ARM: s3c: fix typos in comments
[platform/kernel/linux-starfive.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46
47 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
48                                  BTRFS_HEADER_FLAG_RELOC |\
49                                  BTRFS_SUPER_FLAG_ERROR |\
50                                  BTRFS_SUPER_FLAG_SEEDING |\
51                                  BTRFS_SUPER_FLAG_METADUMP |\
52                                  BTRFS_SUPER_FLAG_METADUMP_V2)
53
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         struct inode *inode;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117
118         /* Optional parameter for submit_bio_start used by direct io */
119         u64 dio_file_offset;
120         struct btrfs_work work;
121         blk_status_t status;
122 };
123
124 /*
125  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
126  * eb, the lockdep key is determined by the btrfs_root it belongs to and
127  * the level the eb occupies in the tree.
128  *
129  * Different roots are used for different purposes and may nest inside each
130  * other and they require separate keysets.  As lockdep keys should be
131  * static, assign keysets according to the purpose of the root as indicated
132  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
133  * roots have separate keysets.
134  *
135  * Lock-nesting across peer nodes is always done with the immediate parent
136  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
137  * subclass to avoid triggering lockdep warning in such cases.
138  *
139  * The key is set by the readpage_end_io_hook after the buffer has passed
140  * csum validation but before the pages are unlocked.  It is also set by
141  * btrfs_init_new_buffer on freshly allocated blocks.
142  *
143  * We also add a check to make sure the highest level of the tree is the
144  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
145  * needs update as well.
146  */
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
149 #  error
150 # endif
151
152 #define DEFINE_LEVEL(stem, level)                                       \
153         .names[level] = "btrfs-" stem "-0" #level,
154
155 #define DEFINE_NAME(stem)                                               \
156         DEFINE_LEVEL(stem, 0)                                           \
157         DEFINE_LEVEL(stem, 1)                                           \
158         DEFINE_LEVEL(stem, 2)                                           \
159         DEFINE_LEVEL(stem, 3)                                           \
160         DEFINE_LEVEL(stem, 4)                                           \
161         DEFINE_LEVEL(stem, 5)                                           \
162         DEFINE_LEVEL(stem, 6)                                           \
163         DEFINE_LEVEL(stem, 7)
164
165 static struct btrfs_lockdep_keyset {
166         u64                     id;             /* root objectid */
167         /* Longest entry: btrfs-free-space-00 */
168         char                    names[BTRFS_MAX_LEVEL][20];
169         struct lock_class_key   keys[BTRFS_MAX_LEVEL];
170 } btrfs_lockdep_keysets[] = {
171         { .id = BTRFS_ROOT_TREE_OBJECTID,       DEFINE_NAME("root")     },
172         { .id = BTRFS_EXTENT_TREE_OBJECTID,     DEFINE_NAME("extent")   },
173         { .id = BTRFS_CHUNK_TREE_OBJECTID,      DEFINE_NAME("chunk")    },
174         { .id = BTRFS_DEV_TREE_OBJECTID,        DEFINE_NAME("dev")      },
175         { .id = BTRFS_CSUM_TREE_OBJECTID,       DEFINE_NAME("csum")     },
176         { .id = BTRFS_QUOTA_TREE_OBJECTID,      DEFINE_NAME("quota")    },
177         { .id = BTRFS_TREE_LOG_OBJECTID,        DEFINE_NAME("log")      },
178         { .id = BTRFS_TREE_RELOC_OBJECTID,      DEFINE_NAME("treloc")   },
179         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc")   },
180         { .id = BTRFS_UUID_TREE_OBJECTID,       DEFINE_NAME("uuid")     },
181         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182         { .id = 0,                              DEFINE_NAME("tree")     },
183 };
184
185 #undef DEFINE_LEVEL
186 #undef DEFINE_NAME
187
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189                                     int level)
190 {
191         struct btrfs_lockdep_keyset *ks;
192
193         BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195         /* find the matching keyset, id 0 is the default entry */
196         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197                 if (ks->id == objectid)
198                         break;
199
200         lockdep_set_class_and_name(&eb->lock,
201                                    &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211         struct btrfs_fs_info *fs_info = buf->fs_info;
212         const int num_pages = num_extent_pages(buf);
213         const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215         char *kaddr;
216         int i;
217
218         shash->tfm = fs_info->csum_shash;
219         crypto_shash_init(shash);
220         kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222                             first_page_part - BTRFS_CSUM_SIZE);
223
224         for (i = 1; i < num_pages; i++) {
225                 kaddr = page_address(buf->pages[i]);
226                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
227         }
228         memset(result, 0, BTRFS_CSUM_SIZE);
229         crypto_shash_final(shash, result);
230 }
231
232 /*
233  * we can't consider a given block up to date unless the transid of the
234  * block matches the transid in the parent node's pointer.  This is how we
235  * detect blocks that either didn't get written at all or got written
236  * in the wrong place.
237  */
238 static int verify_parent_transid(struct extent_io_tree *io_tree,
239                                  struct extent_buffer *eb, u64 parent_transid,
240                                  int atomic)
241 {
242         struct extent_state *cached_state = NULL;
243         int ret;
244
245         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246                 return 0;
247
248         if (atomic)
249                 return -EAGAIN;
250
251         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252                          &cached_state);
253         if (extent_buffer_uptodate(eb) &&
254             btrfs_header_generation(eb) == parent_transid) {
255                 ret = 0;
256                 goto out;
257         }
258         btrfs_err_rl(eb->fs_info,
259                 "parent transid verify failed on %llu wanted %llu found %llu",
260                         eb->start,
261                         parent_transid, btrfs_header_generation(eb));
262         ret = 1;
263         clear_extent_buffer_uptodate(eb);
264 out:
265         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266                              &cached_state);
267         return ret;
268 }
269
270 static bool btrfs_supported_super_csum(u16 csum_type)
271 {
272         switch (csum_type) {
273         case BTRFS_CSUM_TYPE_CRC32:
274         case BTRFS_CSUM_TYPE_XXHASH:
275         case BTRFS_CSUM_TYPE_SHA256:
276         case BTRFS_CSUM_TYPE_BLAKE2:
277                 return true;
278         default:
279                 return false;
280         }
281 }
282
283 /*
284  * Return 0 if the superblock checksum type matches the checksum value of that
285  * algorithm. Pass the raw disk superblock data.
286  */
287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288                                   char *raw_disk_sb)
289 {
290         struct btrfs_super_block *disk_sb =
291                 (struct btrfs_super_block *)raw_disk_sb;
292         char result[BTRFS_CSUM_SIZE];
293         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295         shash->tfm = fs_info->csum_shash;
296
297         /*
298          * The super_block structure does not span the whole
299          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300          * filled with zeros and is included in the checksum.
301          */
302         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
304
305         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306                 return 1;
307
308         return 0;
309 }
310
311 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312                            struct btrfs_key *first_key, u64 parent_transid)
313 {
314         struct btrfs_fs_info *fs_info = eb->fs_info;
315         int found_level;
316         struct btrfs_key found_key;
317         int ret;
318
319         found_level = btrfs_header_level(eb);
320         if (found_level != level) {
321                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322                      KERN_ERR "BTRFS: tree level check failed\n");
323                 btrfs_err(fs_info,
324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325                           eb->start, level, found_level);
326                 return -EIO;
327         }
328
329         if (!first_key)
330                 return 0;
331
332         /*
333          * For live tree block (new tree blocks in current transaction),
334          * we need proper lock context to avoid race, which is impossible here.
335          * So we only checks tree blocks which is read from disk, whose
336          * generation <= fs_info->last_trans_committed.
337          */
338         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339                 return 0;
340
341         /* We have @first_key, so this @eb must have at least one item */
342         if (btrfs_header_nritems(eb) == 0) {
343                 btrfs_err(fs_info,
344                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345                           eb->start);
346                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347                 return -EUCLEAN;
348         }
349
350         if (found_level)
351                 btrfs_node_key_to_cpu(eb, &found_key, 0);
352         else
353                 btrfs_item_key_to_cpu(eb, &found_key, 0);
354         ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
356         if (ret) {
357                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358                      KERN_ERR "BTRFS: tree first key check failed\n");
359                 btrfs_err(fs_info,
360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361                           eb->start, parent_transid, first_key->objectid,
362                           first_key->type, first_key->offset,
363                           found_key.objectid, found_key.type,
364                           found_key.offset);
365         }
366         return ret;
367 }
368
369 /*
370  * helper to read a given tree block, doing retries as required when
371  * the checksums don't match and we have alternate mirrors to try.
372  *
373  * @parent_transid:     expected transid, skip check if 0
374  * @level:              expected level, mandatory check
375  * @first_key:          expected key of first slot, skip check if NULL
376  */
377 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
378                                           u64 parent_transid, int level,
379                                           struct btrfs_key *first_key)
380 {
381         struct btrfs_fs_info *fs_info = eb->fs_info;
382         struct extent_io_tree *io_tree;
383         int failed = 0;
384         int ret;
385         int num_copies = 0;
386         int mirror_num = 0;
387         int failed_mirror = 0;
388
389         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390         while (1) {
391                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393                 if (!ret) {
394                         if (verify_parent_transid(io_tree, eb,
395                                                    parent_transid, 0))
396                                 ret = -EIO;
397                         else if (btrfs_verify_level_key(eb, level,
398                                                 first_key, parent_transid))
399                                 ret = -EUCLEAN;
400                         else
401                                 break;
402                 }
403
404                 num_copies = btrfs_num_copies(fs_info,
405                                               eb->start, eb->len);
406                 if (num_copies == 1)
407                         break;
408
409                 if (!failed_mirror) {
410                         failed = 1;
411                         failed_mirror = eb->read_mirror;
412                 }
413
414                 mirror_num++;
415                 if (mirror_num == failed_mirror)
416                         mirror_num++;
417
418                 if (mirror_num > num_copies)
419                         break;
420         }
421
422         if (failed && !ret && failed_mirror)
423                 btrfs_repair_eb_io_failure(eb, failed_mirror);
424
425         return ret;
426 }
427
428 static int csum_one_extent_buffer(struct extent_buffer *eb)
429 {
430         struct btrfs_fs_info *fs_info = eb->fs_info;
431         u8 result[BTRFS_CSUM_SIZE];
432         int ret;
433
434         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435                                     offsetof(struct btrfs_header, fsid),
436                                     BTRFS_FSID_SIZE) == 0);
437         csum_tree_block(eb, result);
438
439         if (btrfs_header_level(eb))
440                 ret = btrfs_check_node(eb);
441         else
442                 ret = btrfs_check_leaf_full(eb);
443
444         if (ret < 0)
445                 goto error;
446
447         /*
448          * Also check the generation, the eb reached here must be newer than
449          * last committed. Or something seriously wrong happened.
450          */
451         if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
452                 ret = -EUCLEAN;
453                 btrfs_err(fs_info,
454                         "block=%llu bad generation, have %llu expect > %llu",
455                           eb->start, btrfs_header_generation(eb),
456                           fs_info->last_trans_committed);
457                 goto error;
458         }
459         write_extent_buffer(eb, result, 0, fs_info->csum_size);
460
461         return 0;
462
463 error:
464         btrfs_print_tree(eb, 0);
465         btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
466                   eb->start);
467         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
468         return ret;
469 }
470
471 /* Checksum all dirty extent buffers in one bio_vec */
472 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
473                                       struct bio_vec *bvec)
474 {
475         struct page *page = bvec->bv_page;
476         u64 bvec_start = page_offset(page) + bvec->bv_offset;
477         u64 cur;
478         int ret = 0;
479
480         for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
481              cur += fs_info->nodesize) {
482                 struct extent_buffer *eb;
483                 bool uptodate;
484
485                 eb = find_extent_buffer(fs_info, cur);
486                 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
487                                                        fs_info->nodesize);
488
489                 /* A dirty eb shouldn't disappear from buffer_radix */
490                 if (WARN_ON(!eb))
491                         return -EUCLEAN;
492
493                 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
494                         free_extent_buffer(eb);
495                         return -EUCLEAN;
496                 }
497                 if (WARN_ON(!uptodate)) {
498                         free_extent_buffer(eb);
499                         return -EUCLEAN;
500                 }
501
502                 ret = csum_one_extent_buffer(eb);
503                 free_extent_buffer(eb);
504                 if (ret < 0)
505                         return ret;
506         }
507         return ret;
508 }
509
510 /*
511  * Checksum a dirty tree block before IO.  This has extra checks to make sure
512  * we only fill in the checksum field in the first page of a multi-page block.
513  * For subpage extent buffers we need bvec to also read the offset in the page.
514  */
515 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
516 {
517         struct page *page = bvec->bv_page;
518         u64 start = page_offset(page);
519         u64 found_start;
520         struct extent_buffer *eb;
521
522         if (fs_info->sectorsize < PAGE_SIZE)
523                 return csum_dirty_subpage_buffers(fs_info, bvec);
524
525         eb = (struct extent_buffer *)page->private;
526         if (page != eb->pages[0])
527                 return 0;
528
529         found_start = btrfs_header_bytenr(eb);
530
531         if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
532                 WARN_ON(found_start != 0);
533                 return 0;
534         }
535
536         /*
537          * Please do not consolidate these warnings into a single if.
538          * It is useful to know what went wrong.
539          */
540         if (WARN_ON(found_start != start))
541                 return -EUCLEAN;
542         if (WARN_ON(!PageUptodate(page)))
543                 return -EUCLEAN;
544
545         return csum_one_extent_buffer(eb);
546 }
547
548 static int check_tree_block_fsid(struct extent_buffer *eb)
549 {
550         struct btrfs_fs_info *fs_info = eb->fs_info;
551         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
552         u8 fsid[BTRFS_FSID_SIZE];
553         u8 *metadata_uuid;
554
555         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
556                            BTRFS_FSID_SIZE);
557         /*
558          * Checking the incompat flag is only valid for the current fs. For
559          * seed devices it's forbidden to have their uuid changed so reading
560          * ->fsid in this case is fine
561          */
562         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
563                 metadata_uuid = fs_devices->metadata_uuid;
564         else
565                 metadata_uuid = fs_devices->fsid;
566
567         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
568                 return 0;
569
570         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
571                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
572                         return 0;
573
574         return 1;
575 }
576
577 /* Do basic extent buffer checks at read time */
578 static int validate_extent_buffer(struct extent_buffer *eb)
579 {
580         struct btrfs_fs_info *fs_info = eb->fs_info;
581         u64 found_start;
582         const u32 csum_size = fs_info->csum_size;
583         u8 found_level;
584         u8 result[BTRFS_CSUM_SIZE];
585         const u8 *header_csum;
586         int ret = 0;
587
588         found_start = btrfs_header_bytenr(eb);
589         if (found_start != eb->start) {
590                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
591                              eb->start, found_start);
592                 ret = -EIO;
593                 goto out;
594         }
595         if (check_tree_block_fsid(eb)) {
596                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
597                              eb->start);
598                 ret = -EIO;
599                 goto out;
600         }
601         found_level = btrfs_header_level(eb);
602         if (found_level >= BTRFS_MAX_LEVEL) {
603                 btrfs_err(fs_info, "bad tree block level %d on %llu",
604                           (int)btrfs_header_level(eb), eb->start);
605                 ret = -EIO;
606                 goto out;
607         }
608
609         csum_tree_block(eb, result);
610         header_csum = page_address(eb->pages[0]) +
611                 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
612
613         if (memcmp(result, header_csum, csum_size) != 0) {
614                 btrfs_warn_rl(fs_info,
615         "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
616                               eb->start,
617                               CSUM_FMT_VALUE(csum_size, header_csum),
618                               CSUM_FMT_VALUE(csum_size, result),
619                               btrfs_header_level(eb));
620                 ret = -EUCLEAN;
621                 goto out;
622         }
623
624         /*
625          * If this is a leaf block and it is corrupt, set the corrupt bit so
626          * that we don't try and read the other copies of this block, just
627          * return -EIO.
628          */
629         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
630                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631                 ret = -EIO;
632         }
633
634         if (found_level > 0 && btrfs_check_node(eb))
635                 ret = -EIO;
636
637         if (!ret)
638                 set_extent_buffer_uptodate(eb);
639         else
640                 btrfs_err(fs_info,
641                           "block=%llu read time tree block corruption detected",
642                           eb->start);
643 out:
644         return ret;
645 }
646
647 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
648                                    int mirror)
649 {
650         struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
651         struct extent_buffer *eb;
652         bool reads_done;
653         int ret = 0;
654
655         /*
656          * We don't allow bio merge for subpage metadata read, so we should
657          * only get one eb for each endio hook.
658          */
659         ASSERT(end == start + fs_info->nodesize - 1);
660         ASSERT(PagePrivate(page));
661
662         eb = find_extent_buffer(fs_info, start);
663         /*
664          * When we are reading one tree block, eb must have been inserted into
665          * the radix tree. If not, something is wrong.
666          */
667         ASSERT(eb);
668
669         reads_done = atomic_dec_and_test(&eb->io_pages);
670         /* Subpage read must finish in page read */
671         ASSERT(reads_done);
672
673         eb->read_mirror = mirror;
674         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
675                 ret = -EIO;
676                 goto err;
677         }
678         ret = validate_extent_buffer(eb);
679         if (ret < 0)
680                 goto err;
681
682         set_extent_buffer_uptodate(eb);
683
684         free_extent_buffer(eb);
685         return ret;
686 err:
687         /*
688          * end_bio_extent_readpage decrements io_pages in case of error,
689          * make sure it has something to decrement.
690          */
691         atomic_inc(&eb->io_pages);
692         clear_extent_buffer_uptodate(eb);
693         free_extent_buffer(eb);
694         return ret;
695 }
696
697 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
698                                    struct page *page, u64 start, u64 end,
699                                    int mirror)
700 {
701         struct extent_buffer *eb;
702         int ret = 0;
703         int reads_done;
704
705         ASSERT(page->private);
706
707         if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
708                 return validate_subpage_buffer(page, start, end, mirror);
709
710         eb = (struct extent_buffer *)page->private;
711
712         /*
713          * The pending IO might have been the only thing that kept this buffer
714          * in memory.  Make sure we have a ref for all this other checks
715          */
716         atomic_inc(&eb->refs);
717
718         reads_done = atomic_dec_and_test(&eb->io_pages);
719         if (!reads_done)
720                 goto err;
721
722         eb->read_mirror = mirror;
723         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
724                 ret = -EIO;
725                 goto err;
726         }
727         ret = validate_extent_buffer(eb);
728 err:
729         if (ret) {
730                 /*
731                  * our io error hook is going to dec the io pages
732                  * again, we have to make sure it has something
733                  * to decrement
734                  */
735                 atomic_inc(&eb->io_pages);
736                 clear_extent_buffer_uptodate(eb);
737         }
738         free_extent_buffer(eb);
739
740         return ret;
741 }
742
743 static void end_workqueue_bio(struct bio *bio)
744 {
745         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
746         struct btrfs_fs_info *fs_info;
747         struct btrfs_workqueue *wq;
748
749         fs_info = end_io_wq->info;
750         end_io_wq->status = bio->bi_status;
751
752         if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
753                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
754                         wq = fs_info->endio_meta_write_workers;
755                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
756                         wq = fs_info->endio_freespace_worker;
757                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
758                         wq = fs_info->endio_raid56_workers;
759                 else
760                         wq = fs_info->endio_write_workers;
761         } else {
762                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
763                         wq = fs_info->endio_raid56_workers;
764                 else if (end_io_wq->metadata)
765                         wq = fs_info->endio_meta_workers;
766                 else
767                         wq = fs_info->endio_workers;
768         }
769
770         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
771         btrfs_queue_work(wq, &end_io_wq->work);
772 }
773
774 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
775                         enum btrfs_wq_endio_type metadata)
776 {
777         struct btrfs_end_io_wq *end_io_wq;
778
779         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
780         if (!end_io_wq)
781                 return BLK_STS_RESOURCE;
782
783         end_io_wq->private = bio->bi_private;
784         end_io_wq->end_io = bio->bi_end_io;
785         end_io_wq->info = info;
786         end_io_wq->status = 0;
787         end_io_wq->bio = bio;
788         end_io_wq->metadata = metadata;
789
790         bio->bi_private = end_io_wq;
791         bio->bi_end_io = end_workqueue_bio;
792         return 0;
793 }
794
795 static void run_one_async_start(struct btrfs_work *work)
796 {
797         struct async_submit_bio *async;
798         blk_status_t ret;
799
800         async = container_of(work, struct  async_submit_bio, work);
801         ret = async->submit_bio_start(async->inode, async->bio,
802                                       async->dio_file_offset);
803         if (ret)
804                 async->status = ret;
805 }
806
807 /*
808  * In order to insert checksums into the metadata in large chunks, we wait
809  * until bio submission time.   All the pages in the bio are checksummed and
810  * sums are attached onto the ordered extent record.
