Btrfs: fix wrong mtime and ctime when creating snapshots
[platform/kernel/linux-starfive.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53                                     int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61                                         struct extent_io_tree *dirty_pages,
62                                         int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64                                        struct extent_io_tree *pinned_extents);
65
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         int error;
77         int metadata;
78         struct list_head list;
79         struct btrfs_work work;
80 };
81
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88         struct inode *inode;
89         struct bio *bio;
90         struct list_head list;
91         extent_submit_bio_hook_t *submit_bio_start;
92         extent_submit_bio_hook_t *submit_bio_done;
93         int rw;
94         int mirror_num;
95         unsigned long bio_flags;
96         /*
97          * bio_offset is optional, can be used if the pages in the bio
98          * can't tell us where in the file the bio should go
99          */
100         u64 bio_offset;
101         struct btrfs_work work;
102         int error;
103 };
104
105 /*
106  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
107  * eb, the lockdep key is determined by the btrfs_root it belongs to and
108  * the level the eb occupies in the tree.
109  *
110  * Different roots are used for different purposes and may nest inside each
111  * other and they require separate keysets.  As lockdep keys should be
112  * static, assign keysets according to the purpose of the root as indicated
113  * by btrfs_root->objectid.  This ensures that all special purpose roots
114  * have separate keysets.
115  *
116  * Lock-nesting across peer nodes is always done with the immediate parent
117  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
118  * subclass to avoid triggering lockdep warning in such cases.
119  *
120  * The key is set by the readpage_end_io_hook after the buffer has passed
121  * csum validation but before the pages are unlocked.  It is also set by
122  * btrfs_init_new_buffer on freshly allocated blocks.
123  *
124  * We also add a check to make sure the highest level of the tree is the
125  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
126  * needs update as well.
127  */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 #  error
131 # endif
132
133 static struct btrfs_lockdep_keyset {
134         u64                     id;             /* root objectid */
135         const char              *name_stem;     /* lock name stem */
136         char                    names[BTRFS_MAX_LEVEL + 1][20];
137         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
140         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
141         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
142         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
143         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
144         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
145         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
146         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
147         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
148         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
149         { .id = 0,                              .name_stem = "tree"     },
150 };
151
152 void __init btrfs_init_lockdep(void)
153 {
154         int i, j;
155
156         /* initialize lockdep class names */
157         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161                         snprintf(ks->names[j], sizeof(ks->names[j]),
162                                  "btrfs-%s-%02d", ks->name_stem, j);
163         }
164 }
165
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167                                     int level)
168 {
169         struct btrfs_lockdep_keyset *ks;
170
171         BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173         /* find the matching keyset, id 0 is the default entry */
174         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175                 if (ks->id == objectid)
176                         break;
177
178         lockdep_set_class_and_name(&eb->lock,
179                                    &ks->keys[level], ks->names[level]);
180 }
181
182 #endif
183
184 /*
185  * extents on the btree inode are pretty simple, there's one extent
186  * that covers the entire device
187  */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189                 struct page *page, size_t pg_offset, u64 start, u64 len,
190                 int create)
191 {
192         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193         struct extent_map *em;
194         int ret;
195
196         read_lock(&em_tree->lock);
197         em = lookup_extent_mapping(em_tree, start, len);
198         if (em) {
199                 em->bdev =
200                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201                 read_unlock(&em_tree->lock);
202                 goto out;
203         }
204         read_unlock(&em_tree->lock);
205
206         em = alloc_extent_map();
207         if (!em) {
208                 em = ERR_PTR(-ENOMEM);
209                 goto out;
210         }
211         em->start = 0;
212         em->len = (u64)-1;
213         em->block_len = (u64)-1;
214         em->block_start = 0;
215         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217         write_lock(&em_tree->lock);
218         ret = add_extent_mapping(em_tree, em);
219         if (ret == -EEXIST) {
220                 u64 failed_start = em->start;
221                 u64 failed_len = em->len;
222
223                 free_extent_map(em);
224                 em = lookup_extent_mapping(em_tree, start, len);
225                 if (em) {
226                         ret = 0;
227                 } else {
228                         em = lookup_extent_mapping(em_tree, failed_start,
229                                                    failed_len);
230                         ret = -EIO;
231                 }
232         } else if (ret) {
233                 free_extent_map(em);
234                 em = NULL;
235         }
236         write_unlock(&em_tree->lock);
237
238         if (ret)
239                 em = ERR_PTR(ret);
240 out:
241         return em;
242 }
243
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 {
246         return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251         put_unaligned_le32(~crc, result);
252 }
253
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259                            int verify)
260 {
261         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262         char *result = NULL;
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270         u32 crc = ~(u32)0;
271         unsigned long inline_result;
272
273         len = buf->len - offset;
274         while (len > 0) {
275                 err = map_private_extent_buffer(buf, offset, 32,
276                                         &kaddr, &map_start, &map_len);
277                 if (err)
278                         return 1;
279                 cur_len = min(len, map_len - (offset - map_start));
280                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281                                       crc, cur_len);
282                 len -= cur_len;
283                 offset += cur_len;
284         }
285         if (csum_size > sizeof(inline_result)) {
286                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287                 if (!result)
288                         return 1;
289         } else {
290                 result = (char *)&inline_result;
291         }
292
293         btrfs_csum_final(crc, result);
294
295         if (verify) {
296                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297                         u32 val;
298                         u32 found = 0;
299                         memcpy(&found, result, csum_size);
300
301                         read_extent_buffer(buf, &val, 0, csum_size);
302                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303                                        "failed on %llu wanted %X found %X "
304                                        "level %d\n",
305                                        root->fs_info->sb->s_id,
306                                        (unsigned long long)buf->start, val, found,
307                                        btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        (unsigned long long)eb->start,
349                        (unsigned long long)parent_transid,
350                        (unsigned long long)btrfs_header_generation(eb));
351         ret = 1;
352         clear_extent_buffer_uptodate(eb);
353 out:
354         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355                              &cached_state, GFP_NOFS);
356         return ret;
357 }
358
359 /*
360  * helper to read a given tree block, doing retries as required when
361  * the checksums don't match and we have alternate mirrors to try.
362  */
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364                                           struct extent_buffer *eb,
365                                           u64 start, u64 parent_transid)
366 {
367         struct extent_io_tree *io_tree;
368         int failed = 0;
369         int ret;
370         int num_copies = 0;
371         int mirror_num = 0;
372         int failed_mirror = 0;
373
374         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376         while (1) {
377                 ret = read_extent_buffer_pages(io_tree, eb, start,
378                                                WAIT_COMPLETE,
379                                                btree_get_extent, mirror_num);
380                 if (!ret && !verify_parent_transid(io_tree, eb,
381                                                    parent_transid, 0))
382                         break;
383
384                 /*
385                  * This buffer's crc is fine, but its contents are corrupted, so
386                  * there is no reason to read the other copies, they won't be
387                  * any less wrong.
388                  */
389                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390                         break;
391
392                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393                                               eb->start, eb->len);
394                 if (num_copies == 1)
395                         break;
396
397                 if (!failed_mirror) {
398                         failed = 1;
399                         failed_mirror = eb->read_mirror;
400                 }
401
402                 mirror_num++;
403                 if (mirror_num == failed_mirror)
404                         mirror_num++;
405
406                 if (mirror_num > num_copies)
407                         break;
408         }
409
410         if (failed && !ret && failed_mirror)
411                 repair_eb_io_failure(root, eb, failed_mirror);
412
413         return ret;
414 }
415
416 /*
417  * checksum a dirty tree block before IO.  This has extra checks to make sure
418  * we only fill in the checksum field in the first page of a multi-page block
419  */
420
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423         struct extent_io_tree *tree;
424         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425         u64 found_start;
426         struct extent_buffer *eb;
427
428         tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430         eb = (struct extent_buffer *)page->private;
431         if (page != eb->pages[0])
432                 return 0;
433         found_start = btrfs_header_bytenr(eb);
434         if (found_start != start) {
435                 WARN_ON(1);
436                 return 0;
437         }
438         if (eb->pages[0] != page) {
439                 WARN_ON(1);
440                 return 0;
441         }
442         if (!PageUptodate(page)) {
443                 WARN_ON(1);
444                 return 0;
445         }
446         csum_tree_block(root, eb, 0);
447         return 0;
448 }
449
450 static int check_tree_block_fsid(struct btrfs_root *root,
451                                  struct extent_buffer *eb)
452 {
453         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454         u8 fsid[BTRFS_UUID_SIZE];
455         int ret = 1;
456
457         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458                            BTRFS_FSID_SIZE);
459         while (fs_devices) {
460                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461                         ret = 0;
462                         break;
463                 }
464                 fs_devices = fs_devices->seed;
465         }
466         return ret;
467 }
468
469 #define CORRUPT(reason, eb, root, slot)                         \
470         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471                "root=%llu, slot=%d\n", reason,                  \
472                (unsigned long long)btrfs_header_bytenr(eb),     \
473                (unsigned long long)root->objectid, slot)
474
475 static noinline int check_leaf(struct btrfs_root *root,
476                                struct extent_buffer *leaf)
477 {
478         struct btrfs_key key;
479         struct btrfs_key leaf_key;
480         u32 nritems = btrfs_header_nritems(leaf);
481         int slot;
482
483         if (nritems == 0)
484                 return 0;
485
486         /* Check the 0 item */
487         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488             BTRFS_LEAF_DATA_SIZE(root)) {
489                 CORRUPT("invalid item offset size pair", leaf, root, 0);
490                 return -EIO;
491         }
492
493         /*
494          * Check to make sure each items keys are in the correct order and their
495          * offsets make sense.  We only have to loop through nritems-1 because
496          * we check the current slot against the next slot, which verifies the
497          * next slot's offset+size makes sense and that the current's slot
498          * offset is correct.
499          */
500         for (slot = 0; slot < nritems - 1; slot++) {
501                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504                 /* Make sure the keys are in the right order */
505                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506                         CORRUPT("bad key order", leaf, root, slot);
507                         return -EIO;
508                 }
509
510                 /*
511                  * Make sure the offset and ends are right, remember that the
512                  * item data starts at the end of the leaf and grows towards the
513                  * front.
514                  */
515                 if (btrfs_item_offset_nr(leaf, slot) !=
516                         btrfs_item_end_nr(leaf, slot + 1)) {
517                         CORRUPT("slot offset bad", leaf, root, slot);
518                         return -EIO;
519                 }
520
521                 /*
522                  * Check to make sure that we don't point outside of the leaf,
523                  * just incase all the items are consistent to eachother, but
524                  * all point outside of the leaf.
525                  */
526                 if (btrfs_item_end_nr(leaf, slot) >
527                     BTRFS_LEAF_DATA_SIZE(root)) {
528                         CORRUPT("slot end outside of leaf", leaf, root, slot);
529                         return -EIO;
530                 }
531         }
532
533         return 0;
534 }
535
536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537                                        struct page *page, int max_walk)
538 {
539         struct extent_buffer *eb;
540         u64 start = page_offset(page);
541         u64 target = start;
542         u64 min_start;
543
544         if (start < max_walk)
545                 min_start = 0;
546         else
547                 min_start = start - max_walk;
548
549         while (start >= min_start) {
550                 eb = find_extent_buffer(tree, start, 0);
551                 if (eb) {
552                         /*
553                          * we found an extent buffer and it contains our page
554                          * horray!
