Btrfs: integrate integrity check module into btrfs
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52                                     int read_only);
53 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_root *root);
57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_root *root);
65
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         int error;
77         int metadata;
78         struct list_head list;
79         struct btrfs_work work;
80 };
81
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88         struct inode *inode;
89         struct bio *bio;
90         struct list_head list;
91         extent_submit_bio_hook_t *submit_bio_start;
92         extent_submit_bio_hook_t *submit_bio_done;
93         int rw;
94         int mirror_num;
95         unsigned long bio_flags;
96         /*
97          * bio_offset is optional, can be used if the pages in the bio
98          * can't tell us where in the file the bio should go
99          */
100         u64 bio_offset;
101         struct btrfs_work work;
102 };
103
104 /*
105  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
106  * eb, the lockdep key is determined by the btrfs_root it belongs to and
107  * the level the eb occupies in the tree.
108  *
109  * Different roots are used for different purposes and may nest inside each
110  * other and they require separate keysets.  As lockdep keys should be
111  * static, assign keysets according to the purpose of the root as indicated
112  * by btrfs_root->objectid.  This ensures that all special purpose roots
113  * have separate keysets.
114  *
115  * Lock-nesting across peer nodes is always done with the immediate parent
116  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
117  * subclass to avoid triggering lockdep warning in such cases.
118  *
119  * The key is set by the readpage_end_io_hook after the buffer has passed
120  * csum validation but before the pages are unlocked.  It is also set by
121  * btrfs_init_new_buffer on freshly allocated blocks.
122  *
123  * We also add a check to make sure the highest level of the tree is the
124  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
125  * needs update as well.
126  */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 #  error
130 # endif
131
132 static struct btrfs_lockdep_keyset {
133         u64                     id;             /* root objectid */
134         const char              *name_stem;     /* lock name stem */
135         char                    names[BTRFS_MAX_LEVEL + 1][20];
136         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
139         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
140         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
141         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
142         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
143         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
144         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
145         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
146         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
147         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
148         { .id = 0,                              .name_stem = "tree"     },
149 };
150
151 void __init btrfs_init_lockdep(void)
152 {
153         int i, j;
154
155         /* initialize lockdep class names */
156         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160                         snprintf(ks->names[j], sizeof(ks->names[j]),
161                                  "btrfs-%s-%02d", ks->name_stem, j);
162         }
163 }
164
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166                                     int level)
167 {
168         struct btrfs_lockdep_keyset *ks;
169
170         BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172         /* find the matching keyset, id 0 is the default entry */
173         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174                 if (ks->id == objectid)
175                         break;
176
177         lockdep_set_class_and_name(&eb->lock,
178                                    &ks->keys[level], ks->names[level]);
179 }
180
181 #endif
182
183 /*
184  * extents on the btree inode are pretty simple, there's one extent
185  * that covers the entire device
186  */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188                 struct page *page, size_t pg_offset, u64 start, u64 len,
189                 int create)
190 {
191         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192         struct extent_map *em;
193         int ret;
194
195         read_lock(&em_tree->lock);
196         em = lookup_extent_mapping(em_tree, start, len);
197         if (em) {
198                 em->bdev =
199                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200                 read_unlock(&em_tree->lock);
201                 goto out;
202         }
203         read_unlock(&em_tree->lock);
204
205         em = alloc_extent_map();
206         if (!em) {
207                 em = ERR_PTR(-ENOMEM);
208                 goto out;
209         }
210         em->start = 0;
211         em->len = (u64)-1;
212         em->block_len = (u64)-1;
213         em->block_start = 0;
214         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215
216         write_lock(&em_tree->lock);
217         ret = add_extent_mapping(em_tree, em);
218         if (ret == -EEXIST) {
219                 u64 failed_start = em->start;
220                 u64 failed_len = em->len;
221
222                 free_extent_map(em);
223                 em = lookup_extent_mapping(em_tree, start, len);
224                 if (em) {
225                         ret = 0;
226                 } else {
227                         em = lookup_extent_mapping(em_tree, failed_start,
228                                                    failed_len);
229                         ret = -EIO;
230                 }
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = NULL;
234         }
235         write_unlock(&em_tree->lock);
236
237         if (ret)
238                 em = ERR_PTR(ret);
239 out:
240         return em;
241 }
242
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245         return crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250         put_unaligned_le32(~crc, result);
251 }
252
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258                            int verify)
259 {
260         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261         char *result = NULL;
262         unsigned long len;
263         unsigned long cur_len;
264         unsigned long offset = BTRFS_CSUM_SIZE;
265         char *kaddr;
266         unsigned long map_start;
267         unsigned long map_len;
268         int err;
269         u32 crc = ~(u32)0;
270         unsigned long inline_result;
271
272         len = buf->len - offset;
273         while (len > 0) {
274                 err = map_private_extent_buffer(buf, offset, 32,
275                                         &kaddr, &map_start, &map_len);
276                 if (err)
277                         return 1;
278                 cur_len = min(len, map_len - (offset - map_start));
279                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280                                       crc, cur_len);
281                 len -= cur_len;
282                 offset += cur_len;
283         }
284         if (csum_size > sizeof(inline_result)) {
285                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286                 if (!result)
287                         return 1;
288         } else {
289                 result = (char *)&inline_result;
290         }
291
292         btrfs_csum_final(crc, result);
293
294         if (verify) {
295                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296                         u32 val;
297                         u32 found = 0;
298                         memcpy(&found, result, csum_size);
299
300                         read_extent_buffer(buf, &val, 0, csum_size);
301                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302                                        "failed on %llu wanted %X found %X "
303                                        "level %d\n",
304                                        root->fs_info->sb->s_id,
305                                        (unsigned long long)buf->start, val, found,
306                                        btrfs_header_level(buf));
307                         if (result != (char *)&inline_result)
308                                 kfree(result);
309                         return 1;
310                 }
311         } else {
312                 write_extent_buffer(buf, result, 0, csum_size);
313         }
314         if (result != (char *)&inline_result)
315                 kfree(result);
316         return 0;
317 }
318
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326                                  struct extent_buffer *eb, u64 parent_transid)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330
331         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332                 return 0;
333
334         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335                          0, &cached_state, GFP_NOFS);
336         if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
337             btrfs_header_generation(eb) == parent_transid) {
338                 ret = 0;
339                 goto out;
340         }
341         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342                        "found %llu\n",
343                        (unsigned long long)eb->start,
344                        (unsigned long long)parent_transid,
345                        (unsigned long long)btrfs_header_generation(eb));
346         ret = 1;
347         clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
348 out:
349         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350                              &cached_state, GFP_NOFS);
351         return ret;
352 }
353
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359                                           struct extent_buffer *eb,
360                                           u64 start, u64 parent_transid)
361 {
362         struct extent_io_tree *io_tree;
363         int ret;
364         int num_copies = 0;
365         int mirror_num = 0;
366
367         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
368         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369         while (1) {
370                 ret = read_extent_buffer_pages(io_tree, eb, start,
371                                                WAIT_COMPLETE,
372                                                btree_get_extent, mirror_num);
373                 if (!ret &&
374                     !verify_parent_transid(io_tree, eb, parent_transid))
375                         return ret;
376
377                 /*
378                  * This buffer's crc is fine, but its contents are corrupted, so
379                  * there is no reason to read the other copies, they won't be
380                  * any less wrong.
381                  */
382                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383                         return ret;
384
385                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386                                               eb->start, eb->len);
387                 if (num_copies == 1)
388                         return ret;
389
390                 mirror_num++;
391                 if (mirror_num > num_copies)
392                         return ret;
393         }
394         return -EIO;
395 }
396
397 /*
398  * checksum a dirty tree block before IO.  This has extra checks to make sure
399  * we only fill in the checksum field in the first page of a multi-page block
400  */
401
402 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
403 {
404         struct extent_io_tree *tree;
405         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
406         u64 found_start;
407         unsigned long len;
408         struct extent_buffer *eb;
409         int ret;
410
411         tree = &BTRFS_I(page->mapping->host)->io_tree;
412
413         if (page->private == EXTENT_PAGE_PRIVATE) {
414                 WARN_ON(1);
415                 goto out;
416         }
417         if (!page->private) {
418                 WARN_ON(1);
419                 goto out;
420         }
421         len = page->private >> 2;
422         WARN_ON(len == 0);
423
424         eb = alloc_extent_buffer(tree, start, len, page);
425         if (eb == NULL) {
426                 WARN_ON(1);
427                 goto out;
428         }
429         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430                                              btrfs_header_generation(eb));
431         BUG_ON(ret);
432         WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
434         found_start = btrfs_header_bytenr(eb);
435         if (found_start != start) {
436                 WARN_ON(1);
437                 goto err;
438         }
439         if (eb->first_page != page) {
440                 WARN_ON(1);
441                 goto err;
442         }
443         if (!PageUptodate(page)) {
444                 WARN_ON(1);
445                 goto err;
446         }
447         csum_tree_block(root, eb, 0);
448 err:
449         free_extent_buffer(eb);
450 out:
451         return 0;
452 }
453
454 static int check_tree_block_fsid(struct btrfs_root *root,
455                                  struct extent_buffer *eb)
456 {
457         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458         u8 fsid[BTRFS_UUID_SIZE];
459         int ret = 1;
460
461         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462                            BTRFS_FSID_SIZE);
463         while (fs_devices) {
464                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465                         ret = 0;
466                         break;
467                 }
468                 fs_devices = fs_devices->seed;
469         }
470         return ret;
471 }
472
473 #define CORRUPT(reason, eb, root, slot)                         \
474         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475                "root=%llu, slot=%d\n", reason,                  \
476                (unsigned long long)btrfs_header_bytenr(eb),     \
477                (unsigned long long)root->objectid, slot)
478
479 static noinline int check_leaf(struct btrfs_root *root,
480                                struct extent_buffer *leaf)
481 {
482         struct btrfs_key key;
483         struct btrfs_key leaf_key;
484         u32 nritems = btrfs_header_nritems(leaf);
485         int slot;
486
487         if (nritems == 0)
488                 return 0;
489
490         /* Check the 0 item */
491         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492             BTRFS_LEAF_DATA_SIZE(root)) {
493                 CORRUPT("invalid item offset size pair", leaf, root, 0);
494                 return -EIO;
495         }
496
497         /*
498          * Check to make sure each items keys are in the correct order and their
499          * offsets make sense.  We only have to loop through nritems-1 because
500          * we check the current slot against the next slot, which verifies the
501          * next slot's offset+size makes sense and that the current's slot
502          * offset is correct.
503          */
504         for (slot = 0; slot < nritems - 1; slot++) {
505                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508                 /* Make sure the keys are in the right order */
509                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510                         CORRUPT("bad key order", leaf, root, slot);
511                         return -EIO;
512                 }
513
514                 /*
515                  * Make sure the offset and ends are right, remember that the
516                  * item data starts at the end of the leaf and grows towards the
517                  * front.
518                  */
519                 if (btrfs_item_offset_nr(leaf, slot) !=
520                         btrfs_item_end_nr(leaf, slot + 1)) {
521                         CORRUPT("slot offset bad", leaf, root, slot);
522                         return -EIO;
523                 }
524
525                 /*
526                  * Check to make sure that we don't point outside of the leaf,
527                  * just incase all the items are consistent to eachother, but
528                  * all point outside of the leaf.
529                  */
530                 if (btrfs_item_end_nr(leaf, slot) >
531                     BTRFS_LEAF_DATA_SIZE(root)) {
532                         CORRUPT("slot end outside of leaf", leaf, root, slot);
533                         return -EIO;
534                 }
535         }
536
537         return 0;
538 }
539
540 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
541                                struct extent_state *state)
542 {
543         struct extent_io_tree *tree;
544         u64 found_start;
545         int found_level;
546         unsigned long len;
547         struct extent_buffer *eb;
548         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549         int ret = 0;
550
551         tree = &BTRFS_I(page->mapping->host)->io_tree;
552         if (page->private == EXTENT_PAGE_PRIVATE)
553                 goto out;
554         if (!page->private)
555                 goto out;
556
557         len = page->private >> 2;
558         WARN_ON(len == 0);
559
560         eb = alloc_extent_buffer(tree, start, len, page);
561         if (eb == NULL) {
562                 ret = -EIO;
563                 goto out;
564         }
565
566         found_start = btrfs_header_bytenr(eb);
567         if (found_start != start) {
568                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
569                                "%llu %llu\n",
570                                (unsigned long long)found_start,
571                                (unsigned long long)eb->start);
572                 ret = -EIO;
573                 goto err;
574         }
575         if (eb->first_page != page) {
576                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577                        eb->first_page->index, page->index);
578                 WARN_ON(1);
579                 ret = -EIO;
580                 goto err;
581         }
582         if (check_tree_block_fsid(root, eb)) {
583                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
584                                (unsigned long long)eb->start);
585                 ret = -EIO;
586                 goto err;
587         }
588         found_level = btrfs_header_level(eb);
589
590         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591                                        eb, found_level);
592
593         ret = csum_tree_block(root, eb, 1);
594         if (ret) {
595                 ret = -EIO;
596                 goto err;
597         }
598
599         /*
600          * If this is a leaf block and it is corrupt, set the corrupt bit so
601          * that we don't try and read the other copies of this block, just
602          * return -EIO.
