Merge tag 'tty-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[platform/kernel/linux-rpi.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102         if (fs_info->csum_shash)
103                 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112         void *private_data;
113         struct bio *bio;
114         extent_submit_bio_start_t *submit_bio_start;
115         int mirror_num;
116         /*
117          * bio_offset is optional, can be used if the pages in the bio
118          * can't tell us where in the file the bio should go
119          */
120         u64 bio_offset;
121         struct btrfs_work work;
122         blk_status_t status;
123 };
124
125 /*
126  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
127  * eb, the lockdep key is determined by the btrfs_root it belongs to and
128  * the level the eb occupies in the tree.
129  *
130  * Different roots are used for different purposes and may nest inside each
131  * other and they require separate keysets.  As lockdep keys should be
132  * static, assign keysets according to the purpose of the root as indicated
133  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
134  * roots have separate keysets.
135  *
136  * Lock-nesting across peer nodes is always done with the immediate parent
137  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
138  * subclass to avoid triggering lockdep warning in such cases.
139  *
140  * The key is set by the readpage_end_io_hook after the buffer has passed
141  * csum validation but before the pages are unlocked.  It is also set by
142  * btrfs_init_new_buffer on freshly allocated blocks.
143  *
144  * We also add a check to make sure the highest level of the tree is the
145  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
146  * needs update as well.
147  */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 #  error
151 # endif
152
153 static struct btrfs_lockdep_keyset {
154         u64                     id;             /* root objectid */
155         const char              *name_stem;     /* lock name stem */
156         char                    names[BTRFS_MAX_LEVEL + 1][20];
157         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
160         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
161         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
162         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
163         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
164         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
165         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
166         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
167         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
168         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
169         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
170         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171         { .id = 0,                              .name_stem = "tree"     },
172 };
173
174 void __init btrfs_init_lockdep(void)
175 {
176         int i, j;
177
178         /* initialize lockdep class names */
179         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183                         snprintf(ks->names[j], sizeof(ks->names[j]),
184                                  "btrfs-%s-%02d", ks->name_stem, j);
185         }
186 }
187
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189                                     int level)
190 {
191         struct btrfs_lockdep_keyset *ks;
192
193         BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195         /* find the matching keyset, id 0 is the default entry */
196         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197                 if (ks->id == objectid)
198                         break;
199
200         lockdep_set_class_and_name(&eb->lock,
201                                    &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211         struct btrfs_fs_info *fs_info = buf->fs_info;
212         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214         char *kaddr;
215         int i;
216
217         shash->tfm = fs_info->csum_shash;
218         crypto_shash_init(shash);
219         kaddr = page_address(buf->pages[0]);
220         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221                             PAGE_SIZE - BTRFS_CSUM_SIZE);
222
223         for (i = 1; i < num_pages; i++) {
224                 kaddr = page_address(buf->pages[i]);
225                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226         }
227         memset(result, 0, BTRFS_CSUM_SIZE);
228         crypto_shash_final(shash, result);
229 }
230
231 /*
232  * we can't consider a given block up to date unless the transid of the
233  * block matches the transid in the parent node's pointer.  This is how we
234  * detect blocks that either didn't get written at all or got written
235  * in the wrong place.
236  */
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238                                  struct extent_buffer *eb, u64 parent_transid,
239                                  int atomic)
240 {
241         struct extent_state *cached_state = NULL;
242         int ret;
243         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246                 return 0;
247
248         if (atomic)
249                 return -EAGAIN;
250
251         if (need_lock) {
252                 btrfs_tree_read_lock(eb);
253                 btrfs_set_lock_blocking_read(eb);
254         }
255
256         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257                          &cached_state);
258         if (extent_buffer_uptodate(eb) &&
259             btrfs_header_generation(eb) == parent_transid) {
260                 ret = 0;
261                 goto out;
262         }
263         btrfs_err_rl(eb->fs_info,
264                 "parent transid verify failed on %llu wanted %llu found %llu",
265                         eb->start,
266                         parent_transid, btrfs_header_generation(eb));
267         ret = 1;
268
269         /*
270          * Things reading via commit roots that don't have normal protection,
271          * like send, can have a really old block in cache that may point at a
272          * block that has been freed and re-allocated.  So don't clear uptodate
273          * if we find an eb that is under IO (dirty/writeback) because we could
274          * end up reading in the stale data and then writing it back out and
275          * making everybody very sad.
276          */
277         if (!extent_buffer_under_io(eb))
278                 clear_extent_buffer_uptodate(eb);
279 out:
280         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281                              &cached_state);
282         if (need_lock)
283                 btrfs_tree_read_unlock_blocking(eb);
284         return ret;
285 }
286
287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289         switch (csum_type) {
290         case BTRFS_CSUM_TYPE_CRC32:
291         case BTRFS_CSUM_TYPE_XXHASH:
292         case BTRFS_CSUM_TYPE_SHA256:
293         case BTRFS_CSUM_TYPE_BLAKE2:
294                 return true;
295         default:
296                 return false;
297         }
298 }
299
300 /*
301  * Return 0 if the superblock checksum type matches the checksum value of that
302  * algorithm. Pass the raw disk superblock data.
303  */
304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305                                   char *raw_disk_sb)
306 {
307         struct btrfs_super_block *disk_sb =
308                 (struct btrfs_super_block *)raw_disk_sb;
309         char result[BTRFS_CSUM_SIZE];
310         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312         shash->tfm = fs_info->csum_shash;
313
314         /*
315          * The super_block structure does not span the whole
316          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317          * filled with zeros and is included in the checksum.
318          */
319         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323                 return 1;
324
325         return 0;
326 }
327
328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329                            struct btrfs_key *first_key, u64 parent_transid)
330 {
331         struct btrfs_fs_info *fs_info = eb->fs_info;
332         int found_level;
333         struct btrfs_key found_key;
334         int ret;
335
336         found_level = btrfs_header_level(eb);
337         if (found_level != level) {
338                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339                      KERN_ERR "BTRFS: tree level check failed\n");
340                 btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342                           eb->start, level, found_level);
343                 return -EIO;
344         }
345
346         if (!first_key)
347                 return 0;
348
349         /*
350          * For live tree block (new tree blocks in current transaction),
351          * we need proper lock context to avoid race, which is impossible here.
352          * So we only checks tree blocks which is read from disk, whose
353          * generation <= fs_info->last_trans_committed.
354          */
355         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356                 return 0;
357
358         /* We have @first_key, so this @eb must have at least one item */
359         if (btrfs_header_nritems(eb) == 0) {
360                 btrfs_err(fs_info,
361                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362                           eb->start);
363                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364                 return -EUCLEAN;
365         }
366
367         if (found_level)
368                 btrfs_node_key_to_cpu(eb, &found_key, 0);
369         else
370                 btrfs_item_key_to_cpu(eb, &found_key, 0);
371         ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373         if (ret) {
374                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375                      KERN_ERR "BTRFS: tree first key check failed\n");
376                 btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378                           eb->start, parent_transid, first_key->objectid,
379                           first_key->type, first_key->offset,
380                           found_key.objectid, found_key.type,
381                           found_key.offset);
382         }
383         return ret;
384 }
385
386 /*
387  * helper to read a given tree block, doing retries as required when
388  * the checksums don't match and we have alternate mirrors to try.
389  *
390  * @parent_transid:     expected transid, skip check if 0
391  * @level:              expected level, mandatory check
392  * @first_key:          expected key of first slot, skip check if NULL
393  */
394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395                                           u64 parent_transid, int level,
396                                           struct btrfs_key *first_key)
397 {
398         struct btrfs_fs_info *fs_info = eb->fs_info;
399         struct extent_io_tree *io_tree;
400         int failed = 0;
401         int ret;
402         int num_copies = 0;
403         int mirror_num = 0;
404         int failed_mirror = 0;
405
406         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407         while (1) {
408                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410                 if (!ret) {
411                         if (verify_parent_transid(io_tree, eb,
412                                                    parent_transid, 0))
413                                 ret = -EIO;
414                         else if (btrfs_verify_level_key(eb, level,
415                                                 first_key, parent_transid))
416                                 ret = -EUCLEAN;
417                         else
418                                 break;
419                 }
420
421                 num_copies = btrfs_num_copies(fs_info,
422                                               eb->start, eb->len);
423                 if (num_copies == 1)
424                         break;
425
426                 if (!failed_mirror) {
427                         failed = 1;
428                         failed_mirror = eb->read_mirror;
429                 }
430
431                 mirror_num++;
432                 if (mirror_num == failed_mirror)
433                         mirror_num++;
434
435                 if (mirror_num > num_copies)
436                         break;
437         }
438
439         if (failed && !ret && failed_mirror)
440                 btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442         return ret;
443 }
444
445 /*
446  * checksum a dirty tree block before IO.  This has extra checks to make sure
447  * we only fill in the checksum field in the first page of a multi-page block
448  */
449
450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452         u64 start = page_offset(page);
453         u64 found_start;
454         u8 result[BTRFS_CSUM_SIZE];
455         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456         struct extent_buffer *eb;
457         int ret;
458
459         eb = (struct extent_buffer *)page->private;
460         if (page != eb->pages[0])
461                 return 0;
462
463         found_start = btrfs_header_bytenr(eb);
464         /*
465          * Please do not consolidate these warnings into a single if.
466          * It is useful to know what went wrong.
467          */
468         if (WARN_ON(found_start != start))
469                 return -EUCLEAN;
470         if (WARN_ON(!PageUptodate(page)))
471                 return -EUCLEAN;
472
473         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474                                     offsetof(struct btrfs_header, fsid),
475                                     BTRFS_FSID_SIZE) == 0);
476
477         csum_tree_block(eb, result);
478
479         if (btrfs_header_level(eb))
480                 ret = btrfs_check_node(eb);
481         else
482                 ret = btrfs_check_leaf_full(eb);
483
484         if (ret < 0) {
485                 btrfs_print_tree(eb, 0);
486                 btrfs_err(fs_info,
487                 "block=%llu write time tree block corruption detected",
488                           eb->start);
489                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490                 return ret;
491         }
492         write_extent_buffer(eb, result, 0, csum_size);
493
494         return 0;
495 }
496
497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499         struct btrfs_fs_info *fs_info = eb->fs_info;
500         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501         u8 fsid[BTRFS_FSID_SIZE];
502         u8 *metadata_uuid;
503
504         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505                            BTRFS_FSID_SIZE);
506         /*
507          * Checking the incompat flag is only valid for the current fs. For
508          * seed devices it's forbidden to have their uuid changed so reading
509          * ->fsid in this case is fine
510          */
511         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512                 metadata_uuid = fs_devices->metadata_uuid;
513         else
514                 metadata_uuid = fs_devices->fsid;
515
516         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517                 return 0;
518
519         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521                         return 0;
522
523         return 1;
524 }
525
526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527                                    struct page *page, u64 start, u64 end,
528                                    int mirror)
529 {
530         u64 found_start;
531         int found_level;
532         struct extent_buffer *eb;
533         struct btrfs_fs_info *fs_info;
534         u16 csum_size;
535         int ret = 0;
536         u8 result[BTRFS_CSUM_SIZE];
537         int reads_done;
538
539         if (!page->private)
540                 goto out;
541
542         eb = (struct extent_buffer *)page->private;
543         fs_info = eb->fs_info;
544         csum_size = btrfs_super_csum_size(fs_info->super_copy);
545
546         /* the pending IO might have been the only thing that kept this buffer
547          * in memory.  Make sure we have a ref for all this other checks
548          */
549         atomic_inc(&eb->refs);
550
551         reads_done = atomic_dec_and_test(&eb->io_pages);
552         if (!reads_done)
553                 goto err;
554
555         eb->read_mirror = mirror;
556         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557                 ret = -EIO;
558                 goto err;
559         }
560
561         found_start = btrfs_header_bytenr(eb);
562         if (found_start != eb->start) {
563                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564                              eb->start, found_start);
565                 ret = -EIO;
566                 goto err;
567         }
568         if (check_tree_block_fsid(eb)) {
569                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570                              eb->start);
571                 ret = -EIO;
572                 goto err;
573         }
574         found_level = btrfs_header_level(eb);
575         if (found_level >= BTRFS_MAX_LEVEL) {
576                 btrfs_err(fs_info, "bad tree block level %d on %llu",
577                           (int)btrfs_header_level(eb), eb->start);
578                 ret = -EIO;
579                 goto err;
580         }
581
582         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583                                        eb, found_level);
584
585         csum_tree_block(eb, result);
586
587         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588                 u8 val[BTRFS_CSUM_SIZE] = { 0 };
589
590                 read_extent_buffer(eb, &val, 0, csum_size);
591                 btrfs_warn_rl(fs_info,
592         "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593                               fs_info->sb->s_id, eb->start,
594                               CSUM_FMT_VALUE(csum_size, val),
595                               CSUM_FMT_VALUE(csum_size, result),
596                               btrfs_header_level(eb));
597                 ret = -EUCLEAN;
598                 goto err;
599         }
600
601         /*
602          * If this is a leaf block and it is corrupt, set the corrupt bit so
603          * that we don't try and read the other copies of this block, just
604          * return -EIO.
605          */
606         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608                 ret = -EIO;
609         }
610
611         if (found_level > 0 && btrfs_check_node(eb))
612                 ret = -EIO;
613
614         if (!ret)
615                 set_extent_buffer_uptodate(eb);
616         else
617                 btrfs_err(fs_info,
618                           "block=%llu read time tree block corruption detected",
619                           eb->start);
620 err:
621         if (reads_done &&
622             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623                 btree_readahead_hook(eb, ret);
624
625         if (ret) {
626                 /*
627                  * our io error hook is going to dec the io pages
628                  * again, we have to make sure it has something
629                  * to decrement
630                  */
631                 atomic_inc(&eb->io_pages);
632                 clear_extent_buffer_uptodate(eb);
633         }
634         free_extent_buffer(eb);
635 out:
636         return ret;
637 }
638
639 static void end_workqueue_bio(struct bio *bio)
640 {
641         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642         struct btrfs_fs_info *fs_info;
643         struct btrfs_workqueue *wq;
644
645         fs_info = end_io_wq->info;
646         end_io_wq->status = bio->bi_status;
647
648         if (bio_op(bio) == REQ_OP_WRITE) {
649                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650                         wq = fs_info->endio_meta_write_workers;
651                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652                         wq = fs_info->endio_freespace_worker;
653                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654                         wq = fs_info->endio_raid56_workers;
655                 else
656                         wq = fs_info->endio_write_workers;
657         } else {
658                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659                         wq = fs_info->endio_raid56_workers;
660                 else if (end_io_wq->metadata)
661                         wq = fs_info->endio_meta_workers;
662                 else
663                         wq = fs_info->endio_workers;
664         }
665
666         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667         btrfs_queue_work(wq, &end_io_wq->work);
668 }
669
670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671                         enum btrfs_wq_endio_type metadata)
672 {
673         struct btrfs_end_io_wq *end_io_wq;
674
675         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676         if (!end_io_wq)
677                 return BLK_STS_RESOURCE;
678
679         end_io_wq->private = bio->bi_private;
680         end_io_wq->end_io = bio->bi_end_io;
681         end_io_wq->info = info;
682         end_io_wq->status = 0;
683         end_io_wq->bio = bio;
684         end_io_wq->metadata = metadata;
685
686         bio->bi_private = end_io_wq;
687         bio->bi_end_io = end_workqueue_bio;
688         return 0;
689 }
690
691 static void run_one_async_start(struct btrfs_work *work)
692 {
693         struct async_submit_bio *async;
694         blk_status_t ret;
695
696         async = container_of(work, struct  async_submit_bio, work);
697         ret = async->submit_bio_start(async->private_data, async->bio,
698                                       async->bio_offset);
699         if (ret)
700                 async->status = ret;
701 }
702
703 /*
704  * In order to insert checksums into the metadata in large chunks, we wait
705  * until bio submission time.   All the pages in the bio are checksummed and
706  * sums are attached onto the ordered extent record.
707  *
708  * At IO completion time the csums attached on the ordered extent record are
709  * inserted into the tree.
710  */
711 static void run_one_async_done(struct btrfs_work *work)
712 {
713         struct async_submit_bio *async;
714         struct inode *inode;
715         blk_status_t ret;
716
717         async = container_of(work, struct  async_submit_bio, work);
718         inode = async->private_data;
719
720         /* If an error occurred we just want to clean up the bio and move on */
721         if (async->status) {
722                 async->bio->bi_status = async->status;
723                 bio_endio(async->bio);
724                 return;
725         }
726
727         /*
728          * All of the bios that pass through here are from async helpers.
729          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730          * This changes nothing when cgroups aren't in use.
