1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
44 #include "space-info.h"
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
71 struct btrfs_end_io_wq {
75 struct btrfs_fs_info *info;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
81 static struct kmem_cache *btrfs_end_io_wq_cache;
83 int __init btrfs_end_io_wq_init(void)
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
90 if (!btrfs_end_io_wq_cache)
95 void __cold btrfs_end_io_wq_exit(void)
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
111 struct async_submit_bio {
114 extent_submit_bio_start_t *submit_bio_start;
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
121 struct btrfs_work work;
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
153 static struct btrfs_lockdep_keyset {
154 u64 id; /* root objectid */
155 const char *name_stem; /* lock name stem */
156 char names[BTRFS_MAX_LEVEL + 1][20];
157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171 { .id = 0, .name_stem = "tree" },
174 void __init btrfs_init_lockdep(void)
178 /* initialize lockdep class names */
179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 snprintf(ks->names[j], sizeof(ks->names[j]),
184 "btrfs-%s-%02d", ks->name_stem, j);
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
191 struct btrfs_lockdep_keyset *ks;
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
207 * Compute the csum of a btree block and store the result to provided buffer.
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
211 struct btrfs_fs_info *fs_info = buf->fs_info;
212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
219 kaddr = page_address(buf->pages[0]);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 PAGE_SIZE - BTRFS_CSUM_SIZE);
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
227 memset(result, 0, BTRFS_CSUM_SIZE);
228 crypto_shash_final(shash, result);
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 struct extent_buffer *eb, u64 parent_transid,
241 struct extent_state *cached_state = NULL;
243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
252 btrfs_tree_read_lock(eb);
253 btrfs_set_lock_blocking_read(eb);
256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
258 if (extent_buffer_uptodate(eb) &&
259 btrfs_header_generation(eb) == parent_transid) {
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
266 parent_transid, btrfs_header_generation(eb));
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
272 * block that has been freed and re-allocated. So don't clear uptodate
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
283 btrfs_tree_read_unlock_blocking(eb);
287 static bool btrfs_supported_super_csum(u16 csum_type)
290 case BTRFS_CSUM_TYPE_CRC32:
291 case BTRFS_CSUM_TYPE_XXHASH:
292 case BTRFS_CSUM_TYPE_SHA256:
293 case BTRFS_CSUM_TYPE_BLAKE2:
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
309 char result[BTRFS_CSUM_SIZE];
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
312 shash->tfm = fs_info->csum_shash;
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 struct btrfs_key *first_key, u64 parent_transid)
331 struct btrfs_fs_info *fs_info = eb->fs_info;
333 struct btrfs_key found_key;
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
398 struct btrfs_fs_info *fs_info = eb->fs_info;
399 struct extent_io_tree *io_tree;
404 int failed_mirror = 0;
406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
411 if (verify_parent_transid(io_tree, eb,
414 else if (btrfs_verify_level_key(eb, level,
415 first_key, parent_transid))
421 num_copies = btrfs_num_copies(fs_info,
426 if (!failed_mirror) {
428 failed_mirror = eb->read_mirror;
432 if (mirror_num == failed_mirror)
435 if (mirror_num > num_copies)
439 if (failed && !ret && failed_mirror)
440 btrfs_repair_eb_io_failure(eb, failed_mirror);
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
452 u64 start = page_offset(page);
454 u8 result[BTRFS_CSUM_SIZE];
455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456 struct extent_buffer *eb;
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
463 found_start = btrfs_header_bytenr(eb);
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
468 if (WARN_ON(found_start != start))
470 if (WARN_ON(!PageUptodate(page)))
473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
477 csum_tree_block(eb, result);
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
482 ret = btrfs_check_leaf_full(eb);
485 btrfs_print_tree(eb, 0);
487 "block=%llu write time tree block corruption detected",
489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
492 write_extent_buffer(eb, result, 0, csum_size);
497 static int check_tree_block_fsid(struct extent_buffer *eb)
499 struct btrfs_fs_info *fs_info = eb->fs_info;
500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501 u8 fsid[BTRFS_FSID_SIZE];
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
514 metadata_uuid = fs_devices->fsid;
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
532 struct extent_buffer *eb;
533 struct btrfs_fs_info *fs_info;
536 u8 result[BTRFS_CSUM_SIZE];
542 eb = (struct extent_buffer *)page->private;
543 fs_info = eb->fs_info;
544 csum_size = btrfs_super_csum_size(fs_info->super_copy);
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
549 atomic_inc(&eb->refs);
551 reads_done = atomic_dec_and_test(&eb->io_pages);
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
561 found_start = btrfs_header_bytenr(eb);
562 if (found_start != eb->start) {
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
568 if (check_tree_block_fsid(eb)) {
569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
574 found_level = btrfs_header_level(eb);
575 if (found_level >= BTRFS_MAX_LEVEL) {
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
585 csum_tree_block(eb, result);
587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593 fs_info->sb->s_id, eb->start,
594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
611 if (found_level > 0 && btrfs_check_node(eb))
615 set_extent_buffer_uptodate(eb);
618 "block=%llu read time tree block corruption detected",
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 btree_readahead_hook(eb, ret);
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
631 atomic_inc(&eb->io_pages);
632 clear_extent_buffer_uptodate(eb);
634 free_extent_buffer(eb);
639 static void end_workqueue_bio(struct bio *bio)
641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 struct btrfs_fs_info *fs_info;
643 struct btrfs_workqueue *wq;
645 fs_info = end_io_wq->info;
646 end_io_wq->status = bio->bi_status;
648 if (bio_op(bio) == REQ_OP_WRITE) {
649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650 wq = fs_info->endio_meta_write_workers;
651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652 wq = fs_info->endio_freespace_worker;
653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654 wq = fs_info->endio_raid56_workers;
656 wq = fs_info->endio_write_workers;
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659 wq = fs_info->endio_raid56_workers;
660 else if (end_io_wq->metadata)
661 wq = fs_info->endio_meta_workers;
663 wq = fs_info->endio_workers;
666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667 btrfs_queue_work(wq, &end_io_wq->work);
670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 enum btrfs_wq_endio_type metadata)
673 struct btrfs_end_io_wq *end_io_wq;
675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
677 return BLK_STS_RESOURCE;
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
681 end_io_wq->info = info;
682 end_io_wq->status = 0;
683 end_io_wq->bio = bio;
684 end_io_wq->metadata = metadata;
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
691 static void run_one_async_start(struct btrfs_work *work)
693 struct async_submit_bio *async;
696 async = container_of(work, struct async_submit_bio, work);
697 ret = async->submit_bio_start(async->private_data, async->bio,
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time. All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
711 static void run_one_async_done(struct btrfs_work *work)
713 struct async_submit_bio *async;
717 async = container_of(work, struct async_submit_bio, work);
718 inode = async->private_data;
720 /* If an error occurred we just want to clean up the bio and move on */
722 async->bio->bi_status = async->status;
723 bio_endio(async->bio);
728 * All of the bios that pass through here are from async helpers.
729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 * This changes nothing when cgroups aren't in use.
732 async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
735 async->bio->bi_status = ret;
736 bio_endio(async->bio);
740 static void run_one_async_free(struct btrfs_work *work)
742 struct async_submit_bio *async;
744 async = container_of(work, struct async_submit_bio, work);
748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 int mirror_num, unsigned long bio_flags,
750 u64 bio_offset, void *private_data,
751 extent_submit_bio_start_t *submit_bio_start)
753 struct async_submit_bio *async;
755 async = kmalloc(sizeof(*async), GFP_NOFS);
757 return BLK_STS_RESOURCE;
759 async->private_data = private_data;
761 async->mirror_num = mirror_num;
762 async->submit_bio_start = submit_bio_start;
764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
767 async->bio_offset = bio_offset;
771 if (op_is_sync(bio->bi_opf))
772 btrfs_set_work_high_priority(&async->work);
774 btrfs_queue_work(fs_info->workers, &async->work);
778 static blk_status_t btree_csum_one_bio(struct bio *bio)
780 struct bio_vec *bvec;
781 struct btrfs_root *root;
783 struct bvec_iter_all iter_all;
785 ASSERT(!bio_flagged(bio, BIO_CLONED));
786 bio_for_each_segment_all(bvec, bio, iter_all) {
787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
793 return errno_to_blk_status(ret);
796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
800 * when we're called for a write, we're already in the async
801 * submission context. Just jump into btrfs_map_bio
803 return btree_csum_one_bio(bio);
806 static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
809 if (atomic_read(&bi->sync_writers))
811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820 int async = check_async_write(fs_info, BTRFS_I(inode));
823 if (bio_op(bio) != REQ_OP_WRITE) {
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
834 ret = btree_csum_one_bio(bio);
837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844 0, inode, btree_submit_bio_start);
852 bio->bi_status = ret;
857 #ifdef CONFIG_MIGRATION
858 static int btree_migratepage(struct address_space *mapping,
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
875 return migrate_page(mapping, newpage, page, mode);
880 static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
883 struct btrfs_fs_info *fs_info;
886 if (wbc->sync_mode == WB_SYNC_NONE) {
888 if (wbc->for_kupdate)
891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 /* this is a bit racy, but that's ok */
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
899 return btree_write_cache_pages(mapping, wbc);
902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
904 if (PageWriteback(page) || PageDirty(page))
907 return try_release_extent_buffer(page);
910 static void btree_invalidatepage(struct page *page, unsigned int offset,
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
917 if (PagePrivate(page)) {
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
921 detach_page_private(page);
925 static int btree_set_page_dirty(struct page *page)
928 struct extent_buffer *eb;
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
937 return __set_page_dirty_nobuffers(page);
940 static const struct address_space_operations btree_aops = {
941 .writepages = btree_writepages,
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945 .migratepage = btree_migratepage,
947 .set_page_dirty = btree_set_page_dirty,
950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
952 struct extent_buffer *buf = NULL;
955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
961 free_extent_buffer_stale(buf);
963 free_extent_buffer(buf);
966 struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
976 * Read tree block at logical address @bytenr and do variant basic but critical
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
987 struct extent_buffer *buf = NULL;
990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
997 free_extent_buffer_stale(buf);
1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1006 struct btrfs_fs_info *fs_info = buf->fs_info;
1007 if (btrfs_header_generation(buf) ==
1008 fs_info->running_transaction->transid) {
1009 btrfs_assert_tree_locked(buf);
1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1014 fs_info->dirty_metadata_batch);
1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016 btrfs_set_lock_blocking_write(buf);
1017 clear_extent_buffer_dirty(buf);
1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026 root->fs_info = fs_info;
1028 root->commit_root = NULL;
1030 root->orphan_cleanup_state = 0;
1032 root->last_trans = 0;
1033 root->highest_objectid = 0;
1034 root->nr_delalloc_inodes = 0;
1035 root->nr_ordered_extents = 0;
1036 root->inode_tree = RB_ROOT;
1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 root->block_rsv = NULL;
1040 INIT_LIST_HEAD(&root->dirty_list);
1041 INIT_LIST_HEAD(&root->root_list);
1042 INIT_LIST_HEAD(&root->delalloc_inodes);
1043 INIT_LIST_HEAD(&root->delalloc_root);
1044 INIT_LIST_HEAD(&root->ordered_extents);
1045 INIT_LIST_HEAD(&root->ordered_root);
1046 INIT_LIST_HEAD(&root->reloc_dirty_list);
1047 INIT_LIST_HEAD(&root->logged_list[0]);
1048 INIT_LIST_HEAD(&root->logged_list[1]);
1049 spin_lock_init(&root->inode_lock);
1050 spin_lock_init(&root->delalloc_lock);
1051 spin_lock_init(&root->ordered_extent_lock);
1052 spin_lock_init(&root->accounting_lock);
1053 spin_lock_init(&root->log_extents_lock[0]);
1054 spin_lock_init(&root->log_extents_lock[1]);
1055 spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 mutex_init(&root->objectid_mutex);
1057 mutex_init(&root->log_mutex);
1058 mutex_init(&root->ordered_extent_mutex);
1059 mutex_init(&root->delalloc_mutex);
1060 init_waitqueue_head(&root->qgroup_flush_wait);
1061 init_waitqueue_head(&root->log_writer_wait);
1062 init_waitqueue_head(&root->log_commit_wait[0]);
1063 init_waitqueue_head(&root->log_commit_wait[1]);
1064 INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 atomic_set(&root->log_commit[0], 0);
1067 atomic_set(&root->log_commit[1], 0);
1068 atomic_set(&root->log_writers, 0);
1069 atomic_set(&root->log_batch, 0);
1070 refcount_set(&root->refs, 1);
1071 atomic_set(&root->snapshot_force_cow, 0);
1072 atomic_set(&root->nr_swapfiles, 0);
1073 root->log_transid = 0;
1074 root->log_transid_committed = -1;
1075 root->last_log_commit = 0;
1077 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079 extent_io_tree_init(fs_info, &root->log_csum_range,
1080 IO_TREE_LOG_CSUM_RANGE, NULL);
1083 memset(&root->root_key, 0, sizeof(root->root_key));
1084 memset(&root->root_item, 0, sizeof(root->root_item));
1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086 root->root_key.objectid = objectid;
1089 spin_lock_init(&root->root_item_lock);
1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 INIT_LIST_HEAD(&root->leak_list);
1093 spin_lock(&fs_info->fs_roots_radix_lock);
1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 spin_unlock(&fs_info->fs_roots_radix_lock);
1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100 u64 objectid, gfp_t flags)
1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1104 __setup_root(root, fs_info, objectid);
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1112 struct btrfs_root *root;
1115 return ERR_PTR(-EINVAL);
1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1119 return ERR_PTR(-ENOMEM);
1121 /* We don't use the stripesize in selftest, set it as sectorsize */
1122 root->alloc_bytenr = 0;
1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct extent_buffer *leaf;
1133 struct btrfs_root *tree_root = fs_info->tree_root;
1134 struct btrfs_root *root;
1135 struct btrfs_key key;
1136 unsigned int nofs_flag;
1140 * We're holding a transaction handle, so use a NOFS memory allocation
1141 * context to avoid deadlock if reclaim happens.