603          */
604         if (found_level == 0 && check_leaf(root, eb)) {
605                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606                 ret = -EIO;
607         }
608
609         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610         end = eb->start + end - 1;
611 err:
612         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614                 btree_readahead_hook(root, eb, eb->start, ret);
615         }
616
617         free_extent_buffer(eb);
618 out:
619         return ret;
620 }
621
622 static int btree_io_failed_hook(struct bio *failed_bio,
623                          struct page *page, u64 start, u64 end,
624                          int mirror_num, struct extent_state *state)
625 {
626         struct extent_io_tree *tree;
627         unsigned long len;
628         struct extent_buffer *eb;
629         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630
631         tree = &BTRFS_I(page->mapping->host)->io_tree;
632         if (page->private == EXTENT_PAGE_PRIVATE)
633                 goto out;
634         if (!page->private)
635                 goto out;
636
637         len = page->private >> 2;
638         WARN_ON(len == 0);
639
640         eb = alloc_extent_buffer(tree, start, len, page);
641         if (eb == NULL)
642                 goto out;
643
644         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646                 btree_readahead_hook(root, eb, eb->start, -EIO);
647         }
648         free_extent_buffer(eb);
649
650 out:
651         return -EIO;    /* we fixed nothing */
652 }
653
654 static void end_workqueue_bio(struct bio *bio, int err)
655 {
656         struct end_io_wq *end_io_wq = bio->bi_private;
657         struct btrfs_fs_info *fs_info;
658
659         fs_info = end_io_wq->info;
660         end_io_wq->error = err;
661         end_io_wq->work.func = end_workqueue_fn;
662         end_io_wq->work.flags = 0;
663
664         if (bio->bi_rw & REQ_WRITE) {
665                 if (end_io_wq->metadata == 1)
666                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667                                            &end_io_wq->work);
668                 else if (end_io_wq->metadata == 2)
669                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
670                                            &end_io_wq->work);
671                 else
672                         btrfs_queue_worker(&fs_info->endio_write_workers,
673                                            &end_io_wq->work);
674         } else {
675                 if (end_io_wq->metadata)
676                         btrfs_queue_worker(&fs_info->endio_meta_workers,
677                                            &end_io_wq->work);
678                 else
679                         btrfs_queue_worker(&fs_info->endio_workers,
680                                            &end_io_wq->work);
681         }
682 }
683
684 /*
685  * For the metadata arg you want
686  *
687  * 0 - if data
688  * 1 - if normal metadta
689  * 2 - if writing to the free space cache area
690  */
691 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692                         int metadata)
693 {
694         struct end_io_wq *end_io_wq;
695         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696         if (!end_io_wq)
697                 return -ENOMEM;
698
699         end_io_wq->private = bio->bi_private;
700         end_io_wq->end_io = bio->bi_end_io;
701         end_io_wq->info = info;
702         end_io_wq->error = 0;
703         end_io_wq->bio = bio;
704         end_io_wq->metadata = metadata;
705
706         bio->bi_private = end_io_wq;
707         bio->bi_end_io = end_workqueue_bio;
708         return 0;
709 }
710
711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
712 {
713         unsigned long limit = min_t(unsigned long,
714                                     info->workers.max_workers,
715                                     info->fs_devices->open_devices);
716         return 256 * limit;
717 }
718
719 static void run_one_async_start(struct btrfs_work *work)
720 {
721         struct async_submit_bio *async;
722
723         async = container_of(work, struct  async_submit_bio, work);
724         async->submit_bio_start(async->inode, async->rw, async->bio,
725                                async->mirror_num, async->bio_flags,
726                                async->bio_offset);
727 }
728
729 static void run_one_async_done(struct btrfs_work *work)
730 {
731         struct btrfs_fs_info *fs_info;
732         struct async_submit_bio *async;
733         int limit;
734
735         async = container_of(work, struct  async_submit_bio, work);
736         fs_info = BTRFS_I(async->inode)->root->fs_info;
737
738         limit = btrfs_async_submit_limit(fs_info);
739         limit = limit * 2 / 3;
740
741         atomic_dec(&fs_info->nr_async_submits);
742
743         if (atomic_read(&fs_info->nr_async_submits) < limit &&
744             waitqueue_active(&fs_info->async_submit_wait))
745                 wake_up(&fs_info->async_submit_wait);
746
747         async->submit_bio_done(async->inode, async->rw, async->bio,
748                                async->mirror_num, async->bio_flags,
749                                async->bio_offset);
750 }
751
752 static void run_one_async_free(struct btrfs_work *work)
753 {
754         struct async_submit_bio *async;
755
756         async = container_of(work, struct  async_submit_bio, work);
757         kfree(async);
758 }
759
760 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761                         int rw, struct bio *bio, int mirror_num,
762                         unsigned long bio_flags,
763                         u64 bio_offset,
764                         extent_submit_bio_hook_t *submit_bio_start,
765                         extent_submit_bio_hook_t *submit_bio_done)
766 {
767         struct async_submit_bio *async;
768
769         async = kmalloc(sizeof(*async), GFP_NOFS);
770         if (!async)
771                 return -ENOMEM;
772
773         async->inode = inode;
774         async->rw = rw;
775         async->bio = bio;
776         async->mirror_num = mirror_num;
777         async->submit_bio_start = submit_bio_start;
778         async->submit_bio_done = submit_bio_done;
779
780         async->work.func = run_one_async_start;
781         async->work.ordered_func = run_one_async_done;
782         async->work.ordered_free = run_one_async_free;
783
784         async->work.flags = 0;
785         async->bio_flags = bio_flags;
786         async->bio_offset = bio_offset;
787
788         atomic_inc(&fs_info->nr_async_submits);
789
790         if (rw & REQ_SYNC)
791                 btrfs_set_work_high_prio(&async->work);
792
793         btrfs_queue_worker(&fs_info->workers, &async->work);
794
795         while (atomic_read(&fs_info->async_submit_draining) &&
796               atomic_read(&fs_info->nr_async_submits)) {
797                 wait_event(fs_info->async_submit_wait,
798                            (atomic_read(&fs_info->nr_async_submits) == 0));
799         }
800
801         return 0;
802 }
803
804 static int btree_csum_one_bio(struct bio *bio)
805 {
806         struct bio_vec *bvec = bio->bi_io_vec;
807         int bio_index = 0;
808         struct btrfs_root *root;
809
810         WARN_ON(bio->bi_vcnt <= 0);
811         while (bio_index < bio->bi_vcnt) {
812                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813                 csum_dirty_buffer(root, bvec->bv_page);
814                 bio_index++;
815                 bvec++;
816         }
817         return 0;
818 }
819
820 static int __btree_submit_bio_start(struct inode *inode, int rw,
821                                     struct bio *bio, int mirror_num,
822                                     unsigned long bio_flags,
823                                     u64 bio_offset)
824 {
825         /*
826          * when we're called for a write, we're already in the async
827          * submission context.  Just jump into btrfs_map_bio
828          */
829         btree_csum_one_bio(bio);
830         return 0;
831 }
832
833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
834                                  int mirror_num, unsigned long bio_flags,
835                                  u64 bio_offset)
836 {
837         /*
838          * when we're called for a write, we're already in the async
839          * submission context.  Just jump into btrfs_map_bio
840          */
841         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
842 }
843
844 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
845                                  int mirror_num, unsigned long bio_flags,
846                                  u64 bio_offset)
847 {
848         int ret;
849
850         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
851                                           bio, 1);
852         BUG_ON(ret);
853
854         if (!(rw & REQ_WRITE)) {
855                 /*
856                  * called for a read, do the setup so that checksum validation
857                  * can happen in the async kernel threads
858                  */
859                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
860                                      mirror_num, 0);
861         }
862
863         /*
864          * kthread helpers are used to submit writes so that checksumming
865          * can happen in parallel across all CPUs
866          */
867         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
868                                    inode, rw, bio, mirror_num, 0,
869                                    bio_offset,
870                                    __btree_submit_bio_start,
871                                    __btree_submit_bio_done);
872 }
873
874 #ifdef CONFIG_MIGRATION
875 static int btree_migratepage(struct address_space *mapping,
876                         struct page *newpage, struct page *page)
877 {
878         /*
879          * we can't safely write a btree page from here,
880          * we haven't done the locking hook
881          */
882         if (PageDirty(page))
883                 return -EAGAIN;
884         /*
885          * Buffers may be managed in a filesystem specific way.
886          * We must have no buffers or drop them.
887          */
888         if (page_has_private(page) &&
889             !try_to_release_page(page, GFP_KERNEL))
890                 return -EAGAIN;
891         return migrate_page(mapping, newpage, page);
892 }
893 #endif
894
895 static int btree_writepage(struct page *page, struct writeback_control *wbc)
896 {
897         struct extent_io_tree *tree;
898         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
899         struct extent_buffer *eb;
900         int was_dirty;
901
902         tree = &BTRFS_I(page->mapping->host)->io_tree;
903         if (!(current->flags & PF_MEMALLOC)) {
904                 return extent_write_full_page(tree, page,
905                                               btree_get_extent, wbc);
906         }
907
908         redirty_page_for_writepage(wbc, page);
909         eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
910         WARN_ON(!eb);
911
912         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
913         if (!was_dirty) {
914                 spin_lock(&root->fs_info->delalloc_lock);
915                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
916                 spin_unlock(&root->fs_info->delalloc_lock);
917         }
918         free_extent_buffer(eb);
919
920         unlock_page(page);
921         return 0;
922 }
923
924 static int btree_writepages(struct address_space *mapping,
925                             struct writeback_control *wbc)
926 {
927         struct extent_io_tree *tree;
928         tree = &BTRFS_I(mapping->host)->io_tree;
929         if (wbc->sync_mode == WB_SYNC_NONE) {
930                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931                 u64 num_dirty;
932                 unsigned long thresh = 32 * 1024 * 1024;
933
934                 if (wbc->for_kupdate)
935                         return 0;
936
937                 /* this is a bit racy, but that's ok */
938                 num_dirty = root->fs_info->dirty_metadata_bytes;
939                 if (num_dirty < thresh)
940                         return 0;
941         }
942         return extent_writepages(tree, mapping, btree_get_extent, wbc);
943 }
944
945 static int btree_readpage(struct file *file, struct page *page)
946 {
947         struct extent_io_tree *tree;
948         tree = &BTRFS_I(page->mapping->host)->io_tree;
949         return extent_read_full_page(tree, page, btree_get_extent, 0);
950 }
951
952 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 {
954         struct extent_io_tree *tree;
955         struct extent_map_tree *map;
956         int ret;
957
958         if (PageWriteback(page) || PageDirty(page))
959                 return 0;
960
961         tree = &BTRFS_I(page->mapping->host)->io_tree;
962         map = &BTRFS_I(page->mapping->host)->extent_tree;
963
964         ret = try_release_extent_state(map, tree, page, gfp_flags);
965         if (!ret)
966                 return 0;
967
968         ret = try_release_extent_buffer(tree, page);
969         if (ret == 1) {
970                 ClearPagePrivate(page);
971                 set_page_private(page, 0);
972                 page_cache_release(page);
973         }
974
975         return ret;
976 }
977
978 static void btree_invalidatepage(struct page *page, unsigned long offset)
979 {
980         struct extent_io_tree *tree;
981         tree = &BTRFS_I(page->mapping->host)->io_tree;
982         extent_invalidatepage(tree, page, offset);
983         btree_releasepage(page, GFP_NOFS);
984         if (PagePrivate(page)) {
985                 printk(KERN_WARNING "btrfs warning page private not zero "
986                        "on page %llu\n", (unsigned long long)page_offset(page));
987                 ClearPagePrivate(page);
988                 set_page_private(page, 0);
989                 page_cache_release(page);
990         }
991 }
992
993 static const struct address_space_operations btree_aops = {
994         .readpage       = btree_readpage,
995         .writepage      = btree_writepage,
996         .writepages     = btree_writepages,
997         .releasepage    = btree_releasepage,
998         .invalidatepage = btree_invalidatepage,
999 #ifdef CONFIG_MIGRATION
1000         .migratepage    = btree_migratepage,
1001 #endif
1002 };
1003
1004 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1005                          u64 parent_transid)
1006 {
1007         struct extent_buffer *buf = NULL;
1008         struct inode *btree_inode = root->fs_info->btree_inode;
1009         int ret = 0;
1010
1011         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1012         if (!buf)
1013                 return 0;
1014         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1015                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1016         free_extent_buffer(buf);
1017         return ret;
1018 }
1019
1020 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1021                          int mirror_num, struct extent_buffer **eb)
1022 {
1023         struct extent_buffer *buf = NULL;
1024         struct inode *btree_inode = root->fs_info->btree_inode;
1025         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1026         int ret;
1027
1028         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1029         if (!buf)
1030                 return 0;
1031
1032         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1033
1034         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1035                                        btree_get_extent, mirror_num);
1036         if (ret) {
1037                 free_extent_buffer(buf);
1038                 return ret;
1039         }
1040
1041         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1042                 free_extent_buffer(buf);
1043                 return -EIO;
1044         } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1045                 *eb = buf;
1046         } else {
1047                 free_extent_buffer(buf);
1048         }
1049         return 0;
1050 }
1051
1052 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1053                                             u64 bytenr, u32 blocksize)
1054 {
1055         struct inode *btree_inode = root->fs_info->btree_inode;
1056         struct extent_buffer *eb;
1057         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1058                                 bytenr, blocksize);
1059         return eb;
1060 }
1061