555                          */
556                         if (eb->start <= target &&
557                             eb->start + eb->len > target)
558                                 return eb;
559
560                         /* we found an extent buffer that wasn't for us */
561                         free_extent_buffer(eb);
562                         return NULL;
563                 }
564                 if (start == 0)
565                         break;
566                 start -= PAGE_CACHE_SIZE;
567         }
568         return NULL;
569 }
570
571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572                                struct extent_state *state, int mirror)
573 {
574         struct extent_io_tree *tree;
575         u64 found_start;
576         int found_level;
577         struct extent_buffer *eb;
578         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579         int ret = 0;
580         int reads_done;
581
582         if (!page->private)
583                 goto out;
584
585         tree = &BTRFS_I(page->mapping->host)->io_tree;
586         eb = (struct extent_buffer *)page->private;
587
588         /* the pending IO might have been the only thing that kept this buffer
589          * in memory.  Make sure we have a ref for all this other checks
590          */
591         extent_buffer_get(eb);
592
593         reads_done = atomic_dec_and_test(&eb->io_pages);
594         if (!reads_done)
595                 goto err;
596
597         eb->read_mirror = mirror;
598         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599                 ret = -EIO;
600                 goto err;
601         }
602
603         found_start = btrfs_header_bytenr(eb);
604         if (found_start != eb->start) {
605                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606                                "%llu %llu\n",
607                                (unsigned long long)found_start,
608                                (unsigned long long)eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         if (check_tree_block_fsid(root, eb)) {
613                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614                                (unsigned long long)eb->start);
615                 ret = -EIO;
616                 goto err;
617         }
618         found_level = btrfs_header_level(eb);
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644                 btree_readahead_hook(root, eb, eb->start, ret);
645         }
646
647         if (ret)
648                 clear_extent_buffer_uptodate(eb);
649         free_extent_buffer(eb);
650 out:
651         return ret;
652 }
653
654 static int btree_io_failed_hook(struct page *page, int failed_mirror)
655 {
656         struct extent_buffer *eb;
657         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
659         eb = (struct extent_buffer *)page->private;
660         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661         eb->read_mirror = failed_mirror;
662         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663                 btree_readahead_hook(root, eb, eb->start, -EIO);
664         return -EIO;    /* we fixed nothing */
665 }
666
667 static void end_workqueue_bio(struct bio *bio, int err)
668 {
669         struct end_io_wq *end_io_wq = bio->bi_private;
670         struct btrfs_fs_info *fs_info;
671
672         fs_info = end_io_wq->info;
673         end_io_wq->error = err;
674         end_io_wq->work.func = end_workqueue_fn;
675         end_io_wq->work.flags = 0;
676
677         if (bio->bi_rw & REQ_WRITE) {
678                 if (end_io_wq->metadata == 1)
679                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680                                            &end_io_wq->work);
681                 else if (end_io_wq->metadata == 2)
682                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
683                                            &end_io_wq->work);
684                 else
685                         btrfs_queue_worker(&fs_info->endio_write_workers,
686                                            &end_io_wq->work);
687         } else {
688                 if (end_io_wq->metadata)
689                         btrfs_queue_worker(&fs_info->endio_meta_workers,
690                                            &end_io_wq->work);
691                 else
692                         btrfs_queue_worker(&fs_info->endio_workers,
693                                            &end_io_wq->work);
694         }
695 }
696
697 /*
698  * For the metadata arg you want
699  *
700  * 0 - if data
701  * 1 - if normal metadta
702  * 2 - if writing to the free space cache area
703  */
704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705                         int metadata)
706 {
707         struct end_io_wq *end_io_wq;
708         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709         if (!end_io_wq)
710                 return -ENOMEM;
711
712         end_io_wq->private = bio->bi_private;
713         end_io_wq->end_io = bio->bi_end_io;
714         end_io_wq->info = info;
715         end_io_wq->error = 0;
716         end_io_wq->bio = bio;
717         end_io_wq->metadata = metadata;
718
719         bio->bi_private = end_io_wq;
720         bio->bi_end_io = end_workqueue_bio;
721         return 0;
722 }
723
724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725 {
726         unsigned long limit = min_t(unsigned long,
727                                     info->workers.max_workers,
728                                     info->fs_devices->open_devices);
729         return 256 * limit;
730 }
731
732 static void run_one_async_start(struct btrfs_work *work)
733 {
734         struct async_submit_bio *async;
735         int ret;
736
737         async = container_of(work, struct  async_submit_bio, work);
738         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739                                       async->mirror_num, async->bio_flags,
740                                       async->bio_offset);
741         if (ret)
742                 async->error = ret;
743 }
744
745 static void run_one_async_done(struct btrfs_work *work)
746 {
747         struct btrfs_fs_info *fs_info;
748         struct async_submit_bio *async;
749         int limit;
750
751         async = container_of(work, struct  async_submit_bio, work);
752         fs_info = BTRFS_I(async->inode)->root->fs_info;
753
754         limit = btrfs_async_submit_limit(fs_info);
755         limit = limit * 2 / 3;
756
757         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
758             waitqueue_active(&fs_info->async_submit_wait))
759                 wake_up(&fs_info->async_submit_wait);
760
761         /* If an error occured we just want to clean up the bio and move on */
762         if (async->error) {
763                 bio_endio(async->bio, async->error);
764                 return;
765         }
766
767         async->submit_bio_done(async->inode, async->rw, async->bio,
768                                async->mirror_num, async->bio_flags,
769                                async->bio_offset);
770 }
771
772 static void run_one_async_free(struct btrfs_work *work)
773 {
774         struct async_submit_bio *async;
775
776         async = container_of(work, struct  async_submit_bio, work);
777         kfree(async);
778 }
779
780 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
781                         int rw, struct bio *bio, int mirror_num,
782                         unsigned long bio_flags,
783                         u64 bio_offset,
784                         extent_submit_bio_hook_t *submit_bio_start,
785                         extent_submit_bio_hook_t *submit_bio_done)
786 {
787         struct async_submit_bio *async;
788
789         async = kmalloc(sizeof(*async), GFP_NOFS);
790         if (!async)
791                 return -ENOMEM;
792
793         async->inode = inode;
794         async->rw = rw;
795         async->bio = bio;
796         async->mirror_num = mirror_num;
797         async->submit_bio_start = submit_bio_start;
798         async->submit_bio_done = submit_bio_done;
799
800         async->work.func = run_one_async_start;
801         async->work.ordered_func = run_one_async_done;
802         async->work.ordered_free = run_one_async_free;
803
804         async->work.flags = 0;
805         async->bio_flags = bio_flags;
806         async->bio_offset = bio_offset;
807
808         async->error = 0;
809
810         atomic_inc(&fs_info->nr_async_submits);
811
812         if (rw & REQ_SYNC)
813                 btrfs_set_work_high_prio(&async->work);
814
815         btrfs_queue_worker(&fs_info->workers, &async->work);
816
817         while (atomic_read(&fs_info->async_submit_draining) &&
818               atomic_read(&fs_info->nr_async_submits)) {
819                 wait_event(fs_info->async_submit_wait,
820                            (atomic_read(&fs_info->nr_async_submits) == 0));
821         }
822
823         return 0;
824 }
825
826 static int btree_csum_one_bio(struct bio *bio)
827 {
828         struct bio_vec *bvec = bio->bi_io_vec;
829         int bio_index = 0;
830         struct btrfs_root *root;
831         int ret = 0;
832
833         WARN_ON(bio->bi_vcnt <= 0);
834         while (bio_index < bio->bi_vcnt) {
835                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
836                 ret = csum_dirty_buffer(root, bvec->bv_page);
837                 if (ret)
838                         break;
839                 bio_index++;
840                 bvec++;
841         }
842         return ret;
843 }
844
845 static int __btree_submit_bio_start(struct inode *inode, int rw,
846                                     struct bio *bio, int mirror_num,
847                                     unsigned long bio_flags,
848                                     u64 bio_offset)
849 {
850         /*
851          * when we're called for a write, we're already in the async
852          * submission context.  Just jump into btrfs_map_bio
853          */
854         return btree_csum_one_bio(bio);
855 }
856
857 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
858                                  int mirror_num, unsigned long bio_flags,
859                                  u64 bio_offset)
860 {
861         /*
862          * when we're called for a write, we're already in the async
863          * submission context.  Just jump into btrfs_map_bio
864          */
865         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
866 }
867
868 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
869                                  int mirror_num, unsigned long bio_flags,
870                                  u64 bio_offset)
871 {
872         int ret;
873
874         if (!(rw & REQ_WRITE)) {
875
876                 /*
877                  * called for a read, do the setup so that checksum validation
878                  * can happen in the async kernel threads
879                  */
880                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
881                                           bio, 1);
882                 if (ret)
883                         return ret;
884                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
885                                      mirror_num, 0);
886         }
887
888         /*
889          * kthread helpers are used to submit writes so that checksumming
890          * can happen in parallel across all CPUs
891          */
892         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
893                                    inode, rw, bio, mirror_num, 0,
894                                    bio_offset,
895                                    __btree_submit_bio_start,
896                                    __btree_submit_bio_done);
897 }
898
899 #ifdef CONFIG_MIGRATION
900 static int btree_migratepage(struct address_space *mapping,
901                         struct page *newpage, struct page *page,
902                         enum migrate_mode mode)
903 {
904         /*
905          * we can't safely write a btree page from here,
906          * we haven't done the locking hook
907          */
908         if (PageDirty(page))
909                 return -EAGAIN;
910         /*
911          * Buffers may be managed in a filesystem specific way.
912          * We must have no buffers or drop them.
913          */
914         if (page_has_private(page) &&
915             !try_to_release_page(page, GFP_KERNEL))
916                 return -EAGAIN;
917         return migrate_page(mapping, newpage, page, mode);
918 }
919 #endif
920
921
922 static int btree_writepages(struct address_space *mapping,
923                             struct writeback_control *wbc)
924 {
925         struct extent_io_tree *tree;
926         tree = &BTRFS_I(mapping->host)->io_tree;
927         if (wbc->sync_mode == WB_SYNC_NONE) {
928                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
929                 u64 num_dirty;
930                 unsigned long thresh = 32 * 1024 * 1024;
931
932                 if (wbc->for_kupdate)
933                         return 0;
934
935                 /* this is a bit racy, but that's ok */
936                 num_dirty = root->fs_info->dirty_metadata_bytes;
937                 if (num_dirty < thresh)
938                         return 0;
939         }
940         return btree_write_cache_pages(mapping, wbc);
941 }
942
943 static int btree_readpage(struct file *file, struct page *page)
944 {
945         struct extent_io_tree *tree;
946         tree = &BTRFS_I(page->mapping->host)->io_tree;
947         return extent_read_full_page(tree, page, btree_get_extent, 0);
948 }
949
950 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
951 {
952         if (PageWriteback(page) || PageDirty(page))
953                 return 0;
954         /*
955          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
956          * slab allocation from alloc_extent_state down the callchain where
957          * it'd hit a BUG_ON as those flags are not allowed.
958          */
959         gfp_flags &= ~GFP_SLAB_BUG_MASK;
960
961         return try_release_extent_buffer(page, gfp_flags);
962 }
963
964 static void btree_invalidatepage(struct page *page, unsigned long offset)
965 {
966         struct extent_io_tree *tree;
967         tree = &BTRFS_I(page->mapping->host)->io_tree;
968         extent_invalidatepage(tree, page, offset);
969         btree_releasepage(page, GFP_NOFS);
970         if (PagePrivate(page)) {
971                 printk(KERN_WARNING "btrfs warning page private not zero "
972                        "on page %llu\n", (unsigned long long)page_offset(page));
973                 ClearPagePrivate(page);
974                 set_page_private(page, 0);
975                 page_cache_release(page);
976         }
977 }
978
979 static int btree_set_page_dirty(struct page *page)
980 {
981         struct extent_buffer *eb;
982
983         BUG_ON(!PagePrivate(page));
984         eb = (struct extent_buffer *)page->private;
985         BUG_ON(!eb);
986         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
987         BUG_ON(!atomic_read(&eb->refs));
988         btrfs_assert_tree_locked(eb);
989         return __set_page_dirty_nobuffers(page);
990 }
991
992 static const struct address_space_operations btree_aops = {
993         .readpage       = btree_readpage,
994         .writepages     = btree_writepages,
995         .releasepage    = btree_releasepage,
996         .invalidatepage = btree_invalidatepage,
997 #ifdef CONFIG_MIGRATION
998         .migratepage    = btree_migratepage,
999 #endif
1000         .set_page_dirty = btree_set_page_dirty,
1001 };
1002
1003 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1004                          u64 parent_transid)
1005 {
1006         struct extent_buffer *buf = NULL;
1007         struct inode *btree_inode = root->fs_info->btree_inode;
1008         int ret = 0;
1009
1010         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1011         if (!buf)
1012                 return 0;
1013         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1014                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1015         free_extent_buffer(buf);
1016         return ret;
1017 }
1018
1019 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1020                          int mirror_num, struct extent_buffer **eb)
1021 {
1022         struct extent_buffer *buf = NULL;
1023         struct inode *btree_inode = root->fs_info->btree_inode;
1024         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025         int ret;
1026
1027         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1028         if (!buf)
1029                 return 0;
1030
1031         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032
1033         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1034                                        btree_get_extent, mirror_num);
1035         if (ret) {
1036                 free_extent_buffer(buf);
1037                 return ret;
1038         }
1039
1040         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041                 free_extent_buffer(buf);
1042                 return -EIO;
1043         } else if (extent_buffer_uptodate(buf)) {
1044                 *eb = buf;
1045         } else {
1046                 free_extent_buffer(buf);
1047         }
1048         return 0;
1049 }
1050
1051 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1052                                             u64 bytenr, u32 blocksize)
1053 {
1054         struct inode *btree_inode = root->fs_info->btree_inode;
1055         struct extent_buffer *eb;
1056         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1057                                 bytenr, blocksize);
1058         return eb;
1059 }
1060
1061 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1062                                                  u64 bytenr, u32 blocksize)
1063 {
1064         struct inode *btree_inode = root->fs_info->btree_inode;
1065         struct extent_buffer *eb;
1066
1067         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1068                                  bytenr, blocksize);
1069         return eb;
1070 }
1071
1072
1073 int btrfs_write_tree_block(struct extent_buffer *buf)
1074 {
1075         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1076                                         buf->start + buf->len - 1);
1077 }
1078
1079 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1080 {
1081         return filemap_fdatawait_range(buf->pages[0]->mapping,
1082                                        buf->start, buf->start + buf->len - 1);
1083 }
1084
1085 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1086                                       u32 blocksize, u64 parent_transid)
1087 {
1088         struct extent_buffer *buf = NULL;
1089         int ret;
1090
1091         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1092         if (!buf)
1093                 return NULL;
1094
1095         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1096         return buf;