1143 nofs_flag = memalloc_nofs_save();
1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145 memalloc_nofs_restore(nofs_flag);
1147 return ERR_PTR(-ENOMEM);
1149 root->root_key.objectid = objectid;
1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 root->root_key.offset = 0;
1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 BTRFS_NESTING_NORMAL);
1156 ret = PTR_ERR(leaf);
1162 btrfs_mark_buffer_dirty(leaf);
1164 root->commit_root = btrfs_root_node(root);
1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1167 root->root_item.flags = 0;
1168 root->root_item.byte_limit = 0;
1169 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 btrfs_set_root_generation(&root->root_item, trans->transid);
1171 btrfs_set_root_level(&root->root_item, 0);
1172 btrfs_set_root_refs(&root->root_item, 1);
1173 btrfs_set_root_used(&root->root_item, leaf->len);
1174 btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 btrfs_set_root_dirid(&root->root_item, 0);
1176 if (is_fstree(objectid))
1177 generate_random_guid(root->root_item.uuid);
1179 export_guid(root->root_item.uuid, &guid_null);
1180 root->root_item.drop_level = 0;
1182 key.objectid = objectid;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1189 btrfs_tree_unlock(leaf);
1195 btrfs_tree_unlock(leaf);
1196 btrfs_put_root(root);
1198 return ERR_PTR(ret);
1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info)
1204 struct btrfs_root *root;
1205 struct extent_buffer *leaf;
1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1209 return ERR_PTR(-ENOMEM);
1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1216 * DON'T set SHAREABLE bit for log trees.
1218 * Log trees are not exposed to user space thus can't be snapshotted,
1219 * and they go away before a real commit is actually done.
1221 * They do store pointers to file data extents, and those reference
1222 * counts still get updated (along with back refs to the log tree).
1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1228 btrfs_put_root(root);
1229 return ERR_CAST(leaf);
1234 btrfs_mark_buffer_dirty(root->node);
1235 btrfs_tree_unlock(root->node);
1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
1242 struct btrfs_root *log_root;
1244 log_root = alloc_log_tree(trans, fs_info);
1245 if (IS_ERR(log_root))
1246 return PTR_ERR(log_root);
1247 WARN_ON(fs_info->log_root_tree);
1248 fs_info->log_root_tree = log_root;
1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root)
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_root *log_root;
1257 struct btrfs_inode_item *inode_item;
1259 log_root = alloc_log_tree(trans, fs_info);
1260 if (IS_ERR(log_root))
1261 return PTR_ERR(log_root);
1263 log_root->last_trans = trans->transid;
1264 log_root->root_key.offset = root->root_key.objectid;
1266 inode_item = &log_root->root_item.inode;
1267 btrfs_set_stack_inode_generation(inode_item, 1);
1268 btrfs_set_stack_inode_size(inode_item, 3);
1269 btrfs_set_stack_inode_nlink(inode_item, 1);
1270 btrfs_set_stack_inode_nbytes(inode_item,
1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1274 btrfs_set_root_node(&log_root->root_item, log_root->node);
1276 WARN_ON(root->log_root);
1277 root->log_root = log_root;
1278 root->log_transid = 0;
1279 root->log_transid_committed = -1;
1280 root->last_log_commit = 0;
1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285 struct btrfs_path *path,
1286 struct btrfs_key *key)
1288 struct btrfs_root *root;
1289 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1296 return ERR_PTR(-ENOMEM);
1298 ret = btrfs_find_root(tree_root, key, path,
1299 &root->root_item, &root->root_key);
1306 generation = btrfs_root_generation(&root->root_item);
1307 level = btrfs_root_level(&root->root_item);
1308 root->node = read_tree_block(fs_info,
1309 btrfs_root_bytenr(&root->root_item),
1310 generation, level, NULL);
1311 if (IS_ERR(root->node)) {
1312 ret = PTR_ERR(root->node);
1315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1319 root->commit_root = btrfs_root_node(root);
1322 btrfs_put_root(root);
1323 return ERR_PTR(ret);
1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327 struct btrfs_key *key)
1329 struct btrfs_root *root;
1330 struct btrfs_path *path;
1332 path = btrfs_alloc_path();
1334 return ERR_PTR(-ENOMEM);
1335 root = read_tree_root_path(tree_root, path, key);
1336 btrfs_free_path(path);
1342 * Initialize subvolume root in-memory structure
1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1349 unsigned int nofs_flag;
1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1354 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1360 * We might be called under a transaction (e.g. indirect backref
1361 * resolution) which could deadlock if it triggers memory reclaim
1363 nofs_flag = memalloc_nofs_save();
1364 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365 memalloc_nofs_restore(nofs_flag);
1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372 btrfs_check_and_init_root_item(&root->root_item);
1375 btrfs_init_free_ino_ctl(root);
1376 spin_lock_init(&root->ino_cache_lock);
1377 init_waitqueue_head(&root->ino_cache_wait);
1380 * Don't assign anonymous block device to roots that are not exposed to
1381 * userspace, the id pool is limited to 1M
1383 if (is_fstree(root->root_key.objectid) &&
1384 btrfs_root_refs(&root->root_item) > 0) {
1386 ret = get_anon_bdev(&root->anon_dev);
1390 root->anon_dev = anon_dev;
1394 mutex_lock(&root->objectid_mutex);
1395 ret = btrfs_find_highest_objectid(root,
1396 &root->highest_objectid);
1398 mutex_unlock(&root->objectid_mutex);
1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1404 mutex_unlock(&root->objectid_mutex);
1408 /* The caller is responsible to call btrfs_free_fs_root */
1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1415 struct btrfs_root *root;
1417 spin_lock(&fs_info->fs_roots_radix_lock);
1418 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419 (unsigned long)root_id);
1421 root = btrfs_grab_root(root);
1422 spin_unlock(&fs_info->fs_roots_radix_lock);
1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430 return btrfs_grab_root(fs_info->tree_root);
1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->extent_root);
1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->chunk_root);
1435 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->dev_root);
1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->csum_root);
1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->quota_root) ?
1441 fs_info->quota_root : ERR_PTR(-ENOENT);
1442 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443 return btrfs_grab_root(fs_info->uuid_root) ?
1444 fs_info->uuid_root : ERR_PTR(-ENOENT);
1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446 return btrfs_grab_root(fs_info->free_space_root) ?
1447 fs_info->free_space_root : ERR_PTR(-ENOENT);
1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452 struct btrfs_root *root)
1456 ret = radix_tree_preload(GFP_NOFS);
1460 spin_lock(&fs_info->fs_roots_radix_lock);
1461 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462 (unsigned long)root->root_key.objectid,
1465 btrfs_grab_root(root);
1466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1468 spin_unlock(&fs_info->fs_roots_radix_lock);
1469 radix_tree_preload_end();
1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1476 #ifdef CONFIG_BTRFS_DEBUG
1477 struct btrfs_root *root;
1479 while (!list_empty(&fs_info->allocated_roots)) {
1480 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1482 root = list_first_entry(&fs_info->allocated_roots,
1483 struct btrfs_root, leak_list);
1484 btrfs_err(fs_info, "leaked root %s refcount %d",
1485 btrfs_root_name(root->root_key.objectid, buf),
1486 refcount_read(&root->refs));
1487 while (refcount_read(&root->refs) > 1)
1488 btrfs_put_root(root);
1489 btrfs_put_root(root);
1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497 percpu_counter_destroy(&fs_info->delalloc_bytes);
1498 percpu_counter_destroy(&fs_info->dio_bytes);
1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500 btrfs_free_csum_hash(fs_info);
1501 btrfs_free_stripe_hash_table(fs_info);
1502 btrfs_free_ref_cache(fs_info);
1503 kfree(fs_info->balance_ctl);
1504 kfree(fs_info->delayed_root);
1505 btrfs_put_root(fs_info->extent_root);
1506 btrfs_put_root(fs_info->tree_root);
1507 btrfs_put_root(fs_info->chunk_root);
1508 btrfs_put_root(fs_info->dev_root);
1509 btrfs_put_root(fs_info->csum_root);
1510 btrfs_put_root(fs_info->quota_root);
1511 btrfs_put_root(fs_info->uuid_root);
1512 btrfs_put_root(fs_info->free_space_root);
1513 btrfs_put_root(fs_info->fs_root);
1514 btrfs_put_root(fs_info->data_reloc_root);
1515 btrfs_check_leaked_roots(fs_info);
1516 btrfs_extent_buffer_leak_debug_check(fs_info);
1517 kfree(fs_info->super_copy);
1518 kfree(fs_info->super_for_commit);
1524 * Get an in-memory reference of a root structure.
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 * same root objectid.
1535 * @objectid: root id
1536 * @anon_dev: preallocated anonymous block device number for new roots,
1537 * pass 0 for new allocation.
1538 * @check_ref: whether to check root item references, If true, return -ENOENT
1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542 u64 objectid, dev_t anon_dev,
1545 struct btrfs_root *root;
1546 struct btrfs_path *path;
1547 struct btrfs_key key;
1550 root = btrfs_get_global_root(fs_info, objectid);
1554 root = btrfs_lookup_fs_root(fs_info, objectid);
1556 /* Shouldn't get preallocated anon_dev for cached roots */
1558 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1559 btrfs_put_root(root);
1560 return ERR_PTR(-ENOENT);
1565 key.objectid = objectid;
1566 key.type = BTRFS_ROOT_ITEM_KEY;
1567 key.offset = (u64)-1;
1568 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1577 ret = btrfs_init_fs_root(root, anon_dev);
1581 path = btrfs_alloc_path();
1586 key.objectid = BTRFS_ORPHAN_OBJECTID;
1587 key.type = BTRFS_ORPHAN_ITEM_KEY;
1588 key.offset = objectid;
1590 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1591 btrfs_free_path(path);
1595 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1597 ret = btrfs_insert_fs_root(fs_info, root);
1599 btrfs_put_root(root);
1606 btrfs_put_root(root);
1607 return ERR_PTR(ret);
1611 * Get in-memory reference of a root structure
1613 * @objectid: tree objectid
1614 * @check_ref: if set, verify that the tree exists and the item has at least
1617 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1618 u64 objectid, bool check_ref)
1620 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1624 * Get in-memory reference of a root structure, created as new, optionally pass
1625 * the anonymous block device id
1627 * @objectid: tree objectid
1628 * @anon_dev: if zero, allocate a new anonymous block device or use the
1631 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1632 u64 objectid, dev_t anon_dev)
1634 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1638 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1639 * @fs_info: the fs_info
1640 * @objectid: the objectid we need to lookup
1642 * This is exclusively used for backref walking, and exists specifically because
1643 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1644 * creation time, which means we may have to read the tree_root in order to look
1645 * up a fs root that is not in memory. If the root is not in memory we will
1646 * read the tree root commit root and look up the fs root from there. This is a
1647 * temporary root, it will not be inserted into the radix tree as it doesn't
1648 * have the most uptodate information, it'll simply be discarded once the
1649 * backref code is finished using the root.