811  *
812  * At IO completion time the csums attached on the ordered extent record are
813  * inserted into the tree.
814  */
815 static void run_one_async_done(struct btrfs_work *work)
816 {
817         struct async_submit_bio *async;
818         struct inode *inode;
819         blk_status_t ret;
820
821         async = container_of(work, struct  async_submit_bio, work);
822         inode = async->inode;
823
824         /* If an error occurred we just want to clean up the bio and move on */
825         if (async->status) {
826                 async->bio->bi_status = async->status;
827                 bio_endio(async->bio);
828                 return;
829         }
830
831         /*
832          * All of the bios that pass through here are from async helpers.
833          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
834          * This changes nothing when cgroups aren't in use.
835          */
836         async->bio->bi_opf |= REQ_CGROUP_PUNT;
837         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
838         if (ret) {
839                 async->bio->bi_status = ret;
840                 bio_endio(async->bio);
841         }
842 }
843
844 static void run_one_async_free(struct btrfs_work *work)
845 {
846         struct async_submit_bio *async;
847
848         async = container_of(work, struct  async_submit_bio, work);
849         kfree(async);
850 }
851
852 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
853                                  int mirror_num, unsigned long bio_flags,
854                                  u64 dio_file_offset,
855                                  extent_submit_bio_start_t *submit_bio_start)
856 {
857         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
858         struct async_submit_bio *async;
859
860         async = kmalloc(sizeof(*async), GFP_NOFS);
861         if (!async)
862                 return BLK_STS_RESOURCE;
863
864         async->inode = inode;
865         async->bio = bio;
866         async->mirror_num = mirror_num;
867         async->submit_bio_start = submit_bio_start;
868
869         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
870                         run_one_async_free);
871
872         async->dio_file_offset = dio_file_offset;
873
874         async->status = 0;
875
876         if (op_is_sync(bio->bi_opf))
877                 btrfs_set_work_high_priority(&async->work);
878
879         btrfs_queue_work(fs_info->workers, &async->work);
880         return 0;
881 }
882
883 static blk_status_t btree_csum_one_bio(struct bio *bio)
884 {
885         struct bio_vec *bvec;
886         struct btrfs_root *root;
887         int ret = 0;
888         struct bvec_iter_all iter_all;
889
890         ASSERT(!bio_flagged(bio, BIO_CLONED));
891         bio_for_each_segment_all(bvec, bio, iter_all) {
892                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
893                 ret = csum_dirty_buffer(root->fs_info, bvec);
894                 if (ret)
895                         break;
896         }
897
898         return errno_to_blk_status(ret);
899 }
900
901 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
902                                            u64 dio_file_offset)
903 {
904         /*
905          * when we're called for a write, we're already in the async
906          * submission context.  Just jump into btrfs_map_bio
907          */
908         return btree_csum_one_bio(bio);
909 }
910
911 static bool should_async_write(struct btrfs_fs_info *fs_info,
912                              struct btrfs_inode *bi)
913 {
914         if (btrfs_is_zoned(fs_info))
915                 return false;
916         if (atomic_read(&bi->sync_writers))
917                 return false;
918         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
919                 return false;
920         return true;
921 }
922
923 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
924                                        int mirror_num, unsigned long bio_flags)
925 {
926         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
927         blk_status_t ret;
928
929         if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
930                 /*
931                  * called for a read, do the setup so that checksum validation
932                  * can happen in the async kernel threads
933                  */
934                 ret = btrfs_bio_wq_end_io(fs_info, bio,
935                                           BTRFS_WQ_ENDIO_METADATA);
936                 if (ret)
937                         goto out_w_error;
938                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
939         } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
940                 ret = btree_csum_one_bio(bio);
941                 if (ret)
942                         goto out_w_error;
943                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
944         } else {
945                 /*
946                  * kthread helpers are used to submit writes so that
947                  * checksumming can happen in parallel across all CPUs
948                  */
949                 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
950                                           0, btree_submit_bio_start);
951         }
952
953         if (ret)
954                 goto out_w_error;
955         return 0;
956
957 out_w_error:
958         bio->bi_status = ret;
959         bio_endio(bio);
960         return ret;
961 }
962
963 #ifdef CONFIG_MIGRATION
964 static int btree_migratepage(struct address_space *mapping,
965                         struct page *newpage, struct page *page,
966                         enum migrate_mode mode)
967 {
968         /*
969          * we can't safely write a btree page from here,
970          * we haven't done the locking hook
971          */
972         if (PageDirty(page))
973                 return -EAGAIN;
974         /*
975          * Buffers may be managed in a filesystem specific way.
976          * We must have no buffers or drop them.
977          */
978         if (page_has_private(page) &&
979             !try_to_release_page(page, GFP_KERNEL))
980                 return -EAGAIN;
981         return migrate_page(mapping, newpage, page, mode);
982 }
983 #endif
984
985
986 static int btree_writepages(struct address_space *mapping,
987                             struct writeback_control *wbc)
988 {
989         struct btrfs_fs_info *fs_info;
990         int ret;
991
992         if (wbc->sync_mode == WB_SYNC_NONE) {
993
994                 if (wbc->for_kupdate)
995                         return 0;
996
997                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
998                 /* this is a bit racy, but that's ok */
999                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1000                                              BTRFS_DIRTY_METADATA_THRESH,
1001                                              fs_info->dirty_metadata_batch);
1002                 if (ret < 0)
1003                         return 0;
1004         }
1005         return btree_write_cache_pages(mapping, wbc);
1006 }
1007
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010         if (PageWriteback(page) || PageDirty(page))
1011                 return 0;
1012
1013         return try_release_extent_buffer(page);
1014 }
1015
1016 static void btree_invalidate_folio(struct folio *folio, size_t offset,
1017                                  size_t length)
1018 {
1019         struct extent_io_tree *tree;
1020         tree = &BTRFS_I(folio->mapping->host)->io_tree;
1021         extent_invalidate_folio(tree, folio, offset);
1022         btree_releasepage(&folio->page, GFP_NOFS);
1023         if (folio_get_private(folio)) {
1024                 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
1025                            "folio private not zero on folio %llu",
1026                            (unsigned long long)folio_pos(folio));
1027                 folio_detach_private(folio);
1028         }
1029 }
1030
1031 #ifdef DEBUG
1032 static bool btree_dirty_folio(struct address_space *mapping,
1033                 struct folio *folio)
1034 {
1035         struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1036         struct btrfs_subpage *subpage;
1037         struct extent_buffer *eb;
1038         int cur_bit = 0;
1039         u64 page_start = folio_pos(folio);
1040
1041         if (fs_info->sectorsize == PAGE_SIZE) {
1042                 eb = folio_get_private(folio);
1043                 BUG_ON(!eb);
1044                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1045                 BUG_ON(!atomic_read(&eb->refs));
1046                 btrfs_assert_tree_write_locked(eb);
1047                 return filemap_dirty_folio(mapping, folio);
1048         }
1049         subpage = folio_get_private(folio);
1050
1051         ASSERT(subpage->dirty_bitmap);
1052         while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1053                 unsigned long flags;
1054                 u64 cur;
1055                 u16 tmp = (1 << cur_bit);
1056
1057                 spin_lock_irqsave(&subpage->lock, flags);
1058                 if (!(tmp & subpage->dirty_bitmap)) {
1059                         spin_unlock_irqrestore(&subpage->lock, flags);
1060                         cur_bit++;
1061                         continue;
1062                 }
1063                 spin_unlock_irqrestore(&subpage->lock, flags);
1064                 cur = page_start + cur_bit * fs_info->sectorsize;
1065
1066                 eb = find_extent_buffer(fs_info, cur);
1067                 ASSERT(eb);
1068                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1069                 ASSERT(atomic_read(&eb->refs));
1070                 btrfs_assert_tree_write_locked(eb);
1071                 free_extent_buffer(eb);
1072
1073                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1074         }
1075         return filemap_dirty_folio(mapping, folio);
1076 }
1077 #else
1078 #define btree_dirty_folio filemap_dirty_folio
1079 #endif
1080
1081 static const struct address_space_operations btree_aops = {
1082         .writepages     = btree_writepages,
1083         .releasepage    = btree_releasepage,
1084         .invalidate_folio = btree_invalidate_folio,
1085 #ifdef CONFIG_MIGRATION
1086         .migratepage    = btree_migratepage,
1087 #endif
1088         .dirty_folio = btree_dirty_folio,
1089 };
1090
1091 struct extent_buffer *btrfs_find_create_tree_block(
1092                                                 struct btrfs_fs_info *fs_info,
1093                                                 u64 bytenr, u64 owner_root,
1094                                                 int level)
1095 {
1096         if (btrfs_is_testing(fs_info))
1097                 return alloc_test_extent_buffer(fs_info, bytenr);
1098         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1099 }
1100
1101 /*
1102  * Read tree block at logical address @bytenr and do variant basic but critical
1103  * verification.
1104  *
1105  * @owner_root:         the objectid of the root owner for this block.
1106  * @parent_transid:     expected transid of this tree block, skip check if 0
1107  * @level:              expected level, mandatory check
1108  * @first_key:          expected key in slot 0, skip check if NULL
1109  */
1110 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1111                                       u64 owner_root, u64 parent_transid,
1112                                       int level, struct btrfs_key *first_key)
1113 {
1114         struct extent_buffer *buf = NULL;
1115         int ret;
1116
1117         buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1118         if (IS_ERR(buf))
1119                 return buf;
1120
1121         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1122                                              level, first_key);
1123         if (ret) {
1124                 free_extent_buffer_stale(buf);
1125                 return ERR_PTR(ret);
1126         }
1127         return buf;
1128
1129 }
1130
1131 void btrfs_clean_tree_block(struct extent_buffer *buf)
1132 {
1133         struct btrfs_fs_info *fs_info = buf->fs_info;
1134         if (btrfs_header_generation(buf) ==
1135             fs_info->running_transaction->transid) {
1136                 btrfs_assert_tree_write_locked(buf);
1137
1138                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1139                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1140                                                  -buf->len,
1141                                                  fs_info->dirty_metadata_batch);
1142                         clear_extent_buffer_dirty(buf);
1143                 }
1144         }
1145 }
1146
1147 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1148                          u64 objectid)
1149 {
1150         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1151
1152         memset(&root->root_key, 0, sizeof(root->root_key));
1153         memset(&root->root_item, 0, sizeof(root->root_item));
1154         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1155         root->fs_info = fs_info;
1156         root->root_key.objectid = objectid;
1157         root->node = NULL;
1158         root->commit_root = NULL;
1159         root->state = 0;
1160         RB_CLEAR_NODE(&root->rb_node);
1161
1162         root->last_trans = 0;
1163         root->free_objectid = 0;
1164         root->nr_delalloc_inodes = 0;
1165         root->nr_ordered_extents = 0;
1166         root->inode_tree = RB_ROOT;
1167         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1168
1169         btrfs_init_root_block_rsv(root);
1170
1171         INIT_LIST_HEAD(&root->dirty_list);
1172         INIT_LIST_HEAD(&root->root_list);
1173         INIT_LIST_HEAD(&root->delalloc_inodes);
1174         INIT_LIST_HEAD(&root->delalloc_root);
1175         INIT_LIST_HEAD(&root->ordered_extents);
1176         INIT_LIST_HEAD(&root->ordered_root);
1177         INIT_LIST_HEAD(&root->reloc_dirty_list);
1178         INIT_LIST_HEAD(&root->logged_list[0]);
1179         INIT_LIST_HEAD(&root->logged_list[1]);
1180         spin_lock_init(&root->inode_lock);
1181         spin_lock_init(&root->delalloc_lock);
1182         spin_lock_init(&root->ordered_extent_lock);
1183         spin_lock_init(&root->accounting_lock);
1184         spin_lock_init(&root->log_extents_lock[0]);
1185         spin_lock_init(&root->log_extents_lock[1]);
1186         spin_lock_init(&root->qgroup_meta_rsv_lock);
1187         mutex_init(&root->objectid_mutex);
1188         mutex_init(&root->log_mutex);
1189         mutex_init(&root->ordered_extent_mutex);
1190         mutex_init(&root->delalloc_mutex);
1191         init_waitqueue_head(&root->qgroup_flush_wait);
1192         init_waitqueue_head(&root->log_writer_wait);
1193         init_waitqueue_head(&root->log_commit_wait[0]);
1194         init_waitqueue_head(&root->log_commit_wait[1]);
1195         INIT_LIST_HEAD(&root->log_ctxs[0]);
1196         INIT_LIST_HEAD(&root->log_ctxs[1]);
1197         atomic_set(&root->log_commit[0], 0);
1198         atomic_set(&root->log_commit[1], 0);
1199         atomic_set(&root->log_writers, 0);
1200         atomic_set(&root->log_batch, 0);
1201         refcount_set(&root->refs, 1);
1202         atomic_set(&root->snapshot_force_cow, 0);
1203         atomic_set(&root->nr_swapfiles, 0);
1204         root->log_transid = 0;
1205         root->log_transid_committed = -1;
1206         root->last_log_commit = 0;
1207         root->anon_dev = 0;
1208         if (!dummy) {
1209                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1210                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1211                 extent_io_tree_init(fs_info, &root->log_csum_range,
1212                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1213         }
1214
1215         spin_lock_init(&root->root_item_lock);
1216         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1217 #ifdef CONFIG_BTRFS_DEBUG
1218         INIT_LIST_HEAD(&root->leak_list);
1219         spin_lock(&fs_info->fs_roots_radix_lock);
1220         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1221         spin_unlock(&fs_info->fs_roots_radix_lock);
1222 #endif
1223 }
1224
1225 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1226                                            u64 objectid, gfp_t flags)
1227 {
1228         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1229         if (root)
1230                 __setup_root(root, fs_info, objectid);
1231         return root;
1232 }
1233
1234 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1235 /* Should only be used by the testing infrastructure */
1236 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1237 {
1238         struct btrfs_root *root;
1239
1240         if (!fs_info)
1241                 return ERR_PTR(-EINVAL);
1242
1243         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1244         if (!root)
1245                 return ERR_PTR(-ENOMEM);
1246
1247         /* We don't use the stripesize in selftest, set it as sectorsize */
1248         root->alloc_bytenr = 0;
1249
1250         return root;
1251 }
1252 #endif
1253
1254 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1255 {
1256         const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1257         const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1258
1259         return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1260 }
1261
1262 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1263 {
1264         const struct btrfs_key *key = k;
1265         const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1266
1267         return btrfs_comp_cpu_keys(key, &root->root_key);
1268 }
1269
1270 int btrfs_global_root_insert(struct btrfs_root *root)
1271 {
1272         struct btrfs_fs_info *fs_info = root->fs_info;
1273         struct rb_node *tmp;
1274
1275         write_lock(&fs_info->global_root_lock);
1276         tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1277         write_unlock(&fs_info->global_root_lock);
1278         ASSERT(!tmp);
1279
1280         return tmp ? -EEXIST : 0;
1281 }
1282
1283 void btrfs_global_root_delete(struct btrfs_root *root)
1284 {
1285         struct btrfs_fs_info *fs_info = root->fs_info;
1286
1287         write_lock(&fs_info->global_root_lock);
1288         rb_erase(&root->rb_node, &fs_info->global_root_tree);
1289         write_unlock(&fs_info->global_root_lock);
1290 }
1291
1292 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1293                                      struct btrfs_key *key)
1294 {
1295         struct rb_node *node;
1296         struct btrfs_root *root = NULL;
1297
1298         read_lock(&fs_info->global_root_lock);
1299         node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1300         if (node)
1301                 root = container_of(node, struct btrfs_root, rb_node);
1302         read_unlock(&fs_info->global_root_lock);
1303
1304         return root;
1305 }
1306
1307 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1308 {
1309         struct btrfs_block_group *block_group;
1310         u64 ret;
1311
1312         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1313                 return 0;
1314
1315         if (bytenr)
1316                 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1317         else
1318                 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1319         ASSERT(block_group);
1320         if (!block_group)
1321                 return 0;
1322         ret = block_group->global_root_id;
1323         btrfs_put_block_group(block_group);
1324
1325         return ret;
1326 }
1327
1328 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1329 {
1330         struct btrfs_key key = {
1331                 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1332                 .type = BTRFS_ROOT_ITEM_KEY,
1333                 .offset = btrfs_global_root_id(fs_info, bytenr),
1334         };
1335
1336         return btrfs_global_root(fs_info, &key);
1337 }
1338
1339 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1340 {
1341         struct btrfs_key key = {
1342                 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1343                 .type = BTRFS_ROOT_ITEM_KEY,
1344                 .offset = btrfs_global_root_id(fs_info, bytenr),
1345         };
1346
1347         return btrfs_global_root(fs_info, &key);
1348 }
1349
1350 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1351                                      u64 objectid)
1352 {
1353         struct btrfs_fs_info *fs_info = trans->fs_info;
1354         struct extent_buffer *leaf;
1355         struct btrfs_root *tree_root = fs_info->tree_root;
1356         struct btrfs_root *root;
1357         struct btrfs_key key;
1358         unsigned int nofs_flag;
1359         int ret = 0;
1360
1361         /*
1362          * We're holding a transaction handle, so use a NOFS memory allocation
1363          * context to avoid deadlock if reclaim happens.
1364          */
1365         nofs_flag = memalloc_nofs_save();
1366         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1367         memalloc_nofs_restore(nofs_flag);
1368         if (!root)
1369                 return ERR_PTR(-ENOMEM);
1370
1371         root->root_key.objectid = objectid;
1372         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1373         root->root_key.offset = 0;
1374
1375         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1376                                       BTRFS_NESTING_NORMAL);
1377         if (IS_ERR(leaf)) {
1378                 ret = PTR_ERR(leaf);
1379                 leaf = NULL;
1380                 goto fail_unlock;
1381         }
1382
1383         root->node = leaf;
1384         btrfs_mark_buffer_dirty(leaf);
1385
1386         root->commit_root = btrfs_root_node(root);
1387         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1388
1389         btrfs_set_root_flags(&root->root_item, 0);
1390         btrfs_set_root_limit(&root->root_item, 0);
1391         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1392         btrfs_set_root_generation(&root->root_item, trans->transid);
1393         btrfs_set_root_level(&root->root_item, 0);
1394         btrfs_set_root_refs(&root->root_item, 1);
1395         btrfs_set_root_used(&root->root_item, leaf->len);
1396         btrfs_set_root_last_snapshot(&root->root_item, 0);
1397         btrfs_set_root_dirid(&root->root_item, 0);
1398         if (is_fstree(objectid))
1399                 generate_random_guid(root->root_item.uuid);
1400         else
1401                 export_guid(root->root_item.uuid, &guid_null);
1402         btrfs_set_root_drop_level(&root->root_item, 0);
1403
1404         btrfs_tree_unlock(leaf);
1405
1406         key.objectid = objectid;
1407         key.type = BTRFS_ROOT_ITEM_KEY;
1408         key.offset = 0;
1409         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1410         if (ret)
1411                 goto fail;
1412
1413         return root;
1414
1415 fail_unlock:
1416         if (leaf)
1417                 btrfs_tree_unlock(leaf);
1418 fail:
1419         btrfs_put_root(root);
1420
1421         return ERR_PTR(ret);
1422 }
1423
1424 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1425                                          struct btrfs_fs_info *fs_info)
1426 {
1427         struct btrfs_root *root;
1428
1429         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1430         if (!root)
1431                 return ERR_PTR(-ENOMEM);
1432
1433         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1434         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1435         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1436
1437         return root;
1438 }
1439
1440 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1441                               struct btrfs_root *root)
1442 {
1443         struct extent_buffer *leaf;
1444
1445         /*
1446          * DON'T set SHAREABLE bit for log trees.