1062 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1063                                                  u64 bytenr, u32 blocksize)
1064 {
1065         struct inode *btree_inode = root->fs_info->btree_inode;
1066         struct extent_buffer *eb;
1067
1068         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1069                                  bytenr, blocksize, NULL);
1070         return eb;
1071 }
1072
1073
1074 int btrfs_write_tree_block(struct extent_buffer *buf)
1075 {
1076         return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1077                                         buf->start + buf->len - 1);
1078 }
1079
1080 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1081 {
1082         return filemap_fdatawait_range(buf->first_page->mapping,
1083                                        buf->start, buf->start + buf->len - 1);
1084 }
1085
1086 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1087                                       u32 blocksize, u64 parent_transid)
1088 {
1089         struct extent_buffer *buf = NULL;
1090         int ret;
1091
1092         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1093         if (!buf)
1094                 return NULL;
1095
1096         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1097
1098         if (ret == 0)
1099                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1100         return buf;
1101
1102 }
1103
1104 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1105                      struct extent_buffer *buf)
1106 {
1107         struct inode *btree_inode = root->fs_info->btree_inode;
1108         if (btrfs_header_generation(buf) ==
1109             root->fs_info->running_transaction->transid) {
1110                 btrfs_assert_tree_locked(buf);
1111
1112                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1113                         spin_lock(&root->fs_info->delalloc_lock);
1114                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1115                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1116                         else
1117                                 WARN_ON(1);
1118                         spin_unlock(&root->fs_info->delalloc_lock);
1119                 }
1120
1121                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1122                 btrfs_set_lock_blocking(buf);
1123                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1124                                           buf);
1125         }
1126         return 0;
1127 }
1128
1129 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1130                         u32 stripesize, struct btrfs_root *root,
1131                         struct btrfs_fs_info *fs_info,
1132                         u64 objectid)
1133 {
1134         root->node = NULL;
1135         root->commit_root = NULL;
1136         root->sectorsize = sectorsize;
1137         root->nodesize = nodesize;
1138         root->leafsize = leafsize;
1139         root->stripesize = stripesize;
1140         root->ref_cows = 0;
1141         root->track_dirty = 0;
1142         root->in_radix = 0;
1143         root->orphan_item_inserted = 0;
1144         root->orphan_cleanup_state = 0;
1145
1146         root->fs_info = fs_info;
1147         root->objectid = objectid;
1148         root->last_trans = 0;
1149         root->highest_objectid = 0;
1150         root->name = NULL;
1151         root->inode_tree = RB_ROOT;
1152         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153         root->block_rsv = NULL;
1154         root->orphan_block_rsv = NULL;
1155
1156         INIT_LIST_HEAD(&root->dirty_list);
1157         INIT_LIST_HEAD(&root->orphan_list);
1158         INIT_LIST_HEAD(&root->root_list);
1159         spin_lock_init(&root->orphan_lock);
1160         spin_lock_init(&root->inode_lock);
1161         spin_lock_init(&root->accounting_lock);
1162         mutex_init(&root->objectid_mutex);
1163         mutex_init(&root->log_mutex);
1164         init_waitqueue_head(&root->log_writer_wait);
1165         init_waitqueue_head(&root->log_commit_wait[0]);
1166         init_waitqueue_head(&root->log_commit_wait[1]);
1167         atomic_set(&root->log_commit[0], 0);
1168         atomic_set(&root->log_commit[1], 0);
1169         atomic_set(&root->log_writers, 0);
1170         root->log_batch = 0;
1171         root->log_transid = 0;
1172         root->last_log_commit = 0;
1173         extent_io_tree_init(&root->dirty_log_pages,
1174                              fs_info->btree_inode->i_mapping);
1175
1176         memset(&root->root_key, 0, sizeof(root->root_key));
1177         memset(&root->root_item, 0, sizeof(root->root_item));
1178         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180         root->defrag_trans_start = fs_info->generation;
1181         init_completion(&root->kobj_unregister);
1182         root->defrag_running = 0;
1183         root->root_key.objectid = objectid;
1184         root->anon_dev = 0;
1185         return 0;
1186 }
1187
1188 static int find_and_setup_root(struct btrfs_root *tree_root,
1189                                struct btrfs_fs_info *fs_info,
1190                                u64 objectid,
1191                                struct btrfs_root *root)
1192 {
1193         int ret;
1194         u32 blocksize;
1195         u64 generation;
1196
1197         __setup_root(tree_root->nodesize, tree_root->leafsize,
1198                      tree_root->sectorsize, tree_root->stripesize,
1199                      root, fs_info, objectid);
1200         ret = btrfs_find_last_root(tree_root, objectid,
1201                                    &root->root_item, &root->root_key);
1202         if (ret > 0)
1203                 return -ENOENT;
1204         BUG_ON(ret);
1205
1206         generation = btrfs_root_generation(&root->root_item);
1207         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208         root->commit_root = NULL;
1209         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210                                      blocksize, generation);
1211         if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1212                 free_extent_buffer(root->node);
1213                 root->node = NULL;
1214                 return -EIO;
1215         }
1216         root->commit_root = btrfs_root_node(root);
1217         return 0;
1218 }
1219
1220 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1221                                          struct btrfs_fs_info *fs_info)
1222 {
1223         struct btrfs_root *root;
1224         struct btrfs_root *tree_root = fs_info->tree_root;
1225         struct extent_buffer *leaf;
1226
1227         root = kzalloc(sizeof(*root), GFP_NOFS);
1228         if (!root)
1229                 return ERR_PTR(-ENOMEM);
1230
1231         __setup_root(tree_root->nodesize, tree_root->leafsize,
1232                      tree_root->sectorsize, tree_root->stripesize,
1233                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1234
1235         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1236         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1237         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1238         /*
1239          * log trees do not get reference counted because they go away
1240          * before a real commit is actually done.  They do store pointers
1241          * to file data extents, and those reference counts still get
1242          * updated (along with back refs to the log tree).
1243          */
1244         root->ref_cows = 0;
1245
1246         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1247                                       BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1248         if (IS_ERR(leaf)) {
1249                 kfree(root);
1250                 return ERR_CAST(leaf);
1251         }
1252
1253         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1254         btrfs_set_header_bytenr(leaf, leaf->start);
1255         btrfs_set_header_generation(leaf, trans->transid);
1256         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1257         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1258         root->node = leaf;
1259
1260         write_extent_buffer(root->node, root->fs_info->fsid,
1261                             (unsigned long)btrfs_header_fsid(root->node),
1262                             BTRFS_FSID_SIZE);
1263         btrfs_mark_buffer_dirty(root->node);
1264         btrfs_tree_unlock(root->node);
1265         return root;
1266 }
1267
1268 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1269                              struct btrfs_fs_info *fs_info)
1270 {
1271         struct btrfs_root *log_root;
1272
1273         log_root = alloc_log_tree(trans, fs_info);
1274         if (IS_ERR(log_root))
1275                 return PTR_ERR(log_root);
1276         WARN_ON(fs_info->log_root_tree);
1277         fs_info->log_root_tree = log_root;
1278         return 0;
1279 }
1280
1281 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1282                        struct btrfs_root *root)
1283 {
1284         struct btrfs_root *log_root;
1285         struct btrfs_inode_item *inode_item;
1286
1287         log_root = alloc_log_tree(trans, root->fs_info);
1288         if (IS_ERR(log_root))
1289                 return PTR_ERR(log_root);
1290
1291         log_root->last_trans = trans->transid;
1292         log_root->root_key.offset = root->root_key.objectid;
1293
1294         inode_item = &log_root->root_item.inode;
1295         inode_item->generation = cpu_to_le64(1);
1296         inode_item->size = cpu_to_le64(3);
1297         inode_item->nlink = cpu_to_le32(1);
1298         inode_item->nbytes = cpu_to_le64(root->leafsize);
1299         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1300
1301         btrfs_set_root_node(&log_root->root_item, log_root->node);
1302
1303         WARN_ON(root->log_root);
1304         root->log_root = log_root;
1305         root->log_transid = 0;
1306         root->last_log_commit = 0;
1307         return 0;
1308 }
1309
1310 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1311                                                struct btrfs_key *location)
1312 {
1313         struct btrfs_root *root;
1314         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1315         struct btrfs_path *path;
1316         struct extent_buffer *l;
1317         u64 generation;
1318         u32 blocksize;
1319         int ret = 0;
1320
1321         root = kzalloc(sizeof(*root), GFP_NOFS);
1322         if (!root)
1323                 return ERR_PTR(-ENOMEM);
1324         if (location->offset == (u64)-1) {
1325                 ret = find_and_setup_root(tree_root, fs_info,
1326                                           location->objectid, root);
1327                 if (ret) {
1328                         kfree(root);
1329                         return ERR_PTR(ret);
1330                 }
1331                 goto out;
1332         }
1333
1334         __setup_root(tree_root->nodesize, tree_root->leafsize,
1335                      tree_root->sectorsize, tree_root->stripesize,
1336                      root, fs_info, location->objectid);
1337
1338         path = btrfs_alloc_path();
1339         if (!path) {
1340                 kfree(root);
1341                 return ERR_PTR(-ENOMEM);
1342         }
1343         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1344         if (ret == 0) {
1345                 l = path->nodes[0];
1346                 read_extent_buffer(l, &root->root_item,
1347                                 btrfs_item_ptr_offset(l, path->slots[0]),
1348                                 sizeof(root->root_item));
1349                 memcpy(&root->root_key, location, sizeof(*location));
1350         }
1351         btrfs_free_path(path);
1352         if (ret) {
1353                 kfree(root);
1354                 if (ret > 0)
1355                         ret = -ENOENT;
1356                 return ERR_PTR(ret);
1357         }
1358
1359         generation = btrfs_root_generation(&root->root_item);
1360         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1361         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1362                                      blocksize, generation);
1363         root->commit_root = btrfs_root_node(root);
1364         BUG_ON(!root->node);
1365 out:
1366         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1367                 root->ref_cows = 1;
1368                 btrfs_check_and_init_root_item(&root->root_item);
1369         }
1370
1371         return root;
1372 }
1373
1374 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1375                                               struct btrfs_key *location)
1376 {
1377         struct btrfs_root *root;
1378         int ret;
1379
1380         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1381                 return fs_info->tree_root;
1382         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1383                 return fs_info->extent_root;
1384         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1385                 return fs_info->chunk_root;
1386         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1387                 return fs_info->dev_root;
1388         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1389                 return fs_info->csum_root;
1390 again:
1391         spin_lock(&fs_info->fs_roots_radix_lock);
1392         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1393                                  (unsigned long)location->objectid);
1394         spin_unlock(&fs_info->fs_roots_radix_lock);
1395         if (root)
1396                 return root;
1397
1398         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1399         if (IS_ERR(root))
1400                 return root;
1401
1402         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1403         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1404                                         GFP_NOFS);
1405         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1406                 ret = -ENOMEM;
1407                 goto fail;
1408         }
1409
1410         btrfs_init_free_ino_ctl(root);
1411         mutex_init(&root->fs_commit_mutex);
1412         spin_lock_init(&root->cache_lock);
1413         init_waitqueue_head(&root->cache_wait);
1414
1415         ret = get_anon_bdev(&root->anon_dev);
1416         if (ret)
1417                 goto fail;
1418
1419         if (btrfs_root_refs(&root->root_item) == 0) {
1420                 ret = -ENOENT;
1421                 goto fail;
1422         }
1423
1424         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1425         if (ret < 0)
1426                 goto fail;
1427         if (ret == 0)
1428                 root->orphan_item_inserted = 1;
1429
1430         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1431         if (ret)
1432                 goto fail;
1433
1434         spin_lock(&fs_info->fs_roots_radix_lock);
1435         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1436                                 (unsigned long)root->root_key.objectid,
1437                                 root);
1438         if (ret == 0)
1439                 root->in_radix = 1;
1440
1441         spin_unlock(&fs_info->fs_roots_radix_lock);
1442         radix_tree_preload_end();
1443         if (ret) {
1444                 if (ret == -EEXIST) {
1445                         free_fs_root(root);
1446                         goto again;
1447                 }
1448                 goto fail;
1449         }
1450
1451         ret = btrfs_find_dead_roots(fs_info->tree_root,
1452                                     root->root_key.objectid);
1453         WARN_ON(ret);
1454         return root;
1455 fail:
1456         free_fs_root(root);
1457         return ERR_PTR(ret);
1458 }
1459
1460 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1461 {
1462         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1463         int ret = 0;
1464         struct btrfs_device *device;
1465         struct backing_dev_info *bdi;
1466
1467         rcu_read_lock();
1468         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1469                 if (!device->bdev)
1470                         continue;
1471                 bdi = blk_get_backing_dev_info(device->bdev);
1472                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1473                         ret = 1;
1474                         break;
1475                 }
1476         }
1477         rcu_read_unlock();
1478         return ret;
1479 }
1480
1481 /*
1482  * If this fails, caller must call bdi_destroy() to get rid of the
1483  * bdi again.
