f109607ff40b3d0844073f4cba58e67a8fe622a6
[platform/kernel/linux-starfive.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         void *private_data;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117         /*
118          * bio_offset is optional, can be used if the pages in the bio
119          * can't tell us where in the file the bio should go
120          */
121         u64 bio_offset;
122         struct btrfs_work work;
123         blk_status_t status;
124 };
125
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155         u64                     id;             /* root objectid */
156         const char              *name_stem;     /* lock name stem */
157         char                    names[BTRFS_MAX_LEVEL + 1][20];
158         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
161         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
162         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
163         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
164         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
165         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
166         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
167         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
168         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
169         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
170         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
171         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172         { .id = 0,                              .name_stem = "tree"     },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177         int i, j;
178
179         /* initialize lockdep class names */
180         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184                         snprintf(ks->names[j], sizeof(ks->names[j]),
185                                  "btrfs-%s-%02d", ks->name_stem, j);
186         }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190                                     int level)
191 {
192         struct btrfs_lockdep_keyset *ks;
193
194         BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196         /* find the matching keyset, id 0 is the default entry */
197         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198                 if (ks->id == objectid)
199                         break;
200
201         lockdep_set_class_and_name(&eb->lock,
202                                    &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212                                     struct page *page, size_t pg_offset,
213                                     u64 start, u64 len)
214 {
215         struct extent_map_tree *em_tree = &inode->extent_tree;
216         struct extent_map *em;
217         int ret;
218
219         read_lock(&em_tree->lock);
220         em = lookup_extent_mapping(em_tree, start, len);
221         if (em) {
222                 read_unlock(&em_tree->lock);
223                 goto out;
224         }
225         read_unlock(&em_tree->lock);
226
227         em = alloc_extent_map();
228         if (!em) {
229                 em = ERR_PTR(-ENOMEM);
230                 goto out;
231         }
232         em->start = 0;
233         em->len = (u64)-1;
234         em->block_len = (u64)-1;
235         em->block_start = 0;
236
237         write_lock(&em_tree->lock);
238         ret = add_extent_mapping(em_tree, em, 0);
239         if (ret == -EEXIST) {
240                 free_extent_map(em);
241                 em = lookup_extent_mapping(em_tree, start, len);
242                 if (!em)
243                         em = ERR_PTR(-EIO);
244         } else if (ret) {
245                 free_extent_map(em);
246                 em = ERR_PTR(ret);
247         }
248         write_unlock(&em_tree->lock);
249
250 out:
251         return em;
252 }
253
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  *
257  * Returns error if the extent buffer cannot be mapped.
258  */
259 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
260 {
261         struct btrfs_fs_info *fs_info = buf->fs_info;
262         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270
271         shash->tfm = fs_info->csum_shash;
272         crypto_shash_init(shash);
273
274         len = buf->len - offset;
275
276         while (len > 0) {
277                 /*
278                  * Note: we don't need to check for the err == 1 case here, as
279                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
280                  * and 'min_len = 32' and the currently implemented mapping
281                  * algorithm we cannot cross a page boundary.
282                  */
283                 err = map_private_extent_buffer(buf, offset, 32,
284                                         &kaddr, &map_start, &map_len);
285                 if (WARN_ON(err))
286                         return err;
287                 cur_len = min(len, map_len - (offset - map_start));
288                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
289                 len -= cur_len;
290                 offset += cur_len;
291         }
292         memset(result, 0, BTRFS_CSUM_SIZE);
293
294         crypto_shash_final(shash, result);
295
296         return 0;
297 }
298
299 /*
300  * we can't consider a given block up to date unless the transid of the
301  * block matches the transid in the parent node's pointer.  This is how we
302  * detect blocks that either didn't get written at all or got written
303  * in the wrong place.
304  */
305 static int verify_parent_transid(struct extent_io_tree *io_tree,
306                                  struct extent_buffer *eb, u64 parent_transid,
307                                  int atomic)
308 {
309         struct extent_state *cached_state = NULL;
310         int ret;
311         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
312
313         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
314                 return 0;
315
316         if (atomic)
317                 return -EAGAIN;
318
319         if (need_lock) {
320                 btrfs_tree_read_lock(eb);
321                 btrfs_set_lock_blocking_read(eb);
322         }
323
324         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
325                          &cached_state);
326         if (extent_buffer_uptodate(eb) &&
327             btrfs_header_generation(eb) == parent_transid) {
328                 ret = 0;
329                 goto out;
330         }
331         btrfs_err_rl(eb->fs_info,
332                 "parent transid verify failed on %llu wanted %llu found %llu",
333                         eb->start,
334                         parent_transid, btrfs_header_generation(eb));
335         ret = 1;
336
337         /*
338          * Things reading via commit roots that don't have normal protection,
339          * like send, can have a really old block in cache that may point at a
340          * block that has been freed and re-allocated.  So don't clear uptodate
341          * if we find an eb that is under IO (dirty/writeback) because we could
342          * end up reading in the stale data and then writing it back out and
343          * making everybody very sad.
344          */
345         if (!extent_buffer_under_io(eb))
346                 clear_extent_buffer_uptodate(eb);
347 out:
348         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349                              &cached_state);
350         if (need_lock)
351                 btrfs_tree_read_unlock_blocking(eb);
352         return ret;
353 }
354
355 static bool btrfs_supported_super_csum(u16 csum_type)
356 {
357         switch (csum_type) {
358         case BTRFS_CSUM_TYPE_CRC32:
359         case BTRFS_CSUM_TYPE_XXHASH:
360         case BTRFS_CSUM_TYPE_SHA256:
361         case BTRFS_CSUM_TYPE_BLAKE2:
362                 return true;
363         default:
364                 return false;
365         }
366 }
367
368 /*
369  * Return 0 if the superblock checksum type matches the checksum value of that
370  * algorithm. Pass the raw disk superblock data.
371  */
372 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
373                                   char *raw_disk_sb)
374 {
375         struct btrfs_super_block *disk_sb =
376                 (struct btrfs_super_block *)raw_disk_sb;
377         char result[BTRFS_CSUM_SIZE];
378         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
379
380         shash->tfm = fs_info->csum_shash;
381         crypto_shash_init(shash);
382
383         /*
384          * The super_block structure does not span the whole
385          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
386          * filled with zeros and is included in the checksum.
387          */
388         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
389                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
390         crypto_shash_final(shash, result);
391
392         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
393                 return 1;
394
395         return 0;
396 }
397
398 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
399                            struct btrfs_key *first_key, u64 parent_transid)
400 {
401         struct btrfs_fs_info *fs_info = eb->fs_info;
402         int found_level;
403         struct btrfs_key found_key;
404         int ret;
405
406         found_level = btrfs_header_level(eb);
407         if (found_level != level) {
408                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
409                      KERN_ERR "BTRFS: tree level check failed\n");
410                 btrfs_err(fs_info,
411 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
412                           eb->start, level, found_level);
413                 return -EIO;
414         }
415
416         if (!first_key)
417                 return 0;
418
419         /*
420          * For live tree block (new tree blocks in current transaction),
421          * we need proper lock context to avoid race, which is impossible here.
422          * So we only checks tree blocks which is read from disk, whose
423          * generation <= fs_info->last_trans_committed.
424          */
425         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
426                 return 0;
427
428         /* We have @first_key, so this @eb must have at least one item */
429         if (btrfs_header_nritems(eb) == 0) {
430                 btrfs_err(fs_info,
431                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
432                           eb->start);
433                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
434                 return -EUCLEAN;
435         }
436
437         if (found_level)
438                 btrfs_node_key_to_cpu(eb, &found_key, 0);
439         else
440                 btrfs_item_key_to_cpu(eb, &found_key, 0);
441         ret = btrfs_comp_cpu_keys(first_key, &found_key);
442
443         if (ret) {
444                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
445                      KERN_ERR "BTRFS: tree first key check failed\n");
446                 btrfs_err(fs_info,
447 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
448                           eb->start, parent_transid, first_key->objectid,
449                           first_key->type, first_key->offset,
450                           found_key.objectid, found_key.type,
451                           found_key.offset);
452         }
453         return ret;
454 }
455
456 /*
457  * helper to read a given tree block, doing retries as required when
458  * the checksums don't match and we have alternate mirrors to try.
459  *
460  * @parent_transid:     expected transid, skip check if 0
461  * @level:              expected level, mandatory check
462  * @first_key:          expected key of first slot, skip check if NULL
463  */
464 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
465                                           u64 parent_transid, int level,
466                                           struct btrfs_key *first_key)
467 {
468         struct btrfs_fs_info *fs_info = eb->fs_info;
469         struct extent_io_tree *io_tree;
470         int failed = 0;
471         int ret;
472         int num_copies = 0;
473         int mirror_num = 0;
474         int failed_mirror = 0;
475
476         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
477         while (1) {
478                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
479                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
480                 if (!ret) {
481                         if (verify_parent_transid(io_tree, eb,
482                                                    parent_transid, 0))
483                                 ret = -EIO;
484                         else if (btrfs_verify_level_key(eb, level,
485                                                 first_key, parent_transid))
486                                 ret = -EUCLEAN;
487                         else
488                                 break;
489                 }
490
491                 num_copies = btrfs_num_copies(fs_info,
492                                               eb->start, eb->len);
493                 if (num_copies == 1)
494                         break;
495
496                 if (!failed_mirror) {
497                         failed = 1;
498                         failed_mirror = eb->read_mirror;
499                 }
500
501                 mirror_num++;
502                 if (mirror_num == failed_mirror)
503                         mirror_num++;
504
505                 if (mirror_num > num_copies)
506                         break;
507         }
508
509         if (failed && !ret && failed_mirror)
510                 btrfs_repair_eb_io_failure(eb, failed_mirror);
511
512         return ret;
513 }
514
515 /*
516  * checksum a dirty tree block before IO.  This has extra checks to make sure
517  * we only fill in the checksum field in the first page of a multi-page block
518  */
519
520 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
521 {
522         u64 start = page_offset(page);
523         u64 found_start;
524         u8 result[BTRFS_CSUM_SIZE];
525         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
526         struct extent_buffer *eb;
527         int ret;
528
529         eb = (struct extent_buffer *)page->private;
530         if (page != eb->pages[0])
531                 return 0;
532
533         found_start = btrfs_header_bytenr(eb);
534         /*
535          * Please do not consolidate these warnings into a single if.
536          * It is useful to know what went wrong.
537          */
538         if (WARN_ON(found_start != start))
539                 return -EUCLEAN;
540         if (WARN_ON(!PageUptodate(page)))
541                 return -EUCLEAN;
542
543         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
544                                     offsetof(struct btrfs_header, fsid),
545                                     BTRFS_FSID_SIZE) == 0);
546
547         if (csum_tree_block(eb, result))
548                 return -EINVAL;
549
550         if (btrfs_header_level(eb))
551                 ret = btrfs_check_node(eb);
552         else
553                 ret = btrfs_check_leaf_full(eb);
554
555         if (ret < 0) {
556                 btrfs_print_tree(eb, 0);
557                 btrfs_err(fs_info,
558                 "block=%llu write time tree block corruption detected",
559                           eb->start);
560                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
561                 return ret;
562         }
563         write_extent_buffer(eb, result, 0, csum_size);
564
565         return 0;
566 }
567
568 static int check_tree_block_fsid(struct extent_buffer *eb)
569 {
570         struct btrfs_fs_info *fs_info = eb->fs_info;
571         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
572         u8 fsid[BTRFS_FSID_SIZE];
573         int ret = 1;
574
575         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
576                            BTRFS_FSID_SIZE);
577         while (fs_devices) {
578                 u8 *metadata_uuid;
579
580                 /*
581                  * Checking the incompat flag is only valid for the current
582                  * fs. For seed devices it's forbidden to have their uuid
583                  * changed so reading ->fsid in this case is fine
584                  */
585                 if (fs_devices == fs_info->fs_devices &&
586                     btrfs_fs_incompat(fs_info, METADATA_UUID))
587                         metadata_uuid = fs_devices->metadata_uuid;
588                 else
589                         metadata_uuid = fs_devices->fsid;
590
591                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
592                         ret = 0;
593                         break;
594                 }
595                 fs_devices = fs_devices->seed;
596         }
597         return ret;
598 }
599
600 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
601                                       u64 phy_offset, struct page *page,
602                                       u64 start, u64 end, int mirror)
603 {
604         u64 found_start;
605         int found_level;
606         struct extent_buffer *eb;
607         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
608         struct btrfs_fs_info *fs_info = root->fs_info;
609         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
610         int ret = 0;
611         u8 result[BTRFS_CSUM_SIZE];
612         int reads_done;
613
614         if (!page->private)
615                 goto out;
616
617         eb = (struct extent_buffer *)page->private;
618
619         /* the pending IO might have been the only thing that kept this buffer
620          * in memory.  Make sure we have a ref for all this other checks
621          */
622         atomic_inc(&eb->refs);
623
624         reads_done = atomic_dec_and_test(&eb->io_pages);
625         if (!reads_done)
626                 goto err;
627
628         eb->read_mirror = mirror;
629         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
630                 ret = -EIO;
631                 goto err;
632         }
633
634         found_start = btrfs_header_bytenr(eb);
635         if (found_start != eb->start) {
636                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
637                              eb->start, found_start);
638                 ret = -EIO;
639                 goto err;
640         }
641         if (check_tree_block_fsid(eb)) {
642                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
643                              eb->start);
644                 ret = -EIO;
645                 goto err;
646         }
647         found_level = btrfs_header_level(eb);
648         if (found_level >= BTRFS_MAX_LEVEL) {
649                 btrfs_err(fs_info, "bad tree block level %d on %llu",
650                           (int)btrfs_header_level(eb), eb->start);
651                 ret = -EIO;
652                 goto err;
653         }
654
655         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
656                                        eb, found_level);
657
658         ret = csum_tree_block(eb, result);
659         if (ret)
660                 goto err;
661
662         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
663                 u32 val;
664                 u32 found = 0;
665
666                 memcpy(&found, result, csum_size);
667
668                 read_extent_buffer(eb, &val, 0, csum_size);
669                 btrfs_warn_rl(fs_info,
670                 "%s checksum verify failed on %llu wanted %x found %x level %d",
671                               fs_info->sb->s_id, eb->start,
672                               val, found, btrfs_header_level(eb));
673                 ret = -EUCLEAN;
674                 goto err;
675         }
676
677         /*
678          * If this is a leaf block and it is corrupt, set the corrupt bit so
679          * that we don't try and read the other copies of this block, just
680          * return -EIO.
681          */
682         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
683                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
684                 ret = -EIO;
685         }
686
687         if (found_level > 0 && btrfs_check_node(eb))
688                 ret = -EIO;
689
690         if (!ret)
691                 set_extent_buffer_uptodate(eb);
692         else
693                 btrfs_err(fs_info,
694                           "block=%llu read time tree block corruption detected",
695                           eb->start);
696 err:
697         if (reads_done &&
698             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
699                 btree_readahead_hook(eb, ret);
700
701         if (ret) {
702                 /*
703                  * our io error hook is going to dec the io pages
704                  * again, we have to make sure it has something
705                  * to decrement
706                  */
707                 atomic_inc(&eb->io_pages);
708                 clear_extent_buffer_uptodate(eb);
709         }
710         free_extent_buffer(eb);
711 out:
712         return ret;
713 }
714
715 static void end_workqueue_bio(struct bio *bio)
716 {
717         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
718         struct btrfs_fs_info *fs_info;
719         struct btrfs_workqueue *wq;
720
721         fs_info = end_io_wq->info;
722         end_io_wq->status = bio->bi_status;
723
724         if (bio_op(bio) == REQ_OP_WRITE) {
725                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
726                         wq = fs_info->endio_meta_write_workers;
727                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
728                         wq = fs_info->endio_freespace_worker;
729                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
730                         wq = fs_info->endio_raid56_workers;
731                 else
732                         wq = fs_info->endio_write_workers;
733         } else {
734                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
735                         wq = fs_info->endio_repair_workers;
736                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
737                         wq = fs_info->endio_raid56_workers;
738                 else if (end_io_wq->metadata)
739                         wq = fs_info->endio_meta_workers;
740                 else
741                         wq = fs_info->endio_workers;
742         }
743
744         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
745         btrfs_queue_work(wq, &end_io_wq->work);
746 }
747
748 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
749                         enum btrfs_wq_endio_type metadata)
750 {
751         struct btrfs_end_io_wq *end_io_wq;
752
753         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
754         if (!end_io_wq)
755                 return BLK_STS_RESOURCE;
756
757         end_io_wq->private = bio->bi_private;
758         end_io_wq->end_io = bio->bi_end_io;
759         end_io_wq->info = info;
760         end_io_wq->status = 0;
761         end_io_wq->bio = bio;
762         end_io_wq->metadata = metadata;
763
764         bio->bi_private = end_io_wq;
765         bio->bi_end_io = end_workqueue_bio;
766         return 0;
767 }
768
769 static void run_one_async_start(struct btrfs_work *work)
770 {
771         struct async_submit_bio *async;
772         blk_status_t ret;
773
774         async = container_of(work, struct  async_submit_bio, work);
775         ret = async->submit_bio_start(async->private_data, async->bio,
776                                       async->bio_offset);
777         if (ret)
778                 async->status = ret;
779 }
780
781 /*
782  * In order to insert checksums into the metadata in large chunks, we wait
783  * until bio submission time.   All the pages in the bio are checksummed and
784  * sums are attached onto the ordered extent record.