731          */
732         async->bio->bi_opf |= REQ_CGROUP_PUNT;
733         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734         if (ret) {
735                 async->bio->bi_status = ret;
736                 bio_endio(async->bio);
737         }
738 }
739
740 static void run_one_async_free(struct btrfs_work *work)
741 {
742         struct async_submit_bio *async;
743
744         async = container_of(work, struct  async_submit_bio, work);
745         kfree(async);
746 }
747
748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749                                  int mirror_num, unsigned long bio_flags,
750                                  u64 bio_offset, void *private_data,
751                                  extent_submit_bio_start_t *submit_bio_start)
752 {
753         struct async_submit_bio *async;
754
755         async = kmalloc(sizeof(*async), GFP_NOFS);
756         if (!async)
757                 return BLK_STS_RESOURCE;
758
759         async->private_data = private_data;
760         async->bio = bio;
761         async->mirror_num = mirror_num;
762         async->submit_bio_start = submit_bio_start;
763
764         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765                         run_one_async_free);
766
767         async->bio_offset = bio_offset;
768
769         async->status = 0;
770
771         if (op_is_sync(bio->bi_opf))
772                 btrfs_set_work_high_priority(&async->work);
773
774         btrfs_queue_work(fs_info->workers, &async->work);
775         return 0;
776 }
777
778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780         struct bio_vec *bvec;
781         struct btrfs_root *root;
782         int ret = 0;
783         struct bvec_iter_all iter_all;
784
785         ASSERT(!bio_flagged(bio, BIO_CLONED));
786         bio_for_each_segment_all(bvec, bio, iter_all) {
787                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789                 if (ret)
790                         break;
791         }
792
793         return errno_to_blk_status(ret);
794 }
795
796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797                                              u64 bio_offset)
798 {
799         /*
800          * when we're called for a write, we're already in the async
801          * submission context.  Just jump into btrfs_map_bio
802          */
803         return btree_csum_one_bio(bio);
804 }
805
806 static int check_async_write(struct btrfs_fs_info *fs_info,
807                              struct btrfs_inode *bi)
808 {
809         if (atomic_read(&bi->sync_writers))
810                 return 0;
811         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812                 return 0;
813         return 1;
814 }
815
816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817                                        int mirror_num, unsigned long bio_flags)
818 {
819         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820         int async = check_async_write(fs_info, BTRFS_I(inode));
821         blk_status_t ret;
822
823         if (bio_op(bio) != REQ_OP_WRITE) {
824                 /*
825                  * called for a read, do the setup so that checksum validation
826                  * can happen in the async kernel threads
827                  */
828                 ret = btrfs_bio_wq_end_io(fs_info, bio,
829                                           BTRFS_WQ_ENDIO_METADATA);
830                 if (ret)
831                         goto out_w_error;
832                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
833         } else if (!async) {
834                 ret = btree_csum_one_bio(bio);
835                 if (ret)
836                         goto out_w_error;
837                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
838         } else {
839                 /*
840                  * kthread helpers are used to submit writes so that
841                  * checksumming can happen in parallel across all CPUs
842                  */
843                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844                                           0, inode, btree_submit_bio_start);
845         }
846
847         if (ret)
848                 goto out_w_error;
849         return 0;
850
851 out_w_error:
852         bio->bi_status = ret;
853         bio_endio(bio);
854         return ret;
855 }
856
857 #ifdef CONFIG_MIGRATION
858 static int btree_migratepage(struct address_space *mapping,
859                         struct page *newpage, struct page *page,
860                         enum migrate_mode mode)
861 {
862         /*
863          * we can't safely write a btree page from here,
864          * we haven't done the locking hook
865          */
866         if (PageDirty(page))
867                 return -EAGAIN;
868         /*
869          * Buffers may be managed in a filesystem specific way.
870          * We must have no buffers or drop them.
871          */
872         if (page_has_private(page) &&
873             !try_to_release_page(page, GFP_KERNEL))
874                 return -EAGAIN;
875         return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878
879
880 static int btree_writepages(struct address_space *mapping,
881                             struct writeback_control *wbc)
882 {
883         struct btrfs_fs_info *fs_info;
884         int ret;
885
886         if (wbc->sync_mode == WB_SYNC_NONE) {
887
888                 if (wbc->for_kupdate)
889                         return 0;
890
891                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892                 /* this is a bit racy, but that's ok */
893                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894                                              BTRFS_DIRTY_METADATA_THRESH,
895                                              fs_info->dirty_metadata_batch);
896                 if (ret < 0)
897                         return 0;
898         }
899         return btree_write_cache_pages(mapping, wbc);
900 }
901
902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904         if (PageWriteback(page) || PageDirty(page))
905                 return 0;
906
907         return try_release_extent_buffer(page);
908 }
909
910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911                                  unsigned int length)
912 {
913         struct extent_io_tree *tree;
914         tree = &BTRFS_I(page->mapping->host)->io_tree;
915         extent_invalidatepage(tree, page, offset);
916         btree_releasepage(page, GFP_NOFS);
917         if (PagePrivate(page)) {
918                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919                            "page private not zero on page %llu",
920                            (unsigned long long)page_offset(page));
921                 detach_page_private(page);
922         }
923 }
924
925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928         struct extent_buffer *eb;
929
930         BUG_ON(!PagePrivate(page));
931         eb = (struct extent_buffer *)page->private;
932         BUG_ON(!eb);
933         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934         BUG_ON(!atomic_read(&eb->refs));
935         btrfs_assert_tree_locked(eb);
936 #endif
937         return __set_page_dirty_nobuffers(page);
938 }
939
940 static const struct address_space_operations btree_aops = {
941         .writepages     = btree_writepages,
942         .releasepage    = btree_releasepage,
943         .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945         .migratepage    = btree_migratepage,
946 #endif
947         .set_page_dirty = btree_set_page_dirty,
948 };
949
950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952         struct extent_buffer *buf = NULL;
953         int ret;
954
955         buf = btrfs_find_create_tree_block(fs_info, bytenr);
956         if (IS_ERR(buf))
957                 return;
958
959         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960         if (ret < 0)
961                 free_extent_buffer_stale(buf);
962         else
963                 free_extent_buffer(buf);
964 }
965
966 struct extent_buffer *btrfs_find_create_tree_block(
967                                                 struct btrfs_fs_info *fs_info,
968                                                 u64 bytenr)
969 {
970         if (btrfs_is_testing(fs_info))
971                 return alloc_test_extent_buffer(fs_info, bytenr);
972         return alloc_extent_buffer(fs_info, bytenr);
973 }
974
975 /*
976  * Read tree block at logical address @bytenr and do variant basic but critical
977  * verification.
978  *
979  * @parent_transid:     expected transid of this tree block, skip check if 0
980  * @level:              expected level, mandatory check
981  * @first_key:          expected key in slot 0, skip check if NULL
982  */
983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984                                       u64 parent_transid, int level,
985                                       struct btrfs_key *first_key)
986 {
987         struct extent_buffer *buf = NULL;
988         int ret;
989
990         buf = btrfs_find_create_tree_block(fs_info, bytenr);
991         if (IS_ERR(buf))
992                 return buf;
993
994         ret = btree_read_extent_buffer_pages(buf, parent_transid,
995                                              level, first_key);
996         if (ret) {
997                 free_extent_buffer_stale(buf);
998                 return ERR_PTR(ret);
999         }
1000         return buf;
1001
1002 }
1003
1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006         struct btrfs_fs_info *fs_info = buf->fs_info;
1007         if (btrfs_header_generation(buf) ==
1008             fs_info->running_transaction->transid) {
1009                 btrfs_assert_tree_locked(buf);
1010
1011                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013                                                  -buf->len,
1014                                                  fs_info->dirty_metadata_batch);
1015                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016                         btrfs_set_lock_blocking_write(buf);
1017                         clear_extent_buffer_dirty(buf);
1018                 }
1019         }
1020 }
1021
1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023                          u64 objectid)
1024 {
1025         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026         root->fs_info = fs_info;
1027         root->node = NULL;
1028         root->commit_root = NULL;
1029         root->state = 0;
1030         root->orphan_cleanup_state = 0;
1031
1032         root->last_trans = 0;
1033         root->highest_objectid = 0;
1034         root->nr_delalloc_inodes = 0;
1035         root->nr_ordered_extents = 0;
1036         root->inode_tree = RB_ROOT;
1037         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038         root->block_rsv = NULL;
1039
1040         INIT_LIST_HEAD(&root->dirty_list);
1041         INIT_LIST_HEAD(&root->root_list);
1042         INIT_LIST_HEAD(&root->delalloc_inodes);
1043         INIT_LIST_HEAD(&root->delalloc_root);
1044         INIT_LIST_HEAD(&root->ordered_extents);
1045         INIT_LIST_HEAD(&root->ordered_root);
1046         INIT_LIST_HEAD(&root->reloc_dirty_list);
1047         INIT_LIST_HEAD(&root->logged_list[0]);
1048         INIT_LIST_HEAD(&root->logged_list[1]);
1049         spin_lock_init(&root->inode_lock);
1050         spin_lock_init(&root->delalloc_lock);
1051         spin_lock_init(&root->ordered_extent_lock);
1052         spin_lock_init(&root->accounting_lock);
1053         spin_lock_init(&root->log_extents_lock[0]);
1054         spin_lock_init(&root->log_extents_lock[1]);
1055         spin_lock_init(&root->qgroup_meta_rsv_lock);
1056         mutex_init(&root->objectid_mutex);
1057         mutex_init(&root->log_mutex);
1058         mutex_init(&root->ordered_extent_mutex);
1059         mutex_init(&root->delalloc_mutex);
1060         init_waitqueue_head(&root->qgroup_flush_wait);
1061         init_waitqueue_head(&root->log_writer_wait);
1062         init_waitqueue_head(&root->log_commit_wait[0]);
1063         init_waitqueue_head(&root->log_commit_wait[1]);
1064         INIT_LIST_HEAD(&root->log_ctxs[0]);
1065         INIT_LIST_HEAD(&root->log_ctxs[1]);
1066         atomic_set(&root->log_commit[0], 0);
1067         atomic_set(&root->log_commit[1], 0);
1068         atomic_set(&root->log_writers, 0);
1069         atomic_set(&root->log_batch, 0);
1070         refcount_set(&root->refs, 1);
1071         atomic_set(&root->snapshot_force_cow, 0);
1072         atomic_set(&root->nr_swapfiles, 0);
1073         root->log_transid = 0;
1074         root->log_transid_committed = -1;
1075         root->last_log_commit = 0;
1076         if (!dummy) {
1077                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079                 extent_io_tree_init(fs_info, &root->log_csum_range,
1080                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1081         }
1082
1083         memset(&root->root_key, 0, sizeof(root->root_key));
1084         memset(&root->root_item, 0, sizeof(root->root_item));
1085         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086         root->root_key.objectid = objectid;
1087         root->anon_dev = 0;
1088
1089         spin_lock_init(&root->root_item_lock);
1090         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092         INIT_LIST_HEAD(&root->leak_list);
1093         spin_lock(&fs_info->fs_roots_radix_lock);
1094         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095         spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098
1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100                                            u64 objectid, gfp_t flags)
1101 {
1102         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103         if (root)
1104                 __setup_root(root, fs_info, objectid);
1105         return root;
1106 }
1107
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112         struct btrfs_root *root;
1113
1114         if (!fs_info)
1115                 return ERR_PTR(-EINVAL);
1116
1117         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118         if (!root)
1119                 return ERR_PTR(-ENOMEM);
1120
1121         /* We don't use the stripesize in selftest, set it as sectorsize */
1122         root->alloc_bytenr = 0;
1123
1124         return root;
1125 }
1126 #endif
1127
1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129                                      u64 objectid)
1130 {
1131         struct btrfs_fs_info *fs_info = trans->fs_info;
1132         struct extent_buffer *leaf;
1133         struct btrfs_root *tree_root = fs_info->tree_root;
1134         struct btrfs_root *root;
1135         struct btrfs_key key;
1136         unsigned int nofs_flag;
1137         int ret = 0;
1138
1139         /*
1140          * We're holding a transaction handle, so use a NOFS memory allocation
1141          * context to avoid deadlock if reclaim happens.
1142          */
1143         nofs_flag = memalloc_nofs_save();
1144         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145         memalloc_nofs_restore(nofs_flag);
1146         if (!root)
1147                 return ERR_PTR(-ENOMEM);
1148
1149         root->root_key.objectid = objectid;
1150         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151         root->root_key.offset = 0;
1152
1153         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154                                       BTRFS_NESTING_NORMAL);
1155         if (IS_ERR(leaf)) {
1156                 ret = PTR_ERR(leaf);
1157                 leaf = NULL;
1158                 goto fail;
1159         }
1160
1161         root->node = leaf;
1162         btrfs_mark_buffer_dirty(leaf);
1163
1164         root->commit_root = btrfs_root_node(root);
1165         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167         root->root_item.flags = 0;
1168         root->root_item.byte_limit = 0;
1169         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170         btrfs_set_root_generation(&root->root_item, trans->transid);
1171         btrfs_set_root_level(&root->root_item, 0);
1172         btrfs_set_root_refs(&root->root_item, 1);
1173         btrfs_set_root_used(&root->root_item, leaf->len);
1174         btrfs_set_root_last_snapshot(&root->root_item, 0);
1175         btrfs_set_root_dirid(&root->root_item, 0);
1176         if (is_fstree(objectid))
1177                 generate_random_guid(root->root_item.uuid);
1178         else
1179                 export_guid(root->root_item.uuid, &guid_null);
1180         root->root_item.drop_level = 0;
1181
1182         key.objectid = objectid;
1183         key.type = BTRFS_ROOT_ITEM_KEY;
1184         key.offset = 0;
1185         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186         if (ret)
1187                 goto fail;
1188
1189         btrfs_tree_unlock(leaf);
1190
1191         return root;
1192
1193 fail:
1194         if (leaf)
1195                 btrfs_tree_unlock(leaf);
1196         btrfs_put_root(root);
1197
1198         return ERR_PTR(ret);
1199 }
1200
1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202                                          struct btrfs_fs_info *fs_info)
1203 {
1204         struct btrfs_root *root;
1205         struct extent_buffer *leaf;
1206
1207         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208         if (!root)
1209                 return ERR_PTR(-ENOMEM);
1210
1211         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215         /*
1216          * DON'T set SHAREABLE bit for log trees.
1217          *
1218          * Log trees are not exposed to user space thus can't be snapshotted,
1219          * and they go away before a real commit is actually done.
1220          *
1221          * They do store pointers to file data extents, and those reference
1222          * counts still get updated (along with back refs to the log tree).