1484  */
1485 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1486 {
1487         int err;
1488
1489         bdi->capabilities = BDI_CAP_MAP_COPY;
1490         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1491         if (err)
1492                 return err;
1493
1494         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1495         bdi->congested_fn       = btrfs_congested_fn;
1496         bdi->congested_data     = info;
1497         return 0;
1498 }
1499
1500 static int bio_ready_for_csum(struct bio *bio)
1501 {
1502         u64 length = 0;
1503         u64 buf_len = 0;
1504         u64 start = 0;
1505         struct page *page;
1506         struct extent_io_tree *io_tree = NULL;
1507         struct bio_vec *bvec;
1508         int i;
1509         int ret;
1510
1511         bio_for_each_segment(bvec, bio, i) {
1512                 page = bvec->bv_page;
1513                 if (page->private == EXTENT_PAGE_PRIVATE) {
1514                         length += bvec->bv_len;
1515                         continue;
1516                 }
1517                 if (!page->private) {
1518                         length += bvec->bv_len;
1519                         continue;
1520                 }
1521                 length = bvec->bv_len;
1522                 buf_len = page->private >> 2;
1523                 start = page_offset(page) + bvec->bv_offset;
1524                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1525         }
1526         /* are we fully contained in this bio? */
1527         if (buf_len <= length)
1528                 return 1;
1529
1530         ret = extent_range_uptodate(io_tree, start + length,
1531                                     start + buf_len - 1);
1532         return ret;
1533 }
1534
1535 /*
1536  * called by the kthread helper functions to finally call the bio end_io
1537  * functions.  This is where read checksum verification actually happens
1538  */
1539 static void end_workqueue_fn(struct btrfs_work *work)
1540 {
1541         struct bio *bio;
1542         struct end_io_wq *end_io_wq;
1543         struct btrfs_fs_info *fs_info;
1544         int error;
1545
1546         end_io_wq = container_of(work, struct end_io_wq, work);
1547         bio = end_io_wq->bio;
1548         fs_info = end_io_wq->info;
1549
1550         /* metadata bio reads are special because the whole tree block must
1551          * be checksummed at once.  This makes sure the entire block is in
1552          * ram and up to date before trying to verify things.  For
1553          * blocksize <= pagesize, it is basically a noop
1554          */
1555         if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1556             !bio_ready_for_csum(bio)) {
1557                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1558                                    &end_io_wq->work);
1559                 return;
1560         }
1561         error = end_io_wq->error;
1562         bio->bi_private = end_io_wq->private;
1563         bio->bi_end_io = end_io_wq->end_io;
1564         kfree(end_io_wq);
1565         bio_endio(bio, error);
1566 }
1567
1568 static int cleaner_kthread(void *arg)
1569 {
1570         struct btrfs_root *root = arg;
1571
1572         do {
1573                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1574
1575                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1576                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1577                         btrfs_run_delayed_iputs(root);
1578                         btrfs_clean_old_snapshots(root);
1579                         mutex_unlock(&root->fs_info->cleaner_mutex);
1580                         btrfs_run_defrag_inodes(root->fs_info);
1581                 }
1582
1583                 if (freezing(current)) {
1584                         refrigerator();
1585                 } else {
1586                         set_current_state(TASK_INTERRUPTIBLE);
1587                         if (!kthread_should_stop())
1588                                 schedule();
1589                         __set_current_state(TASK_RUNNING);
1590                 }
1591         } while (!kthread_should_stop());
1592         return 0;
1593 }
1594
1595 static int transaction_kthread(void *arg)
1596 {
1597         struct btrfs_root *root = arg;
1598         struct btrfs_trans_handle *trans;
1599         struct btrfs_transaction *cur;
1600         u64 transid;
1601         unsigned long now;
1602         unsigned long delay;
1603         int ret;
1604
1605         do {
1606                 delay = HZ * 30;
1607                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1608                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1609
1610                 spin_lock(&root->fs_info->trans_lock);
1611                 cur = root->fs_info->running_transaction;
1612                 if (!cur) {
1613                         spin_unlock(&root->fs_info->trans_lock);
1614                         goto sleep;
1615                 }
1616
1617                 now = get_seconds();
1618                 if (!cur->blocked &&
1619                     (now < cur->start_time || now - cur->start_time < 30)) {
1620                         spin_unlock(&root->fs_info->trans_lock);
1621                         delay = HZ * 5;
1622                         goto sleep;
1623                 }
1624                 transid = cur->transid;
1625                 spin_unlock(&root->fs_info->trans_lock);
1626
1627                 trans = btrfs_join_transaction(root);
1628                 BUG_ON(IS_ERR(trans));
1629                 if (transid == trans->transid) {
1630                         ret = btrfs_commit_transaction(trans, root);
1631                         BUG_ON(ret);
1632                 } else {
1633                         btrfs_end_transaction(trans, root);
1634                 }
1635 sleep:
1636                 wake_up_process(root->fs_info->cleaner_kthread);
1637                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1638
1639                 if (freezing(current)) {
1640                         refrigerator();
1641                 } else {
1642                         set_current_state(TASK_INTERRUPTIBLE);
1643                         if (!kthread_should_stop() &&
1644                             !btrfs_transaction_blocked(root->fs_info))
1645                                 schedule_timeout(delay);
1646                         __set_current_state(TASK_RUNNING);
1647                 }
1648         } while (!kthread_should_stop());
1649         return 0;
1650 }
1651
1652 /*
1653  * this will find the highest generation in the array of
1654  * root backups.  The index of the highest array is returned,
1655  * or -1 if we can't find anything.
1656  *
1657  * We check to make sure the array is valid by comparing the
1658  * generation of the latest  root in the array with the generation
1659  * in the super block.  If they don't match we pitch it.
1660  */
1661 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1662 {
1663         u64 cur;
1664         int newest_index = -1;
1665         struct btrfs_root_backup *root_backup;
1666         int i;
1667
1668         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1669                 root_backup = info->super_copy->super_roots + i;
1670                 cur = btrfs_backup_tree_root_gen(root_backup);
1671                 if (cur == newest_gen)
1672                         newest_index = i;
1673         }
1674
1675         /* check to see if we actually wrapped around */
1676         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1677                 root_backup = info->super_copy->super_roots;
1678                 cur = btrfs_backup_tree_root_gen(root_backup);
1679                 if (cur == newest_gen)
1680                         newest_index = 0;
1681         }
1682         return newest_index;
1683 }
1684
1685
1686 /*
1687  * find the oldest backup so we know where to store new entries
1688  * in the backup array.  This will set the backup_root_index
1689  * field in the fs_info struct
1690  */
1691 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1692                                      u64 newest_gen)
1693 {
1694         int newest_index = -1;
1695
1696         newest_index = find_newest_super_backup(info, newest_gen);
1697         /* if there was garbage in there, just move along */
1698         if (newest_index == -1) {
1699                 info->backup_root_index = 0;
1700         } else {
1701                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702         }
1703 }
1704
1705 /*
1706  * copy all the root pointers into the super backup array.
1707  * this will bump the backup pointer by one when it is
1708  * done
1709  */
1710 static void backup_super_roots(struct btrfs_fs_info *info)
1711 {
1712         int next_backup;
1713         struct btrfs_root_backup *root_backup;
1714         int last_backup;
1715
1716         next_backup = info->backup_root_index;
1717         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1718                 BTRFS_NUM_BACKUP_ROOTS;
1719
1720         /*
1721          * just overwrite the last backup if we're at the same generation
1722          * this happens only at umount
1723          */
1724         root_backup = info->super_for_commit->super_roots + last_backup;
1725         if (btrfs_backup_tree_root_gen(root_backup) ==
1726             btrfs_header_generation(info->tree_root->node))
1727                 next_backup = last_backup;
1728
1729         root_backup = info->super_for_commit->super_roots + next_backup;
1730
1731         /*
1732          * make sure all of our padding and empty slots get zero filled
1733          * regardless of which ones we use today
1734          */
1735         memset(root_backup, 0, sizeof(*root_backup));
1736
1737         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1738
1739         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1740         btrfs_set_backup_tree_root_gen(root_backup,
1741                                btrfs_header_generation(info->tree_root->node));
1742
1743         btrfs_set_backup_tree_root_level(root_backup,
1744                                btrfs_header_level(info->tree_root->node));
1745
1746         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1747         btrfs_set_backup_chunk_root_gen(root_backup,
1748                                btrfs_header_generation(info->chunk_root->node));
1749         btrfs_set_backup_chunk_root_level(root_backup,
1750                                btrfs_header_level(info->chunk_root->node));
1751
1752         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1753         btrfs_set_backup_extent_root_gen(root_backup,
1754                                btrfs_header_generation(info->extent_root->node));
1755         btrfs_set_backup_extent_root_level(root_backup,
1756                                btrfs_header_level(info->extent_root->node));
1757
1758         /*
1759          * we might commit during log recovery, which happens before we set
1760          * the fs_root.  Make sure it is valid before we fill it in.
1761          */
1762         if (info->fs_root && info->fs_root->node) {
1763                 btrfs_set_backup_fs_root(root_backup,
1764                                          info->fs_root->node->start);
1765                 btrfs_set_backup_fs_root_gen(root_backup,
1766                                btrfs_header_generation(info->fs_root->node));
1767                 btrfs_set_backup_fs_root_level(root_backup,
1768                                btrfs_header_level(info->fs_root->node));
1769         }
1770
1771         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1772         btrfs_set_backup_dev_root_gen(root_backup,
1773                                btrfs_header_generation(info->dev_root->node));
1774         btrfs_set_backup_dev_root_level(root_backup,
1775                                        btrfs_header_level(info->dev_root->node));
1776
1777         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1778         btrfs_set_backup_csum_root_gen(root_backup,
1779                                btrfs_header_generation(info->csum_root->node));
1780         btrfs_set_backup_csum_root_level(root_backup,
1781                                btrfs_header_level(info->csum_root->node));
1782
1783         btrfs_set_backup_total_bytes(root_backup,
1784                              btrfs_super_total_bytes(info->super_copy));
1785         btrfs_set_backup_bytes_used(root_backup,
1786                              btrfs_super_bytes_used(info->super_copy));
1787         btrfs_set_backup_num_devices(root_backup,
1788                              btrfs_super_num_devices(info->super_copy));
1789
1790         /*
1791          * if we don't copy this out to the super_copy, it won't get remembered
1792          * for the next commit
1793          */
1794         memcpy(&info->super_copy->super_roots,
1795                &info->super_for_commit->super_roots,
1796                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1797 }
1798
1799 /*
1800  * this copies info out of the root backup array and back into
1801  * the in-memory super block.  It is meant to help iterate through
1802  * the array, so you send it the number of backups you've already
1803  * tried and the last backup index you used.