1097
1098 }
1099
1100 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1101                       struct extent_buffer *buf)
1102 {
1103         if (btrfs_header_generation(buf) ==
1104             root->fs_info->running_transaction->transid) {
1105                 btrfs_assert_tree_locked(buf);
1106
1107                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1108                         spin_lock(&root->fs_info->delalloc_lock);
1109                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1110                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1111                         else {
1112                                 spin_unlock(&root->fs_info->delalloc_lock);
1113                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1114                                           "Can't clear %lu bytes from "
1115                                           " dirty_mdatadata_bytes (%lu)",
1116                                           buf->len,
1117                                           root->fs_info->dirty_metadata_bytes);
1118                         }
1119                         spin_unlock(&root->fs_info->delalloc_lock);
1120                 }
1121
1122                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1123                 btrfs_set_lock_blocking(buf);
1124                 clear_extent_buffer_dirty(buf);
1125         }
1126 }
1127
1128 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1129                          u32 stripesize, struct btrfs_root *root,
1130                          struct btrfs_fs_info *fs_info,
1131                          u64 objectid)
1132 {
1133         root->node = NULL;
1134         root->commit_root = NULL;
1135         root->sectorsize = sectorsize;
1136         root->nodesize = nodesize;
1137         root->leafsize = leafsize;
1138         root->stripesize = stripesize;
1139         root->ref_cows = 0;
1140         root->track_dirty = 0;
1141         root->in_radix = 0;
1142         root->orphan_item_inserted = 0;
1143         root->orphan_cleanup_state = 0;
1144
1145         root->objectid = objectid;
1146         root->last_trans = 0;
1147         root->highest_objectid = 0;
1148         root->name = NULL;
1149         root->inode_tree = RB_ROOT;
1150         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1151         root->block_rsv = NULL;
1152         root->orphan_block_rsv = NULL;
1153
1154         INIT_LIST_HEAD(&root->dirty_list);
1155         INIT_LIST_HEAD(&root->root_list);
1156         spin_lock_init(&root->orphan_lock);
1157         spin_lock_init(&root->inode_lock);
1158         spin_lock_init(&root->accounting_lock);
1159         mutex_init(&root->objectid_mutex);
1160         mutex_init(&root->log_mutex);
1161         init_waitqueue_head(&root->log_writer_wait);
1162         init_waitqueue_head(&root->log_commit_wait[0]);
1163         init_waitqueue_head(&root->log_commit_wait[1]);
1164         atomic_set(&root->log_commit[0], 0);
1165         atomic_set(&root->log_commit[1], 0);
1166         atomic_set(&root->log_writers, 0);
1167         atomic_set(&root->orphan_inodes, 0);
1168         root->log_batch = 0;
1169         root->log_transid = 0;
1170         root->last_log_commit = 0;
1171         extent_io_tree_init(&root->dirty_log_pages,
1172                              fs_info->btree_inode->i_mapping);
1173
1174         memset(&root->root_key, 0, sizeof(root->root_key));
1175         memset(&root->root_item, 0, sizeof(root->root_item));
1176         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1177         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1178         root->defrag_trans_start = fs_info->generation;
1179         init_completion(&root->kobj_unregister);
1180         root->defrag_running = 0;
1181         root->root_key.objectid = objectid;
1182         root->anon_dev = 0;
1183
1184         spin_lock_init(&root->root_times_lock);
1185 }
1186
1187 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188                                             struct btrfs_fs_info *fs_info,
1189                                             u64 objectid,
1190                                             struct btrfs_root *root)
1191 {
1192         int ret;
1193         u32 blocksize;
1194         u64 generation;
1195
1196         __setup_root(tree_root->nodesize, tree_root->leafsize,
1197                      tree_root->sectorsize, tree_root->stripesize,
1198                      root, fs_info, objectid);
1199         ret = btrfs_find_last_root(tree_root, objectid,
1200                                    &root->root_item, &root->root_key);
1201         if (ret > 0)
1202                 return -ENOENT;
1203         else if (ret < 0)
1204                 return ret;
1205
1206         generation = btrfs_root_generation(&root->root_item);
1207         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208         root->commit_root = NULL;
1209         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210                                      blocksize, generation);
1211         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212                 free_extent_buffer(root->node);
1213                 root->node = NULL;
1214                 return -EIO;
1215         }
1216         root->commit_root = btrfs_root_node(root);
1217         return 0;
1218 }
1219
1220 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221 {
1222         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223         if (root)
1224                 root->fs_info = fs_info;
1225         return root;
1226 }
1227
1228 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1229                                      struct btrfs_fs_info *fs_info,
1230                                      u64 objectid)
1231 {
1232         struct extent_buffer *leaf;
1233         struct btrfs_root *tree_root = fs_info->tree_root;
1234         struct btrfs_root *root;
1235         struct btrfs_key key;
1236         int ret = 0;
1237         u64 bytenr;
1238
1239         root = btrfs_alloc_root(fs_info);
1240         if (!root)
1241                 return ERR_PTR(-ENOMEM);
1242
1243         __setup_root(tree_root->nodesize, tree_root->leafsize,
1244                      tree_root->sectorsize, tree_root->stripesize,
1245                      root, fs_info, objectid);
1246         root->root_key.objectid = objectid;
1247         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1248         root->root_key.offset = 0;
1249
1250         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1251                                       0, objectid, NULL, 0, 0, 0);
1252         if (IS_ERR(leaf)) {
1253                 ret = PTR_ERR(leaf);
1254                 goto fail;
1255         }
1256
1257         bytenr = leaf->start;
1258         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1259         btrfs_set_header_bytenr(leaf, leaf->start);
1260         btrfs_set_header_generation(leaf, trans->transid);
1261         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1262         btrfs_set_header_owner(leaf, objectid);
1263         root->node = leaf;
1264
1265         write_extent_buffer(leaf, fs_info->fsid,
1266                             (unsigned long)btrfs_header_fsid(leaf),
1267                             BTRFS_FSID_SIZE);
1268         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1269                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1270                             BTRFS_UUID_SIZE);
1271         btrfs_mark_buffer_dirty(leaf);
1272
1273         root->commit_root = btrfs_root_node(root);
1274         root->track_dirty = 1;
1275
1276
1277         root->root_item.flags = 0;
1278         root->root_item.byte_limit = 0;
1279         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1280         btrfs_set_root_generation(&root->root_item, trans->transid);
1281         btrfs_set_root_level(&root->root_item, 0);
1282         btrfs_set_root_refs(&root->root_item, 1);
1283         btrfs_set_root_used(&root->root_item, leaf->len);
1284         btrfs_set_root_last_snapshot(&root->root_item, 0);
1285         btrfs_set_root_dirid(&root->root_item, 0);
1286         root->root_item.drop_level = 0;
1287
1288         key.objectid = objectid;
1289         key.type = BTRFS_ROOT_ITEM_KEY;
1290         key.offset = 0;
1291         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292         if (ret)
1293                 goto fail;
1294
1295         btrfs_tree_unlock(leaf);
1296
1297 fail:
1298         if (ret)
1299                 return ERR_PTR(ret);
1300
1301         return root;
1302 }
1303
1304 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1305                                          struct btrfs_fs_info *fs_info)
1306 {
1307         struct btrfs_root *root;
1308         struct btrfs_root *tree_root = fs_info->tree_root;
1309         struct extent_buffer *leaf;
1310
1311         root = btrfs_alloc_root(fs_info);
1312         if (!root)
1313                 return ERR_PTR(-ENOMEM);
1314
1315         __setup_root(tree_root->nodesize, tree_root->leafsize,
1316                      tree_root->sectorsize, tree_root->stripesize,
1317                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1318
1319         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1320         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1321         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1322         /*
1323          * log trees do not get reference counted because they go away
1324          * before a real commit is actually done.  They do store pointers
1325          * to file data extents, and those reference counts still get
1326          * updated (along with back refs to the log tree).
1327          */
1328         root->ref_cows = 0;
1329
1330         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1331                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1332                                       0, 0, 0);
1333         if (IS_ERR(leaf)) {
1334                 kfree(root);
1335                 return ERR_CAST(leaf);
1336         }
1337
1338         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1339         btrfs_set_header_bytenr(leaf, leaf->start);
1340         btrfs_set_header_generation(leaf, trans->transid);
1341         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1343         root->node = leaf;
1344
1345         write_extent_buffer(root->node, root->fs_info->fsid,
1346                             (unsigned long)btrfs_header_fsid(root->node),
1347                             BTRFS_FSID_SIZE);
1348         btrfs_mark_buffer_dirty(root->node);
1349         btrfs_tree_unlock(root->node);
1350         return root;
1351 }
1352
1353 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1354                              struct btrfs_fs_info *fs_info)
1355 {
1356         struct btrfs_root *log_root;
1357
1358         log_root = alloc_log_tree(trans, fs_info);
1359         if (IS_ERR(log_root))
1360                 return PTR_ERR(log_root);
1361         WARN_ON(fs_info->log_root_tree);
1362         fs_info->log_root_tree = log_root;
1363         return 0;
1364 }
1365
1366 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1367                        struct btrfs_root *root)
1368 {
1369         struct btrfs_root *log_root;
1370         struct btrfs_inode_item *inode_item;
1371
1372         log_root = alloc_log_tree(trans, root->fs_info);
1373         if (IS_ERR(log_root))
1374                 return PTR_ERR(log_root);
1375
1376         log_root->last_trans = trans->transid;
1377         log_root->root_key.offset = root->root_key.objectid;
1378
1379         inode_item = &log_root->root_item.inode;
1380         inode_item->generation = cpu_to_le64(1);
1381         inode_item->size = cpu_to_le64(3);
1382         inode_item->nlink = cpu_to_le32(1);
1383         inode_item->nbytes = cpu_to_le64(root->leafsize);
1384         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1385
1386         btrfs_set_root_node(&log_root->root_item, log_root->node);
1387
1388         WARN_ON(root->log_root);
1389         root->log_root = log_root;
1390         root->log_transid = 0;
1391         root->last_log_commit = 0;
1392         return 0;
1393 }
1394
1395 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1396                                                struct btrfs_key *location)
1397 {
1398         struct btrfs_root *root;
1399         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1400         struct btrfs_path *path;
1401         struct extent_buffer *l;
1402         u64 generation;
1403         u32 blocksize;
1404         int ret = 0;
1405         int slot;
1406
1407         root = btrfs_alloc_root(fs_info);
1408         if (!root)
1409                 return ERR_PTR(-ENOMEM);
1410         if (location->offset == (u64)-1) {
1411                 ret = find_and_setup_root(tree_root, fs_info,
1412                                           location->objectid, root);
1413                 if (ret) {
1414                         kfree(root);
1415                         return ERR_PTR(ret);
1416                 }
1417                 goto out;
1418         }
1419
1420         __setup_root(tree_root->nodesize, tree_root->leafsize,
1421                      tree_root->sectorsize, tree_root->stripesize,
1422                      root, fs_info, location->objectid);
1423
1424         path = btrfs_alloc_path();
1425         if (!path) {
1426                 kfree(root);
1427                 return ERR_PTR(-ENOMEM);
1428         }
1429         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1430         if (ret == 0) {
1431                 l = path->nodes[0];
1432                 slot = path->slots[0];
1433                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1434                 memcpy(&root->root_key, location, sizeof(*location));
1435         }
1436         btrfs_free_path(path);
1437         if (ret) {
1438                 kfree(root);
1439                 if (ret > 0)
1440                         ret = -ENOENT;
1441                 return ERR_PTR(ret);
1442         }
1443
1444         generation = btrfs_root_generation(&root->root_item);
1445         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1446         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1447                                      blocksize, generation);
1448         root->commit_root = btrfs_root_node(root);
1449         BUG_ON(!root->node); /* -ENOMEM */
1450 out:
1451         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1452                 root->ref_cows = 1;
1453                 btrfs_check_and_init_root_item(&root->root_item);
1454         }
1455
1456         return root;
1457 }
1458
1459 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1460                                               struct btrfs_key *location)
1461 {
1462         struct btrfs_root *root;
1463         int ret;
1464
1465         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1466                 return fs_info->tree_root;
1467         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1468                 return fs_info->extent_root;
1469         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1470                 return fs_info->chunk_root;
1471         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1472                 return fs_info->dev_root;
1473         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1474                 return fs_info->csum_root;
1475         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1476                 return fs_info->quota_root ? fs_info->quota_root :
1477                                              ERR_PTR(-ENOENT);
1478 again:
1479         spin_lock(&fs_info->fs_roots_radix_lock);
1480         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1481                                  (unsigned long)location->objectid);
1482         spin_unlock(&fs_info->fs_roots_radix_lock);
1483         if (root)
1484                 return root;
1485
1486         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1487         if (IS_ERR(root))
1488                 return root;
1489
1490         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1491         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1492                                         GFP_NOFS);
1493         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1494                 ret = -ENOMEM;
1495                 goto fail;
1496         }
1497
1498         btrfs_init_free_ino_ctl(root);
1499         mutex_init(&root->fs_commit_mutex);
1500         spin_lock_init(&root->cache_lock);
1501         init_waitqueue_head(&root->cache_wait);
1502
1503         ret = get_anon_bdev(&root->anon_dev);
1504         if (ret)
1505                 goto fail;
1506
1507         if (btrfs_root_refs(&root->root_item) == 0) {
1508                 ret = -ENOENT;
1509                 goto fail;
1510         }
1511
1512         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1513         if (ret < 0)
1514                 goto fail;
1515         if (ret == 0)
1516                 root->orphan_item_inserted = 1;
1517
1518         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1519         if (ret)
1520                 goto fail;
1521
1522         spin_lock(&fs_info->fs_roots_radix_lock);
1523         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1524                                 (unsigned long)root->root_key.objectid,
1525                                 root);
1526         if (ret == 0)
1527                 root->in_radix = 1;
1528
1529         spin_unlock(&fs_info->fs_roots_radix_lock);
1530         radix_tree_preload_end();
1531         if (ret) {
1532                 if (ret == -EEXIST) {
1533                         free_fs_root(root);
1534                         goto again;
1535                 }
1536                 goto fail;
1537         }
1538
1539         ret = btrfs_find_dead_roots(fs_info->tree_root,
1540                                     root->root_key.objectid);
1541         WARN_ON(ret);
1542         return root;
1543 fail:
1544         free_fs_root(root);
1545         return ERR_PTR(ret);
1546 }
1547
1548 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1549 {
1550         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1551         int ret = 0;
1552         struct btrfs_device *device;
1553         struct backing_dev_info *bdi;
1554
1555         rcu_read_lock();
1556         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1557                 if (!device->bdev)
1558                         continue;
1559                 bdi = blk_get_backing_dev_info(device->bdev);
1560                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1561                         ret = 1;
1562                         break;
1563                 }
1564         }
1565         rcu_read_unlock();
1566         return ret;
1567 }
1568
1569 /*
1570  * If this fails, caller must call bdi_destroy() to get rid of the
1571  * bdi again.