1223          */
1224
1225         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227         if (IS_ERR(leaf)) {
1228                 btrfs_put_root(root);
1229                 return ERR_CAST(leaf);
1230         }
1231
1232         root->node = leaf;
1233
1234         btrfs_mark_buffer_dirty(root->node);
1235         btrfs_tree_unlock(root->node);
1236         return root;
1237 }
1238
1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240                              struct btrfs_fs_info *fs_info)
1241 {
1242         struct btrfs_root *log_root;
1243
1244         log_root = alloc_log_tree(trans, fs_info);
1245         if (IS_ERR(log_root))
1246                 return PTR_ERR(log_root);
1247         WARN_ON(fs_info->log_root_tree);
1248         fs_info->log_root_tree = log_root;
1249         return 0;
1250 }
1251
1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253                        struct btrfs_root *root)
1254 {
1255         struct btrfs_fs_info *fs_info = root->fs_info;
1256         struct btrfs_root *log_root;
1257         struct btrfs_inode_item *inode_item;
1258
1259         log_root = alloc_log_tree(trans, fs_info);
1260         if (IS_ERR(log_root))
1261                 return PTR_ERR(log_root);
1262
1263         log_root->last_trans = trans->transid;
1264         log_root->root_key.offset = root->root_key.objectid;
1265
1266         inode_item = &log_root->root_item.inode;
1267         btrfs_set_stack_inode_generation(inode_item, 1);
1268         btrfs_set_stack_inode_size(inode_item, 3);
1269         btrfs_set_stack_inode_nlink(inode_item, 1);
1270         btrfs_set_stack_inode_nbytes(inode_item,
1271                                      fs_info->nodesize);
1272         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274         btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276         WARN_ON(root->log_root);
1277         root->log_root = log_root;
1278         root->log_transid = 0;
1279         root->log_transid_committed = -1;
1280         root->last_log_commit = 0;
1281         return 0;
1282 }
1283
1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285                                               struct btrfs_path *path,
1286                                               struct btrfs_key *key)
1287 {
1288         struct btrfs_root *root;
1289         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290         u64 generation;
1291         int ret;
1292         int level;
1293
1294         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295         if (!root)
1296                 return ERR_PTR(-ENOMEM);
1297
1298         ret = btrfs_find_root(tree_root, key, path,
1299                               &root->root_item, &root->root_key);
1300         if (ret) {
1301                 if (ret > 0)
1302                         ret = -ENOENT;
1303                 goto fail;
1304         }
1305
1306         generation = btrfs_root_generation(&root->root_item);
1307         level = btrfs_root_level(&root->root_item);
1308         root->node = read_tree_block(fs_info,
1309                                      btrfs_root_bytenr(&root->root_item),
1310                                      generation, level, NULL);
1311         if (IS_ERR(root->node)) {
1312                 ret = PTR_ERR(root->node);
1313                 root->node = NULL;
1314                 goto fail;
1315         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316                 ret = -EIO;
1317                 goto fail;
1318         }
1319         root->commit_root = btrfs_root_node(root);
1320         return root;
1321 fail:
1322         btrfs_put_root(root);
1323         return ERR_PTR(ret);
1324 }
1325
1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327                                         struct btrfs_key *key)
1328 {
1329         struct btrfs_root *root;
1330         struct btrfs_path *path;
1331
1332         path = btrfs_alloc_path();
1333         if (!path)
1334                 return ERR_PTR(-ENOMEM);
1335         root = read_tree_root_path(tree_root, path, key);
1336         btrfs_free_path(path);
1337
1338         return root;
1339 }
1340
1341 /*
1342  * Initialize subvolume root in-memory structure
1343  *
1344  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1345  */
1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347 {
1348         int ret;
1349         unsigned int nofs_flag;
1350
1351         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353                                         GFP_NOFS);
1354         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355                 ret = -ENOMEM;
1356                 goto fail;
1357         }
1358
1359         /*
1360          * We might be called under a transaction (e.g. indirect backref
1361          * resolution) which could deadlock if it triggers memory reclaim
1362          */
1363         nofs_flag = memalloc_nofs_save();
1364         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365         memalloc_nofs_restore(nofs_flag);
1366         if (ret)
1367                 goto fail;
1368
1369         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370             root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372                 btrfs_check_and_init_root_item(&root->root_item);
1373         }
1374
1375         btrfs_init_free_ino_ctl(root);
1376         spin_lock_init(&root->ino_cache_lock);
1377         init_waitqueue_head(&root->ino_cache_wait);
1378
1379         /*
1380          * Don't assign anonymous block device to roots that are not exposed to
1381          * userspace, the id pool is limited to 1M
1382          */
1383         if (is_fstree(root->root_key.objectid) &&
1384             btrfs_root_refs(&root->root_item) > 0) {
1385                 if (!anon_dev) {
1386                         ret = get_anon_bdev(&root->anon_dev);
1387                         if (ret)
1388                                 goto fail;
1389                 } else {
1390                         root->anon_dev = anon_dev;
1391                 }
1392         }
1393
1394         mutex_lock(&root->objectid_mutex);
1395         ret = btrfs_find_highest_objectid(root,
1396                                         &root->highest_objectid);
1397         if (ret) {
1398                 mutex_unlock(&root->objectid_mutex);
1399                 goto fail;
1400         }
1401
1402         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404         mutex_unlock(&root->objectid_mutex);
1405
1406         return 0;
1407 fail:
1408         /* The caller is responsible to call btrfs_free_fs_root */
1409         return ret;
1410 }
1411
1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413                                                u64 root_id)
1414 {
1415         struct btrfs_root *root;
1416
1417         spin_lock(&fs_info->fs_roots_radix_lock);
1418         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419                                  (unsigned long)root_id);
1420         if (root)
1421                 root = btrfs_grab_root(root);
1422         spin_unlock(&fs_info->fs_roots_radix_lock);
1423         return root;
1424 }
1425
1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427                                                 u64 objectid)
1428 {
1429         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430                 return btrfs_grab_root(fs_info->tree_root);
1431         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432                 return btrfs_grab_root(fs_info->extent_root);
1433         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434                 return btrfs_grab_root(fs_info->chunk_root);
1435         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436                 return btrfs_grab_root(fs_info->dev_root);
1437         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438                 return btrfs_grab_root(fs_info->csum_root);
1439         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440                 return btrfs_grab_root(fs_info->quota_root) ?
1441                         fs_info->quota_root : ERR_PTR(-ENOENT);
1442         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443                 return btrfs_grab_root(fs_info->uuid_root) ?
1444                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1445         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446                 return btrfs_grab_root(fs_info->free_space_root) ?
1447                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1448         return NULL;
1449 }
1450
1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452                          struct btrfs_root *root)
1453 {
1454         int ret;
1455
1456         ret = radix_tree_preload(GFP_NOFS);
1457         if (ret)
1458                 return ret;
1459
1460         spin_lock(&fs_info->fs_roots_radix_lock);
1461         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462                                 (unsigned long)root->root_key.objectid,
1463                                 root);
1464         if (ret == 0) {
1465                 btrfs_grab_root(root);
1466                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467         }
1468         spin_unlock(&fs_info->fs_roots_radix_lock);
1469         radix_tree_preload_end();
1470
1471         return ret;
1472 }
1473
1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475 {
1476 #ifdef CONFIG_BTRFS_DEBUG
1477         struct btrfs_root *root;
1478
1479         while (!list_empty(&fs_info->allocated_roots)) {
1480                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482                 root = list_first_entry(&fs_info->allocated_roots,
1483                                         struct btrfs_root, leak_list);
1484                 btrfs_err(fs_info, "leaked root %s refcount %d",
1485                           btrfs_root_name(root->root_key.objectid, buf),
1486                           refcount_read(&root->refs));
1487                 while (refcount_read(&root->refs) > 1)
1488                         btrfs_put_root(root);
1489                 btrfs_put_root(root);
1490         }
1491 #endif
1492 }
1493
1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495 {
1496         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497         percpu_counter_destroy(&fs_info->delalloc_bytes);
1498         percpu_counter_destroy(&fs_info->dio_bytes);
1499         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500         btrfs_free_csum_hash(fs_info);
1501         btrfs_free_stripe_hash_table(fs_info);
1502         btrfs_free_ref_cache(fs_info);
1503         kfree(fs_info->balance_ctl);
1504         kfree(fs_info->delayed_root);
1505         btrfs_put_root(fs_info->extent_root);
1506         btrfs_put_root(fs_info->tree_root);
1507         btrfs_put_root(fs_info->chunk_root);
1508         btrfs_put_root(fs_info->dev_root);
1509         btrfs_put_root(fs_info->csum_root);
1510         btrfs_put_root(fs_info->quota_root);
1511         btrfs_put_root(fs_info->uuid_root);
1512         btrfs_put_root(fs_info->free_space_root);
1513         btrfs_put_root(fs_info->fs_root);
1514         btrfs_put_root(fs_info->data_reloc_root);
1515         btrfs_check_leaked_roots(fs_info);
1516         btrfs_extent_buffer_leak_debug_check(fs_info);
1517         kfree(fs_info->super_copy);
1518         kfree(fs_info->super_for_commit);
1519         kvfree(fs_info);
1520 }
1521
1522
1523 /*
1524  * Get an in-memory reference of a root structure.
1525  *
1526  * For essential trees like root/extent tree, we grab it from fs_info directly.
1527  * For subvolume trees, we check the cached filesystem roots first. If not
1528  * found, then read it from disk and add it to cached fs roots.
1529  *
1530  * Caller should release the root by calling btrfs_put_root() after the usage.
1531  *
1532  * NOTE: Reloc and log trees can't be read by this function as they share the
1533  *       same root objectid.
1534  *
1535  * @objectid:   root id
1536  * @anon_dev:   preallocated anonymous block device number for new roots,
1537  *              pass 0 for new allocation.
1538  * @check_ref:  whether to check root item references, If true, return -ENOENT
1539  *              for orphan roots
1540  */
1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542                                              u64 objectid, dev_t anon_dev,
1543                                              bool check_ref)
1544 {
1545         struct btrfs_root *root;
1546         struct btrfs_path *path;
1547         struct btrfs_key key;
1548         int ret;
1549
1550         root = btrfs_get_global_root(fs_info, objectid);
1551         if (root)
1552                 return root;
1553 again:
1554         root = btrfs_lookup_fs_root(fs_info, objectid);
1555         if (root) {
1556                 /* Shouldn't get preallocated anon_dev for cached roots */
1557                 ASSERT(!anon_dev);
1558                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1559                         btrfs_put_root(root);
1560                         return ERR_PTR(-ENOENT);
1561                 }
1562                 return root;
1563         }
1564
1565         key.objectid = objectid;
1566         key.type = BTRFS_ROOT_ITEM_KEY;
1567         key.offset = (u64)-1;
1568         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1569         if (IS_ERR(root))
1570                 return root;
1571
1572         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1573                 ret = -ENOENT;
1574                 goto fail;
1575         }
1576
1577         ret = btrfs_init_fs_root(root, anon_dev);
1578         if (ret)
1579                 goto fail;
1580
1581         path = btrfs_alloc_path();
1582         if (!path) {
1583                 ret = -ENOMEM;
1584                 goto fail;
1585         }
1586         key.objectid = BTRFS_ORPHAN_OBJECTID;
1587         key.type = BTRFS_ORPHAN_ITEM_KEY;
1588         key.offset = objectid;
1589
1590         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1591         btrfs_free_path(path);
1592         if (ret < 0)
1593                 goto fail;
1594         if (ret == 0)
1595                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1596
1597         ret = btrfs_insert_fs_root(fs_info, root);
1598         if (ret) {
1599                 btrfs_put_root(root);
1600                 if (ret == -EEXIST)
1601                         goto again;
1602                 goto fail;
1603         }
1604         return root;
1605 fail:
1606         btrfs_put_root(root);
1607         return ERR_PTR(ret);
1608 }
1609
1610 /*
1611  * Get in-memory reference of a root structure
1612  *
1613  * @objectid:   tree objectid
1614  * @check_ref:  if set, verify that the tree exists and the item has at least
1615  *              one reference
1616  */
1617 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1618                                      u64 objectid, bool check_ref)
1619 {
1620         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1621 }
1622
1623 /*
1624  * Get in-memory reference of a root structure, created as new, optionally pass
1625  * the anonymous block device id
1626  *
1627  * @objectid:   tree objectid
1628  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1629  *              parameter value
1630  */
1631 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1632                                          u64 objectid, dev_t anon_dev)
1633 {
1634         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1635 }
1636
1637 /*
1638  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1639  * @fs_info:    the fs_info
1640  * @objectid:   the objectid we need to lookup
1641  *
1642  * This is exclusively used for backref walking, and exists specifically because
1643  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1644  * creation time, which means we may have to read the tree_root in order to look
1645  * up a fs root that is not in memory.  If the root is not in memory we will
1646  * read the tree root commit root and look up the fs root from there.  This is a
1647  * temporary root, it will not be inserted into the radix tree as it doesn't
1648  * have the most uptodate information, it'll simply be discarded once the
1649  * backref code is finished using the root.
1650  */
1651 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1652                                                  struct btrfs_path *path,
1653                                                  u64 objectid)
1654 {
1655         struct btrfs_root *root;
1656         struct btrfs_key key;
1657
1658         ASSERT(path->search_commit_root && path->skip_locking);
1659
1660         /*
1661          * This can return -ENOENT if we ask for a root that doesn't exist, but
1662          * since this is called via the backref walking code we won't be looking
1663          * up a root that doesn't exist, unless there's corruption.  So if root
1664          * != NULL just return it.
1665          */
1666         root = btrfs_get_global_root(fs_info, objectid);
1667         if (root)
1668                 return root;
1669
1670         root = btrfs_lookup_fs_root(fs_info, objectid);
1671         if (root)
1672                 return root;
1673
1674         key.objectid = objectid;
1675         key.type = BTRFS_ROOT_ITEM_KEY;
1676         key.offset = (u64)-1;
1677         root = read_tree_root_path(fs_info->tree_root, path, &key);
1678         btrfs_release_path(path);
1679
1680         return root;
1681 }
1682
1683 /*
1684  * called by the kthread helper functions to finally call the bio end_io
1685  * functions.  This is where read checksum verification actually happens
1686  */
1687 static void end_workqueue_fn(struct btrfs_work *work)
1688 {
1689         struct bio *bio;
1690         struct btrfs_end_io_wq *end_io_wq;
1691
1692         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1693         bio = end_io_wq->bio;
1694
1695         bio->bi_status = end_io_wq->status;
1696         bio->bi_private = end_io_wq->private;
1697         bio->bi_end_io = end_io_wq->end_io;
1698         bio_endio(bio);
1699         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1700 }
1701
1702 static int cleaner_kthread(void *arg)
1703 {
1704         struct btrfs_root *root = arg;
1705         struct btrfs_fs_info *fs_info = root->fs_info;
1706         int again;
1707
1708         while (1) {
1709                 again = 0;
1710
1711                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1712
1713                 /* Make the cleaner go to sleep early. */
1714                 if (btrfs_need_cleaner_sleep(fs_info))
1715                         goto sleep;
1716
1717                 /*
1718                  * Do not do anything if we might cause open_ctree() to block
1719                  * before we have finished mounting the filesystem.
1720                  */
1721                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1722                         goto sleep;
1723
1724                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1725                         goto sleep;
1726
1727                 /*
1728                  * Avoid the problem that we change the status of the fs
1729                  * during the above check and trylock.
1730                  */
1731                 if (btrfs_need_cleaner_sleep(fs_info)) {
1732                         mutex_unlock(&fs_info->cleaner_mutex);
1733                         goto sleep;
1734                 }
1735
1736                 btrfs_run_delayed_iputs(fs_info);
1737
1738                 again = btrfs_clean_one_deleted_snapshot(root);
1739                 mutex_unlock(&fs_info->cleaner_mutex);
1740
1741                 /*
1742                  * The defragger has dealt with the R/O remount and umount,
1743                  * needn't do anything special here.
1744                  */
1745                 btrfs_run_defrag_inodes(fs_info);
1746
1747                 /*
1748                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1749                  * with relocation (btrfs_relocate_chunk) and relocation
1750                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1751                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1752                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1753                  * unused block groups.
1754                  */
1755                 btrfs_delete_unused_bgs(fs_info);
1756 sleep:
1757                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1758                 if (kthread_should_park())
1759                         kthread_parkme();
1760                 if (kthread_should_stop())
1761                         return 0;
1762                 if (!again) {
1763                         set_current_state(TASK_INTERRUPTIBLE);
1764                         schedule();
1765                         __set_current_state(TASK_RUNNING);
1766                 }
1767         }
1768 }
1769
1770 static int transaction_kthread(void *arg)
1771 {
1772         struct btrfs_root *root = arg;
1773         struct btrfs_fs_info *fs_info = root->fs_info;
1774         struct btrfs_trans_handle *trans;
1775         struct btrfs_transaction *cur;
1776         u64 transid;
1777         time64_t now;
1778         unsigned long delay;
1779         bool cannot_commit;
1780
1781         do {
1782                 cannot_commit = false;
1783                 delay = HZ * fs_info->commit_interval;
1784                 mutex_lock(&fs_info->transaction_kthread_mutex);
1785
1786                 spin_lock(&fs_info->trans_lock);
1787                 cur = fs_info->running_transaction;
1788                 if (!cur) {
1789                         spin_unlock(&fs_info->trans_lock);
1790                         goto sleep;
1791                 }
1792
1793                 now = ktime_get_seconds();
1794                 if (cur->state < TRANS_STATE_COMMIT_START &&
1795                     (now < cur->start_time ||
1796                      now - cur->start_time < fs_info->commit_interval)) {
1797                         spin_unlock(&fs_info->trans_lock);
1798                         delay = HZ * 5;
1799                         goto sleep;
1800                 }
1801                 transid = cur->transid;
1802                 spin_unlock(&fs_info->trans_lock);
1803
1804                 /* If the file system is aborted, this will always fail. */
1805                 trans = btrfs_attach_transaction(root);
1806                 if (IS_ERR(trans)) {
1807                         if (PTR_ERR(trans) != -ENOENT)
1808                                 cannot_commit = true;
1809                         goto sleep;
1810                 }
1811                 if (transid == trans->transid) {
1812                         btrfs_commit_transaction(trans);
1813                 } else {
1814                         btrfs_end_transaction(trans);
1815                 }
1816 sleep:
1817                 wake_up_process(fs_info->cleaner_kthread);
1818                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1819
1820                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1821                                       &fs_info->fs_state)))
1822                         btrfs_cleanup_transaction(fs_info);
1823                 if (!kthread_should_stop() &&
1824                                 (!btrfs_transaction_blocked(fs_info) ||
1825                                  cannot_commit))
1826                         schedule_timeout_interruptible(delay);
1827         } while (!kthread_should_stop());
1828         return 0;
1829 }
1830
1831 /*
1832  * This will find the highest generation in the array of root backups.  The
1833  * index of the highest array is returned, or -EINVAL if we can't find
1834  * anything.
1835  *
1836  * We check to make sure the array is valid by comparing the
1837  * generation of the latest  root in the array with the generation
1838  * in the super block.  If they don't match we pitch it.
1839  */
1840 static int find_newest_super_backup(struct btrfs_fs_info *info)
1841 {
1842         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1843         u64 cur;
1844         struct btrfs_root_backup *root_backup;
1845         int i;
1846
1847         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1848                 root_backup = info->super_copy->super_roots + i;
1849                 cur = btrfs_backup_tree_root_gen(root_backup);
1850                 if (cur == newest_gen)
1851                         return i;
1852         }
1853
1854         return -EINVAL;
1855 }
1856
1857 /*
1858  * copy all the root pointers into the super backup array.