1447          *
1448          * Log trees are not exposed to user space thus can't be snapshotted,
1449          * and they go away before a real commit is actually done.
1450          *
1451          * They do store pointers to file data extents, and those reference
1452          * counts still get updated (along with back refs to the log tree).
1453          */
1454
1455         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1456                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1457         if (IS_ERR(leaf))
1458                 return PTR_ERR(leaf);
1459
1460         root->node = leaf;
1461
1462         btrfs_mark_buffer_dirty(root->node);
1463         btrfs_tree_unlock(root->node);
1464
1465         return 0;
1466 }
1467
1468 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1469                              struct btrfs_fs_info *fs_info)
1470 {
1471         struct btrfs_root *log_root;
1472
1473         log_root = alloc_log_tree(trans, fs_info);
1474         if (IS_ERR(log_root))
1475                 return PTR_ERR(log_root);
1476
1477         if (!btrfs_is_zoned(fs_info)) {
1478                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1479
1480                 if (ret) {
1481                         btrfs_put_root(log_root);
1482                         return ret;
1483                 }
1484         }
1485
1486         WARN_ON(fs_info->log_root_tree);
1487         fs_info->log_root_tree = log_root;
1488         return 0;
1489 }
1490
1491 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1492                        struct btrfs_root *root)
1493 {
1494         struct btrfs_fs_info *fs_info = root->fs_info;
1495         struct btrfs_root *log_root;
1496         struct btrfs_inode_item *inode_item;
1497         int ret;
1498
1499         log_root = alloc_log_tree(trans, fs_info);
1500         if (IS_ERR(log_root))
1501                 return PTR_ERR(log_root);
1502
1503         ret = btrfs_alloc_log_tree_node(trans, log_root);
1504         if (ret) {
1505                 btrfs_put_root(log_root);
1506                 return ret;
1507         }
1508
1509         log_root->last_trans = trans->transid;
1510         log_root->root_key.offset = root->root_key.objectid;
1511
1512         inode_item = &log_root->root_item.inode;
1513         btrfs_set_stack_inode_generation(inode_item, 1);
1514         btrfs_set_stack_inode_size(inode_item, 3);
1515         btrfs_set_stack_inode_nlink(inode_item, 1);
1516         btrfs_set_stack_inode_nbytes(inode_item,
1517                                      fs_info->nodesize);
1518         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1519
1520         btrfs_set_root_node(&log_root->root_item, log_root->node);
1521
1522         WARN_ON(root->log_root);
1523         root->log_root = log_root;
1524         root->log_transid = 0;
1525         root->log_transid_committed = -1;
1526         root->last_log_commit = 0;
1527         return 0;
1528 }
1529
1530 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1531                                               struct btrfs_path *path,
1532                                               struct btrfs_key *key)
1533 {
1534         struct btrfs_root *root;
1535         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1536         u64 generation;
1537         int ret;
1538         int level;
1539
1540         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1541         if (!root)
1542                 return ERR_PTR(-ENOMEM);
1543
1544         ret = btrfs_find_root(tree_root, key, path,
1545                               &root->root_item, &root->root_key);
1546         if (ret) {
1547                 if (ret > 0)
1548                         ret = -ENOENT;
1549                 goto fail;
1550         }
1551
1552         generation = btrfs_root_generation(&root->root_item);
1553         level = btrfs_root_level(&root->root_item);
1554         root->node = read_tree_block(fs_info,
1555                                      btrfs_root_bytenr(&root->root_item),
1556                                      key->objectid, generation, level, NULL);
1557         if (IS_ERR(root->node)) {
1558                 ret = PTR_ERR(root->node);
1559                 root->node = NULL;
1560                 goto fail;
1561         }
1562         if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1563                 ret = -EIO;
1564                 goto fail;
1565         }
1566         root->commit_root = btrfs_root_node(root);
1567         return root;
1568 fail:
1569         btrfs_put_root(root);
1570         return ERR_PTR(ret);
1571 }
1572
1573 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1574                                         struct btrfs_key *key)
1575 {
1576         struct btrfs_root *root;
1577         struct btrfs_path *path;
1578
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return ERR_PTR(-ENOMEM);
1582         root = read_tree_root_path(tree_root, path, key);
1583         btrfs_free_path(path);
1584
1585         return root;
1586 }
1587
1588 /*
1589  * Initialize subvolume root in-memory structure
1590  *
1591  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1592  */
1593 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1594 {
1595         int ret;
1596         unsigned int nofs_flag;
1597
1598         /*
1599          * We might be called under a transaction (e.g. indirect backref
1600          * resolution) which could deadlock if it triggers memory reclaim
1601          */
1602         nofs_flag = memalloc_nofs_save();
1603         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1604         memalloc_nofs_restore(nofs_flag);
1605         if (ret)
1606                 goto fail;
1607
1608         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1609             !btrfs_is_data_reloc_root(root)) {
1610                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1611                 btrfs_check_and_init_root_item(&root->root_item);
1612         }
1613
1614         /*
1615          * Don't assign anonymous block device to roots that are not exposed to
1616          * userspace, the id pool is limited to 1M
1617          */
1618         if (is_fstree(root->root_key.objectid) &&
1619             btrfs_root_refs(&root->root_item) > 0) {
1620                 if (!anon_dev) {
1621                         ret = get_anon_bdev(&root->anon_dev);
1622                         if (ret)
1623                                 goto fail;
1624                 } else {
1625                         root->anon_dev = anon_dev;
1626                 }
1627         }
1628
1629         mutex_lock(&root->objectid_mutex);
1630         ret = btrfs_init_root_free_objectid(root);
1631         if (ret) {
1632                 mutex_unlock(&root->objectid_mutex);
1633                 goto fail;
1634         }
1635
1636         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1637
1638         mutex_unlock(&root->objectid_mutex);
1639
1640         return 0;
1641 fail:
1642         /* The caller is responsible to call btrfs_free_fs_root */
1643         return ret;
1644 }
1645
1646 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1647                                                u64 root_id)
1648 {
1649         struct btrfs_root *root;
1650
1651         spin_lock(&fs_info->fs_roots_radix_lock);
1652         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1653                                  (unsigned long)root_id);
1654         if (root)
1655                 root = btrfs_grab_root(root);
1656         spin_unlock(&fs_info->fs_roots_radix_lock);
1657         return root;
1658 }
1659
1660 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1661                                                 u64 objectid)
1662 {
1663         struct btrfs_key key = {
1664                 .objectid = objectid,
1665                 .type = BTRFS_ROOT_ITEM_KEY,
1666                 .offset = 0,
1667         };
1668
1669         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1670                 return btrfs_grab_root(fs_info->tree_root);
1671         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1672                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1673         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1674                 return btrfs_grab_root(fs_info->chunk_root);
1675         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1676                 return btrfs_grab_root(fs_info->dev_root);
1677         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1678                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1679         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1680                 return btrfs_grab_root(fs_info->quota_root) ?
1681                         fs_info->quota_root : ERR_PTR(-ENOENT);
1682         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1683                 return btrfs_grab_root(fs_info->uuid_root) ?
1684                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1685         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1686                 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1687
1688                 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1689         }
1690         return NULL;
1691 }
1692
1693 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1694                          struct btrfs_root *root)
1695 {
1696         int ret;
1697
1698         ret = radix_tree_preload(GFP_NOFS);
1699         if (ret)
1700                 return ret;
1701
1702         spin_lock(&fs_info->fs_roots_radix_lock);
1703         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1704                                 (unsigned long)root->root_key.objectid,
1705                                 root);
1706         if (ret == 0) {
1707                 btrfs_grab_root(root);
1708                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1709         }
1710         spin_unlock(&fs_info->fs_roots_radix_lock);
1711         radix_tree_preload_end();
1712
1713         return ret;
1714 }
1715
1716 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1717 {
1718 #ifdef CONFIG_BTRFS_DEBUG
1719         struct btrfs_root *root;
1720
1721         while (!list_empty(&fs_info->allocated_roots)) {
1722                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1723
1724                 root = list_first_entry(&fs_info->allocated_roots,
1725                                         struct btrfs_root, leak_list);
1726                 btrfs_err(fs_info, "leaked root %s refcount %d",
1727                           btrfs_root_name(&root->root_key, buf),
1728                           refcount_read(&root->refs));
1729                 while (refcount_read(&root->refs) > 1)
1730                         btrfs_put_root(root);
1731                 btrfs_put_root(root);
1732         }
1733 #endif
1734 }
1735
1736 static void free_global_roots(struct btrfs_fs_info *fs_info)
1737 {
1738         struct btrfs_root *root;
1739         struct rb_node *node;
1740
1741         while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1742                 root = rb_entry(node, struct btrfs_root, rb_node);
1743                 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1744                 btrfs_put_root(root);
1745         }
1746 }
1747
1748 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1749 {
1750         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1751         percpu_counter_destroy(&fs_info->delalloc_bytes);
1752         percpu_counter_destroy(&fs_info->ordered_bytes);
1753         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1754         btrfs_free_csum_hash(fs_info);
1755         btrfs_free_stripe_hash_table(fs_info);
1756         btrfs_free_ref_cache(fs_info);
1757         kfree(fs_info->balance_ctl);
1758         kfree(fs_info->delayed_root);
1759         free_global_roots(fs_info);
1760         btrfs_put_root(fs_info->tree_root);
1761         btrfs_put_root(fs_info->chunk_root);
1762         btrfs_put_root(fs_info->dev_root);
1763         btrfs_put_root(fs_info->quota_root);
1764         btrfs_put_root(fs_info->uuid_root);
1765         btrfs_put_root(fs_info->fs_root);
1766         btrfs_put_root(fs_info->data_reloc_root);
1767         btrfs_put_root(fs_info->block_group_root);
1768         btrfs_check_leaked_roots(fs_info);
1769         btrfs_extent_buffer_leak_debug_check(fs_info);
1770         kfree(fs_info->super_copy);
1771         kfree(fs_info->super_for_commit);
1772         kfree(fs_info->subpage_info);
1773         kvfree(fs_info);
1774 }
1775
1776
1777 /*
1778  * Get an in-memory reference of a root structure.
1779  *
1780  * For essential trees like root/extent tree, we grab it from fs_info directly.
1781  * For subvolume trees, we check the cached filesystem roots first. If not
1782  * found, then read it from disk and add it to cached fs roots.
1783  *
1784  * Caller should release the root by calling btrfs_put_root() after the usage.
1785  *
1786  * NOTE: Reloc and log trees can't be read by this function as they share the
1787  *       same root objectid.
1788  *
1789  * @objectid:   root id
1790  * @anon_dev:   preallocated anonymous block device number for new roots,
1791  *              pass 0 for new allocation.
1792  * @check_ref:  whether to check root item references, If true, return -ENOENT
1793  *              for orphan roots
1794  */
1795 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1796                                              u64 objectid, dev_t anon_dev,
1797                                              bool check_ref)
1798 {
1799         struct btrfs_root *root;
1800         struct btrfs_path *path;
1801         struct btrfs_key key;
1802         int ret;
1803
1804         root = btrfs_get_global_root(fs_info, objectid);
1805         if (root)
1806                 return root;
1807 again:
1808         root = btrfs_lookup_fs_root(fs_info, objectid);
1809         if (root) {
1810                 /* Shouldn't get preallocated anon_dev for cached roots */
1811                 ASSERT(!anon_dev);
1812                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1813                         btrfs_put_root(root);
1814                         return ERR_PTR(-ENOENT);
1815                 }
1816                 return root;
1817         }
1818
1819         key.objectid = objectid;
1820         key.type = BTRFS_ROOT_ITEM_KEY;
1821         key.offset = (u64)-1;
1822         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1823         if (IS_ERR(root))
1824                 return root;
1825
1826         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1827                 ret = -ENOENT;
1828                 goto fail;
1829         }
1830
1831         ret = btrfs_init_fs_root(root, anon_dev);
1832         if (ret)
1833                 goto fail;
1834
1835         path = btrfs_alloc_path();
1836         if (!path) {
1837                 ret = -ENOMEM;
1838                 goto fail;
1839         }
1840         key.objectid = BTRFS_ORPHAN_OBJECTID;
1841         key.type = BTRFS_ORPHAN_ITEM_KEY;
1842         key.offset = objectid;
1843
1844         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1845         btrfs_free_path(path);
1846         if (ret < 0)
1847                 goto fail;
1848         if (ret == 0)
1849                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1850
1851         ret = btrfs_insert_fs_root(fs_info, root);
1852         if (ret) {
1853                 btrfs_put_root(root);
1854                 if (ret == -EEXIST)
1855                         goto again;
1856                 goto fail;
1857         }
1858         return root;
1859 fail:
1860         /*
1861          * If our caller provided us an anonymous device, then it's his
1862          * responsability to free it in case we fail. So we have to set our
1863          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1864          * and once again by our caller.
1865          */
1866         if (anon_dev)
1867                 root->anon_dev = 0;
1868         btrfs_put_root(root);
1869         return ERR_PTR(ret);
1870 }
1871
1872 /*
1873  * Get in-memory reference of a root structure
1874  *
1875  * @objectid:   tree objectid
1876  * @check_ref:  if set, verify that the tree exists and the item has at least
1877  *              one reference
1878  */
1879 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1880                                      u64 objectid, bool check_ref)
1881 {
1882         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1883 }
1884
1885 /*
1886  * Get in-memory reference of a root structure, created as new, optionally pass
1887  * the anonymous block device id
1888  *
1889  * @objectid:   tree objectid
1890  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1891  *              parameter value
1892  */
1893 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1894                                          u64 objectid, dev_t anon_dev)
1895 {
1896         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1897 }
1898
1899 /*
1900  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1901  * @fs_info:    the fs_info
1902  * @objectid:   the objectid we need to lookup
1903  *
1904  * This is exclusively used for backref walking, and exists specifically because
1905  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1906  * creation time, which means we may have to read the tree_root in order to look
1907  * up a fs root that is not in memory.  If the root is not in memory we will
1908  * read the tree root commit root and look up the fs root from there.  This is a
1909  * temporary root, it will not be inserted into the radix tree as it doesn't
1910  * have the most uptodate information, it'll simply be discarded once the
1911  * backref code is finished using the root.
1912  */
1913 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1914                                                  struct btrfs_path *path,
1915                                                  u64 objectid)
1916 {
1917         struct btrfs_root *root;
1918         struct btrfs_key key;
1919
1920         ASSERT(path->search_commit_root && path->skip_locking);
1921
1922         /*
1923          * This can return -ENOENT if we ask for a root that doesn't exist, but
1924          * since this is called via the backref walking code we won't be looking
1925          * up a root that doesn't exist, unless there's corruption.  So if root
1926          * != NULL just return it.
1927          */
1928         root = btrfs_get_global_root(fs_info, objectid);
1929         if (root)
1930                 return root;
1931
1932         root = btrfs_lookup_fs_root(fs_info, objectid);
1933         if (root)
1934                 return root;
1935
1936         key.objectid = objectid;
1937         key.type = BTRFS_ROOT_ITEM_KEY;
1938         key.offset = (u64)-1;
1939         root = read_tree_root_path(fs_info->tree_root, path, &key);
1940         btrfs_release_path(path);
1941
1942         return root;
1943 }
1944
1945 /*
1946  * called by the kthread helper functions to finally call the bio end_io
1947  * functions.  This is where read checksum verification actually happens
1948  */
1949 static void end_workqueue_fn(struct btrfs_work *work)
1950 {
1951         struct bio *bio;
1952         struct btrfs_end_io_wq *end_io_wq;
1953
1954         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1955         bio = end_io_wq->bio;
1956
1957         bio->bi_status = end_io_wq->status;
1958         bio->bi_private = end_io_wq->private;
1959         bio->bi_end_io = end_io_wq->end_io;
1960         bio_endio(bio);
1961         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1962 }
1963
1964 static int cleaner_kthread(void *arg)
1965 {
1966         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)arg;
1967         int again;
1968
1969         while (1) {
1970                 again = 0;
1971
1972                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1973
1974                 /* Make the cleaner go to sleep early. */
1975                 if (btrfs_need_cleaner_sleep(fs_info))
1976                         goto sleep;
1977
1978                 /*
1979                  * Do not do anything if we might cause open_ctree() to block
1980                  * before we have finished mounting the filesystem.
1981                  */
1982                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1983                         goto sleep;
1984
1985                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1986                         goto sleep;
1987
1988                 /*
1989                  * Avoid the problem that we change the status of the fs
1990                  * during the above check and trylock.
1991                  */
1992                 if (btrfs_need_cleaner_sleep(fs_info)) {
1993                         mutex_unlock(&fs_info->cleaner_mutex);
1994                         goto sleep;
1995                 }
1996
1997                 btrfs_run_delayed_iputs(fs_info);
1998
1999                 again = btrfs_clean_one_deleted_snapshot(fs_info);
2000                 mutex_unlock(&fs_info->cleaner_mutex);
2001
2002                 /*
2003                  * The defragger has dealt with the R/O remount and umount,
2004                  * needn't do anything special here.
2005                  */
2006                 btrfs_run_defrag_inodes(fs_info);
2007
2008                 /*
2009                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
2010                  * with relocation (btrfs_relocate_chunk) and relocation
2011                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
2012                  * after acquiring fs_info->reclaim_bgs_lock. So we
2013                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
2014                  * unused block groups.
2015                  */
2016                 btrfs_delete_unused_bgs(fs_info);
2017
2018                 /*
2019                  * Reclaim block groups in the reclaim_bgs list after we deleted
2020                  * all unused block_groups. This possibly gives us some more free
2021                  * space.
2022                  */
2023                 btrfs_reclaim_bgs(fs_info);
2024 sleep:
2025                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
2026                 if (kthread_should_park())
2027                         kthread_parkme();
2028                 if (kthread_should_stop())
2029                         return 0;
2030                 if (!again) {
2031                         set_current_state(TASK_INTERRUPTIBLE);
2032                         schedule();
2033                         __set_current_state(TASK_RUNNING);
2034                 }
2035         }
2036 }
2037
2038 static int transaction_kthread(void *arg)
2039 {
2040         struct btrfs_root *root = arg;
2041         struct btrfs_fs_info *fs_info = root->fs_info;
2042         struct btrfs_trans_handle *trans;
2043         struct btrfs_transaction *cur;
2044         u64 transid;
2045         time64_t delta;
2046         unsigned long delay;
2047         bool cannot_commit;
2048
2049         do {
2050                 cannot_commit = false;
2051                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
2052                 mutex_lock(&fs_info->transaction_kthread_mutex);
2053
2054                 spin_lock(&fs_info->trans_lock);
2055                 cur = fs_info->running_transaction;
2056                 if (!cur) {
2057                         spin_unlock(&fs_info->trans_lock);
2058                         goto sleep;
2059                 }
2060
2061                 delta = ktime_get_seconds() - cur->start_time;
2062                 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
2063                     cur->state < TRANS_STATE_COMMIT_START &&
2064                     delta < fs_info->commit_interval) {
2065                         spin_unlock(&fs_info->trans_lock);
2066                         delay -= msecs_to_jiffies((delta - 1) * 1000);
2067                         delay = min(delay,
2068                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
2069                         goto sleep;
2070                 }
2071                 transid = cur->transid;
2072                 spin_unlock(&fs_info->trans_lock);
2073
2074                 /* If the file system is aborted, this will always fail. */
2075                 trans = btrfs_attach_transaction(root);
2076                 if (IS_ERR(trans)) {
2077                         if (PTR_ERR(trans) != -ENOENT)
2078                                 cannot_commit = true;
2079                         goto sleep;
2080                 }
2081                 if (transid == trans->transid) {
2082                         btrfs_commit_transaction(trans);
2083                 } else {
2084                         btrfs_end_transaction(trans);
2085                 }
2086 sleep:
2087                 wake_up_process(fs_info->cleaner_kthread);
2088                 mutex_unlock(&fs_info->transaction_kthread_mutex);
2089
2090                 if (BTRFS_FS_ERROR(fs_info))
2091                         btrfs_cleanup_transaction(fs_info);
2092                 if (!kthread_should_stop() &&
2093                                 (!btrfs_transaction_blocked(fs_info) ||
2094                                  cannot_commit))
2095                         schedule_timeout_interruptible(delay);
2096         } while (!kthread_should_stop());
2097         return 0;
2098 }
2099
2100 /*
2101  * This will find the highest generation in the array of root backups.  The
2102  * index of the highest array is returned, or -EINVAL if we can't find
2103  * anything.