785  *
786  * At IO completion time the csums attached on the ordered extent record are
787  * inserted into the tree.
788  */
789 static void run_one_async_done(struct btrfs_work *work)
790 {
791         struct async_submit_bio *async;
792         struct inode *inode;
793         blk_status_t ret;
794
795         async = container_of(work, struct  async_submit_bio, work);
796         inode = async->private_data;
797
798         /* If an error occurred we just want to clean up the bio and move on */
799         if (async->status) {
800                 async->bio->bi_status = async->status;
801                 bio_endio(async->bio);
802                 return;
803         }
804
805         /*
806          * All of the bios that pass through here are from async helpers.
807          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
808          * This changes nothing when cgroups aren't in use.
809          */
810         async->bio->bi_opf |= REQ_CGROUP_PUNT;
811         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
812         if (ret) {
813                 async->bio->bi_status = ret;
814                 bio_endio(async->bio);
815         }
816 }
817
818 static void run_one_async_free(struct btrfs_work *work)
819 {
820         struct async_submit_bio *async;
821
822         async = container_of(work, struct  async_submit_bio, work);
823         kfree(async);
824 }
825
826 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
827                                  int mirror_num, unsigned long bio_flags,
828                                  u64 bio_offset, void *private_data,
829                                  extent_submit_bio_start_t *submit_bio_start)
830 {
831         struct async_submit_bio *async;
832
833         async = kmalloc(sizeof(*async), GFP_NOFS);
834         if (!async)
835                 return BLK_STS_RESOURCE;
836
837         async->private_data = private_data;
838         async->bio = bio;
839         async->mirror_num = mirror_num;
840         async->submit_bio_start = submit_bio_start;
841
842         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
843                         run_one_async_free);
844
845         async->bio_offset = bio_offset;
846
847         async->status = 0;
848
849         if (op_is_sync(bio->bi_opf))
850                 btrfs_set_work_high_priority(&async->work);
851
852         btrfs_queue_work(fs_info->workers, &async->work);
853         return 0;
854 }
855
856 static blk_status_t btree_csum_one_bio(struct bio *bio)
857 {
858         struct bio_vec *bvec;
859         struct btrfs_root *root;
860         int ret = 0;
861         struct bvec_iter_all iter_all;
862
863         ASSERT(!bio_flagged(bio, BIO_CLONED));
864         bio_for_each_segment_all(bvec, bio, iter_all) {
865                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
866                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
867                 if (ret)
868                         break;
869         }
870
871         return errno_to_blk_status(ret);
872 }
873
874 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
875                                              u64 bio_offset)
876 {
877         /*
878          * when we're called for a write, we're already in the async
879          * submission context.  Just jump into btrfs_map_bio
880          */
881         return btree_csum_one_bio(bio);
882 }
883
884 static int check_async_write(struct btrfs_fs_info *fs_info,
885                              struct btrfs_inode *bi)
886 {
887         if (atomic_read(&bi->sync_writers))
888                 return 0;
889         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
890                 return 0;
891         return 1;
892 }
893
894 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
895                                           int mirror_num,
896                                           unsigned long bio_flags)
897 {
898         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
899         int async = check_async_write(fs_info, BTRFS_I(inode));
900         blk_status_t ret;
901
902         if (bio_op(bio) != REQ_OP_WRITE) {
903                 /*
904                  * called for a read, do the setup so that checksum validation
905                  * can happen in the async kernel threads
906                  */
907                 ret = btrfs_bio_wq_end_io(fs_info, bio,
908                                           BTRFS_WQ_ENDIO_METADATA);
909                 if (ret)
910                         goto out_w_error;
911                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
912         } else if (!async) {
913                 ret = btree_csum_one_bio(bio);
914                 if (ret)
915                         goto out_w_error;
916                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
917         } else {
918                 /*
919                  * kthread helpers are used to submit writes so that
920                  * checksumming can happen in parallel across all CPUs
921                  */
922                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
923                                           0, inode, btree_submit_bio_start);
924         }
925
926         if (ret)
927                 goto out_w_error;
928         return 0;
929
930 out_w_error:
931         bio->bi_status = ret;
932         bio_endio(bio);
933         return ret;
934 }
935
936 #ifdef CONFIG_MIGRATION
937 static int btree_migratepage(struct address_space *mapping,
938                         struct page *newpage, struct page *page,
939                         enum migrate_mode mode)
940 {
941         /*
942          * we can't safely write a btree page from here,
943          * we haven't done the locking hook
944          */
945         if (PageDirty(page))
946                 return -EAGAIN;
947         /*
948          * Buffers may be managed in a filesystem specific way.
949          * We must have no buffers or drop them.
950          */
951         if (page_has_private(page) &&
952             !try_to_release_page(page, GFP_KERNEL))
953                 return -EAGAIN;
954         return migrate_page(mapping, newpage, page, mode);
955 }
956 #endif
957
958
959 static int btree_writepages(struct address_space *mapping,
960                             struct writeback_control *wbc)
961 {
962         struct btrfs_fs_info *fs_info;
963         int ret;
964
965         if (wbc->sync_mode == WB_SYNC_NONE) {
966
967                 if (wbc->for_kupdate)
968                         return 0;
969
970                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
971                 /* this is a bit racy, but that's ok */
972                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
973                                              BTRFS_DIRTY_METADATA_THRESH,
974                                              fs_info->dirty_metadata_batch);
975                 if (ret < 0)
976                         return 0;
977         }
978         return btree_write_cache_pages(mapping, wbc);
979 }
980
981 static int btree_readpage(struct file *file, struct page *page)
982 {
983         return extent_read_full_page(page, btree_get_extent, 0);
984 }
985
986 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
987 {
988         if (PageWriteback(page) || PageDirty(page))
989                 return 0;
990
991         return try_release_extent_buffer(page);
992 }
993
994 static void btree_invalidatepage(struct page *page, unsigned int offset,
995                                  unsigned int length)
996 {
997         struct extent_io_tree *tree;
998         tree = &BTRFS_I(page->mapping->host)->io_tree;
999         extent_invalidatepage(tree, page, offset);
1000         btree_releasepage(page, GFP_NOFS);
1001         if (PagePrivate(page)) {
1002                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1003                            "page private not zero on page %llu",
1004                            (unsigned long long)page_offset(page));
1005                 ClearPagePrivate(page);
1006                 set_page_private(page, 0);
1007                 put_page(page);
1008         }
1009 }
1010
1011 static int btree_set_page_dirty(struct page *page)
1012 {
1013 #ifdef DEBUG
1014         struct extent_buffer *eb;
1015
1016         BUG_ON(!PagePrivate(page));
1017         eb = (struct extent_buffer *)page->private;
1018         BUG_ON(!eb);
1019         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1020         BUG_ON(!atomic_read(&eb->refs));
1021         btrfs_assert_tree_locked(eb);
1022 #endif
1023         return __set_page_dirty_nobuffers(page);
1024 }
1025
1026 static const struct address_space_operations btree_aops = {
1027         .readpage       = btree_readpage,
1028         .writepages     = btree_writepages,
1029         .releasepage    = btree_releasepage,
1030         .invalidatepage = btree_invalidatepage,
1031 #ifdef CONFIG_MIGRATION
1032         .migratepage    = btree_migratepage,
1033 #endif
1034         .set_page_dirty = btree_set_page_dirty,
1035 };
1036
1037 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1038 {
1039         struct extent_buffer *buf = NULL;
1040         int ret;
1041
1042         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1043         if (IS_ERR(buf))
1044                 return;
1045
1046         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1047         if (ret < 0)
1048                 free_extent_buffer_stale(buf);
1049         else
1050                 free_extent_buffer(buf);
1051 }
1052
1053 struct extent_buffer *btrfs_find_create_tree_block(
1054                                                 struct btrfs_fs_info *fs_info,
1055                                                 u64 bytenr)
1056 {
1057         if (btrfs_is_testing(fs_info))
1058                 return alloc_test_extent_buffer(fs_info, bytenr);
1059         return alloc_extent_buffer(fs_info, bytenr);
1060 }
1061
1062 /*
1063  * Read tree block at logical address @bytenr and do variant basic but critical
1064  * verification.
1065  *
1066  * @parent_transid:     expected transid of this tree block, skip check if 0
1067  * @level:              expected level, mandatory check
1068  * @first_key:          expected key in slot 0, skip check if NULL
1069  */
1070 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1071                                       u64 parent_transid, int level,
1072                                       struct btrfs_key *first_key)
1073 {
1074         struct extent_buffer *buf = NULL;
1075         int ret;
1076
1077         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1078         if (IS_ERR(buf))
1079                 return buf;
1080
1081         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1082                                              level, first_key);
1083         if (ret) {
1084                 free_extent_buffer_stale(buf);
1085                 return ERR_PTR(ret);
1086         }
1087         return buf;
1088
1089 }
1090
1091 void btrfs_clean_tree_block(struct extent_buffer *buf)
1092 {
1093         struct btrfs_fs_info *fs_info = buf->fs_info;
1094         if (btrfs_header_generation(buf) ==
1095             fs_info->running_transaction->transid) {
1096                 btrfs_assert_tree_locked(buf);
1097
1098                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1099                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1100                                                  -buf->len,
1101                                                  fs_info->dirty_metadata_batch);
1102                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1103                         btrfs_set_lock_blocking_write(buf);
1104                         clear_extent_buffer_dirty(buf);
1105                 }
1106         }
1107 }
1108
1109 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1110                          u64 objectid)
1111 {
1112         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1113         root->fs_info = fs_info;
1114         root->node = NULL;
1115         root->commit_root = NULL;
1116         root->state = 0;
1117         root->orphan_cleanup_state = 0;
1118
1119         root->last_trans = 0;
1120         root->highest_objectid = 0;
1121         root->nr_delalloc_inodes = 0;
1122         root->nr_ordered_extents = 0;
1123         root->inode_tree = RB_ROOT;
1124         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1125         root->block_rsv = NULL;
1126
1127         INIT_LIST_HEAD(&root->dirty_list);
1128         INIT_LIST_HEAD(&root->root_list);
1129         INIT_LIST_HEAD(&root->delalloc_inodes);
1130         INIT_LIST_HEAD(&root->delalloc_root);
1131         INIT_LIST_HEAD(&root->ordered_extents);
1132         INIT_LIST_HEAD(&root->ordered_root);
1133         INIT_LIST_HEAD(&root->reloc_dirty_list);
1134         INIT_LIST_HEAD(&root->logged_list[0]);
1135         INIT_LIST_HEAD(&root->logged_list[1]);
1136         spin_lock_init(&root->inode_lock);
1137         spin_lock_init(&root->delalloc_lock);
1138         spin_lock_init(&root->ordered_extent_lock);
1139         spin_lock_init(&root->accounting_lock);
1140         spin_lock_init(&root->log_extents_lock[0]);
1141         spin_lock_init(&root->log_extents_lock[1]);
1142         spin_lock_init(&root->qgroup_meta_rsv_lock);
1143         mutex_init(&root->objectid_mutex);
1144         mutex_init(&root->log_mutex);
1145         mutex_init(&root->ordered_extent_mutex);
1146         mutex_init(&root->delalloc_mutex);
1147         init_waitqueue_head(&root->log_writer_wait);
1148         init_waitqueue_head(&root->log_commit_wait[0]);
1149         init_waitqueue_head(&root->log_commit_wait[1]);
1150         INIT_LIST_HEAD(&root->log_ctxs[0]);
1151         INIT_LIST_HEAD(&root->log_ctxs[1]);
1152         atomic_set(&root->log_commit[0], 0);
1153         atomic_set(&root->log_commit[1], 0);
1154         atomic_set(&root->log_writers, 0);
1155         atomic_set(&root->log_batch, 0);
1156         refcount_set(&root->refs, 1);
1157         atomic_set(&root->snapshot_force_cow, 0);
1158         atomic_set(&root->nr_swapfiles, 0);
1159         root->log_transid = 0;
1160         root->log_transid_committed = -1;
1161         root->last_log_commit = 0;
1162         if (!dummy)
1163                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1164                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1165
1166         memset(&root->root_key, 0, sizeof(root->root_key));
1167         memset(&root->root_item, 0, sizeof(root->root_item));
1168         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1169         if (!dummy)
1170                 root->defrag_trans_start = fs_info->generation;
1171         else
1172                 root->defrag_trans_start = 0;
1173         root->root_key.objectid = objectid;
1174         root->anon_dev = 0;
1175
1176         spin_lock_init(&root->root_item_lock);
1177         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1178 #ifdef CONFIG_BTRFS_DEBUG
1179         INIT_LIST_HEAD(&root->leak_list);
1180         spin_lock(&fs_info->fs_roots_radix_lock);
1181         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1182         spin_unlock(&fs_info->fs_roots_radix_lock);
1183 #endif
1184 }
1185
1186 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1187                                            u64 objectid, gfp_t flags)
1188 {
1189         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1190         if (root)
1191                 __setup_root(root, fs_info, objectid);
1192         return root;
1193 }
1194
1195 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1196 /* Should only be used by the testing infrastructure */
1197 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1198 {
1199         struct btrfs_root *root;
1200
1201         if (!fs_info)
1202                 return ERR_PTR(-EINVAL);
1203
1204         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1205         if (!root)
1206                 return ERR_PTR(-ENOMEM);
1207
1208         /* We don't use the stripesize in selftest, set it as sectorsize */
1209         root->alloc_bytenr = 0;
1210
1211         return root;
1212 }
1213 #endif
1214
1215 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1216                                      u64 objectid)
1217 {
1218         struct btrfs_fs_info *fs_info = trans->fs_info;
1219         struct extent_buffer *leaf;
1220         struct btrfs_root *tree_root = fs_info->tree_root;
1221         struct btrfs_root *root;
1222         struct btrfs_key key;
1223         unsigned int nofs_flag;
1224         int ret = 0;
1225         uuid_le uuid = NULL_UUID_LE;
1226
1227         /*
1228          * We're holding a transaction handle, so use a NOFS memory allocation
1229          * context to avoid deadlock if reclaim happens.
1230          */
1231         nofs_flag = memalloc_nofs_save();
1232         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1233         memalloc_nofs_restore(nofs_flag);
1234         if (!root)
1235                 return ERR_PTR(-ENOMEM);
1236
1237         root->root_key.objectid = objectid;
1238         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1239         root->root_key.offset = 0;
1240
1241         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1242         if (IS_ERR(leaf)) {
1243                 ret = PTR_ERR(leaf);
1244                 leaf = NULL;
1245                 goto fail;
1246         }
1247
1248         root->node = leaf;
1249         btrfs_mark_buffer_dirty(leaf);
1250
1251         root->commit_root = btrfs_root_node(root);
1252         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1253
1254         root->root_item.flags = 0;
1255         root->root_item.byte_limit = 0;
1256         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1257         btrfs_set_root_generation(&root->root_item, trans->transid);
1258         btrfs_set_root_level(&root->root_item, 0);
1259         btrfs_set_root_refs(&root->root_item, 1);
1260         btrfs_set_root_used(&root->root_item, leaf->len);
1261         btrfs_set_root_last_snapshot(&root->root_item, 0);
1262         btrfs_set_root_dirid(&root->root_item, 0);
1263         if (is_fstree(objectid))
1264                 uuid_le_gen(&uuid);
1265         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1266         root->root_item.drop_level = 0;
1267
1268         key.objectid = objectid;
1269         key.type = BTRFS_ROOT_ITEM_KEY;
1270         key.offset = 0;
1271         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1272         if (ret)
1273                 goto fail;
1274
1275         btrfs_tree_unlock(leaf);
1276
1277         return root;
1278
1279 fail:
1280         if (leaf) {
1281                 btrfs_tree_unlock(leaf);
1282                 free_extent_buffer(root->commit_root);
1283                 free_extent_buffer(leaf);
1284         }
1285         btrfs_put_root(root);
1286
1287         return ERR_PTR(ret);
1288 }
1289
1290 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1291                                          struct btrfs_fs_info *fs_info)
1292 {
1293         struct btrfs_root *root;
1294         struct extent_buffer *leaf;
1295
1296         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1297         if (!root)
1298                 return ERR_PTR(-ENOMEM);
1299
1300         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1301         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1302         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1303
1304         /*
1305          * DON'T set REF_COWS for log trees
1306          *
1307          * log trees do not get reference counted because they go away
1308          * before a real commit is actually done.  They do store pointers
1309          * to file data extents, and those reference counts still get
1310          * updated (along with back refs to the log tree).