1859  * this will bump the backup pointer by one when it is
1860  * done
1861  */
1862 static void backup_super_roots(struct btrfs_fs_info *info)
1863 {
1864         const int next_backup = info->backup_root_index;
1865         struct btrfs_root_backup *root_backup;
1866
1867         root_backup = info->super_for_commit->super_roots + next_backup;
1868
1869         /*
1870          * make sure all of our padding and empty slots get zero filled
1871          * regardless of which ones we use today
1872          */
1873         memset(root_backup, 0, sizeof(*root_backup));
1874
1875         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1876
1877         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1878         btrfs_set_backup_tree_root_gen(root_backup,
1879                                btrfs_header_generation(info->tree_root->node));
1880
1881         btrfs_set_backup_tree_root_level(root_backup,
1882                                btrfs_header_level(info->tree_root->node));
1883
1884         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1885         btrfs_set_backup_chunk_root_gen(root_backup,
1886                                btrfs_header_generation(info->chunk_root->node));
1887         btrfs_set_backup_chunk_root_level(root_backup,
1888                                btrfs_header_level(info->chunk_root->node));
1889
1890         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1891         btrfs_set_backup_extent_root_gen(root_backup,
1892                                btrfs_header_generation(info->extent_root->node));
1893         btrfs_set_backup_extent_root_level(root_backup,
1894                                btrfs_header_level(info->extent_root->node));
1895
1896         /*
1897          * we might commit during log recovery, which happens before we set
1898          * the fs_root.  Make sure it is valid before we fill it in.
1899          */
1900         if (info->fs_root && info->fs_root->node) {
1901                 btrfs_set_backup_fs_root(root_backup,
1902                                          info->fs_root->node->start);
1903                 btrfs_set_backup_fs_root_gen(root_backup,
1904                                btrfs_header_generation(info->fs_root->node));
1905                 btrfs_set_backup_fs_root_level(root_backup,
1906                                btrfs_header_level(info->fs_root->node));
1907         }
1908
1909         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1910         btrfs_set_backup_dev_root_gen(root_backup,
1911                                btrfs_header_generation(info->dev_root->node));
1912         btrfs_set_backup_dev_root_level(root_backup,
1913                                        btrfs_header_level(info->dev_root->node));
1914
1915         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1916         btrfs_set_backup_csum_root_gen(root_backup,
1917                                btrfs_header_generation(info->csum_root->node));
1918         btrfs_set_backup_csum_root_level(root_backup,
1919                                btrfs_header_level(info->csum_root->node));
1920
1921         btrfs_set_backup_total_bytes(root_backup,
1922                              btrfs_super_total_bytes(info->super_copy));
1923         btrfs_set_backup_bytes_used(root_backup,
1924                              btrfs_super_bytes_used(info->super_copy));
1925         btrfs_set_backup_num_devices(root_backup,
1926                              btrfs_super_num_devices(info->super_copy));
1927
1928         /*
1929          * if we don't copy this out to the super_copy, it won't get remembered
1930          * for the next commit
1931          */
1932         memcpy(&info->super_copy->super_roots,
1933                &info->super_for_commit->super_roots,
1934                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1935 }
1936
1937 /*
1938  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1939  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1940  *
1941  * fs_info - filesystem whose backup roots need to be read
1942  * priority - priority of backup root required
1943  *
1944  * Returns backup root index on success and -EINVAL otherwise.
1945  */
1946 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1947 {
1948         int backup_index = find_newest_super_backup(fs_info);
1949         struct btrfs_super_block *super = fs_info->super_copy;
1950         struct btrfs_root_backup *root_backup;
1951
1952         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1953                 if (priority == 0)
1954                         return backup_index;
1955
1956                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1957                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1958         } else {
1959                 return -EINVAL;
1960         }
1961
1962         root_backup = super->super_roots + backup_index;
1963
1964         btrfs_set_super_generation(super,
1965                                    btrfs_backup_tree_root_gen(root_backup));
1966         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1967         btrfs_set_super_root_level(super,
1968                                    btrfs_backup_tree_root_level(root_backup));
1969         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1970
1971         /*
1972          * Fixme: the total bytes and num_devices need to match or we should
1973          * need a fsck
1974          */
1975         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1976         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1977
1978         return backup_index;
1979 }
1980
1981 /* helper to cleanup workers */
1982 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1983 {
1984         btrfs_destroy_workqueue(fs_info->fixup_workers);
1985         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1986         btrfs_destroy_workqueue(fs_info->workers);
1987         btrfs_destroy_workqueue(fs_info->endio_workers);
1988         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1989         btrfs_destroy_workqueue(fs_info->rmw_workers);
1990         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1991         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1992         btrfs_destroy_workqueue(fs_info->delayed_workers);
1993         btrfs_destroy_workqueue(fs_info->caching_workers);
1994         btrfs_destroy_workqueue(fs_info->readahead_workers);
1995         btrfs_destroy_workqueue(fs_info->flush_workers);
1996         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1997         if (fs_info->discard_ctl.discard_workers)
1998                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1999         /*
2000          * Now that all other work queues are destroyed, we can safely destroy
2001          * the queues used for metadata I/O, since tasks from those other work
2002          * queues can do metadata I/O operations.
2003          */
2004         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2005         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2006 }
2007
2008 static void free_root_extent_buffers(struct btrfs_root *root)
2009 {
2010         if (root) {
2011                 free_extent_buffer(root->node);
2012                 free_extent_buffer(root->commit_root);
2013                 root->node = NULL;
2014                 root->commit_root = NULL;
2015         }
2016 }
2017
2018 /* helper to cleanup tree roots */
2019 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2020 {
2021         free_root_extent_buffers(info->tree_root);
2022
2023         free_root_extent_buffers(info->dev_root);
2024         free_root_extent_buffers(info->extent_root);
2025         free_root_extent_buffers(info->csum_root);
2026         free_root_extent_buffers(info->quota_root);
2027         free_root_extent_buffers(info->uuid_root);
2028         free_root_extent_buffers(info->fs_root);
2029         free_root_extent_buffers(info->data_reloc_root);
2030         if (free_chunk_root)
2031                 free_root_extent_buffers(info->chunk_root);
2032         free_root_extent_buffers(info->free_space_root);
2033 }
2034
2035 void btrfs_put_root(struct btrfs_root *root)
2036 {
2037         if (!root)
2038                 return;
2039
2040         if (refcount_dec_and_test(&root->refs)) {
2041                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2042                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2043                 if (root->anon_dev)
2044                         free_anon_bdev(root->anon_dev);
2045                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2046                 free_root_extent_buffers(root);
2047                 kfree(root->free_ino_ctl);
2048                 kfree(root->free_ino_pinned);
2049 #ifdef CONFIG_BTRFS_DEBUG
2050                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2051                 list_del_init(&root->leak_list);
2052                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2053 #endif
2054                 kfree(root);
2055         }
2056 }
2057
2058 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2059 {
2060         int ret;
2061         struct btrfs_root *gang[8];
2062         int i;
2063
2064         while (!list_empty(&fs_info->dead_roots)) {
2065                 gang[0] = list_entry(fs_info->dead_roots.next,
2066                                      struct btrfs_root, root_list);
2067                 list_del(&gang[0]->root_list);
2068
2069                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2070                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2071                 btrfs_put_root(gang[0]);
2072         }
2073
2074         while (1) {
2075                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2076                                              (void **)gang, 0,
2077                                              ARRAY_SIZE(gang));
2078                 if (!ret)
2079                         break;
2080                 for (i = 0; i < ret; i++)
2081                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2082         }
2083 }
2084
2085 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2086 {
2087         mutex_init(&fs_info->scrub_lock);
2088         atomic_set(&fs_info->scrubs_running, 0);
2089         atomic_set(&fs_info->scrub_pause_req, 0);
2090         atomic_set(&fs_info->scrubs_paused, 0);
2091         atomic_set(&fs_info->scrub_cancel_req, 0);
2092         init_waitqueue_head(&fs_info->scrub_pause_wait);
2093         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2094 }
2095
2096 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2097 {
2098         spin_lock_init(&fs_info->balance_lock);
2099         mutex_init(&fs_info->balance_mutex);
2100         atomic_set(&fs_info->balance_pause_req, 0);
2101         atomic_set(&fs_info->balance_cancel_req, 0);
2102         fs_info->balance_ctl = NULL;
2103         init_waitqueue_head(&fs_info->balance_wait_q);
2104 }
2105
2106 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2107 {
2108         struct inode *inode = fs_info->btree_inode;
2109
2110         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2111         set_nlink(inode, 1);
2112         /*
2113          * we set the i_size on the btree inode to the max possible int.
2114          * the real end of the address space is determined by all of
2115          * the devices in the system
2116          */
2117         inode->i_size = OFFSET_MAX;
2118         inode->i_mapping->a_ops = &btree_aops;
2119
2120         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2121         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2122                             IO_TREE_BTREE_INODE_IO, inode);
2123         BTRFS_I(inode)->io_tree.track_uptodate = false;
2124         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2125
2126         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2127         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2128         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2129         btrfs_insert_inode_hash(inode);
2130 }
2131
2132 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2133 {
2134         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2135         init_rwsem(&fs_info->dev_replace.rwsem);
2136         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2137 }
2138
2139 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2140 {
2141         spin_lock_init(&fs_info->qgroup_lock);
2142         mutex_init(&fs_info->qgroup_ioctl_lock);
2143         fs_info->qgroup_tree = RB_ROOT;
2144         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2145         fs_info->qgroup_seq = 1;
2146         fs_info->qgroup_ulist = NULL;
2147         fs_info->qgroup_rescan_running = false;
2148         mutex_init(&fs_info->qgroup_rescan_lock);
2149 }
2150
2151 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2152                 struct btrfs_fs_devices *fs_devices)
2153 {
2154         u32 max_active = fs_info->thread_pool_size;
2155         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2156
2157         fs_info->workers =
2158                 btrfs_alloc_workqueue(fs_info, "worker",
2159                                       flags | WQ_HIGHPRI, max_active, 16);
2160
2161         fs_info->delalloc_workers =
2162                 btrfs_alloc_workqueue(fs_info, "delalloc",
2163                                       flags, max_active, 2);
2164
2165         fs_info->flush_workers =
2166                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2167                                       flags, max_active, 0);
2168
2169         fs_info->caching_workers =
2170                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2171
2172         fs_info->fixup_workers =
2173                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2174
2175         /*
2176          * endios are largely parallel and should have a very
2177          * low idle thresh
2178          */
2179         fs_info->endio_workers =
2180                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2181         fs_info->endio_meta_workers =
2182                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2183                                       max_active, 4);
2184         fs_info->endio_meta_write_workers =
2185                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2186                                       max_active, 2);
2187         fs_info->endio_raid56_workers =
2188                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2189                                       max_active, 4);
2190         fs_info->rmw_workers =
2191                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2192         fs_info->endio_write_workers =
2193                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2194                                       max_active, 2);
2195         fs_info->endio_freespace_worker =
2196                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2197                                       max_active, 0);
2198         fs_info->delayed_workers =
2199                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2200                                       max_active, 0);
2201         fs_info->readahead_workers =
2202                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2203                                       max_active, 2);
2204         fs_info->qgroup_rescan_workers =
2205                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2206         fs_info->discard_ctl.discard_workers =
2207                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2208
2209         if (!(fs_info->workers && fs_info->delalloc_workers &&
2210               fs_info->flush_workers &&
2211               fs_info->endio_workers && fs_info->endio_meta_workers &&
2212               fs_info->endio_meta_write_workers &&
2213               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2214               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2215               fs_info->caching_workers && fs_info->readahead_workers &&
2216               fs_info->fixup_workers && fs_info->delayed_workers &&
2217               fs_info->qgroup_rescan_workers &&
2218               fs_info->discard_ctl.discard_workers)) {
2219                 return -ENOMEM;
2220         }
2221
2222         return 0;
2223 }
2224
2225 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2226 {
2227         struct crypto_shash *csum_shash;
2228         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2229
2230         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2231
2232         if (IS_ERR(csum_shash)) {
2233                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2234                           csum_driver);
2235                 return PTR_ERR(csum_shash);
2236         }
2237
2238         fs_info->csum_shash = csum_shash;
2239
2240         return 0;
2241 }
2242
2243 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2244                             struct btrfs_fs_devices *fs_devices)
2245 {
2246         int ret;
2247         struct btrfs_root *log_tree_root;
2248         struct btrfs_super_block *disk_super = fs_info->super_copy;
2249         u64 bytenr = btrfs_super_log_root(disk_super);
2250         int level = btrfs_super_log_root_level(disk_super);
2251
2252         if (fs_devices->rw_devices == 0) {
2253                 btrfs_warn(fs_info, "log replay required on RO media");
2254                 return -EIO;
2255         }
2256
2257         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2258                                          GFP_KERNEL);
2259         if (!log_tree_root)
2260                 return -ENOMEM;
2261
2262         log_tree_root->node = read_tree_block(fs_info, bytenr,
2263                                               fs_info->generation + 1,
2264                                               level, NULL);
2265         if (IS_ERR(log_tree_root->node)) {
2266                 btrfs_warn(fs_info, "failed to read log tree");
2267                 ret = PTR_ERR(log_tree_root->node);
2268                 log_tree_root->node = NULL;
2269                 btrfs_put_root(log_tree_root);
2270                 return ret;
2271         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2272                 btrfs_err(fs_info, "failed to read log tree");
2273                 btrfs_put_root(log_tree_root);
2274                 return -EIO;
2275         }
2276         /* returns with log_tree_root freed on success */
2277         ret = btrfs_recover_log_trees(log_tree_root);
2278         if (ret) {
2279                 btrfs_handle_fs_error(fs_info, ret,
2280                                       "Failed to recover log tree");
2281                 btrfs_put_root(log_tree_root);
2282                 return ret;
2283         }
2284
2285         if (sb_rdonly(fs_info->sb)) {
2286                 ret = btrfs_commit_super(fs_info);
2287                 if (ret)
2288                         return ret;
2289         }
2290
2291         return 0;
2292 }
2293
2294 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2295 {
2296         struct btrfs_root *tree_root = fs_info->tree_root;
2297         struct btrfs_root *root;
2298         struct btrfs_key location;
2299         int ret;
2300
2301         BUG_ON(!fs_info->tree_root);
2302
2303         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2304         location.type = BTRFS_ROOT_ITEM_KEY;
2305         location.offset = 0;
2306
2307         root = btrfs_read_tree_root(tree_root, &location);
2308         if (IS_ERR(root)) {
2309                 ret = PTR_ERR(root);
2310                 goto out;
2311         }
2312         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2313         fs_info->extent_root = root;
2314
2315         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2316         root = btrfs_read_tree_root(tree_root, &location);
2317         if (IS_ERR(root)) {
2318                 ret = PTR_ERR(root);
2319                 goto out;
2320         }
2321         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322         fs_info->dev_root = root;
2323         btrfs_init_devices_late(fs_info);
2324
2325         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2326         root = btrfs_read_tree_root(tree_root, &location);
2327         if (IS_ERR(root)) {
2328                 ret = PTR_ERR(root);
2329                 goto out;
2330         }
2331         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332         fs_info->csum_root = root;
2333
2334         /*
2335          * This tree can share blocks with some other fs tree during relocation
2336          * and we need a proper setup by btrfs_get_fs_root
2337          */
2338         root = btrfs_get_fs_root(tree_root->fs_info,
2339                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2340         if (IS_ERR(root)) {
2341                 ret = PTR_ERR(root);
2342                 goto out;
2343         }
2344         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345         fs_info->data_reloc_root = root;
2346
2347         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2348         root = btrfs_read_tree_root(tree_root, &location);
2349         if (!IS_ERR(root)) {
2350                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2352                 fs_info->quota_root = root;
2353         }
2354
2355         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2356         root = btrfs_read_tree_root(tree_root, &location);
2357         if (IS_ERR(root)) {
2358                 ret = PTR_ERR(root);
2359                 if (ret != -ENOENT)
2360                         goto out;
2361         } else {
2362                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363                 fs_info->uuid_root = root;
2364         }
2365
2366         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2367                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2368                 root = btrfs_read_tree_root(tree_root, &location);
2369                 if (IS_ERR(root)) {
2370                         ret = PTR_ERR(root);
2371                         goto out;
2372                 }
2373                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374                 fs_info->free_space_root = root;
2375         }
2376
2377         return 0;
2378 out:
2379         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2380                    location.objectid, ret);
2381         return ret;
2382 }
2383
2384 /*
2385  * Real super block validation
2386  * NOTE: super csum type and incompat features will not be checked here.