1572  */
1573 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1574 {
1575         int err;
1576
1577         bdi->capabilities = BDI_CAP_MAP_COPY;
1578         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1579         if (err)
1580                 return err;
1581
1582         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1583         bdi->congested_fn       = btrfs_congested_fn;
1584         bdi->congested_data     = info;
1585         return 0;
1586 }
1587
1588 /*
1589  * called by the kthread helper functions to finally call the bio end_io
1590  * functions.  This is where read checksum verification actually happens
1591  */
1592 static void end_workqueue_fn(struct btrfs_work *work)
1593 {
1594         struct bio *bio;
1595         struct end_io_wq *end_io_wq;
1596         struct btrfs_fs_info *fs_info;
1597         int error;
1598
1599         end_io_wq = container_of(work, struct end_io_wq, work);
1600         bio = end_io_wq->bio;
1601         fs_info = end_io_wq->info;
1602
1603         error = end_io_wq->error;
1604         bio->bi_private = end_io_wq->private;
1605         bio->bi_end_io = end_io_wq->end_io;
1606         kfree(end_io_wq);
1607         bio_endio(bio, error);
1608 }
1609
1610 static int cleaner_kthread(void *arg)
1611 {
1612         struct btrfs_root *root = arg;
1613
1614         do {
1615                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1616
1617                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1618                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1619                         btrfs_run_delayed_iputs(root);
1620                         btrfs_clean_old_snapshots(root);
1621                         mutex_unlock(&root->fs_info->cleaner_mutex);
1622                         btrfs_run_defrag_inodes(root->fs_info);
1623                 }
1624
1625                 if (!try_to_freeze()) {
1626                         set_current_state(TASK_INTERRUPTIBLE);
1627                         if (!kthread_should_stop())
1628                                 schedule();
1629                         __set_current_state(TASK_RUNNING);
1630                 }
1631         } while (!kthread_should_stop());
1632         return 0;
1633 }
1634
1635 static int transaction_kthread(void *arg)
1636 {
1637         struct btrfs_root *root = arg;
1638         struct btrfs_trans_handle *trans;
1639         struct btrfs_transaction *cur;
1640         u64 transid;
1641         unsigned long now;
1642         unsigned long delay;
1643         bool cannot_commit;
1644
1645         do {
1646                 cannot_commit = false;
1647                 delay = HZ * 30;
1648                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1649                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1650
1651                 spin_lock(&root->fs_info->trans_lock);
1652                 cur = root->fs_info->running_transaction;
1653                 if (!cur) {
1654                         spin_unlock(&root->fs_info->trans_lock);
1655                         goto sleep;
1656                 }
1657
1658                 now = get_seconds();
1659                 if (!cur->blocked &&
1660                     (now < cur->start_time || now - cur->start_time < 30)) {
1661                         spin_unlock(&root->fs_info->trans_lock);
1662                         delay = HZ * 5;
1663                         goto sleep;
1664                 }
1665                 transid = cur->transid;
1666                 spin_unlock(&root->fs_info->trans_lock);
1667
1668                 /* If the file system is aborted, this will always fail. */
1669                 trans = btrfs_join_transaction(root);
1670                 if (IS_ERR(trans)) {
1671                         cannot_commit = true;
1672                         goto sleep;
1673                 }
1674                 if (transid == trans->transid) {
1675                         btrfs_commit_transaction(trans, root);
1676                 } else {
1677                         btrfs_end_transaction(trans, root);
1678                 }
1679 sleep:
1680                 wake_up_process(root->fs_info->cleaner_kthread);
1681                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1682
1683                 if (!try_to_freeze()) {
1684                         set_current_state(TASK_INTERRUPTIBLE);
1685                         if (!kthread_should_stop() &&
1686                             (!btrfs_transaction_blocked(root->fs_info) ||
1687                              cannot_commit))
1688                                 schedule_timeout(delay);
1689                         __set_current_state(TASK_RUNNING);
1690                 }
1691         } while (!kthread_should_stop());
1692         return 0;
1693 }
1694
1695 /*
1696  * this will find the highest generation in the array of
1697  * root backups.  The index of the highest array is returned,
1698  * or -1 if we can't find anything.
1699  *
1700  * We check to make sure the array is valid by comparing the
1701  * generation of the latest  root in the array with the generation
1702  * in the super block.  If they don't match we pitch it.
1703  */
1704 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1705 {
1706         u64 cur;
1707         int newest_index = -1;
1708         struct btrfs_root_backup *root_backup;
1709         int i;
1710
1711         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1712                 root_backup = info->super_copy->super_roots + i;
1713                 cur = btrfs_backup_tree_root_gen(root_backup);
1714                 if (cur == newest_gen)
1715                         newest_index = i;
1716         }
1717
1718         /* check to see if we actually wrapped around */
1719         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1720                 root_backup = info->super_copy->super_roots;
1721                 cur = btrfs_backup_tree_root_gen(root_backup);
1722                 if (cur == newest_gen)
1723                         newest_index = 0;
1724         }
1725         return newest_index;
1726 }
1727
1728
1729 /*
1730  * find the oldest backup so we know where to store new entries
1731  * in the backup array.  This will set the backup_root_index
1732  * field in the fs_info struct
1733  */
1734 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1735                                      u64 newest_gen)
1736 {
1737         int newest_index = -1;
1738
1739         newest_index = find_newest_super_backup(info, newest_gen);
1740         /* if there was garbage in there, just move along */
1741         if (newest_index == -1) {
1742                 info->backup_root_index = 0;
1743         } else {
1744                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1745         }
1746 }
1747
1748 /*
1749  * copy all the root pointers into the super backup array.
1750  * this will bump the backup pointer by one when it is
1751  * done
1752  */
1753 static void backup_super_roots(struct btrfs_fs_info *info)
1754 {
1755         int next_backup;
1756         struct btrfs_root_backup *root_backup;
1757         int last_backup;
1758
1759         next_backup = info->backup_root_index;
1760         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1761                 BTRFS_NUM_BACKUP_ROOTS;
1762
1763         /*
1764          * just overwrite the last backup if we're at the same generation
1765          * this happens only at umount
1766          */
1767         root_backup = info->super_for_commit->super_roots + last_backup;
1768         if (btrfs_backup_tree_root_gen(root_backup) ==
1769             btrfs_header_generation(info->tree_root->node))
1770                 next_backup = last_backup;
1771
1772         root_backup = info->super_for_commit->super_roots + next_backup;
1773
1774         /*
1775          * make sure all of our padding and empty slots get zero filled
1776          * regardless of which ones we use today
1777          */
1778         memset(root_backup, 0, sizeof(*root_backup));
1779
1780         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1781
1782         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1783         btrfs_set_backup_tree_root_gen(root_backup,
1784                                btrfs_header_generation(info->tree_root->node));
1785
1786         btrfs_set_backup_tree_root_level(root_backup,
1787                                btrfs_header_level(info->tree_root->node));
1788
1789         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1790         btrfs_set_backup_chunk_root_gen(root_backup,
1791                                btrfs_header_generation(info->chunk_root->node));
1792         btrfs_set_backup_chunk_root_level(root_backup,
1793                                btrfs_header_level(info->chunk_root->node));
1794
1795         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1796         btrfs_set_backup_extent_root_gen(root_backup,
1797                                btrfs_header_generation(info->extent_root->node));
1798         btrfs_set_backup_extent_root_level(root_backup,
1799                                btrfs_header_level(info->extent_root->node));
1800
1801         /*
1802          * we might commit during log recovery, which happens before we set
1803          * the fs_root.  Make sure it is valid before we fill it in.
1804          */
1805         if (info->fs_root && info->fs_root->node) {
1806                 btrfs_set_backup_fs_root(root_backup,
1807                                          info->fs_root->node->start);
1808                 btrfs_set_backup_fs_root_gen(root_backup,
1809                                btrfs_header_generation(info->fs_root->node));
1810                 btrfs_set_backup_fs_root_level(root_backup,
1811                                btrfs_header_level(info->fs_root->node));
1812         }
1813
1814         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1815         btrfs_set_backup_dev_root_gen(root_backup,
1816                                btrfs_header_generation(info->dev_root->node));
1817         btrfs_set_backup_dev_root_level(root_backup,
1818                                        btrfs_header_level(info->dev_root->node));
1819
1820         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1821         btrfs_set_backup_csum_root_gen(root_backup,
1822                                btrfs_header_generation(info->csum_root->node));
1823         btrfs_set_backup_csum_root_level(root_backup,
1824                                btrfs_header_level(info->csum_root->node));
1825
1826         btrfs_set_backup_total_bytes(root_backup,
1827                              btrfs_super_total_bytes(info->super_copy));
1828         btrfs_set_backup_bytes_used(root_backup,
1829                              btrfs_super_bytes_used(info->super_copy));
1830         btrfs_set_backup_num_devices(root_backup,
1831                              btrfs_super_num_devices(info->super_copy));
1832
1833         /*
1834          * if we don't copy this out to the super_copy, it won't get remembered
1835          * for the next commit
1836          */
1837         memcpy(&info->super_copy->super_roots,
1838                &info->super_for_commit->super_roots,
1839                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1840 }
1841
1842 /*
1843  * this copies info out of the root backup array and back into
1844  * the in-memory super block.  It is meant to help iterate through
1845  * the array, so you send it the number of backups you've already
1846  * tried and the last backup index you used.
1847  *
1848  * this returns -1 when it has tried all the backups
1849  */
1850 static noinline int next_root_backup(struct btrfs_fs_info *info,
1851                                      struct btrfs_super_block *super,
1852                                      int *num_backups_tried, int *backup_index)
1853 {
1854         struct btrfs_root_backup *root_backup;
1855         int newest = *backup_index;
1856
1857         if (*num_backups_tried == 0) {
1858                 u64 gen = btrfs_super_generation(super);
1859
1860                 newest = find_newest_super_backup(info, gen);
1861                 if (newest == -1)
1862                         return -1;
1863
1864                 *backup_index = newest;
1865                 *num_backups_tried = 1;
1866         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1867                 /* we've tried all the backups, all done */
1868                 return -1;
1869         } else {
1870                 /* jump to the next oldest backup */
1871                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1872                         BTRFS_NUM_BACKUP_ROOTS;
1873                 *backup_index = newest;
1874                 *num_backups_tried += 1;
1875         }
1876         root_backup = super->super_roots + newest;
1877
1878         btrfs_set_super_generation(super,
1879                                    btrfs_backup_tree_root_gen(root_backup));
1880         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1881         btrfs_set_super_root_level(super,
1882                                    btrfs_backup_tree_root_level(root_backup));
1883         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1884
1885         /*
1886          * fixme: the total bytes and num_devices need to match or we should
1887          * need a fsck
1888          */
1889         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1890         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1891         return 0;
1892 }
1893
1894 /* helper to cleanup tree roots */
1895 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1896 {
1897         free_extent_buffer(info->tree_root->node);
1898         free_extent_buffer(info->tree_root->commit_root);
1899         free_extent_buffer(info->dev_root->node);
1900         free_extent_buffer(info->dev_root->commit_root);
1901         free_extent_buffer(info->extent_root->node);
1902         free_extent_buffer(info->extent_root->commit_root);
1903         free_extent_buffer(info->csum_root->node);
1904         free_extent_buffer(info->csum_root->commit_root);
1905         if (info->quota_root) {
1906                 free_extent_buffer(info->quota_root->node);
1907                 free_extent_buffer(info->quota_root->commit_root);
1908         }
1909
1910         info->tree_root->node = NULL;
1911         info->tree_root->commit_root = NULL;
1912         info->dev_root->node = NULL;
1913         info->dev_root->commit_root = NULL;
1914         info->extent_root->node = NULL;
1915         info->extent_root->commit_root = NULL;
1916         info->csum_root->node = NULL;
1917         info->csum_root->commit_root = NULL;
1918         if (info->quota_root) {
1919                 info->quota_root->node = NULL;
1920                 info->quota_root->commit_root = NULL;
1921         }
1922
1923         if (chunk_root) {
1924                 free_extent_buffer(info->chunk_root->node);
1925                 free_extent_buffer(info->chunk_root->commit_root);
1926                 info->chunk_root->node = NULL;
1927                 info->chunk_root->commit_root = NULL;
1928         }
1929 }
1930
1931
1932 int open_ctree(struct super_block *sb,
1933                struct btrfs_fs_devices *fs_devices,
1934                char *options)
1935 {
1936         u32 sectorsize;
1937         u32 nodesize;
1938         u32 leafsize;
1939         u32 blocksize;
1940         u32 stripesize;
1941         u64 generation;
1942         u64 features;
1943         struct btrfs_key location;
1944         struct buffer_head *bh;
1945         struct btrfs_super_block *disk_super;
1946         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1947         struct btrfs_root *tree_root;
1948         struct btrfs_root *extent_root;
1949         struct btrfs_root *csum_root;
1950         struct btrfs_root *chunk_root;
1951         struct btrfs_root *dev_root;
1952         struct btrfs_root *quota_root;
1953         struct btrfs_root *log_tree_root;
1954         int ret;
1955         int err = -EINVAL;
1956         int num_backups_tried = 0;
1957         int backup_index = 0;
1958
1959         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1960         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1961         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1962         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1963         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1964         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1965
1966         if (!tree_root || !extent_root || !csum_root ||
1967             !chunk_root || !dev_root || !quota_root) {
1968                 err = -ENOMEM;
1969                 goto fail;
1970         }
1971
1972         ret = init_srcu_struct(&fs_info->subvol_srcu);
1973         if (ret) {
1974                 err = ret;
1975                 goto fail;
1976         }
1977
1978         ret = setup_bdi(fs_info, &fs_info->bdi);
1979         if (ret) {
1980                 err = ret;
1981                 goto fail_srcu;
1982         }
1983
1984         fs_info->btree_inode = new_inode(sb);
1985         if (!fs_info->btree_inode) {
1986                 err = -ENOMEM;
1987                 goto fail_bdi;
1988         }
1989
1990         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1991
1992         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1993         INIT_LIST_HEAD(&fs_info->trans_list);
1994         INIT_LIST_HEAD(&fs_info->dead_roots);
1995         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1996         INIT_LIST_HEAD(&fs_info->hashers);
1997         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1998         INIT_LIST_HEAD(&fs_info->ordered_operations);
1999         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2000         spin_lock_init(&fs_info->delalloc_lock);
2001         spin_lock_init(&fs_info->trans_lock);
2002         spin_lock_init(&fs_info->ref_cache_lock);
2003         spin_lock_init(&fs_info->fs_roots_radix_lock);
2004         spin_lock_init(&fs_info->delayed_iput_lock);
2005         spin_lock_init(&fs_info->defrag_inodes_lock);
2006         spin_lock_init(&fs_info->free_chunk_lock);
2007         spin_lock_init(&fs_info->tree_mod_seq_lock);
2008         rwlock_init(&fs_info->tree_mod_log_lock);
2009         mutex_init(&fs_info->reloc_mutex);
2010
2011         init_completion(&fs_info->kobj_unregister);
2012         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2013         INIT_LIST_HEAD(&fs_info->space_info);
2014         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2015         btrfs_mapping_init(&fs_info->mapping_tree);
2016         btrfs_init_block_rsv(&fs_info->global_block_rsv);
2017         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2018         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2019         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2020         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
2021         btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
2022         atomic_set(&fs_info->nr_async_submits, 0);
2023         atomic_set(&fs_info->async_delalloc_pages, 0);
2024         atomic_set(&fs_info->async_submit_draining, 0);
2025         atomic_set(&fs_info->nr_async_bios, 0);
2026         atomic_set(&fs_info->defrag_running, 0);
2027         atomic_set(&fs_info->tree_mod_seq, 0);
2028         fs_info->sb = sb;
2029         fs_info->max_inline = 8192 * 1024;
2030         fs_info->metadata_ratio = 0;
2031         fs_info->defrag_inodes = RB_ROOT;
2032         fs_info->trans_no_join = 0;
2033         fs_info->free_chunk_space = 0;
2034         fs_info->tree_mod_log = RB_ROOT;
2035
2036         /* readahead state */
2037         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2038         spin_lock_init(&fs_info->reada_lock);
2039
2040         fs_info->thread_pool_size = min_t(unsigned long,
2041                                           num_online_cpus() + 2, 8);
2042
2043         INIT_LIST_HEAD(&fs_info->ordered_extents);
2044         spin_lock_init(&fs_info->ordered_extent_lock);
2045         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2046                                         GFP_NOFS);
2047         if (!fs_info->delayed_root) {
2048                 err = -ENOMEM;
2049                 goto fail_iput;
2050         }
2051         btrfs_init_delayed_root(fs_info->delayed_root);
2052
2053         mutex_init(&fs_info->scrub_lock);
2054         atomic_set(&fs_info->scrubs_running, 0);
2055         atomic_set(&fs_info->scrub_pause_req, 0);
2056         atomic_set(&fs_info->scrubs_paused, 0);
2057         atomic_set(&fs_info->scrub_cancel_req, 0);
2058         init_waitqueue_head(&fs_info->scrub_pause_wait);
2059         init_rwsem(&fs_info->scrub_super_lock);
2060         fs_info->scrub_workers_refcnt = 0;
2061 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2062         fs_info->check_integrity_print_mask = 0;
2063 #endif
2064
2065         spin_lock_init(&fs_info->balance_lock);
2066         mutex_init(&fs_info->balance_mutex);
2067         atomic_set(&fs_info->balance_running, 0);
2068         atomic_set(&fs_info->balance_pause_req, 0);
2069         atomic_set(&fs_info->balance_cancel_req, 0);
2070         fs_info->balance_ctl = NULL;
2071         init_waitqueue_head(&fs_info->balance_wait_q);
2072
2073         sb->s_blocksize = 4096;
2074         sb->s_blocksize_bits = blksize_bits(4096);
2075         sb->s_bdi = &fs_info->bdi;
2076
2077         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2078         set_nlink(fs_info->btree_inode, 1);
2079         /*
2080          * we set the i_size on the btree inode to the max possible int.