1311          */
1312
1313         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1314                         NULL, 0, 0, 0);
1315         if (IS_ERR(leaf)) {
1316                 btrfs_put_root(root);
1317                 return ERR_CAST(leaf);
1318         }
1319
1320         root->node = leaf;
1321
1322         btrfs_mark_buffer_dirty(root->node);
1323         btrfs_tree_unlock(root->node);
1324         return root;
1325 }
1326
1327 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1328                              struct btrfs_fs_info *fs_info)
1329 {
1330         struct btrfs_root *log_root;
1331
1332         log_root = alloc_log_tree(trans, fs_info);
1333         if (IS_ERR(log_root))
1334                 return PTR_ERR(log_root);
1335         WARN_ON(fs_info->log_root_tree);
1336         fs_info->log_root_tree = log_root;
1337         return 0;
1338 }
1339
1340 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1341                        struct btrfs_root *root)
1342 {
1343         struct btrfs_fs_info *fs_info = root->fs_info;
1344         struct btrfs_root *log_root;
1345         struct btrfs_inode_item *inode_item;
1346
1347         log_root = alloc_log_tree(trans, fs_info);
1348         if (IS_ERR(log_root))
1349                 return PTR_ERR(log_root);
1350
1351         log_root->last_trans = trans->transid;
1352         log_root->root_key.offset = root->root_key.objectid;
1353
1354         inode_item = &log_root->root_item.inode;
1355         btrfs_set_stack_inode_generation(inode_item, 1);
1356         btrfs_set_stack_inode_size(inode_item, 3);
1357         btrfs_set_stack_inode_nlink(inode_item, 1);
1358         btrfs_set_stack_inode_nbytes(inode_item,
1359                                      fs_info->nodesize);
1360         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1361
1362         btrfs_set_root_node(&log_root->root_item, log_root->node);
1363
1364         WARN_ON(root->log_root);
1365         root->log_root = log_root;
1366         root->log_transid = 0;
1367         root->log_transid_committed = -1;
1368         root->last_log_commit = 0;
1369         return 0;
1370 }
1371
1372 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1373                                         struct btrfs_key *key)
1374 {
1375         struct btrfs_root *root;
1376         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1377         struct btrfs_path *path;
1378         u64 generation;
1379         int ret;
1380         int level;
1381
1382         path = btrfs_alloc_path();
1383         if (!path)
1384                 return ERR_PTR(-ENOMEM);
1385
1386         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1387         if (!root) {
1388                 ret = -ENOMEM;
1389                 goto alloc_fail;
1390         }
1391
1392         ret = btrfs_find_root(tree_root, key, path,
1393                               &root->root_item, &root->root_key);
1394         if (ret) {
1395                 if (ret > 0)
1396                         ret = -ENOENT;
1397                 goto find_fail;
1398         }
1399
1400         generation = btrfs_root_generation(&root->root_item);
1401         level = btrfs_root_level(&root->root_item);
1402         root->node = read_tree_block(fs_info,
1403                                      btrfs_root_bytenr(&root->root_item),
1404                                      generation, level, NULL);
1405         if (IS_ERR(root->node)) {
1406                 ret = PTR_ERR(root->node);
1407                 goto find_fail;
1408         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1409                 ret = -EIO;
1410                 free_extent_buffer(root->node);
1411                 goto find_fail;
1412         }
1413         root->commit_root = btrfs_root_node(root);
1414 out:
1415         btrfs_free_path(path);
1416         return root;
1417
1418 find_fail:
1419         btrfs_put_root(root);
1420 alloc_fail:
1421         root = ERR_PTR(ret);
1422         goto out;
1423 }
1424
1425 static int btrfs_init_fs_root(struct btrfs_root *root)
1426 {
1427         int ret;
1428         unsigned int nofs_flag;
1429
1430         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1431         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1432                                         GFP_NOFS);
1433         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1434                 ret = -ENOMEM;
1435                 goto fail;
1436         }
1437
1438         /*
1439          * We might be called under a transaction (e.g. indirect backref
1440          * resolution) which could deadlock if it triggers memory reclaim
1441          */
1442         nofs_flag = memalloc_nofs_save();
1443         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1444         memalloc_nofs_restore(nofs_flag);
1445         if (ret)
1446                 goto fail;
1447
1448         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1449                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1450                 btrfs_check_and_init_root_item(&root->root_item);
1451         }
1452
1453         btrfs_init_free_ino_ctl(root);
1454         spin_lock_init(&root->ino_cache_lock);
1455         init_waitqueue_head(&root->ino_cache_wait);
1456
1457         ret = get_anon_bdev(&root->anon_dev);
1458         if (ret)
1459                 goto fail;
1460
1461         mutex_lock(&root->objectid_mutex);
1462         ret = btrfs_find_highest_objectid(root,
1463                                         &root->highest_objectid);
1464         if (ret) {
1465                 mutex_unlock(&root->objectid_mutex);
1466                 goto fail;
1467         }
1468
1469         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1470
1471         mutex_unlock(&root->objectid_mutex);
1472
1473         return 0;
1474 fail:
1475         /* The caller is responsible to call btrfs_free_fs_root */
1476         return ret;
1477 }
1478
1479 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1480                                                u64 root_id)
1481 {
1482         struct btrfs_root *root;
1483
1484         spin_lock(&fs_info->fs_roots_radix_lock);
1485         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1486                                  (unsigned long)root_id);
1487         if (root)
1488                 root = btrfs_grab_root(root);
1489         spin_unlock(&fs_info->fs_roots_radix_lock);
1490         return root;
1491 }
1492
1493 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1494                          struct btrfs_root *root)
1495 {
1496         int ret;
1497
1498         ret = radix_tree_preload(GFP_NOFS);
1499         if (ret)
1500                 return ret;
1501
1502         spin_lock(&fs_info->fs_roots_radix_lock);
1503         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1504                                 (unsigned long)root->root_key.objectid,
1505                                 root);
1506         if (ret == 0) {
1507                 btrfs_grab_root(root);
1508                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1509         }
1510         spin_unlock(&fs_info->fs_roots_radix_lock);
1511         radix_tree_preload_end();
1512
1513         return ret;
1514 }
1515
1516 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1517 {
1518 #ifdef CONFIG_BTRFS_DEBUG
1519         struct btrfs_root *root;
1520
1521         while (!list_empty(&fs_info->allocated_roots)) {
1522                 root = list_first_entry(&fs_info->allocated_roots,
1523                                         struct btrfs_root, leak_list);
1524                 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1525                           root->root_key.objectid, root->root_key.offset,
1526                           refcount_read(&root->refs));
1527                 while (refcount_read(&root->refs) > 1)
1528                         btrfs_put_root(root);
1529                 btrfs_put_root(root);
1530         }
1531 #endif
1532 }
1533
1534 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1535 {
1536         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1537         percpu_counter_destroy(&fs_info->delalloc_bytes);
1538         percpu_counter_destroy(&fs_info->dio_bytes);
1539         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1540         btrfs_free_csum_hash(fs_info);
1541         btrfs_free_stripe_hash_table(fs_info);
1542         btrfs_free_ref_cache(fs_info);
1543         kfree(fs_info->balance_ctl);
1544         kfree(fs_info->delayed_root);
1545         btrfs_put_root(fs_info->extent_root);
1546         btrfs_put_root(fs_info->tree_root);
1547         btrfs_put_root(fs_info->chunk_root);
1548         btrfs_put_root(fs_info->dev_root);
1549         btrfs_put_root(fs_info->csum_root);
1550         btrfs_put_root(fs_info->quota_root);
1551         btrfs_put_root(fs_info->uuid_root);
1552         btrfs_put_root(fs_info->free_space_root);
1553         btrfs_put_root(fs_info->fs_root);
1554         btrfs_check_leaked_roots(fs_info);
1555         kfree(fs_info->super_copy);
1556         kfree(fs_info->super_for_commit);
1557         kvfree(fs_info);
1558 }
1559
1560
1561 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1562                                      struct btrfs_key *location,
1563                                      bool check_ref)
1564 {
1565         struct btrfs_root *root;
1566         struct btrfs_path *path;
1567         struct btrfs_key key;
1568         int ret;
1569
1570         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1571                 return btrfs_grab_root(fs_info->tree_root);
1572         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1573                 return btrfs_grab_root(fs_info->extent_root);
1574         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1575                 return btrfs_grab_root(fs_info->chunk_root);
1576         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1577                 return btrfs_grab_root(fs_info->dev_root);
1578         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1579                 return btrfs_grab_root(fs_info->csum_root);
1580         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1581                 return btrfs_grab_root(fs_info->quota_root) ?
1582                         fs_info->quota_root : ERR_PTR(-ENOENT);
1583         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1584                 return btrfs_grab_root(fs_info->uuid_root) ?
1585                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1586         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1587                 return btrfs_grab_root(fs_info->free_space_root) ?
1588                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1589 again:
1590         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1591         if (root) {
1592                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1593                         btrfs_put_root(root);
1594                         return ERR_PTR(-ENOENT);
1595                 }
1596                 return root;
1597         }
1598
1599         root = btrfs_read_tree_root(fs_info->tree_root, location);
1600         if (IS_ERR(root))
1601                 return root;
1602
1603         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1604                 ret = -ENOENT;
1605                 goto fail;
1606         }
1607
1608         ret = btrfs_init_fs_root(root);
1609         if (ret)
1610                 goto fail;
1611
1612         path = btrfs_alloc_path();
1613         if (!path) {
1614                 ret = -ENOMEM;
1615                 goto fail;
1616         }
1617         key.objectid = BTRFS_ORPHAN_OBJECTID;
1618         key.type = BTRFS_ORPHAN_ITEM_KEY;
1619         key.offset = location->objectid;
1620
1621         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1622         btrfs_free_path(path);
1623         if (ret < 0)
1624                 goto fail;
1625         if (ret == 0)
1626                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1627
1628         /*
1629          * All roots have two refs on them at all times, one for the mounted fs,
1630          * and one for being in the radix tree.  This way we only free the root
1631          * when we are unmounting or deleting the subvolume.  We get one ref
1632          * from __setup_root, one for inserting it into the radix tree, and then
1633          * we have the third for returning it, and the caller will put it when
1634          * it's done with the root.
1635          */
1636         btrfs_grab_root(root);
1637         ret = btrfs_insert_fs_root(fs_info, root);
1638         if (ret) {
1639                 btrfs_put_root(root);
1640                 if (ret == -EEXIST) {
1641                         btrfs_free_fs_root(root);
1642                         goto again;
1643                 }
1644                 goto fail;
1645         }
1646         return root;
1647 fail:
1648         btrfs_free_fs_root(root);
1649         return ERR_PTR(ret);
1650 }
1651
1652 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1653 {
1654         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1655         int ret = 0;
1656         struct btrfs_device *device;
1657         struct backing_dev_info *bdi;
1658
1659         rcu_read_lock();
1660         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1661                 if (!device->bdev)
1662                         continue;
1663                 bdi = device->bdev->bd_bdi;
1664                 if (bdi_congested(bdi, bdi_bits)) {
1665                         ret = 1;
1666                         break;
1667                 }
1668         }
1669         rcu_read_unlock();
1670         return ret;
1671 }
1672
1673 /*
1674  * called by the kthread helper functions to finally call the bio end_io
1675  * functions.  This is where read checksum verification actually happens
1676  */
1677 static void end_workqueue_fn(struct btrfs_work *work)
1678 {
1679         struct bio *bio;
1680         struct btrfs_end_io_wq *end_io_wq;
1681
1682         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1683         bio = end_io_wq->bio;
1684
1685         bio->bi_status = end_io_wq->status;
1686         bio->bi_private = end_io_wq->private;
1687         bio->bi_end_io = end_io_wq->end_io;
1688         bio_endio(bio);
1689         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1690 }
1691
1692 static int cleaner_kthread(void *arg)
1693 {
1694         struct btrfs_root *root = arg;
1695         struct btrfs_fs_info *fs_info = root->fs_info;
1696         int again;
1697
1698         while (1) {
1699                 again = 0;
1700
1701                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1702
1703                 /* Make the cleaner go to sleep early. */
1704                 if (btrfs_need_cleaner_sleep(fs_info))
1705                         goto sleep;
1706
1707                 /*
1708                  * Do not do anything if we might cause open_ctree() to block
1709                  * before we have finished mounting the filesystem.
1710                  */
1711                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1712                         goto sleep;
1713
1714                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1715                         goto sleep;
1716
1717                 /*
1718                  * Avoid the problem that we change the status of the fs
1719                  * during the above check and trylock.
1720                  */
1721                 if (btrfs_need_cleaner_sleep(fs_info)) {
1722                         mutex_unlock(&fs_info->cleaner_mutex);
1723                         goto sleep;
1724                 }
1725
1726                 btrfs_run_delayed_iputs(fs_info);
1727
1728                 again = btrfs_clean_one_deleted_snapshot(root);
1729                 mutex_unlock(&fs_info->cleaner_mutex);
1730
1731                 /*
1732                  * The defragger has dealt with the R/O remount and umount,
1733                  * needn't do anything special here.
1734                  */
1735                 btrfs_run_defrag_inodes(fs_info);
1736
1737                 /*
1738                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1739                  * with relocation (btrfs_relocate_chunk) and relocation
1740                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1741                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1742                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1743                  * unused block groups.
1744                  */
1745                 btrfs_delete_unused_bgs(fs_info);
1746 sleep:
1747                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1748                 if (kthread_should_park())
1749                         kthread_parkme();
1750                 if (kthread_should_stop())
1751                         return 0;
1752                 if (!again) {
1753                         set_current_state(TASK_INTERRUPTIBLE);
1754                         schedule();
1755                         __set_current_state(TASK_RUNNING);
1756                 }
1757         }
1758 }
1759
1760 static int transaction_kthread(void *arg)
1761 {
1762         struct btrfs_root *root = arg;
1763         struct btrfs_fs_info *fs_info = root->fs_info;
1764         struct btrfs_trans_handle *trans;
1765         struct btrfs_transaction *cur;
1766         u64 transid;
1767         time64_t now;
1768         unsigned long delay;
1769         bool cannot_commit;
1770
1771         do {
1772                 cannot_commit = false;
1773                 delay = HZ * fs_info->commit_interval;
1774                 mutex_lock(&fs_info->transaction_kthread_mutex);
1775
1776                 spin_lock(&fs_info->trans_lock);
1777                 cur = fs_info->running_transaction;
1778                 if (!cur) {
1779                         spin_unlock(&fs_info->trans_lock);
1780                         goto sleep;
1781                 }
1782
1783                 now = ktime_get_seconds();
1784                 if (cur->state < TRANS_STATE_COMMIT_START &&
1785                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1786                     (now < cur->start_time ||
1787                      now - cur->start_time < fs_info->commit_interval)) {
1788                         spin_unlock(&fs_info->trans_lock);
1789                         delay = HZ * 5;
1790                         goto sleep;
1791                 }
1792                 transid = cur->transid;
1793                 spin_unlock(&fs_info->trans_lock);
1794
1795                 /* If the file system is aborted, this will always fail. */
1796                 trans = btrfs_attach_transaction(root);
1797                 if (IS_ERR(trans)) {
1798                         if (PTR_ERR(trans) != -ENOENT)
1799                                 cannot_commit = true;
1800                         goto sleep;
1801                 }
1802                 if (transid == trans->transid) {
1803                         btrfs_commit_transaction(trans);
1804                 } else {
1805                         btrfs_end_transaction(trans);
1806                 }
1807 sleep:
1808                 wake_up_process(fs_info->cleaner_kthread);
1809                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1810
1811                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1812                                       &fs_info->fs_state)))
1813                         btrfs_cleanup_transaction(fs_info);
1814                 if (!kthread_should_stop() &&
1815                                 (!btrfs_transaction_blocked(fs_info) ||
1816                                  cannot_commit))
1817                         schedule_timeout_interruptible(delay);
1818         } while (!kthread_should_stop());
1819         return 0;
1820 }
1821
1822 /*
1823  * This will find the highest generation in the array of root backups.  The
1824  * index of the highest array is returned, or -EINVAL if we can't find
1825  * anything.
1826  *
1827  * We check to make sure the array is valid by comparing the
1828  * generation of the latest  root in the array with the generation
1829  * in the super block.  If they don't match we pitch it.
1830  */
1831 static int find_newest_super_backup(struct btrfs_fs_info *info)
1832 {
1833         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1834         u64 cur;
1835         struct btrfs_root_backup *root_backup;
1836         int i;
1837
1838         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1839                 root_backup = info->super_copy->super_roots + i;
1840                 cur = btrfs_backup_tree_root_gen(root_backup);
1841                 if (cur == newest_gen)
1842                         return i;
1843         }
1844
1845         return -EINVAL;
1846 }
1847
1848 /*
1849  * copy all the root pointers into the super backup array.