2387  *
2388  * @sb:         super block to check
2389  * @mirror_num: the super block number to check its bytenr:
2390  *              0       the primary (1st) sb
2391  *              1, 2    2nd and 3rd backup copy
2392  *             -1       skip bytenr check
2393  */
2394 static int validate_super(struct btrfs_fs_info *fs_info,
2395                             struct btrfs_super_block *sb, int mirror_num)
2396 {
2397         u64 nodesize = btrfs_super_nodesize(sb);
2398         u64 sectorsize = btrfs_super_sectorsize(sb);
2399         int ret = 0;
2400
2401         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2402                 btrfs_err(fs_info, "no valid FS found");
2403                 ret = -EINVAL;
2404         }
2405         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2406                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2407                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2408                 ret = -EINVAL;
2409         }
2410         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2412                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2413                 ret = -EINVAL;
2414         }
2415         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2417                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2418                 ret = -EINVAL;
2419         }
2420         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2421                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2422                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2423                 ret = -EINVAL;
2424         }
2425
2426         /*
2427          * Check sectorsize and nodesize first, other check will need it.
2428          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2429          */
2430         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2431             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2433                 ret = -EINVAL;
2434         }
2435         /* Only PAGE SIZE is supported yet */
2436         if (sectorsize != PAGE_SIZE) {
2437                 btrfs_err(fs_info,
2438                         "sectorsize %llu not supported yet, only support %lu",
2439                         sectorsize, PAGE_SIZE);
2440                 ret = -EINVAL;
2441         }
2442         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2443             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2445                 ret = -EINVAL;
2446         }
2447         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2448                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2449                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2450                 ret = -EINVAL;
2451         }
2452
2453         /* Root alignment check */
2454         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2455                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2456                            btrfs_super_root(sb));
2457                 ret = -EINVAL;
2458         }
2459         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2460                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2461                            btrfs_super_chunk_root(sb));
2462                 ret = -EINVAL;
2463         }
2464         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2465                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2466                            btrfs_super_log_root(sb));
2467                 ret = -EINVAL;
2468         }
2469
2470         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2471                    BTRFS_FSID_SIZE) != 0) {
2472                 btrfs_err(fs_info,
2473                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2474                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2475                 ret = -EINVAL;
2476         }
2477
2478         /*
2479          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2480          * done later
2481          */
2482         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2483                 btrfs_err(fs_info, "bytes_used is too small %llu",
2484                           btrfs_super_bytes_used(sb));
2485                 ret = -EINVAL;
2486         }
2487         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2488                 btrfs_err(fs_info, "invalid stripesize %u",
2489                           btrfs_super_stripesize(sb));
2490                 ret = -EINVAL;
2491         }
2492         if (btrfs_super_num_devices(sb) > (1UL << 31))
2493                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2494                            btrfs_super_num_devices(sb));
2495         if (btrfs_super_num_devices(sb) == 0) {
2496                 btrfs_err(fs_info, "number of devices is 0");
2497                 ret = -EINVAL;
2498         }
2499
2500         if (mirror_num >= 0 &&
2501             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2502                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2503                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2504                 ret = -EINVAL;
2505         }
2506
2507         /*
2508          * Obvious sys_chunk_array corruptions, it must hold at least one key
2509          * and one chunk
2510          */
2511         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2512                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2513                           btrfs_super_sys_array_size(sb),
2514                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2515                 ret = -EINVAL;
2516         }
2517         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2518                         + sizeof(struct btrfs_chunk)) {
2519                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2520                           btrfs_super_sys_array_size(sb),
2521                           sizeof(struct btrfs_disk_key)
2522                           + sizeof(struct btrfs_chunk));
2523                 ret = -EINVAL;
2524         }
2525
2526         /*
2527          * The generation is a global counter, we'll trust it more than the others
2528          * but it's still possible that it's the one that's wrong.
2529          */
2530         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2531                 btrfs_warn(fs_info,
2532                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2533                         btrfs_super_generation(sb),
2534                         btrfs_super_chunk_root_generation(sb));
2535         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2536             && btrfs_super_cache_generation(sb) != (u64)-1)
2537                 btrfs_warn(fs_info,
2538                         "suspicious: generation < cache_generation: %llu < %llu",
2539                         btrfs_super_generation(sb),
2540                         btrfs_super_cache_generation(sb));
2541
2542         return ret;
2543 }
2544
2545 /*
2546  * Validation of super block at mount time.
2547  * Some checks already done early at mount time, like csum type and incompat
2548  * flags will be skipped.
2549  */
2550 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2551 {
2552         return validate_super(fs_info, fs_info->super_copy, 0);
2553 }
2554
2555 /*
2556  * Validation of super block at write time.
2557  * Some checks like bytenr check will be skipped as their values will be
2558  * overwritten soon.
2559  * Extra checks like csum type and incompat flags will be done here.
2560  */
2561 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2562                                       struct btrfs_super_block *sb)
2563 {
2564         int ret;
2565
2566         ret = validate_super(fs_info, sb, -1);
2567         if (ret < 0)
2568                 goto out;
2569         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2570                 ret = -EUCLEAN;
2571                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2572                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2573                 goto out;
2574         }
2575         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2576                 ret = -EUCLEAN;
2577                 btrfs_err(fs_info,
2578                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2579                           btrfs_super_incompat_flags(sb),
2580                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2581                 goto out;
2582         }
2583 out:
2584         if (ret < 0)
2585                 btrfs_err(fs_info,
2586                 "super block corruption detected before writing it to disk");
2587         return ret;
2588 }
2589
2590 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2591 {
2592         int backup_index = find_newest_super_backup(fs_info);
2593         struct btrfs_super_block *sb = fs_info->super_copy;
2594         struct btrfs_root *tree_root = fs_info->tree_root;
2595         bool handle_error = false;
2596         int ret = 0;
2597         int i;
2598
2599         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2600                 u64 generation;
2601                 int level;
2602
2603                 if (handle_error) {
2604                         if (!IS_ERR(tree_root->node))
2605                                 free_extent_buffer(tree_root->node);
2606                         tree_root->node = NULL;
2607
2608                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2609                                 break;
2610
2611                         free_root_pointers(fs_info, 0);
2612
2613                         /*
2614                          * Don't use the log in recovery mode, it won't be
2615                          * valid
2616                          */
2617                         btrfs_set_super_log_root(sb, 0);
2618
2619                         /* We can't trust the free space cache either */
2620                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2621
2622                         ret = read_backup_root(fs_info, i);
2623                         backup_index = ret;
2624                         if (ret < 0)
2625                                 return ret;
2626                 }
2627                 generation = btrfs_super_generation(sb);
2628                 level = btrfs_super_root_level(sb);
2629                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2630                                                   generation, level, NULL);
2631                 if (IS_ERR(tree_root->node)) {
2632                         handle_error = true;
2633                         ret = PTR_ERR(tree_root->node);
2634                         tree_root->node = NULL;
2635                         btrfs_warn(fs_info, "couldn't read tree root");
2636                         continue;
2637
2638                 } else if (!extent_buffer_uptodate(tree_root->node)) {
2639                         handle_error = true;
2640                         ret = -EIO;
2641                         btrfs_warn(fs_info, "error while reading tree root");
2642                         continue;
2643                 }
2644
2645                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2646                 tree_root->commit_root = btrfs_root_node(tree_root);
2647                 btrfs_set_root_refs(&tree_root->root_item, 1);
2648
2649                 /*
2650                  * No need to hold btrfs_root::objectid_mutex since the fs
2651                  * hasn't been fully initialised and we are the only user
2652                  */
2653                 ret = btrfs_find_highest_objectid(tree_root,
2654                                                 &tree_root->highest_objectid);
2655                 if (ret < 0) {
2656                         handle_error = true;
2657                         continue;
2658                 }
2659
2660                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2661
2662                 ret = btrfs_read_roots(fs_info);
2663                 if (ret < 0) {
2664                         handle_error = true;
2665                         continue;
2666                 }
2667
2668                 /* All successful */
2669                 fs_info->generation = generation;
2670                 fs_info->last_trans_committed = generation;
2671
2672                 /* Always begin writing backup roots after the one being used */
2673                 if (backup_index < 0) {
2674                         fs_info->backup_root_index = 0;
2675                 } else {
2676                         fs_info->backup_root_index = backup_index + 1;
2677                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2678                 }
2679                 break;
2680         }
2681
2682         return ret;
2683 }
2684
2685 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2686 {
2687         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2688         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2689         INIT_LIST_HEAD(&fs_info->trans_list);
2690         INIT_LIST_HEAD(&fs_info->dead_roots);
2691         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2692         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2693         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2694         spin_lock_init(&fs_info->delalloc_root_lock);
2695         spin_lock_init(&fs_info->trans_lock);
2696         spin_lock_init(&fs_info->fs_roots_radix_lock);
2697         spin_lock_init(&fs_info->delayed_iput_lock);
2698         spin_lock_init(&fs_info->defrag_inodes_lock);
2699         spin_lock_init(&fs_info->super_lock);
2700         spin_lock_init(&fs_info->buffer_lock);
2701         spin_lock_init(&fs_info->unused_bgs_lock);
2702         rwlock_init(&fs_info->tree_mod_log_lock);
2703         mutex_init(&fs_info->unused_bg_unpin_mutex);
2704         mutex_init(&fs_info->delete_unused_bgs_mutex);
2705         mutex_init(&fs_info->reloc_mutex);
2706         mutex_init(&fs_info->delalloc_root_mutex);
2707         seqlock_init(&fs_info->profiles_lock);
2708
2709         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2710         INIT_LIST_HEAD(&fs_info->space_info);
2711         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2712         INIT_LIST_HEAD(&fs_info->unused_bgs);
2713 #ifdef CONFIG_BTRFS_DEBUG
2714         INIT_LIST_HEAD(&fs_info->allocated_roots);
2715         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2716         spin_lock_init(&fs_info->eb_leak_lock);
2717 #endif
2718         extent_map_tree_init(&fs_info->mapping_tree);
2719         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2720                              BTRFS_BLOCK_RSV_GLOBAL);
2721         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2722         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2723         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2724         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2725                              BTRFS_BLOCK_RSV_DELOPS);
2726         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2727                              BTRFS_BLOCK_RSV_DELREFS);
2728
2729         atomic_set(&fs_info->async_delalloc_pages, 0);
2730         atomic_set(&fs_info->defrag_running, 0);
2731         atomic_set(&fs_info->reada_works_cnt, 0);
2732         atomic_set(&fs_info->nr_delayed_iputs, 0);
2733         atomic64_set(&fs_info->tree_mod_seq, 0);
2734         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2735         fs_info->metadata_ratio = 0;
2736         fs_info->defrag_inodes = RB_ROOT;
2737         atomic64_set(&fs_info->free_chunk_space, 0);
2738         fs_info->tree_mod_log = RB_ROOT;
2739         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2740         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2741         /* readahead state */
2742         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2743         spin_lock_init(&fs_info->reada_lock);
2744         btrfs_init_ref_verify(fs_info);
2745
2746         fs_info->thread_pool_size = min_t(unsigned long,
2747                                           num_online_cpus() + 2, 8);
2748
2749         INIT_LIST_HEAD(&fs_info->ordered_roots);
2750         spin_lock_init(&fs_info->ordered_root_lock);
2751
2752         btrfs_init_scrub(fs_info);
2753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2754         fs_info->check_integrity_print_mask = 0;
2755 #endif
2756         btrfs_init_balance(fs_info);
2757         btrfs_init_async_reclaim_work(fs_info);
2758
2759         spin_lock_init(&fs_info->block_group_cache_lock);
2760         fs_info->block_group_cache_tree = RB_ROOT;
2761         fs_info->first_logical_byte = (u64)-1;
2762
2763         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2764                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2765         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2766
2767         mutex_init(&fs_info->ordered_operations_mutex);
2768         mutex_init(&fs_info->tree_log_mutex);
2769         mutex_init(&fs_info->chunk_mutex);
2770         mutex_init(&fs_info->transaction_kthread_mutex);
2771         mutex_init(&fs_info->cleaner_mutex);
2772         mutex_init(&fs_info->ro_block_group_mutex);
2773         init_rwsem(&fs_info->commit_root_sem);
2774         init_rwsem(&fs_info->cleanup_work_sem);
2775         init_rwsem(&fs_info->subvol_sem);
2776         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2777
2778         btrfs_init_dev_replace_locks(fs_info);
2779         btrfs_init_qgroup(fs_info);
2780         btrfs_discard_init(fs_info);
2781
2782         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2783         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2784
2785         init_waitqueue_head(&fs_info->transaction_throttle);
2786         init_waitqueue_head(&fs_info->transaction_wait);
2787         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2788         init_waitqueue_head(&fs_info->async_submit_wait);
2789         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2790
2791         /* Usable values until the real ones are cached from the superblock */
2792         fs_info->nodesize = 4096;
2793         fs_info->sectorsize = 4096;
2794         fs_info->stripesize = 4096;
2795
2796         spin_lock_init(&fs_info->swapfile_pins_lock);
2797         fs_info->swapfile_pins = RB_ROOT;
2798
2799         fs_info->send_in_progress = 0;
2800 }
2801
2802 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2803 {
2804         int ret;
2805
2806         fs_info->sb = sb;
2807         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2808         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2809
2810         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2811         if (ret)
2812                 return ret;
2813
2814         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2815         if (ret)
2816                 return ret;
2817
2818         fs_info->dirty_metadata_batch = PAGE_SIZE *
2819                                         (1 + ilog2(nr_cpu_ids));
2820
2821         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2822         if (ret)
2823                 return ret;
2824
2825         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2826                         GFP_KERNEL);
2827         if (ret)
2828                 return ret;
2829
2830         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2831                                         GFP_KERNEL);
2832         if (!fs_info->delayed_root)
2833                 return -ENOMEM;
2834         btrfs_init_delayed_root(fs_info->delayed_root);
2835
2836         return btrfs_alloc_stripe_hash_table(fs_info);
2837 }
2838
2839 static int btrfs_uuid_rescan_kthread(void *data)
2840 {
2841         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2842         int ret;
2843
2844         /*
2845          * 1st step is to iterate through the existing UUID tree and
2846          * to delete all entries that contain outdated data.
2847          * 2nd step is to add all missing entries to the UUID tree.
2848          */
2849         ret = btrfs_uuid_tree_iterate(fs_info);
2850         if (ret < 0) {
2851                 if (ret != -EINTR)
2852                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2853                                    ret);
2854                 up(&fs_info->uuid_tree_rescan_sem);
2855                 return ret;
2856         }
2857         return btrfs_uuid_scan_kthread(data);
2858 }
2859
2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2861 {
2862         struct task_struct *task;
2863
2864         down(&fs_info->uuid_tree_rescan_sem);
2865         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2866         if (IS_ERR(task)) {
2867                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2868                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2869                 up(&fs_info->uuid_tree_rescan_sem);
2870                 return PTR_ERR(task);
2871         }
2872
2873         return 0;
2874 }
2875
2876 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2877                       char *options)
2878 {
2879         u32 sectorsize;
2880         u32 nodesize;
2881         u32 stripesize;
2882         u64 generation;
2883         u64 features;
2884         u16 csum_type;
2885         struct btrfs_super_block *disk_super;
2886         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2887         struct btrfs_root *tree_root;
2888         struct btrfs_root *chunk_root;
2889         int ret;
2890         int err = -EINVAL;
2891         int clear_free_space_tree = 0;
2892         int level;
2893
2894         ret = init_mount_fs_info(fs_info, sb);
2895         if (ret) {
2896                 err = ret;
2897                 goto fail;
2898         }
2899
2900         /* These need to be init'ed before we start creating inodes and such. */
2901         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2902                                      GFP_KERNEL);
2903         fs_info->tree_root = tree_root;
2904         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2905                                       GFP_KERNEL);
2906         fs_info->chunk_root = chunk_root;
2907         if (!tree_root || !chunk_root) {
2908                 err = -ENOMEM;
2909                 goto fail;
2910         }
2911
2912         fs_info->btree_inode = new_inode(sb);
2913         if (!fs_info->btree_inode) {
2914                 err = -ENOMEM;
2915                 goto fail;
2916         }
2917         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2918         btrfs_init_btree_inode(fs_info);
2919
2920         invalidate_bdev(fs_devices->latest_bdev);
2921
2922         /*
2923          * Read super block and check the signature bytes only
2924          */
2925         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2926         if (IS_ERR(disk_super)) {
2927                 err = PTR_ERR(disk_super);
2928                 goto fail_alloc;
2929         }
2930
2931         /*
2932          * Verify the type first, if that or the checksum value are
2933          * corrupted, we'll find out
2934          */
2935         csum_type = btrfs_super_csum_type(disk_super);
2936         if (!btrfs_supported_super_csum(csum_type)) {
2937                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2938                           csum_type);
2939                 err = -EINVAL;
2940                 btrfs_release_disk_super(disk_super);
2941                 goto fail_alloc;
2942         }
2943
2944         ret = btrfs_init_csum_hash(fs_info, csum_type);
2945         if (ret) {
2946                 err = ret;
2947                 btrfs_release_disk_super(disk_super);
2948                 goto fail_alloc;
2949         }
2950
2951         /*
2952          * We want to check superblock checksum, the type is stored inside.