1651 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1652 struct btrfs_path *path,
1655 struct btrfs_root *root;
1656 struct btrfs_key key;
1658 ASSERT(path->search_commit_root && path->skip_locking);
1661 * This can return -ENOENT if we ask for a root that doesn't exist, but
1662 * since this is called via the backref walking code we won't be looking
1663 * up a root that doesn't exist, unless there's corruption. So if root
1664 * != NULL just return it.
1666 root = btrfs_get_global_root(fs_info, objectid);
1670 root = btrfs_lookup_fs_root(fs_info, objectid);
1674 key.objectid = objectid;
1675 key.type = BTRFS_ROOT_ITEM_KEY;
1676 key.offset = (u64)-1;
1677 root = read_tree_root_path(fs_info->tree_root, path, &key);
1678 btrfs_release_path(path);
1684 * called by the kthread helper functions to finally call the bio end_io
1685 * functions. This is where read checksum verification actually happens
1687 static void end_workqueue_fn(struct btrfs_work *work)
1690 struct btrfs_end_io_wq *end_io_wq;
1692 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1693 bio = end_io_wq->bio;
1695 bio->bi_status = end_io_wq->status;
1696 bio->bi_private = end_io_wq->private;
1697 bio->bi_end_io = end_io_wq->end_io;
1699 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1702 static int cleaner_kthread(void *arg)
1704 struct btrfs_root *root = arg;
1705 struct btrfs_fs_info *fs_info = root->fs_info;
1711 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1713 /* Make the cleaner go to sleep early. */
1714 if (btrfs_need_cleaner_sleep(fs_info))
1718 * Do not do anything if we might cause open_ctree() to block
1719 * before we have finished mounting the filesystem.
1721 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1724 if (!mutex_trylock(&fs_info->cleaner_mutex))
1728 * Avoid the problem that we change the status of the fs
1729 * during the above check and trylock.
1731 if (btrfs_need_cleaner_sleep(fs_info)) {
1732 mutex_unlock(&fs_info->cleaner_mutex);
1736 btrfs_run_delayed_iputs(fs_info);
1738 again = btrfs_clean_one_deleted_snapshot(root);
1739 mutex_unlock(&fs_info->cleaner_mutex);
1742 * The defragger has dealt with the R/O remount and umount,
1743 * needn't do anything special here.
1745 btrfs_run_defrag_inodes(fs_info);
1748 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1749 * with relocation (btrfs_relocate_chunk) and relocation
1750 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1751 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1752 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1753 * unused block groups.
1755 btrfs_delete_unused_bgs(fs_info);
1757 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1758 if (kthread_should_park())
1760 if (kthread_should_stop())
1763 set_current_state(TASK_INTERRUPTIBLE);
1765 __set_current_state(TASK_RUNNING);
1770 static int transaction_kthread(void *arg)
1772 struct btrfs_root *root = arg;
1773 struct btrfs_fs_info *fs_info = root->fs_info;
1774 struct btrfs_trans_handle *trans;
1775 struct btrfs_transaction *cur;
1778 unsigned long delay;
1782 cannot_commit = false;
1783 delay = HZ * fs_info->commit_interval;
1784 mutex_lock(&fs_info->transaction_kthread_mutex);
1786 spin_lock(&fs_info->trans_lock);
1787 cur = fs_info->running_transaction;
1789 spin_unlock(&fs_info->trans_lock);
1793 now = ktime_get_seconds();
1794 if (cur->state < TRANS_STATE_COMMIT_START &&
1795 (now < cur->start_time ||
1796 now - cur->start_time < fs_info->commit_interval)) {
1797 spin_unlock(&fs_info->trans_lock);
1801 transid = cur->transid;
1802 spin_unlock(&fs_info->trans_lock);
1804 /* If the file system is aborted, this will always fail. */
1805 trans = btrfs_attach_transaction(root);
1806 if (IS_ERR(trans)) {
1807 if (PTR_ERR(trans) != -ENOENT)
1808 cannot_commit = true;
1811 if (transid == trans->transid) {
1812 btrfs_commit_transaction(trans);
1814 btrfs_end_transaction(trans);
1817 wake_up_process(fs_info->cleaner_kthread);
1818 mutex_unlock(&fs_info->transaction_kthread_mutex);
1820 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1821 &fs_info->fs_state)))
1822 btrfs_cleanup_transaction(fs_info);
1823 if (!kthread_should_stop() &&
1824 (!btrfs_transaction_blocked(fs_info) ||
1826 schedule_timeout_interruptible(delay);
1827 } while (!kthread_should_stop());
1832 * This will find the highest generation in the array of root backups. The
1833 * index of the highest array is returned, or -EINVAL if we can't find
1836 * We check to make sure the array is valid by comparing the
1837 * generation of the latest root in the array with the generation
1838 * in the super block. If they don't match we pitch it.
1840 static int find_newest_super_backup(struct btrfs_fs_info *info)
1842 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1844 struct btrfs_root_backup *root_backup;
1847 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1848 root_backup = info->super_copy->super_roots + i;
1849 cur = btrfs_backup_tree_root_gen(root_backup);
1850 if (cur == newest_gen)
1858 * copy all the root pointers into the super backup array.
1859 * this will bump the backup pointer by one when it is
1862 static void backup_super_roots(struct btrfs_fs_info *info)
1864 const int next_backup = info->backup_root_index;
1865 struct btrfs_root_backup *root_backup;
1867 root_backup = info->super_for_commit->super_roots + next_backup;
1870 * make sure all of our padding and empty slots get zero filled
1871 * regardless of which ones we use today
1873 memset(root_backup, 0, sizeof(*root_backup));
1875 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1878 btrfs_set_backup_tree_root_gen(root_backup,
1879 btrfs_header_generation(info->tree_root->node));
1881 btrfs_set_backup_tree_root_level(root_backup,
1882 btrfs_header_level(info->tree_root->node));
1884 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1885 btrfs_set_backup_chunk_root_gen(root_backup,
1886 btrfs_header_generation(info->chunk_root->node));
1887 btrfs_set_backup_chunk_root_level(root_backup,
1888 btrfs_header_level(info->chunk_root->node));
1890 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1891 btrfs_set_backup_extent_root_gen(root_backup,
1892 btrfs_header_generation(info->extent_root->node));
1893 btrfs_set_backup_extent_root_level(root_backup,
1894 btrfs_header_level(info->extent_root->node));
1897 * we might commit during log recovery, which happens before we set
1898 * the fs_root. Make sure it is valid before we fill it in.
1900 if (info->fs_root && info->fs_root->node) {
1901 btrfs_set_backup_fs_root(root_backup,
1902 info->fs_root->node->start);
1903 btrfs_set_backup_fs_root_gen(root_backup,
1904 btrfs_header_generation(info->fs_root->node));
1905 btrfs_set_backup_fs_root_level(root_backup,
1906 btrfs_header_level(info->fs_root->node));
1909 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1910 btrfs_set_backup_dev_root_gen(root_backup,
1911 btrfs_header_generation(info->dev_root->node));
1912 btrfs_set_backup_dev_root_level(root_backup,
1913 btrfs_header_level(info->dev_root->node));
1915 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1916 btrfs_set_backup_csum_root_gen(root_backup,
1917 btrfs_header_generation(info->csum_root->node));
1918 btrfs_set_backup_csum_root_level(root_backup,
1919 btrfs_header_level(info->csum_root->node));
1921 btrfs_set_backup_total_bytes(root_backup,
1922 btrfs_super_total_bytes(info->super_copy));
1923 btrfs_set_backup_bytes_used(root_backup,
1924 btrfs_super_bytes_used(info->super_copy));
1925 btrfs_set_backup_num_devices(root_backup,
1926 btrfs_super_num_devices(info->super_copy));
1929 * if we don't copy this out to the super_copy, it won't get remembered
1930 * for the next commit
1932 memcpy(&info->super_copy->super_roots,
1933 &info->super_for_commit->super_roots,
1934 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1938 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1939 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1941 * fs_info - filesystem whose backup roots need to be read
1942 * priority - priority of backup root required
1944 * Returns backup root index on success and -EINVAL otherwise.
1946 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1948 int backup_index = find_newest_super_backup(fs_info);
1949 struct btrfs_super_block *super = fs_info->super_copy;
1950 struct btrfs_root_backup *root_backup;
1952 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1954 return backup_index;
1956 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1957 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1962 root_backup = super->super_roots + backup_index;
1964 btrfs_set_super_generation(super,
1965 btrfs_backup_tree_root_gen(root_backup));
1966 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1967 btrfs_set_super_root_level(super,
1968 btrfs_backup_tree_root_level(root_backup));
1969 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1972 * Fixme: the total bytes and num_devices need to match or we should
1975 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1976 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1978 return backup_index;
1981 /* helper to cleanup workers */
1982 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1984 btrfs_destroy_workqueue(fs_info->fixup_workers);
1985 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1986 btrfs_destroy_workqueue(fs_info->workers);
1987 btrfs_destroy_workqueue(fs_info->endio_workers);
1988 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1989 btrfs_destroy_workqueue(fs_info->rmw_workers);
1990 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1991 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1992 btrfs_destroy_workqueue(fs_info->delayed_workers);
1993 btrfs_destroy_workqueue(fs_info->caching_workers);
1994 btrfs_destroy_workqueue(fs_info->readahead_workers);
1995 btrfs_destroy_workqueue(fs_info->flush_workers);
1996 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1997 if (fs_info->discard_ctl.discard_workers)
1998 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2000 * Now that all other work queues are destroyed, we can safely destroy
2001 * the queues used for metadata I/O, since tasks from those other work
2002 * queues can do metadata I/O operations.
2004 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2005 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2008 static void free_root_extent_buffers(struct btrfs_root *root)
2011 free_extent_buffer(root->node);
2012 free_extent_buffer(root->commit_root);
2014 root->commit_root = NULL;
2018 /* helper to cleanup tree roots */
2019 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2021 free_root_extent_buffers(info->tree_root);
2023 free_root_extent_buffers(info->dev_root);
2024 free_root_extent_buffers(info->extent_root);
2025 free_root_extent_buffers(info->csum_root);
2026 free_root_extent_buffers(info->quota_root);
2027 free_root_extent_buffers(info->uuid_root);
2028 free_root_extent_buffers(info->fs_root);
2029 free_root_extent_buffers(info->data_reloc_root);
2030 if (free_chunk_root)
2031 free_root_extent_buffers(info->chunk_root);
2032 free_root_extent_buffers(info->free_space_root);
2035 void btrfs_put_root(struct btrfs_root *root)
2040 if (refcount_dec_and_test(&root->refs)) {
2041 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2042 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2044 free_anon_bdev(root->anon_dev);
2045 btrfs_drew_lock_destroy(&root->snapshot_lock);
2046 free_root_extent_buffers(root);
2047 kfree(root->free_ino_ctl);
2048 kfree(root->free_ino_pinned);
2049 #ifdef CONFIG_BTRFS_DEBUG
2050 spin_lock(&root->fs_info->fs_roots_radix_lock);
2051 list_del_init(&root->leak_list);
2052 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2058 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2061 struct btrfs_root *gang[8];
2064 while (!list_empty(&fs_info->dead_roots)) {
2065 gang[0] = list_entry(fs_info->dead_roots.next,
2066 struct btrfs_root, root_list);
2067 list_del(&gang[0]->root_list);
2069 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2070 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2071 btrfs_put_root(gang[0]);
2075 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2080 for (i = 0; i < ret; i++)
2081 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2085 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2087 mutex_init(&fs_info->scrub_lock);
2088 atomic_set(&fs_info->scrubs_running, 0);
2089 atomic_set(&fs_info->scrub_pause_req, 0);
2090 atomic_set(&fs_info->scrubs_paused, 0);
2091 atomic_set(&fs_info->scrub_cancel_req, 0);
2092 init_waitqueue_head(&fs_info->scrub_pause_wait);
2093 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2096 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2098 spin_lock_init(&fs_info->balance_lock);
2099 mutex_init(&fs_info->balance_mutex);
2100 atomic_set(&fs_info->balance_pause_req, 0);
2101 atomic_set(&fs_info->balance_cancel_req, 0);
2102 fs_info->balance_ctl = NULL;
2103 init_waitqueue_head(&fs_info->balance_wait_q);
2106 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2108 struct inode *inode = fs_info->btree_inode;
2110 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2111 set_nlink(inode, 1);
2113 * we set the i_size on the btree inode to the max possible int.