1804  *
1805  * this returns -1 when it has tried all the backups
1806  */
1807 static noinline int next_root_backup(struct btrfs_fs_info *info,
1808                                      struct btrfs_super_block *super,
1809                                      int *num_backups_tried, int *backup_index)
1810 {
1811         struct btrfs_root_backup *root_backup;
1812         int newest = *backup_index;
1813
1814         if (*num_backups_tried == 0) {
1815                 u64 gen = btrfs_super_generation(super);
1816
1817                 newest = find_newest_super_backup(info, gen);
1818                 if (newest == -1)
1819                         return -1;
1820
1821                 *backup_index = newest;
1822                 *num_backups_tried = 1;
1823         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1824                 /* we've tried all the backups, all done */
1825                 return -1;
1826         } else {
1827                 /* jump to the next oldest backup */
1828                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1829                         BTRFS_NUM_BACKUP_ROOTS;
1830                 *backup_index = newest;
1831                 *num_backups_tried += 1;
1832         }
1833         root_backup = super->super_roots + newest;
1834
1835         btrfs_set_super_generation(super,
1836                                    btrfs_backup_tree_root_gen(root_backup));
1837         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1838         btrfs_set_super_root_level(super,
1839                                    btrfs_backup_tree_root_level(root_backup));
1840         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1841
1842         /*
1843          * fixme: the total bytes and num_devices need to match or we should
1844          * need a fsck
1845          */
1846         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1847         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1848         return 0;
1849 }
1850
1851 /* helper to cleanup tree roots */
1852 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1853 {
1854         free_extent_buffer(info->tree_root->node);
1855         free_extent_buffer(info->tree_root->commit_root);
1856         free_extent_buffer(info->dev_root->node);
1857         free_extent_buffer(info->dev_root->commit_root);
1858         free_extent_buffer(info->extent_root->node);
1859         free_extent_buffer(info->extent_root->commit_root);
1860         free_extent_buffer(info->csum_root->node);
1861         free_extent_buffer(info->csum_root->commit_root);
1862
1863         info->tree_root->node = NULL;
1864         info->tree_root->commit_root = NULL;
1865         info->dev_root->node = NULL;
1866         info->dev_root->commit_root = NULL;
1867         info->extent_root->node = NULL;
1868         info->extent_root->commit_root = NULL;
1869         info->csum_root->node = NULL;
1870         info->csum_root->commit_root = NULL;
1871
1872         if (chunk_root) {
1873                 free_extent_buffer(info->chunk_root->node);
1874                 free_extent_buffer(info->chunk_root->commit_root);
1875                 info->chunk_root->node = NULL;
1876                 info->chunk_root->commit_root = NULL;
1877         }
1878 }
1879
1880
1881 struct btrfs_root *open_ctree(struct super_block *sb,
1882                               struct btrfs_fs_devices *fs_devices,
1883                               char *options)
1884 {
1885         u32 sectorsize;
1886         u32 nodesize;
1887         u32 leafsize;
1888         u32 blocksize;
1889         u32 stripesize;
1890         u64 generation;
1891         u64 features;
1892         struct btrfs_key location;
1893         struct buffer_head *bh;
1894         struct btrfs_super_block *disk_super;
1895         struct btrfs_root *tree_root = btrfs_sb(sb);
1896         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1897         struct btrfs_root *extent_root;
1898         struct btrfs_root *csum_root;
1899         struct btrfs_root *chunk_root;
1900         struct btrfs_root *dev_root;
1901         struct btrfs_root *log_tree_root;
1902         int ret;
1903         int err = -EINVAL;
1904         int num_backups_tried = 0;
1905         int backup_index = 0;
1906
1907         extent_root = fs_info->extent_root =
1908                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1909         csum_root = fs_info->csum_root =
1910                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1911         chunk_root = fs_info->chunk_root =
1912                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1913         dev_root = fs_info->dev_root =
1914                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1915
1916         if (!extent_root || !csum_root || !chunk_root || !dev_root) {
1917                 err = -ENOMEM;
1918                 goto fail;
1919         }
1920
1921         ret = init_srcu_struct(&fs_info->subvol_srcu);
1922         if (ret) {
1923                 err = ret;
1924                 goto fail;
1925         }
1926
1927         ret = setup_bdi(fs_info, &fs_info->bdi);
1928         if (ret) {
1929                 err = ret;
1930                 goto fail_srcu;
1931         }
1932
1933         fs_info->btree_inode = new_inode(sb);
1934         if (!fs_info->btree_inode) {
1935                 err = -ENOMEM;
1936                 goto fail_bdi;
1937         }
1938
1939         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1940
1941         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1942         INIT_LIST_HEAD(&fs_info->trans_list);
1943         INIT_LIST_HEAD(&fs_info->dead_roots);
1944         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1945         INIT_LIST_HEAD(&fs_info->hashers);
1946         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1947         INIT_LIST_HEAD(&fs_info->ordered_operations);
1948         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1949         spin_lock_init(&fs_info->delalloc_lock);
1950         spin_lock_init(&fs_info->trans_lock);
1951         spin_lock_init(&fs_info->ref_cache_lock);
1952         spin_lock_init(&fs_info->fs_roots_radix_lock);
1953         spin_lock_init(&fs_info->delayed_iput_lock);
1954         spin_lock_init(&fs_info->defrag_inodes_lock);
1955         spin_lock_init(&fs_info->free_chunk_lock);
1956         mutex_init(&fs_info->reloc_mutex);
1957
1958         init_completion(&fs_info->kobj_unregister);
1959         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1960         INIT_LIST_HEAD(&fs_info->space_info);
1961         btrfs_mapping_init(&fs_info->mapping_tree);
1962         btrfs_init_block_rsv(&fs_info->global_block_rsv);
1963         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1964         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1965         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1966         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1967         btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1968         atomic_set(&fs_info->nr_async_submits, 0);
1969         atomic_set(&fs_info->async_delalloc_pages, 0);
1970         atomic_set(&fs_info->async_submit_draining, 0);
1971         atomic_set(&fs_info->nr_async_bios, 0);
1972         atomic_set(&fs_info->defrag_running, 0);
1973         fs_info->sb = sb;
1974         fs_info->max_inline = 8192 * 1024;
1975         fs_info->metadata_ratio = 0;
1976         fs_info->defrag_inodes = RB_ROOT;
1977         fs_info->trans_no_join = 0;
1978         fs_info->free_chunk_space = 0;
1979
1980         /* readahead state */
1981         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1982         spin_lock_init(&fs_info->reada_lock);
1983
1984         fs_info->thread_pool_size = min_t(unsigned long,
1985                                           num_online_cpus() + 2, 8);
1986
1987         INIT_LIST_HEAD(&fs_info->ordered_extents);
1988         spin_lock_init(&fs_info->ordered_extent_lock);
1989         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1990                                         GFP_NOFS);
1991         if (!fs_info->delayed_root) {
1992                 err = -ENOMEM;
1993                 goto fail_iput;
1994         }
1995         btrfs_init_delayed_root(fs_info->delayed_root);
1996
1997         mutex_init(&fs_info->scrub_lock);
1998         atomic_set(&fs_info->scrubs_running, 0);
1999         atomic_set(&fs_info->scrub_pause_req, 0);
2000         atomic_set(&fs_info->scrubs_paused, 0);
2001         atomic_set(&fs_info->scrub_cancel_req, 0);
2002         init_waitqueue_head(&fs_info->scrub_pause_wait);
2003         init_rwsem(&fs_info->scrub_super_lock);
2004         fs_info->scrub_workers_refcnt = 0;
2005 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2006         fs_info->check_integrity_print_mask = 0;
2007 #endif
2008
2009         sb->s_blocksize = 4096;
2010         sb->s_blocksize_bits = blksize_bits(4096);
2011         sb->s_bdi = &fs_info->bdi;
2012
2013         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2014         fs_info->btree_inode->i_nlink = 1;
2015         /*
2016          * we set the i_size on the btree inode to the max possible int.
2017          * the real end of the address space is determined by all of
2018          * the devices in the system
2019          */
2020         fs_info->btree_inode->i_size = OFFSET_MAX;
2021         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2022         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2023
2024         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2025         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2026                              fs_info->btree_inode->i_mapping);
2027         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2028
2029         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2030
2031         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2032         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2033                sizeof(struct btrfs_key));
2034         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2035         insert_inode_hash(fs_info->btree_inode);
2036
2037         spin_lock_init(&fs_info->block_group_cache_lock);
2038         fs_info->block_group_cache_tree = RB_ROOT;
2039
2040         extent_io_tree_init(&fs_info->freed_extents[0],
2041                              fs_info->btree_inode->i_mapping);
2042         extent_io_tree_init(&fs_info->freed_extents[1],
2043                              fs_info->btree_inode->i_mapping);
2044         fs_info->pinned_extents = &fs_info->freed_extents[0];
2045         fs_info->do_barriers = 1;
2046
2047
2048         mutex_init(&fs_info->ordered_operations_mutex);
2049         mutex_init(&fs_info->tree_log_mutex);
2050         mutex_init(&fs_info->chunk_mutex);
2051         mutex_init(&fs_info->transaction_kthread_mutex);
2052         mutex_init(&fs_info->cleaner_mutex);
2053         mutex_init(&fs_info->volume_mutex);
2054         init_rwsem(&fs_info->extent_commit_sem);
2055         init_rwsem(&fs_info->cleanup_work_sem);
2056         init_rwsem(&fs_info->subvol_sem);
2057
2058         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2059         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2060
2061         init_waitqueue_head(&fs_info->transaction_throttle);
2062         init_waitqueue_head(&fs_info->transaction_wait);
2063         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2064         init_waitqueue_head(&fs_info->async_submit_wait);
2065
2066         __setup_root(4096, 4096, 4096, 4096, tree_root,
2067                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2068
2069         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2070         if (!bh) {
2071                 err = -EINVAL;
2072                 goto fail_alloc;
2073         }
2074
2075         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2076         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2077                sizeof(*fs_info->super_for_commit));
2078         brelse(bh);
2079
2080         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2081
2082         disk_super = fs_info->super_copy;
2083         if (!btrfs_super_root(disk_super))
2084                 goto fail_alloc;
2085
2086         /* check FS state, whether FS is broken. */
2087         fs_info->fs_state |= btrfs_super_flags(disk_super);
2088
2089         btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2090
2091         /*
2092          * run through our array of backup supers and setup
2093          * our ring pointer to the oldest one
2094          */
2095         generation = btrfs_super_generation(disk_super);
2096         find_oldest_super_backup(fs_info, generation);
2097
2098         /*
2099          * In the long term, we'll store the compression type in the super
2100          * block, and it'll be used for per file compression control.
2101          */
2102         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2103
2104         ret = btrfs_parse_options(tree_root, options);
2105         if (ret) {
2106                 err = ret;
2107                 goto fail_alloc;
2108         }
2109
2110         features = btrfs_super_incompat_flags(disk_super) &
2111                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2112         if (features) {
2113                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2114                        "unsupported optional features (%Lx).\n",
2115                        (unsigned long long)features);
2116                 err = -EINVAL;
2117                 goto fail_alloc;
2118         }
2119
2120         features = btrfs_super_incompat_flags(disk_super);
2121         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122         if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2123                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2124         btrfs_set_super_incompat_flags(disk_super, features);
2125
2126         features = btrfs_super_compat_ro_flags(disk_super) &
2127                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2128         if (!(sb->s_flags & MS_RDONLY) && features) {
2129                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2130                        "unsupported option features (%Lx).\n",
2131                        (unsigned long long)features);
2132                 err = -EINVAL;
2133                 goto fail_alloc;
2134         }
2135
2136         btrfs_init_workers(&fs_info->generic_worker,
2137                            "genwork", 1, NULL);
2138
2139         btrfs_init_workers(&fs_info->workers, "worker",
2140                            fs_info->thread_pool_size,
2141                            &fs_info->generic_worker);
2142
2143         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2144                            fs_info->thread_pool_size,
2145                            &fs_info->generic_worker);
2146
2147         btrfs_init_workers(&fs_info->submit_workers, "submit",
2148                            min_t(u64, fs_devices->num_devices,
2149                            fs_info->thread_pool_size),
2150                            &fs_info->generic_worker);
2151
2152         btrfs_init_workers(&fs_info->caching_workers, "cache",
2153                            2, &fs_info->generic_worker);
2154
2155         /* a higher idle thresh on the submit workers makes it much more
2156          * likely that bios will be send down in a sane order to the
2157          * devices
2158          */
2159         fs_info->submit_workers.idle_thresh = 64;
2160
2161         fs_info->workers.idle_thresh = 16;
2162         fs_info->workers.ordered = 1;
2163
2164         fs_info->delalloc_workers.idle_thresh = 2;
2165         fs_info->delalloc_workers.ordered = 1;
2166
2167         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2168                            &fs_info->generic_worker);
2169         btrfs_init_workers(&fs_info->endio_workers, "endio",
2170                            fs_info->thread_pool_size,
2171                            &fs_info->generic_worker);
2172         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2173                            fs_info->thread_pool_size,
2174                            &fs_info->generic_worker);
2175         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2176                            "endio-meta-write", fs_info->thread_pool_size,
2177                            &fs_info->generic_worker);
2178         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2179                            fs_info->thread_pool_size,
2180                            &fs_info->generic_worker);
2181         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2182                            1, &fs_info->generic_worker);
2183         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2184                            fs_info->thread_pool_size,
2185                            &fs_info->generic_worker);
2186         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2187                            fs_info->thread_pool_size,
2188                            &fs_info->generic_worker);
2189
2190         /*
2191          * endios are largely parallel and should have a very
2192          * low idle thresh
2193          */
2194         fs_info->endio_workers.idle_thresh = 4;
2195         fs_info->endio_meta_workers.idle_thresh = 4;
2196
2197         fs_info->endio_write_workers.idle_thresh = 2;
2198         fs_info->endio_meta_write_workers.idle_thresh = 2;
2199         fs_info->readahead_workers.idle_thresh = 2;
2200
2201         /*
2202          * btrfs_start_workers can really only fail because of ENOMEM so just
2203          * return -ENOMEM if any of these fail.
