapshot->list);
3574 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3576 struct btrfs_inode *btrfs_inode;
3577 struct list_head splice;
3579 INIT_LIST_HEAD(&splice);
3581 spin_lock(&root->fs_info->delalloc_lock);
3582 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3584 while (!list_empty(&splice)) {
3585 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3588 list_del_init(&btrfs_inode->delalloc_inodes);
3590 btrfs_invalidate_inodes(btrfs_inode->root);
3593 spin_unlock(&root->fs_info->delalloc_lock);
3596 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3597 struct extent_io_tree *dirty_pages,
3602 struct inode *btree_inode = root->fs_info->btree_inode;
3603 struct extent_buffer *eb;
3607 unsigned long index;
3610 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3615 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3616 while (start <= end) {
3617 index = start >> PAGE_CACHE_SHIFT;
3618 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3619 page = find_get_page(btree_inode->i_mapping, index);
3622 offset = page_offset(page);
3624 spin_lock(&dirty_pages->buffer_lock);
3625 eb = radix_tree_lookup(
3626 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3627 offset >> PAGE_CACHE_SHIFT);
3628 spin_unlock(&dirty_pages->buffer_lock);
3630 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3632 if (PageWriteback(page))
3633 end_page_writeback(page);
3636 if (PageDirty(page)) {
3637 clear_page_dirty_for_io(page);
3638 spin_lock_irq(&page->mapping->tree_lock);
3639 radix_tree_tag_clear(&page->mapping->page_tree,
3641 PAGECACHE_TAG_DIRTY);
3642 spin_unlock_irq(&page->mapping->tree_lock);
3646 page_cache_release(page);
3653 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3654 struct extent_io_tree *pinned_extents)
3656 struct extent_io_tree *unpin;
3662 unpin = pinned_extents;
3665 ret = find_first_extent_bit(unpin, 0, &start, &end,
3671 if (btrfs_test_opt(root, DISCARD))
3672 ret = btrfs_error_discard_extent(root, start,
3676 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3677 btrfs_error_unpin_extent_range(root, start, end);
3682 if (unpin == &root->fs_info->freed_extents[0])
3683 unpin = &root->fs_info->freed_extents[1];
3685 unpin = &root->fs_info->freed_extents[0];
3693 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3694 struct btrfs_root *root)
3696 btrfs_destroy_delayed_refs(cur_trans, root);
3697 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3698 cur_trans->dirty_pages.dirty_bytes);
3700 /* FIXME: cleanup wait for commit */
3701 cur_trans->in_commit = 1;
3702 cur_trans->blocked = 1;
3703 wake_up(&root->fs_info->transaction_blocked_wait);
3705 cur_trans->blocked = 0;
3706 wake_up(&root->fs_info->transaction_wait);
3708 cur_trans->commit_done = 1;
3709 wake_up(&cur_trans->commit_wait);
3711 btrfs_destroy_delayed_inodes(root);
3712 btrfs_assert_delayed_root_empty(root);
3714 btrfs_destroy_pending_snapshots(cur_trans);
3716 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3718 btrfs_destroy_pinned_extent(root,
3719 root->fs_info->pinned_extents);
3722 memset(cur_trans, 0, sizeof(*cur_trans));
3723 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3727 int btrfs_cleanup_transaction(struct btrfs_root *root)
3729 struct btrfs_transaction *t;
3732 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3734 spin_lock(&root->fs_info->trans_lock);
3735 list_splice_init(&root->fs_info->trans_list, &list);
3736 root->fs_info->trans_no_join = 1;
3737 spin_unlock(&root->fs_info->trans_lock);
3739 while (!list_empty(&list)) {
3740 t = list_entry(list.next, struct btrfs_transaction, list);
3744 btrfs_destroy_ordered_operations(root);
3746 btrfs_destroy_ordered_extents(root);
3748 btrfs_destroy_delayed_refs(t, root);
3750 btrfs_block_rsv_release(root,
3751 &root->fs_info->trans_block_rsv,
3752 t->dirty_pages.dirty_bytes);
3754 /* FIXME: cleanup wait for commit */
3758 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3759 wake_up(&root->fs_info->transaction_blocked_wait);
3763 if (waitqueue_active(&root->fs_info->transaction_wait))
3764 wake_up(&root->fs_info->transaction_wait);
3768 if (waitqueue_active(&t->commit_wait))
3769 wake_up(&t->commit_wait);
3771 btrfs_destroy_delayed_inodes(root);
3772 btrfs_assert_delayed_root_empty(root);
3774 btrfs_destroy_pending_snapshots(t);
3776 btrfs_destroy_delalloc_inodes(root);
3778 spin_lock(&root->fs_info->trans_lock);
3779 root->fs_info->running_transaction = NULL;
3780 spin_unlock(&root->fs_info->trans_lock);
3782 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3785 btrfs_destroy_pinned_extent(root,
3786 root->fs_info->pinned_extents);
3788 atomic_set(&t->use_count, 0);
3789 list_del_init(&t->list);
3790 memset(t, 0, sizeof(*t));
3791 kmem_cache_free(btrfs_transaction_cachep, t);
3794 spin_lock(&root->fs_info->trans_lock);
3795 root->fs_info->trans_no_join = 0;
3796 spin_unlock(&root->fs_info->trans_lock);
3797 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3802 static struct extent_io_ops btree_extent_io_ops = {
3803 .write_cache_pages_lock_hook = btree_lock_page_hook,
3804 .readpage_end_io_hook = btree_readpage_end_io_hook,
3805 .readpage_io_failed_hook = btree_io_failed_hook,
3806 .submit_bio_hook = btree_submit_bio_hook,
3807 /* note we're sharing with inode.c for the merge bio hook */
3808 .merge_bio_hook = btrfs_merge_bio_hook,