2081          * the real end of the address space is determined by all of
2082          * the devices in the system
2083          */
2084         fs_info->btree_inode->i_size = OFFSET_MAX;
2085         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2086         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2087
2088         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2089         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2090                              fs_info->btree_inode->i_mapping);
2091         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2092         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2093
2094         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2095
2096         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2097         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2098                sizeof(struct btrfs_key));
2099         set_bit(BTRFS_INODE_DUMMY,
2100                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2101         insert_inode_hash(fs_info->btree_inode);
2102
2103         spin_lock_init(&fs_info->block_group_cache_lock);
2104         fs_info->block_group_cache_tree = RB_ROOT;
2105
2106         extent_io_tree_init(&fs_info->freed_extents[0],
2107                              fs_info->btree_inode->i_mapping);
2108         extent_io_tree_init(&fs_info->freed_extents[1],
2109                              fs_info->btree_inode->i_mapping);
2110         fs_info->pinned_extents = &fs_info->freed_extents[0];
2111         fs_info->do_barriers = 1;
2112
2113
2114         mutex_init(&fs_info->ordered_operations_mutex);
2115         mutex_init(&fs_info->tree_log_mutex);
2116         mutex_init(&fs_info->chunk_mutex);
2117         mutex_init(&fs_info->transaction_kthread_mutex);
2118         mutex_init(&fs_info->cleaner_mutex);
2119         mutex_init(&fs_info->volume_mutex);
2120         init_rwsem(&fs_info->extent_commit_sem);
2121         init_rwsem(&fs_info->cleanup_work_sem);
2122         init_rwsem(&fs_info->subvol_sem);
2123
2124         spin_lock_init(&fs_info->qgroup_lock);
2125         fs_info->qgroup_tree = RB_ROOT;
2126         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2127         fs_info->qgroup_seq = 1;
2128         fs_info->quota_enabled = 0;
2129         fs_info->pending_quota_state = 0;
2130
2131         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2132         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2133
2134         init_waitqueue_head(&fs_info->transaction_throttle);
2135         init_waitqueue_head(&fs_info->transaction_wait);
2136         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2137         init_waitqueue_head(&fs_info->async_submit_wait);
2138
2139         __setup_root(4096, 4096, 4096, 4096, tree_root,
2140                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2141
2142         invalidate_bdev(fs_devices->latest_bdev);
2143         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2144         if (!bh) {
2145                 err = -EINVAL;
2146                 goto fail_alloc;
2147         }
2148
2149         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2150         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2151                sizeof(*fs_info->super_for_commit));
2152         brelse(bh);
2153
2154         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2155
2156         disk_super = fs_info->super_copy;
2157         if (!btrfs_super_root(disk_super))
2158                 goto fail_alloc;
2159
2160         /* check FS state, whether FS is broken. */
2161         fs_info->fs_state |= btrfs_super_flags(disk_super);
2162
2163         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2164         if (ret) {
2165                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2166                 err = ret;
2167                 goto fail_alloc;
2168         }
2169
2170         /*
2171          * run through our array of backup supers and setup
2172          * our ring pointer to the oldest one
2173          */
2174         generation = btrfs_super_generation(disk_super);
2175         find_oldest_super_backup(fs_info, generation);
2176
2177         /*
2178          * In the long term, we'll store the compression type in the super
2179          * block, and it'll be used for per file compression control.
2180          */
2181         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2182
2183         ret = btrfs_parse_options(tree_root, options);
2184         if (ret) {
2185                 err = ret;
2186                 goto fail_alloc;
2187         }
2188
2189         features = btrfs_super_incompat_flags(disk_super) &
2190                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2191         if (features) {
2192                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2193                        "unsupported optional features (%Lx).\n",
2194                        (unsigned long long)features);
2195                 err = -EINVAL;
2196                 goto fail_alloc;
2197         }
2198
2199         if (btrfs_super_leafsize(disk_super) !=
2200             btrfs_super_nodesize(disk_super)) {
2201                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2202                        "blocksizes don't match.  node %d leaf %d\n",
2203                        btrfs_super_nodesize(disk_super),
2204                        btrfs_super_leafsize(disk_super));
2205                 err = -EINVAL;
2206                 goto fail_alloc;
2207         }
2208         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2209                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2210                        "blocksize (%d) was too large\n",
2211                        btrfs_super_leafsize(disk_super));
2212                 err = -EINVAL;
2213                 goto fail_alloc;
2214         }
2215
2216         features = btrfs_super_incompat_flags(disk_super);
2217         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2218         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2219                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2220
2221         /*
2222          * flag our filesystem as having big metadata blocks if
2223          * they are bigger than the page size
2224          */
2225         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2226                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2227                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2228                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2229         }
2230
2231         nodesize = btrfs_super_nodesize(disk_super);
2232         leafsize = btrfs_super_leafsize(disk_super);
2233         sectorsize = btrfs_super_sectorsize(disk_super);
2234         stripesize = btrfs_super_stripesize(disk_super);
2235
2236         /*
2237          * mixed block groups end up with duplicate but slightly offset
2238          * extent buffers for the same range.  It leads to corruptions
2239          */
2240         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2241             (sectorsize != leafsize)) {
2242                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2243                                 "are not allowed for mixed block groups on %s\n",
2244                                 sb->s_id);
2245                 goto fail_alloc;
2246         }
2247
2248         btrfs_set_super_incompat_flags(disk_super, features);
2249
2250         features = btrfs_super_compat_ro_flags(disk_super) &
2251                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2252         if (!(sb->s_flags & MS_RDONLY) && features) {
2253                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2254                        "unsupported option features (%Lx).\n",
2255                        (unsigned long long)features);
2256                 err = -EINVAL;
2257                 goto fail_alloc;
2258         }
2259
2260         btrfs_init_workers(&fs_info->generic_worker,
2261                            "genwork", 1, NULL);
2262
2263         btrfs_init_workers(&fs_info->workers, "worker",
2264                            fs_info->thread_pool_size,
2265                            &fs_info->generic_worker);
2266
2267         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2268                            fs_info->thread_pool_size,
2269                            &fs_info->generic_worker);
2270
2271         btrfs_init_workers(&fs_info->submit_workers, "submit",
2272                            min_t(u64, fs_devices->num_devices,
2273                            fs_info->thread_pool_size),
2274                            &fs_info->generic_worker);
2275
2276         btrfs_init_workers(&fs_info->caching_workers, "cache",
2277                            2, &fs_info->generic_worker);
2278
2279         /* a higher idle thresh on the submit workers makes it much more
2280          * likely that bios will be send down in a sane order to the
2281          * devices
2282          */
2283         fs_info->submit_workers.idle_thresh = 64;
2284
2285         fs_info->workers.idle_thresh = 16;
2286         fs_info->workers.ordered = 1;
2287
2288         fs_info->delalloc_workers.idle_thresh = 2;
2289         fs_info->delalloc_workers.ordered = 1;
2290
2291         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2292                            &fs_info->generic_worker);
2293         btrfs_init_workers(&fs_info->endio_workers, "endio",
2294                            fs_info->thread_pool_size,
2295                            &fs_info->generic_worker);
2296         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2297                            fs_info->thread_pool_size,
2298                            &fs_info->generic_worker);
2299         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2300                            "endio-meta-write", fs_info->thread_pool_size,
2301                            &fs_info->generic_worker);
2302         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2303                            fs_info->thread_pool_size,
2304                            &fs_info->generic_worker);
2305         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2306                            1, &fs_info->generic_worker);
2307         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2308                            fs_info->thread_pool_size,
2309                            &fs_info->generic_worker);
2310         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2311                            fs_info->thread_pool_size,
2312                            &fs_info->generic_worker);
2313
2314         /*
2315          * endios are largely parallel and should have a very
2316          * low idle thresh
2317          */
2318         fs_info->endio_workers.idle_thresh = 4;
2319         fs_info->endio_meta_workers.idle_thresh = 4;
2320
2321         fs_info->endio_write_workers.idle_thresh = 2;
2322         fs_info->endio_meta_write_workers.idle_thresh = 2;
2323         fs_info->readahead_workers.idle_thresh = 2;
2324
2325         /*
2326          * btrfs_start_workers can really only fail because of ENOMEM so just
2327          * return -ENOMEM if any of these fail.
2328          */
2329         ret = btrfs_start_workers(&fs_info->workers);
2330         ret |= btrfs_start_workers(&fs_info->generic_worker);
2331         ret |= btrfs_start_workers(&fs_info->submit_workers);
2332         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2333         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2334         ret |= btrfs_start_workers(&fs_info->endio_workers);
2335         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2336         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2337         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2338         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2339         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2340         ret |= btrfs_start_workers(&fs_info->caching_workers);
2341         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2342         if (ret) {
2343                 err = -ENOMEM;
2344                 goto fail_sb_buffer;
2345         }
2346
2347         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2348         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2349                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2350
2351         tree_root->nodesize = nodesize;
2352         tree_root->leafsize = leafsize;
2353         tree_root->sectorsize = sectorsize;
2354         tree_root->stripesize = stripesize;
2355
2356         sb->s_blocksize = sectorsize;
2357         sb->s_blocksize_bits = blksize_bits(sectorsize);
2358
2359         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2360                     sizeof(disk_super->magic))) {
2361                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2362                 goto fail_sb_buffer;
2363         }
2364
2365         if (sectorsize != PAGE_SIZE) {
2366                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2367                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2368                 goto fail_sb_buffer;
2369         }
2370
2371         mutex_lock(&fs_info->chunk_mutex);
2372         ret = btrfs_read_sys_array(tree_root);
2373         mutex_unlock(&fs_info->chunk_mutex);
2374         if (ret) {
2375                 printk(KERN_WARNING "btrfs: failed to read the system "
2376                        "array on %s\n", sb->s_id);
2377                 goto fail_sb_buffer;
2378         }
2379
2380         blocksize = btrfs_level_size(tree_root,
2381                                      btrfs_super_chunk_root_level(disk_super));
2382         generation = btrfs_super_chunk_root_generation(disk_super);
2383
2384         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2385                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2386
2387         chunk_root->node = read_tree_block(chunk_root,
2388                                            btrfs_super_chunk_root(disk_super),
2389                                            blocksize, generation);
2390         BUG_ON(!chunk_root->node); /* -ENOMEM */
2391         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2392                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2393                        sb->s_id);
2394                 goto fail_tree_roots;
2395         }
2396         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2397         chunk_root->commit_root = btrfs_root_node(chunk_root);
2398
2399         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2400            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2401            BTRFS_UUID_SIZE);
2402
2403         ret = btrfs_read_chunk_tree(chunk_root);
2404         if (ret) {
2405                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2406                        sb->s_id);
2407                 goto fail_tree_roots;
2408         }
2409
2410         btrfs_close_extra_devices(fs_devices);
2411
2412         if (!fs_devices->latest_bdev) {
2413                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2414                        sb->s_id);
2415                 goto fail_tree_roots;
2416         }
2417
2418 retry_root_backup:
2419         blocksize = btrfs_level_size(tree_root,
2420                                      btrfs_super_root_level(disk_super));
2421         generation = btrfs_super_generation(disk_super);
2422
2423         tree_root->node = read_tree_block(tree_root,
2424                                           btrfs_super_root(disk_super),
2425                                           blocksize, generation);
2426         if (!tree_root->node ||
2427             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2428                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2429                        sb->s_id);
2430
2431                 goto recovery_tree_root;
2432         }
2433
2434         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2435         tree_root->commit_root = btrfs_root_node(tree_root);
2436
2437         ret = find_and_setup_root(tree_root, fs_info,
2438                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2439         if (ret)
2440                 goto recovery_tree_root;
2441         extent_root->track_dirty = 1;
2442
2443         ret = find_and_setup_root(tree_root, fs_info,
2444                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2445         if (ret)