2104  *
2105  * We check to make sure the array is valid by comparing the
2106  * generation of the latest  root in the array with the generation
2107  * in the super block.  If they don't match we pitch it.
2108  */
2109 static int find_newest_super_backup(struct btrfs_fs_info *info)
2110 {
2111         const u64 newest_gen = btrfs_super_generation(info->super_copy);
2112         u64 cur;
2113         struct btrfs_root_backup *root_backup;
2114         int i;
2115
2116         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2117                 root_backup = info->super_copy->super_roots + i;
2118                 cur = btrfs_backup_tree_root_gen(root_backup);
2119                 if (cur == newest_gen)
2120                         return i;
2121         }
2122
2123         return -EINVAL;
2124 }
2125
2126 /*
2127  * copy all the root pointers into the super backup array.
2128  * this will bump the backup pointer by one when it is
2129  * done
2130  */
2131 static void backup_super_roots(struct btrfs_fs_info *info)
2132 {
2133         const int next_backup = info->backup_root_index;
2134         struct btrfs_root_backup *root_backup;
2135
2136         root_backup = info->super_for_commit->super_roots + next_backup;
2137
2138         /*
2139          * make sure all of our padding and empty slots get zero filled
2140          * regardless of which ones we use today
2141          */
2142         memset(root_backup, 0, sizeof(*root_backup));
2143
2144         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2145
2146         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2147         btrfs_set_backup_tree_root_gen(root_backup,
2148                                btrfs_header_generation(info->tree_root->node));
2149
2150         btrfs_set_backup_tree_root_level(root_backup,
2151                                btrfs_header_level(info->tree_root->node));
2152
2153         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2154         btrfs_set_backup_chunk_root_gen(root_backup,
2155                                btrfs_header_generation(info->chunk_root->node));
2156         btrfs_set_backup_chunk_root_level(root_backup,
2157                                btrfs_header_level(info->chunk_root->node));
2158
2159         if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
2160                 btrfs_set_backup_block_group_root(root_backup,
2161                                         info->block_group_root->node->start);
2162                 btrfs_set_backup_block_group_root_gen(root_backup,
2163                         btrfs_header_generation(info->block_group_root->node));
2164                 btrfs_set_backup_block_group_root_level(root_backup,
2165                         btrfs_header_level(info->block_group_root->node));
2166         } else {
2167                 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2168                 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2169
2170                 btrfs_set_backup_extent_root(root_backup,
2171                                              extent_root->node->start);
2172                 btrfs_set_backup_extent_root_gen(root_backup,
2173                                 btrfs_header_generation(extent_root->node));
2174                 btrfs_set_backup_extent_root_level(root_backup,
2175                                         btrfs_header_level(extent_root->node));
2176
2177                 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2178                 btrfs_set_backup_csum_root_gen(root_backup,
2179                                                btrfs_header_generation(csum_root->node));
2180                 btrfs_set_backup_csum_root_level(root_backup,
2181                                                  btrfs_header_level(csum_root->node));
2182         }
2183
2184         /*
2185          * we might commit during log recovery, which happens before we set
2186          * the fs_root.  Make sure it is valid before we fill it in.
2187          */
2188         if (info->fs_root && info->fs_root->node) {
2189                 btrfs_set_backup_fs_root(root_backup,
2190                                          info->fs_root->node->start);
2191                 btrfs_set_backup_fs_root_gen(root_backup,
2192                                btrfs_header_generation(info->fs_root->node));
2193                 btrfs_set_backup_fs_root_level(root_backup,
2194                                btrfs_header_level(info->fs_root->node));
2195         }
2196
2197         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2198         btrfs_set_backup_dev_root_gen(root_backup,
2199                                btrfs_header_generation(info->dev_root->node));
2200         btrfs_set_backup_dev_root_level(root_backup,
2201                                        btrfs_header_level(info->dev_root->node));
2202
2203         btrfs_set_backup_total_bytes(root_backup,
2204                              btrfs_super_total_bytes(info->super_copy));
2205         btrfs_set_backup_bytes_used(root_backup,
2206                              btrfs_super_bytes_used(info->super_copy));
2207         btrfs_set_backup_num_devices(root_backup,
2208                              btrfs_super_num_devices(info->super_copy));
2209
2210         /*
2211          * if we don't copy this out to the super_copy, it won't get remembered
2212          * for the next commit
2213          */
2214         memcpy(&info->super_copy->super_roots,
2215                &info->super_for_commit->super_roots,
2216                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2217 }
2218
2219 /*
2220  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2221  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2222  *
2223  * fs_info - filesystem whose backup roots need to be read
2224  * priority - priority of backup root required
2225  *
2226  * Returns backup root index on success and -EINVAL otherwise.
2227  */
2228 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2229 {
2230         int backup_index = find_newest_super_backup(fs_info);
2231         struct btrfs_super_block *super = fs_info->super_copy;
2232         struct btrfs_root_backup *root_backup;
2233
2234         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2235                 if (priority == 0)
2236                         return backup_index;
2237
2238                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2239                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2240         } else {
2241                 return -EINVAL;
2242         }
2243
2244         root_backup = super->super_roots + backup_index;
2245
2246         btrfs_set_super_generation(super,
2247                                    btrfs_backup_tree_root_gen(root_backup));
2248         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2249         btrfs_set_super_root_level(super,
2250                                    btrfs_backup_tree_root_level(root_backup));
2251         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2252
2253         /*
2254          * Fixme: the total bytes and num_devices need to match or we should
2255          * need a fsck
2256          */
2257         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2258         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2259
2260         return backup_index;
2261 }
2262
2263 /* helper to cleanup workers */
2264 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2265 {
2266         btrfs_destroy_workqueue(fs_info->fixup_workers);
2267         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2268         btrfs_destroy_workqueue(fs_info->workers);
2269         btrfs_destroy_workqueue(fs_info->endio_workers);
2270         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2271         btrfs_destroy_workqueue(fs_info->rmw_workers);
2272         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2273         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2274         btrfs_destroy_workqueue(fs_info->delayed_workers);
2275         btrfs_destroy_workqueue(fs_info->caching_workers);
2276         btrfs_destroy_workqueue(fs_info->flush_workers);
2277         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2278         if (fs_info->discard_ctl.discard_workers)
2279                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2280         /*
2281          * Now that all other work queues are destroyed, we can safely destroy
2282          * the queues used for metadata I/O, since tasks from those other work
2283          * queues can do metadata I/O operations.
2284          */
2285         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2286         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2287 }
2288
2289 static void free_root_extent_buffers(struct btrfs_root *root)
2290 {
2291         if (root) {
2292                 free_extent_buffer(root->node);
2293                 free_extent_buffer(root->commit_root);
2294                 root->node = NULL;
2295                 root->commit_root = NULL;
2296         }
2297 }
2298
2299 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2300 {
2301         struct btrfs_root *root, *tmp;
2302
2303         rbtree_postorder_for_each_entry_safe(root, tmp,
2304                                              &fs_info->global_root_tree,
2305                                              rb_node)
2306                 free_root_extent_buffers(root);
2307 }
2308
2309 /* helper to cleanup tree roots */
2310 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2311 {
2312         free_root_extent_buffers(info->tree_root);
2313
2314         free_global_root_pointers(info);
2315         free_root_extent_buffers(info->dev_root);
2316         free_root_extent_buffers(info->quota_root);
2317         free_root_extent_buffers(info->uuid_root);
2318         free_root_extent_buffers(info->fs_root);
2319         free_root_extent_buffers(info->data_reloc_root);
2320         free_root_extent_buffers(info->block_group_root);
2321         if (free_chunk_root)
2322                 free_root_extent_buffers(info->chunk_root);
2323 }
2324
2325 void btrfs_put_root(struct btrfs_root *root)
2326 {
2327         if (!root)
2328                 return;
2329
2330         if (refcount_dec_and_test(&root->refs)) {
2331                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2332                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2333                 if (root->anon_dev)
2334                         free_anon_bdev(root->anon_dev);
2335                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2336                 free_root_extent_buffers(root);
2337 #ifdef CONFIG_BTRFS_DEBUG
2338                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2339                 list_del_init(&root->leak_list);
2340                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2341 #endif
2342                 kfree(root);
2343         }
2344 }
2345
2346 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2347 {
2348         int ret;
2349         struct btrfs_root *gang[8];
2350         int i;
2351
2352         while (!list_empty(&fs_info->dead_roots)) {
2353                 gang[0] = list_entry(fs_info->dead_roots.next,
2354                                      struct btrfs_root, root_list);
2355                 list_del(&gang[0]->root_list);
2356
2357                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2358                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2359                 btrfs_put_root(gang[0]);
2360         }
2361
2362         while (1) {
2363                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2364                                              (void **)gang, 0,
2365                                              ARRAY_SIZE(gang));
2366                 if (!ret)
2367                         break;
2368                 for (i = 0; i < ret; i++)
2369                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2370         }
2371 }
2372
2373 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2374 {
2375         mutex_init(&fs_info->scrub_lock);
2376         atomic_set(&fs_info->scrubs_running, 0);
2377         atomic_set(&fs_info->scrub_pause_req, 0);
2378         atomic_set(&fs_info->scrubs_paused, 0);
2379         atomic_set(&fs_info->scrub_cancel_req, 0);
2380         init_waitqueue_head(&fs_info->scrub_pause_wait);
2381         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2382 }
2383
2384 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2385 {
2386         spin_lock_init(&fs_info->balance_lock);
2387         mutex_init(&fs_info->balance_mutex);
2388         atomic_set(&fs_info->balance_pause_req, 0);
2389         atomic_set(&fs_info->balance_cancel_req, 0);
2390         fs_info->balance_ctl = NULL;
2391         init_waitqueue_head(&fs_info->balance_wait_q);
2392         atomic_set(&fs_info->reloc_cancel_req, 0);
2393 }
2394
2395 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2396 {
2397         struct inode *inode = fs_info->btree_inode;
2398
2399         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2400         set_nlink(inode, 1);
2401         /*
2402          * we set the i_size on the btree inode to the max possible int.
2403          * the real end of the address space is determined by all of
2404          * the devices in the system
2405          */
2406         inode->i_size = OFFSET_MAX;
2407         inode->i_mapping->a_ops = &btree_aops;
2408
2409         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2410         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2411                             IO_TREE_BTREE_INODE_IO, inode);
2412         BTRFS_I(inode)->io_tree.track_uptodate = false;
2413         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2414
2415         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2416         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2417         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2418         btrfs_insert_inode_hash(inode);
2419 }
2420
2421 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2422 {
2423         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2424         init_rwsem(&fs_info->dev_replace.rwsem);
2425         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2426 }
2427
2428 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2429 {
2430         spin_lock_init(&fs_info->qgroup_lock);
2431         mutex_init(&fs_info->qgroup_ioctl_lock);
2432         fs_info->qgroup_tree = RB_ROOT;
2433         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2434         fs_info->qgroup_seq = 1;
2435         fs_info->qgroup_ulist = NULL;
2436         fs_info->qgroup_rescan_running = false;
2437         mutex_init(&fs_info->qgroup_rescan_lock);
2438 }
2439
2440 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2441 {
2442         u32 max_active = fs_info->thread_pool_size;
2443         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2444
2445         fs_info->workers =
2446                 btrfs_alloc_workqueue(fs_info, "worker",
2447                                       flags | WQ_HIGHPRI, max_active, 16);
2448
2449         fs_info->delalloc_workers =
2450                 btrfs_alloc_workqueue(fs_info, "delalloc",
2451                                       flags, max_active, 2);
2452
2453         fs_info->flush_workers =
2454                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2455                                       flags, max_active, 0);
2456
2457         fs_info->caching_workers =
2458                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2459
2460         fs_info->fixup_workers =
2461                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2462
2463         /*
2464          * endios are largely parallel and should have a very
2465          * low idle thresh
2466          */
2467         fs_info->endio_workers =
2468                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2469         fs_info->endio_meta_workers =
2470                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2471                                       max_active, 4);
2472         fs_info->endio_meta_write_workers =
2473                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2474                                       max_active, 2);
2475         fs_info->endio_raid56_workers =
2476                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2477                                       max_active, 4);
2478         fs_info->rmw_workers =
2479                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2480         fs_info->endio_write_workers =
2481                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2482                                       max_active, 2);
2483         fs_info->endio_freespace_worker =
2484                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2485                                       max_active, 0);
2486         fs_info->delayed_workers =
2487                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2488                                       max_active, 0);
2489         fs_info->qgroup_rescan_workers =
2490                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2491         fs_info->discard_ctl.discard_workers =
2492                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2493
2494         if (!(fs_info->workers && fs_info->delalloc_workers &&
2495               fs_info->flush_workers &&
2496               fs_info->endio_workers && fs_info->endio_meta_workers &&
2497               fs_info->endio_meta_write_workers &&
2498               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2499               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2500               fs_info->caching_workers && fs_info->fixup_workers &&
2501               fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2502               fs_info->discard_ctl.discard_workers)) {
2503                 return -ENOMEM;
2504         }
2505
2506         return 0;
2507 }
2508
2509 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2510 {
2511         struct crypto_shash *csum_shash;
2512         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2513
2514         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2515
2516         if (IS_ERR(csum_shash)) {
2517                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2518                           csum_driver);
2519                 return PTR_ERR(csum_shash);
2520         }
2521
2522         fs_info->csum_shash = csum_shash;
2523
2524         return 0;
2525 }
2526
2527 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2528                             struct btrfs_fs_devices *fs_devices)
2529 {
2530         int ret;
2531         struct btrfs_root *log_tree_root;
2532         struct btrfs_super_block *disk_super = fs_info->super_copy;
2533         u64 bytenr = btrfs_super_log_root(disk_super);
2534         int level = btrfs_super_log_root_level(disk_super);
2535
2536         if (fs_devices->rw_devices == 0) {
2537                 btrfs_warn(fs_info, "log replay required on RO media");
2538                 return -EIO;
2539         }
2540
2541         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2542                                          GFP_KERNEL);
2543         if (!log_tree_root)
2544                 return -ENOMEM;
2545
2546         log_tree_root->node = read_tree_block(fs_info, bytenr,
2547                                               BTRFS_TREE_LOG_OBJECTID,
2548                                               fs_info->generation + 1, level,
2549                                               NULL);
2550         if (IS_ERR(log_tree_root->node)) {
2551                 btrfs_warn(fs_info, "failed to read log tree");
2552                 ret = PTR_ERR(log_tree_root->node);
2553                 log_tree_root->node = NULL;
2554                 btrfs_put_root(log_tree_root);
2555                 return ret;
2556         }
2557         if (!extent_buffer_uptodate(log_tree_root->node)) {
2558                 btrfs_err(fs_info, "failed to read log tree");
2559                 btrfs_put_root(log_tree_root);
2560                 return -EIO;
2561         }
2562
2563         /* returns with log_tree_root freed on success */
2564         ret = btrfs_recover_log_trees(log_tree_root);
2565         if (ret) {
2566                 btrfs_handle_fs_error(fs_info, ret,
2567                                       "Failed to recover log tree");
2568                 btrfs_put_root(log_tree_root);
2569                 return ret;
2570         }
2571
2572         if (sb_rdonly(fs_info->sb)) {
2573                 ret = btrfs_commit_super(fs_info);
2574                 if (ret)
2575                         return ret;
2576         }
2577
2578         return 0;
2579 }
2580
2581 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2582                                       struct btrfs_path *path, u64 objectid,
2583                                       const char *name)
2584 {
2585         struct btrfs_fs_info *fs_info = tree_root->fs_info;
2586         struct btrfs_root *root;
2587         u64 max_global_id = 0;
2588         int ret;
2589         struct btrfs_key key = {
2590                 .objectid = objectid,
2591                 .type = BTRFS_ROOT_ITEM_KEY,
2592                 .offset = 0,
2593         };
2594         bool found = false;
2595
2596         /* If we have IGNOREDATACSUMS skip loading these roots. */
2597         if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2598             btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2599                 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2600                 return 0;
2601         }
2602
2603         while (1) {
2604                 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2605                 if (ret < 0)
2606                         break;
2607
2608                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2609                         ret = btrfs_next_leaf(tree_root, path);
2610                         if (ret) {
2611                                 if (ret > 0)
2612                                         ret = 0;
2613                                 break;
2614                         }
2615                 }
2616                 ret = 0;
2617
2618                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2619                 if (key.objectid != objectid)
2620                         break;
2621                 btrfs_release_path(path);
2622
2623                 /*
2624                  * Just worry about this for extent tree, it'll be the same for
2625                  * everybody.
2626                  */
2627                 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2628                         max_global_id = max(max_global_id, key.offset);
2629
2630                 found = true;
2631                 root = read_tree_root_path(tree_root, path, &key);
2632                 if (IS_ERR(root)) {
2633                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2634                                 ret = PTR_ERR(root);
2635                         break;
2636                 }
2637                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2638                 ret = btrfs_global_root_insert(root);
2639                 if (ret) {
2640                         btrfs_put_root(root);
2641                         break;
2642                 }
2643                 key.offset++;
2644         }
2645         btrfs_release_path(path);
2646
2647         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2648                 fs_info->nr_global_roots = max_global_id + 1;
2649
2650         if (!found || ret) {
2651                 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2652                         set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2653
2654                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2655                         ret = ret ? ret : -ENOENT;
2656                 else
2657                         ret = 0;
2658                 btrfs_err(fs_info, "failed to load root %s", name);
2659         }
2660         return ret;
2661 }
2662
2663 static int load_global_roots(struct btrfs_root *tree_root)
2664 {
2665         struct btrfs_path *path;
2666         int ret = 0;
2667
2668         path = btrfs_alloc_path();
2669         if (!path)
2670                 return -ENOMEM;
2671
2672         ret = load_global_roots_objectid(tree_root, path,
2673                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
2674         if (ret)
2675                 goto out;
2676         ret = load_global_roots_objectid(tree_root, path,
2677                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
2678         if (ret)
2679                 goto out;
2680         if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2681                 goto out;
2682         ret = load_global_roots_objectid(tree_root, path,
2683                                          BTRFS_FREE_SPACE_TREE_OBJECTID,
2684                                          "free space");
2685 out:
2686         btrfs_free_path(path);
2687         return ret;
2688 }
2689
2690 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2691 {
2692         struct btrfs_root *tree_root = fs_info->tree_root;
2693         struct btrfs_root *root;
2694         struct btrfs_key location;
2695         int ret;
2696
2697         BUG_ON(!fs_info->tree_root);
2698
2699         ret = load_global_roots(tree_root);
2700         if (ret)
2701                 return ret;
2702
2703         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2704         location.type = BTRFS_ROOT_ITEM_KEY;
2705         location.offset = 0;
2706
2707         root = btrfs_read_tree_root(tree_root, &location);
2708         if (IS_ERR(root)) {
2709                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2710                         ret = PTR_ERR(root);
2711                         goto out;
2712                 }
2713         } else {
2714                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2715                 fs_info->dev_root = root;
2716         }
2717         /* Initialize fs_info for all devices in any case */
2718         btrfs_init_devices_late(fs_info);
2719
2720         /*
2721          * This tree can share blocks with some other fs tree during relocation
2722          * and we need a proper setup by btrfs_get_fs_root
2723          */
2724         root = btrfs_get_fs_root(tree_root->fs_info,
2725                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2726         if (IS_ERR(root)) {
2727                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2728                         ret = PTR_ERR(root);
2729                         goto out;
2730                 }
2731         } else {
2732                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2733                 fs_info->data_reloc_root = root;
2734         }
2735
2736         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2737         root = btrfs_read_tree_root(tree_root, &location);
2738         if (!IS_ERR(root)) {
2739                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2740                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2741                 fs_info->quota_root = root;
2742         }
2743
2744         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2745         root = btrfs_read_tree_root(tree_root, &location);
2746         if (IS_ERR(root)) {
2747                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2748                         ret = PTR_ERR(root);
2749                         if (ret != -ENOENT)
2750                                 goto out;
2751                 }
2752         } else {
2753                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2754                 fs_info->uuid_root = root;
2755         }
2756
2757         return 0;
2758 out:
2759         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2760                    location.objectid, ret);
2761         return ret;
2762 }
2763
2764 /*
2765  * Real super block validation
2766  * NOTE: super csum type and incompat features will not be checked here.