2114 * the real end of the address space is determined by all of
2115 * the devices in the system
2117 inode->i_size = OFFSET_MAX;
2118 inode->i_mapping->a_ops = &btree_aops;
2120 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2121 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2122 IO_TREE_BTREE_INODE_IO, inode);
2123 BTRFS_I(inode)->io_tree.track_uptodate = false;
2124 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2126 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2127 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2128 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2129 btrfs_insert_inode_hash(inode);
2132 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2134 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2135 init_rwsem(&fs_info->dev_replace.rwsem);
2136 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2139 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2141 spin_lock_init(&fs_info->qgroup_lock);
2142 mutex_init(&fs_info->qgroup_ioctl_lock);
2143 fs_info->qgroup_tree = RB_ROOT;
2144 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2145 fs_info->qgroup_seq = 1;
2146 fs_info->qgroup_ulist = NULL;
2147 fs_info->qgroup_rescan_running = false;
2148 mutex_init(&fs_info->qgroup_rescan_lock);
2151 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2152 struct btrfs_fs_devices *fs_devices)
2154 u32 max_active = fs_info->thread_pool_size;
2155 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2158 btrfs_alloc_workqueue(fs_info, "worker",
2159 flags | WQ_HIGHPRI, max_active, 16);
2161 fs_info->delalloc_workers =
2162 btrfs_alloc_workqueue(fs_info, "delalloc",
2163 flags, max_active, 2);
2165 fs_info->flush_workers =
2166 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2167 flags, max_active, 0);
2169 fs_info->caching_workers =
2170 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2172 fs_info->fixup_workers =
2173 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2176 * endios are largely parallel and should have a very
2179 fs_info->endio_workers =
2180 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2181 fs_info->endio_meta_workers =
2182 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2184 fs_info->endio_meta_write_workers =
2185 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2187 fs_info->endio_raid56_workers =
2188 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2190 fs_info->rmw_workers =
2191 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2192 fs_info->endio_write_workers =
2193 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2195 fs_info->endio_freespace_worker =
2196 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2198 fs_info->delayed_workers =
2199 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2201 fs_info->readahead_workers =
2202 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2204 fs_info->qgroup_rescan_workers =
2205 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2206 fs_info->discard_ctl.discard_workers =
2207 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2209 if (!(fs_info->workers && fs_info->delalloc_workers &&
2210 fs_info->flush_workers &&
2211 fs_info->endio_workers && fs_info->endio_meta_workers &&
2212 fs_info->endio_meta_write_workers &&
2213 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2214 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2215 fs_info->caching_workers && fs_info->readahead_workers &&
2216 fs_info->fixup_workers && fs_info->delayed_workers &&
2217 fs_info->qgroup_rescan_workers &&
2218 fs_info->discard_ctl.discard_workers)) {
2225 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2227 struct crypto_shash *csum_shash;
2228 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2230 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2232 if (IS_ERR(csum_shash)) {
2233 btrfs_err(fs_info, "error allocating %s hash for checksum",
2235 return PTR_ERR(csum_shash);
2238 fs_info->csum_shash = csum_shash;
2243 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2244 struct btrfs_fs_devices *fs_devices)
2247 struct btrfs_root *log_tree_root;
2248 struct btrfs_super_block *disk_super = fs_info->super_copy;
2249 u64 bytenr = btrfs_super_log_root(disk_super);
2250 int level = btrfs_super_log_root_level(disk_super);
2252 if (fs_devices->rw_devices == 0) {
2253 btrfs_warn(fs_info, "log replay required on RO media");
2257 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2262 log_tree_root->node = read_tree_block(fs_info, bytenr,
2263 fs_info->generation + 1,
2265 if (IS_ERR(log_tree_root->node)) {
2266 btrfs_warn(fs_info, "failed to read log tree");
2267 ret = PTR_ERR(log_tree_root->node);
2268 log_tree_root->node = NULL;
2269 btrfs_put_root(log_tree_root);
2271 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2272 btrfs_err(fs_info, "failed to read log tree");
2273 btrfs_put_root(log_tree_root);
2276 /* returns with log_tree_root freed on success */
2277 ret = btrfs_recover_log_trees(log_tree_root);
2279 btrfs_handle_fs_error(fs_info, ret,
2280 "Failed to recover log tree");
2281 btrfs_put_root(log_tree_root);
2285 if (sb_rdonly(fs_info->sb)) {
2286 ret = btrfs_commit_super(fs_info);
2294 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2296 struct btrfs_root *tree_root = fs_info->tree_root;
2297 struct btrfs_root *root;
2298 struct btrfs_key location;
2301 BUG_ON(!fs_info->tree_root);
2303 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2304 location.type = BTRFS_ROOT_ITEM_KEY;
2305 location.offset = 0;
2307 root = btrfs_read_tree_root(tree_root, &location);
2309 ret = PTR_ERR(root);
2312 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2313 fs_info->extent_root = root;
2315 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2316 root = btrfs_read_tree_root(tree_root, &location);
2318 ret = PTR_ERR(root);
2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 fs_info->dev_root = root;
2323 btrfs_init_devices_late(fs_info);
2325 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2326 root = btrfs_read_tree_root(tree_root, &location);
2328 ret = PTR_ERR(root);
2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332 fs_info->csum_root = root;
2335 * This tree can share blocks with some other fs tree during relocation
2336 * and we need a proper setup by btrfs_get_fs_root
2338 root = btrfs_get_fs_root(tree_root->fs_info,
2339 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2341 ret = PTR_ERR(root);
2344 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345 fs_info->data_reloc_root = root;
2347 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2348 root = btrfs_read_tree_root(tree_root, &location);
2349 if (!IS_ERR(root)) {
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2352 fs_info->quota_root = root;
2355 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2356 root = btrfs_read_tree_root(tree_root, &location);
2358 ret = PTR_ERR(root);
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->uuid_root = root;
2366 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2367 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2368 root = btrfs_read_tree_root(tree_root, &location);
2370 ret = PTR_ERR(root);
2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 fs_info->free_space_root = root;
2379 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2380 location.objectid, ret);
2385 * Real super block validation
2386 * NOTE: super csum type and incompat features will not be checked here.
2388 * @sb: super block to check
2389 * @mirror_num: the super block number to check its bytenr:
2390 * 0 the primary (1st) sb
2391 * 1, 2 2nd and 3rd backup copy
2392 * -1 skip bytenr check
2394 static int validate_super(struct btrfs_fs_info *fs_info,
2395 struct btrfs_super_block *sb, int mirror_num)
2397 u64 nodesize = btrfs_super_nodesize(sb);
2398 u64 sectorsize = btrfs_super_sectorsize(sb);
2401 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2402 btrfs_err(fs_info, "no valid FS found");
2405 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2406 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2407 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2410 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2412 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2415 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2417 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2420 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2421 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2422 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2427 * Check sectorsize and nodesize first, other check will need it.
2428 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2430 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2431 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2435 /* Only PAGE SIZE is supported yet */
2436 if (sectorsize != PAGE_SIZE) {
2438 "sectorsize %llu not supported yet, only support %lu",
2439 sectorsize, PAGE_SIZE);
2442 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2443 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2447 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2448 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2449 le32_to_cpu(sb->__unused_leafsize), nodesize);
2453 /* Root alignment check */
2454 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2455 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2456 btrfs_super_root(sb));
2459 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2460 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2461 btrfs_super_chunk_root(sb));
2464 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2465 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2466 btrfs_super_log_root(sb));
2470 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2471 BTRFS_FSID_SIZE) != 0) {
2473 "dev_item UUID does not match metadata fsid: %pU != %pU",
2474 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2479 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2482 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2483 btrfs_err(fs_info, "bytes_used is too small %llu",
2484 btrfs_super_bytes_used(sb));
2487 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2488 btrfs_err(fs_info, "invalid stripesize %u",
2489 btrfs_super_stripesize(sb));
2492 if (btrfs_super_num_devices(sb) > (1UL << 31))
2493 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2494 btrfs_super_num_devices(sb));
2495 if (btrfs_super_num_devices(sb) == 0) {
2496 btrfs_err(fs_info, "number of devices is 0");
2500 if (mirror_num >= 0 &&
2501 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2502 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2503 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2508 * Obvious sys_chunk_array corruptions, it must hold at least one key
2511 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2512 btrfs_err(fs_info, "system chunk array too big %u > %u",
2513 btrfs_super_sys_array_size(sb),
2514 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2517 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2518 + sizeof(struct btrfs_chunk)) {
2519 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2520 btrfs_super_sys_array_size(sb),
2521 sizeof(struct btrfs_disk_key)
2522 + sizeof(struct btrfs_chunk));
2527 * The generation is a global counter, we'll trust it more than the others
2528 * but it's still possible that it's the one that's wrong.
2530 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2532 "suspicious: generation < chunk_root_generation: %llu < %llu",
2533 btrfs_super_generation(sb),
2534 btrfs_super_chunk_root_generation(sb));
2535 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2536 && btrfs_super_cache_generation(sb) != (u64)-1)
2538 "suspicious: generation < cache_generation: %llu < %llu",
2539 btrfs_super_generation(sb),
2540 btrfs_super_cache_generation(sb));
2546 * Validation of super block at mount time.
2547 * Some checks already done early at mount time, like csum type and incompat
2548 * flags will be skipped.
2550 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2552 return validate_super(fs_info, fs_info->super_copy, 0);
2556 * Validation of super block at write time.
2557 * Some checks like bytenr check will be skipped as their values will be
2559 * Extra checks like csum type and incompat flags will be done here.