2446                 goto recovery_tree_root;
2447         dev_root->track_dirty = 1;
2448
2449         ret = find_and_setup_root(tree_root, fs_info,
2450                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2451         if (ret)
2452                 goto recovery_tree_root;
2453         csum_root->track_dirty = 1;
2454
2455         ret = find_and_setup_root(tree_root, fs_info,
2456                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2457         if (ret) {
2458                 kfree(quota_root);
2459                 quota_root = fs_info->quota_root = NULL;
2460         } else {
2461                 quota_root->track_dirty = 1;
2462                 fs_info->quota_enabled = 1;
2463                 fs_info->pending_quota_state = 1;
2464         }
2465
2466         fs_info->generation = generation;
2467         fs_info->last_trans_committed = generation;
2468
2469         ret = btrfs_recover_balance(fs_info);
2470         if (ret) {
2471                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2472                 goto fail_block_groups;
2473         }
2474
2475         ret = btrfs_init_dev_stats(fs_info);
2476         if (ret) {
2477                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2478                        ret);
2479                 goto fail_block_groups;
2480         }
2481
2482         ret = btrfs_init_space_info(fs_info);
2483         if (ret) {
2484                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2485                 goto fail_block_groups;
2486         }
2487
2488         ret = btrfs_read_block_groups(extent_root);
2489         if (ret) {
2490                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2491                 goto fail_block_groups;
2492         }
2493
2494         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2495                                                "btrfs-cleaner");
2496         if (IS_ERR(fs_info->cleaner_kthread))
2497                 goto fail_block_groups;
2498
2499         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2500                                                    tree_root,
2501                                                    "btrfs-transaction");
2502         if (IS_ERR(fs_info->transaction_kthread))
2503                 goto fail_cleaner;
2504
2505         if (!btrfs_test_opt(tree_root, SSD) &&
2506             !btrfs_test_opt(tree_root, NOSSD) &&
2507             !fs_info->fs_devices->rotating) {
2508                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2509                        "mode\n");
2510                 btrfs_set_opt(fs_info->mount_opt, SSD);
2511         }
2512
2513 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2514         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2515                 ret = btrfsic_mount(tree_root, fs_devices,
2516                                     btrfs_test_opt(tree_root,
2517                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2518                                     1 : 0,
2519                                     fs_info->check_integrity_print_mask);
2520                 if (ret)
2521                         printk(KERN_WARNING "btrfs: failed to initialize"
2522                                " integrity check module %s\n", sb->s_id);
2523         }
2524 #endif
2525         ret = btrfs_read_qgroup_config(fs_info);
2526         if (ret)
2527                 goto fail_trans_kthread;
2528
2529         /* do not make disk changes in broken FS */
2530         if (btrfs_super_log_root(disk_super) != 0 &&
2531             !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2532                 u64 bytenr = btrfs_super_log_root(disk_super);
2533
2534                 if (fs_devices->rw_devices == 0) {
2535                         printk(KERN_WARNING "Btrfs log replay required "
2536                                "on RO media\n");
2537                         err = -EIO;
2538                         goto fail_qgroup;
2539                 }
2540                 blocksize =
2541                      btrfs_level_size(tree_root,
2542                                       btrfs_super_log_root_level(disk_super));
2543
2544                 log_tree_root = btrfs_alloc_root(fs_info);
2545                 if (!log_tree_root) {
2546                         err = -ENOMEM;
2547                         goto fail_qgroup;
2548                 }
2549
2550                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2551                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2552
2553                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2554                                                       blocksize,
2555                                                       generation + 1);
2556                 /* returns with log_tree_root freed on success */
2557                 ret = btrfs_recover_log_trees(log_tree_root);
2558                 if (ret) {
2559                         btrfs_error(tree_root->fs_info, ret,
2560                                     "Failed to recover log tree");
2561                         free_extent_buffer(log_tree_root->node);
2562                         kfree(log_tree_root);
2563                         goto fail_trans_kthread;
2564                 }
2565
2566                 if (sb->s_flags & MS_RDONLY) {
2567                         ret = btrfs_commit_super(tree_root);
2568                         if (ret)
2569                                 goto fail_trans_kthread;
2570                 }
2571         }
2572
2573         ret = btrfs_find_orphan_roots(tree_root);
2574         if (ret)
2575                 goto fail_trans_kthread;
2576
2577         if (!(sb->s_flags & MS_RDONLY)) {
2578                 ret = btrfs_cleanup_fs_roots(fs_info);
2579                 if (ret)
2580                         goto fail_trans_kthread;
2581
2582                 ret = btrfs_recover_relocation(tree_root);
2583                 if (ret < 0) {
2584                         printk(KERN_WARNING
2585                                "btrfs: failed to recover relocation\n");
2586                         err = -EINVAL;
2587                         goto fail_qgroup;
2588                 }
2589         }
2590
2591         location.objectid = BTRFS_FS_TREE_OBJECTID;
2592         location.type = BTRFS_ROOT_ITEM_KEY;
2593         location.offset = (u64)-1;
2594
2595         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2596         if (!fs_info->fs_root)
2597                 goto fail_qgroup;
2598         if (IS_ERR(fs_info->fs_root)) {
2599                 err = PTR_ERR(fs_info->fs_root);
2600                 goto fail_qgroup;
2601         }
2602
2603         if (sb->s_flags & MS_RDONLY)
2604                 return 0;
2605
2606         down_read(&fs_info->cleanup_work_sem);
2607         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2608             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2609                 up_read(&fs_info->cleanup_work_sem);
2610                 close_ctree(tree_root);
2611                 return ret;
2612         }
2613         up_read(&fs_info->cleanup_work_sem);
2614
2615         ret = btrfs_resume_balance_async(fs_info);
2616         if (ret) {
2617                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2618                 close_ctree(tree_root);
2619                 return ret;
2620         }
2621
2622         return 0;
2623
2624 fail_qgroup:
2625         btrfs_free_qgroup_config(fs_info);
2626 fail_trans_kthread:
2627         kthread_stop(fs_info->transaction_kthread);
2628 fail_cleaner:
2629         kthread_stop(fs_info->cleaner_kthread);
2630
2631         /*
2632          * make sure we're done with the btree inode before we stop our
2633          * kthreads
2634          */
2635         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2636         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2637
2638 fail_block_groups:
2639         btrfs_free_block_groups(fs_info);
2640
2641 fail_tree_roots:
2642         free_root_pointers(fs_info, 1);
2643
2644 fail_sb_buffer:
2645         btrfs_stop_workers(&fs_info->generic_worker);
2646         btrfs_stop_workers(&fs_info->readahead_workers);
2647         btrfs_stop_workers(&fs_info->fixup_workers);
2648         btrfs_stop_workers(&fs_info->delalloc_workers);
2649         btrfs_stop_workers(&fs_info->workers);
2650         btrfs_stop_workers(&fs_info->endio_workers);
2651         btrfs_stop_workers(&fs_info->endio_meta_workers);
2652         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2653         btrfs_stop_workers(&fs_info->endio_write_workers);
2654         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2655         btrfs_stop_workers(&fs_info->submit_workers);
2656         btrfs_stop_workers(&fs_info->delayed_workers);
2657         btrfs_stop_workers(&fs_info->caching_workers);
2658 fail_alloc:
2659 fail_iput:
2660         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2661
2662         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2663         iput(fs_info->btree_inode);
2664 fail_bdi:
2665         bdi_destroy(&fs_info->bdi);
2666 fail_srcu:
2667         cleanup_srcu_struct(&fs_info->subvol_srcu);
2668 fail:
2669         btrfs_close_devices(fs_info->fs_devices);
2670         return err;
2671
2672 recovery_tree_root:
2673         if (!btrfs_test_opt(tree_root, RECOVERY))
2674                 goto fail_tree_roots;
2675
2676         free_root_pointers(fs_info, 0);
2677
2678         /* don't use the log in recovery mode, it won't be valid */
2679         btrfs_set_super_log_root(disk_super, 0);
2680
2681         /* we can't trust the free space cache either */
2682         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2683
2684         ret = next_root_backup(fs_info, fs_info->super_copy,
2685                                &num_backups_tried, &backup_index);
2686         if (ret == -1)
2687                 goto fail_block_groups;
2688         goto retry_root_backup;
2689 }
2690
2691 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2692 {
2693         if (uptodate) {
2694                 set_buffer_uptodate(bh);
2695         } else {
2696                 struct btrfs_device *device = (struct btrfs_device *)
2697                         bh->b_private;
2698
2699                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2700                                           "I/O error on %s\n",
2701                                           rcu_str_deref(device->name));
2702                 /* note, we dont' set_buffer_write_io_error because we have
2703                  * our own ways of dealing with the IO errors
2704                  */
2705                 clear_buffer_uptodate(bh);
2706                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2707         }
2708         unlock_buffer(bh);
2709         put_bh(bh);
2710 }
2711
2712 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2713 {
2714         struct buffer_head *bh;
2715         struct buffer_head *latest = NULL;
2716         struct btrfs_super_block *super;
2717         int i;
2718         u64 transid = 0;
2719         u64 bytenr;
2720
2721         /* we would like to check all the supers, but that would make
2722          * a btrfs mount succeed after a mkfs from a different FS.
2723          * So, we need to add a special mount option to scan for
2724          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2725          */
2726         for (i = 0; i < 1; i++) {
2727                 bytenr = btrfs_sb_offset(i);
2728                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2729                         break;
2730                 bh = __bread(bdev, bytenr / 4096, 4096);
2731                 if (!bh)
2732                         continue;
2733
2734                 super = (struct btrfs_super_block *)bh->b_data;
2735                 if (btrfs_super_bytenr(super) != bytenr ||
2736                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2737                             sizeof(super->magic))) {
2738                         brelse(bh);
2739                         continue;
2740                 }
2741
2742                 if (!latest || btrfs_super_generation(super) > transid) {
2743                         brelse(latest);
2744                         latest = bh;
2745                         transid = btrfs_super_generation(super);
2746                 } else {
2747                         brelse(bh);
2748                 }
2749         }
2750         return latest;
2751 }
2752
2753 /*
2754  * this should be called twice, once with wait == 0 and
2755  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2756  * we write are pinned.
2757  *
2758  * They are released when wait == 1 is done.
2759  * max_mirrors must be the same for both runs, and it indicates how
2760  * many supers on this one device should be written.
2761  *
2762  * max_mirrors == 0 means to write them all.
2763  */
2764 static int write_dev_supers(struct btrfs_device *device,
2765                             struct btrfs_super_block *sb,
2766                             int do_barriers, int wait, int max_mirrors)
2767 {
2768         struct buffer_head *bh;
2769         int i;
2770         int ret;
2771         int errors = 0;
2772         u32 crc;
2773         u64 bytenr;
2774
2775         if (max_mirrors == 0)
2776                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2777
2778         for (i = 0; i < max_mirrors; i++) {
2779                 bytenr = btrfs_sb_offset(i);
2780                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2781                         break;
2782
2783                 if (wait) {
2784                         bh = __find_get_block(device->bdev, bytenr / 4096,
2785                                               BTRFS_SUPER_INFO_SIZE);
2786                         BUG_ON(!bh);
2787                         wait_on_buffer(bh);
2788                         if (!buffer_uptodate(bh))
2789                                 errors++;
2790
2791                         /* drop our reference */
2792                         brelse(bh);
2793
2794                         /* drop the reference from the wait == 0 run */
2795                         brelse(bh);
2796                         continue;
2797                 } else {
2798                         btrfs_set_super_bytenr(sb, bytenr);
2799
2800                         crc = ~(u32)0;
2801                         crc = btrfs_csum_data(NULL, (char *)sb +
2802                                               BTRFS_CSUM_SIZE, crc,
2803                                               BTRFS_SUPER_INFO_SIZE -
2804                                               BTRFS_CSUM_SIZE);
2805                         btrfs_csum_final(crc, sb->csum);
2806
2807                         /*
2808                          * one reference for us, and we leave it for the
2809                          * caller
2810                          */
2811                         bh = __getblk(device->bdev, bytenr / 4096,
2812                                       BTRFS_SUPER_INFO_SIZE);
2813                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2814
2815                         /* one reference for submit_bh */
2816                         get_bh(bh);
2817
2818                         set_buffer_uptodate(bh);
2819                         lock_buffer(bh);
2820                         bh->b_end_io = btrfs_end_buffer_write_sync;
2821                         bh->b_private = device;
2822                 }
2823
2824                 /*
2825                  * we fua the first super.  The others we allow
2826                  * to go down lazy.
2827                  */
2828                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2829                 if (ret)
2830                         errors++;
2831         }
2832         return errors < i ? 0 : -1;
2833 }
2834
2835 /*
2836  * endio for the write_dev_flush, this will wake anyone waiting
2837  * for the barrier when it is done
2838  */
2839 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2840 {
2841         if (err) {
2842                 if (err == -EOPNOTSUPP)
2843                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2844                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2845         }
2846         if (bio->bi_private)
2847                 complete(bio->bi_private);
2848         bio_put(bio);
2849 }
2850
2851 /*
2852  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2853  * sent down.  With wait == 1, it waits for the previous flush.