2204          */
2205         ret = btrfs_start_workers(&fs_info->workers);
2206         ret |= btrfs_start_workers(&fs_info->generic_worker);
2207         ret |= btrfs_start_workers(&fs_info->submit_workers);
2208         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2209         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2210         ret |= btrfs_start_workers(&fs_info->endio_workers);
2211         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2212         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2213         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2214         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2215         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2216         ret |= btrfs_start_workers(&fs_info->caching_workers);
2217         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2218         if (ret) {
2219                 ret = -ENOMEM;
2220                 goto fail_sb_buffer;
2221         }
2222
2223         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2224         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2225                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2226
2227         nodesize = btrfs_super_nodesize(disk_super);
2228         leafsize = btrfs_super_leafsize(disk_super);
2229         sectorsize = btrfs_super_sectorsize(disk_super);
2230         stripesize = btrfs_super_stripesize(disk_super);
2231         tree_root->nodesize = nodesize;
2232         tree_root->leafsize = leafsize;
2233         tree_root->sectorsize = sectorsize;
2234         tree_root->stripesize = stripesize;
2235
2236         sb->s_blocksize = sectorsize;
2237         sb->s_blocksize_bits = blksize_bits(sectorsize);
2238
2239         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2240                     sizeof(disk_super->magic))) {
2241                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2242                 goto fail_sb_buffer;
2243         }
2244
2245         mutex_lock(&fs_info->chunk_mutex);
2246         ret = btrfs_read_sys_array(tree_root);
2247         mutex_unlock(&fs_info->chunk_mutex);
2248         if (ret) {
2249                 printk(KERN_WARNING "btrfs: failed to read the system "
2250                        "array on %s\n", sb->s_id);
2251                 goto fail_sb_buffer;
2252         }
2253
2254         blocksize = btrfs_level_size(tree_root,
2255                                      btrfs_super_chunk_root_level(disk_super));
2256         generation = btrfs_super_chunk_root_generation(disk_super);
2257
2258         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2259                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2260
2261         chunk_root->node = read_tree_block(chunk_root,
2262                                            btrfs_super_chunk_root(disk_super),
2263                                            blocksize, generation);
2264         BUG_ON(!chunk_root->node);
2265         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2266                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2267                        sb->s_id);
2268                 goto fail_tree_roots;
2269         }
2270         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2271         chunk_root->commit_root = btrfs_root_node(chunk_root);
2272
2273         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2274            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2275            BTRFS_UUID_SIZE);
2276
2277         mutex_lock(&fs_info->chunk_mutex);
2278         ret = btrfs_read_chunk_tree(chunk_root);
2279         mutex_unlock(&fs_info->chunk_mutex);
2280         if (ret) {
2281                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2282                        sb->s_id);
2283                 goto fail_tree_roots;
2284         }
2285
2286         btrfs_close_extra_devices(fs_devices);
2287
2288 retry_root_backup:
2289         blocksize = btrfs_level_size(tree_root,
2290                                      btrfs_super_root_level(disk_super));
2291         generation = btrfs_super_generation(disk_super);
2292
2293         tree_root->node = read_tree_block(tree_root,
2294                                           btrfs_super_root(disk_super),
2295                                           blocksize, generation);
2296         if (!tree_root->node ||
2297             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2298                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2299                        sb->s_id);
2300
2301                 goto recovery_tree_root;
2302         }
2303
2304         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2305         tree_root->commit_root = btrfs_root_node(tree_root);
2306
2307         ret = find_and_setup_root(tree_root, fs_info,
2308                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2309         if (ret)
2310                 goto recovery_tree_root;
2311         extent_root->track_dirty = 1;
2312
2313         ret = find_and_setup_root(tree_root, fs_info,
2314                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2315         if (ret)
2316                 goto recovery_tree_root;
2317         dev_root->track_dirty = 1;
2318
2319         ret = find_and_setup_root(tree_root, fs_info,
2320                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2321         if (ret)
2322                 goto recovery_tree_root;
2323
2324         csum_root->track_dirty = 1;
2325
2326         fs_info->generation = generation;
2327         fs_info->last_trans_committed = generation;
2328         fs_info->data_alloc_profile = (u64)-1;
2329         fs_info->metadata_alloc_profile = (u64)-1;
2330         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2331
2332         ret = btrfs_init_space_info(fs_info);
2333         if (ret) {
2334                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2335                 goto fail_block_groups;
2336         }
2337
2338         ret = btrfs_read_block_groups(extent_root);
2339         if (ret) {
2340                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2341                 goto fail_block_groups;
2342         }
2343
2344         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2345                                                "btrfs-cleaner");
2346         if (IS_ERR(fs_info->cleaner_kthread))
2347                 goto fail_block_groups;
2348
2349         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2350                                                    tree_root,
2351                                                    "btrfs-transaction");
2352         if (IS_ERR(fs_info->transaction_kthread))
2353                 goto fail_cleaner;
2354
2355         if (!btrfs_test_opt(tree_root, SSD) &&
2356             !btrfs_test_opt(tree_root, NOSSD) &&
2357             !fs_info->fs_devices->rotating) {
2358                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2359                        "mode\n");
2360                 btrfs_set_opt(fs_info->mount_opt, SSD);
2361         }
2362
2363 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2364         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2365                 ret = btrfsic_mount(tree_root, fs_devices,
2366                                     btrfs_test_opt(tree_root,
2367                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2368                                     1 : 0,
2369                                     fs_info->check_integrity_print_mask);
2370                 if (ret)
2371                         printk(KERN_WARNING "btrfs: failed to initialize"
2372                                " integrity check module %s\n", sb->s_id);
2373         }
2374 #endif
2375
2376         /* do not make disk changes in broken FS */
2377         if (btrfs_super_log_root(disk_super) != 0 &&
2378             !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2379                 u64 bytenr = btrfs_super_log_root(disk_super);
2380
2381                 if (fs_devices->rw_devices == 0) {
2382                         printk(KERN_WARNING "Btrfs log replay required "
2383                                "on RO media\n");
2384                         err = -EIO;
2385                         goto fail_trans_kthread;
2386                 }
2387                 blocksize =
2388                      btrfs_level_size(tree_root,
2389                                       btrfs_super_log_root_level(disk_super));
2390
2391                 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2392                 if (!log_tree_root) {
2393                         err = -ENOMEM;
2394                         goto fail_trans_kthread;
2395                 }
2396
2397                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2398                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2399
2400                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2401                                                       blocksize,
2402                                                       generation + 1);
2403                 ret = btrfs_recover_log_trees(log_tree_root);
2404                 BUG_ON(ret);
2405
2406                 if (sb->s_flags & MS_RDONLY) {
2407                         ret =  btrfs_commit_super(tree_root);
2408                         BUG_ON(ret);
2409                 }
2410         }
2411
2412         ret = btrfs_find_orphan_roots(tree_root);
2413         BUG_ON(ret);
2414
2415         if (!(sb->s_flags & MS_RDONLY)) {
2416                 ret = btrfs_cleanup_fs_roots(fs_info);
2417                 BUG_ON(ret);
2418
2419                 ret = btrfs_recover_relocation(tree_root);
2420                 if (ret < 0) {
2421                         printk(KERN_WARNING
2422                                "btrfs: failed to recover relocation\n");
2423                         err = -EINVAL;
2424                         goto fail_trans_kthread;
2425                 }
2426         }
2427
2428         location.objectid = BTRFS_FS_TREE_OBJECTID;
2429         location.type = BTRFS_ROOT_ITEM_KEY;
2430         location.offset = (u64)-1;
2431
2432         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2433         if (!fs_info->fs_root)
2434                 goto fail_trans_kthread;
2435         if (IS_ERR(fs_info->fs_root)) {
2436                 err = PTR_ERR(fs_info->fs_root);
2437                 goto fail_trans_kthread;
2438         }
2439
2440         if (!(sb->s_flags & MS_RDONLY)) {
2441                 down_read(&fs_info->cleanup_work_sem);
2442                 err = btrfs_orphan_cleanup(fs_info->fs_root);
2443                 if (!err)
2444                         err = btrfs_orphan_cleanup(fs_info->tree_root);
2445                 up_read(&fs_info->cleanup_work_sem);
2446                 if (err) {
2447                         close_ctree(tree_root);
2448                         return ERR_PTR(err);
2449                 }
2450         }
2451
2452         return tree_root;
2453
2454 fail_trans_kthread:
2455         kthread_stop(fs_info->transaction_kthread);
2456 fail_cleaner:
2457         kthread_stop(fs_info->cleaner_kthread);
2458
2459         /*
2460          * make sure we're done with the btree inode before we stop our
2461          * kthreads
2462          */
2463         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2464         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2465
2466 fail_block_groups:
2467         btrfs_free_block_groups(fs_info);
2468
2469 fail_tree_roots:
2470         free_root_pointers(fs_info, 1);
2471
2472 fail_sb_buffer:
2473         btrfs_stop_workers(&fs_info->generic_worker);
2474         btrfs_stop_workers(&fs_info->readahead_workers);
2475         btrfs_stop_workers(&fs_info->fixup_workers);
2476         btrfs_stop_workers(&fs_info->delalloc_workers);
2477         btrfs_stop_workers(&fs_info->workers);
2478         btrfs_stop_workers(&fs_info->endio_workers);
2479         btrfs_stop_workers(&fs_info->endio_meta_workers);
2480         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2481         btrfs_stop_workers(&fs_info->endio_write_workers);
2482         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2483         btrfs_stop_workers(&fs_info->submit_workers);
2484         btrfs_stop_workers(&fs_info->delayed_workers);
2485         btrfs_stop_workers(&fs_info->caching_workers);
2486 fail_alloc:
2487 fail_iput:
2488         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2489
2490         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2491         iput(fs_info->btree_inode);
2492 fail_bdi:
2493         bdi_destroy(&fs_info->bdi);
2494 fail_srcu:
2495         cleanup_srcu_struct(&fs_info->subvol_srcu);
2496 fail:
2497         btrfs_close_devices(fs_info->fs_devices);
2498         free_fs_info(fs_info);
2499         return ERR_PTR(err);
2500
2501 recovery_tree_root:
2502         if (!btrfs_test_opt(tree_root, RECOVERY))
2503                 goto fail_tree_roots;
2504
2505         free_root_pointers(fs_info, 0);
2506
2507         /* don't use the log in recovery mode, it won't be valid */
2508         btrfs_set_super_log_root(disk_super, 0);
2509
2510         /* we can't trust the free space cache either */
2511         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2512
2513         ret = next_root_backup(fs_info, fs_info->super_copy,
2514                                &num_backups_tried, &backup_index);
2515         if (ret == -1)
2516                 goto fail_block_groups;
2517         goto retry_root_backup;
2518 }
2519
2520 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2521 {
2522         char b[BDEVNAME_SIZE];
2523
2524         if (uptodate) {
2525                 set_buffer_uptodate(bh);
2526         } else {
2527                 printk_ratelimited(KERN_WARNING "lost page write due to "
2528                                         "I/O error on %s\n",
2529                                        bdevname(bh->b_bdev, b));
2530                 /* note, we dont' set_buffer_write_io_error because we have
2531                  * our own ways of dealing with the IO errors
2532                  */
2533                 clear_buffer_uptodate(bh);
2534         }
2535         unlock_buffer(bh);
2536         put_bh(bh);
2537 }
2538
2539 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2540 {
2541         struct buffer_head *bh;
2542         struct buffer_head *latest = NULL;
2543         struct btrfs_super_block *super;
2544         int i;
2545         u64 transid = 0;
2546         u64 bytenr;
2547
2548         /* we would like to check all the supers, but that would make
2549          * a btrfs mount succeed after a mkfs from a different FS.
2550          * So, we need to add a special mount option to scan for
2551          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2552          */
2553         for (i = 0; i < 1; i++) {
2554                 bytenr = btrfs_sb_offset(i);
2555                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2556                         break;
2557                 bh = __bread(bdev, bytenr / 4096, 4096);
2558                 if (!bh)
2559                         continue;
2560
2561                 super = (struct btrfs_super_block *)bh->b_data;
2562                 if (btrfs_super_bytenr(super) != bytenr ||
2563                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2564                             sizeof(super->magic))) {
2565                         brelse(bh);
2566                         continue;
2567                 }
2568
2569                 if (!latest || btrfs_super_generation(super) > transid) {
2570                         brelse(latest);
2571                         latest = bh;
2572                         transid = btrfs_super_generation(super);
2573                 } else {
2574                         brelse(bh);
2575                 }
2576         }
2577         return latest;
2578 }
2579
2580 /*
2581  * this should be called twice, once with wait == 0 and
2582  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2583  * we write are pinned.
2584  *
2585  * They are released when wait == 1 is done.
2586  * max_mirrors must be the same for both runs, and it indicates how
2587  * many supers on this one device should be written.
2588  *
2589  * max_mirrors == 0 means to write them all.
2590  */
2591 static int write_dev_supers(struct btrfs_device *device,
2592                             struct btrfs_super_block *sb,
2593                             int do_barriers, int wait, int max_mirrors)
2594 {
2595         struct buffer_head *bh;
2596         int i;
2597         int ret;
2598         int errors = 0;
2599         u32 crc;
2600         u64 bytenr;
2601
2602         if (max_mirrors == 0)
2603                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2604
2605         for (i = 0; i < max_mirrors; i++) {
2606                 bytenr = btrfs_sb_offset(i);
2607                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2608                         break;
2609
2610                 if (wait) {
2611                         bh = __find_get_block(device->bdev, bytenr / 4096,
2612                                               BTRFS_SUPER_INFO_SIZE);
2613                         BUG_ON(!bh);
2614                         wait_on_buffer(bh);
2615                         if (!buffer_uptodate(bh))
2616                                 errors++;
2617
2618                         /* drop our reference */
2619                         brelse(bh);
2620
2621                         /* drop the reference from the wait == 0 run */
2622                         brelse(bh);
2623                         continue;
2624                 } else {
2625                         btrfs_set_super_bytenr(sb, bytenr);
2626
2627                         crc = ~(u32)0;
2628                         crc = btrfs_csum_data(NULL, (char *)sb +
2629                                               BTRFS_CSUM_SIZE, crc,
2630                                               BTRFS_SUPER_INFO_SIZE -
2631                                               BTRFS_CSUM_SIZE);
2632                         btrfs_csum_final(crc, sb->csum);
2633
2634                         /*
2635                          * one reference for us, and we leave it for the
2636                          * caller
2637                          */
2638                         bh = __getblk(device->bdev, bytenr / 4096,
2639                                       BTRFS_SUPER_INFO_SIZE);
2640                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2641
2642                         /* one reference for submit_bh */
2643                         get_bh(bh);
2644
2645                         set_buffer_uptodate(bh);
2646                         lock_buffer(bh);
2647                         bh->b_end_io = btrfs_end_buffer_write_sync;
2648                 }
2649
2650                 /*
2651                  * we fua the first super.  The others we allow
2652                  * to go down lazy.
2653                  */
2654                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2655                 if (ret)
2656                         errors++;
2657         }
2658         return errors < i ? 0 : -1;
2659 }
2660
2661 /*
2662  * endio for the write_dev_flush, this will wake anyone waiting
2663  * for the barrier when it is done
2664  */
2665 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2666 {
2667         if (err) {
2668                 if (err == -EOPNOTSUPP)
2669                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2670                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2671         }
2672         if (bio->bi_private)
2673                 complete(bio->bi_private);
2674         bio_put(bio);
2675 }
2676
2677 /*
2678  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2679  * sent down.  With wait == 1, it waits for the previous flush.