2561 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2562 struct btrfs_super_block *sb)
2566 ret = validate_super(fs_info, sb, -1);
2569 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2571 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2572 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2575 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2578 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2579 btrfs_super_incompat_flags(sb),
2580 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2586 "super block corruption detected before writing it to disk");
2590 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2592 int backup_index = find_newest_super_backup(fs_info);
2593 struct btrfs_super_block *sb = fs_info->super_copy;
2594 struct btrfs_root *tree_root = fs_info->tree_root;
2595 bool handle_error = false;
2599 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2604 if (!IS_ERR(tree_root->node))
2605 free_extent_buffer(tree_root->node);
2606 tree_root->node = NULL;
2608 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2611 free_root_pointers(fs_info, 0);
2614 * Don't use the log in recovery mode, it won't be
2617 btrfs_set_super_log_root(sb, 0);
2619 /* We can't trust the free space cache either */
2620 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2622 ret = read_backup_root(fs_info, i);
2627 generation = btrfs_super_generation(sb);
2628 level = btrfs_super_root_level(sb);
2629 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2630 generation, level, NULL);
2631 if (IS_ERR(tree_root->node)) {
2632 handle_error = true;
2633 ret = PTR_ERR(tree_root->node);
2634 tree_root->node = NULL;
2635 btrfs_warn(fs_info, "couldn't read tree root");
2638 } else if (!extent_buffer_uptodate(tree_root->node)) {
2639 handle_error = true;
2641 btrfs_warn(fs_info, "error while reading tree root");
2645 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2646 tree_root->commit_root = btrfs_root_node(tree_root);
2647 btrfs_set_root_refs(&tree_root->root_item, 1);
2650 * No need to hold btrfs_root::objectid_mutex since the fs
2651 * hasn't been fully initialised and we are the only user
2653 ret = btrfs_find_highest_objectid(tree_root,
2654 &tree_root->highest_objectid);
2656 handle_error = true;
2660 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2662 ret = btrfs_read_roots(fs_info);
2664 handle_error = true;
2668 /* All successful */
2669 fs_info->generation = generation;
2670 fs_info->last_trans_committed = generation;
2672 /* Always begin writing backup roots after the one being used */
2673 if (backup_index < 0) {
2674 fs_info->backup_root_index = 0;
2676 fs_info->backup_root_index = backup_index + 1;
2677 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2685 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2687 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2688 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2689 INIT_LIST_HEAD(&fs_info->trans_list);
2690 INIT_LIST_HEAD(&fs_info->dead_roots);
2691 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2692 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2693 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2694 spin_lock_init(&fs_info->delalloc_root_lock);
2695 spin_lock_init(&fs_info->trans_lock);
2696 spin_lock_init(&fs_info->fs_roots_radix_lock);
2697 spin_lock_init(&fs_info->delayed_iput_lock);
2698 spin_lock_init(&fs_info->defrag_inodes_lock);
2699 spin_lock_init(&fs_info->super_lock);
2700 spin_lock_init(&fs_info->buffer_lock);
2701 spin_lock_init(&fs_info->unused_bgs_lock);
2702 rwlock_init(&fs_info->tree_mod_log_lock);
2703 mutex_init(&fs_info->unused_bg_unpin_mutex);
2704 mutex_init(&fs_info->delete_unused_bgs_mutex);
2705 mutex_init(&fs_info->reloc_mutex);
2706 mutex_init(&fs_info->delalloc_root_mutex);
2707 seqlock_init(&fs_info->profiles_lock);
2709 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2710 INIT_LIST_HEAD(&fs_info->space_info);
2711 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2712 INIT_LIST_HEAD(&fs_info->unused_bgs);
2713 #ifdef CONFIG_BTRFS_DEBUG
2714 INIT_LIST_HEAD(&fs_info->allocated_roots);
2715 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2716 spin_lock_init(&fs_info->eb_leak_lock);
2718 extent_map_tree_init(&fs_info->mapping_tree);
2719 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2720 BTRFS_BLOCK_RSV_GLOBAL);
2721 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2722 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2723 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2724 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2725 BTRFS_BLOCK_RSV_DELOPS);
2726 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2727 BTRFS_BLOCK_RSV_DELREFS);
2729 atomic_set(&fs_info->async_delalloc_pages, 0);
2730 atomic_set(&fs_info->defrag_running, 0);
2731 atomic_set(&fs_info->reada_works_cnt, 0);
2732 atomic_set(&fs_info->nr_delayed_iputs, 0);
2733 atomic64_set(&fs_info->tree_mod_seq, 0);
2734 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2735 fs_info->metadata_ratio = 0;
2736 fs_info->defrag_inodes = RB_ROOT;
2737 atomic64_set(&fs_info->free_chunk_space, 0);
2738 fs_info->tree_mod_log = RB_ROOT;
2739 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2740 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2741 /* readahead state */
2742 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2743 spin_lock_init(&fs_info->reada_lock);
2744 btrfs_init_ref_verify(fs_info);
2746 fs_info->thread_pool_size = min_t(unsigned long,
2747 num_online_cpus() + 2, 8);
2749 INIT_LIST_HEAD(&fs_info->ordered_roots);
2750 spin_lock_init(&fs_info->ordered_root_lock);
2752 btrfs_init_scrub(fs_info);
2753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2754 fs_info->check_integrity_print_mask = 0;
2756 btrfs_init_balance(fs_info);
2757 btrfs_init_async_reclaim_work(fs_info);
2759 spin_lock_init(&fs_info->block_group_cache_lock);
2760 fs_info->block_group_cache_tree = RB_ROOT;
2761 fs_info->first_logical_byte = (u64)-1;
2763 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2764 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2765 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2767 mutex_init(&fs_info->ordered_operations_mutex);
2768 mutex_init(&fs_info->tree_log_mutex);
2769 mutex_init(&fs_info->chunk_mutex);
2770 mutex_init(&fs_info->transaction_kthread_mutex);
2771 mutex_init(&fs_info->cleaner_mutex);
2772 mutex_init(&fs_info->ro_block_group_mutex);
2773 init_rwsem(&fs_info->commit_root_sem);
2774 init_rwsem(&fs_info->cleanup_work_sem);
2775 init_rwsem(&fs_info->subvol_sem);
2776 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2778 btrfs_init_dev_replace_locks(fs_info);
2779 btrfs_init_qgroup(fs_info);
2780 btrfs_discard_init(fs_info);
2782 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2783 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2785 init_waitqueue_head(&fs_info->transaction_throttle);
2786 init_waitqueue_head(&fs_info->transaction_wait);
2787 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2788 init_waitqueue_head(&fs_info->async_submit_wait);
2789 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2791 /* Usable values until the real ones are cached from the superblock */
2792 fs_info->nodesize = 4096;
2793 fs_info->sectorsize = 4096;
2794 fs_info->stripesize = 4096;
2796 spin_lock_init(&fs_info->swapfile_pins_lock);
2797 fs_info->swapfile_pins = RB_ROOT;
2799 fs_info->send_in_progress = 0;
2802 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2807 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2808 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2810 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2814 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2818 fs_info->dirty_metadata_batch = PAGE_SIZE *
2819 (1 + ilog2(nr_cpu_ids));
2821 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2825 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2830 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2832 if (!fs_info->delayed_root)
2834 btrfs_init_delayed_root(fs_info->delayed_root);
2836 return btrfs_alloc_stripe_hash_table(fs_info);
2839 static int btrfs_uuid_rescan_kthread(void *data)
2841 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2845 * 1st step is to iterate through the existing UUID tree and
2846 * to delete all entries that contain outdated data.
2847 * 2nd step is to add all missing entries to the UUID tree.
2849 ret = btrfs_uuid_tree_iterate(fs_info);
2852 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2854 up(&fs_info->uuid_tree_rescan_sem);
2857 return btrfs_uuid_scan_kthread(data);
2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2862 struct task_struct *task;
2864 down(&fs_info->uuid_tree_rescan_sem);
2865 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2868 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2869 up(&fs_info->uuid_tree_rescan_sem);
2870 return PTR_ERR(task);
2876 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2885 struct btrfs_super_block *disk_super;
2886 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2887 struct btrfs_root *tree_root;
2888 struct btrfs_root *chunk_root;
2891 int clear_free_space_tree = 0;
2894 ret = init_mount_fs_info(fs_info, sb);
2900 /* These need to be init'ed before we start creating inodes and such. */
2901 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2903 fs_info->tree_root = tree_root;
2904 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2906 fs_info->chunk_root = chunk_root;
2907 if (!tree_root || !chunk_root) {
2912 fs_info->btree_inode = new_inode(sb);
2913 if (!fs_info->btree_inode) {
2917 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2918 btrfs_init_btree_inode(fs_info);
2920 invalidate_bdev(fs_devices->latest_bdev);
2923 * Read super block and check the signature bytes only
2925 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2926 if (IS_ERR(disk_super)) {
2927 err = PTR_ERR(disk_super);
2932 * Verify the type first, if that or the checksum value are
2933 * corrupted, we'll find out
2935 csum_type = btrfs_super_csum_type(disk_super);
2936 if (!btrfs_supported_super_csum(csum_type)) {
2937 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2940 btrfs_release_disk_super(disk_super);
2944 ret = btrfs_init_csum_hash(fs_info, csum_type);
2947 btrfs_release_disk_super(disk_super);
2952 * We want to check superblock checksum, the type is stored inside.
2953 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2955 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2956 btrfs_err(fs_info, "superblock checksum mismatch");
2958 btrfs_release_disk_super(disk_super);
2963 * super_copy is zeroed at allocation time and we never touch the
2964 * following bytes up to INFO_SIZE, the checksum is calculated from
2965 * the whole block of INFO_SIZE
2967 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2968 btrfs_release_disk_super(disk_super);
2970 disk_super = fs_info->super_copy;
2972 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2975 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2976 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2977 fs_info->super_copy->metadata_uuid,
2981 features = btrfs_super_flags(disk_super);
2982 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2983 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2984 btrfs_set_super_flags(disk_super, features);
2986 "found metadata UUID change in progress flag, clearing");
2989 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2990 sizeof(*fs_info->super_for_commit));
2992 ret = btrfs_validate_mount_super(fs_info);
2994 btrfs_err(fs_info, "superblock contains fatal errors");
2999 if (!btrfs_super_root(disk_super))
3002 /* check FS state, whether FS is broken. */
3003 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3004 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3007 * In the long term, we'll store the compression type in the super
3008 * block, and it'll be used for per file compression control.
3010 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3012 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3018 features = btrfs_super_incompat_flags(disk_super) &
3019 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3022 "cannot mount because of unsupported optional features (%llx)",
3028 features = btrfs_super_incompat_flags(disk_super);
3029 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3030 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3031 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3032 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3033 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3035 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3036 btrfs_info(fs_info, "has skinny extents");
3039 * flag our filesystem as having big metadata blocks if
3040 * they are bigger than the page size
3042 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3043 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3045 "flagging fs with big metadata feature");
3046 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3049 nodesize = btrfs_super_nodesize(disk_super);
3050 sectorsize = btrfs_super_sectorsize(disk_super);
3051 stripesize = sectorsize;
3052 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3053 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3055 /* Cache block sizes */
3056 fs_info->nodesize = nodesize;
3057 fs_info->sectorsize = sectorsize;
3058 fs_info->stripesize = stripesize;
3061 * mixed block groups end up with duplicate but slightly offset
3062 * extent buffers for the same range. It leads to corruptions
3064 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3065 (sectorsize != nodesize)) {
3067 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3068 nodesize, sectorsize);
3073 * Needn't use the lock because there is no other task which will
3076 btrfs_set_super_incompat_flags(disk_super, features);
3078 features = btrfs_super_compat_ro_flags(disk_super) &
3079 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3080 if (!sb_rdonly(sb) && features) {
3082 "cannot mount read-write because of unsupported optional features (%llx)",
3088 ret = btrfs_init_workqueues(fs_info, fs_devices);
3091 goto fail_sb_buffer;
3094 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3095 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3097 sb->s_blocksize = sectorsize;
3098 sb->s_blocksize_bits = blksize_bits(sectorsize);
3099 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3101 mutex_lock(&fs_info->chunk_mutex);
3102 ret = btrfs_read_sys_array(fs_info);
3103 mutex_unlock(&fs_info->chunk_mutex);
3105 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3106 goto fail_sb_buffer;
3109 generation = btrfs_super_chunk_root_generation(disk_super);
3110 level = btrfs_super_chunk_root_level(disk_super);
3112 chunk_root->node = read_tree_block(fs_info,
3113 btrfs_super_chunk_root(disk_super),
3114 generation, level, NULL);
3115 if (IS_ERR(chunk_root->node) ||
3116 !extent_buffer_uptodate(chunk_root->node)) {
3117 btrfs_err(fs_info, "failed to read chunk root");
3118 if (!IS_ERR(chunk_root->node))
3119 free_extent_buffer(chunk_root->node);
3120 chunk_root->node = NULL;
3121 goto fail_tree_roots;
3123 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3124 chunk_root->commit_root = btrfs_root_node(chunk_root);
3126 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3127 offsetof(struct btrfs_header, chunk_tree_uuid),
3130 ret = btrfs_read_chunk_tree(fs_info);
3132 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3133 goto fail_tree_roots;
3137 * Keep the devid that is marked to be the target device for the
3138 * device replace procedure
3140 btrfs_free_extra_devids(fs_devices, 0);
3142 if (!fs_devices->latest_bdev) {
3143 btrfs_err(fs_info, "failed to read devices");
3144 goto fail_tree_roots;
3147 ret = init_tree_roots(fs_info);
3149 goto fail_tree_roots;
3152 * If we have a uuid root and we're not being told to rescan we need to
3153 * check the generation here so we can set the
3154 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3155 * transaction during a balance or the log replay without updating the
3156 * uuid generation, and then if we crash we would rescan the uuid tree,
3157 * even though it was perfectly fine.