2854  *
2855  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2856  * capable
2857  */
2858 static int write_dev_flush(struct btrfs_device *device, int wait)
2859 {
2860         struct bio *bio;
2861         int ret = 0;
2862
2863         if (device->nobarriers)
2864                 return 0;
2865
2866         if (wait) {
2867                 bio = device->flush_bio;
2868                 if (!bio)
2869                         return 0;
2870
2871                 wait_for_completion(&device->flush_wait);
2872
2873                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2874                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2875                                       rcu_str_deref(device->name));
2876                         device->nobarriers = 1;
2877                 }
2878                 if (!bio_flagged(bio, BIO_UPTODATE)) {
2879                         ret = -EIO;
2880                         if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2881                                 btrfs_dev_stat_inc_and_print(device,
2882                                         BTRFS_DEV_STAT_FLUSH_ERRS);
2883                 }
2884
2885                 /* drop the reference from the wait == 0 run */
2886                 bio_put(bio);
2887                 device->flush_bio = NULL;
2888
2889                 return ret;
2890         }
2891
2892         /*
2893          * one reference for us, and we leave it for the
2894          * caller
2895          */
2896         device->flush_bio = NULL;
2897         bio = bio_alloc(GFP_NOFS, 0);
2898         if (!bio)
2899                 return -ENOMEM;
2900
2901         bio->bi_end_io = btrfs_end_empty_barrier;
2902         bio->bi_bdev = device->bdev;
2903         init_completion(&device->flush_wait);
2904         bio->bi_private = &device->flush_wait;
2905         device->flush_bio = bio;
2906
2907         bio_get(bio);
2908         btrfsic_submit_bio(WRITE_FLUSH, bio);
2909
2910         return 0;
2911 }
2912
2913 /*
2914  * send an empty flush down to each device in parallel,
2915  * then wait for them
2916  */
2917 static int barrier_all_devices(struct btrfs_fs_info *info)
2918 {
2919         struct list_head *head;
2920         struct btrfs_device *dev;
2921         int errors = 0;
2922         int ret;
2923
2924         /* send down all the barriers */
2925         head = &info->fs_devices->devices;
2926         list_for_each_entry_rcu(dev, head, dev_list) {
2927                 if (!dev->bdev) {
2928                         errors++;
2929                         continue;
2930                 }
2931                 if (!dev->in_fs_metadata || !dev->writeable)
2932                         continue;
2933
2934                 ret = write_dev_flush(dev, 0);
2935                 if (ret)
2936                         errors++;
2937         }
2938
2939         /* wait for all the barriers */
2940         list_for_each_entry_rcu(dev, head, dev_list) {
2941                 if (!dev->bdev) {
2942                         errors++;
2943                         continue;
2944                 }
2945                 if (!dev->in_fs_metadata || !dev->writeable)
2946                         continue;
2947
2948                 ret = write_dev_flush(dev, 1);
2949                 if (ret)
2950                         errors++;
2951         }
2952         if (errors)
2953                 return -EIO;
2954         return 0;
2955 }
2956
2957 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2958 {
2959         struct list_head *head;
2960         struct btrfs_device *dev;
2961         struct btrfs_super_block *sb;
2962         struct btrfs_dev_item *dev_item;
2963         int ret;
2964         int do_barriers;
2965         int max_errors;
2966         int total_errors = 0;
2967         u64 flags;
2968
2969         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2970         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2971         backup_super_roots(root->fs_info);
2972
2973         sb = root->fs_info->super_for_commit;
2974         dev_item = &sb->dev_item;
2975
2976         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2977         head = &root->fs_info->fs_devices->devices;
2978
2979         if (do_barriers)
2980                 barrier_all_devices(root->fs_info);
2981
2982         list_for_each_entry_rcu(dev, head, dev_list) {
2983                 if (!dev->bdev) {
2984                         total_errors++;
2985                         continue;
2986                 }
2987                 if (!dev->in_fs_metadata || !dev->writeable)
2988                         continue;
2989
2990                 btrfs_set_stack_device_generation(dev_item, 0);
2991                 btrfs_set_stack_device_type(dev_item, dev->type);
2992                 btrfs_set_stack_device_id(dev_item, dev->devid);
2993                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2994                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2995                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2996                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2997                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2998                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2999                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3000
3001                 flags = btrfs_super_flags(sb);
3002                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3003
3004                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3005                 if (ret)
3006                         total_errors++;
3007         }
3008         if (total_errors > max_errors) {
3009                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3010                        total_errors);
3011
3012                 /* This shouldn't happen. FUA is masked off if unsupported */
3013                 BUG();
3014         }
3015
3016         total_errors = 0;
3017         list_for_each_entry_rcu(dev, head, dev_list) {
3018                 if (!dev->bdev)
3019                         continue;
3020                 if (!dev->in_fs_metadata || !dev->writeable)
3021                         continue;
3022
3023                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3024                 if (ret)
3025                         total_errors++;
3026         }
3027         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3028         if (total_errors > max_errors) {
3029                 btrfs_error(root->fs_info, -EIO,
3030                             "%d errors while writing supers", total_errors);
3031                 return -EIO;
3032         }
3033         return 0;
3034 }
3035
3036 int write_ctree_super(struct btrfs_trans_handle *trans,
3037                       struct btrfs_root *root, int max_mirrors)
3038 {
3039         int ret;
3040
3041         ret = write_all_supers(root, max_mirrors);
3042         return ret;
3043 }
3044
3045 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3046 {
3047         spin_lock(&fs_info->fs_roots_radix_lock);
3048         radix_tree_delete(&fs_info->fs_roots_radix,
3049                           (unsigned long)root->root_key.objectid);
3050         spin_unlock(&fs_info->fs_roots_radix_lock);
3051
3052         if (btrfs_root_refs(&root->root_item) == 0)
3053                 synchronize_srcu(&fs_info->subvol_srcu);
3054
3055         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3056         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3057         free_fs_root(root);
3058 }
3059
3060 static void free_fs_root(struct btrfs_root *root)
3061 {
3062         iput(root->cache_inode);
3063         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3064         if (root->anon_dev)
3065                 free_anon_bdev(root->anon_dev);
3066         free_extent_buffer(root->node);
3067         free_extent_buffer(root->commit_root);
3068         kfree(root->free_ino_ctl);
3069         kfree(root->free_ino_pinned);
3070         kfree(root->name);
3071         kfree(root);
3072 }
3073
3074 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3075 {
3076         int ret;
3077         struct btrfs_root *gang[8];
3078         int i;
3079
3080         while (!list_empty(&fs_info->dead_roots)) {
3081                 gang[0] = list_entry(fs_info->dead_roots.next,
3082                                      struct btrfs_root, root_list);
3083                 list_del(&gang[0]->root_list);
3084
3085                 if (gang[0]->in_radix) {
3086                         btrfs_free_fs_root(fs_info, gang[0]);
3087                 } else {
3088                         free_extent_buffer(gang[0]->node);
3089                         free_extent_buffer(gang[0]->commit_root);
3090                         kfree(gang[0]);
3091                 }
3092         }
3093
3094         while (1) {
3095                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3096                                              (void **)gang, 0,
3097                                              ARRAY_SIZE(gang));
3098                 if (!ret)
3099                         break;
3100                 for (i = 0; i < ret; i++)
3101                         btrfs_free_fs_root(fs_info, gang[i]);
3102         }
3103 }
3104
3105 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3106 {
3107         u64 root_objectid = 0;
3108         struct btrfs_root *gang[8];
3109         int i;
3110         int ret;
3111
3112         while (1) {
3113                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3114                                              (void **)gang, root_objectid,
3115                                              ARRAY_SIZE(gang));
3116                 if (!ret)
3117                         break;
3118
3119                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3120                 for (i = 0; i < ret; i++) {
3121                         int err;
3122
3123                         root_objectid = gang[i]->root_key.objectid;
3124                         err = btrfs_orphan_cleanup(gang[i]);
3125                         if (err)
3126                                 return err;
3127                 }
3128                 root_objectid++;
3129         }
3130         return 0;
3131 }
3132
3133 int btrfs_commit_super(struct btrfs_root *root)
3134 {
3135         struct btrfs_trans_handle *trans;
3136         int ret;
3137
3138         mutex_lock(&root->fs_info->cleaner_mutex);
3139         btrfs_run_delayed_iputs(root);
3140         btrfs_clean_old_snapshots(root);
3141         mutex_unlock(&root->fs_info->cleaner_mutex);
3142
3143         /* wait until ongoing cleanup work done */
3144         down_write(&root->fs_info->cleanup_work_sem);
3145         up_write(&root->fs_info->cleanup_work_sem);
3146
3147         trans = btrfs_join_transaction(root);
3148         if (IS_ERR(trans))
3149                 return PTR_ERR(trans);
3150         ret = btrfs_commit_transaction(trans, root);
3151         if (ret)
3152                 return ret;
3153         /* run commit again to drop the original snapshot */
3154         trans = btrfs_join_transaction(root);
3155         if (IS_ERR(trans))
3156                 return PTR_ERR(trans);
3157         ret = btrfs_commit_transaction(trans, root);
3158         if (ret)
3159                 return ret;
3160         ret = btrfs_write_and_wait_transaction(NULL, root);
3161         if (ret) {
3162                 btrfs_error(root->fs_info, ret,
3163                             "Failed to sync btree inode to disk.");
3164                 return ret;
3165         }
3166
3167         ret = write_ctree_super(NULL, root, 0);
3168         return ret;
3169 }
3170
3171 int close_ctree(struct btrfs_root *root)
3172 {
3173         struct btrfs_fs_info *fs_info = root->fs_info;
3174         int ret;
3175
3176         fs_info->closing = 1;
3177         smp_mb();
3178
3179         /* pause restriper - we want to resume on mount */
3180         btrfs_pause_balance(root->fs_info);
3181
3182         btrfs_scrub_cancel(root);
3183
3184         /* wait for any defraggers to finish */
3185         wait_event(fs_info->transaction_wait,
3186                    (atomic_read(&fs_info->defrag_running) == 0));
3187
3188         /* clear out the rbtree of defraggable inodes */
3189         btrfs_run_defrag_inodes(fs_info);
3190
3191         /*
3192          * Here come 2 situations when btrfs is broken to flip readonly:
3193          *
3194          * 1. when btrfs flips readonly somewhere else before
3195          * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3196          * and btrfs will skip to write sb directly to keep
3197          * ERROR state on disk.
3198          *
3199          * 2. when btrfs flips readonly just in btrfs_commit_super,
3200          * and in such case, btrfs cannot write sb via btrfs_commit_super,
3201          * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3202          * btrfs will cleanup all FS resources first and write sb then.
3203          */
3204         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3205                 ret = btrfs_commit_super(root);
3206                 if (ret)
3207                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3208         }
3209
3210         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3211                 ret = btrfs_error_commit_super(root);
3212                 if (ret)
3213                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3214         }
3215
3216         btrfs_put_block_group_cache(fs_info);
3217
3218         kthread_stop(fs_info->transaction_kthread);
3219         kthread_stop(fs_info->cleaner_kthread);
3220
3221         fs_info->closing = 2;
3222         smp_mb();
3223
3224         btrfs_free_qgroup_config(root->fs_info);
3225
3226         if (fs_info->delalloc_bytes) {
3227                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3228                        (unsigned long long)fs_info->delalloc_bytes);
3229         }
3230         if (fs_info->total_ref_cache_size) {
3231                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3232                        (unsigned long long)fs_info->total_ref_cache_size);
3233         }
3234
3235         free_extent_buffer(fs_info->extent_root->node);
3236         free_extent_buffer(fs_info->extent_root->commit_root);
3237         free_extent_buffer(fs_info->tree_root->node);
3238         free_extent_buffer(fs_info->tree_root->commit_root);
3239         free_extent_buffer(fs_info->chunk_root->node);
3240         free_extent_buffer(fs_info->chunk_root->commit_root);
3241         free_extent_buffer(fs_info->dev_root->node);
3242         free_extent_buffer(fs_info->dev_root->commit_root);
3243         free_extent_buffer(fs_info->csum_root->node);
3244         free_extent_buffer(fs_info->csum_root->commit_root);
3245         if (fs_info->quota_root) {
3246                 free_extent_buffer(fs_info->quota_root->node);
3247                 free_extent_buffer(fs_info->quota_root->commit_root);
3248         }
3249
3250         btrfs_free_block_groups(fs_info);
3251
3252         del_fs_roots(fs_info);
3253
3254         iput(fs_info->btree_inode);
3255
3256         btrfs_stop_workers(&fs_info->generic_worker);
3257         btrfs_stop_workers(&fs_info->fixup_workers);
3258         btrfs_stop_workers(&fs_info->delalloc_workers);
3259         btrfs_stop_workers(&fs_info->workers);
3260         btrfs_stop_workers(&fs_info->endio_workers);
3261         btrfs_stop_workers(&fs_info->endio_meta_workers);
3262         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3263         btrfs_stop_workers(&fs_info->endio_write_workers);
3264         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3265         btrfs_stop_workers(&fs_info->submit_workers);
3266         btrfs_stop_workers(&fs_info->delayed_workers);
3267         btrfs_stop_workers(&fs_info->caching_workers);
3268         btrfs_stop_workers(&fs_info->readahead_workers);
3269
3270 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3271         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3272                 btrfsic_unmount(root, fs_info->fs_devices);
3273 #endif
3274
3275         btrfs_close_devices(fs_info->fs_devices);
3276         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3277
3278         bdi_destroy(&fs_info->bdi);
3279         cleanup_srcu_struct(&fs_info->subvol_srcu);
3280
3281         return 0;
3282 }
3283
3284 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3285                           int atomic)
3286 {
3287         int ret;
3288         struct inode *btree_inode = buf->pages[0]->mapping->host;
3289
3290         ret = extent_buffer_uptodate(buf);
3291         if (!ret)
3292                 return ret;
3293
3294         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3295                                     parent_transid, atomic);
3296         if (ret == -EAGAIN)
3297                 return ret;
3298         return !ret;
3299 }
3300
3301 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3302 {
3303         return set_extent_buffer_uptodate(buf);
3304 }
3305
3306 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3307 {
3308         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3309         u64 transid = btrfs_header_generation(buf);
3310         int was_dirty;
3311
3312         btrfs_assert_tree_locked(buf);
3313         if (transid != root->fs_info->generation) {
3314                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3315                        "found %llu running %llu\n",
3316                         (unsigned long long)buf->start,
3317                         (unsigned long long)transid,
3318                         (unsigned long long)root->fs_info->generation);
3319                 WARN_ON(1);
3320         }
3321         was_dirty = set_extent_buffer_dirty(buf);
3322         if (!was_dirty) {
3323                 spin_lock(&root->fs_info->delalloc_lock);
3324                 root->fs_info->dirty_metadata_bytes += buf->len;
3325                 spin_unlock(&root->fs_info->delalloc_lock);
3326         }
3327 }
3328
3329 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3330 {
3331         /*
3332          * looks as though older kernels can get into trouble with
3333          * this code, they end up stuck in balance_dirty_pages forever
3334          */
3335         u64 num_dirty;
3336         unsigned long thresh = 32 * 1024 * 1024;
3337
3338         if (current->flags & PF_MEMALLOC)
3339                 return;
3340
3341         btrfs_balance_delayed_items(root);
3342
3343         num_dirty = root->fs_info->dirty_metadata_bytes;
3344
3345         if (num_dirty > thresh) {
3346                 balance_dirty_pages_ratelimited_nr(
3347                                    root->fs_info->btree_inode->i_mapping, 1);
3348         }
3349         return;
3350 }
3351
3352 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3353 {
3354         /*
3355          * looks as though older kernels can get into trouble with
3356          * this code, they end up stuck in balance_dirty_pages forever
3357          */
3358         u64 num_dirty;
3359         unsigned long thresh = 32 * 1024 * 1024;
3360
3361         if (current->flags & PF_MEMALLOC)
3362                 return;
3363
3364         num_dirty = root->fs_info->dirty_metadata_bytes;
3365
3366         if (num_dirty > thresh) {
3367                 balance_dirty_pages_ratelimited_nr(
3368                                    root->fs_info->btree_inode->i_mapping, 1);
3369         }
3370         return;
3371 }
3372
3373 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3374 {
3375         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3376         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3377 }
3378
3379 int btree_lock_page_hook(struct page *page, void *data,
3380                                 void (*flush_fn)(void *))
3381 {
3382         struct inode *inode = page->mapping->host;
3383         struct btrfs_root *root = BTRFS_I(inode)->root;
3384         struct extent_buffer *eb;
3385
3386         /*
3387          * We culled this eb but the page is still hanging out on the mapping,
3388          * carry on.