1850  * this will bump the backup pointer by one when it is
1851  * done
1852  */
1853 static void backup_super_roots(struct btrfs_fs_info *info)
1854 {
1855         const int next_backup = info->backup_root_index;
1856         struct btrfs_root_backup *root_backup;
1857
1858         root_backup = info->super_for_commit->super_roots + next_backup;
1859
1860         /*
1861          * make sure all of our padding and empty slots get zero filled
1862          * regardless of which ones we use today
1863          */
1864         memset(root_backup, 0, sizeof(*root_backup));
1865
1866         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1867
1868         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1869         btrfs_set_backup_tree_root_gen(root_backup,
1870                                btrfs_header_generation(info->tree_root->node));
1871
1872         btrfs_set_backup_tree_root_level(root_backup,
1873                                btrfs_header_level(info->tree_root->node));
1874
1875         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1876         btrfs_set_backup_chunk_root_gen(root_backup,
1877                                btrfs_header_generation(info->chunk_root->node));
1878         btrfs_set_backup_chunk_root_level(root_backup,
1879                                btrfs_header_level(info->chunk_root->node));
1880
1881         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1882         btrfs_set_backup_extent_root_gen(root_backup,
1883                                btrfs_header_generation(info->extent_root->node));
1884         btrfs_set_backup_extent_root_level(root_backup,
1885                                btrfs_header_level(info->extent_root->node));
1886
1887         /*
1888          * we might commit during log recovery, which happens before we set
1889          * the fs_root.  Make sure it is valid before we fill it in.
1890          */
1891         if (info->fs_root && info->fs_root->node) {
1892                 btrfs_set_backup_fs_root(root_backup,
1893                                          info->fs_root->node->start);
1894                 btrfs_set_backup_fs_root_gen(root_backup,
1895                                btrfs_header_generation(info->fs_root->node));
1896                 btrfs_set_backup_fs_root_level(root_backup,
1897                                btrfs_header_level(info->fs_root->node));
1898         }
1899
1900         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1901         btrfs_set_backup_dev_root_gen(root_backup,
1902                                btrfs_header_generation(info->dev_root->node));
1903         btrfs_set_backup_dev_root_level(root_backup,
1904                                        btrfs_header_level(info->dev_root->node));
1905
1906         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1907         btrfs_set_backup_csum_root_gen(root_backup,
1908                                btrfs_header_generation(info->csum_root->node));
1909         btrfs_set_backup_csum_root_level(root_backup,
1910                                btrfs_header_level(info->csum_root->node));
1911
1912         btrfs_set_backup_total_bytes(root_backup,
1913                              btrfs_super_total_bytes(info->super_copy));
1914         btrfs_set_backup_bytes_used(root_backup,
1915                              btrfs_super_bytes_used(info->super_copy));
1916         btrfs_set_backup_num_devices(root_backup,
1917                              btrfs_super_num_devices(info->super_copy));
1918
1919         /*
1920          * if we don't copy this out to the super_copy, it won't get remembered
1921          * for the next commit
1922          */
1923         memcpy(&info->super_copy->super_roots,
1924                &info->super_for_commit->super_roots,
1925                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1926 }
1927
1928 /*
1929  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1930  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1931  *
1932  * fs_info - filesystem whose backup roots need to be read
1933  * priority - priority of backup root required
1934  *
1935  * Returns backup root index on success and -EINVAL otherwise.
1936  */
1937 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1938 {
1939         int backup_index = find_newest_super_backup(fs_info);
1940         struct btrfs_super_block *super = fs_info->super_copy;
1941         struct btrfs_root_backup *root_backup;
1942
1943         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1944                 if (priority == 0)
1945                         return backup_index;
1946
1947                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1948                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1949         } else {
1950                 return -EINVAL;
1951         }
1952
1953         root_backup = super->super_roots + backup_index;
1954
1955         btrfs_set_super_generation(super,
1956                                    btrfs_backup_tree_root_gen(root_backup));
1957         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1958         btrfs_set_super_root_level(super,
1959                                    btrfs_backup_tree_root_level(root_backup));
1960         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1961
1962         /*
1963          * Fixme: the total bytes and num_devices need to match or we should
1964          * need a fsck
1965          */
1966         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1967         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1968
1969         return backup_index;
1970 }
1971
1972 /* helper to cleanup workers */
1973 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1974 {
1975         btrfs_destroy_workqueue(fs_info->fixup_workers);
1976         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1977         btrfs_destroy_workqueue(fs_info->workers);
1978         btrfs_destroy_workqueue(fs_info->endio_workers);
1979         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1980         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1981         btrfs_destroy_workqueue(fs_info->rmw_workers);
1982         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1983         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1984         btrfs_destroy_workqueue(fs_info->delayed_workers);
1985         btrfs_destroy_workqueue(fs_info->caching_workers);
1986         btrfs_destroy_workqueue(fs_info->readahead_workers);
1987         btrfs_destroy_workqueue(fs_info->flush_workers);
1988         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1989         if (fs_info->discard_ctl.discard_workers)
1990                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1991         /*
1992          * Now that all other work queues are destroyed, we can safely destroy
1993          * the queues used for metadata I/O, since tasks from those other work
1994          * queues can do metadata I/O operations.
1995          */
1996         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1997         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1998 }
1999
2000 static void free_root_extent_buffers(struct btrfs_root *root)
2001 {
2002         if (root) {
2003                 free_extent_buffer(root->node);
2004                 free_extent_buffer(root->commit_root);
2005                 root->node = NULL;
2006                 root->commit_root = NULL;
2007         }
2008 }
2009
2010 /* helper to cleanup tree roots */
2011 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2012 {
2013         free_root_extent_buffers(info->tree_root);
2014
2015         free_root_extent_buffers(info->dev_root);
2016         free_root_extent_buffers(info->extent_root);
2017         free_root_extent_buffers(info->csum_root);
2018         free_root_extent_buffers(info->quota_root);
2019         free_root_extent_buffers(info->uuid_root);
2020         if (free_chunk_root)
2021                 free_root_extent_buffers(info->chunk_root);
2022         free_root_extent_buffers(info->free_space_root);
2023 }
2024
2025 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2026 {
2027         int ret;
2028         struct btrfs_root *gang[8];
2029         int i;
2030
2031         while (!list_empty(&fs_info->dead_roots)) {
2032                 gang[0] = list_entry(fs_info->dead_roots.next,
2033                                      struct btrfs_root, root_list);
2034                 list_del(&gang[0]->root_list);
2035
2036                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2037                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2038                 } else {
2039                         free_extent_buffer(gang[0]->node);
2040                         free_extent_buffer(gang[0]->commit_root);
2041                         btrfs_put_root(gang[0]);
2042                 }
2043         }
2044
2045         while (1) {
2046                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2047                                              (void **)gang, 0,
2048                                              ARRAY_SIZE(gang));
2049                 if (!ret)
2050                         break;
2051                 for (i = 0; i < ret; i++)
2052                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2053         }
2054
2055         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2056                 btrfs_free_log_root_tree(NULL, fs_info);
2057 }
2058
2059 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2060 {
2061         mutex_init(&fs_info->scrub_lock);
2062         atomic_set(&fs_info->scrubs_running, 0);
2063         atomic_set(&fs_info->scrub_pause_req, 0);
2064         atomic_set(&fs_info->scrubs_paused, 0);
2065         atomic_set(&fs_info->scrub_cancel_req, 0);
2066         init_waitqueue_head(&fs_info->scrub_pause_wait);
2067         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2068 }
2069
2070 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2071 {
2072         spin_lock_init(&fs_info->balance_lock);
2073         mutex_init(&fs_info->balance_mutex);
2074         atomic_set(&fs_info->balance_pause_req, 0);
2075         atomic_set(&fs_info->balance_cancel_req, 0);
2076         fs_info->balance_ctl = NULL;
2077         init_waitqueue_head(&fs_info->balance_wait_q);
2078 }
2079
2080 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2081 {
2082         struct inode *inode = fs_info->btree_inode;
2083
2084         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2085         set_nlink(inode, 1);
2086         /*
2087          * we set the i_size on the btree inode to the max possible int.
2088          * the real end of the address space is determined by all of
2089          * the devices in the system
2090          */
2091         inode->i_size = OFFSET_MAX;
2092         inode->i_mapping->a_ops = &btree_aops;
2093
2094         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2095         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2096                             IO_TREE_INODE_IO, inode);
2097         BTRFS_I(inode)->io_tree.track_uptodate = false;
2098         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2099
2100         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2101
2102         BTRFS_I(inode)->root = fs_info->tree_root;
2103         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2104         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2105         btrfs_insert_inode_hash(inode);
2106 }
2107
2108 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2109 {
2110         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2111         init_rwsem(&fs_info->dev_replace.rwsem);
2112         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2113 }
2114
2115 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2116 {
2117         spin_lock_init(&fs_info->qgroup_lock);
2118         mutex_init(&fs_info->qgroup_ioctl_lock);
2119         fs_info->qgroup_tree = RB_ROOT;
2120         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2121         fs_info->qgroup_seq = 1;
2122         fs_info->qgroup_ulist = NULL;
2123         fs_info->qgroup_rescan_running = false;
2124         mutex_init(&fs_info->qgroup_rescan_lock);
2125 }
2126
2127 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2128                 struct btrfs_fs_devices *fs_devices)
2129 {
2130         u32 max_active = fs_info->thread_pool_size;
2131         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2132
2133         fs_info->workers =
2134                 btrfs_alloc_workqueue(fs_info, "worker",
2135                                       flags | WQ_HIGHPRI, max_active, 16);
2136
2137         fs_info->delalloc_workers =
2138                 btrfs_alloc_workqueue(fs_info, "delalloc",
2139                                       flags, max_active, 2);
2140
2141         fs_info->flush_workers =
2142                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2143                                       flags, max_active, 0);
2144
2145         fs_info->caching_workers =
2146                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2147
2148         fs_info->fixup_workers =
2149                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2150
2151         /*
2152          * endios are largely parallel and should have a very
2153          * low idle thresh
2154          */
2155         fs_info->endio_workers =
2156                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2157         fs_info->endio_meta_workers =
2158                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2159                                       max_active, 4);
2160         fs_info->endio_meta_write_workers =
2161                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2162                                       max_active, 2);
2163         fs_info->endio_raid56_workers =
2164                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2165                                       max_active, 4);
2166         fs_info->endio_repair_workers =
2167                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2168         fs_info->rmw_workers =
2169                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2170         fs_info->endio_write_workers =
2171                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2172                                       max_active, 2);
2173         fs_info->endio_freespace_worker =
2174                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2175                                       max_active, 0);
2176         fs_info->delayed_workers =
2177                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2178                                       max_active, 0);
2179         fs_info->readahead_workers =
2180                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2181                                       max_active, 2);
2182         fs_info->qgroup_rescan_workers =
2183                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2184         fs_info->discard_ctl.discard_workers =
2185                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2186
2187         if (!(fs_info->workers && fs_info->delalloc_workers &&
2188               fs_info->flush_workers &&
2189               fs_info->endio_workers && fs_info->endio_meta_workers &&
2190               fs_info->endio_meta_write_workers &&
2191               fs_info->endio_repair_workers &&
2192               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2193               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2194               fs_info->caching_workers && fs_info->readahead_workers &&
2195               fs_info->fixup_workers && fs_info->delayed_workers &&
2196               fs_info->qgroup_rescan_workers &&
2197               fs_info->discard_ctl.discard_workers)) {
2198                 return -ENOMEM;
2199         }
2200
2201         return 0;
2202 }
2203
2204 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2205 {
2206         struct crypto_shash *csum_shash;
2207         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2208
2209         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2210
2211         if (IS_ERR(csum_shash)) {
2212                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2213                           csum_driver);
2214                 return PTR_ERR(csum_shash);
2215         }
2216
2217         fs_info->csum_shash = csum_shash;
2218
2219         return 0;
2220 }
2221
2222 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2223                             struct btrfs_fs_devices *fs_devices)
2224 {
2225         int ret;
2226         struct btrfs_root *log_tree_root;
2227         struct btrfs_super_block *disk_super = fs_info->super_copy;
2228         u64 bytenr = btrfs_super_log_root(disk_super);
2229         int level = btrfs_super_log_root_level(disk_super);
2230
2231         if (fs_devices->rw_devices == 0) {
2232                 btrfs_warn(fs_info, "log replay required on RO media");
2233                 return -EIO;
2234         }
2235
2236         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2237                                          GFP_KERNEL);
2238         if (!log_tree_root)
2239                 return -ENOMEM;
2240
2241         log_tree_root->node = read_tree_block(fs_info, bytenr,
2242                                               fs_info->generation + 1,
2243                                               level, NULL);
2244         if (IS_ERR(log_tree_root->node)) {
2245                 btrfs_warn(fs_info, "failed to read log tree");
2246                 ret = PTR_ERR(log_tree_root->node);
2247                 btrfs_put_root(log_tree_root);
2248                 return ret;
2249         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2250                 btrfs_err(fs_info, "failed to read log tree");
2251                 free_extent_buffer(log_tree_root->node);
2252                 btrfs_put_root(log_tree_root);
2253                 return -EIO;
2254         }
2255         /* returns with log_tree_root freed on success */
2256         ret = btrfs_recover_log_trees(log_tree_root);
2257         if (ret) {
2258                 btrfs_handle_fs_error(fs_info, ret,
2259                                       "Failed to recover log tree");
2260                 free_extent_buffer(log_tree_root->node);
2261                 btrfs_put_root(log_tree_root);
2262                 return ret;
2263         }
2264
2265         if (sb_rdonly(fs_info->sb)) {
2266                 ret = btrfs_commit_super(fs_info);
2267                 if (ret)
2268                         return ret;
2269         }
2270
2271         return 0;
2272 }
2273
2274 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2275 {
2276         struct btrfs_root *tree_root = fs_info->tree_root;
2277         struct btrfs_root *root;
2278         struct btrfs_key location;
2279         int ret;
2280
2281         BUG_ON(!fs_info->tree_root);
2282
2283         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2284         location.type = BTRFS_ROOT_ITEM_KEY;
2285         location.offset = 0;
2286
2287         root = btrfs_read_tree_root(tree_root, &location);
2288         if (IS_ERR(root)) {
2289                 ret = PTR_ERR(root);
2290                 goto out;
2291         }
2292         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293         fs_info->extent_root = root;
2294
2295         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2296         root = btrfs_read_tree_root(tree_root, &location);
2297         if (IS_ERR(root)) {
2298                 ret = PTR_ERR(root);
2299                 goto out;
2300         }
2301         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302         fs_info->dev_root = root;
2303         btrfs_init_devices_late(fs_info);
2304
2305         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2306         root = btrfs_read_tree_root(tree_root, &location);
2307         if (IS_ERR(root)) {
2308                 ret = PTR_ERR(root);
2309                 goto out;
2310         }
2311         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312         fs_info->csum_root = root;
2313
2314         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2315         root = btrfs_read_tree_root(tree_root, &location);
2316         if (!IS_ERR(root)) {
2317                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2318                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2319                 fs_info->quota_root = root;
2320         }
2321
2322         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2323         root = btrfs_read_tree_root(tree_root, &location);
2324         if (IS_ERR(root)) {
2325                 ret = PTR_ERR(root);
2326                 if (ret != -ENOENT)
2327                         goto out;
2328         } else {
2329                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330                 fs_info->uuid_root = root;
2331         }
2332
2333         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2334                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2335                 root = btrfs_read_tree_root(tree_root, &location);
2336                 if (IS_ERR(root)) {
2337                         ret = PTR_ERR(root);
2338                         goto out;
2339                 }
2340                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341                 fs_info->free_space_root = root;
2342         }
2343
2344         return 0;
2345 out:
2346         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2347                    location.objectid, ret);
2348         return ret;
2349 }
2350
2351 /*
2352  * Real super block validation
2353  * NOTE: super csum type and incompat features will not be checked here.
2354  *
2355  * @sb:         super block to check
2356  * @mirror_num: the super block number to check its bytenr:
2357  *              0       the primary (1st) sb
2358  *              1, 2    2nd and 3rd backup copy
2359  *             -1       skip bytenr check
2360  */
2361 static int validate_super(struct btrfs_fs_info *fs_info,
2362                             struct btrfs_super_block *sb, int mirror_num)
2363 {
2364         u64 nodesize = btrfs_super_nodesize(sb);
2365         u64 sectorsize = btrfs_super_sectorsize(sb);
2366         int ret = 0;
2367
2368         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2369                 btrfs_err(fs_info, "no valid FS found");
2370                 ret = -EINVAL;
2371         }
2372         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2373                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2374                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2375                 ret = -EINVAL;
2376         }
2377         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2378                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2379                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2380                 ret = -EINVAL;
2381         }
2382         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2383                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2384                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2385                 ret = -EINVAL;
2386         }
2387         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2388                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2389                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2390                 ret = -EINVAL;
2391         }
2392
2393         /*
2394          * Check sectorsize and nodesize first, other check will need it.