2680  *
2681  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2682  * capable
2683  */
2684 static int write_dev_flush(struct btrfs_device *device, int wait)
2685 {
2686         struct bio *bio;
2687         int ret = 0;
2688
2689         if (device->nobarriers)
2690                 return 0;
2691
2692         if (wait) {
2693                 bio = device->flush_bio;
2694                 if (!bio)
2695                         return 0;
2696
2697                 wait_for_completion(&device->flush_wait);
2698
2699                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2700                         printk("btrfs: disabling barriers on dev %s\n",
2701                                device->name);
2702                         device->nobarriers = 1;
2703                 }
2704                 if (!bio_flagged(bio, BIO_UPTODATE)) {
2705                         ret = -EIO;
2706                 }
2707
2708                 /* drop the reference from the wait == 0 run */
2709                 bio_put(bio);
2710                 device->flush_bio = NULL;
2711
2712                 return ret;
2713         }
2714
2715         /*
2716          * one reference for us, and we leave it for the
2717          * caller
2718          */
2719         device->flush_bio = NULL;;
2720         bio = bio_alloc(GFP_NOFS, 0);
2721         if (!bio)
2722                 return -ENOMEM;
2723
2724         bio->bi_end_io = btrfs_end_empty_barrier;
2725         bio->bi_bdev = device->bdev;
2726         init_completion(&device->flush_wait);
2727         bio->bi_private = &device->flush_wait;
2728         device->flush_bio = bio;
2729
2730         bio_get(bio);
2731         btrfsic_submit_bio(WRITE_FLUSH, bio);
2732
2733         return 0;
2734 }
2735
2736 /*
2737  * send an empty flush down to each device in parallel,
2738  * then wait for them
2739  */
2740 static int barrier_all_devices(struct btrfs_fs_info *info)
2741 {
2742         struct list_head *head;
2743         struct btrfs_device *dev;
2744         int errors = 0;
2745         int ret;
2746
2747         /* send down all the barriers */
2748         head = &info->fs_devices->devices;
2749         list_for_each_entry_rcu(dev, head, dev_list) {
2750                 if (!dev->bdev) {
2751                         errors++;
2752                         continue;
2753                 }
2754                 if (!dev->in_fs_metadata || !dev->writeable)
2755                         continue;
2756
2757                 ret = write_dev_flush(dev, 0);
2758                 if (ret)
2759                         errors++;
2760         }
2761
2762         /* wait for all the barriers */
2763         list_for_each_entry_rcu(dev, head, dev_list) {
2764                 if (!dev->bdev) {
2765                         errors++;
2766                         continue;
2767                 }
2768                 if (!dev->in_fs_metadata || !dev->writeable)
2769                         continue;
2770
2771                 ret = write_dev_flush(dev, 1);
2772                 if (ret)
2773                         errors++;
2774         }
2775         if (errors)
2776                 return -EIO;
2777         return 0;
2778 }
2779
2780 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2781 {
2782         struct list_head *head;
2783         struct btrfs_device *dev;
2784         struct btrfs_super_block *sb;
2785         struct btrfs_dev_item *dev_item;
2786         int ret;
2787         int do_barriers;
2788         int max_errors;
2789         int total_errors = 0;
2790         u64 flags;
2791
2792         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2793         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2794         backup_super_roots(root->fs_info);
2795
2796         sb = root->fs_info->super_for_commit;
2797         dev_item = &sb->dev_item;
2798
2799         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2800         head = &root->fs_info->fs_devices->devices;
2801
2802         if (do_barriers)
2803                 barrier_all_devices(root->fs_info);
2804
2805         list_for_each_entry_rcu(dev, head, dev_list) {
2806                 if (!dev->bdev) {
2807                         total_errors++;
2808                         continue;
2809                 }
2810                 if (!dev->in_fs_metadata || !dev->writeable)
2811                         continue;
2812
2813                 btrfs_set_stack_device_generation(dev_item, 0);
2814                 btrfs_set_stack_device_type(dev_item, dev->type);
2815                 btrfs_set_stack_device_id(dev_item, dev->devid);
2816                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2817                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2818                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2819                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2820                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2821                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2822                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2823
2824                 flags = btrfs_super_flags(sb);
2825                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2826
2827                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2828                 if (ret)
2829                         total_errors++;
2830         }
2831         if (total_errors > max_errors) {
2832                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2833                        total_errors);
2834                 BUG();
2835         }
2836
2837         total_errors = 0;
2838         list_for_each_entry_rcu(dev, head, dev_list) {
2839                 if (!dev->bdev)
2840                         continue;
2841                 if (!dev->in_fs_metadata || !dev->writeable)
2842                         continue;
2843
2844                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2845                 if (ret)
2846                         total_errors++;
2847         }
2848         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2849         if (total_errors > max_errors) {
2850                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2851                        total_errors);
2852                 BUG();
2853         }
2854         return 0;
2855 }
2856
2857 int write_ctree_super(struct btrfs_trans_handle *trans,
2858                       struct btrfs_root *root, int max_mirrors)
2859 {
2860         int ret;
2861
2862         ret = write_all_supers(root, max_mirrors);
2863         return ret;
2864 }
2865
2866 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2867 {
2868         spin_lock(&fs_info->fs_roots_radix_lock);
2869         radix_tree_delete(&fs_info->fs_roots_radix,
2870                           (unsigned long)root->root_key.objectid);
2871         spin_unlock(&fs_info->fs_roots_radix_lock);
2872
2873         if (btrfs_root_refs(&root->root_item) == 0)
2874                 synchronize_srcu(&fs_info->subvol_srcu);
2875
2876         __btrfs_remove_free_space_cache(root->free_ino_pinned);
2877         __btrfs_remove_free_space_cache(root->free_ino_ctl);
2878         free_fs_root(root);
2879         return 0;
2880 }
2881
2882 static void free_fs_root(struct btrfs_root *root)
2883 {
2884         iput(root->cache_inode);
2885         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2886         if (root->anon_dev)
2887                 free_anon_bdev(root->anon_dev);
2888         free_extent_buffer(root->node);
2889         free_extent_buffer(root->commit_root);
2890         kfree(root->free_ino_ctl);
2891         kfree(root->free_ino_pinned);
2892         kfree(root->name);
2893         kfree(root);
2894 }
2895
2896 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2897 {
2898         int ret;
2899         struct btrfs_root *gang[8];
2900         int i;
2901
2902         while (!list_empty(&fs_info->dead_roots)) {
2903                 gang[0] = list_entry(fs_info->dead_roots.next,
2904                                      struct btrfs_root, root_list);
2905                 list_del(&gang[0]->root_list);
2906
2907                 if (gang[0]->in_radix) {
2908                         btrfs_free_fs_root(fs_info, gang[0]);
2909                 } else {
2910                         free_extent_buffer(gang[0]->node);
2911                         free_extent_buffer(gang[0]->commit_root);
2912                         kfree(gang[0]);
2913                 }
2914         }
2915
2916         while (1) {
2917                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2918                                              (void **)gang, 0,
2919                                              ARRAY_SIZE(gang));
2920                 if (!ret)
2921                         break;
2922                 for (i = 0; i < ret; i++)
2923                         btrfs_free_fs_root(fs_info, gang[i]);
2924         }
2925         return 0;
2926 }
2927
2928 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2929 {
2930         u64 root_objectid = 0;
2931         struct btrfs_root *gang[8];
2932         int i;
2933         int ret;
2934
2935         while (1) {
2936                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2937                                              (void **)gang, root_objectid,
2938                                              ARRAY_SIZE(gang));
2939                 if (!ret)
2940                         break;
2941
2942                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2943                 for (i = 0; i < ret; i++) {
2944                         int err;
2945
2946                         root_objectid = gang[i]->root_key.objectid;
2947                         err = btrfs_orphan_cleanup(gang[i]);
2948                         if (err)
2949                                 return err;
2950                 }
2951                 root_objectid++;
2952         }
2953         return 0;
2954 }
2955
2956 int btrfs_commit_super(struct btrfs_root *root)
2957 {
2958         struct btrfs_trans_handle *trans;
2959         int ret;
2960
2961         mutex_lock(&root->fs_info->cleaner_mutex);
2962         btrfs_run_delayed_iputs(root);
2963         btrfs_clean_old_snapshots(root);
2964         mutex_unlock(&root->fs_info->cleaner_mutex);
2965
2966         /* wait until ongoing cleanup work done */
2967         down_write(&root->fs_info->cleanup_work_sem);
2968         up_write(&root->fs_info->cleanup_work_sem);
2969
2970         trans = btrfs_join_transaction(root);
2971         if (IS_ERR(trans))
2972                 return PTR_ERR(trans);
2973         ret = btrfs_commit_transaction(trans, root);
2974         BUG_ON(ret);
2975         /* run commit again to drop the original snapshot */
2976         trans = btrfs_join_transaction(root);
2977         if (IS_ERR(trans))
2978                 return PTR_ERR(trans);
2979         btrfs_commit_transaction(trans, root);
2980         ret = btrfs_write_and_wait_transaction(NULL, root);
2981         BUG_ON(ret);
2982
2983         ret = write_ctree_super(NULL, root, 0);
2984         return ret;
2985 }
2986
2987 int close_ctree(struct btrfs_root *root)
2988 {
2989         struct btrfs_fs_info *fs_info = root->fs_info;
2990         int ret;
2991
2992         fs_info->closing = 1;
2993         smp_mb();
2994
2995         btrfs_scrub_cancel(root);
2996
2997         /* wait for any defraggers to finish */
2998         wait_event(fs_info->transaction_wait,
2999                    (atomic_read(&fs_info->defrag_running) == 0));
3000
3001         /* clear out the rbtree of defraggable inodes */
3002         btrfs_run_defrag_inodes(root->fs_info);
3003
3004         /*
3005          * Here come 2 situations when btrfs is broken to flip readonly:
3006          *
3007          * 1. when btrfs flips readonly somewhere else before
3008          * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3009          * and btrfs will skip to write sb directly to keep
3010          * ERROR state on disk.
3011          *
3012          * 2. when btrfs flips readonly just in btrfs_commit_super,
3013          * and in such case, btrfs cannot write sb via btrfs_commit_super,
3014          * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3015          * btrfs will cleanup all FS resources first and write sb then.
3016          */
3017         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3018                 ret = btrfs_commit_super(root);
3019                 if (ret)
3020                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3021         }
3022
3023         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3024                 ret = btrfs_error_commit_super(root);
3025                 if (ret)
3026                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3027         }
3028
3029         btrfs_put_block_group_cache(fs_info);
3030
3031         kthread_stop(root->fs_info->transaction_kthread);
3032         kthread_stop(root->fs_info->cleaner_kthread);
3033
3034         fs_info->closing = 2;
3035         smp_mb();
3036
3037         if (fs_info->delalloc_bytes) {
3038                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3039                        (unsigned long long)fs_info->delalloc_bytes);
3040         }
3041         if (fs_info->total_ref_cache_size) {
3042                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3043                        (unsigned long long)fs_info->total_ref_cache_size);
3044         }
3045
3046         free_extent_buffer(fs_info->extent_root->node);
3047         free_extent_buffer(fs_info->extent_root->commit_root);
3048         free_extent_buffer(fs_info->tree_root->node);
3049         free_extent_buffer(fs_info->tree_root->commit_root);
3050         free_extent_buffer(root->fs_info->chunk_root->node);
3051         free_extent_buffer(root->fs_info->chunk_root->commit_root);
3052         free_extent_buffer(root->fs_info->dev_root->node);
3053         free_extent_buffer(root->fs_info->dev_root->commit_root);
3054         free_extent_buffer(root->fs_info->csum_root->node);
3055         free_extent_buffer(root->fs_info->csum_root->commit_root);
3056
3057         btrfs_free_block_groups(root->fs_info);
3058
3059         del_fs_roots(fs_info);
3060
3061         iput(fs_info->btree_inode);
3062
3063         btrfs_stop_workers(&fs_info->generic_worker);
3064         btrfs_stop_workers(&fs_info->fixup_workers);
3065         btrfs_stop_workers(&fs_info->delalloc_workers);
3066         btrfs_stop_workers(&fs_info->workers);
3067         btrfs_stop_workers(&fs_info->endio_workers);
3068         btrfs_stop_workers(&fs_info->endio_meta_workers);
3069         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3070         btrfs_stop_workers(&fs_info->endio_write_workers);
3071         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3072         btrfs_stop_workers(&fs_info->submit_workers);
3073         btrfs_stop_workers(&fs_info->delayed_workers);
3074         btrfs_stop_workers(&fs_info->caching_workers);
3075         btrfs_stop_workers(&fs_info->readahead_workers);
3076
3077 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3078         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3079                 btrfsic_unmount(root, fs_info->fs_devices);
3080 #endif
3081
3082         btrfs_close_devices(fs_info->fs_devices);
3083         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3084
3085         bdi_destroy(&fs_info->bdi);
3086         cleanup_srcu_struct(&fs_info->subvol_srcu);
3087
3088         free_fs_info(fs_info);
3089
3090         return 0;
3091 }
3092
3093 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3094 {
3095         int ret;
3096         struct inode *btree_inode = buf->first_page->mapping->host;
3097
3098         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3099                                      NULL);
3100         if (!ret)
3101                 return ret;
3102
3103         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3104                                     parent_transid);
3105         return !ret;
3106 }
3107
3108 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3109 {
3110         struct inode *btree_inode = buf->first_page->mapping->host;
3111         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
3112                                           buf);
3113 }
3114
3115 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3116 {
3117         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3118         u64 transid = btrfs_header_generation(buf);
3119         struct inode *btree_inode = root->fs_info->btree_inode;
3120         int was_dirty;
3121
3122         btrfs_assert_tree_locked(buf);
3123         if (transid != root->fs_info->generation) {
3124                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3125                        "found %llu running %llu\n",
3126                         (unsigned long long)buf->start,
3127                         (unsigned long long)transid,
3128                         (unsigned long long)root->fs_info->generation);
3129                 WARN_ON(1);
3130         }
3131         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3132                                             buf);