3159 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3160 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3161 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3163 ret = btrfs_verify_dev_extents(fs_info);
3166 "failed to verify dev extents against chunks: %d",
3168 goto fail_block_groups;
3170 ret = btrfs_recover_balance(fs_info);
3172 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3173 goto fail_block_groups;
3176 ret = btrfs_init_dev_stats(fs_info);
3178 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3179 goto fail_block_groups;
3182 ret = btrfs_init_dev_replace(fs_info);
3184 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3185 goto fail_block_groups;
3188 btrfs_free_extra_devids(fs_devices, 1);
3190 ret = btrfs_sysfs_add_fsid(fs_devices);
3192 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3194 goto fail_block_groups;
3197 ret = btrfs_sysfs_add_mounted(fs_info);
3199 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3200 goto fail_fsdev_sysfs;
3203 ret = btrfs_init_space_info(fs_info);
3205 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3209 ret = btrfs_read_block_groups(fs_info);
3211 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3215 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3217 "writable mount is not allowed due to too many missing devices");
3221 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3223 if (IS_ERR(fs_info->cleaner_kthread))
3226 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3228 "btrfs-transaction");
3229 if (IS_ERR(fs_info->transaction_kthread))
3232 if (!btrfs_test_opt(fs_info, NOSSD) &&
3233 !fs_info->fs_devices->rotating) {
3234 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3238 * Mount does not set all options immediately, we can do it now and do
3239 * not have to wait for transaction commit
3241 btrfs_apply_pending_changes(fs_info);
3243 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3244 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3245 ret = btrfsic_mount(fs_info, fs_devices,
3246 btrfs_test_opt(fs_info,
3247 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3249 fs_info->check_integrity_print_mask);
3252 "failed to initialize integrity check module: %d",
3256 ret = btrfs_read_qgroup_config(fs_info);
3258 goto fail_trans_kthread;
3260 if (btrfs_build_ref_tree(fs_info))
3261 btrfs_err(fs_info, "couldn't build ref tree");
3263 /* do not make disk changes in broken FS or nologreplay is given */
3264 if (btrfs_super_log_root(disk_super) != 0 &&
3265 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3266 btrfs_info(fs_info, "start tree-log replay");
3267 ret = btrfs_replay_log(fs_info, fs_devices);
3274 ret = btrfs_find_orphan_roots(fs_info);
3278 if (!sb_rdonly(sb)) {
3279 ret = btrfs_cleanup_fs_roots(fs_info);
3283 mutex_lock(&fs_info->cleaner_mutex);
3284 ret = btrfs_recover_relocation(tree_root);
3285 mutex_unlock(&fs_info->cleaner_mutex);
3287 btrfs_warn(fs_info, "failed to recover relocation: %d",
3294 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3295 if (IS_ERR(fs_info->fs_root)) {
3296 err = PTR_ERR(fs_info->fs_root);
3297 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3298 fs_info->fs_root = NULL;
3305 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3306 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3307 clear_free_space_tree = 1;
3308 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3309 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3310 btrfs_warn(fs_info, "free space tree is invalid");
3311 clear_free_space_tree = 1;
3314 if (clear_free_space_tree) {
3315 btrfs_info(fs_info, "clearing free space tree");
3316 ret = btrfs_clear_free_space_tree(fs_info);
3319 "failed to clear free space tree: %d", ret);
3320 close_ctree(fs_info);
3325 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3326 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3327 btrfs_info(fs_info, "creating free space tree");
3328 ret = btrfs_create_free_space_tree(fs_info);
3331 "failed to create free space tree: %d", ret);
3332 close_ctree(fs_info);
3337 down_read(&fs_info->cleanup_work_sem);
3338 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3339 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3340 up_read(&fs_info->cleanup_work_sem);
3341 close_ctree(fs_info);
3344 up_read(&fs_info->cleanup_work_sem);
3346 ret = btrfs_resume_balance_async(fs_info);
3348 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3349 close_ctree(fs_info);
3353 ret = btrfs_resume_dev_replace_async(fs_info);
3355 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3356 close_ctree(fs_info);
3360 btrfs_qgroup_rescan_resume(fs_info);
3361 btrfs_discard_resume(fs_info);
3363 if (!fs_info->uuid_root) {
3364 btrfs_info(fs_info, "creating UUID tree");
3365 ret = btrfs_create_uuid_tree(fs_info);
3368 "failed to create the UUID tree: %d", ret);
3369 close_ctree(fs_info);
3372 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3373 fs_info->generation !=
3374 btrfs_super_uuid_tree_generation(disk_super)) {
3375 btrfs_info(fs_info, "checking UUID tree");
3376 ret = btrfs_check_uuid_tree(fs_info);
3379 "failed to check the UUID tree: %d", ret);
3380 close_ctree(fs_info);
3384 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3387 * backuproot only affect mount behavior, and if open_ctree succeeded,
3388 * no need to keep the flag
3390 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3395 btrfs_free_qgroup_config(fs_info);
3397 kthread_stop(fs_info->transaction_kthread);
3398 btrfs_cleanup_transaction(fs_info);
3399 btrfs_free_fs_roots(fs_info);
3401 kthread_stop(fs_info->cleaner_kthread);
3404 * make sure we're done with the btree inode before we stop our
3407 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3410 btrfs_sysfs_remove_mounted(fs_info);
3413 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3416 btrfs_put_block_group_cache(fs_info);
3419 if (fs_info->data_reloc_root)
3420 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3421 free_root_pointers(fs_info, true);
3422 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3425 btrfs_stop_all_workers(fs_info);
3426 btrfs_free_block_groups(fs_info);
3428 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3430 iput(fs_info->btree_inode);
3432 btrfs_close_devices(fs_info->fs_devices);
3435 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3437 static void btrfs_end_super_write(struct bio *bio)
3439 struct btrfs_device *device = bio->bi_private;
3440 struct bio_vec *bvec;
3441 struct bvec_iter_all iter_all;
3444 bio_for_each_segment_all(bvec, bio, iter_all) {
3445 page = bvec->bv_page;
3447 if (bio->bi_status) {
3448 btrfs_warn_rl_in_rcu(device->fs_info,
3449 "lost page write due to IO error on %s (%d)",
3450 rcu_str_deref(device->name),
3451 blk_status_to_errno(bio->bi_status));
3452 ClearPageUptodate(page);
3454 btrfs_dev_stat_inc_and_print(device,
3455 BTRFS_DEV_STAT_WRITE_ERRS);
3457 SetPageUptodate(page);
3467 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3470 struct btrfs_super_block *super;
3473 struct address_space *mapping = bdev->bd_inode->i_mapping;
3475 bytenr = btrfs_sb_offset(copy_num);
3476 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3477 return ERR_PTR(-EINVAL);
3479 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3481 return ERR_CAST(page);
3483 super = page_address(page);
3484 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3485 btrfs_release_disk_super(super);
3486 return ERR_PTR(-ENODATA);
3489 if (btrfs_super_bytenr(super) != bytenr) {
3490 btrfs_release_disk_super(super);
3491 return ERR_PTR(-EINVAL);
3498 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3500 struct btrfs_super_block *super, *latest = NULL;
3504 /* we would like to check all the supers, but that would make
3505 * a btrfs mount succeed after a mkfs from a different FS.
3506 * So, we need to add a special mount option to scan for
3507 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3509 for (i = 0; i < 1; i++) {
3510 super = btrfs_read_dev_one_super(bdev, i);
3514 if (!latest || btrfs_super_generation(super) > transid) {
3516 btrfs_release_disk_super(super);
3519 transid = btrfs_super_generation(super);
3527 * Write superblock @sb to the @device. Do not wait for completion, all the
3528 * pages we use for writing are locked.
3530 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3531 * the expected device size at commit time. Note that max_mirrors must be
3532 * same for write and wait phases.
3534 * Return number of errors when page is not found or submission fails.
3536 static int write_dev_supers(struct btrfs_device *device,
3537 struct btrfs_super_block *sb, int max_mirrors)
3539 struct btrfs_fs_info *fs_info = device->fs_info;
3540 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3541 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3546 if (max_mirrors == 0)
3547 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3549 shash->tfm = fs_info->csum_shash;
3551 for (i = 0; i < max_mirrors; i++) {
3554 struct btrfs_super_block *disk_super;
3556 bytenr = btrfs_sb_offset(i);
3557 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3558 device->commit_total_bytes)
3561 btrfs_set_super_bytenr(sb, bytenr);
3563 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3564 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3567 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3570 btrfs_err(device->fs_info,
3571 "couldn't get super block page for bytenr %llu",
3577 /* Bump the refcount for wait_dev_supers() */
3580 disk_super = page_address(page);
3581 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3584 * Directly use bios here instead of relying on the page cache
3585 * to do I/O, so we don't lose the ability to do integrity
3588 bio = bio_alloc(GFP_NOFS, 1);
3589 bio_set_dev(bio, device->bdev);
3590 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3591 bio->bi_private = device;
3592 bio->bi_end_io = btrfs_end_super_write;
3593 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3594 offset_in_page(bytenr));
3597 * We FUA only the first super block. The others we allow to
3598 * go down lazy and there's a short window where the on-disk
3599 * copies might still contain the older version.
3601 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3602 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3603 bio->bi_opf |= REQ_FUA;
3605 btrfsic_submit_bio(bio);
3607 return errors < i ? 0 : -1;
3611 * Wait for write completion of superblocks done by write_dev_supers,
3612 * @max_mirrors same for write and wait phases.
3614 * Return number of errors when page is not found or not marked up to
3617 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3621 bool primary_failed = false;
3624 if (max_mirrors == 0)
3625 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3627 for (i = 0; i < max_mirrors; i++) {
3630 bytenr = btrfs_sb_offset(i);
3631 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3632 device->commit_total_bytes)
3635 page = find_get_page(device->bdev->bd_inode->i_mapping,
3636 bytenr >> PAGE_SHIFT);
3640 primary_failed = true;
3643 /* Page is submitted locked and unlocked once the IO completes */
3644 wait_on_page_locked(page);
3645 if (PageError(page)) {
3648 primary_failed = true;
3651 /* Drop our reference */
3654 /* Drop the reference from the writing run */
3658 /* log error, force error return */
3659 if (primary_failed) {
3660 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3665 return errors < i ? 0 : -1;
3669 * endio for the write_dev_flush, this will wake anyone waiting
3670 * for the barrier when it is done
3672 static void btrfs_end_empty_barrier(struct bio *bio)
3674 complete(bio->bi_private);
3678 * Submit a flush request to the device if it supports it. Error handling is
3679 * done in the waiting counterpart.
3681 static void write_dev_flush(struct btrfs_device *device)
3683 struct request_queue *q = bdev_get_queue(device->bdev);
3684 struct bio *bio = device->flush_bio;
3686 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3690 bio->bi_end_io = btrfs_end_empty_barrier;
3691 bio_set_dev(bio, device->bdev);
3692 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3693 init_completion(&device->flush_wait);
3694 bio->bi_private = &device->flush_wait;
3696 btrfsic_submit_bio(bio);
3697 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3701 * If the flush bio has been submitted by write_dev_flush, wait for it.