2395          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2396          */
2397         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2398             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2399                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2400                 ret = -EINVAL;
2401         }
2402         /* Only PAGE SIZE is supported yet */
2403         if (sectorsize != PAGE_SIZE) {
2404                 btrfs_err(fs_info,
2405                         "sectorsize %llu not supported yet, only support %lu",
2406                         sectorsize, PAGE_SIZE);
2407                 ret = -EINVAL;
2408         }
2409         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2410             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2411                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2412                 ret = -EINVAL;
2413         }
2414         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2415                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2416                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2417                 ret = -EINVAL;
2418         }
2419
2420         /* Root alignment check */
2421         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2422                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2423                            btrfs_super_root(sb));
2424                 ret = -EINVAL;
2425         }
2426         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2427                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2428                            btrfs_super_chunk_root(sb));
2429                 ret = -EINVAL;
2430         }
2431         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2432                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2433                            btrfs_super_log_root(sb));
2434                 ret = -EINVAL;
2435         }
2436
2437         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2438                    BTRFS_FSID_SIZE) != 0) {
2439                 btrfs_err(fs_info,
2440                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2441                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2442                 ret = -EINVAL;
2443         }
2444
2445         /*
2446          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2447          * done later
2448          */
2449         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2450                 btrfs_err(fs_info, "bytes_used is too small %llu",
2451                           btrfs_super_bytes_used(sb));
2452                 ret = -EINVAL;
2453         }
2454         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2455                 btrfs_err(fs_info, "invalid stripesize %u",
2456                           btrfs_super_stripesize(sb));
2457                 ret = -EINVAL;
2458         }
2459         if (btrfs_super_num_devices(sb) > (1UL << 31))
2460                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2461                            btrfs_super_num_devices(sb));
2462         if (btrfs_super_num_devices(sb) == 0) {
2463                 btrfs_err(fs_info, "number of devices is 0");
2464                 ret = -EINVAL;
2465         }
2466
2467         if (mirror_num >= 0 &&
2468             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2469                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2470                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2471                 ret = -EINVAL;
2472         }
2473
2474         /*
2475          * Obvious sys_chunk_array corruptions, it must hold at least one key
2476          * and one chunk
2477          */
2478         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2479                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2480                           btrfs_super_sys_array_size(sb),
2481                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2482                 ret = -EINVAL;
2483         }
2484         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2485                         + sizeof(struct btrfs_chunk)) {
2486                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2487                           btrfs_super_sys_array_size(sb),
2488                           sizeof(struct btrfs_disk_key)
2489                           + sizeof(struct btrfs_chunk));
2490                 ret = -EINVAL;
2491         }
2492
2493         /*
2494          * The generation is a global counter, we'll trust it more than the others
2495          * but it's still possible that it's the one that's wrong.
2496          */
2497         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2498                 btrfs_warn(fs_info,
2499                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2500                         btrfs_super_generation(sb),
2501                         btrfs_super_chunk_root_generation(sb));
2502         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2503             && btrfs_super_cache_generation(sb) != (u64)-1)
2504                 btrfs_warn(fs_info,
2505                         "suspicious: generation < cache_generation: %llu < %llu",
2506                         btrfs_super_generation(sb),
2507                         btrfs_super_cache_generation(sb));
2508
2509         return ret;
2510 }
2511
2512 /*
2513  * Validation of super block at mount time.
2514  * Some checks already done early at mount time, like csum type and incompat
2515  * flags will be skipped.
2516  */
2517 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2518 {
2519         return validate_super(fs_info, fs_info->super_copy, 0);
2520 }
2521
2522 /*
2523  * Validation of super block at write time.
2524  * Some checks like bytenr check will be skipped as their values will be
2525  * overwritten soon.
2526  * Extra checks like csum type and incompat flags will be done here.
2527  */
2528 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2529                                       struct btrfs_super_block *sb)
2530 {
2531         int ret;
2532
2533         ret = validate_super(fs_info, sb, -1);
2534         if (ret < 0)
2535                 goto out;
2536         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2537                 ret = -EUCLEAN;
2538                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2539                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2540                 goto out;
2541         }
2542         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2543                 ret = -EUCLEAN;
2544                 btrfs_err(fs_info,
2545                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2546                           btrfs_super_incompat_flags(sb),
2547                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2548                 goto out;
2549         }
2550 out:
2551         if (ret < 0)
2552                 btrfs_err(fs_info,
2553                 "super block corruption detected before writing it to disk");
2554         return ret;
2555 }
2556
2557 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2558 {
2559         int backup_index = find_newest_super_backup(fs_info);
2560         struct btrfs_super_block *sb = fs_info->super_copy;
2561         struct btrfs_root *tree_root = fs_info->tree_root;
2562         bool handle_error = false;
2563         int ret = 0;
2564         int i;
2565
2566         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2567                 u64 generation;
2568                 int level;
2569
2570                 if (handle_error) {
2571                         if (!IS_ERR(tree_root->node))
2572                                 free_extent_buffer(tree_root->node);
2573                         tree_root->node = NULL;
2574
2575                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2576                                 break;
2577
2578                         free_root_pointers(fs_info, 0);
2579
2580                         /*
2581                          * Don't use the log in recovery mode, it won't be
2582                          * valid
2583                          */
2584                         btrfs_set_super_log_root(sb, 0);
2585
2586                         /* We can't trust the free space cache either */
2587                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2588
2589                         ret = read_backup_root(fs_info, i);
2590                         backup_index = ret;
2591                         if (ret < 0)
2592                                 return ret;
2593                 }
2594                 generation = btrfs_super_generation(sb);
2595                 level = btrfs_super_root_level(sb);
2596                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2597                                                   generation, level, NULL);
2598                 if (IS_ERR(tree_root->node) ||
2599                     !extent_buffer_uptodate(tree_root->node)) {
2600                         handle_error = true;
2601
2602                         if (IS_ERR(tree_root->node))
2603                                 ret = PTR_ERR(tree_root->node);
2604                         else if (!extent_buffer_uptodate(tree_root->node))
2605                                 ret = -EUCLEAN;
2606
2607                         btrfs_warn(fs_info, "failed to read tree root");
2608                         continue;
2609                 }
2610
2611                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2612                 tree_root->commit_root = btrfs_root_node(tree_root);
2613                 btrfs_set_root_refs(&tree_root->root_item, 1);
2614
2615                 /*
2616                  * No need to hold btrfs_root::objectid_mutex since the fs
2617                  * hasn't been fully initialised and we are the only user
2618                  */
2619                 ret = btrfs_find_highest_objectid(tree_root,
2620                                                 &tree_root->highest_objectid);
2621                 if (ret < 0) {
2622                         handle_error = true;
2623                         continue;
2624                 }
2625
2626                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2627
2628                 ret = btrfs_read_roots(fs_info);
2629                 if (ret < 0) {
2630                         handle_error = true;
2631                         continue;
2632                 }
2633
2634                 /* All successful */
2635                 fs_info->generation = generation;
2636                 fs_info->last_trans_committed = generation;
2637
2638                 /* Always begin writing backup roots after the one being used */
2639                 if (backup_index < 0) {
2640                         fs_info->backup_root_index = 0;
2641                 } else {
2642                         fs_info->backup_root_index = backup_index + 1;
2643                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2644                 }
2645                 break;
2646         }
2647
2648         return ret;
2649 }
2650
2651 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2652 {
2653         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2654         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2655         INIT_LIST_HEAD(&fs_info->trans_list);
2656         INIT_LIST_HEAD(&fs_info->dead_roots);
2657         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2658         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2659         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2660         spin_lock_init(&fs_info->delalloc_root_lock);
2661         spin_lock_init(&fs_info->trans_lock);
2662         spin_lock_init(&fs_info->fs_roots_radix_lock);
2663         spin_lock_init(&fs_info->delayed_iput_lock);
2664         spin_lock_init(&fs_info->defrag_inodes_lock);
2665         spin_lock_init(&fs_info->super_lock);
2666         spin_lock_init(&fs_info->buffer_lock);
2667         spin_lock_init(&fs_info->unused_bgs_lock);
2668         rwlock_init(&fs_info->tree_mod_log_lock);
2669         mutex_init(&fs_info->unused_bg_unpin_mutex);
2670         mutex_init(&fs_info->delete_unused_bgs_mutex);
2671         mutex_init(&fs_info->reloc_mutex);
2672         mutex_init(&fs_info->delalloc_root_mutex);
2673         seqlock_init(&fs_info->profiles_lock);
2674
2675         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2676         INIT_LIST_HEAD(&fs_info->space_info);
2677         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2678         INIT_LIST_HEAD(&fs_info->unused_bgs);
2679 #ifdef CONFIG_BTRFS_DEBUG
2680         INIT_LIST_HEAD(&fs_info->allocated_roots);
2681 #endif
2682         extent_map_tree_init(&fs_info->mapping_tree);
2683         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2684                              BTRFS_BLOCK_RSV_GLOBAL);
2685         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2686         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2687         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2688         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2689                              BTRFS_BLOCK_RSV_DELOPS);
2690         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2691                              BTRFS_BLOCK_RSV_DELREFS);
2692
2693         atomic_set(&fs_info->async_delalloc_pages, 0);
2694         atomic_set(&fs_info->defrag_running, 0);
2695         atomic_set(&fs_info->reada_works_cnt, 0);
2696         atomic_set(&fs_info->nr_delayed_iputs, 0);
2697         atomic64_set(&fs_info->tree_mod_seq, 0);
2698         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2699         fs_info->metadata_ratio = 0;
2700         fs_info->defrag_inodes = RB_ROOT;
2701         atomic64_set(&fs_info->free_chunk_space, 0);
2702         fs_info->tree_mod_log = RB_ROOT;
2703         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2704         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2705         /* readahead state */
2706         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2707         spin_lock_init(&fs_info->reada_lock);
2708         btrfs_init_ref_verify(fs_info);
2709
2710         fs_info->thread_pool_size = min_t(unsigned long,
2711                                           num_online_cpus() + 2, 8);
2712
2713         INIT_LIST_HEAD(&fs_info->ordered_roots);
2714         spin_lock_init(&fs_info->ordered_root_lock);
2715
2716         btrfs_init_scrub(fs_info);
2717 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2718         fs_info->check_integrity_print_mask = 0;
2719 #endif
2720         btrfs_init_balance(fs_info);
2721         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2722
2723         spin_lock_init(&fs_info->block_group_cache_lock);
2724         fs_info->block_group_cache_tree = RB_ROOT;
2725         fs_info->first_logical_byte = (u64)-1;
2726
2727         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2728                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2729         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2730
2731         mutex_init(&fs_info->ordered_operations_mutex);
2732         mutex_init(&fs_info->tree_log_mutex);
2733         mutex_init(&fs_info->chunk_mutex);
2734         mutex_init(&fs_info->transaction_kthread_mutex);
2735         mutex_init(&fs_info->cleaner_mutex);
2736         mutex_init(&fs_info->ro_block_group_mutex);
2737         init_rwsem(&fs_info->commit_root_sem);
2738         init_rwsem(&fs_info->cleanup_work_sem);
2739         init_rwsem(&fs_info->subvol_sem);
2740         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2741
2742         btrfs_init_dev_replace_locks(fs_info);
2743         btrfs_init_qgroup(fs_info);
2744         btrfs_discard_init(fs_info);
2745
2746         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2747         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2748
2749         init_waitqueue_head(&fs_info->transaction_throttle);
2750         init_waitqueue_head(&fs_info->transaction_wait);
2751         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2752         init_waitqueue_head(&fs_info->async_submit_wait);
2753         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2754
2755         /* Usable values until the real ones are cached from the superblock */
2756         fs_info->nodesize = 4096;
2757         fs_info->sectorsize = 4096;
2758         fs_info->stripesize = 4096;
2759
2760         spin_lock_init(&fs_info->swapfile_pins_lock);
2761         fs_info->swapfile_pins = RB_ROOT;
2762
2763         fs_info->send_in_progress = 0;
2764 }
2765
2766 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2767 {
2768         int ret;
2769
2770         fs_info->sb = sb;
2771         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2772         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2773
2774         ret = init_srcu_struct(&fs_info->subvol_srcu);
2775         if (ret)
2776                 return ret;
2777
2778         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2779         if (ret)
2780                 goto fail;
2781
2782         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2783         if (ret)
2784                 goto fail;
2785
2786         fs_info->dirty_metadata_batch = PAGE_SIZE *
2787                                         (1 + ilog2(nr_cpu_ids));
2788
2789         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2790         if (ret)
2791                 goto fail;
2792
2793         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2794                         GFP_KERNEL);
2795         if (ret)
2796                 goto fail;
2797
2798         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2799                                         GFP_KERNEL);
2800         if (!fs_info->delayed_root) {
2801                 ret = -ENOMEM;
2802                 goto fail;
2803         }
2804         btrfs_init_delayed_root(fs_info->delayed_root);
2805
2806         ret = btrfs_alloc_stripe_hash_table(fs_info);
2807         if (ret)
2808                 goto fail;
2809
2810         return 0;
2811 fail:
2812         cleanup_srcu_struct(&fs_info->subvol_srcu);
2813         return ret;
2814 }
2815
2816 static int btrfs_uuid_rescan_kthread(void *data)
2817 {
2818         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2819         int ret;
2820
2821         /*
2822          * 1st step is to iterate through the existing UUID tree and
2823          * to delete all entries that contain outdated data.
2824          * 2nd step is to add all missing entries to the UUID tree.
2825          */
2826         ret = btrfs_uuid_tree_iterate(fs_info);
2827         if (ret < 0) {
2828                 if (ret != -EINTR)
2829                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2830                                    ret);
2831                 up(&fs_info->uuid_tree_rescan_sem);
2832                 return ret;
2833         }
2834         return btrfs_uuid_scan_kthread(data);
2835 }
2836
2837 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2838 {
2839         struct task_struct *task;
2840
2841         down(&fs_info->uuid_tree_rescan_sem);
2842         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2843         if (IS_ERR(task)) {
2844                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2845                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2846                 up(&fs_info->uuid_tree_rescan_sem);
2847                 return PTR_ERR(task);
2848         }
2849
2850         return 0;
2851 }
2852
2853 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2854                       char *options)
2855 {
2856         u32 sectorsize;
2857         u32 nodesize;
2858         u32 stripesize;
2859         u64 generation;
2860         u64 features;
2861         u16 csum_type;
2862         struct btrfs_key location;
2863         struct btrfs_super_block *disk_super;
2864         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2865         struct btrfs_root *tree_root;
2866         struct btrfs_root *chunk_root;
2867         int ret;
2868         int err = -EINVAL;
2869         int clear_free_space_tree = 0;
2870         int level;
2871
2872         ret = init_mount_fs_info(fs_info, sb);
2873         if (ret) {
2874                 err = ret;
2875                 goto fail;
2876         }
2877
2878         /* These need to be init'ed before we start creating inodes and such. */
2879         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2880                                      GFP_KERNEL);
2881         fs_info->tree_root = tree_root;
2882         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2883                                       GFP_KERNEL);
2884         fs_info->chunk_root = chunk_root;
2885         if (!tree_root || !chunk_root) {
2886                 err = -ENOMEM;
2887                 goto fail_srcu;
2888         }
2889
2890         fs_info->btree_inode = new_inode(sb);
2891         if (!fs_info->btree_inode) {
2892                 err = -ENOMEM;
2893                 goto fail_srcu;
2894         }
2895         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2896         btrfs_init_btree_inode(fs_info);
2897
2898         invalidate_bdev(fs_devices->latest_bdev);
2899
2900         /*
2901          * Read super block and check the signature bytes only
2902          */
2903         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2904         if (IS_ERR(disk_super)) {
2905                 err = PTR_ERR(disk_super);
2906                 goto fail_alloc;
2907         }
2908
2909         /*
2910          * Verify the type first, if that or the the checksum value are
2911          * corrupted, we'll find out
2912          */
2913         csum_type = btrfs_super_csum_type(disk_super);
2914         if (!btrfs_supported_super_csum(csum_type)) {
2915                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2916                           csum_type);
2917                 err = -EINVAL;
2918                 btrfs_release_disk_super(disk_super);
2919                 goto fail_alloc;
2920         }
2921
2922         ret = btrfs_init_csum_hash(fs_info, csum_type);
2923         if (ret) {
2924                 err = ret;
2925                 btrfs_release_disk_super(disk_super);
2926                 goto fail_alloc;
2927         }
2928
2929         /*
2930          * We want to check superblock checksum, the type is stored inside.
2931          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2932          */
2933         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2934                 btrfs_err(fs_info, "superblock checksum mismatch");
2935                 err = -EINVAL;
2936                 btrfs_release_disk_super(disk_super);
2937                 goto fail_alloc;
2938         }
2939
2940         /*
2941          * super_copy is zeroed at allocation time and we never touch the
2942          * following bytes up to INFO_SIZE, the checksum is calculated from
2943          * the whole block of INFO_SIZE
2944          */
2945         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2946         btrfs_release_disk_super(disk_super);
2947
2948         disk_super = fs_info->super_copy;
2949
2950         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2951                        BTRFS_FSID_SIZE));
2952
2953         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2954                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2955                                 fs_info->super_copy->metadata_uuid,
2956                                 BTRFS_FSID_SIZE));
2957         }
2958
2959         features = btrfs_super_flags(disk_super);
2960         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2961                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2962                 btrfs_set_super_flags(disk_super, features);
2963                 btrfs_info(fs_info,
2964                         "found metadata UUID change in progress flag, clearing");
2965         }
2966
2967         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2968                sizeof(*fs_info->super_for_commit));
2969
2970         ret = btrfs_validate_mount_super(fs_info);
2971         if (ret) {
2972                 btrfs_err(fs_info, "superblock contains fatal errors");
2973                 err = -EINVAL;
2974                 goto fail_alloc;
2975         }
2976
2977         if (!btrfs_super_root(disk_super))
2978                 goto fail_alloc;
2979
2980         /* check FS state, whether FS is broken. */
2981         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2982                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2983
2984         /*
2985          * In the long term, we'll store the compression type in the super
2986          * block, and it'll be used for per file compression control.