2767  *
2768  * @sb:         super block to check
2769  * @mirror_num: the super block number to check its bytenr:
2770  *              0       the primary (1st) sb
2771  *              1, 2    2nd and 3rd backup copy
2772  *             -1       skip bytenr check
2773  */
2774 static int validate_super(struct btrfs_fs_info *fs_info,
2775                             struct btrfs_super_block *sb, int mirror_num)
2776 {
2777         u64 nodesize = btrfs_super_nodesize(sb);
2778         u64 sectorsize = btrfs_super_sectorsize(sb);
2779         int ret = 0;
2780
2781         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2782                 btrfs_err(fs_info, "no valid FS found");
2783                 ret = -EINVAL;
2784         }
2785         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2786                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2787                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2788                 ret = -EINVAL;
2789         }
2790         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2791                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2792                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2793                 ret = -EINVAL;
2794         }
2795         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2796                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2797                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2798                 ret = -EINVAL;
2799         }
2800         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2801                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2802                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2803                 ret = -EINVAL;
2804         }
2805
2806         /*
2807          * Check sectorsize and nodesize first, other check will need it.
2808          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2809          */
2810         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2811             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2812                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2813                 ret = -EINVAL;
2814         }
2815
2816         /*
2817          * For 4K page size, we only support 4K sector size.
2818          * For 64K page size, we support 64K and 4K sector sizes.
2819          */
2820         if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2821             (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2822                                      sectorsize != SZ_64K))) {
2823                 btrfs_err(fs_info,
2824                         "sectorsize %llu not yet supported for page size %lu",
2825                         sectorsize, PAGE_SIZE);
2826                 ret = -EINVAL;
2827         }
2828
2829         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2830             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2831                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2832                 ret = -EINVAL;
2833         }
2834         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2835                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2836                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2837                 ret = -EINVAL;
2838         }
2839
2840         /* Root alignment check */
2841         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2842                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2843                            btrfs_super_root(sb));
2844                 ret = -EINVAL;
2845         }
2846         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2847                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2848                            btrfs_super_chunk_root(sb));
2849                 ret = -EINVAL;
2850         }
2851         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2852                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2853                            btrfs_super_log_root(sb));
2854                 ret = -EINVAL;
2855         }
2856
2857         if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2858                    BTRFS_FSID_SIZE)) {
2859                 btrfs_err(fs_info,
2860                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2861                         fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2862                 ret = -EINVAL;
2863         }
2864
2865         if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2866             memcmp(fs_info->fs_devices->metadata_uuid,
2867                    fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2868                 btrfs_err(fs_info,
2869 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2870                         fs_info->super_copy->metadata_uuid,
2871                         fs_info->fs_devices->metadata_uuid);
2872                 ret = -EINVAL;
2873         }
2874
2875         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2876                    BTRFS_FSID_SIZE) != 0) {
2877                 btrfs_err(fs_info,
2878                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2879                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2880                 ret = -EINVAL;
2881         }
2882
2883         /*
2884          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2885          * done later
2886          */
2887         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2888                 btrfs_err(fs_info, "bytes_used is too small %llu",
2889                           btrfs_super_bytes_used(sb));
2890                 ret = -EINVAL;
2891         }
2892         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2893                 btrfs_err(fs_info, "invalid stripesize %u",
2894                           btrfs_super_stripesize(sb));
2895                 ret = -EINVAL;
2896         }
2897         if (btrfs_super_num_devices(sb) > (1UL << 31))
2898                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2899                            btrfs_super_num_devices(sb));
2900         if (btrfs_super_num_devices(sb) == 0) {
2901                 btrfs_err(fs_info, "number of devices is 0");
2902                 ret = -EINVAL;
2903         }
2904
2905         if (mirror_num >= 0 &&
2906             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2907                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2908                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2909                 ret = -EINVAL;
2910         }
2911
2912         /*
2913          * Obvious sys_chunk_array corruptions, it must hold at least one key
2914          * and one chunk
2915          */
2916         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2917                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2918                           btrfs_super_sys_array_size(sb),
2919                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2920                 ret = -EINVAL;
2921         }
2922         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2923                         + sizeof(struct btrfs_chunk)) {
2924                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2925                           btrfs_super_sys_array_size(sb),
2926                           sizeof(struct btrfs_disk_key)
2927                           + sizeof(struct btrfs_chunk));
2928                 ret = -EINVAL;
2929         }
2930
2931         /*
2932          * The generation is a global counter, we'll trust it more than the others
2933          * but it's still possible that it's the one that's wrong.
2934          */
2935         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2936                 btrfs_warn(fs_info,
2937                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2938                         btrfs_super_generation(sb),
2939                         btrfs_super_chunk_root_generation(sb));
2940         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2941             && btrfs_super_cache_generation(sb) != (u64)-1)
2942                 btrfs_warn(fs_info,
2943                         "suspicious: generation < cache_generation: %llu < %llu",
2944                         btrfs_super_generation(sb),
2945                         btrfs_super_cache_generation(sb));
2946
2947         return ret;
2948 }
2949
2950 /*
2951  * Validation of super block at mount time.
2952  * Some checks already done early at mount time, like csum type and incompat
2953  * flags will be skipped.
2954  */
2955 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2956 {
2957         return validate_super(fs_info, fs_info->super_copy, 0);
2958 }
2959
2960 /*
2961  * Validation of super block at write time.
2962  * Some checks like bytenr check will be skipped as their values will be
2963  * overwritten soon.
2964  * Extra checks like csum type and incompat flags will be done here.
2965  */
2966 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2967                                       struct btrfs_super_block *sb)
2968 {
2969         int ret;
2970
2971         ret = validate_super(fs_info, sb, -1);
2972         if (ret < 0)
2973                 goto out;
2974         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2975                 ret = -EUCLEAN;
2976                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2977                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2978                 goto out;
2979         }
2980         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2981                 ret = -EUCLEAN;
2982                 btrfs_err(fs_info,
2983                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2984                           btrfs_super_incompat_flags(sb),
2985                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2986                 goto out;
2987         }
2988 out:
2989         if (ret < 0)
2990                 btrfs_err(fs_info,
2991                 "super block corruption detected before writing it to disk");
2992         return ret;
2993 }
2994
2995 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2996 {
2997         int ret = 0;
2998
2999         root->node = read_tree_block(root->fs_info, bytenr,
3000                                      root->root_key.objectid, gen, level, NULL);
3001         if (IS_ERR(root->node)) {
3002                 ret = PTR_ERR(root->node);
3003                 root->node = NULL;
3004                 return ret;
3005         }
3006         if (!extent_buffer_uptodate(root->node)) {
3007                 free_extent_buffer(root->node);
3008                 root->node = NULL;
3009                 return -EIO;
3010         }
3011
3012         btrfs_set_root_node(&root->root_item, root->node);
3013         root->commit_root = btrfs_root_node(root);
3014         btrfs_set_root_refs(&root->root_item, 1);
3015         return ret;
3016 }
3017
3018 static int load_important_roots(struct btrfs_fs_info *fs_info)
3019 {
3020         struct btrfs_super_block *sb = fs_info->super_copy;
3021         u64 gen, bytenr;
3022         int level, ret;
3023
3024         bytenr = btrfs_super_root(sb);
3025         gen = btrfs_super_generation(sb);
3026         level = btrfs_super_root_level(sb);
3027         ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
3028         if (ret) {
3029                 btrfs_warn(fs_info, "couldn't read tree root");
3030                 return ret;
3031         }
3032
3033         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3034                 return 0;
3035
3036         bytenr = btrfs_super_block_group_root(sb);
3037         gen = btrfs_super_block_group_root_generation(sb);
3038         level = btrfs_super_block_group_root_level(sb);
3039         ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
3040         if (ret)
3041                 btrfs_warn(fs_info, "couldn't read block group root");
3042         return ret;
3043 }
3044
3045 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
3046 {
3047         int backup_index = find_newest_super_backup(fs_info);
3048         struct btrfs_super_block *sb = fs_info->super_copy;
3049         struct btrfs_root *tree_root = fs_info->tree_root;
3050         bool handle_error = false;
3051         int ret = 0;
3052         int i;
3053
3054         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3055                 struct btrfs_root *root;
3056
3057                 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
3058                                         GFP_KERNEL);
3059                 if (!root)
3060                         return -ENOMEM;
3061                 fs_info->block_group_root = root;
3062         }
3063
3064         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
3065                 if (handle_error) {
3066                         if (!IS_ERR(tree_root->node))
3067                                 free_extent_buffer(tree_root->node);
3068                         tree_root->node = NULL;
3069
3070                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3071                                 break;
3072
3073                         free_root_pointers(fs_info, 0);
3074
3075                         /*
3076                          * Don't use the log in recovery mode, it won't be
3077                          * valid
3078                          */
3079                         btrfs_set_super_log_root(sb, 0);
3080
3081                         /* We can't trust the free space cache either */
3082                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3083
3084                         ret = read_backup_root(fs_info, i);
3085                         backup_index = ret;
3086                         if (ret < 0)
3087                                 return ret;
3088                 }
3089
3090                 ret = load_important_roots(fs_info);
3091                 if (ret) {
3092                         handle_error = true;
3093                         continue;
3094                 }
3095
3096                 /*
3097                  * No need to hold btrfs_root::objectid_mutex since the fs
3098                  * hasn't been fully initialised and we are the only user
3099                  */
3100                 ret = btrfs_init_root_free_objectid(tree_root);
3101                 if (ret < 0) {
3102                         handle_error = true;
3103                         continue;
3104                 }
3105
3106                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3107
3108                 ret = btrfs_read_roots(fs_info);
3109                 if (ret < 0) {
3110                         handle_error = true;
3111                         continue;
3112                 }
3113
3114                 /* All successful */
3115                 fs_info->generation = btrfs_header_generation(tree_root->node);
3116                 fs_info->last_trans_committed = fs_info->generation;
3117                 fs_info->last_reloc_trans = 0;
3118
3119                 /* Always begin writing backup roots after the one being used */
3120                 if (backup_index < 0) {
3121                         fs_info->backup_root_index = 0;
3122                 } else {
3123                         fs_info->backup_root_index = backup_index + 1;
3124                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3125                 }
3126                 break;
3127         }
3128
3129         return ret;
3130 }
3131
3132 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3133 {
3134         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3135         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3136         INIT_LIST_HEAD(&fs_info->trans_list);
3137         INIT_LIST_HEAD(&fs_info->dead_roots);
3138         INIT_LIST_HEAD(&fs_info->delayed_iputs);
3139         INIT_LIST_HEAD(&fs_info->delalloc_roots);
3140         INIT_LIST_HEAD(&fs_info->caching_block_groups);
3141         spin_lock_init(&fs_info->delalloc_root_lock);
3142         spin_lock_init(&fs_info->trans_lock);
3143         spin_lock_init(&fs_info->fs_roots_radix_lock);
3144         spin_lock_init(&fs_info->delayed_iput_lock);
3145         spin_lock_init(&fs_info->defrag_inodes_lock);
3146         spin_lock_init(&fs_info->super_lock);
3147         spin_lock_init(&fs_info->buffer_lock);
3148         spin_lock_init(&fs_info->unused_bgs_lock);
3149         spin_lock_init(&fs_info->treelog_bg_lock);
3150         spin_lock_init(&fs_info->zone_active_bgs_lock);
3151         spin_lock_init(&fs_info->relocation_bg_lock);
3152         rwlock_init(&fs_info->tree_mod_log_lock);
3153         rwlock_init(&fs_info->global_root_lock);
3154         mutex_init(&fs_info->unused_bg_unpin_mutex);
3155         mutex_init(&fs_info->reclaim_bgs_lock);
3156         mutex_init(&fs_info->reloc_mutex);
3157         mutex_init(&fs_info->delalloc_root_mutex);
3158         mutex_init(&fs_info->zoned_meta_io_lock);
3159         seqlock_init(&fs_info->profiles_lock);
3160
3161         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3162         INIT_LIST_HEAD(&fs_info->space_info);
3163         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3164         INIT_LIST_HEAD(&fs_info->unused_bgs);
3165         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3166         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3167 #ifdef CONFIG_BTRFS_DEBUG
3168         INIT_LIST_HEAD(&fs_info->allocated_roots);
3169         INIT_LIST_HEAD(&fs_info->allocated_ebs);
3170         spin_lock_init(&fs_info->eb_leak_lock);
3171 #endif
3172         extent_map_tree_init(&fs_info->mapping_tree);
3173         btrfs_init_block_rsv(&fs_info->global_block_rsv,
3174                              BTRFS_BLOCK_RSV_GLOBAL);
3175         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3176         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3177         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3178         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3179                              BTRFS_BLOCK_RSV_DELOPS);
3180         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3181                              BTRFS_BLOCK_RSV_DELREFS);
3182
3183         atomic_set(&fs_info->async_delalloc_pages, 0);
3184         atomic_set(&fs_info->defrag_running, 0);
3185         atomic_set(&fs_info->nr_delayed_iputs, 0);
3186         atomic64_set(&fs_info->tree_mod_seq, 0);
3187         fs_info->global_root_tree = RB_ROOT;
3188         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3189         fs_info->metadata_ratio = 0;
3190         fs_info->defrag_inodes = RB_ROOT;
3191         atomic64_set(&fs_info->free_chunk_space, 0);
3192         fs_info->tree_mod_log = RB_ROOT;
3193         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3194         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3195         btrfs_init_ref_verify(fs_info);
3196
3197         fs_info->thread_pool_size = min_t(unsigned long,
3198                                           num_online_cpus() + 2, 8);
3199
3200         INIT_LIST_HEAD(&fs_info->ordered_roots);
3201         spin_lock_init(&fs_info->ordered_root_lock);
3202
3203         btrfs_init_scrub(fs_info);
3204 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3205         fs_info->check_integrity_print_mask = 0;
3206 #endif
3207         btrfs_init_balance(fs_info);
3208         btrfs_init_async_reclaim_work(fs_info);
3209
3210         spin_lock_init(&fs_info->block_group_cache_lock);
3211         fs_info->block_group_cache_tree = RB_ROOT;
3212         fs_info->first_logical_byte = (u64)-1;
3213
3214         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3215                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3216
3217         mutex_init(&fs_info->ordered_operations_mutex);
3218         mutex_init(&fs_info->tree_log_mutex);
3219         mutex_init(&fs_info->chunk_mutex);
3220         mutex_init(&fs_info->transaction_kthread_mutex);
3221         mutex_init(&fs_info->cleaner_mutex);
3222         mutex_init(&fs_info->ro_block_group_mutex);
3223         init_rwsem(&fs_info->commit_root_sem);
3224         init_rwsem(&fs_info->cleanup_work_sem);
3225         init_rwsem(&fs_info->subvol_sem);
3226         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3227
3228         btrfs_init_dev_replace_locks(fs_info);
3229         btrfs_init_qgroup(fs_info);
3230         btrfs_discard_init(fs_info);
3231
3232         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3233         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3234
3235         init_waitqueue_head(&fs_info->transaction_throttle);
3236         init_waitqueue_head(&fs_info->transaction_wait);
3237         init_waitqueue_head(&fs_info->transaction_blocked_wait);
3238         init_waitqueue_head(&fs_info->async_submit_wait);
3239         init_waitqueue_head(&fs_info->delayed_iputs_wait);
3240
3241         /* Usable values until the real ones are cached from the superblock */
3242         fs_info->nodesize = 4096;
3243         fs_info->sectorsize = 4096;
3244         fs_info->sectorsize_bits = ilog2(4096);
3245         fs_info->stripesize = 4096;
3246
3247         spin_lock_init(&fs_info->swapfile_pins_lock);
3248         fs_info->swapfile_pins = RB_ROOT;
3249
3250         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3251         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3252 }
3253
3254 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3255 {
3256         int ret;
3257
3258         fs_info->sb = sb;
3259         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3260         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3261
3262         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3263         if (ret)
3264                 return ret;
3265
3266         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3267         if (ret)
3268                 return ret;
3269
3270         fs_info->dirty_metadata_batch = PAGE_SIZE *
3271                                         (1 + ilog2(nr_cpu_ids));
3272
3273         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3274         if (ret)
3275                 return ret;
3276
3277         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3278                         GFP_KERNEL);
3279         if (ret)
3280                 return ret;
3281
3282         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3283                                         GFP_KERNEL);
3284         if (!fs_info->delayed_root)
3285                 return -ENOMEM;
3286         btrfs_init_delayed_root(fs_info->delayed_root);
3287
3288         if (sb_rdonly(sb))
3289                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3290
3291         return btrfs_alloc_stripe_hash_table(fs_info);
3292 }
3293
3294 static int btrfs_uuid_rescan_kthread(void *data)
3295 {
3296         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3297         int ret;
3298
3299         /*
3300          * 1st step is to iterate through the existing UUID tree and
3301          * to delete all entries that contain outdated data.
3302          * 2nd step is to add all missing entries to the UUID tree.
3303          */
3304         ret = btrfs_uuid_tree_iterate(fs_info);
3305         if (ret < 0) {
3306                 if (ret != -EINTR)
3307                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3308                                    ret);
3309                 up(&fs_info->uuid_tree_rescan_sem);
3310                 return ret;
3311         }
3312         return btrfs_uuid_scan_kthread(data);
3313 }
3314
3315 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3316 {
3317         struct task_struct *task;
3318
3319         down(&fs_info->uuid_tree_rescan_sem);
3320         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3321         if (IS_ERR(task)) {
3322                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3323                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3324                 up(&fs_info->uuid_tree_rescan_sem);
3325                 return PTR_ERR(task);
3326         }
3327
3328         return 0;
3329 }
3330
3331 /*
3332  * Some options only have meaning at mount time and shouldn't persist across
3333  * remounts, or be displayed. Clear these at the end of mount and remount
3334  * code paths.
3335  */
3336 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3337 {
3338         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3339         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3340 }
3341
3342 /*
3343  * Mounting logic specific to read-write file systems. Shared by open_ctree
3344  * and btrfs_remount when remounting from read-only to read-write.
3345  */
3346 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3347 {
3348         int ret;
3349         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3350         bool clear_free_space_tree = false;
3351
3352         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3353             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3354                 clear_free_space_tree = true;
3355         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3356                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3357                 btrfs_warn(fs_info, "free space tree is invalid");
3358                 clear_free_space_tree = true;
3359         }
3360
3361         if (clear_free_space_tree) {
3362                 btrfs_info(fs_info, "clearing free space tree");
3363                 ret = btrfs_clear_free_space_tree(fs_info);
3364                 if (ret) {
3365                         btrfs_warn(fs_info,
3366                                    "failed to clear free space tree: %d", ret);
3367                         goto out;
3368                 }
3369         }
3370
3371         /*
3372          * btrfs_find_orphan_roots() is responsible for finding all the dead
3373          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3374          * them into the fs_info->fs_roots_radix tree. This must be done before
3375          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3376          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3377          * item before the root's tree is deleted - this means that if we unmount
3378          * or crash before the deletion completes, on the next mount we will not
3379          * delete what remains of the tree because the orphan item does not
3380          * exists anymore, which is what tells us we have a pending deletion.