2953          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2954          */
2955         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2956                 btrfs_err(fs_info, "superblock checksum mismatch");
2957                 err = -EINVAL;
2958                 btrfs_release_disk_super(disk_super);
2959                 goto fail_alloc;
2960         }
2961
2962         /*
2963          * super_copy is zeroed at allocation time and we never touch the
2964          * following bytes up to INFO_SIZE, the checksum is calculated from
2965          * the whole block of INFO_SIZE
2966          */
2967         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2968         btrfs_release_disk_super(disk_super);
2969
2970         disk_super = fs_info->super_copy;
2971
2972         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2973                        BTRFS_FSID_SIZE));
2974
2975         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2976                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2977                                 fs_info->super_copy->metadata_uuid,
2978                                 BTRFS_FSID_SIZE));
2979         }
2980
2981         features = btrfs_super_flags(disk_super);
2982         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2983                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2984                 btrfs_set_super_flags(disk_super, features);
2985                 btrfs_info(fs_info,
2986                         "found metadata UUID change in progress flag, clearing");
2987         }
2988
2989         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2990                sizeof(*fs_info->super_for_commit));
2991
2992         ret = btrfs_validate_mount_super(fs_info);
2993         if (ret) {
2994                 btrfs_err(fs_info, "superblock contains fatal errors");
2995                 err = -EINVAL;
2996                 goto fail_alloc;
2997         }
2998
2999         if (!btrfs_super_root(disk_super))
3000                 goto fail_alloc;
3001
3002         /* check FS state, whether FS is broken. */
3003         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3004                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3005
3006         /*
3007          * In the long term, we'll store the compression type in the super
3008          * block, and it'll be used for per file compression control.
3009          */
3010         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3011
3012         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3013         if (ret) {
3014                 err = ret;
3015                 goto fail_alloc;
3016         }
3017
3018         features = btrfs_super_incompat_flags(disk_super) &
3019                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3020         if (features) {
3021                 btrfs_err(fs_info,
3022                     "cannot mount because of unsupported optional features (%llx)",
3023                     features);
3024                 err = -EINVAL;
3025                 goto fail_alloc;
3026         }
3027
3028         features = btrfs_super_incompat_flags(disk_super);
3029         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3030         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3031                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3032         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3033                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3034
3035         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3036                 btrfs_info(fs_info, "has skinny extents");
3037
3038         /*
3039          * flag our filesystem as having big metadata blocks if
3040          * they are bigger than the page size
3041          */
3042         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3043                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3044                         btrfs_info(fs_info,
3045                                 "flagging fs with big metadata feature");
3046                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3047         }
3048
3049         nodesize = btrfs_super_nodesize(disk_super);
3050         sectorsize = btrfs_super_sectorsize(disk_super);
3051         stripesize = sectorsize;
3052         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3053         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3054
3055         /* Cache block sizes */
3056         fs_info->nodesize = nodesize;
3057         fs_info->sectorsize = sectorsize;
3058         fs_info->stripesize = stripesize;
3059
3060         /*
3061          * mixed block groups end up with duplicate but slightly offset
3062          * extent buffers for the same range.  It leads to corruptions
3063          */
3064         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3065             (sectorsize != nodesize)) {
3066                 btrfs_err(fs_info,
3067 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3068                         nodesize, sectorsize);
3069                 goto fail_alloc;
3070         }
3071
3072         /*
3073          * Needn't use the lock because there is no other task which will
3074          * update the flag.
3075          */
3076         btrfs_set_super_incompat_flags(disk_super, features);
3077
3078         features = btrfs_super_compat_ro_flags(disk_super) &
3079                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3080         if (!sb_rdonly(sb) && features) {
3081                 btrfs_err(fs_info,
3082         "cannot mount read-write because of unsupported optional features (%llx)",
3083                        features);
3084                 err = -EINVAL;
3085                 goto fail_alloc;
3086         }
3087
3088         ret = btrfs_init_workqueues(fs_info, fs_devices);
3089         if (ret) {
3090                 err = ret;
3091                 goto fail_sb_buffer;
3092         }
3093
3094         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3095         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3096
3097         sb->s_blocksize = sectorsize;
3098         sb->s_blocksize_bits = blksize_bits(sectorsize);
3099         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3100
3101         mutex_lock(&fs_info->chunk_mutex);
3102         ret = btrfs_read_sys_array(fs_info);
3103         mutex_unlock(&fs_info->chunk_mutex);
3104         if (ret) {
3105                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3106                 goto fail_sb_buffer;
3107         }
3108
3109         generation = btrfs_super_chunk_root_generation(disk_super);
3110         level = btrfs_super_chunk_root_level(disk_super);
3111
3112         chunk_root->node = read_tree_block(fs_info,
3113                                            btrfs_super_chunk_root(disk_super),
3114                                            generation, level, NULL);
3115         if (IS_ERR(chunk_root->node) ||
3116             !extent_buffer_uptodate(chunk_root->node)) {
3117                 btrfs_err(fs_info, "failed to read chunk root");
3118                 if (!IS_ERR(chunk_root->node))
3119                         free_extent_buffer(chunk_root->node);
3120                 chunk_root->node = NULL;
3121                 goto fail_tree_roots;
3122         }
3123         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3124         chunk_root->commit_root = btrfs_root_node(chunk_root);
3125
3126         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3127                            offsetof(struct btrfs_header, chunk_tree_uuid),
3128                            BTRFS_UUID_SIZE);
3129
3130         ret = btrfs_read_chunk_tree(fs_info);
3131         if (ret) {
3132                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3133                 goto fail_tree_roots;
3134         }
3135
3136         /*
3137          * Keep the devid that is marked to be the target device for the
3138          * device replace procedure
3139          */
3140         btrfs_free_extra_devids(fs_devices, 0);
3141
3142         if (!fs_devices->latest_bdev) {
3143                 btrfs_err(fs_info, "failed to read devices");
3144                 goto fail_tree_roots;
3145         }
3146
3147         ret = init_tree_roots(fs_info);
3148         if (ret)
3149                 goto fail_tree_roots;
3150
3151         /*
3152          * If we have a uuid root and we're not being told to rescan we need to
3153          * check the generation here so we can set the
3154          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3155          * transaction during a balance or the log replay without updating the
3156          * uuid generation, and then if we crash we would rescan the uuid tree,
3157          * even though it was perfectly fine.
3158          */
3159         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3160             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3161                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3162
3163         ret = btrfs_verify_dev_extents(fs_info);
3164         if (ret) {
3165                 btrfs_err(fs_info,
3166                           "failed to verify dev extents against chunks: %d",
3167                           ret);
3168                 goto fail_block_groups;
3169         }
3170         ret = btrfs_recover_balance(fs_info);
3171         if (ret) {
3172                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3173                 goto fail_block_groups;
3174         }
3175
3176         ret = btrfs_init_dev_stats(fs_info);
3177         if (ret) {
3178                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3179                 goto fail_block_groups;
3180         }
3181
3182         ret = btrfs_init_dev_replace(fs_info);
3183         if (ret) {
3184                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3185                 goto fail_block_groups;
3186         }
3187
3188         btrfs_free_extra_devids(fs_devices, 1);
3189
3190         ret = btrfs_sysfs_add_fsid(fs_devices);
3191         if (ret) {
3192                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3193                                 ret);
3194                 goto fail_block_groups;
3195         }
3196
3197         ret = btrfs_sysfs_add_mounted(fs_info);
3198         if (ret) {
3199                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3200                 goto fail_fsdev_sysfs;
3201         }
3202
3203         ret = btrfs_init_space_info(fs_info);
3204         if (ret) {
3205                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3206                 goto fail_sysfs;
3207         }
3208
3209         ret = btrfs_read_block_groups(fs_info);
3210         if (ret) {
3211                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3212                 goto fail_sysfs;
3213         }
3214
3215         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3216                 btrfs_warn(fs_info,
3217                 "writable mount is not allowed due to too many missing devices");
3218                 goto fail_sysfs;
3219         }
3220
3221         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3222                                                "btrfs-cleaner");
3223         if (IS_ERR(fs_info->cleaner_kthread))
3224                 goto fail_sysfs;
3225
3226         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3227                                                    tree_root,
3228                                                    "btrfs-transaction");
3229         if (IS_ERR(fs_info->transaction_kthread))
3230                 goto fail_cleaner;
3231
3232         if (!btrfs_test_opt(fs_info, NOSSD) &&
3233             !fs_info->fs_devices->rotating) {
3234                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3235         }
3236
3237         /*
3238          * Mount does not set all options immediately, we can do it now and do
3239          * not have to wait for transaction commit
3240          */
3241         btrfs_apply_pending_changes(fs_info);
3242
3243 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3244         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3245                 ret = btrfsic_mount(fs_info, fs_devices,
3246                                     btrfs_test_opt(fs_info,
3247                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3248                                     1 : 0,
3249                                     fs_info->check_integrity_print_mask);
3250                 if (ret)
3251                         btrfs_warn(fs_info,
3252                                 "failed to initialize integrity check module: %d",
3253                                 ret);
3254         }
3255 #endif
3256         ret = btrfs_read_qgroup_config(fs_info);
3257         if (ret)
3258                 goto fail_trans_kthread;
3259
3260         if (btrfs_build_ref_tree(fs_info))
3261                 btrfs_err(fs_info, "couldn't build ref tree");
3262
3263         /* do not make disk changes in broken FS or nologreplay is given */
3264         if (btrfs_super_log_root(disk_super) != 0 &&
3265             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3266                 btrfs_info(fs_info, "start tree-log replay");
3267                 ret = btrfs_replay_log(fs_info, fs_devices);
3268                 if (ret) {
3269                         err = ret;
3270                         goto fail_qgroup;
3271                 }
3272         }
3273
3274         ret = btrfs_find_orphan_roots(fs_info);
3275         if (ret)
3276                 goto fail_qgroup;
3277
3278         if (!sb_rdonly(sb)) {
3279                 ret = btrfs_cleanup_fs_roots(fs_info);
3280                 if (ret)
3281                         goto fail_qgroup;
3282
3283                 mutex_lock(&fs_info->cleaner_mutex);
3284                 ret = btrfs_recover_relocation(tree_root);
3285                 mutex_unlock(&fs_info->cleaner_mutex);
3286                 if (ret < 0) {
3287                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3288                                         ret);
3289                         err = -EINVAL;
3290                         goto fail_qgroup;
3291                 }
3292         }
3293
3294         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3295         if (IS_ERR(fs_info->fs_root)) {
3296                 err = PTR_ERR(fs_info->fs_root);
3297                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3298                 fs_info->fs_root = NULL;
3299                 goto fail_qgroup;
3300         }
3301
3302         if (sb_rdonly(sb))
3303                 return 0;
3304
3305         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3306             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3307                 clear_free_space_tree = 1;
3308         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3309                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3310                 btrfs_warn(fs_info, "free space tree is invalid");
3311                 clear_free_space_tree = 1;
3312         }
3313
3314         if (clear_free_space_tree) {
3315                 btrfs_info(fs_info, "clearing free space tree");
3316                 ret = btrfs_clear_free_space_tree(fs_info);
3317                 if (ret) {
3318                         btrfs_warn(fs_info,
3319                                    "failed to clear free space tree: %d", ret);
3320                         close_ctree(fs_info);
3321                         return ret;
3322                 }
3323         }
3324
3325         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3326             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3327                 btrfs_info(fs_info, "creating free space tree");
3328                 ret = btrfs_create_free_space_tree(fs_info);
3329                 if (ret) {
3330                         btrfs_warn(fs_info,
3331                                 "failed to create free space tree: %d", ret);
3332                         close_ctree(fs_info);
3333                         return ret;
3334                 }
3335         }
3336
3337         down_read(&fs_info->cleanup_work_sem);
3338         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3339             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3340                 up_read(&fs_info->cleanup_work_sem);
3341                 close_ctree(fs_info);
3342                 return ret;
3343         }
3344         up_read(&fs_info->cleanup_work_sem);
3345
3346         ret = btrfs_resume_balance_async(fs_info);
3347         if (ret) {
3348                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3349                 close_ctree(fs_info);
3350                 return ret;
3351         }
3352
3353         ret = btrfs_resume_dev_replace_async(fs_info);
3354         if (ret) {
3355                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3356                 close_ctree(fs_info);
3357                 return ret;
3358         }
3359
3360         btrfs_qgroup_rescan_resume(fs_info);
3361         btrfs_discard_resume(fs_info);
3362
3363         if (!fs_info->uuid_root) {
3364                 btrfs_info(fs_info, "creating UUID tree");
3365                 ret = btrfs_create_uuid_tree(fs_info);
3366                 if (ret) {
3367                         btrfs_warn(fs_info,
3368                                 "failed to create the UUID tree: %d", ret);
3369                         close_ctree(fs_info);
3370                         return ret;
3371                 }
3372         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3373                    fs_info->generation !=
3374                                 btrfs_super_uuid_tree_generation(disk_super)) {
3375                 btrfs_info(fs_info, "checking UUID tree");
3376                 ret = btrfs_check_uuid_tree(fs_info);
3377                 if (ret) {
3378                         btrfs_warn(fs_info,
3379                                 "failed to check the UUID tree: %d", ret);
3380                         close_ctree(fs_info);
3381                         return ret;
3382                 }
3383         }
3384         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3385
3386         /*
3387          * backuproot only affect mount behavior, and if open_ctree succeeded,
3388          * no need to keep the flag
3389          */
3390         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3391
3392         return 0;
3393
3394 fail_qgroup:
3395         btrfs_free_qgroup_config(fs_info);
3396 fail_trans_kthread:
3397         kthread_stop(fs_info->transaction_kthread);
3398         btrfs_cleanup_transaction(fs_info);
3399         btrfs_free_fs_roots(fs_info);
3400 fail_cleaner:
3401         kthread_stop(fs_info->cleaner_kthread);
3402
3403         /*
3404          * make sure we're done with the btree inode before we stop our
3405          * kthreads
3406          */
3407         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3408
3409 fail_sysfs:
3410         btrfs_sysfs_remove_mounted(fs_info);
3411
3412 fail_fsdev_sysfs:
3413         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3414
3415 fail_block_groups:
3416         btrfs_put_block_group_cache(fs_info);
3417
3418 fail_tree_roots:
3419         if (fs_info->data_reloc_root)
3420                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3421         free_root_pointers(fs_info, true);
3422         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3423
3424 fail_sb_buffer:
3425         btrfs_stop_all_workers(fs_info);
3426         btrfs_free_block_groups(fs_info);
3427 fail_alloc:
3428         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3429
3430         iput(fs_info->btree_inode);
3431 fail:
3432         btrfs_close_devices(fs_info->fs_devices);
3433         return err;
3434 }
3435 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3436
3437 static void btrfs_end_super_write(struct bio *bio)
3438 {
3439         struct btrfs_device *device = bio->bi_private;
3440         struct bio_vec *bvec;
3441         struct bvec_iter_all iter_all;
3442         struct page *page;
3443
3444         bio_for_each_segment_all(bvec, bio, iter_all) {
3445                 page = bvec->bv_page;
3446
3447                 if (bio->bi_status) {
3448                         btrfs_warn_rl_in_rcu(device->fs_info,
3449                                 "lost page write due to IO error on %s (%d)",
3450                                 rcu_str_deref(device->name),
3451                                 blk_status_to_errno(bio->bi_status));
3452                         ClearPageUptodate(page);
3453                         SetPageError(page);
3454                         btrfs_dev_stat_inc_and_print(device,
3455                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3456                 } else {
3457                         SetPageUptodate(page);
3458                 }
3459
3460                 put_page(page);
3461                 unlock_page(page);
3462         }
3463
3464         bio_put(bio);
3465 }
3466
3467 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3468                                                    int copy_num)
3469 {
3470         struct btrfs_super_block *super;
3471         struct page *page;
3472         u64 bytenr;
3473         struct address_space *mapping = bdev->bd_inode->i_mapping;
3474
3475         bytenr = btrfs_sb_offset(copy_num);
3476         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3477                 return ERR_PTR(-EINVAL);
3478
3479         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3480         if (IS_ERR(page))
3481                 return ERR_CAST(page);
3482
3483         super = page_address(page);
3484         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3485                 btrfs_release_disk_super(super);
3486                 return ERR_PTR(-ENODATA);
3487         }
3488
3489         if (btrfs_super_bytenr(super) != bytenr) {
3490                 btrfs_release_disk_super(super);
3491                 return ERR_PTR(-EINVAL);
3492         }
3493
3494         return super;
3495 }
3496
3497
3498 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3499 {
3500         struct btrfs_super_block *super, *latest = NULL;
3501         int i;
3502         u64 transid = 0;
3503
3504         /* we would like to check all the supers, but that would make
3505          * a btrfs mount succeed after a mkfs from a different FS.