2987          */
2988         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2989
2990         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2991         if (ret) {
2992                 err = ret;
2993                 goto fail_alloc;
2994         }
2995
2996         features = btrfs_super_incompat_flags(disk_super) &
2997                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2998         if (features) {
2999                 btrfs_err(fs_info,
3000                     "cannot mount because of unsupported optional features (%llx)",
3001                     features);
3002                 err = -EINVAL;
3003                 goto fail_alloc;
3004         }
3005
3006         features = btrfs_super_incompat_flags(disk_super);
3007         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3008         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3009                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3010         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3011                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3012
3013         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3014                 btrfs_info(fs_info, "has skinny extents");
3015
3016         /*
3017          * flag our filesystem as having big metadata blocks if
3018          * they are bigger than the page size
3019          */
3020         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3021                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3022                         btrfs_info(fs_info,
3023                                 "flagging fs with big metadata feature");
3024                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3025         }
3026
3027         nodesize = btrfs_super_nodesize(disk_super);
3028         sectorsize = btrfs_super_sectorsize(disk_super);
3029         stripesize = sectorsize;
3030         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3031         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3032
3033         /* Cache block sizes */
3034         fs_info->nodesize = nodesize;
3035         fs_info->sectorsize = sectorsize;
3036         fs_info->stripesize = stripesize;
3037
3038         /*
3039          * mixed block groups end up with duplicate but slightly offset
3040          * extent buffers for the same range.  It leads to corruptions
3041          */
3042         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3043             (sectorsize != nodesize)) {
3044                 btrfs_err(fs_info,
3045 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3046                         nodesize, sectorsize);
3047                 goto fail_alloc;
3048         }
3049
3050         /*
3051          * Needn't use the lock because there is no other task which will
3052          * update the flag.
3053          */
3054         btrfs_set_super_incompat_flags(disk_super, features);
3055
3056         features = btrfs_super_compat_ro_flags(disk_super) &
3057                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3058         if (!sb_rdonly(sb) && features) {
3059                 btrfs_err(fs_info,
3060         "cannot mount read-write because of unsupported optional features (%llx)",
3061                        features);
3062                 err = -EINVAL;
3063                 goto fail_alloc;
3064         }
3065
3066         ret = btrfs_init_workqueues(fs_info, fs_devices);
3067         if (ret) {
3068                 err = ret;
3069                 goto fail_sb_buffer;
3070         }
3071
3072         sb->s_bdi->congested_fn = btrfs_congested_fn;
3073         sb->s_bdi->congested_data = fs_info;
3074         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3075         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3076         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3077         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3078
3079         sb->s_blocksize = sectorsize;
3080         sb->s_blocksize_bits = blksize_bits(sectorsize);
3081         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3082
3083         mutex_lock(&fs_info->chunk_mutex);
3084         ret = btrfs_read_sys_array(fs_info);
3085         mutex_unlock(&fs_info->chunk_mutex);
3086         if (ret) {
3087                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3088                 goto fail_sb_buffer;
3089         }
3090
3091         generation = btrfs_super_chunk_root_generation(disk_super);
3092         level = btrfs_super_chunk_root_level(disk_super);
3093
3094         chunk_root->node = read_tree_block(fs_info,
3095                                            btrfs_super_chunk_root(disk_super),
3096                                            generation, level, NULL);
3097         if (IS_ERR(chunk_root->node) ||
3098             !extent_buffer_uptodate(chunk_root->node)) {
3099                 btrfs_err(fs_info, "failed to read chunk root");
3100                 if (!IS_ERR(chunk_root->node))
3101                         free_extent_buffer(chunk_root->node);
3102                 chunk_root->node = NULL;
3103                 goto fail_tree_roots;
3104         }
3105         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3106         chunk_root->commit_root = btrfs_root_node(chunk_root);
3107
3108         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3109                            offsetof(struct btrfs_header, chunk_tree_uuid),
3110                            BTRFS_UUID_SIZE);
3111
3112         ret = btrfs_read_chunk_tree(fs_info);
3113         if (ret) {
3114                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3115                 goto fail_tree_roots;
3116         }
3117
3118         /*
3119          * Keep the devid that is marked to be the target device for the
3120          * device replace procedure
3121          */
3122         btrfs_free_extra_devids(fs_devices, 0);
3123
3124         if (!fs_devices->latest_bdev) {
3125                 btrfs_err(fs_info, "failed to read devices");
3126                 goto fail_tree_roots;
3127         }
3128
3129         ret = init_tree_roots(fs_info);
3130         if (ret)
3131                 goto fail_tree_roots;
3132
3133         /*
3134          * If we have a uuid root and we're not being told to rescan we need to
3135          * check the generation here so we can set the
3136          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3137          * transaction during a balance or the log replay without updating the
3138          * uuid generation, and then if we crash we would rescan the uuid tree,
3139          * even though it was perfectly fine.
3140          */
3141         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3142             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3143                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3144
3145         ret = btrfs_verify_dev_extents(fs_info);
3146         if (ret) {
3147                 btrfs_err(fs_info,
3148                           "failed to verify dev extents against chunks: %d",
3149                           ret);
3150                 goto fail_block_groups;
3151         }
3152         ret = btrfs_recover_balance(fs_info);
3153         if (ret) {
3154                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3155                 goto fail_block_groups;
3156         }
3157
3158         ret = btrfs_init_dev_stats(fs_info);
3159         if (ret) {
3160                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3161                 goto fail_block_groups;
3162         }
3163
3164         ret = btrfs_init_dev_replace(fs_info);
3165         if (ret) {
3166                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3167                 goto fail_block_groups;
3168         }
3169
3170         btrfs_free_extra_devids(fs_devices, 1);
3171
3172         ret = btrfs_sysfs_add_fsid(fs_devices);
3173         if (ret) {
3174                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3175                                 ret);
3176                 goto fail_block_groups;
3177         }
3178
3179         ret = btrfs_sysfs_add_mounted(fs_info);
3180         if (ret) {
3181                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3182                 goto fail_fsdev_sysfs;
3183         }
3184
3185         ret = btrfs_init_space_info(fs_info);
3186         if (ret) {
3187                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3188                 goto fail_sysfs;
3189         }
3190
3191         ret = btrfs_read_block_groups(fs_info);
3192         if (ret) {
3193                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3194                 goto fail_sysfs;
3195         }
3196
3197         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3198                 btrfs_warn(fs_info,
3199                 "writable mount is not allowed due to too many missing devices");
3200                 goto fail_sysfs;
3201         }
3202
3203         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3204                                                "btrfs-cleaner");
3205         if (IS_ERR(fs_info->cleaner_kthread))
3206                 goto fail_sysfs;
3207
3208         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3209                                                    tree_root,
3210                                                    "btrfs-transaction");
3211         if (IS_ERR(fs_info->transaction_kthread))
3212                 goto fail_cleaner;
3213
3214         if (!btrfs_test_opt(fs_info, NOSSD) &&
3215             !fs_info->fs_devices->rotating) {
3216                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3217         }
3218
3219         /*
3220          * Mount does not set all options immediately, we can do it now and do
3221          * not have to wait for transaction commit
3222          */
3223         btrfs_apply_pending_changes(fs_info);
3224
3225 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3226         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3227                 ret = btrfsic_mount(fs_info, fs_devices,
3228                                     btrfs_test_opt(fs_info,
3229                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3230                                     1 : 0,
3231                                     fs_info->check_integrity_print_mask);
3232                 if (ret)
3233                         btrfs_warn(fs_info,
3234                                 "failed to initialize integrity check module: %d",
3235                                 ret);
3236         }
3237 #endif
3238         ret = btrfs_read_qgroup_config(fs_info);
3239         if (ret)
3240                 goto fail_trans_kthread;
3241
3242         if (btrfs_build_ref_tree(fs_info))
3243                 btrfs_err(fs_info, "couldn't build ref tree");
3244
3245         /* do not make disk changes in broken FS or nologreplay is given */
3246         if (btrfs_super_log_root(disk_super) != 0 &&
3247             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3248                 btrfs_info(fs_info, "start tree-log replay");
3249                 ret = btrfs_replay_log(fs_info, fs_devices);
3250                 if (ret) {
3251                         err = ret;
3252                         goto fail_qgroup;
3253                 }
3254         }
3255
3256         ret = btrfs_find_orphan_roots(fs_info);
3257         if (ret)
3258                 goto fail_qgroup;
3259
3260         if (!sb_rdonly(sb)) {
3261                 ret = btrfs_cleanup_fs_roots(fs_info);
3262                 if (ret)
3263                         goto fail_qgroup;
3264
3265                 mutex_lock(&fs_info->cleaner_mutex);
3266                 ret = btrfs_recover_relocation(tree_root);
3267                 mutex_unlock(&fs_info->cleaner_mutex);
3268                 if (ret < 0) {
3269                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3270                                         ret);
3271                         err = -EINVAL;
3272                         goto fail_qgroup;
3273                 }
3274         }
3275
3276         location.objectid = BTRFS_FS_TREE_OBJECTID;
3277         location.type = BTRFS_ROOT_ITEM_KEY;
3278         location.offset = 0;
3279
3280         fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3281         if (IS_ERR(fs_info->fs_root)) {
3282                 err = PTR_ERR(fs_info->fs_root);
3283                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3284                 fs_info->fs_root = NULL;
3285                 goto fail_qgroup;
3286         }
3287
3288         if (sb_rdonly(sb))
3289                 return 0;
3290
3291         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3292             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3293                 clear_free_space_tree = 1;
3294         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3295                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3296                 btrfs_warn(fs_info, "free space tree is invalid");
3297                 clear_free_space_tree = 1;
3298         }
3299
3300         if (clear_free_space_tree) {
3301                 btrfs_info(fs_info, "clearing free space tree");
3302                 ret = btrfs_clear_free_space_tree(fs_info);
3303                 if (ret) {
3304                         btrfs_warn(fs_info,
3305                                    "failed to clear free space tree: %d", ret);
3306                         close_ctree(fs_info);
3307                         return ret;
3308                 }
3309         }
3310
3311         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3312             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3313                 btrfs_info(fs_info, "creating free space tree");
3314                 ret = btrfs_create_free_space_tree(fs_info);
3315                 if (ret) {
3316                         btrfs_warn(fs_info,
3317                                 "failed to create free space tree: %d", ret);
3318                         close_ctree(fs_info);
3319                         return ret;
3320                 }
3321         }
3322
3323         down_read(&fs_info->cleanup_work_sem);
3324         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3325             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3326                 up_read(&fs_info->cleanup_work_sem);
3327                 close_ctree(fs_info);
3328                 return ret;
3329         }
3330         up_read(&fs_info->cleanup_work_sem);
3331
3332         ret = btrfs_resume_balance_async(fs_info);
3333         if (ret) {
3334                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3335                 close_ctree(fs_info);
3336                 return ret;
3337         }
3338
3339         ret = btrfs_resume_dev_replace_async(fs_info);
3340         if (ret) {
3341                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3342                 close_ctree(fs_info);
3343                 return ret;
3344         }
3345
3346         btrfs_qgroup_rescan_resume(fs_info);
3347         btrfs_discard_resume(fs_info);
3348
3349         if (!fs_info->uuid_root) {
3350                 btrfs_info(fs_info, "creating UUID tree");
3351                 ret = btrfs_create_uuid_tree(fs_info);
3352                 if (ret) {
3353                         btrfs_warn(fs_info,
3354                                 "failed to create the UUID tree: %d", ret);
3355                         close_ctree(fs_info);
3356                         return ret;
3357                 }
3358         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3359                    fs_info->generation !=
3360                                 btrfs_super_uuid_tree_generation(disk_super)) {
3361                 btrfs_info(fs_info, "checking UUID tree");
3362                 ret = btrfs_check_uuid_tree(fs_info);
3363                 if (ret) {
3364                         btrfs_warn(fs_info,
3365                                 "failed to check the UUID tree: %d", ret);
3366                         close_ctree(fs_info);
3367                         return ret;
3368                 }
3369         }
3370         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3371
3372         /*
3373          * backuproot only affect mount behavior, and if open_ctree succeeded,
3374          * no need to keep the flag
3375          */
3376         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3377
3378         return 0;
3379
3380 fail_qgroup:
3381         btrfs_free_qgroup_config(fs_info);
3382 fail_trans_kthread:
3383         kthread_stop(fs_info->transaction_kthread);
3384         btrfs_cleanup_transaction(fs_info);
3385         btrfs_free_fs_roots(fs_info);
3386 fail_cleaner:
3387         kthread_stop(fs_info->cleaner_kthread);
3388
3389         /*
3390          * make sure we're done with the btree inode before we stop our
3391          * kthreads
3392          */
3393         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3394
3395 fail_sysfs:
3396         btrfs_sysfs_remove_mounted(fs_info);
3397
3398 fail_fsdev_sysfs:
3399         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3400
3401 fail_block_groups:
3402         btrfs_put_block_group_cache(fs_info);
3403
3404 fail_tree_roots:
3405         free_root_pointers(fs_info, true);
3406         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3407
3408 fail_sb_buffer:
3409         btrfs_stop_all_workers(fs_info);
3410         btrfs_free_block_groups(fs_info);
3411 fail_alloc:
3412         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3413
3414         iput(fs_info->btree_inode);
3415 fail_srcu:
3416         cleanup_srcu_struct(&fs_info->subvol_srcu);
3417 fail:
3418         btrfs_close_devices(fs_info->fs_devices);
3419         return err;
3420 }
3421 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3422
3423 static void btrfs_end_super_write(struct bio *bio)
3424 {
3425         struct btrfs_device *device = bio->bi_private;
3426         struct bio_vec *bvec;
3427         struct bvec_iter_all iter_all;
3428         struct page *page;
3429
3430         bio_for_each_segment_all(bvec, bio, iter_all) {
3431                 page = bvec->bv_page;
3432
3433                 if (bio->bi_status) {
3434                         btrfs_warn_rl_in_rcu(device->fs_info,
3435                                 "lost page write due to IO error on %s (%d)",
3436                                 rcu_str_deref(device->name),
3437                                 blk_status_to_errno(bio->bi_status));
3438                         ClearPageUptodate(page);
3439                         SetPageError(page);
3440                         btrfs_dev_stat_inc_and_print(device,
3441                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3442                 } else {
3443                         SetPageUptodate(page);
3444                 }
3445
3446                 put_page(page);
3447                 unlock_page(page);
3448         }
3449
3450         bio_put(bio);
3451 }
3452
3453 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3454                                                    int copy_num)
3455 {
3456         struct btrfs_super_block *super;
3457         struct page *page;
3458         u64 bytenr;
3459         struct address_space *mapping = bdev->bd_inode->i_mapping;
3460
3461         bytenr = btrfs_sb_offset(copy_num);
3462         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3463                 return ERR_PTR(-EINVAL);
3464
3465         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3466         if (IS_ERR(page))
3467                 return ERR_CAST(page);
3468
3469         super = page_address(page);
3470         if (btrfs_super_bytenr(super) != bytenr ||
3471                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3472                 btrfs_release_disk_super(super);
3473                 return ERR_PTR(-EINVAL);
3474         }
3475
3476         return super;
3477 }
3478
3479
3480 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3481 {
3482         struct btrfs_super_block *super, *latest = NULL;
3483         int i;
3484         u64 transid = 0;
3485
3486         /* we would like to check all the supers, but that would make
3487          * a btrfs mount succeed after a mkfs from a different FS.
3488          * So, we need to add a special mount option to scan for
3489          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3490          */
3491         for (i = 0; i < 1; i++) {
3492                 super = btrfs_read_dev_one_super(bdev, i);
3493                 if (IS_ERR(super))
3494                         continue;
3495
3496                 if (!latest || btrfs_super_generation(super) > transid) {
3497                         if (latest)
3498                                 btrfs_release_disk_super(super);
3499
3500                         latest = super;
3501                         transid = btrfs_super_generation(super);
3502                 }
3503         }
3504
3505         return super;
3506 }
3507
3508 /*
3509  * Write superblock @sb to the @device. Do not wait for completion, all the
3510  * pages we use for writing are locked.
3511  *
3512  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3513  * the expected device size at commit time. Note that max_mirrors must be
3514  * same for write and wait phases.
3515  *
3516  * Return number of errors when page is not found or submission fails.
3517  */
3518 static int write_dev_supers(struct btrfs_device *device,
3519                             struct btrfs_super_block *sb, int max_mirrors)
3520 {
3521         struct btrfs_fs_info *fs_info = device->fs_info;
3522         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3523         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3524         int i;
3525         int errors = 0;
3526         u64 bytenr;
3527
3528         if (max_mirrors == 0)
3529                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3530
3531         shash->tfm = fs_info->csum_shash;
3532
3533         for (i = 0; i < max_mirrors; i++) {
3534                 struct page *page;
3535                 struct bio *bio;
3536                 struct btrfs_super_block *disk_super;
3537
3538                 bytenr = btrfs_sb_offset(i);
3539                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3540                     device->commit_total_bytes)
3541                         break;
3542
3543                 btrfs_set_super_bytenr(sb, bytenr);
3544
3545                 crypto_shash_init(shash);
3546                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3547                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3548                 crypto_shash_final(shash, sb->csum);
3549
3550                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3551                                            GFP_NOFS);
3552                 if (!page) {
3553                         btrfs_err(device->fs_info,
3554                             "couldn't get super block page for bytenr %llu",
3555                             bytenr);
3556                         errors++;
3557                         continue;
3558                 }
3559
3560                 /* Bump the refcount for wait_dev_supers() */
3561                 get_page(page);
3562
3563                 disk_super = page_address(page);
3564                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3565
3566                 /*
3567                  * Directly use bios here instead of relying on the page cache
3568                  * to do I/O, so we don't lose the ability to do integrity
3569                  * checking.