3381          */
3382         ret = btrfs_find_orphan_roots(fs_info);
3383         if (ret)
3384                 goto out;
3385
3386         ret = btrfs_cleanup_fs_roots(fs_info);
3387         if (ret)
3388                 goto out;
3389
3390         down_read(&fs_info->cleanup_work_sem);
3391         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3392             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3393                 up_read(&fs_info->cleanup_work_sem);
3394                 goto out;
3395         }
3396         up_read(&fs_info->cleanup_work_sem);
3397
3398         mutex_lock(&fs_info->cleaner_mutex);
3399         ret = btrfs_recover_relocation(fs_info);
3400         mutex_unlock(&fs_info->cleaner_mutex);
3401         if (ret < 0) {
3402                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3403                 goto out;
3404         }
3405
3406         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3407             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3408                 btrfs_info(fs_info, "creating free space tree");
3409                 ret = btrfs_create_free_space_tree(fs_info);
3410                 if (ret) {
3411                         btrfs_warn(fs_info,
3412                                 "failed to create free space tree: %d", ret);
3413                         goto out;
3414                 }
3415         }
3416
3417         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3418                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3419                 if (ret)
3420                         goto out;
3421         }
3422
3423         ret = btrfs_resume_balance_async(fs_info);
3424         if (ret)
3425                 goto out;
3426
3427         ret = btrfs_resume_dev_replace_async(fs_info);
3428         if (ret) {
3429                 btrfs_warn(fs_info, "failed to resume dev_replace");
3430                 goto out;
3431         }
3432
3433         btrfs_qgroup_rescan_resume(fs_info);
3434
3435         if (!fs_info->uuid_root) {
3436                 btrfs_info(fs_info, "creating UUID tree");
3437                 ret = btrfs_create_uuid_tree(fs_info);
3438                 if (ret) {
3439                         btrfs_warn(fs_info,
3440                                    "failed to create the UUID tree %d", ret);
3441                         goto out;
3442                 }
3443         }
3444
3445 out:
3446         return ret;
3447 }
3448
3449 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3450                       char *options)
3451 {
3452         u32 sectorsize;
3453         u32 nodesize;
3454         u32 stripesize;
3455         u64 generation;
3456         u64 features;
3457         u16 csum_type;
3458         struct btrfs_super_block *disk_super;
3459         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3460         struct btrfs_root *tree_root;
3461         struct btrfs_root *chunk_root;
3462         int ret;
3463         int err = -EINVAL;
3464         int level;
3465
3466         ret = init_mount_fs_info(fs_info, sb);
3467         if (ret) {
3468                 err = ret;
3469                 goto fail;
3470         }
3471
3472         /* These need to be init'ed before we start creating inodes and such. */
3473         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3474                                      GFP_KERNEL);
3475         fs_info->tree_root = tree_root;
3476         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3477                                       GFP_KERNEL);
3478         fs_info->chunk_root = chunk_root;
3479         if (!tree_root || !chunk_root) {
3480                 err = -ENOMEM;
3481                 goto fail;
3482         }
3483
3484         fs_info->btree_inode = new_inode(sb);
3485         if (!fs_info->btree_inode) {
3486                 err = -ENOMEM;
3487                 goto fail;
3488         }
3489         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3490         btrfs_init_btree_inode(fs_info);
3491
3492         invalidate_bdev(fs_devices->latest_dev->bdev);
3493
3494         /*
3495          * Read super block and check the signature bytes only
3496          */
3497         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3498         if (IS_ERR(disk_super)) {
3499                 err = PTR_ERR(disk_super);
3500                 goto fail_alloc;
3501         }
3502
3503         /*
3504          * Verify the type first, if that or the checksum value are
3505          * corrupted, we'll find out
3506          */
3507         csum_type = btrfs_super_csum_type(disk_super);
3508         if (!btrfs_supported_super_csum(csum_type)) {
3509                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3510                           csum_type);
3511                 err = -EINVAL;
3512                 btrfs_release_disk_super(disk_super);
3513                 goto fail_alloc;
3514         }
3515
3516         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3517
3518         ret = btrfs_init_csum_hash(fs_info, csum_type);
3519         if (ret) {
3520                 err = ret;
3521                 btrfs_release_disk_super(disk_super);
3522                 goto fail_alloc;
3523         }
3524
3525         /*
3526          * We want to check superblock checksum, the type is stored inside.
3527          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3528          */
3529         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3530                 btrfs_err(fs_info, "superblock checksum mismatch");
3531                 err = -EINVAL;
3532                 btrfs_release_disk_super(disk_super);
3533                 goto fail_alloc;
3534         }
3535
3536         /*
3537          * super_copy is zeroed at allocation time and we never touch the
3538          * following bytes up to INFO_SIZE, the checksum is calculated from
3539          * the whole block of INFO_SIZE
3540          */
3541         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3542         btrfs_release_disk_super(disk_super);
3543
3544         disk_super = fs_info->super_copy;
3545
3546
3547         features = btrfs_super_flags(disk_super);
3548         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3549                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3550                 btrfs_set_super_flags(disk_super, features);
3551                 btrfs_info(fs_info,
3552                         "found metadata UUID change in progress flag, clearing");
3553         }
3554
3555         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3556                sizeof(*fs_info->super_for_commit));
3557
3558         ret = btrfs_validate_mount_super(fs_info);
3559         if (ret) {
3560                 btrfs_err(fs_info, "superblock contains fatal errors");
3561                 err = -EINVAL;
3562                 goto fail_alloc;
3563         }
3564
3565         if (!btrfs_super_root(disk_super))
3566                 goto fail_alloc;
3567
3568         /* check FS state, whether FS is broken. */
3569         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3570                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3571
3572         /*
3573          * In the long term, we'll store the compression type in the super
3574          * block, and it'll be used for per file compression control.
3575          */
3576         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3577
3578         /*
3579          * Flag our filesystem as having big metadata blocks if they are bigger
3580          * than the page size.
3581          */
3582         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3583                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3584                         btrfs_info(fs_info,
3585                                 "flagging fs with big metadata feature");
3586                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3587         }
3588
3589         /* Set up fs_info before parsing mount options */
3590         nodesize = btrfs_super_nodesize(disk_super);
3591         sectorsize = btrfs_super_sectorsize(disk_super);
3592         stripesize = sectorsize;
3593         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3594         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3595
3596         fs_info->nodesize = nodesize;
3597         fs_info->sectorsize = sectorsize;
3598         fs_info->sectorsize_bits = ilog2(sectorsize);
3599         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3600         fs_info->stripesize = stripesize;
3601
3602         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3603         if (ret) {
3604                 err = ret;
3605                 goto fail_alloc;
3606         }
3607
3608         features = btrfs_super_incompat_flags(disk_super) &
3609                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3610         if (features) {
3611                 btrfs_err(fs_info,
3612                     "cannot mount because of unsupported optional features (%llx)",
3613                     features);
3614                 err = -EINVAL;
3615                 goto fail_alloc;
3616         }
3617
3618         features = btrfs_super_incompat_flags(disk_super);
3619         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3620         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3621                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3622         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3623                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3624
3625         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3626                 btrfs_info(fs_info, "has skinny extents");
3627
3628         /*
3629          * mixed block groups end up with duplicate but slightly offset
3630          * extent buffers for the same range.  It leads to corruptions
3631          */
3632         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3633             (sectorsize != nodesize)) {
3634                 btrfs_err(fs_info,
3635 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3636                         nodesize, sectorsize);
3637                 goto fail_alloc;
3638         }
3639
3640         /*
3641          * Needn't use the lock because there is no other task which will
3642          * update the flag.
3643          */
3644         btrfs_set_super_incompat_flags(disk_super, features);
3645
3646         features = btrfs_super_compat_ro_flags(disk_super) &
3647                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3648         if (!sb_rdonly(sb) && features) {
3649                 btrfs_err(fs_info,
3650         "cannot mount read-write because of unsupported optional features (%llx)",
3651                        features);
3652                 err = -EINVAL;
3653                 goto fail_alloc;
3654         }
3655
3656         if (sectorsize < PAGE_SIZE) {
3657                 struct btrfs_subpage_info *subpage_info;
3658
3659                 btrfs_warn(fs_info,
3660                 "read-write for sector size %u with page size %lu is experimental",
3661                            sectorsize, PAGE_SIZE);
3662                 if (btrfs_super_incompat_flags(fs_info->super_copy) &
3663                         BTRFS_FEATURE_INCOMPAT_RAID56) {
3664                         btrfs_err(fs_info,
3665                 "RAID56 is not yet supported for sector size %u with page size %lu",
3666                                 sectorsize, PAGE_SIZE);
3667                         err = -EINVAL;
3668                         goto fail_alloc;
3669                 }
3670                 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3671                 if (!subpage_info)
3672                         goto fail_alloc;
3673                 btrfs_init_subpage_info(subpage_info, sectorsize);
3674                 fs_info->subpage_info = subpage_info;
3675         }
3676
3677         ret = btrfs_init_workqueues(fs_info);
3678         if (ret) {
3679                 err = ret;
3680                 goto fail_sb_buffer;
3681         }
3682
3683         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3684         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3685
3686         sb->s_blocksize = sectorsize;
3687         sb->s_blocksize_bits = blksize_bits(sectorsize);
3688         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3689
3690         mutex_lock(&fs_info->chunk_mutex);
3691         ret = btrfs_read_sys_array(fs_info);
3692         mutex_unlock(&fs_info->chunk_mutex);
3693         if (ret) {
3694                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3695                 goto fail_sb_buffer;
3696         }
3697
3698         generation = btrfs_super_chunk_root_generation(disk_super);
3699         level = btrfs_super_chunk_root_level(disk_super);
3700         ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3701                               generation, level);
3702         if (ret) {
3703                 btrfs_err(fs_info, "failed to read chunk root");
3704                 goto fail_tree_roots;
3705         }
3706
3707         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3708                            offsetof(struct btrfs_header, chunk_tree_uuid),
3709                            BTRFS_UUID_SIZE);
3710
3711         ret = btrfs_read_chunk_tree(fs_info);
3712         if (ret) {
3713                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3714                 goto fail_tree_roots;
3715         }
3716
3717         /*
3718          * At this point we know all the devices that make this filesystem,
3719          * including the seed devices but we don't know yet if the replace
3720          * target is required. So free devices that are not part of this
3721          * filesystem but skip the replace target device which is checked
3722          * below in btrfs_init_dev_replace().
3723          */
3724         btrfs_free_extra_devids(fs_devices);
3725         if (!fs_devices->latest_dev->bdev) {
3726                 btrfs_err(fs_info, "failed to read devices");
3727                 goto fail_tree_roots;
3728         }
3729
3730         ret = init_tree_roots(fs_info);
3731         if (ret)
3732                 goto fail_tree_roots;
3733
3734         /*
3735          * Get zone type information of zoned block devices. This will also
3736          * handle emulation of a zoned filesystem if a regular device has the
3737          * zoned incompat feature flag set.
3738          */
3739         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3740         if (ret) {
3741                 btrfs_err(fs_info,
3742                           "zoned: failed to read device zone info: %d",
3743                           ret);
3744                 goto fail_block_groups;
3745         }
3746
3747         /*
3748          * If we have a uuid root and we're not being told to rescan we need to
3749          * check the generation here so we can set the
3750          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3751          * transaction during a balance or the log replay without updating the
3752          * uuid generation, and then if we crash we would rescan the uuid tree,
3753          * even though it was perfectly fine.
3754          */
3755         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3756             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3757                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3758
3759         ret = btrfs_verify_dev_extents(fs_info);
3760         if (ret) {
3761                 btrfs_err(fs_info,
3762                           "failed to verify dev extents against chunks: %d",
3763                           ret);
3764                 goto fail_block_groups;
3765         }
3766         ret = btrfs_recover_balance(fs_info);
3767         if (ret) {
3768                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3769                 goto fail_block_groups;
3770         }
3771
3772         ret = btrfs_init_dev_stats(fs_info);
3773         if (ret) {
3774                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3775                 goto fail_block_groups;
3776         }
3777
3778         ret = btrfs_init_dev_replace(fs_info);
3779         if (ret) {
3780                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3781                 goto fail_block_groups;
3782         }
3783
3784         ret = btrfs_check_zoned_mode(fs_info);
3785         if (ret) {
3786                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3787                           ret);
3788                 goto fail_block_groups;
3789         }
3790
3791         ret = btrfs_sysfs_add_fsid(fs_devices);
3792         if (ret) {
3793                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3794                                 ret);
3795                 goto fail_block_groups;
3796         }
3797
3798         ret = btrfs_sysfs_add_mounted(fs_info);
3799         if (ret) {
3800                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3801                 goto fail_fsdev_sysfs;
3802         }
3803
3804         ret = btrfs_init_space_info(fs_info);
3805         if (ret) {
3806                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3807                 goto fail_sysfs;
3808         }
3809
3810         ret = btrfs_read_block_groups(fs_info);
3811         if (ret) {
3812                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3813                 goto fail_sysfs;
3814         }
3815
3816         btrfs_free_zone_cache(fs_info);
3817
3818         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3819             !btrfs_check_rw_degradable(fs_info, NULL)) {
3820                 btrfs_warn(fs_info,
3821                 "writable mount is not allowed due to too many missing devices");
3822                 goto fail_sysfs;
3823         }
3824
3825         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3826                                                "btrfs-cleaner");
3827         if (IS_ERR(fs_info->cleaner_kthread))
3828                 goto fail_sysfs;
3829
3830         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3831                                                    tree_root,
3832                                                    "btrfs-transaction");
3833         if (IS_ERR(fs_info->transaction_kthread))
3834                 goto fail_cleaner;
3835
3836         if (!btrfs_test_opt(fs_info, NOSSD) &&
3837             !fs_info->fs_devices->rotating) {
3838                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3839         }
3840
3841         /*
3842          * Mount does not set all options immediately, we can do it now and do
3843          * not have to wait for transaction commit
3844          */
3845         btrfs_apply_pending_changes(fs_info);
3846
3847 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3848         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3849                 ret = btrfsic_mount(fs_info, fs_devices,
3850                                     btrfs_test_opt(fs_info,
3851                                         CHECK_INTEGRITY_DATA) ? 1 : 0,
3852                                     fs_info->check_integrity_print_mask);
3853                 if (ret)
3854                         btrfs_warn(fs_info,
3855                                 "failed to initialize integrity check module: %d",
3856                                 ret);
3857         }
3858 #endif
3859         ret = btrfs_read_qgroup_config(fs_info);
3860         if (ret)
3861                 goto fail_trans_kthread;
3862
3863         if (btrfs_build_ref_tree(fs_info))
3864                 btrfs_err(fs_info, "couldn't build ref tree");
3865
3866         /* do not make disk changes in broken FS or nologreplay is given */
3867         if (btrfs_super_log_root(disk_super) != 0 &&
3868             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3869                 btrfs_info(fs_info, "start tree-log replay");
3870                 ret = btrfs_replay_log(fs_info, fs_devices);
3871                 if (ret) {
3872                         err = ret;
3873                         goto fail_qgroup;
3874                 }
3875         }
3876
3877         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3878         if (IS_ERR(fs_info->fs_root)) {
3879                 err = PTR_ERR(fs_info->fs_root);
3880                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3881                 fs_info->fs_root = NULL;
3882                 goto fail_qgroup;
3883         }
3884
3885         if (sb_rdonly(sb))
3886                 goto clear_oneshot;
3887
3888         ret = btrfs_start_pre_rw_mount(fs_info);
3889         if (ret) {
3890                 close_ctree(fs_info);
3891                 return ret;
3892         }
3893         btrfs_discard_resume(fs_info);
3894
3895         if (fs_info->uuid_root &&
3896             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3897              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3898                 btrfs_info(fs_info, "checking UUID tree");
3899                 ret = btrfs_check_uuid_tree(fs_info);
3900                 if (ret) {
3901                         btrfs_warn(fs_info,
3902                                 "failed to check the UUID tree: %d", ret);
3903                         close_ctree(fs_info);
3904                         return ret;
3905                 }
3906         }
3907
3908         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3909
3910         /* Kick the cleaner thread so it'll start deleting snapshots. */
3911         if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3912                 wake_up_process(fs_info->cleaner_kthread);
3913
3914 clear_oneshot:
3915         btrfs_clear_oneshot_options(fs_info);
3916         return 0;
3917
3918 fail_qgroup:
3919         btrfs_free_qgroup_config(fs_info);
3920 fail_trans_kthread:
3921         kthread_stop(fs_info->transaction_kthread);
3922         btrfs_cleanup_transaction(fs_info);
3923         btrfs_free_fs_roots(fs_info);
3924 fail_cleaner:
3925         kthread_stop(fs_info->cleaner_kthread);
3926
3927         /*
3928          * make sure we're done with the btree inode before we stop our
3929          * kthreads
3930          */
3931         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3932
3933 fail_sysfs:
3934         btrfs_sysfs_remove_mounted(fs_info);
3935
3936 fail_fsdev_sysfs:
3937         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3938
3939 fail_block_groups:
3940         btrfs_put_block_group_cache(fs_info);
3941
3942 fail_tree_roots:
3943         if (fs_info->data_reloc_root)
3944                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3945         free_root_pointers(fs_info, true);
3946         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3947
3948 fail_sb_buffer:
3949         btrfs_stop_all_workers(fs_info);
3950         btrfs_free_block_groups(fs_info);
3951 fail_alloc:
3952         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3953
3954         iput(fs_info->btree_inode);
3955 fail:
3956         btrfs_close_devices(fs_info->fs_devices);
3957         return err;
3958 }
3959 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3960
3961 static void btrfs_end_super_write(struct bio *bio)
3962 {
3963         struct btrfs_device *device = bio->bi_private;
3964         struct bio_vec *bvec;
3965         struct bvec_iter_all iter_all;
3966         struct page *page;
3967
3968         bio_for_each_segment_all(bvec, bio, iter_all) {
3969                 page = bvec->bv_page;
3970
3971                 if (bio->bi_status) {
3972                         btrfs_warn_rl_in_rcu(device->fs_info,
3973                                 "lost page write due to IO error on %s (%d)",
3974                                 rcu_str_deref(device->name),
3975                                 blk_status_to_errno(bio->bi_status));
3976                         ClearPageUptodate(page);
3977                         SetPageError(page);
3978                         btrfs_dev_stat_inc_and_print(device,
3979                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3980                 } else {
3981                         SetPageUptodate(page);
3982                 }
3983
3984                 put_page(page);
3985                 unlock_page(page);
3986         }
3987
3988         bio_put(bio);
3989 }
3990
3991 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3992                                                    int copy_num)
3993 {
3994         struct btrfs_super_block *super;
3995         struct page *page;
3996         u64 bytenr, bytenr_orig;
3997         struct address_space *mapping = bdev->bd_inode->i_mapping;
3998         int ret;
3999
4000         bytenr_orig = btrfs_sb_offset(copy_num);
4001         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4002         if (ret == -ENOENT)
4003                 return ERR_PTR(-EINVAL);
4004         else if (ret)
4005                 return ERR_PTR(ret);
4006
4007         if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4008                 return ERR_PTR(-EINVAL);
4009
4010         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4011         if (IS_ERR(page))
4012                 return ERR_CAST(page);
4013
4014         super = page_address(page);
4015         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4016                 btrfs_release_disk_super(super);
4017                 return ERR_PTR(-ENODATA);
4018         }
4019
4020         if (btrfs_super_bytenr(super) != bytenr_orig) {
4021                 btrfs_release_disk_super(super);
4022                 return ERR_PTR(-EINVAL);
4023         }
4024
4025         return super;
4026 }
4027
4028
4029 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
4030 {
4031         struct btrfs_super_block *super, *latest = NULL;
4032         int i;
4033         u64 transid = 0;
4034
4035         /* we would like to check all the supers, but that would make
4036          * a btrfs mount succeed after a mkfs from a different FS.
4037          * So, we need to add a special mount option to scan for
4038          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4039          */
4040         for (i = 0; i < 1; i++) {
4041                 super = btrfs_read_dev_one_super(bdev, i);
4042                 if (IS_ERR(super))
4043                         continue;
4044
4045                 if (!latest || btrfs_super_generation(super) > transid) {
4046                         if (latest)
4047                                 btrfs_release_disk_super(super);
4048
4049                         latest = super;
4050                         transid = btrfs_super_generation(super);
4051                 }
4052         }
4053
4054         return super;
4055 }
4056
4057 /*
4058  * Write superblock @sb to the @device. Do not wait for completion, all the
4059  * pages we use for writing are locked.
4060  *
4061  * Write @max_mirrors copies of the superblock, where 0 means default that fit
4062  * the expected device size at commit time. Note that max_mirrors must be
4063  * same for write and wait phases.
4064  *
4065  * Return number of errors when page is not found or submission fails.