3703 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3705 struct bio *bio = device->flush_bio;
3707 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3710 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3711 wait_for_completion_io(&device->flush_wait);
3713 return bio->bi_status;
3716 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3718 if (!btrfs_check_rw_degradable(fs_info, NULL))
3724 * send an empty flush down to each device in parallel,
3725 * then wait for them
3727 static int barrier_all_devices(struct btrfs_fs_info *info)
3729 struct list_head *head;
3730 struct btrfs_device *dev;
3731 int errors_wait = 0;
3734 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3735 /* send down all the barriers */
3736 head = &info->fs_devices->devices;
3737 list_for_each_entry(dev, head, dev_list) {
3738 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3742 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3743 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3746 write_dev_flush(dev);
3747 dev->last_flush_error = BLK_STS_OK;
3750 /* wait for all the barriers */
3751 list_for_each_entry(dev, head, dev_list) {
3752 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3758 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3759 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3762 ret = wait_dev_flush(dev);
3764 dev->last_flush_error = ret;
3765 btrfs_dev_stat_inc_and_print(dev,
3766 BTRFS_DEV_STAT_FLUSH_ERRS);
3773 * At some point we need the status of all disks
3774 * to arrive at the volume status. So error checking
3775 * is being pushed to a separate loop.
3777 return check_barrier_error(info);
3782 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3785 int min_tolerated = INT_MAX;
3787 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3788 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3789 min_tolerated = min_t(int, min_tolerated,
3790 btrfs_raid_array[BTRFS_RAID_SINGLE].
3791 tolerated_failures);
3793 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3794 if (raid_type == BTRFS_RAID_SINGLE)
3796 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3798 min_tolerated = min_t(int, min_tolerated,
3799 btrfs_raid_array[raid_type].
3800 tolerated_failures);
3803 if (min_tolerated == INT_MAX) {
3804 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3808 return min_tolerated;
3811 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3813 struct list_head *head;
3814 struct btrfs_device *dev;
3815 struct btrfs_super_block *sb;
3816 struct btrfs_dev_item *dev_item;
3820 int total_errors = 0;
3823 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3826 * max_mirrors == 0 indicates we're from commit_transaction,
3827 * not from fsync where the tree roots in fs_info have not
3828 * been consistent on disk.
3830 if (max_mirrors == 0)
3831 backup_super_roots(fs_info);
3833 sb = fs_info->super_for_commit;
3834 dev_item = &sb->dev_item;
3836 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3837 head = &fs_info->fs_devices->devices;
3838 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3841 ret = barrier_all_devices(fs_info);
3844 &fs_info->fs_devices->device_list_mutex);
3845 btrfs_handle_fs_error(fs_info, ret,
3846 "errors while submitting device barriers.");
3851 list_for_each_entry(dev, head, dev_list) {
3856 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3857 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3860 btrfs_set_stack_device_generation(dev_item, 0);
3861 btrfs_set_stack_device_type(dev_item, dev->type);
3862 btrfs_set_stack_device_id(dev_item, dev->devid);
3863 btrfs_set_stack_device_total_bytes(dev_item,
3864 dev->commit_total_bytes);
3865 btrfs_set_stack_device_bytes_used(dev_item,
3866 dev->commit_bytes_used);
3867 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3868 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3869 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3870 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3871 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3874 flags = btrfs_super_flags(sb);
3875 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3877 ret = btrfs_validate_write_super(fs_info, sb);
3879 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3880 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3881 "unexpected superblock corruption detected");
3885 ret = write_dev_supers(dev, sb, max_mirrors);
3889 if (total_errors > max_errors) {
3890 btrfs_err(fs_info, "%d errors while writing supers",
3892 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3894 /* FUA is masked off if unsupported and can't be the reason */
3895 btrfs_handle_fs_error(fs_info, -EIO,
3896 "%d errors while writing supers",
3902 list_for_each_entry(dev, head, dev_list) {
3905 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3906 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3909 ret = wait_dev_supers(dev, max_mirrors);
3913 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3914 if (total_errors > max_errors) {
3915 btrfs_handle_fs_error(fs_info, -EIO,
3916 "%d errors while writing supers",
3923 /* Drop a fs root from the radix tree and free it. */
3924 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3925 struct btrfs_root *root)
3927 bool drop_ref = false;
3929 spin_lock(&fs_info->fs_roots_radix_lock);
3930 radix_tree_delete(&fs_info->fs_roots_radix,
3931 (unsigned long)root->root_key.objectid);
3932 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3934 spin_unlock(&fs_info->fs_roots_radix_lock);
3936 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3937 ASSERT(root->log_root == NULL);
3938 if (root->reloc_root) {
3939 btrfs_put_root(root->reloc_root);
3940 root->reloc_root = NULL;
3944 if (root->free_ino_pinned)
3945 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3946 if (root->free_ino_ctl)
3947 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3948 if (root->ino_cache_inode) {
3949 iput(root->ino_cache_inode);
3950 root->ino_cache_inode = NULL;
3953 btrfs_put_root(root);
3956 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3958 u64 root_objectid = 0;
3959 struct btrfs_root *gang[8];
3962 unsigned int ret = 0;
3965 spin_lock(&fs_info->fs_roots_radix_lock);
3966 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3967 (void **)gang, root_objectid,
3970 spin_unlock(&fs_info->fs_roots_radix_lock);
3973 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3975 for (i = 0; i < ret; i++) {
3976 /* Avoid to grab roots in dead_roots */
3977 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3981 /* grab all the search result for later use */
3982 gang[i] = btrfs_grab_root(gang[i]);
3984 spin_unlock(&fs_info->fs_roots_radix_lock);
3986 for (i = 0; i < ret; i++) {
3989 root_objectid = gang[i]->root_key.objectid;
3990 err = btrfs_orphan_cleanup(gang[i]);
3993 btrfs_put_root(gang[i]);
3998 /* release the uncleaned roots due to error */
3999 for (; i < ret; i++) {
4001 btrfs_put_root(gang[i]);
4006 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4008 struct btrfs_root *root = fs_info->tree_root;
4009 struct btrfs_trans_handle *trans;
4011 mutex_lock(&fs_info->cleaner_mutex);
4012 btrfs_run_delayed_iputs(fs_info);
4013 mutex_unlock(&fs_info->cleaner_mutex);
4014 wake_up_process(fs_info->cleaner_kthread);
4016 /* wait until ongoing cleanup work done */
4017 down_write(&fs_info->cleanup_work_sem);
4018 up_write(&fs_info->cleanup_work_sem);
4020 trans = btrfs_join_transaction(root);
4022 return PTR_ERR(trans);
4023 return btrfs_commit_transaction(trans);
4026 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4030 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4032 * We don't want the cleaner to start new transactions, add more delayed
4033 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4034 * because that frees the task_struct, and the transaction kthread might
4035 * still try to wake up the cleaner.
4037 kthread_park(fs_info->cleaner_kthread);
4039 /* wait for the qgroup rescan worker to stop */
4040 btrfs_qgroup_wait_for_completion(fs_info, false);
4042 /* wait for the uuid_scan task to finish */
4043 down(&fs_info->uuid_tree_rescan_sem);
4044 /* avoid complains from lockdep et al., set sem back to initial state */
4045 up(&fs_info->uuid_tree_rescan_sem);
4047 /* pause restriper - we want to resume on mount */
4048 btrfs_pause_balance(fs_info);
4050 btrfs_dev_replace_suspend_for_unmount(fs_info);
4052 btrfs_scrub_cancel(fs_info);
4054 /* wait for any defraggers to finish */
4055 wait_event(fs_info->transaction_wait,
4056 (atomic_read(&fs_info->defrag_running) == 0));
4058 /* clear out the rbtree of defraggable inodes */
4059 btrfs_cleanup_defrag_inodes(fs_info);
4061 cancel_work_sync(&fs_info->async_reclaim_work);
4062 cancel_work_sync(&fs_info->async_data_reclaim_work);
4064 /* Cancel or finish ongoing discard work */
4065 btrfs_discard_cleanup(fs_info);
4067 if (!sb_rdonly(fs_info->sb)) {
4069 * The cleaner kthread is stopped, so do one final pass over
4070 * unused block groups.
4072 btrfs_delete_unused_bgs(fs_info);
4075 * There might be existing delayed inode workers still running
4076 * and holding an empty delayed inode item. We must wait for
4077 * them to complete first because they can create a transaction.
4078 * This happens when someone calls btrfs_balance_delayed_items()
4079 * and then a transaction commit runs the same delayed nodes
4080 * before any delayed worker has done something with the nodes.
4081 * We must wait for any worker here and not at transaction
4082 * commit time since that could cause a deadlock.
4083 * This is a very rare case.
4085 btrfs_flush_workqueue(fs_info->delayed_workers);
4087 ret = btrfs_commit_super(fs_info);
4089 btrfs_err(fs_info, "commit super ret %d", ret);
4092 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4093 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4094 btrfs_error_commit_super(fs_info);
4096 kthread_stop(fs_info->transaction_kthread);
4097 kthread_stop(fs_info->cleaner_kthread);
4099 ASSERT(list_empty(&fs_info->delayed_iputs));
4100 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4102 if (btrfs_check_quota_leak(fs_info)) {
4103 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4104 btrfs_err(fs_info, "qgroup reserved space leaked");
4107 btrfs_free_qgroup_config(fs_info);
4108 ASSERT(list_empty(&fs_info->delalloc_roots));
4110 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4111 btrfs_info(fs_info, "at unmount delalloc count %lld",
4112 percpu_counter_sum(&fs_info->delalloc_bytes));
4115 if (percpu_counter_sum(&fs_info->dio_bytes))
4116 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4117 percpu_counter_sum(&fs_info->dio_bytes));
4119 btrfs_sysfs_remove_mounted(fs_info);
4120 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4122 btrfs_put_block_group_cache(fs_info);
4125 * we must make sure there is not any read request to
4126 * submit after we stopping all workers.
4128 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4129 btrfs_stop_all_workers(fs_info);
4131 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4132 free_root_pointers(fs_info, true);
4133 btrfs_free_fs_roots(fs_info);
4136 * We must free the block groups after dropping the fs_roots as we could
4137 * have had an IO error and have left over tree log blocks that aren't
4138 * cleaned up until the fs roots are freed. This makes the block group
4139 * accounting appear to be wrong because there's pending reserved bytes,
4140 * so make sure we do the block group cleanup afterwards.
4142 btrfs_free_block_groups(fs_info);
4144 iput(fs_info->btree_inode);
4146 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4147 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4148 btrfsic_unmount(fs_info->fs_devices);
4151 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4152 btrfs_close_devices(fs_info->fs_devices);
4155 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4159 struct inode *btree_inode = buf->pages[0]->mapping->host;
4161 ret = extent_buffer_uptodate(buf);
4165 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4166 parent_transid, atomic);
4172 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4174 struct btrfs_fs_info *fs_info;
4175 struct btrfs_root *root;
4176 u64 transid = btrfs_header_generation(buf);
4179 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4181 * This is a fast path so only do this check if we have sanity tests
4182 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4183 * outside of the sanity tests.
4185 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4188 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4189 fs_info = root->fs_info;
4190 btrfs_assert_tree_locked(buf);
4191 if (transid != fs_info->generation)
4192 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4193 buf->start, transid, fs_info->generation);
4194 was_dirty = set_extent_buffer_dirty(buf);
4196 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4198 fs_info->dirty_metadata_batch);
4199 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4201 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4202 * but item data not updated.
4203 * So here we should only check item pointers, not item data.