3570                  */
3571                 bio = bio_alloc(GFP_NOFS, 1);
3572                 bio_set_dev(bio, device->bdev);
3573                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3574                 bio->bi_private = device;
3575                 bio->bi_end_io = btrfs_end_super_write;
3576                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3577                                offset_in_page(bytenr));
3578
3579                 /*
3580                  * We FUA only the first super block.  The others we allow to
3581                  * go down lazy and there's a short window where the on-disk
3582                  * copies might still contain the older version.
3583                  */
3584                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3585                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3586                         bio->bi_opf |= REQ_FUA;
3587
3588                 btrfsic_submit_bio(bio);
3589         }
3590         return errors < i ? 0 : -1;
3591 }
3592
3593 /*
3594  * Wait for write completion of superblocks done by write_dev_supers,
3595  * @max_mirrors same for write and wait phases.
3596  *
3597  * Return number of errors when page is not found or not marked up to
3598  * date.
3599  */
3600 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3601 {
3602         int i;
3603         int errors = 0;
3604         bool primary_failed = false;
3605         u64 bytenr;
3606
3607         if (max_mirrors == 0)
3608                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3609
3610         for (i = 0; i < max_mirrors; i++) {
3611                 struct page *page;
3612
3613                 bytenr = btrfs_sb_offset(i);
3614                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3615                     device->commit_total_bytes)
3616                         break;
3617
3618                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3619                                      bytenr >> PAGE_SHIFT);
3620                 if (!page) {
3621                         errors++;
3622                         if (i == 0)
3623                                 primary_failed = true;
3624                         continue;
3625                 }
3626                 /* Page is submitted locked and unlocked once the IO completes */
3627                 wait_on_page_locked(page);
3628                 if (PageError(page)) {
3629                         errors++;
3630                         if (i == 0)
3631                                 primary_failed = true;
3632                 }
3633
3634                 /* Drop our reference */
3635                 put_page(page);
3636
3637                 /* Drop the reference from the writing run */
3638                 put_page(page);
3639         }
3640
3641         /* log error, force error return */
3642         if (primary_failed) {
3643                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3644                           device->devid);
3645                 return -1;
3646         }
3647
3648         return errors < i ? 0 : -1;
3649 }
3650
3651 /*
3652  * endio for the write_dev_flush, this will wake anyone waiting
3653  * for the barrier when it is done
3654  */
3655 static void btrfs_end_empty_barrier(struct bio *bio)
3656 {
3657         complete(bio->bi_private);
3658 }
3659
3660 /*
3661  * Submit a flush request to the device if it supports it. Error handling is
3662  * done in the waiting counterpart.
3663  */
3664 static void write_dev_flush(struct btrfs_device *device)
3665 {
3666         struct request_queue *q = bdev_get_queue(device->bdev);
3667         struct bio *bio = device->flush_bio;
3668
3669         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3670                 return;
3671
3672         bio_reset(bio);
3673         bio->bi_end_io = btrfs_end_empty_barrier;
3674         bio_set_dev(bio, device->bdev);
3675         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3676         init_completion(&device->flush_wait);
3677         bio->bi_private = &device->flush_wait;
3678
3679         btrfsic_submit_bio(bio);
3680         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3681 }
3682
3683 /*
3684  * If the flush bio has been submitted by write_dev_flush, wait for it.
3685  */
3686 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3687 {
3688         struct bio *bio = device->flush_bio;
3689
3690         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3691                 return BLK_STS_OK;
3692
3693         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3694         wait_for_completion_io(&device->flush_wait);
3695
3696         return bio->bi_status;
3697 }
3698
3699 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3700 {
3701         if (!btrfs_check_rw_degradable(fs_info, NULL))
3702                 return -EIO;
3703         return 0;
3704 }
3705
3706 /*
3707  * send an empty flush down to each device in parallel,
3708  * then wait for them
3709  */
3710 static int barrier_all_devices(struct btrfs_fs_info *info)
3711 {
3712         struct list_head *head;
3713         struct btrfs_device *dev;
3714         int errors_wait = 0;
3715         blk_status_t ret;
3716
3717         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3718         /* send down all the barriers */
3719         head = &info->fs_devices->devices;
3720         list_for_each_entry(dev, head, dev_list) {
3721                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3722                         continue;
3723                 if (!dev->bdev)
3724                         continue;
3725                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3726                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3727                         continue;
3728
3729                 write_dev_flush(dev);
3730                 dev->last_flush_error = BLK_STS_OK;
3731         }
3732
3733         /* wait for all the barriers */
3734         list_for_each_entry(dev, head, dev_list) {
3735                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3736                         continue;
3737                 if (!dev->bdev) {
3738                         errors_wait++;
3739                         continue;
3740                 }
3741                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3742                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3743                         continue;
3744
3745                 ret = wait_dev_flush(dev);
3746                 if (ret) {
3747                         dev->last_flush_error = ret;
3748                         btrfs_dev_stat_inc_and_print(dev,
3749                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3750                         errors_wait++;
3751                 }
3752         }
3753
3754         if (errors_wait) {
3755                 /*
3756                  * At some point we need the status of all disks
3757                  * to arrive at the volume status. So error checking
3758                  * is being pushed to a separate loop.
3759                  */
3760                 return check_barrier_error(info);
3761         }
3762         return 0;
3763 }
3764
3765 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3766 {
3767         int raid_type;
3768         int min_tolerated = INT_MAX;
3769
3770         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3771             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3772                 min_tolerated = min_t(int, min_tolerated,
3773                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3774                                     tolerated_failures);
3775
3776         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3777                 if (raid_type == BTRFS_RAID_SINGLE)
3778                         continue;
3779                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3780                         continue;
3781                 min_tolerated = min_t(int, min_tolerated,
3782                                     btrfs_raid_array[raid_type].
3783                                     tolerated_failures);
3784         }
3785
3786         if (min_tolerated == INT_MAX) {
3787                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3788                 min_tolerated = 0;
3789         }
3790
3791         return min_tolerated;
3792 }
3793
3794 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3795 {
3796         struct list_head *head;
3797         struct btrfs_device *dev;
3798         struct btrfs_super_block *sb;
3799         struct btrfs_dev_item *dev_item;
3800         int ret;
3801         int do_barriers;
3802         int max_errors;
3803         int total_errors = 0;
3804         u64 flags;
3805
3806         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3807
3808         /*
3809          * max_mirrors == 0 indicates we're from commit_transaction,
3810          * not from fsync where the tree roots in fs_info have not
3811          * been consistent on disk.
3812          */
3813         if (max_mirrors == 0)
3814                 backup_super_roots(fs_info);
3815
3816         sb = fs_info->super_for_commit;
3817         dev_item = &sb->dev_item;
3818
3819         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3820         head = &fs_info->fs_devices->devices;
3821         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3822
3823         if (do_barriers) {
3824                 ret = barrier_all_devices(fs_info);
3825                 if (ret) {
3826                         mutex_unlock(
3827                                 &fs_info->fs_devices->device_list_mutex);
3828                         btrfs_handle_fs_error(fs_info, ret,
3829                                               "errors while submitting device barriers.");
3830                         return ret;
3831                 }
3832         }
3833
3834         list_for_each_entry(dev, head, dev_list) {
3835                 if (!dev->bdev) {
3836                         total_errors++;
3837                         continue;
3838                 }
3839                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3840                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3841                         continue;
3842
3843                 btrfs_set_stack_device_generation(dev_item, 0);
3844                 btrfs_set_stack_device_type(dev_item, dev->type);
3845                 btrfs_set_stack_device_id(dev_item, dev->devid);
3846                 btrfs_set_stack_device_total_bytes(dev_item,
3847                                                    dev->commit_total_bytes);
3848                 btrfs_set_stack_device_bytes_used(dev_item,
3849                                                   dev->commit_bytes_used);
3850                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3851                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3852                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3853                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3854                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3855                        BTRFS_FSID_SIZE);
3856
3857                 flags = btrfs_super_flags(sb);
3858                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3859
3860                 ret = btrfs_validate_write_super(fs_info, sb);
3861                 if (ret < 0) {
3862                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3864                                 "unexpected superblock corruption detected");
3865                         return -EUCLEAN;
3866                 }
3867
3868                 ret = write_dev_supers(dev, sb, max_mirrors);
3869                 if (ret)
3870                         total_errors++;
3871         }
3872         if (total_errors > max_errors) {
3873                 btrfs_err(fs_info, "%d errors while writing supers",
3874                           total_errors);
3875                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3876
3877                 /* FUA is masked off if unsupported and can't be the reason */
3878                 btrfs_handle_fs_error(fs_info, -EIO,
3879                                       "%d errors while writing supers",
3880                                       total_errors);
3881                 return -EIO;
3882         }
3883
3884         total_errors = 0;
3885         list_for_each_entry(dev, head, dev_list) {
3886                 if (!dev->bdev)
3887                         continue;
3888                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3889                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3890                         continue;
3891
3892                 ret = wait_dev_supers(dev, max_mirrors);
3893                 if (ret)
3894                         total_errors++;
3895         }
3896         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3897         if (total_errors > max_errors) {
3898                 btrfs_handle_fs_error(fs_info, -EIO,
3899                                       "%d errors while writing supers",
3900                                       total_errors);
3901                 return -EIO;
3902         }
3903         return 0;
3904 }
3905
3906 /* Drop a fs root from the radix tree and free it. */
3907 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3908                                   struct btrfs_root *root)
3909 {
3910         spin_lock(&fs_info->fs_roots_radix_lock);
3911         radix_tree_delete(&fs_info->fs_roots_radix,
3912                           (unsigned long)root->root_key.objectid);
3913         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3914                 btrfs_put_root(root);
3915         spin_unlock(&fs_info->fs_roots_radix_lock);
3916
3917         if (btrfs_root_refs(&root->root_item) == 0)
3918                 synchronize_srcu(&fs_info->subvol_srcu);
3919
3920         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3921                 btrfs_free_log(NULL, root);
3922                 if (root->reloc_root) {
3923                         free_extent_buffer(root->reloc_root->node);
3924                         free_extent_buffer(root->reloc_root->commit_root);
3925                         btrfs_put_root(root->reloc_root);
3926                         root->reloc_root = NULL;
3927                 }
3928         }
3929
3930         if (root->free_ino_pinned)
3931                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3932         if (root->free_ino_ctl)
3933                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3934         btrfs_free_fs_root(root);
3935 }
3936
3937 void btrfs_free_fs_root(struct btrfs_root *root)
3938 {
3939         iput(root->ino_cache_inode);
3940         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3941         if (root->anon_dev)
3942                 free_anon_bdev(root->anon_dev);
3943         btrfs_drew_lock_destroy(&root->snapshot_lock);
3944         free_extent_buffer(root->node);
3945         free_extent_buffer(root->commit_root);
3946         kfree(root->free_ino_ctl);
3947         kfree(root->free_ino_pinned);
3948         btrfs_put_root(root);
3949 }
3950
3951 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3952 {
3953         u64 root_objectid = 0;
3954         struct btrfs_root *gang[8];
3955         int i = 0;
3956         int err = 0;
3957         unsigned int ret = 0;
3958         int index;
3959
3960         while (1) {
3961                 index = srcu_read_lock(&fs_info->subvol_srcu);
3962                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3963                                              (void **)gang, root_objectid,
3964                                              ARRAY_SIZE(gang));
3965                 if (!ret) {
3966                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3967                         break;
3968                 }
3969                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3970
3971                 for (i = 0; i < ret; i++) {
3972                         /* Avoid to grab roots in dead_roots */
3973                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3974                                 gang[i] = NULL;
3975                                 continue;
3976                         }
3977                         /* grab all the search result for later use */
3978                         gang[i] = btrfs_grab_root(gang[i]);
3979                 }
3980                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3981
3982                 for (i = 0; i < ret; i++) {
3983                         if (!gang[i])
3984                                 continue;
3985                         root_objectid = gang[i]->root_key.objectid;
3986                         err = btrfs_orphan_cleanup(gang[i]);
3987                         if (err)
3988                                 break;
3989                         btrfs_put_root(gang[i]);
3990                 }
3991                 root_objectid++;
3992         }
3993
3994         /* release the uncleaned roots due to error */
3995         for (; i < ret; i++) {
3996                 if (gang[i])
3997                         btrfs_put_root(gang[i]);
3998         }
3999         return err;
4000 }
4001
4002 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4003 {
4004         struct btrfs_root *root = fs_info->tree_root;
4005         struct btrfs_trans_handle *trans;
4006
4007         mutex_lock(&fs_info->cleaner_mutex);
4008         btrfs_run_delayed_iputs(fs_info);
4009         mutex_unlock(&fs_info->cleaner_mutex);
4010         wake_up_process(fs_info->cleaner_kthread);
4011
4012         /* wait until ongoing cleanup work done */
4013         down_write(&fs_info->cleanup_work_sem);
4014         up_write(&fs_info->cleanup_work_sem);
4015
4016         trans = btrfs_join_transaction(root);
4017         if (IS_ERR(trans))
4018                 return PTR_ERR(trans);
4019         return btrfs_commit_transaction(trans);
4020 }
4021
4022 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4023 {
4024         int ret;
4025
4026         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4027         /*
4028          * We don't want the cleaner to start new transactions, add more delayed
4029          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4030          * because that frees the task_struct, and the transaction kthread might
4031          * still try to wake up the cleaner.
4032          */
4033         kthread_park(fs_info->cleaner_kthread);
4034
4035         /* wait for the qgroup rescan worker to stop */
4036         btrfs_qgroup_wait_for_completion(fs_info, false);
4037
4038         /* wait for the uuid_scan task to finish */
4039         down(&fs_info->uuid_tree_rescan_sem);
4040         /* avoid complains from lockdep et al., set sem back to initial state */
4041         up(&fs_info->uuid_tree_rescan_sem);
4042
4043         /* pause restriper - we want to resume on mount */
4044         btrfs_pause_balance(fs_info);
4045
4046         btrfs_dev_replace_suspend_for_unmount(fs_info);
4047
4048         btrfs_scrub_cancel(fs_info);
4049
4050         /* wait for any defraggers to finish */
4051         wait_event(fs_info->transaction_wait,
4052                    (atomic_read(&fs_info->defrag_running) == 0));
4053
4054         /* clear out the rbtree of defraggable inodes */
4055         btrfs_cleanup_defrag_inodes(fs_info);
4056
4057         cancel_work_sync(&fs_info->async_reclaim_work);
4058
4059         /* Cancel or finish ongoing discard work */
4060         btrfs_discard_cleanup(fs_info);
4061
4062         if (!sb_rdonly(fs_info->sb)) {
4063                 /*
4064                  * The cleaner kthread is stopped, so do one final pass over
4065                  * unused block groups.
4066                  */
4067                 btrfs_delete_unused_bgs(fs_info);
4068
4069                 ret = btrfs_commit_super(fs_info);
4070                 if (ret)
4071                         btrfs_err(fs_info, "commit super ret %d", ret);
4072         }
4073
4074         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4075             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4076                 btrfs_error_commit_super(fs_info);
4077
4078         kthread_stop(fs_info->transaction_kthread);
4079         kthread_stop(fs_info->cleaner_kthread);
4080
4081         ASSERT(list_empty(&fs_info->delayed_iputs));
4082         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4083
4084         btrfs_free_qgroup_config(fs_info);
4085         ASSERT(list_empty(&fs_info->delalloc_roots));
4086
4087         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4088                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4089                        percpu_counter_sum(&fs_info->delalloc_bytes));
4090         }
4091
4092         if (percpu_counter_sum(&fs_info->dio_bytes))
4093                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4094                            percpu_counter_sum(&fs_info->dio_bytes));
4095
4096         btrfs_sysfs_remove_mounted(fs_info);
4097         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4098
4099         btrfs_free_fs_roots(fs_info);
4100
4101         btrfs_put_block_group_cache(fs_info);
4102
4103         /*
4104          * we must make sure there is not any read request to
4105          * submit after we stopping all workers.
4106          */
4107         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4108         btrfs_stop_all_workers(fs_info);
4109
4110         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4111         free_root_pointers(fs_info, true);
4112
4113         /*
4114          * We must free the block groups after dropping the fs_roots as we could
4115          * have had an IO error and have left over tree log blocks that aren't
4116          * cleaned up until the fs roots are freed.  This makes the block group
4117          * accounting appear to be wrong because there's pending reserved bytes,
4118          * so make sure we do the block group cleanup afterwards.