4066  */
4067 static int write_dev_supers(struct btrfs_device *device,
4068                             struct btrfs_super_block *sb, int max_mirrors)
4069 {
4070         struct btrfs_fs_info *fs_info = device->fs_info;
4071         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4072         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4073         int i;
4074         int errors = 0;
4075         int ret;
4076         u64 bytenr, bytenr_orig;
4077
4078         if (max_mirrors == 0)
4079                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4080
4081         shash->tfm = fs_info->csum_shash;
4082
4083         for (i = 0; i < max_mirrors; i++) {
4084                 struct page *page;
4085                 struct bio *bio;
4086                 struct btrfs_super_block *disk_super;
4087
4088                 bytenr_orig = btrfs_sb_offset(i);
4089                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4090                 if (ret == -ENOENT) {
4091                         continue;
4092                 } else if (ret < 0) {
4093                         btrfs_err(device->fs_info,
4094                                 "couldn't get super block location for mirror %d",
4095                                 i);
4096                         errors++;
4097                         continue;
4098                 }
4099                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4100                     device->commit_total_bytes)
4101                         break;
4102
4103                 btrfs_set_super_bytenr(sb, bytenr_orig);
4104
4105                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4106                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4107                                     sb->csum);
4108
4109                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4110                                            GFP_NOFS);
4111                 if (!page) {
4112                         btrfs_err(device->fs_info,
4113                             "couldn't get super block page for bytenr %llu",
4114                             bytenr);
4115                         errors++;
4116                         continue;
4117                 }
4118
4119                 /* Bump the refcount for wait_dev_supers() */
4120                 get_page(page);
4121
4122                 disk_super = page_address(page);
4123                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4124
4125                 /*
4126                  * Directly use bios here instead of relying on the page cache
4127                  * to do I/O, so we don't lose the ability to do integrity
4128                  * checking.
4129                  */
4130                 bio = bio_alloc(device->bdev, 1,
4131                                 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4132                                 GFP_NOFS);
4133                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4134                 bio->bi_private = device;
4135                 bio->bi_end_io = btrfs_end_super_write;
4136                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4137                                offset_in_page(bytenr));
4138
4139                 /*
4140                  * We FUA only the first super block.  The others we allow to
4141                  * go down lazy and there's a short window where the on-disk
4142                  * copies might still contain the older version.
4143                  */
4144                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4145                         bio->bi_opf |= REQ_FUA;
4146
4147                 btrfsic_submit_bio(bio);
4148
4149                 if (btrfs_advance_sb_log(device, i))
4150                         errors++;
4151         }
4152         return errors < i ? 0 : -1;
4153 }
4154
4155 /*
4156  * Wait for write completion of superblocks done by write_dev_supers,
4157  * @max_mirrors same for write and wait phases.
4158  *
4159  * Return number of errors when page is not found or not marked up to
4160  * date.
4161  */
4162 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4163 {
4164         int i;
4165         int errors = 0;
4166         bool primary_failed = false;
4167         int ret;
4168         u64 bytenr;
4169
4170         if (max_mirrors == 0)
4171                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4172
4173         for (i = 0; i < max_mirrors; i++) {
4174                 struct page *page;
4175
4176                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4177                 if (ret == -ENOENT) {
4178                         break;
4179                 } else if (ret < 0) {
4180                         errors++;
4181                         if (i == 0)
4182                                 primary_failed = true;
4183                         continue;
4184                 }
4185                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4186                     device->commit_total_bytes)
4187                         break;
4188
4189                 page = find_get_page(device->bdev->bd_inode->i_mapping,
4190                                      bytenr >> PAGE_SHIFT);
4191                 if (!page) {
4192                         errors++;
4193                         if (i == 0)
4194                                 primary_failed = true;
4195                         continue;
4196                 }
4197                 /* Page is submitted locked and unlocked once the IO completes */
4198                 wait_on_page_locked(page);
4199                 if (PageError(page)) {
4200                         errors++;
4201                         if (i == 0)
4202                                 primary_failed = true;
4203                 }
4204
4205                 /* Drop our reference */
4206                 put_page(page);
4207
4208                 /* Drop the reference from the writing run */
4209                 put_page(page);
4210         }
4211
4212         /* log error, force error return */
4213         if (primary_failed) {
4214                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4215                           device->devid);
4216                 return -1;
4217         }
4218
4219         return errors < i ? 0 : -1;
4220 }
4221
4222 /*
4223  * endio for the write_dev_flush, this will wake anyone waiting
4224  * for the barrier when it is done
4225  */
4226 static void btrfs_end_empty_barrier(struct bio *bio)
4227 {
4228         complete(bio->bi_private);
4229 }
4230
4231 /*
4232  * Submit a flush request to the device if it supports it. Error handling is
4233  * done in the waiting counterpart.
4234  */
4235 static void write_dev_flush(struct btrfs_device *device)
4236 {
4237         struct bio *bio = device->flush_bio;
4238
4239 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4240         /*
4241          * When a disk has write caching disabled, we skip submission of a bio
4242          * with flush and sync requests before writing the superblock, since
4243          * it's not needed. However when the integrity checker is enabled, this
4244          * results in reports that there are metadata blocks referred by a
4245          * superblock that were not properly flushed. So don't skip the bio
4246          * submission only when the integrity checker is enabled for the sake
4247          * of simplicity, since this is a debug tool and not meant for use in
4248          * non-debug builds.
4249          */
4250         struct request_queue *q = bdev_get_queue(device->bdev);
4251         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4252                 return;
4253 #endif
4254
4255         bio_reset(bio, device->bdev, REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4256         bio->bi_end_io = btrfs_end_empty_barrier;
4257         init_completion(&device->flush_wait);
4258         bio->bi_private = &device->flush_wait;
4259
4260         btrfsic_submit_bio(bio);
4261         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4262 }
4263
4264 /*
4265  * If the flush bio has been submitted by write_dev_flush, wait for it.
4266  */
4267 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4268 {
4269         struct bio *bio = device->flush_bio;
4270
4271         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4272                 return BLK_STS_OK;
4273
4274         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4275         wait_for_completion_io(&device->flush_wait);
4276
4277         return bio->bi_status;
4278 }
4279
4280 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4281 {
4282         if (!btrfs_check_rw_degradable(fs_info, NULL))
4283                 return -EIO;
4284         return 0;
4285 }
4286
4287 /*
4288  * send an empty flush down to each device in parallel,
4289  * then wait for them
4290  */
4291 static int barrier_all_devices(struct btrfs_fs_info *info)
4292 {
4293         struct list_head *head;
4294         struct btrfs_device *dev;
4295         int errors_wait = 0;
4296         blk_status_t ret;
4297
4298         lockdep_assert_held(&info->fs_devices->device_list_mutex);
4299         /* send down all the barriers */
4300         head = &info->fs_devices->devices;
4301         list_for_each_entry(dev, head, dev_list) {
4302                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4303                         continue;
4304                 if (!dev->bdev)
4305                         continue;
4306                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4307                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4308                         continue;
4309
4310                 write_dev_flush(dev);
4311                 dev->last_flush_error = BLK_STS_OK;
4312         }
4313
4314         /* wait for all the barriers */
4315         list_for_each_entry(dev, head, dev_list) {
4316                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4317                         continue;
4318                 if (!dev->bdev) {
4319                         errors_wait++;
4320                         continue;
4321                 }
4322                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4323                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4324                         continue;
4325
4326                 ret = wait_dev_flush(dev);
4327                 if (ret) {
4328                         dev->last_flush_error = ret;
4329                         btrfs_dev_stat_inc_and_print(dev,
4330                                         BTRFS_DEV_STAT_FLUSH_ERRS);
4331                         errors_wait++;
4332                 }
4333         }
4334
4335         if (errors_wait) {
4336                 /*
4337                  * At some point we need the status of all disks
4338                  * to arrive at the volume status. So error checking
4339                  * is being pushed to a separate loop.
4340                  */
4341                 return check_barrier_error(info);
4342         }
4343         return 0;
4344 }
4345
4346 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4347 {
4348         int raid_type;
4349         int min_tolerated = INT_MAX;
4350
4351         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4352             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4353                 min_tolerated = min_t(int, min_tolerated,
4354                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
4355                                     tolerated_failures);
4356
4357         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4358                 if (raid_type == BTRFS_RAID_SINGLE)
4359                         continue;
4360                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4361                         continue;
4362                 min_tolerated = min_t(int, min_tolerated,
4363                                     btrfs_raid_array[raid_type].
4364                                     tolerated_failures);
4365         }
4366
4367         if (min_tolerated == INT_MAX) {
4368                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4369                 min_tolerated = 0;
4370         }
4371
4372         return min_tolerated;
4373 }
4374
4375 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4376 {
4377         struct list_head *head;
4378         struct btrfs_device *dev;
4379         struct btrfs_super_block *sb;
4380         struct btrfs_dev_item *dev_item;
4381         int ret;
4382         int do_barriers;
4383         int max_errors;
4384         int total_errors = 0;
4385         u64 flags;
4386
4387         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4388
4389         /*
4390          * max_mirrors == 0 indicates we're from commit_transaction,
4391          * not from fsync where the tree roots in fs_info have not
4392          * been consistent on disk.
4393          */
4394         if (max_mirrors == 0)
4395                 backup_super_roots(fs_info);
4396
4397         sb = fs_info->super_for_commit;
4398         dev_item = &sb->dev_item;
4399
4400         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4401         head = &fs_info->fs_devices->devices;
4402         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4403
4404         if (do_barriers) {
4405                 ret = barrier_all_devices(fs_info);
4406                 if (ret) {
4407                         mutex_unlock(
4408                                 &fs_info->fs_devices->device_list_mutex);
4409                         btrfs_handle_fs_error(fs_info, ret,
4410                                               "errors while submitting device barriers.");
4411                         return ret;
4412                 }
4413         }
4414
4415         list_for_each_entry(dev, head, dev_list) {
4416                 if (!dev->bdev) {
4417                         total_errors++;
4418                         continue;
4419                 }
4420                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4421                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4422                         continue;
4423
4424                 btrfs_set_stack_device_generation(dev_item, 0);
4425                 btrfs_set_stack_device_type(dev_item, dev->type);
4426                 btrfs_set_stack_device_id(dev_item, dev->devid);
4427                 btrfs_set_stack_device_total_bytes(dev_item,
4428                                                    dev->commit_total_bytes);
4429                 btrfs_set_stack_device_bytes_used(dev_item,
4430                                                   dev->commit_bytes_used);
4431                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4432                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4433                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4434                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4435                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4436                        BTRFS_FSID_SIZE);
4437
4438                 flags = btrfs_super_flags(sb);
4439                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4440
4441                 ret = btrfs_validate_write_super(fs_info, sb);
4442                 if (ret < 0) {
4443                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4444                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4445                                 "unexpected superblock corruption detected");
4446                         return -EUCLEAN;
4447                 }
4448
4449                 ret = write_dev_supers(dev, sb, max_mirrors);
4450                 if (ret)
4451                         total_errors++;
4452         }
4453         if (total_errors > max_errors) {
4454                 btrfs_err(fs_info, "%d errors while writing supers",
4455                           total_errors);
4456                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4457
4458                 /* FUA is masked off if unsupported and can't be the reason */
4459                 btrfs_handle_fs_error(fs_info, -EIO,
4460                                       "%d errors while writing supers",
4461                                       total_errors);
4462                 return -EIO;
4463         }
4464
4465         total_errors = 0;
4466         list_for_each_entry(dev, head, dev_list) {
4467                 if (!dev->bdev)
4468                         continue;
4469                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4470                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4471                         continue;
4472
4473                 ret = wait_dev_supers(dev, max_mirrors);
4474                 if (ret)
4475                         total_errors++;
4476         }
4477         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4478         if (total_errors > max_errors) {
4479                 btrfs_handle_fs_error(fs_info, -EIO,
4480                                       "%d errors while writing supers",
4481                                       total_errors);
4482                 return -EIO;
4483         }
4484         return 0;
4485 }
4486
4487 /* Drop a fs root from the radix tree and free it. */
4488 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4489                                   struct btrfs_root *root)
4490 {
4491         bool drop_ref = false;
4492
4493         spin_lock(&fs_info->fs_roots_radix_lock);
4494         radix_tree_delete(&fs_info->fs_roots_radix,
4495                           (unsigned long)root->root_key.objectid);
4496         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4497                 drop_ref = true;
4498         spin_unlock(&fs_info->fs_roots_radix_lock);
4499
4500         if (BTRFS_FS_ERROR(fs_info)) {
4501                 ASSERT(root->log_root == NULL);
4502                 if (root->reloc_root) {
4503                         btrfs_put_root(root->reloc_root);
4504                         root->reloc_root = NULL;
4505                 }
4506         }
4507
4508         if (drop_ref)
4509                 btrfs_put_root(root);
4510 }
4511
4512 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4513 {
4514         u64 root_objectid = 0;
4515         struct btrfs_root *gang[8];
4516         int i = 0;
4517         int err = 0;
4518         unsigned int ret = 0;
4519
4520         while (1) {
4521                 spin_lock(&fs_info->fs_roots_radix_lock);
4522                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4523                                              (void **)gang, root_objectid,
4524                                              ARRAY_SIZE(gang));
4525                 if (!ret) {
4526                         spin_unlock(&fs_info->fs_roots_radix_lock);
4527                         break;
4528                 }
4529                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4530
4531                 for (i = 0; i < ret; i++) {
4532                         /* Avoid to grab roots in dead_roots */
4533                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4534                                 gang[i] = NULL;
4535                                 continue;
4536                         }
4537                         /* grab all the search result for later use */
4538                         gang[i] = btrfs_grab_root(gang[i]);
4539                 }
4540                 spin_unlock(&fs_info->fs_roots_radix_lock);
4541
4542                 for (i = 0; i < ret; i++) {
4543                         if (!gang[i])
4544                                 continue;
4545                         root_objectid = gang[i]->root_key.objectid;
4546                         err = btrfs_orphan_cleanup(gang[i]);
4547                         if (err)
4548                                 break;
4549                         btrfs_put_root(gang[i]);
4550                 }
4551                 root_objectid++;
4552         }
4553
4554         /* release the uncleaned roots due to error */
4555         for (; i < ret; i++) {
4556                 if (gang[i])
4557                         btrfs_put_root(gang[i]);
4558         }
4559         return err;
4560 }
4561
4562 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4563 {
4564         struct btrfs_root *root = fs_info->tree_root;
4565         struct btrfs_trans_handle *trans;
4566
4567         mutex_lock(&fs_info->cleaner_mutex);
4568         btrfs_run_delayed_iputs(fs_info);
4569         mutex_unlock(&fs_info->cleaner_mutex);
4570         wake_up_process(fs_info->cleaner_kthread);
4571
4572         /* wait until ongoing cleanup work done */
4573         down_write(&fs_info->cleanup_work_sem);
4574         up_write(&fs_info->cleanup_work_sem);
4575
4576         trans = btrfs_join_transaction(root);
4577         if (IS_ERR(trans))
4578                 return PTR_ERR(trans);
4579         return btrfs_commit_transaction(trans);
4580 }
4581
4582 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4583 {
4584         struct btrfs_transaction *trans;
4585         struct btrfs_transaction *tmp;
4586         bool found = false;
4587
4588         if (list_empty(&fs_info->trans_list))
4589                 return;
4590
4591         /*
4592          * This function is only called at the very end of close_ctree(),
4593          * thus no other running transaction, no need to take trans_lock.
4594          */
4595         ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4596         list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4597                 struct extent_state *cached = NULL;
4598                 u64 dirty_bytes = 0;
4599                 u64 cur = 0;
4600                 u64 found_start;
4601                 u64 found_end;
4602
4603                 found = true;
4604                 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4605                         &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4606                         dirty_bytes += found_end + 1 - found_start;
4607                         cur = found_end + 1;
4608                 }
4609                 btrfs_warn(fs_info,
4610         "transaction %llu (with %llu dirty metadata bytes) is not committed",
4611                            trans->transid, dirty_bytes);
4612                 btrfs_cleanup_one_transaction(trans, fs_info);
4613
4614                 if (trans == fs_info->running_transaction)
4615                         fs_info->running_transaction = NULL;
4616                 list_del_init(&trans->list);
4617
4618                 btrfs_put_transaction(trans);
4619                 trace_btrfs_transaction_commit(fs_info);
4620         }
4621         ASSERT(!found);
4622 }
4623
4624 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4625 {
4626         int ret;
4627
4628         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4629         /*
4630          * We don't want the cleaner to start new transactions, add more delayed
4631          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4632          * because that frees the task_struct, and the transaction kthread might
4633          * still try to wake up the cleaner.
4634          */
4635         kthread_park(fs_info->cleaner_kthread);
4636
4637         /*
4638          * If we had UNFINISHED_DROPS we could still be processing them, so
4639          * clear that bit and wake up relocation so it can stop.
4640          */
4641         btrfs_wake_unfinished_drop(fs_info);
4642
4643         /* wait for the qgroup rescan worker to stop */
4644         btrfs_qgroup_wait_for_completion(fs_info, false);
4645
4646         /* wait for the uuid_scan task to finish */
4647         down(&fs_info->uuid_tree_rescan_sem);
4648         /* avoid complains from lockdep et al., set sem back to initial state */
4649         up(&fs_info->uuid_tree_rescan_sem);
4650
4651         /* pause restriper - we want to resume on mount */
4652         btrfs_pause_balance(fs_info);
4653
4654         btrfs_dev_replace_suspend_for_unmount(fs_info);
4655
4656         btrfs_scrub_cancel(fs_info);
4657
4658         /* wait for any defraggers to finish */
4659         wait_event(fs_info->transaction_wait,
4660                    (atomic_read(&fs_info->defrag_running) == 0));
4661
4662         /* clear out the rbtree of defraggable inodes */
4663         btrfs_cleanup_defrag_inodes(fs_info);
4664
4665         cancel_work_sync(&fs_info->async_reclaim_work);
4666         cancel_work_sync(&fs_info->async_data_reclaim_work);
4667         cancel_work_sync(&fs_info->preempt_reclaim_work);
4668
4669         cancel_work_sync(&fs_info->reclaim_bgs_work);
4670
4671         /* Cancel or finish ongoing discard work */
4672         btrfs_discard_cleanup(fs_info);
4673
4674         if (!sb_rdonly(fs_info->sb)) {
4675                 /*
4676                  * The cleaner kthread is stopped, so do one final pass over
4677                  * unused block groups.
4678                  */
4679                 btrfs_delete_unused_bgs(fs_info);
4680
4681                 /*
4682                  * There might be existing delayed inode workers still running
4683                  * and holding an empty delayed inode item. We must wait for
4684                  * them to complete first because they can create a transaction.
4685                  * This happens when someone calls btrfs_balance_delayed_items()
4686                  * and then a transaction commit runs the same delayed nodes
4687                  * before any delayed worker has done something with the nodes.
4688                  * We must wait for any worker here and not at transaction
4689                  * commit time since that could cause a deadlock.
4690                  * This is a very rare case.
4691                  */
4692                 btrfs_flush_workqueue(fs_info->delayed_workers);
4693
4694                 ret = btrfs_commit_super(fs_info);
4695                 if (ret)
4696                         btrfs_err(fs_info, "commit super ret %d", ret);
4697         }
4698
4699         if (BTRFS_FS_ERROR(fs_info))
4700                 btrfs_error_commit_super(fs_info);
4701
4702         kthread_stop(fs_info->transaction_kthread);
4703         kthread_stop(fs_info->cleaner_kthread);
4704
4705         ASSERT(list_empty(&fs_info->delayed_iputs));
4706         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4707
4708         if (btrfs_check_quota_leak(fs_info)) {
4709                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4710                 btrfs_err(fs_info, "qgroup reserved space leaked");
4711         }
4712
4713         btrfs_free_qgroup_config(fs_info);
4714         ASSERT(list_empty(&fs_info->delalloc_roots));
4715
4716         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4717                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4718                        percpu_counter_sum(&fs_info->delalloc_bytes));
4719         }
4720
4721         if (percpu_counter_sum(&fs_info->ordered_bytes))
4722                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4723                            percpu_counter_sum(&fs_info->ordered_bytes));
4724
4725         btrfs_sysfs_remove_mounted(fs_info);
4726         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4727
4728         btrfs_put_block_group_cache(fs_info);
4729
4730         /*
4731          * we must make sure there is not any read request to
4732          * submit after we stopping all workers.