4205 if (btrfs_header_level(buf) == 0 &&
4206 btrfs_check_leaf_relaxed(buf)) {
4207 btrfs_print_leaf(buf);
4213 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4217 * looks as though older kernels can get into trouble with
4218 * this code, they end up stuck in balance_dirty_pages forever
4222 if (current->flags & PF_MEMALLOC)
4226 btrfs_balance_delayed_items(fs_info);
4228 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4229 BTRFS_DIRTY_METADATA_THRESH,
4230 fs_info->dirty_metadata_batch);
4232 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4236 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4238 __btrfs_btree_balance_dirty(fs_info, 1);
4241 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4243 __btrfs_btree_balance_dirty(fs_info, 0);
4246 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4247 struct btrfs_key *first_key)
4249 return btree_read_extent_buffer_pages(buf, parent_transid,
4253 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4255 /* cleanup FS via transaction */
4256 btrfs_cleanup_transaction(fs_info);
4258 mutex_lock(&fs_info->cleaner_mutex);
4259 btrfs_run_delayed_iputs(fs_info);
4260 mutex_unlock(&fs_info->cleaner_mutex);
4262 down_write(&fs_info->cleanup_work_sem);
4263 up_write(&fs_info->cleanup_work_sem);
4266 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4268 struct btrfs_root *gang[8];
4269 u64 root_objectid = 0;
4272 spin_lock(&fs_info->fs_roots_radix_lock);
4273 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4274 (void **)gang, root_objectid,
4275 ARRAY_SIZE(gang))) != 0) {
4278 for (i = 0; i < ret; i++)
4279 gang[i] = btrfs_grab_root(gang[i]);
4280 spin_unlock(&fs_info->fs_roots_radix_lock);
4282 for (i = 0; i < ret; i++) {
4285 root_objectid = gang[i]->root_key.objectid;
4286 btrfs_free_log(NULL, gang[i]);
4287 btrfs_put_root(gang[i]);
4290 spin_lock(&fs_info->fs_roots_radix_lock);
4292 spin_unlock(&fs_info->fs_roots_radix_lock);
4293 btrfs_free_log_root_tree(NULL, fs_info);
4296 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4298 struct btrfs_ordered_extent *ordered;
4300 spin_lock(&root->ordered_extent_lock);
4302 * This will just short circuit the ordered completion stuff which will
4303 * make sure the ordered extent gets properly cleaned up.
4305 list_for_each_entry(ordered, &root->ordered_extents,
4307 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4308 spin_unlock(&root->ordered_extent_lock);
4311 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4313 struct btrfs_root *root;
4314 struct list_head splice;
4316 INIT_LIST_HEAD(&splice);
4318 spin_lock(&fs_info->ordered_root_lock);
4319 list_splice_init(&fs_info->ordered_roots, &splice);
4320 while (!list_empty(&splice)) {
4321 root = list_first_entry(&splice, struct btrfs_root,
4323 list_move_tail(&root->ordered_root,
4324 &fs_info->ordered_roots);
4326 spin_unlock(&fs_info->ordered_root_lock);
4327 btrfs_destroy_ordered_extents(root);
4330 spin_lock(&fs_info->ordered_root_lock);
4332 spin_unlock(&fs_info->ordered_root_lock);
4335 * We need this here because if we've been flipped read-only we won't
4336 * get sync() from the umount, so we need to make sure any ordered
4337 * extents that haven't had their dirty pages IO start writeout yet
4338 * actually get run and error out properly.
4340 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4343 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4344 struct btrfs_fs_info *fs_info)
4346 struct rb_node *node;
4347 struct btrfs_delayed_ref_root *delayed_refs;
4348 struct btrfs_delayed_ref_node *ref;
4351 delayed_refs = &trans->delayed_refs;
4353 spin_lock(&delayed_refs->lock);
4354 if (atomic_read(&delayed_refs->num_entries) == 0) {
4355 spin_unlock(&delayed_refs->lock);
4356 btrfs_debug(fs_info, "delayed_refs has NO entry");
4360 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4361 struct btrfs_delayed_ref_head *head;
4363 bool pin_bytes = false;
4365 head = rb_entry(node, struct btrfs_delayed_ref_head,
4367 if (btrfs_delayed_ref_lock(delayed_refs, head))
4370 spin_lock(&head->lock);
4371 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4372 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4375 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4376 RB_CLEAR_NODE(&ref->ref_node);
4377 if (!list_empty(&ref->add_list))
4378 list_del(&ref->add_list);
4379 atomic_dec(&delayed_refs->num_entries);
4380 btrfs_put_delayed_ref(ref);
4382 if (head->must_insert_reserved)
4384 btrfs_free_delayed_extent_op(head->extent_op);
4385 btrfs_delete_ref_head(delayed_refs, head);
4386 spin_unlock(&head->lock);
4387 spin_unlock(&delayed_refs->lock);
4388 mutex_unlock(&head->mutex);
4391 struct btrfs_block_group *cache;
4393 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4396 spin_lock(&cache->space_info->lock);
4397 spin_lock(&cache->lock);
4398 cache->pinned += head->num_bytes;
4399 btrfs_space_info_update_bytes_pinned(fs_info,
4400 cache->space_info, head->num_bytes);
4401 cache->reserved -= head->num_bytes;
4402 cache->space_info->bytes_reserved -= head->num_bytes;
4403 spin_unlock(&cache->lock);
4404 spin_unlock(&cache->space_info->lock);
4405 percpu_counter_add_batch(
4406 &cache->space_info->total_bytes_pinned,
4407 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4409 btrfs_put_block_group(cache);
4411 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4412 head->bytenr + head->num_bytes - 1);
4414 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4415 btrfs_put_delayed_ref_head(head);
4417 spin_lock(&delayed_refs->lock);
4419 btrfs_qgroup_destroy_extent_records(trans);
4421 spin_unlock(&delayed_refs->lock);
4426 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4428 struct btrfs_inode *btrfs_inode;
4429 struct list_head splice;
4431 INIT_LIST_HEAD(&splice);
4433 spin_lock(&root->delalloc_lock);
4434 list_splice_init(&root->delalloc_inodes, &splice);
4436 while (!list_empty(&splice)) {
4437 struct inode *inode = NULL;
4438 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4440 __btrfs_del_delalloc_inode(root, btrfs_inode);
4441 spin_unlock(&root->delalloc_lock);
4444 * Make sure we get a live inode and that it'll not disappear
4447 inode = igrab(&btrfs_inode->vfs_inode);
4449 invalidate_inode_pages2(inode->i_mapping);
4452 spin_lock(&root->delalloc_lock);
4454 spin_unlock(&root->delalloc_lock);
4457 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4459 struct btrfs_root *root;
4460 struct list_head splice;
4462 INIT_LIST_HEAD(&splice);
4464 spin_lock(&fs_info->delalloc_root_lock);
4465 list_splice_init(&fs_info->delalloc_roots, &splice);
4466 while (!list_empty(&splice)) {
4467 root = list_first_entry(&splice, struct btrfs_root,
4469 root = btrfs_grab_root(root);
4471 spin_unlock(&fs_info->delalloc_root_lock);
4473 btrfs_destroy_delalloc_inodes(root);
4474 btrfs_put_root(root);
4476 spin_lock(&fs_info->delalloc_root_lock);
4478 spin_unlock(&fs_info->delalloc_root_lock);
4481 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4482 struct extent_io_tree *dirty_pages,
4486 struct extent_buffer *eb;
4491 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4496 clear_extent_bits(dirty_pages, start, end, mark);
4497 while (start <= end) {
4498 eb = find_extent_buffer(fs_info, start);
4499 start += fs_info->nodesize;
4502 wait_on_extent_buffer_writeback(eb);
4504 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4506 clear_extent_buffer_dirty(eb);
4507 free_extent_buffer_stale(eb);
4514 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4515 struct extent_io_tree *unpin)
4522 struct extent_state *cached_state = NULL;
4525 * The btrfs_finish_extent_commit() may get the same range as
4526 * ours between find_first_extent_bit and clear_extent_dirty.
4527 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4528 * the same extent range.
4530 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4531 ret = find_first_extent_bit(unpin, 0, &start, &end,
4532 EXTENT_DIRTY, &cached_state);
4534 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4538 clear_extent_dirty(unpin, start, end, &cached_state);
4539 free_extent_state(cached_state);
4540 btrfs_error_unpin_extent_range(fs_info, start, end);
4541 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4548 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4550 struct inode *inode;
4552 inode = cache->io_ctl.inode;
4554 invalidate_inode_pages2(inode->i_mapping);
4555 BTRFS_I(inode)->generation = 0;
4556 cache->io_ctl.inode = NULL;
4559 ASSERT(cache->io_ctl.pages == NULL);
4560 btrfs_put_block_group(cache);
4563 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4564 struct btrfs_fs_info *fs_info)
4566 struct btrfs_block_group *cache;
4568 spin_lock(&cur_trans->dirty_bgs_lock);
4569 while (!list_empty(&cur_trans->dirty_bgs)) {
4570 cache = list_first_entry(&cur_trans->dirty_bgs,
4571 struct btrfs_block_group,
4574 if (!list_empty(&cache->io_list)) {
4575 spin_unlock(&cur_trans->dirty_bgs_lock);
4576 list_del_init(&cache->io_list);
4577 btrfs_cleanup_bg_io(cache);
4578 spin_lock(&cur_trans->dirty_bgs_lock);
4581 list_del_init(&cache->dirty_list);
4582 spin_lock(&cache->lock);
4583 cache->disk_cache_state = BTRFS_DC_ERROR;
4584 spin_unlock(&cache->lock);
4586 spin_unlock(&cur_trans->dirty_bgs_lock);
4587 btrfs_put_block_group(cache);
4588 btrfs_delayed_refs_rsv_release(fs_info, 1);
4589 spin_lock(&cur_trans->dirty_bgs_lock);
4591 spin_unlock(&cur_trans->dirty_bgs_lock);
4594 * Refer to the definition of io_bgs member for details why it's safe
4595 * to use it without any locking
4597 while (!list_empty(&cur_trans->io_bgs)) {
4598 cache = list_first_entry(&cur_trans->io_bgs,
4599 struct btrfs_block_group,
4602 list_del_init(&cache->io_list);
4603 spin_lock(&cache->lock);
4604 cache->disk_cache_state = BTRFS_DC_ERROR;
4605 spin_unlock(&cache->lock);
4606 btrfs_cleanup_bg_io(cache);
4610 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4611 struct btrfs_fs_info *fs_info)
4613 struct btrfs_device *dev, *tmp;
4615 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4616 ASSERT(list_empty(&cur_trans->dirty_bgs));
4617 ASSERT(list_empty(&cur_trans->io_bgs));
4619 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4621 list_del_init(&dev->post_commit_list);
4624 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4626 cur_trans->state = TRANS_STATE_COMMIT_START;
4627 wake_up(&fs_info->transaction_blocked_wait);
4629 cur_trans->state = TRANS_STATE_UNBLOCKED;
4630 wake_up(&fs_info->transaction_wait);
4632 btrfs_destroy_delayed_inodes(fs_info);
4634 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4636 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4638 cur_trans->state =TRANS_STATE_COMPLETED;
4639 wake_up(&cur_trans->commit_wait);
4642 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4644 struct btrfs_transaction *t;
4646 mutex_lock(&fs_info->transaction_kthread_mutex);
4648 spin_lock(&fs_info->trans_lock);
4649 while (!list_empty(&fs_info->trans_list)) {
4650 t = list_first_entry(&fs_info->trans_list,
4651 struct btrfs_transaction, list);
4652 if (t->state >= TRANS_STATE_COMMIT_START) {
4653 refcount_inc(&t->use_count);
4654 spin_unlock(&fs_info->trans_lock);
4655 btrfs_wait_for_commit(fs_info, t->transid);
4656 btrfs_put_transaction(t);
4657 spin_lock(&fs_info->trans_lock);
4660 if (t == fs_info->running_transaction) {
4661 t->state = TRANS_STATE_COMMIT_DOING;
4662 spin_unlock(&fs_info->trans_lock);
4664 * We wait for 0 num_writers since we don't hold a trans
4665 * handle open currently for this transaction.
4667 wait_event(t->writer_wait,
4668 atomic_read(&t->num_writers) == 0);
4670 spin_unlock(&fs_info->trans_lock);
4672 btrfs_cleanup_one_transaction(t, fs_info);
4674 spin_lock(&fs_info->trans_lock);
4675 if (t == fs_info->running_transaction)
4676 fs_info->running_transaction = NULL;
4677 list_del_init(&t->list);
4678 spin_unlock(&fs_info->trans_lock);
4680 btrfs_put_transaction(t);
4681 trace_btrfs_transaction_commit(fs_info->tree_root);
4682 spin_lock(&fs_info->trans_lock);
4684 spin_unlock(&fs_info->trans_lock);
4685 btrfs_destroy_all_ordered_extents(fs_info);
4686 btrfs_destroy_delayed_inodes(fs_info);
4687 btrfs_assert_delayed_root_empty(fs_info);
4688 btrfs_destroy_all_delalloc_inodes(fs_info);
4689 btrfs_drop_all_logs(fs_info);
4690 mutex_unlock(&fs_info->transaction_kthread_mutex);