3506          * So, we need to add a special mount option to scan for
3507          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3508          */
3509         for (i = 0; i < 1; i++) {
3510                 super = btrfs_read_dev_one_super(bdev, i);
3511                 if (IS_ERR(super))
3512                         continue;
3513
3514                 if (!latest || btrfs_super_generation(super) > transid) {
3515                         if (latest)
3516                                 btrfs_release_disk_super(super);
3517
3518                         latest = super;
3519                         transid = btrfs_super_generation(super);
3520                 }
3521         }
3522
3523         return super;
3524 }
3525
3526 /*
3527  * Write superblock @sb to the @device. Do not wait for completion, all the
3528  * pages we use for writing are locked.
3529  *
3530  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3531  * the expected device size at commit time. Note that max_mirrors must be
3532  * same for write and wait phases.
3533  *
3534  * Return number of errors when page is not found or submission fails.
3535  */
3536 static int write_dev_supers(struct btrfs_device *device,
3537                             struct btrfs_super_block *sb, int max_mirrors)
3538 {
3539         struct btrfs_fs_info *fs_info = device->fs_info;
3540         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3541         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3542         int i;
3543         int errors = 0;
3544         u64 bytenr;
3545
3546         if (max_mirrors == 0)
3547                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3548
3549         shash->tfm = fs_info->csum_shash;
3550
3551         for (i = 0; i < max_mirrors; i++) {
3552                 struct page *page;
3553                 struct bio *bio;
3554                 struct btrfs_super_block *disk_super;
3555
3556                 bytenr = btrfs_sb_offset(i);
3557                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3558                     device->commit_total_bytes)
3559                         break;
3560
3561                 btrfs_set_super_bytenr(sb, bytenr);
3562
3563                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3564                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3565                                     sb->csum);
3566
3567                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3568                                            GFP_NOFS);
3569                 if (!page) {
3570                         btrfs_err(device->fs_info,
3571                             "couldn't get super block page for bytenr %llu",
3572                             bytenr);
3573                         errors++;
3574                         continue;
3575                 }
3576
3577                 /* Bump the refcount for wait_dev_supers() */
3578                 get_page(page);
3579
3580                 disk_super = page_address(page);
3581                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3582
3583                 /*
3584                  * Directly use bios here instead of relying on the page cache
3585                  * to do I/O, so we don't lose the ability to do integrity
3586                  * checking.
3587                  */
3588                 bio = bio_alloc(GFP_NOFS, 1);
3589                 bio_set_dev(bio, device->bdev);
3590                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3591                 bio->bi_private = device;
3592                 bio->bi_end_io = btrfs_end_super_write;
3593                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3594                                offset_in_page(bytenr));
3595
3596                 /*
3597                  * We FUA only the first super block.  The others we allow to
3598                  * go down lazy and there's a short window where the on-disk
3599                  * copies might still contain the older version.
3600                  */
3601                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3602                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3603                         bio->bi_opf |= REQ_FUA;
3604
3605                 btrfsic_submit_bio(bio);
3606         }
3607         return errors < i ? 0 : -1;
3608 }
3609
3610 /*
3611  * Wait for write completion of superblocks done by write_dev_supers,
3612  * @max_mirrors same for write and wait phases.
3613  *
3614  * Return number of errors when page is not found or not marked up to
3615  * date.
3616  */
3617 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3618 {
3619         int i;
3620         int errors = 0;
3621         bool primary_failed = false;
3622         u64 bytenr;
3623
3624         if (max_mirrors == 0)
3625                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3626
3627         for (i = 0; i < max_mirrors; i++) {
3628                 struct page *page;
3629
3630                 bytenr = btrfs_sb_offset(i);
3631                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3632                     device->commit_total_bytes)
3633                         break;
3634
3635                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3636                                      bytenr >> PAGE_SHIFT);
3637                 if (!page) {
3638                         errors++;
3639                         if (i == 0)
3640                                 primary_failed = true;
3641                         continue;
3642                 }
3643                 /* Page is submitted locked and unlocked once the IO completes */
3644                 wait_on_page_locked(page);
3645                 if (PageError(page)) {
3646                         errors++;
3647                         if (i == 0)
3648                                 primary_failed = true;
3649                 }
3650
3651                 /* Drop our reference */
3652                 put_page(page);
3653
3654                 /* Drop the reference from the writing run */
3655                 put_page(page);
3656         }
3657
3658         /* log error, force error return */
3659         if (primary_failed) {
3660                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3661                           device->devid);
3662                 return -1;
3663         }
3664
3665         return errors < i ? 0 : -1;
3666 }
3667
3668 /*
3669  * endio for the write_dev_flush, this will wake anyone waiting
3670  * for the barrier when it is done
3671  */
3672 static void btrfs_end_empty_barrier(struct bio *bio)
3673 {
3674         complete(bio->bi_private);
3675 }
3676
3677 /*
3678  * Submit a flush request to the device if it supports it. Error handling is
3679  * done in the waiting counterpart.
3680  */
3681 static void write_dev_flush(struct btrfs_device *device)
3682 {
3683         struct request_queue *q = bdev_get_queue(device->bdev);
3684         struct bio *bio = device->flush_bio;
3685
3686         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3687                 return;
3688
3689         bio_reset(bio);
3690         bio->bi_end_io = btrfs_end_empty_barrier;
3691         bio_set_dev(bio, device->bdev);
3692         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3693         init_completion(&device->flush_wait);
3694         bio->bi_private = &device->flush_wait;
3695
3696         btrfsic_submit_bio(bio);
3697         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3698 }
3699
3700 /*
3701  * If the flush bio has been submitted by write_dev_flush, wait for it.
3702  */
3703 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3704 {
3705         struct bio *bio = device->flush_bio;
3706
3707         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3708                 return BLK_STS_OK;
3709
3710         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3711         wait_for_completion_io(&device->flush_wait);
3712
3713         return bio->bi_status;
3714 }
3715
3716 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3717 {
3718         if (!btrfs_check_rw_degradable(fs_info, NULL))
3719                 return -EIO;
3720         return 0;
3721 }
3722
3723 /*
3724  * send an empty flush down to each device in parallel,
3725  * then wait for them
3726  */
3727 static int barrier_all_devices(struct btrfs_fs_info *info)
3728 {
3729         struct list_head *head;
3730         struct btrfs_device *dev;
3731         int errors_wait = 0;
3732         blk_status_t ret;
3733
3734         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3735         /* send down all the barriers */
3736         head = &info->fs_devices->devices;
3737         list_for_each_entry(dev, head, dev_list) {
3738                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3739                         continue;
3740                 if (!dev->bdev)
3741                         continue;
3742                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3743                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3744                         continue;
3745
3746                 write_dev_flush(dev);
3747                 dev->last_flush_error = BLK_STS_OK;
3748         }
3749
3750         /* wait for all the barriers */
3751         list_for_each_entry(dev, head, dev_list) {
3752                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3753                         continue;
3754                 if (!dev->bdev) {
3755                         errors_wait++;
3756                         continue;
3757                 }
3758                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3759                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3760                         continue;
3761
3762                 ret = wait_dev_flush(dev);
3763                 if (ret) {
3764                         dev->last_flush_error = ret;
3765                         btrfs_dev_stat_inc_and_print(dev,
3766                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3767                         errors_wait++;
3768                 }
3769         }
3770
3771         if (errors_wait) {
3772                 /*
3773                  * At some point we need the status of all disks
3774                  * to arrive at the volume status. So error checking
3775                  * is being pushed to a separate loop.
3776                  */
3777                 return check_barrier_error(info);
3778         }
3779         return 0;
3780 }
3781
3782 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3783 {
3784         int raid_type;
3785         int min_tolerated = INT_MAX;
3786
3787         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3788             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3789                 min_tolerated = min_t(int, min_tolerated,
3790                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3791                                     tolerated_failures);
3792
3793         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3794                 if (raid_type == BTRFS_RAID_SINGLE)
3795                         continue;
3796                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3797                         continue;
3798                 min_tolerated = min_t(int, min_tolerated,
3799                                     btrfs_raid_array[raid_type].
3800                                     tolerated_failures);
3801         }
3802
3803         if (min_tolerated == INT_MAX) {
3804                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3805                 min_tolerated = 0;
3806         }
3807
3808         return min_tolerated;
3809 }
3810
3811 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3812 {
3813         struct list_head *head;
3814         struct btrfs_device *dev;
3815         struct btrfs_super_block *sb;
3816         struct btrfs_dev_item *dev_item;
3817         int ret;
3818         int do_barriers;
3819         int max_errors;
3820         int total_errors = 0;
3821         u64 flags;
3822
3823         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3824
3825         /*
3826          * max_mirrors == 0 indicates we're from commit_transaction,
3827          * not from fsync where the tree roots in fs_info have not
3828          * been consistent on disk.
3829          */
3830         if (max_mirrors == 0)
3831                 backup_super_roots(fs_info);
3832
3833         sb = fs_info->super_for_commit;
3834         dev_item = &sb->dev_item;
3835
3836         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3837         head = &fs_info->fs_devices->devices;
3838         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3839
3840         if (do_barriers) {
3841                 ret = barrier_all_devices(fs_info);
3842                 if (ret) {
3843                         mutex_unlock(
3844                                 &fs_info->fs_devices->device_list_mutex);
3845                         btrfs_handle_fs_error(fs_info, ret,
3846                                               "errors while submitting device barriers.");
3847                         return ret;
3848                 }
3849         }
3850
3851         list_for_each_entry(dev, head, dev_list) {
3852                 if (!dev->bdev) {
3853                         total_errors++;
3854                         continue;
3855                 }
3856                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3857                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3858                         continue;
3859
3860                 btrfs_set_stack_device_generation(dev_item, 0);
3861                 btrfs_set_stack_device_type(dev_item, dev->type);
3862                 btrfs_set_stack_device_id(dev_item, dev->devid);
3863                 btrfs_set_stack_device_total_bytes(dev_item,
3864                                                    dev->commit_total_bytes);
3865                 btrfs_set_stack_device_bytes_used(dev_item,
3866                                                   dev->commit_bytes_used);
3867                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3868                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3869                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3870                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3871                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3872                        BTRFS_FSID_SIZE);
3873
3874                 flags = btrfs_super_flags(sb);
3875                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3876
3877                 ret = btrfs_validate_write_super(fs_info, sb);
3878                 if (ret < 0) {
3879                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3880                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3881                                 "unexpected superblock corruption detected");
3882                         return -EUCLEAN;
3883                 }
3884
3885                 ret = write_dev_supers(dev, sb, max_mirrors);
3886                 if (ret)
3887                         total_errors++;
3888         }
3889         if (total_errors > max_errors) {
3890                 btrfs_err(fs_info, "%d errors while writing supers",
3891                           total_errors);
3892                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893
3894                 /* FUA is masked off if unsupported and can't be the reason */
3895                 btrfs_handle_fs_error(fs_info, -EIO,
3896                                       "%d errors while writing supers",
3897                                       total_errors);
3898                 return -EIO;
3899         }
3900
3901         total_errors = 0;
3902         list_for_each_entry(dev, head, dev_list) {
3903                 if (!dev->bdev)
3904                         continue;
3905                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3906                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3907                         continue;
3908
3909                 ret = wait_dev_supers(dev, max_mirrors);
3910                 if (ret)
3911                         total_errors++;
3912         }
3913         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3914         if (total_errors > max_errors) {
3915                 btrfs_handle_fs_error(fs_info, -EIO,
3916                                       "%d errors while writing supers",
3917                                       total_errors);
3918                 return -EIO;
3919         }
3920         return 0;
3921 }
3922
3923 /* Drop a fs root from the radix tree and free it. */
3924 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3925                                   struct btrfs_root *root)
3926 {
3927         bool drop_ref = false;
3928
3929         spin_lock(&fs_info->fs_roots_radix_lock);
3930         radix_tree_delete(&fs_info->fs_roots_radix,
3931                           (unsigned long)root->root_key.objectid);
3932         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3933                 drop_ref = true;
3934         spin_unlock(&fs_info->fs_roots_radix_lock);
3935
3936         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3937                 ASSERT(root->log_root == NULL);
3938                 if (root->reloc_root) {
3939                         btrfs_put_root(root->reloc_root);
3940                         root->reloc_root = NULL;
3941                 }
3942         }
3943
3944         if (root->free_ino_pinned)
3945                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3946         if (root->free_ino_ctl)
3947                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3948         if (root->ino_cache_inode) {
3949                 iput(root->ino_cache_inode);
3950                 root->ino_cache_inode = NULL;
3951         }
3952         if (drop_ref)
3953                 btrfs_put_root(root);
3954 }
3955
3956 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3957 {
3958         u64 root_objectid = 0;
3959         struct btrfs_root *gang[8];
3960         int i = 0;
3961         int err = 0;
3962         unsigned int ret = 0;
3963
3964         while (1) {
3965                 spin_lock(&fs_info->fs_roots_radix_lock);
3966                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3967                                              (void **)gang, root_objectid,
3968                                              ARRAY_SIZE(gang));
3969                 if (!ret) {
3970                         spin_unlock(&fs_info->fs_roots_radix_lock);
3971                         break;
3972                 }
3973                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3974
3975                 for (i = 0; i < ret; i++) {
3976                         /* Avoid to grab roots in dead_roots */
3977                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3978                                 gang[i] = NULL;
3979                                 continue;
3980                         }
3981                         /* grab all the search result for later use */
3982                         gang[i] = btrfs_grab_root(gang[i]);
3983                 }
3984                 spin_unlock(&fs_info->fs_roots_radix_lock);
3985
3986                 for (i = 0; i < ret; i++) {
3987                         if (!gang[i])
3988                                 continue;
3989                         root_objectid = gang[i]->root_key.objectid;
3990                         err = btrfs_orphan_cleanup(gang[i]);
3991                         if (err)
3992                                 break;
3993                         btrfs_put_root(gang[i]);
3994                 }
3995                 root_objectid++;
3996         }
3997
3998         /* release the uncleaned roots due to error */
3999         for (; i < ret; i++) {
4000                 if (gang[i])
4001                         btrfs_put_root(gang[i]);
4002         }
4003         return err;
4004 }
4005
4006 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4007 {
4008         struct btrfs_root *root = fs_info->tree_root;
4009         struct btrfs_trans_handle *trans;
4010
4011         mutex_lock(&fs_info->cleaner_mutex);
4012         btrfs_run_delayed_iputs(fs_info);
4013         mutex_unlock(&fs_info->cleaner_mutex);
4014         wake_up_process(fs_info->cleaner_kthread);
4015
4016         /* wait until ongoing cleanup work done */
4017         down_write(&fs_info->cleanup_work_sem);
4018         up_write(&fs_info->cleanup_work_sem);
4019
4020         trans = btrfs_join_transaction(root);
4021         if (IS_ERR(trans))
4022                 return PTR_ERR(trans);
4023         return btrfs_commit_transaction(trans);
4024 }
4025
4026 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4027 {
4028         int ret;
4029
4030         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4031         /*
4032          * We don't want the cleaner to start new transactions, add more delayed
4033          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4034          * because that frees the task_struct, and the transaction kthread might
4035          * still try to wake up the cleaner.
4036          */
4037         kthread_park(fs_info->cleaner_kthread);
4038
4039         /* wait for the qgroup rescan worker to stop */
4040         btrfs_qgroup_wait_for_completion(fs_info, false);
4041
4042         /* wait for the uuid_scan task to finish */
4043         down(&fs_info->uuid_tree_rescan_sem);
4044         /* avoid complains from lockdep et al., set sem back to initial state */
4045         up(&fs_info->uuid_tree_rescan_sem);
4046
4047         /* pause restriper - we want to resume on mount */
4048         btrfs_pause_balance(fs_info);
4049
4050         btrfs_dev_replace_suspend_for_unmount(fs_info);
4051
4052         btrfs_scrub_cancel(fs_info);
4053
4054         /* wait for any defraggers to finish */
4055         wait_event(fs_info->transaction_wait,
4056                    (atomic_read(&fs_info->defrag_running) == 0));
4057
4058         /* clear out the rbtree of defraggable inodes */
4059         btrfs_cleanup_defrag_inodes(fs_info);
4060
4061         cancel_work_sync(&fs_info->async_reclaim_work);
4062         cancel_work_sync(&fs_info->async_data_reclaim_work);
4063
4064         /* Cancel or finish ongoing discard work */
4065         btrfs_discard_cleanup(fs_info);
4066
4067         if (!sb_rdonly(fs_info->sb)) {
4068                 /*
4069                  * The cleaner kthread is stopped, so do one final pass over
4070                  * unused block groups.
4071                  */
4072                 btrfs_delete_unused_bgs(fs_info);
4073
4074                 /*
4075                  * There might be existing delayed inode workers still running
4076                  * and holding an empty delayed inode item. We must wait for
4077                  * them to complete first because they can create a transaction.
4078                  * This happens when someone calls btrfs_balance_delayed_items()
4079                  * and then a transaction commit runs the same delayed nodes
4080                  * before any delayed worker has done something with the nodes.
4081                  * We must wait for any worker here and not at transaction
4082                  * commit time since that could cause a deadlock.
4083                  * This is a very rare case.