4119          */
4120         btrfs_free_block_groups(fs_info);
4121
4122         iput(fs_info->btree_inode);
4123
4124 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4125         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4126                 btrfsic_unmount(fs_info->fs_devices);
4127 #endif
4128
4129         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4130         btrfs_close_devices(fs_info->fs_devices);
4131         cleanup_srcu_struct(&fs_info->subvol_srcu);
4132 }
4133
4134 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4135                           int atomic)
4136 {
4137         int ret;
4138         struct inode *btree_inode = buf->pages[0]->mapping->host;
4139
4140         ret = extent_buffer_uptodate(buf);
4141         if (!ret)
4142                 return ret;
4143
4144         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4145                                     parent_transid, atomic);
4146         if (ret == -EAGAIN)
4147                 return ret;
4148         return !ret;
4149 }
4150
4151 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4152 {
4153         struct btrfs_fs_info *fs_info;
4154         struct btrfs_root *root;
4155         u64 transid = btrfs_header_generation(buf);
4156         int was_dirty;
4157
4158 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4159         /*
4160          * This is a fast path so only do this check if we have sanity tests
4161          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4162          * outside of the sanity tests.
4163          */
4164         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4165                 return;
4166 #endif
4167         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4168         fs_info = root->fs_info;
4169         btrfs_assert_tree_locked(buf);
4170         if (transid != fs_info->generation)
4171                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4172                         buf->start, transid, fs_info->generation);
4173         was_dirty = set_extent_buffer_dirty(buf);
4174         if (!was_dirty)
4175                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4176                                          buf->len,
4177                                          fs_info->dirty_metadata_batch);
4178 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4179         /*
4180          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4181          * but item data not updated.
4182          * So here we should only check item pointers, not item data.
4183          */
4184         if (btrfs_header_level(buf) == 0 &&
4185             btrfs_check_leaf_relaxed(buf)) {
4186                 btrfs_print_leaf(buf);
4187                 ASSERT(0);
4188         }
4189 #endif
4190 }
4191
4192 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4193                                         int flush_delayed)
4194 {
4195         /*
4196          * looks as though older kernels can get into trouble with
4197          * this code, they end up stuck in balance_dirty_pages forever
4198          */
4199         int ret;
4200
4201         if (current->flags & PF_MEMALLOC)
4202                 return;
4203
4204         if (flush_delayed)
4205                 btrfs_balance_delayed_items(fs_info);
4206
4207         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4208                                      BTRFS_DIRTY_METADATA_THRESH,
4209                                      fs_info->dirty_metadata_batch);
4210         if (ret > 0) {
4211                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4212         }
4213 }
4214
4215 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4216 {
4217         __btrfs_btree_balance_dirty(fs_info, 1);
4218 }
4219
4220 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4221 {
4222         __btrfs_btree_balance_dirty(fs_info, 0);
4223 }
4224
4225 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4226                       struct btrfs_key *first_key)
4227 {
4228         return btree_read_extent_buffer_pages(buf, parent_transid,
4229                                               level, first_key);
4230 }
4231
4232 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4233 {
4234         /* cleanup FS via transaction */
4235         btrfs_cleanup_transaction(fs_info);
4236
4237         mutex_lock(&fs_info->cleaner_mutex);
4238         btrfs_run_delayed_iputs(fs_info);
4239         mutex_unlock(&fs_info->cleaner_mutex);
4240
4241         down_write(&fs_info->cleanup_work_sem);
4242         up_write(&fs_info->cleanup_work_sem);
4243 }
4244
4245 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4246 {
4247         struct btrfs_ordered_extent *ordered;
4248
4249         spin_lock(&root->ordered_extent_lock);
4250         /*
4251          * This will just short circuit the ordered completion stuff which will
4252          * make sure the ordered extent gets properly cleaned up.
4253          */
4254         list_for_each_entry(ordered, &root->ordered_extents,
4255                             root_extent_list)
4256                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4257         spin_unlock(&root->ordered_extent_lock);
4258 }
4259
4260 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4261 {
4262         struct btrfs_root *root;
4263         struct list_head splice;
4264
4265         INIT_LIST_HEAD(&splice);
4266
4267         spin_lock(&fs_info->ordered_root_lock);
4268         list_splice_init(&fs_info->ordered_roots, &splice);
4269         while (!list_empty(&splice)) {
4270                 root = list_first_entry(&splice, struct btrfs_root,
4271                                         ordered_root);
4272                 list_move_tail(&root->ordered_root,
4273                                &fs_info->ordered_roots);
4274
4275                 spin_unlock(&fs_info->ordered_root_lock);
4276                 btrfs_destroy_ordered_extents(root);
4277
4278                 cond_resched();
4279                 spin_lock(&fs_info->ordered_root_lock);
4280         }
4281         spin_unlock(&fs_info->ordered_root_lock);
4282
4283         /*
4284          * We need this here because if we've been flipped read-only we won't
4285          * get sync() from the umount, so we need to make sure any ordered
4286          * extents that haven't had their dirty pages IO start writeout yet
4287          * actually get run and error out properly.
4288          */
4289         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4290 }
4291
4292 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4293                                       struct btrfs_fs_info *fs_info)
4294 {
4295         struct rb_node *node;
4296         struct btrfs_delayed_ref_root *delayed_refs;
4297         struct btrfs_delayed_ref_node *ref;
4298         int ret = 0;
4299
4300         delayed_refs = &trans->delayed_refs;
4301
4302         spin_lock(&delayed_refs->lock);
4303         if (atomic_read(&delayed_refs->num_entries) == 0) {
4304                 spin_unlock(&delayed_refs->lock);
4305                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4306                 return ret;
4307         }
4308
4309         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4310                 struct btrfs_delayed_ref_head *head;
4311                 struct rb_node *n;
4312                 bool pin_bytes = false;
4313
4314                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4315                                 href_node);
4316                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4317                         continue;
4318
4319                 spin_lock(&head->lock);
4320                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4321                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4322                                        ref_node);
4323                         ref->in_tree = 0;
4324                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4325                         RB_CLEAR_NODE(&ref->ref_node);
4326                         if (!list_empty(&ref->add_list))
4327                                 list_del(&ref->add_list);
4328                         atomic_dec(&delayed_refs->num_entries);
4329                         btrfs_put_delayed_ref(ref);
4330                 }
4331                 if (head->must_insert_reserved)
4332                         pin_bytes = true;
4333                 btrfs_free_delayed_extent_op(head->extent_op);
4334                 btrfs_delete_ref_head(delayed_refs, head);
4335                 spin_unlock(&head->lock);
4336                 spin_unlock(&delayed_refs->lock);
4337                 mutex_unlock(&head->mutex);
4338
4339                 if (pin_bytes) {
4340                         struct btrfs_block_group *cache;
4341
4342                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4343                         BUG_ON(!cache);
4344
4345                         spin_lock(&cache->space_info->lock);
4346                         spin_lock(&cache->lock);
4347                         cache->pinned += head->num_bytes;
4348                         btrfs_space_info_update_bytes_pinned(fs_info,
4349                                 cache->space_info, head->num_bytes);
4350                         cache->reserved -= head->num_bytes;
4351                         cache->space_info->bytes_reserved -= head->num_bytes;
4352                         spin_unlock(&cache->lock);
4353                         spin_unlock(&cache->space_info->lock);
4354                         percpu_counter_add_batch(
4355                                 &cache->space_info->total_bytes_pinned,
4356                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4357
4358                         btrfs_put_block_group(cache);
4359
4360                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4361                                 head->bytenr + head->num_bytes - 1);
4362                 }
4363                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4364                 btrfs_put_delayed_ref_head(head);
4365                 cond_resched();
4366                 spin_lock(&delayed_refs->lock);
4367         }
4368         btrfs_qgroup_destroy_extent_records(trans);
4369
4370         spin_unlock(&delayed_refs->lock);
4371
4372         return ret;
4373 }
4374
4375 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4376 {
4377         struct btrfs_inode *btrfs_inode;
4378         struct list_head splice;
4379
4380         INIT_LIST_HEAD(&splice);
4381
4382         spin_lock(&root->delalloc_lock);
4383         list_splice_init(&root->delalloc_inodes, &splice);
4384
4385         while (!list_empty(&splice)) {
4386                 struct inode *inode = NULL;
4387                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4388                                                delalloc_inodes);
4389                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4390                 spin_unlock(&root->delalloc_lock);
4391
4392                 /*
4393                  * Make sure we get a live inode and that it'll not disappear
4394                  * meanwhile.
4395                  */
4396                 inode = igrab(&btrfs_inode->vfs_inode);
4397                 if (inode) {
4398                         invalidate_inode_pages2(inode->i_mapping);
4399                         iput(inode);
4400                 }
4401                 spin_lock(&root->delalloc_lock);
4402         }
4403         spin_unlock(&root->delalloc_lock);
4404 }
4405
4406 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4407 {
4408         struct btrfs_root *root;
4409         struct list_head splice;
4410
4411         INIT_LIST_HEAD(&splice);
4412
4413         spin_lock(&fs_info->delalloc_root_lock);
4414         list_splice_init(&fs_info->delalloc_roots, &splice);
4415         while (!list_empty(&splice)) {
4416                 root = list_first_entry(&splice, struct btrfs_root,
4417                                          delalloc_root);
4418                 root = btrfs_grab_root(root);
4419                 BUG_ON(!root);
4420                 spin_unlock(&fs_info->delalloc_root_lock);
4421
4422                 btrfs_destroy_delalloc_inodes(root);
4423                 btrfs_put_root(root);
4424
4425                 spin_lock(&fs_info->delalloc_root_lock);
4426         }
4427         spin_unlock(&fs_info->delalloc_root_lock);
4428 }
4429
4430 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4431                                         struct extent_io_tree *dirty_pages,
4432                                         int mark)
4433 {
4434         int ret;
4435         struct extent_buffer *eb;
4436         u64 start = 0;
4437         u64 end;
4438
4439         while (1) {
4440                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4441                                             mark, NULL);
4442                 if (ret)
4443                         break;
4444
4445                 clear_extent_bits(dirty_pages, start, end, mark);
4446                 while (start <= end) {
4447                         eb = find_extent_buffer(fs_info, start);
4448                         start += fs_info->nodesize;
4449                         if (!eb)
4450                                 continue;
4451                         wait_on_extent_buffer_writeback(eb);
4452
4453                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4454                                                &eb->bflags))
4455                                 clear_extent_buffer_dirty(eb);
4456                         free_extent_buffer_stale(eb);
4457                 }
4458         }
4459
4460         return ret;
4461 }
4462
4463 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4464                                        struct extent_io_tree *unpin)
4465 {
4466         u64 start;
4467         u64 end;
4468         int ret;
4469
4470         while (1) {
4471                 struct extent_state *cached_state = NULL;
4472
4473                 /*
4474                  * The btrfs_finish_extent_commit() may get the same range as
4475                  * ours between find_first_extent_bit and clear_extent_dirty.
4476                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4477                  * the same extent range.
4478                  */
4479                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4480                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4481                                             EXTENT_DIRTY, &cached_state);
4482                 if (ret) {
4483                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4484                         break;
4485                 }
4486
4487                 clear_extent_dirty(unpin, start, end, &cached_state);
4488                 free_extent_state(cached_state);
4489                 btrfs_error_unpin_extent_range(fs_info, start, end);
4490                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4491                 cond_resched();
4492         }
4493
4494         return 0;
4495 }
4496
4497 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4498 {
4499         struct inode *inode;
4500
4501         inode = cache->io_ctl.inode;
4502         if (inode) {
4503                 invalidate_inode_pages2(inode->i_mapping);
4504                 BTRFS_I(inode)->generation = 0;
4505                 cache->io_ctl.inode = NULL;
4506                 iput(inode);
4507         }
4508         btrfs_put_block_group(cache);
4509 }
4510
4511 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4512                              struct btrfs_fs_info *fs_info)
4513 {
4514         struct btrfs_block_group *cache;
4515
4516         spin_lock(&cur_trans->dirty_bgs_lock);
4517         while (!list_empty(&cur_trans->dirty_bgs)) {
4518                 cache = list_first_entry(&cur_trans->dirty_bgs,
4519                                          struct btrfs_block_group,
4520                                          dirty_list);
4521
4522                 if (!list_empty(&cache->io_list)) {
4523                         spin_unlock(&cur_trans->dirty_bgs_lock);
4524                         list_del_init(&cache->io_list);
4525                         btrfs_cleanup_bg_io(cache);
4526                         spin_lock(&cur_trans->dirty_bgs_lock);
4527                 }
4528
4529                 list_del_init(&cache->dirty_list);
4530                 spin_lock(&cache->lock);
4531                 cache->disk_cache_state = BTRFS_DC_ERROR;
4532                 spin_unlock(&cache->lock);
4533
4534                 spin_unlock(&cur_trans->dirty_bgs_lock);
4535                 btrfs_put_block_group(cache);
4536                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4537                 spin_lock(&cur_trans->dirty_bgs_lock);
4538         }
4539         spin_unlock(&cur_trans->dirty_bgs_lock);
4540
4541         /*
4542          * Refer to the definition of io_bgs member for details why it's safe
4543          * to use it without any locking
4544          */
4545         while (!list_empty(&cur_trans->io_bgs)) {
4546                 cache = list_first_entry(&cur_trans->io_bgs,
4547                                          struct btrfs_block_group,
4548                                          io_list);
4549
4550                 list_del_init(&cache->io_list);
4551                 spin_lock(&cache->lock);
4552                 cache->disk_cache_state = BTRFS_DC_ERROR;
4553                 spin_unlock(&cache->lock);
4554                 btrfs_cleanup_bg_io(cache);
4555         }
4556 }
4557
4558 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4559                                    struct btrfs_fs_info *fs_info)
4560 {
4561         struct btrfs_device *dev, *tmp;
4562
4563         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4564         ASSERT(list_empty(&cur_trans->dirty_bgs));
4565         ASSERT(list_empty(&cur_trans->io_bgs));
4566
4567         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4568                                  post_commit_list) {
4569                 list_del_init(&dev->post_commit_list);
4570         }
4571
4572         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4573
4574         cur_trans->state = TRANS_STATE_COMMIT_START;
4575         wake_up(&fs_info->transaction_blocked_wait);
4576
4577         cur_trans->state = TRANS_STATE_UNBLOCKED;
4578         wake_up(&fs_info->transaction_wait);
4579
4580         btrfs_destroy_delayed_inodes(fs_info);
4581
4582         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4583                                      EXTENT_DIRTY);
4584         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4585
4586         cur_trans->state =TRANS_STATE_COMPLETED;
4587         wake_up(&cur_trans->commit_wait);
4588 }
4589
4590 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4591 {
4592         struct btrfs_transaction *t;
4593
4594         mutex_lock(&fs_info->transaction_kthread_mutex);
4595
4596         spin_lock(&fs_info->trans_lock);
4597         while (!list_empty(&fs_info->trans_list)) {
4598                 t = list_first_entry(&fs_info->trans_list,
4599                                      struct btrfs_transaction, list);
4600                 if (t->state >= TRANS_STATE_COMMIT_START) {
4601                         refcount_inc(&t->use_count);
4602                         spin_unlock(&fs_info->trans_lock);
4603                         btrfs_wait_for_commit(fs_info, t->transid);
4604                         btrfs_put_transaction(t);
4605                         spin_lock(&fs_info->trans_lock);
4606                         continue;
4607                 }
4608                 if (t == fs_info->running_transaction) {
4609                         t->state = TRANS_STATE_COMMIT_DOING;
4610                         spin_unlock(&fs_info->trans_lock);
4611                         /*
4612                          * We wait for 0 num_writers since we don't hold a trans
4613                          * handle open currently for this transaction.
4614                          */
4615                         wait_event(t->writer_wait,
4616                                    atomic_read(&t->num_writers) == 0);
4617                 } else {
4618                         spin_unlock(&fs_info->trans_lock);
4619                 }
4620                 btrfs_cleanup_one_transaction(t, fs_info);
4621
4622                 spin_lock(&fs_info->trans_lock);
4623                 if (t == fs_info->running_transaction)
4624                         fs_info->running_transaction = NULL;
4625                 list_del_init(&t->list);
4626                 spin_unlock(&fs_info->trans_lock);
4627
4628                 btrfs_put_transaction(t);
4629                 trace_btrfs_transaction_commit(fs_info->tree_root);
4630                 spin_lock(&fs_info->trans_lock);
4631         }
4632         spin_unlock(&fs_info->trans_lock);
4633         btrfs_destroy_all_ordered_extents(fs_info);
4634         btrfs_destroy_delayed_inodes(fs_info);
4635         btrfs_assert_delayed_root_empty(fs_info);
4636         btrfs_destroy_all_delalloc_inodes(fs_info);
4637         mutex_unlock(&fs_info->transaction_kthread_mutex);
4638
4639         return 0;
4640 }
4641
4642 static const struct extent_io_ops btree_extent_io_ops = {
4643         /* mandatory callbacks */
4644         .submit_bio_hook = btree_submit_bio_hook,
4645         .readpage_end_io_hook = btree_readpage_end_io_hook,
4646 };