3133         if (!was_dirty) {
3134                 spin_lock(&root->fs_info->delalloc_lock);
3135                 root->fs_info->dirty_metadata_bytes += buf->len;
3136                 spin_unlock(&root->fs_info->delalloc_lock);
3137         }
3138 }
3139
3140 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3141 {
3142         /*
3143          * looks as though older kernels can get into trouble with
3144          * this code, they end up stuck in balance_dirty_pages forever
3145          */
3146         u64 num_dirty;
3147         unsigned long thresh = 32 * 1024 * 1024;
3148
3149         if (current->flags & PF_MEMALLOC)
3150                 return;
3151
3152         btrfs_balance_delayed_items(root);
3153
3154         num_dirty = root->fs_info->dirty_metadata_bytes;
3155
3156         if (num_dirty > thresh) {
3157                 balance_dirty_pages_ratelimited_nr(
3158                                    root->fs_info->btree_inode->i_mapping, 1);
3159         }
3160         return;
3161 }
3162
3163 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3164 {
3165         /*
3166          * looks as though older kernels can get into trouble with
3167          * this code, they end up stuck in balance_dirty_pages forever
3168          */
3169         u64 num_dirty;
3170         unsigned long thresh = 32 * 1024 * 1024;
3171
3172         if (current->flags & PF_MEMALLOC)
3173                 return;
3174
3175         num_dirty = root->fs_info->dirty_metadata_bytes;
3176
3177         if (num_dirty > thresh) {
3178                 balance_dirty_pages_ratelimited_nr(
3179                                    root->fs_info->btree_inode->i_mapping, 1);
3180         }
3181         return;
3182 }
3183
3184 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3185 {
3186         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3187         int ret;
3188         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3189         if (ret == 0)
3190                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
3191         return ret;
3192 }
3193
3194 static int btree_lock_page_hook(struct page *page, void *data,
3195                                 void (*flush_fn)(void *))
3196 {
3197         struct inode *inode = page->mapping->host;
3198         struct btrfs_root *root = BTRFS_I(inode)->root;
3199         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3200         struct extent_buffer *eb;
3201         unsigned long len;
3202         u64 bytenr = page_offset(page);
3203
3204         if (page->private == EXTENT_PAGE_PRIVATE)
3205                 goto out;
3206
3207         len = page->private >> 2;
3208         eb = find_extent_buffer(io_tree, bytenr, len);
3209         if (!eb)
3210                 goto out;
3211
3212         if (!btrfs_try_tree_write_lock(eb)) {
3213                 flush_fn(data);
3214                 btrfs_tree_lock(eb);
3215         }
3216         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3217
3218         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3219                 spin_lock(&root->fs_info->delalloc_lock);
3220                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3221                         root->fs_info->dirty_metadata_bytes -= eb->len;
3222                 else
3223                         WARN_ON(1);
3224                 spin_unlock(&root->fs_info->delalloc_lock);
3225         }
3226
3227         btrfs_tree_unlock(eb);
3228         free_extent_buffer(eb);
3229 out:
3230         if (!trylock_page(page)) {
3231                 flush_fn(data);
3232                 lock_page(page);
3233         }
3234         return 0;
3235 }
3236
3237 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3238                               int read_only)
3239 {
3240         if (read_only)
3241                 return;
3242
3243         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3244                 printk(KERN_WARNING "warning: mount fs with errors, "
3245                        "running btrfsck is recommended\n");
3246 }
3247
3248 int btrfs_error_commit_super(struct btrfs_root *root)
3249 {
3250         int ret;
3251
3252         mutex_lock(&root->fs_info->cleaner_mutex);
3253         btrfs_run_delayed_iputs(root);
3254         mutex_unlock(&root->fs_info->cleaner_mutex);
3255
3256         down_write(&root->fs_info->cleanup_work_sem);
3257         up_write(&root->fs_info->cleanup_work_sem);
3258
3259         /* cleanup FS via transaction */
3260         btrfs_cleanup_transaction(root);
3261
3262         ret = write_ctree_super(NULL, root, 0);
3263
3264         return ret;
3265 }
3266
3267 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3268 {
3269         struct btrfs_inode *btrfs_inode;
3270         struct list_head splice;
3271
3272         INIT_LIST_HEAD(&splice);
3273
3274         mutex_lock(&root->fs_info->ordered_operations_mutex);
3275         spin_lock(&root->fs_info->ordered_extent_lock);
3276
3277         list_splice_init(&root->fs_info->ordered_operations, &splice);
3278         while (!list_empty(&splice)) {
3279                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3280                                          ordered_operations);
3281
3282                 list_del_init(&btrfs_inode->ordered_operations);
3283
3284                 btrfs_invalidate_inodes(btrfs_inode->root);
3285         }
3286
3287         spin_unlock(&root->fs_info->ordered_extent_lock);
3288         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3289
3290         return 0;
3291 }
3292
3293 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3294 {
3295         struct list_head splice;
3296         struct btrfs_ordered_extent *ordered;
3297         struct inode *inode;
3298
3299         INIT_LIST_HEAD(&splice);
3300
3301         spin_lock(&root->fs_info->ordered_extent_lock);
3302
3303         list_splice_init(&root->fs_info->ordered_extents, &splice);
3304         while (!list_empty(&splice)) {
3305                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3306                                      root_extent_list);
3307
3308                 list_del_init(&ordered->root_extent_list);
3309                 atomic_inc(&ordered->refs);
3310
3311                 /* the inode may be getting freed (in sys_unlink path). */
3312                 inode = igrab(ordered->inode);
3313
3314                 spin_unlock(&root->fs_info->ordered_extent_lock);
3315                 if (inode)
3316                         iput(inode);
3317
3318                 atomic_set(&ordered->refs, 1);
3319                 btrfs_put_ordered_extent(ordered);
3320
3321                 spin_lock(&root->fs_info->ordered_extent_lock);
3322         }
3323
3324         spin_unlock(&root->fs_info->ordered_extent_lock);
3325
3326         return 0;
3327 }
3328
3329 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3330                                       struct btrfs_root *root)
3331 {
3332         struct rb_node *node;
3333         struct btrfs_delayed_ref_root *delayed_refs;
3334         struct btrfs_delayed_ref_node *ref;
3335         int ret = 0;
3336
3337         delayed_refs = &trans->delayed_refs;
3338
3339         spin_lock(&delayed_refs->lock);
3340         if (delayed_refs->num_entries == 0) {
3341                 spin_unlock(&delayed_refs->lock);
3342                 printk(KERN_INFO "delayed_refs has NO entry\n");
3343                 return ret;
3344         }
3345
3346         node = rb_first(&delayed_refs->root);
3347         while (node) {
3348                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3349                 node = rb_next(node);
3350
3351                 ref->in_tree = 0;
3352                 rb_erase(&ref->rb_node, &delayed_refs->root);
3353                 delayed_refs->num_entries--;
3354
3355                 atomic_set(&ref->refs, 1);
3356                 if (btrfs_delayed_ref_is_head(ref)) {
3357                         struct btrfs_delayed_ref_head *head;
3358
3359                         head = btrfs_delayed_node_to_head(ref);
3360                         mutex_lock(&head->mutex);
3361                         kfree(head->extent_op);
3362                         delayed_refs->num_heads--;
3363                         if (list_empty(&head->cluster))
3364                                 delayed_refs->num_heads_ready--;
3365                         list_del_init(&head->cluster);
3366                         mutex_unlock(&head->mutex);
3367                 }
3368
3369                 spin_unlock(&delayed_refs->lock);
3370                 btrfs_put_delayed_ref(ref);
3371
3372                 cond_resched();
3373                 spin_lock(&delayed_refs->lock);
3374         }
3375
3376         spin_unlock(&delayed_refs->lock);
3377
3378         return ret;
3379 }
3380
3381 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3382 {
3383         struct btrfs_pending_snapshot *snapshot;
3384         struct list_head splice;
3385
3386         INIT_LIST_HEAD(&splice);
3387
3388         list_splice_init(&t->pending_snapshots, &splice);
3389
3390         while (!list_empty(&splice)) {
3391                 snapshot = list_entry(splice.next,
3392                                       struct btrfs_pending_snapshot,
3393                                       list);
3394
3395                 list_del_init(&snapshot->list);
3396
3397                 kfree(snapshot);
3398         }
3399
3400         return 0;
3401 }
3402
3403 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3404 {
3405         struct btrfs_inode *btrfs_inode;
3406         struct list_head splice;
3407
3408         INIT_LIST_HEAD(&splice);
3409
3410         spin_lock(&root->fs_info->delalloc_lock);
3411         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3412
3413         while (!list_empty(&splice)) {
3414                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3415                                     delalloc_inodes);
3416
3417                 list_del_init(&btrfs_inode->delalloc_inodes);
3418
3419                 btrfs_invalidate_inodes(btrfs_inode->root);
3420         }
3421
3422         spin_unlock(&root->fs_info->delalloc_lock);
3423
3424         return 0;
3425 }
3426
3427 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3428                                         struct extent_io_tree *dirty_pages,
3429                                         int mark)
3430 {
3431         int ret;
3432         struct page *page;
3433         struct inode *btree_inode = root->fs_info->btree_inode;
3434         struct extent_buffer *eb;
3435         u64 start = 0;
3436         u64 end;
3437         u64 offset;
3438         unsigned long index;
3439
3440         while (1) {
3441                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3442                                             mark);
3443                 if (ret)
3444                         break;
3445
3446                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3447                 while (start <= end) {
3448                         index = start >> PAGE_CACHE_SHIFT;
3449                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3450                         page = find_get_page(btree_inode->i_mapping, index);
3451                         if (!page)
3452                                 continue;
3453                         offset = page_offset(page);
3454
3455                         spin_lock(&dirty_pages->buffer_lock);
3456                         eb = radix_tree_lookup(
3457                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3458                                                offset >> PAGE_CACHE_SHIFT);
3459                         spin_unlock(&dirty_pages->buffer_lock);
3460                         if (eb) {
3461                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3462                                                          &eb->bflags);
3463                                 atomic_set(&eb->refs, 1);
3464                         }
3465                         if (PageWriteback(page))
3466                                 end_page_writeback(page);
3467
3468                         lock_page(page);
3469                         if (PageDirty(page)) {
3470                                 clear_page_dirty_for_io(page);
3471                                 spin_lock_irq(&page->mapping->tree_lock);
3472                                 radix_tree_tag_clear(&page->mapping->page_tree,
3473                                                         page_index(page),
3474                                                         PAGECACHE_TAG_DIRTY);
3475                                 spin_unlock_irq(&page->mapping->tree_lock);
3476                         }
3477
3478                         page->mapping->a_ops->invalidatepage(page, 0);
3479                         unlock_page(page);
3480                 }
3481         }
3482
3483         return ret;
3484 }
3485
3486 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3487                                        struct extent_io_tree *pinned_extents)
3488 {
3489         struct extent_io_tree *unpin;
3490         u64 start;
3491         u64 end;
3492         int ret;
3493
3494         unpin = pinned_extents;
3495         while (1) {
3496                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3497                                             EXTENT_DIRTY);
3498                 if (ret)
3499                         break;
3500
3501                 /* opt_discard */
3502                 if (btrfs_test_opt(root, DISCARD))
3503                         ret = btrfs_error_discard_extent(root, start,
3504                                                          end + 1 - start,
3505                                                          NULL);
3506
3507                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3508                 btrfs_error_unpin_extent_range(root, start, end);
3509                 cond_resched();
3510         }
3511
3512         return 0;
3513 }
3514
3515 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3516 {
3517         struct btrfs_transaction *t;
3518         LIST_HEAD(list);
3519
3520         WARN_ON(1);
3521
3522         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3523
3524         spin_lock(&root->fs_info->trans_lock);
3525         list_splice_init(&root->fs_info->trans_list, &list);
3526         root->fs_info->trans_no_join = 1;
3527         spin_unlock(&root->fs_info->trans_lock);
3528
3529         while (!list_empty(&list)) {
3530                 t = list_entry(list.next, struct btrfs_transaction, list);
3531                 if (!t)
3532                         break;
3533
3534                 btrfs_destroy_ordered_operations(root);
3535
3536                 btrfs_destroy_ordered_extents(root);
3537
3538                 btrfs_destroy_delayed_refs(t, root);
3539
3540                 btrfs_block_rsv_release(root,
3541                                         &root->fs_info->trans_block_rsv,
3542                                         t->dirty_pages.dirty_bytes);
3543
3544                 /* FIXME: cleanup wait for commit */
3545                 t->in_commit = 1;
3546                 t->blocked = 1;
3547                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3548                         wake_up(&root->fs_info->transaction_blocked_wait);
3549
3550                 t->blocked = 0;
3551                 if (waitqueue_active(&root->fs_info->transaction_wait))
3552                         wake_up(&root->fs_info->transaction_wait);
3553
3554                 t->commit_done = 1;
3555                 if (waitqueue_active(&t->commit_wait))
3556                         wake_up(&t->commit_wait);
3557
3558                 btrfs_destroy_pending_snapshots(t);
3559
3560                 btrfs_destroy_delalloc_inodes(root);
3561
3562                 spin_lock(&root->fs_info->trans_lock);
3563                 root->fs_info->running_transaction = NULL;
3564                 spin_unlock(&root->fs_info->trans_lock);
3565
3566                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3567                                              EXTENT_DIRTY);
3568
3569                 btrfs_destroy_pinned_extent(root,
3570                                             root->fs_info->pinned_extents);
3571
3572                 atomic_set(&t->use_count, 0);
3573                 list_del_init(&t->list);
3574                 memset(t, 0, sizeof(*t));
3575                 kmem_cache_free(btrfs_transaction_cachep, t);
3576         }
3577
3578         spin_lock(&root->fs_info->trans_lock);
3579         root->fs_info->trans_no_join = 0;
3580         spin_unlock(&root->fs_info->trans_lock);
3581         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3582
3583         return 0;
3584 }
3585
3586 static struct extent_io_ops btree_extent_io_ops = {
3587         .write_cache_pages_lock_hook = btree_lock_page_hook,
3588         .readpage_end_io_hook = btree_readpage_end_io_hook,
3589         .readpage_io_failed_hook = btree_io_failed_hook,
3590         .submit_bio_hook = btree_submit_bio_hook,
3591         /* note we're sharing with inode.c for the merge bio hook */
3592         .merge_bio_hook = btrfs_merge_bio_hook,
3593 };