4733          */
4734         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4735         btrfs_stop_all_workers(fs_info);
4736
4737         /* We shouldn't have any transaction open at this point */
4738         warn_about_uncommitted_trans(fs_info);
4739
4740         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4741         free_root_pointers(fs_info, true);
4742         btrfs_free_fs_roots(fs_info);
4743
4744         /*
4745          * We must free the block groups after dropping the fs_roots as we could
4746          * have had an IO error and have left over tree log blocks that aren't
4747          * cleaned up until the fs roots are freed.  This makes the block group
4748          * accounting appear to be wrong because there's pending reserved bytes,
4749          * so make sure we do the block group cleanup afterwards.
4750          */
4751         btrfs_free_block_groups(fs_info);
4752
4753         iput(fs_info->btree_inode);
4754
4755 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4756         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4757                 btrfsic_unmount(fs_info->fs_devices);
4758 #endif
4759
4760         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4761         btrfs_close_devices(fs_info->fs_devices);
4762 }
4763
4764 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4765                           int atomic)
4766 {
4767         int ret;
4768         struct inode *btree_inode = buf->pages[0]->mapping->host;
4769
4770         ret = extent_buffer_uptodate(buf);
4771         if (!ret)
4772                 return ret;
4773
4774         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4775                                     parent_transid, atomic);
4776         if (ret == -EAGAIN)
4777                 return ret;
4778         return !ret;
4779 }
4780
4781 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4782 {
4783         struct btrfs_fs_info *fs_info = buf->fs_info;
4784         u64 transid = btrfs_header_generation(buf);
4785         int was_dirty;
4786
4787 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4788         /*
4789          * This is a fast path so only do this check if we have sanity tests
4790          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4791          * outside of the sanity tests.
4792          */
4793         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4794                 return;
4795 #endif
4796         btrfs_assert_tree_write_locked(buf);
4797         if (transid != fs_info->generation)
4798                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4799                         buf->start, transid, fs_info->generation);
4800         was_dirty = set_extent_buffer_dirty(buf);
4801         if (!was_dirty)
4802                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4803                                          buf->len,
4804                                          fs_info->dirty_metadata_batch);
4805 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4806         /*
4807          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4808          * but item data not updated.
4809          * So here we should only check item pointers, not item data.
4810          */
4811         if (btrfs_header_level(buf) == 0 &&
4812             btrfs_check_leaf_relaxed(buf)) {
4813                 btrfs_print_leaf(buf);
4814                 ASSERT(0);
4815         }
4816 #endif
4817 }
4818
4819 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4820                                         int flush_delayed)
4821 {
4822         /*
4823          * looks as though older kernels can get into trouble with
4824          * this code, they end up stuck in balance_dirty_pages forever
4825          */
4826         int ret;
4827
4828         if (current->flags & PF_MEMALLOC)
4829                 return;
4830
4831         if (flush_delayed)
4832                 btrfs_balance_delayed_items(fs_info);
4833
4834         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4835                                      BTRFS_DIRTY_METADATA_THRESH,
4836                                      fs_info->dirty_metadata_batch);
4837         if (ret > 0) {
4838                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4839         }
4840 }
4841
4842 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4843 {
4844         __btrfs_btree_balance_dirty(fs_info, 1);
4845 }
4846
4847 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4848 {
4849         __btrfs_btree_balance_dirty(fs_info, 0);
4850 }
4851
4852 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4853                       struct btrfs_key *first_key)
4854 {
4855         return btree_read_extent_buffer_pages(buf, parent_transid,
4856                                               level, first_key);
4857 }
4858
4859 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4860 {
4861         /* cleanup FS via transaction */
4862         btrfs_cleanup_transaction(fs_info);
4863
4864         mutex_lock(&fs_info->cleaner_mutex);
4865         btrfs_run_delayed_iputs(fs_info);
4866         mutex_unlock(&fs_info->cleaner_mutex);
4867
4868         down_write(&fs_info->cleanup_work_sem);
4869         up_write(&fs_info->cleanup_work_sem);
4870 }
4871
4872 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4873 {
4874         struct btrfs_root *gang[8];
4875         u64 root_objectid = 0;
4876         int ret;
4877
4878         spin_lock(&fs_info->fs_roots_radix_lock);
4879         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4880                                              (void **)gang, root_objectid,
4881                                              ARRAY_SIZE(gang))) != 0) {
4882                 int i;
4883
4884                 for (i = 0; i < ret; i++)
4885                         gang[i] = btrfs_grab_root(gang[i]);
4886                 spin_unlock(&fs_info->fs_roots_radix_lock);
4887
4888                 for (i = 0; i < ret; i++) {
4889                         if (!gang[i])
4890                                 continue;
4891                         root_objectid = gang[i]->root_key.objectid;
4892                         btrfs_free_log(NULL, gang[i]);
4893                         btrfs_put_root(gang[i]);
4894                 }
4895                 root_objectid++;
4896                 spin_lock(&fs_info->fs_roots_radix_lock);
4897         }
4898         spin_unlock(&fs_info->fs_roots_radix_lock);
4899         btrfs_free_log_root_tree(NULL, fs_info);
4900 }
4901
4902 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4903 {
4904         struct btrfs_ordered_extent *ordered;
4905
4906         spin_lock(&root->ordered_extent_lock);
4907         /*
4908          * This will just short circuit the ordered completion stuff which will
4909          * make sure the ordered extent gets properly cleaned up.
4910          */
4911         list_for_each_entry(ordered, &root->ordered_extents,
4912                             root_extent_list)
4913                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4914         spin_unlock(&root->ordered_extent_lock);
4915 }
4916
4917 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4918 {
4919         struct btrfs_root *root;
4920         struct list_head splice;
4921
4922         INIT_LIST_HEAD(&splice);
4923
4924         spin_lock(&fs_info->ordered_root_lock);
4925         list_splice_init(&fs_info->ordered_roots, &splice);
4926         while (!list_empty(&splice)) {
4927                 root = list_first_entry(&splice, struct btrfs_root,
4928                                         ordered_root);
4929                 list_move_tail(&root->ordered_root,
4930                                &fs_info->ordered_roots);
4931
4932                 spin_unlock(&fs_info->ordered_root_lock);
4933                 btrfs_destroy_ordered_extents(root);
4934
4935                 cond_resched();
4936                 spin_lock(&fs_info->ordered_root_lock);
4937         }
4938         spin_unlock(&fs_info->ordered_root_lock);
4939
4940         /*
4941          * We need this here because if we've been flipped read-only we won't
4942          * get sync() from the umount, so we need to make sure any ordered
4943          * extents that haven't had their dirty pages IO start writeout yet
4944          * actually get run and error out properly.
4945          */
4946         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4947 }
4948
4949 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4950                                       struct btrfs_fs_info *fs_info)
4951 {
4952         struct rb_node *node;
4953         struct btrfs_delayed_ref_root *delayed_refs;
4954         struct btrfs_delayed_ref_node *ref;
4955         int ret = 0;
4956
4957         delayed_refs = &trans->delayed_refs;
4958
4959         spin_lock(&delayed_refs->lock);
4960         if (atomic_read(&delayed_refs->num_entries) == 0) {
4961                 spin_unlock(&delayed_refs->lock);
4962                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4963                 return ret;
4964         }
4965
4966         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4967                 struct btrfs_delayed_ref_head *head;
4968                 struct rb_node *n;
4969                 bool pin_bytes = false;
4970
4971                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4972                                 href_node);
4973                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4974                         continue;
4975
4976                 spin_lock(&head->lock);
4977                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4978                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4979                                        ref_node);
4980                         ref->in_tree = 0;
4981                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4982                         RB_CLEAR_NODE(&ref->ref_node);
4983                         if (!list_empty(&ref->add_list))
4984                                 list_del(&ref->add_list);
4985                         atomic_dec(&delayed_refs->num_entries);
4986                         btrfs_put_delayed_ref(ref);
4987                 }
4988                 if (head->must_insert_reserved)
4989                         pin_bytes = true;
4990                 btrfs_free_delayed_extent_op(head->extent_op);
4991                 btrfs_delete_ref_head(delayed_refs, head);
4992                 spin_unlock(&head->lock);
4993                 spin_unlock(&delayed_refs->lock);
4994                 mutex_unlock(&head->mutex);
4995
4996                 if (pin_bytes) {
4997                         struct btrfs_block_group *cache;
4998
4999                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5000                         BUG_ON(!cache);
5001
5002                         spin_lock(&cache->space_info->lock);
5003                         spin_lock(&cache->lock);
5004                         cache->pinned += head->num_bytes;
5005                         btrfs_space_info_update_bytes_pinned(fs_info,
5006                                 cache->space_info, head->num_bytes);
5007                         cache->reserved -= head->num_bytes;
5008                         cache->space_info->bytes_reserved -= head->num_bytes;
5009                         spin_unlock(&cache->lock);
5010                         spin_unlock(&cache->space_info->lock);
5011
5012                         btrfs_put_block_group(cache);
5013
5014                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5015                                 head->bytenr + head->num_bytes - 1);
5016                 }
5017                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5018                 btrfs_put_delayed_ref_head(head);
5019                 cond_resched();
5020                 spin_lock(&delayed_refs->lock);
5021         }
5022         btrfs_qgroup_destroy_extent_records(trans);
5023
5024         spin_unlock(&delayed_refs->lock);
5025
5026         return ret;
5027 }
5028
5029 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5030 {
5031         struct btrfs_inode *btrfs_inode;
5032         struct list_head splice;
5033
5034         INIT_LIST_HEAD(&splice);
5035
5036         spin_lock(&root->delalloc_lock);
5037         list_splice_init(&root->delalloc_inodes, &splice);
5038
5039         while (!list_empty(&splice)) {
5040                 struct inode *inode = NULL;
5041                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5042                                                delalloc_inodes);
5043                 __btrfs_del_delalloc_inode(root, btrfs_inode);
5044                 spin_unlock(&root->delalloc_lock);
5045
5046                 /*
5047                  * Make sure we get a live inode and that it'll not disappear
5048                  * meanwhile.
5049                  */
5050                 inode = igrab(&btrfs_inode->vfs_inode);
5051                 if (inode) {
5052                         invalidate_inode_pages2(inode->i_mapping);
5053                         iput(inode);
5054                 }
5055                 spin_lock(&root->delalloc_lock);
5056         }
5057         spin_unlock(&root->delalloc_lock);
5058 }
5059
5060 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5061 {
5062         struct btrfs_root *root;
5063         struct list_head splice;
5064
5065         INIT_LIST_HEAD(&splice);
5066
5067         spin_lock(&fs_info->delalloc_root_lock);
5068         list_splice_init(&fs_info->delalloc_roots, &splice);
5069         while (!list_empty(&splice)) {
5070                 root = list_first_entry(&splice, struct btrfs_root,
5071                                          delalloc_root);
5072                 root = btrfs_grab_root(root);
5073                 BUG_ON(!root);
5074                 spin_unlock(&fs_info->delalloc_root_lock);
5075
5076                 btrfs_destroy_delalloc_inodes(root);
5077                 btrfs_put_root(root);
5078
5079                 spin_lock(&fs_info->delalloc_root_lock);
5080         }
5081         spin_unlock(&fs_info->delalloc_root_lock);
5082 }
5083
5084 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5085                                         struct extent_io_tree *dirty_pages,
5086                                         int mark)
5087 {
5088         int ret;
5089         struct extent_buffer *eb;
5090         u64 start = 0;
5091         u64 end;
5092
5093         while (1) {
5094                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5095                                             mark, NULL);
5096                 if (ret)
5097                         break;
5098
5099                 clear_extent_bits(dirty_pages, start, end, mark);
5100                 while (start <= end) {
5101                         eb = find_extent_buffer(fs_info, start);
5102                         start += fs_info->nodesize;
5103                         if (!eb)
5104                                 continue;
5105                         wait_on_extent_buffer_writeback(eb);
5106
5107                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5108                                                &eb->bflags))
5109                                 clear_extent_buffer_dirty(eb);
5110                         free_extent_buffer_stale(eb);
5111                 }
5112         }
5113
5114         return ret;
5115 }
5116
5117 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5118                                        struct extent_io_tree *unpin)
5119 {
5120         u64 start;
5121         u64 end;
5122         int ret;
5123
5124         while (1) {
5125                 struct extent_state *cached_state = NULL;
5126
5127                 /*
5128                  * The btrfs_finish_extent_commit() may get the same range as
5129                  * ours between find_first_extent_bit and clear_extent_dirty.
5130                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5131                  * the same extent range.
5132                  */
5133                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5134                 ret = find_first_extent_bit(unpin, 0, &start, &end,
5135                                             EXTENT_DIRTY, &cached_state);
5136                 if (ret) {
5137                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5138                         break;
5139                 }
5140
5141                 clear_extent_dirty(unpin, start, end, &cached_state);
5142                 free_extent_state(cached_state);
5143                 btrfs_error_unpin_extent_range(fs_info, start, end);
5144                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5145                 cond_resched();
5146         }
5147
5148         return 0;
5149 }
5150
5151 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5152 {
5153         struct inode *inode;
5154
5155         inode = cache->io_ctl.inode;
5156         if (inode) {
5157                 invalidate_inode_pages2(inode->i_mapping);
5158                 BTRFS_I(inode)->generation = 0;
5159                 cache->io_ctl.inode = NULL;
5160                 iput(inode);
5161         }
5162         ASSERT(cache->io_ctl.pages == NULL);
5163         btrfs_put_block_group(cache);
5164 }
5165
5166 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5167                              struct btrfs_fs_info *fs_info)
5168 {
5169         struct btrfs_block_group *cache;
5170
5171         spin_lock(&cur_trans->dirty_bgs_lock);
5172         while (!list_empty(&cur_trans->dirty_bgs)) {
5173                 cache = list_first_entry(&cur_trans->dirty_bgs,
5174                                          struct btrfs_block_group,
5175                                          dirty_list);
5176
5177                 if (!list_empty(&cache->io_list)) {
5178                         spin_unlock(&cur_trans->dirty_bgs_lock);
5179                         list_del_init(&cache->io_list);
5180                         btrfs_cleanup_bg_io(cache);
5181                         spin_lock(&cur_trans->dirty_bgs_lock);
5182                 }
5183
5184                 list_del_init(&cache->dirty_list);
5185                 spin_lock(&cache->lock);
5186                 cache->disk_cache_state = BTRFS_DC_ERROR;
5187                 spin_unlock(&cache->lock);
5188
5189                 spin_unlock(&cur_trans->dirty_bgs_lock);
5190                 btrfs_put_block_group(cache);
5191                 btrfs_delayed_refs_rsv_release(fs_info, 1);
5192                 spin_lock(&cur_trans->dirty_bgs_lock);
5193         }
5194         spin_unlock(&cur_trans->dirty_bgs_lock);
5195
5196         /*
5197          * Refer to the definition of io_bgs member for details why it's safe
5198          * to use it without any locking
5199          */
5200         while (!list_empty(&cur_trans->io_bgs)) {
5201                 cache = list_first_entry(&cur_trans->io_bgs,
5202                                          struct btrfs_block_group,
5203                                          io_list);
5204
5205                 list_del_init(&cache->io_list);
5206                 spin_lock(&cache->lock);
5207                 cache->disk_cache_state = BTRFS_DC_ERROR;
5208                 spin_unlock(&cache->lock);
5209                 btrfs_cleanup_bg_io(cache);
5210         }
5211 }
5212
5213 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5214                                    struct btrfs_fs_info *fs_info)
5215 {
5216         struct btrfs_device *dev, *tmp;
5217
5218         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5219         ASSERT(list_empty(&cur_trans->dirty_bgs));
5220         ASSERT(list_empty(&cur_trans->io_bgs));
5221
5222         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5223                                  post_commit_list) {
5224                 list_del_init(&dev->post_commit_list);
5225         }
5226
5227         btrfs_destroy_delayed_refs(cur_trans, fs_info);
5228
5229         cur_trans->state = TRANS_STATE_COMMIT_START;
5230         wake_up(&fs_info->transaction_blocked_wait);
5231
5232         cur_trans->state = TRANS_STATE_UNBLOCKED;
5233         wake_up(&fs_info->transaction_wait);
5234
5235         btrfs_destroy_delayed_inodes(fs_info);
5236
5237         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5238                                      EXTENT_DIRTY);
5239         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5240
5241         btrfs_free_redirty_list(cur_trans);
5242
5243         cur_trans->state =TRANS_STATE_COMPLETED;
5244         wake_up(&cur_trans->commit_wait);
5245 }
5246
5247 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5248 {
5249         struct btrfs_transaction *t;
5250
5251         mutex_lock(&fs_info->transaction_kthread_mutex);
5252
5253         spin_lock(&fs_info->trans_lock);
5254         while (!list_empty(&fs_info->trans_list)) {
5255                 t = list_first_entry(&fs_info->trans_list,
5256                                      struct btrfs_transaction, list);
5257                 if (t->state >= TRANS_STATE_COMMIT_START) {
5258                         refcount_inc(&t->use_count);
5259                         spin_unlock(&fs_info->trans_lock);
5260                         btrfs_wait_for_commit(fs_info, t->transid);
5261                         btrfs_put_transaction(t);
5262                         spin_lock(&fs_info->trans_lock);
5263                         continue;
5264                 }
5265                 if (t == fs_info->running_transaction) {
5266                         t->state = TRANS_STATE_COMMIT_DOING;
5267                         spin_unlock(&fs_info->trans_lock);
5268                         /*
5269                          * We wait for 0 num_writers since we don't hold a trans
5270                          * handle open currently for this transaction.
5271                          */
5272                         wait_event(t->writer_wait,
5273                                    atomic_read(&t->num_writers) == 0);
5274                 } else {
5275                         spin_unlock(&fs_info->trans_lock);
5276                 }
5277                 btrfs_cleanup_one_transaction(t, fs_info);
5278
5279                 spin_lock(&fs_info->trans_lock);
5280                 if (t == fs_info->running_transaction)
5281                         fs_info->running_transaction = NULL;
5282                 list_del_init(&t->list);
5283                 spin_unlock(&fs_info->trans_lock);
5284
5285                 btrfs_put_transaction(t);
5286                 trace_btrfs_transaction_commit(fs_info);
5287                 spin_lock(&fs_info->trans_lock);
5288         }
5289         spin_unlock(&fs_info->trans_lock);
5290         btrfs_destroy_all_ordered_extents(fs_info);
5291         btrfs_destroy_delayed_inodes(fs_info);
5292         btrfs_assert_delayed_root_empty(fs_info);
5293         btrfs_destroy_all_delalloc_inodes(fs_info);
5294         btrfs_drop_all_logs(fs_info);
5295         mutex_unlock(&fs_info->transaction_kthread_mutex);
5296
5297         return 0;
5298 }
5299
5300 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5301 {
5302         struct btrfs_path *path;
5303         int ret;
5304         struct extent_buffer *l;
5305         struct btrfs_key search_key;
5306         struct btrfs_key found_key;
5307         int slot;
5308
5309         path = btrfs_alloc_path();
5310         if (!path)
5311                 return -ENOMEM;
5312
5313         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5314         search_key.type = -1;
5315         search_key.offset = (u64)-1;
5316         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5317         if (ret < 0)
5318                 goto error;
5319         BUG_ON(ret == 0); /* Corruption */
5320         if (path->slots[0] > 0) {
5321                 slot = path->slots[0] - 1;
5322                 l = path->nodes[0];
5323                 btrfs_item_key_to_cpu(l, &found_key, slot);
5324                 root->free_objectid = max_t(u64, found_key.objectid + 1,
5325                                             BTRFS_FIRST_FREE_OBJECTID);
5326         } else {
5327                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5328         }
5329         ret = 0;
5330 error:
5331         btrfs_free_path(path);
5332         return ret;
5333 }
5334
5335 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5336 {
5337         int ret;
5338         mutex_lock(&root->objectid_mutex);
5339
5340         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5341                 btrfs_warn(root->fs_info,
5342                            "the objectid of root %llu reaches its highest value",
5343                            root->root_key.objectid);
5344                 ret = -ENOSPC;
5345                 goto out;
5346         }
5347
5348         *objectid = root->free_objectid++;
5349         ret = 0;
5350 out:
5351         mutex_unlock(&root->objectid_mutex);
5352         return ret;
5353 }