3389          */
3390         if (!PagePrivate(page))
3391                 goto out;
3392
3393         eb = (struct extent_buffer *)page->private;
3394         if (!eb) {
3395                 WARN_ON(1);
3396                 goto out;
3397         }
3398         if (page != eb->pages[0])
3399                 goto out;
3400
3401         if (!btrfs_try_tree_write_lock(eb)) {
3402                 flush_fn(data);
3403                 btrfs_tree_lock(eb);
3404         }
3405         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3406
3407         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3408                 spin_lock(&root->fs_info->delalloc_lock);
3409                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3410                         root->fs_info->dirty_metadata_bytes -= eb->len;
3411                 else
3412                         WARN_ON(1);
3413                 spin_unlock(&root->fs_info->delalloc_lock);
3414         }
3415
3416         btrfs_tree_unlock(eb);
3417 out:
3418         if (!trylock_page(page)) {
3419                 flush_fn(data);
3420                 lock_page(page);
3421         }
3422         return 0;
3423 }
3424
3425 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3426                               int read_only)
3427 {
3428         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3429                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3430                 return -EINVAL;
3431         }
3432
3433         if (read_only)
3434                 return 0;
3435
3436         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3437                 printk(KERN_WARNING "warning: mount fs with errors, "
3438                        "running btrfsck is recommended\n");
3439         }
3440
3441         return 0;
3442 }
3443
3444 int btrfs_error_commit_super(struct btrfs_root *root)
3445 {
3446         int ret;
3447
3448         mutex_lock(&root->fs_info->cleaner_mutex);
3449         btrfs_run_delayed_iputs(root);
3450         mutex_unlock(&root->fs_info->cleaner_mutex);
3451
3452         down_write(&root->fs_info->cleanup_work_sem);
3453         up_write(&root->fs_info->cleanup_work_sem);
3454
3455         /* cleanup FS via transaction */
3456         btrfs_cleanup_transaction(root);
3457
3458         ret = write_ctree_super(NULL, root, 0);
3459
3460         return ret;
3461 }
3462
3463 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3464 {
3465         struct btrfs_inode *btrfs_inode;
3466         struct list_head splice;
3467
3468         INIT_LIST_HEAD(&splice);
3469
3470         mutex_lock(&root->fs_info->ordered_operations_mutex);
3471         spin_lock(&root->fs_info->ordered_extent_lock);
3472
3473         list_splice_init(&root->fs_info->ordered_operations, &splice);
3474         while (!list_empty(&splice)) {
3475                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3476                                          ordered_operations);
3477
3478                 list_del_init(&btrfs_inode->ordered_operations);
3479
3480                 btrfs_invalidate_inodes(btrfs_inode->root);
3481         }
3482
3483         spin_unlock(&root->fs_info->ordered_extent_lock);
3484         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3485 }
3486
3487 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3488 {
3489         struct list_head splice;
3490         struct btrfs_ordered_extent *ordered;
3491         struct inode *inode;
3492
3493         INIT_LIST_HEAD(&splice);
3494
3495         spin_lock(&root->fs_info->ordered_extent_lock);
3496
3497         list_splice_init(&root->fs_info->ordered_extents, &splice);
3498         while (!list_empty(&splice)) {
3499                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3500                                      root_extent_list);
3501
3502                 list_del_init(&ordered->root_extent_list);
3503                 atomic_inc(&ordered->refs);
3504
3505                 /* the inode may be getting freed (in sys_unlink path). */
3506                 inode = igrab(ordered->inode);
3507
3508                 spin_unlock(&root->fs_info->ordered_extent_lock);
3509                 if (inode)
3510                         iput(inode);
3511
3512                 atomic_set(&ordered->refs, 1);
3513                 btrfs_put_ordered_extent(ordered);
3514
3515                 spin_lock(&root->fs_info->ordered_extent_lock);
3516         }
3517
3518         spin_unlock(&root->fs_info->ordered_extent_lock);
3519 }
3520
3521 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3522                                struct btrfs_root *root)
3523 {
3524         struct rb_node *node;
3525         struct btrfs_delayed_ref_root *delayed_refs;
3526         struct btrfs_delayed_ref_node *ref;
3527         int ret = 0;
3528
3529         delayed_refs = &trans->delayed_refs;
3530
3531         spin_lock(&delayed_refs->lock);
3532         if (delayed_refs->num_entries == 0) {
3533                 spin_unlock(&delayed_refs->lock);
3534                 printk(KERN_INFO "delayed_refs has NO entry\n");
3535                 return ret;
3536         }
3537
3538         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3539                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3540
3541                 atomic_set(&ref->refs, 1);
3542                 if (btrfs_delayed_ref_is_head(ref)) {
3543                         struct btrfs_delayed_ref_head *head;
3544
3545                         head = btrfs_delayed_node_to_head(ref);
3546                         if (!mutex_trylock(&head->mutex)) {
3547                                 atomic_inc(&ref->refs);
3548                                 spin_unlock(&delayed_refs->lock);
3549
3550                                 /* Need to wait for the delayed ref to run */
3551                                 mutex_lock(&head->mutex);
3552                                 mutex_unlock(&head->mutex);
3553                                 btrfs_put_delayed_ref(ref);
3554
3555                                 spin_lock(&delayed_refs->lock);
3556                                 continue;
3557                         }
3558
3559                         kfree(head->extent_op);
3560                         delayed_refs->num_heads--;
3561                         if (list_empty(&head->cluster))
3562                                 delayed_refs->num_heads_ready--;
3563                         list_del_init(&head->cluster);
3564                 }
3565                 ref->in_tree = 0;
3566                 rb_erase(&ref->rb_node, &delayed_refs->root);
3567                 delayed_refs->num_entries--;
3568
3569                 spin_unlock(&delayed_refs->lock);
3570                 btrfs_put_delayed_ref(ref);
3571
3572                 cond_resched();
3573                 spin_lock(&delayed_refs->lock);
3574         }
3575
3576         spin_unlock(&delayed_refs->lock);
3577
3578         return ret;
3579 }
3580
3581 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3582 {
3583         struct btrfs_pending_snapshot *snapshot;
3584         struct list_head splice;
3585
3586         INIT_LIST_HEAD(&splice);
3587
3588         list_splice_init(&t->pending_snapshots, &splice);
3589
3590         while (!list_empty(&splice)) {
3591                 snapshot = list_entry(splice.next,
3592                                       struct btrfs_pending_snapshot,
3593                                       list);
3594
3595                 list_del_init(&snapshot->list);
3596
3597                 kfree(snapshot);
3598         }
3599 }
3600
3601 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3602 {
3603         struct btrfs_inode *btrfs_inode;
3604         struct list_head splice;
3605
3606         INIT_LIST_HEAD(&splice);
3607
3608         spin_lock(&root->fs_info->delalloc_lock);
3609         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3610
3611         while (!list_empty(&splice)) {
3612                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3613                                     delalloc_inodes);
3614
3615                 list_del_init(&btrfs_inode->delalloc_inodes);
3616
3617                 btrfs_invalidate_inodes(btrfs_inode->root);
3618         }
3619
3620         spin_unlock(&root->fs_info->delalloc_lock);
3621 }
3622
3623 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3624                                         struct extent_io_tree *dirty_pages,
3625                                         int mark)
3626 {
3627         int ret;
3628         struct page *page;
3629         struct inode *btree_inode = root->fs_info->btree_inode;
3630         struct extent_buffer *eb;
3631         u64 start = 0;
3632         u64 end;
3633         u64 offset;
3634         unsigned long index;
3635
3636         while (1) {
3637                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3638                                             mark);
3639                 if (ret)
3640                         break;
3641
3642                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3643                 while (start <= end) {
3644                         index = start >> PAGE_CACHE_SHIFT;
3645                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3646                         page = find_get_page(btree_inode->i_mapping, index);
3647                         if (!page)
3648                                 continue;
3649                         offset = page_offset(page);
3650
3651                         spin_lock(&dirty_pages->buffer_lock);
3652                         eb = radix_tree_lookup(
3653                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3654                                                offset >> PAGE_CACHE_SHIFT);
3655                         spin_unlock(&dirty_pages->buffer_lock);
3656                         if (eb)
3657                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3658                                                          &eb->bflags);
3659                         if (PageWriteback(page))
3660                                 end_page_writeback(page);
3661
3662                         lock_page(page);
3663                         if (PageDirty(page)) {
3664                                 clear_page_dirty_for_io(page);
3665                                 spin_lock_irq(&page->mapping->tree_lock);
3666                                 radix_tree_tag_clear(&page->mapping->page_tree,
3667                                                         page_index(page),
3668                                                         PAGECACHE_TAG_DIRTY);
3669                                 spin_unlock_irq(&page->mapping->tree_lock);
3670                         }
3671
3672                         unlock_page(page);
3673                         page_cache_release(page);
3674                 }
3675         }
3676
3677         return ret;
3678 }
3679
3680 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3681                                        struct extent_io_tree *pinned_extents)
3682 {
3683         struct extent_io_tree *unpin;
3684         u64 start;
3685         u64 end;
3686         int ret;
3687         bool loop = true;
3688
3689         unpin = pinned_extents;
3690 again:
3691         while (1) {
3692                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3693                                             EXTENT_DIRTY);
3694                 if (ret)
3695                         break;
3696
3697                 /* opt_discard */
3698                 if (btrfs_test_opt(root, DISCARD))
3699                         ret = btrfs_error_discard_extent(root, start,
3700                                                          end + 1 - start,
3701                                                          NULL);
3702
3703                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3704                 btrfs_error_unpin_extent_range(root, start, end);
3705                 cond_resched();
3706         }
3707
3708         if (loop) {
3709                 if (unpin == &root->fs_info->freed_extents[0])
3710                         unpin = &root->fs_info->freed_extents[1];
3711                 else
3712                         unpin = &root->fs_info->freed_extents[0];
3713                 loop = false;
3714                 goto again;
3715         }
3716
3717         return 0;
3718 }
3719
3720 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3721                                    struct btrfs_root *root)
3722 {
3723         btrfs_destroy_delayed_refs(cur_trans, root);
3724         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3725                                 cur_trans->dirty_pages.dirty_bytes);
3726
3727         /* FIXME: cleanup wait for commit */
3728         cur_trans->in_commit = 1;
3729         cur_trans->blocked = 1;
3730         wake_up(&root->fs_info->transaction_blocked_wait);
3731
3732         cur_trans->blocked = 0;
3733         wake_up(&root->fs_info->transaction_wait);
3734
3735         cur_trans->commit_done = 1;
3736         wake_up(&cur_trans->commit_wait);
3737
3738         btrfs_destroy_delayed_inodes(root);
3739         btrfs_assert_delayed_root_empty(root);
3740
3741         btrfs_destroy_pending_snapshots(cur_trans);
3742
3743         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3744                                      EXTENT_DIRTY);
3745         btrfs_destroy_pinned_extent(root,
3746                                     root->fs_info->pinned_extents);
3747
3748         /*
3749         memset(cur_trans, 0, sizeof(*cur_trans));
3750         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3751         */
3752 }
3753
3754 int btrfs_cleanup_transaction(struct btrfs_root *root)
3755 {
3756         struct btrfs_transaction *t;
3757         LIST_HEAD(list);
3758
3759         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3760
3761         spin_lock(&root->fs_info->trans_lock);
3762         list_splice_init(&root->fs_info->trans_list, &list);
3763         root->fs_info->trans_no_join = 1;
3764         spin_unlock(&root->fs_info->trans_lock);
3765
3766         while (!list_empty(&list)) {
3767                 t = list_entry(list.next, struct btrfs_transaction, list);
3768                 if (!t)
3769                         break;
3770
3771                 btrfs_destroy_ordered_operations(root);
3772
3773                 btrfs_destroy_ordered_extents(root);
3774
3775                 btrfs_destroy_delayed_refs(t, root);
3776
3777                 btrfs_block_rsv_release(root,
3778                                         &root->fs_info->trans_block_rsv,
3779                                         t->dirty_pages.dirty_bytes);
3780
3781                 /* FIXME: cleanup wait for commit */
3782                 t->in_commit = 1;
3783                 t->blocked = 1;
3784                 smp_mb();
3785                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3786                         wake_up(&root->fs_info->transaction_blocked_wait);
3787
3788                 t->blocked = 0;
3789                 smp_mb();
3790                 if (waitqueue_active(&root->fs_info->transaction_wait))
3791                         wake_up(&root->fs_info->transaction_wait);
3792
3793                 t->commit_done = 1;
3794                 smp_mb();
3795                 if (waitqueue_active(&t->commit_wait))
3796                         wake_up(&t->commit_wait);
3797
3798                 btrfs_destroy_delayed_inodes(root);
3799                 btrfs_assert_delayed_root_empty(root);
3800
3801                 btrfs_destroy_pending_snapshots(t);
3802
3803                 btrfs_destroy_delalloc_inodes(root);
3804
3805                 spin_lock(&root->fs_info->trans_lock);
3806                 root->fs_info->running_transaction = NULL;
3807                 spin_unlock(&root->fs_info->trans_lock);
3808
3809                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3810                                              EXTENT_DIRTY);
3811
3812                 btrfs_destroy_pinned_extent(root,
3813                                             root->fs_info->pinned_extents);
3814
3815                 atomic_set(&t->use_count, 0);
3816                 list_del_init(&t->list);
3817                 memset(t, 0, sizeof(*t));
3818                 kmem_cache_free(btrfs_transaction_cachep, t);
3819         }
3820
3821         spin_lock(&root->fs_info->trans_lock);
3822         root->fs_info->trans_no_join = 0;
3823         spin_unlock(&root->fs_info->trans_lock);
3824         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3825
3826         return 0;
3827 }
3828
3829 static struct extent_io_ops btree_extent_io_ops = {
3830         .write_cache_pages_lock_hook = btree_lock_page_hook,
3831         .readpage_end_io_hook = btree_readpage_end_io_hook,
3832         .readpage_io_failed_hook = btree_io_failed_hook,
3833         .submit_bio_hook = btree_submit_bio_hook,
3834         /* note we're sharing with inode.c for the merge bio hook */
3835         .merge_bio_hook = btrfs_merge_bio_hook,
3836 };