4084                  */
4085                 btrfs_flush_workqueue(fs_info->delayed_workers);
4086
4087                 ret = btrfs_commit_super(fs_info);
4088                 if (ret)
4089                         btrfs_err(fs_info, "commit super ret %d", ret);
4090         }
4091
4092         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4093             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4094                 btrfs_error_commit_super(fs_info);
4095
4096         kthread_stop(fs_info->transaction_kthread);
4097         kthread_stop(fs_info->cleaner_kthread);
4098
4099         ASSERT(list_empty(&fs_info->delayed_iputs));
4100         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4101
4102         if (btrfs_check_quota_leak(fs_info)) {
4103                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4104                 btrfs_err(fs_info, "qgroup reserved space leaked");
4105         }
4106
4107         btrfs_free_qgroup_config(fs_info);
4108         ASSERT(list_empty(&fs_info->delalloc_roots));
4109
4110         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4111                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4112                        percpu_counter_sum(&fs_info->delalloc_bytes));
4113         }
4114
4115         if (percpu_counter_sum(&fs_info->dio_bytes))
4116                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4117                            percpu_counter_sum(&fs_info->dio_bytes));
4118
4119         btrfs_sysfs_remove_mounted(fs_info);
4120         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4121
4122         btrfs_put_block_group_cache(fs_info);
4123
4124         /*
4125          * we must make sure there is not any read request to
4126          * submit after we stopping all workers.
4127          */
4128         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4129         btrfs_stop_all_workers(fs_info);
4130
4131         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4132         free_root_pointers(fs_info, true);
4133         btrfs_free_fs_roots(fs_info);
4134
4135         /*
4136          * We must free the block groups after dropping the fs_roots as we could
4137          * have had an IO error and have left over tree log blocks that aren't
4138          * cleaned up until the fs roots are freed.  This makes the block group
4139          * accounting appear to be wrong because there's pending reserved bytes,
4140          * so make sure we do the block group cleanup afterwards.
4141          */
4142         btrfs_free_block_groups(fs_info);
4143
4144         iput(fs_info->btree_inode);
4145
4146 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4147         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4148                 btrfsic_unmount(fs_info->fs_devices);
4149 #endif
4150
4151         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4152         btrfs_close_devices(fs_info->fs_devices);
4153 }
4154
4155 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4156                           int atomic)
4157 {
4158         int ret;
4159         struct inode *btree_inode = buf->pages[0]->mapping->host;
4160
4161         ret = extent_buffer_uptodate(buf);
4162         if (!ret)
4163                 return ret;
4164
4165         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4166                                     parent_transid, atomic);
4167         if (ret == -EAGAIN)
4168                 return ret;
4169         return !ret;
4170 }
4171
4172 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4173 {
4174         struct btrfs_fs_info *fs_info;
4175         struct btrfs_root *root;
4176         u64 transid = btrfs_header_generation(buf);
4177         int was_dirty;
4178
4179 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4180         /*
4181          * This is a fast path so only do this check if we have sanity tests
4182          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4183          * outside of the sanity tests.
4184          */
4185         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4186                 return;
4187 #endif
4188         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4189         fs_info = root->fs_info;
4190         btrfs_assert_tree_locked(buf);
4191         if (transid != fs_info->generation)
4192                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4193                         buf->start, transid, fs_info->generation);
4194         was_dirty = set_extent_buffer_dirty(buf);
4195         if (!was_dirty)
4196                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4197                                          buf->len,
4198                                          fs_info->dirty_metadata_batch);
4199 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4200         /*
4201          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4202          * but item data not updated.
4203          * So here we should only check item pointers, not item data.
4204          */
4205         if (btrfs_header_level(buf) == 0 &&
4206             btrfs_check_leaf_relaxed(buf)) {
4207                 btrfs_print_leaf(buf);
4208                 ASSERT(0);
4209         }
4210 #endif
4211 }
4212
4213 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4214                                         int flush_delayed)
4215 {
4216         /*
4217          * looks as though older kernels can get into trouble with
4218          * this code, they end up stuck in balance_dirty_pages forever
4219          */
4220         int ret;
4221
4222         if (current->flags & PF_MEMALLOC)
4223                 return;
4224
4225         if (flush_delayed)
4226                 btrfs_balance_delayed_items(fs_info);
4227
4228         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4229                                      BTRFS_DIRTY_METADATA_THRESH,
4230                                      fs_info->dirty_metadata_batch);
4231         if (ret > 0) {
4232                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4233         }
4234 }
4235
4236 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4237 {
4238         __btrfs_btree_balance_dirty(fs_info, 1);
4239 }
4240
4241 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4242 {
4243         __btrfs_btree_balance_dirty(fs_info, 0);
4244 }
4245
4246 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4247                       struct btrfs_key *first_key)
4248 {
4249         return btree_read_extent_buffer_pages(buf, parent_transid,
4250                                               level, first_key);
4251 }
4252
4253 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4254 {
4255         /* cleanup FS via transaction */
4256         btrfs_cleanup_transaction(fs_info);
4257
4258         mutex_lock(&fs_info->cleaner_mutex);
4259         btrfs_run_delayed_iputs(fs_info);
4260         mutex_unlock(&fs_info->cleaner_mutex);
4261
4262         down_write(&fs_info->cleanup_work_sem);
4263         up_write(&fs_info->cleanup_work_sem);
4264 }
4265
4266 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4267 {
4268         struct btrfs_root *gang[8];
4269         u64 root_objectid = 0;
4270         int ret;
4271
4272         spin_lock(&fs_info->fs_roots_radix_lock);
4273         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4274                                              (void **)gang, root_objectid,
4275                                              ARRAY_SIZE(gang))) != 0) {
4276                 int i;
4277
4278                 for (i = 0; i < ret; i++)
4279                         gang[i] = btrfs_grab_root(gang[i]);
4280                 spin_unlock(&fs_info->fs_roots_radix_lock);
4281
4282                 for (i = 0; i < ret; i++) {
4283                         if (!gang[i])
4284                                 continue;
4285                         root_objectid = gang[i]->root_key.objectid;
4286                         btrfs_free_log(NULL, gang[i]);
4287                         btrfs_put_root(gang[i]);
4288                 }
4289                 root_objectid++;
4290                 spin_lock(&fs_info->fs_roots_radix_lock);
4291         }
4292         spin_unlock(&fs_info->fs_roots_radix_lock);
4293         btrfs_free_log_root_tree(NULL, fs_info);
4294 }
4295
4296 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4297 {
4298         struct btrfs_ordered_extent *ordered;
4299
4300         spin_lock(&root->ordered_extent_lock);
4301         /*
4302          * This will just short circuit the ordered completion stuff which will
4303          * make sure the ordered extent gets properly cleaned up.
4304          */
4305         list_for_each_entry(ordered, &root->ordered_extents,
4306                             root_extent_list)
4307                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4308         spin_unlock(&root->ordered_extent_lock);
4309 }
4310
4311 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4312 {
4313         struct btrfs_root *root;
4314         struct list_head splice;
4315
4316         INIT_LIST_HEAD(&splice);
4317
4318         spin_lock(&fs_info->ordered_root_lock);
4319         list_splice_init(&fs_info->ordered_roots, &splice);
4320         while (!list_empty(&splice)) {
4321                 root = list_first_entry(&splice, struct btrfs_root,
4322                                         ordered_root);
4323                 list_move_tail(&root->ordered_root,
4324                                &fs_info->ordered_roots);
4325
4326                 spin_unlock(&fs_info->ordered_root_lock);
4327                 btrfs_destroy_ordered_extents(root);
4328
4329                 cond_resched();
4330                 spin_lock(&fs_info->ordered_root_lock);
4331         }
4332         spin_unlock(&fs_info->ordered_root_lock);
4333
4334         /*
4335          * We need this here because if we've been flipped read-only we won't
4336          * get sync() from the umount, so we need to make sure any ordered
4337          * extents that haven't had their dirty pages IO start writeout yet
4338          * actually get run and error out properly.
4339          */
4340         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4341 }
4342
4343 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4344                                       struct btrfs_fs_info *fs_info)
4345 {
4346         struct rb_node *node;
4347         struct btrfs_delayed_ref_root *delayed_refs;
4348         struct btrfs_delayed_ref_node *ref;
4349         int ret = 0;
4350
4351         delayed_refs = &trans->delayed_refs;
4352
4353         spin_lock(&delayed_refs->lock);
4354         if (atomic_read(&delayed_refs->num_entries) == 0) {
4355                 spin_unlock(&delayed_refs->lock);
4356                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4357                 return ret;
4358         }
4359
4360         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4361                 struct btrfs_delayed_ref_head *head;
4362                 struct rb_node *n;
4363                 bool pin_bytes = false;
4364
4365                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4366                                 href_node);
4367                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4368                         continue;
4369
4370                 spin_lock(&head->lock);
4371                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4372                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4373                                        ref_node);
4374                         ref->in_tree = 0;
4375                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4376                         RB_CLEAR_NODE(&ref->ref_node);
4377                         if (!list_empty(&ref->add_list))
4378                                 list_del(&ref->add_list);
4379                         atomic_dec(&delayed_refs->num_entries);
4380                         btrfs_put_delayed_ref(ref);
4381                 }
4382                 if (head->must_insert_reserved)
4383                         pin_bytes = true;
4384                 btrfs_free_delayed_extent_op(head->extent_op);
4385                 btrfs_delete_ref_head(delayed_refs, head);
4386                 spin_unlock(&head->lock);
4387                 spin_unlock(&delayed_refs->lock);
4388                 mutex_unlock(&head->mutex);
4389
4390                 if (pin_bytes) {
4391                         struct btrfs_block_group *cache;
4392
4393                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4394                         BUG_ON(!cache);
4395
4396                         spin_lock(&cache->space_info->lock);
4397                         spin_lock(&cache->lock);
4398                         cache->pinned += head->num_bytes;
4399                         btrfs_space_info_update_bytes_pinned(fs_info,
4400                                 cache->space_info, head->num_bytes);
4401                         cache->reserved -= head->num_bytes;
4402                         cache->space_info->bytes_reserved -= head->num_bytes;
4403                         spin_unlock(&cache->lock);
4404                         spin_unlock(&cache->space_info->lock);
4405                         percpu_counter_add_batch(
4406                                 &cache->space_info->total_bytes_pinned,
4407                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4408
4409                         btrfs_put_block_group(cache);
4410
4411                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4412                                 head->bytenr + head->num_bytes - 1);
4413                 }
4414                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4415                 btrfs_put_delayed_ref_head(head);
4416                 cond_resched();
4417                 spin_lock(&delayed_refs->lock);
4418         }
4419         btrfs_qgroup_destroy_extent_records(trans);
4420
4421         spin_unlock(&delayed_refs->lock);
4422
4423         return ret;
4424 }
4425
4426 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4427 {
4428         struct btrfs_inode *btrfs_inode;
4429         struct list_head splice;
4430
4431         INIT_LIST_HEAD(&splice);
4432
4433         spin_lock(&root->delalloc_lock);
4434         list_splice_init(&root->delalloc_inodes, &splice);
4435
4436         while (!list_empty(&splice)) {
4437                 struct inode *inode = NULL;
4438                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4439                                                delalloc_inodes);
4440                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4441                 spin_unlock(&root->delalloc_lock);
4442
4443                 /*
4444                  * Make sure we get a live inode and that it'll not disappear
4445                  * meanwhile.
4446                  */
4447                 inode = igrab(&btrfs_inode->vfs_inode);
4448                 if (inode) {
4449                         invalidate_inode_pages2(inode->i_mapping);
4450                         iput(inode);
4451                 }
4452                 spin_lock(&root->delalloc_lock);
4453         }
4454         spin_unlock(&root->delalloc_lock);
4455 }
4456
4457 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4458 {
4459         struct btrfs_root *root;
4460         struct list_head splice;
4461
4462         INIT_LIST_HEAD(&splice);
4463
4464         spin_lock(&fs_info->delalloc_root_lock);
4465         list_splice_init(&fs_info->delalloc_roots, &splice);
4466         while (!list_empty(&splice)) {
4467                 root = list_first_entry(&splice, struct btrfs_root,
4468                                          delalloc_root);
4469                 root = btrfs_grab_root(root);
4470                 BUG_ON(!root);
4471                 spin_unlock(&fs_info->delalloc_root_lock);
4472
4473                 btrfs_destroy_delalloc_inodes(root);
4474                 btrfs_put_root(root);
4475
4476                 spin_lock(&fs_info->delalloc_root_lock);
4477         }
4478         spin_unlock(&fs_info->delalloc_root_lock);
4479 }
4480
4481 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4482                                         struct extent_io_tree *dirty_pages,
4483                                         int mark)
4484 {
4485         int ret;
4486         struct extent_buffer *eb;
4487         u64 start = 0;
4488         u64 end;
4489
4490         while (1) {
4491                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4492                                             mark, NULL);
4493                 if (ret)
4494                         break;
4495
4496                 clear_extent_bits(dirty_pages, start, end, mark);
4497                 while (start <= end) {
4498                         eb = find_extent_buffer(fs_info, start);
4499                         start += fs_info->nodesize;
4500                         if (!eb)
4501                                 continue;
4502                         wait_on_extent_buffer_writeback(eb);
4503
4504                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4505                                                &eb->bflags))
4506                                 clear_extent_buffer_dirty(eb);
4507                         free_extent_buffer_stale(eb);
4508                 }
4509         }
4510
4511         return ret;
4512 }
4513
4514 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4515                                        struct extent_io_tree *unpin)
4516 {
4517         u64 start;
4518         u64 end;
4519         int ret;
4520
4521         while (1) {
4522                 struct extent_state *cached_state = NULL;
4523
4524                 /*
4525                  * The btrfs_finish_extent_commit() may get the same range as
4526                  * ours between find_first_extent_bit and clear_extent_dirty.
4527                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4528                  * the same extent range.
4529                  */
4530                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4531                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4532                                             EXTENT_DIRTY, &cached_state);
4533                 if (ret) {
4534                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4535                         break;
4536                 }
4537
4538                 clear_extent_dirty(unpin, start, end, &cached_state);
4539                 free_extent_state(cached_state);
4540                 btrfs_error_unpin_extent_range(fs_info, start, end);
4541                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4542                 cond_resched();
4543         }
4544
4545         return 0;
4546 }
4547
4548 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4549 {
4550         struct inode *inode;
4551
4552         inode = cache->io_ctl.inode;
4553         if (inode) {
4554                 invalidate_inode_pages2(inode->i_mapping);
4555                 BTRFS_I(inode)->generation = 0;
4556                 cache->io_ctl.inode = NULL;
4557                 iput(inode);
4558         }
4559         ASSERT(cache->io_ctl.pages == NULL);
4560         btrfs_put_block_group(cache);
4561 }
4562
4563 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4564                              struct btrfs_fs_info *fs_info)
4565 {
4566         struct btrfs_block_group *cache;
4567
4568         spin_lock(&cur_trans->dirty_bgs_lock);
4569         while (!list_empty(&cur_trans->dirty_bgs)) {
4570                 cache = list_first_entry(&cur_trans->dirty_bgs,
4571                                          struct btrfs_block_group,
4572                                          dirty_list);
4573
4574                 if (!list_empty(&cache->io_list)) {
4575                         spin_unlock(&cur_trans->dirty_bgs_lock);
4576                         list_del_init(&cache->io_list);
4577                         btrfs_cleanup_bg_io(cache);
4578                         spin_lock(&cur_trans->dirty_bgs_lock);
4579                 }
4580
4581                 list_del_init(&cache->dirty_list);
4582                 spin_lock(&cache->lock);
4583                 cache->disk_cache_state = BTRFS_DC_ERROR;
4584                 spin_unlock(&cache->lock);
4585
4586                 spin_unlock(&cur_trans->dirty_bgs_lock);
4587                 btrfs_put_block_group(cache);
4588                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4589                 spin_lock(&cur_trans->dirty_bgs_lock);
4590         }
4591         spin_unlock(&cur_trans->dirty_bgs_lock);
4592
4593         /*
4594          * Refer to the definition of io_bgs member for details why it's safe
4595          * to use it without any locking
4596          */
4597         while (!list_empty(&cur_trans->io_bgs)) {
4598                 cache = list_first_entry(&cur_trans->io_bgs,
4599                                          struct btrfs_block_group,
4600                                          io_list);
4601
4602                 list_del_init(&cache->io_list);
4603                 spin_lock(&cache->lock);
4604                 cache->disk_cache_state = BTRFS_DC_ERROR;
4605                 spin_unlock(&cache->lock);
4606                 btrfs_cleanup_bg_io(cache);
4607         }
4608 }
4609
4610 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4611                                    struct btrfs_fs_info *fs_info)
4612 {
4613         struct btrfs_device *dev, *tmp;
4614
4615         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4616         ASSERT(list_empty(&cur_trans->dirty_bgs));
4617         ASSERT(list_empty(&cur_trans->io_bgs));
4618
4619         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4620                                  post_commit_list) {
4621                 list_del_init(&dev->post_commit_list);
4622         }
4623
4624         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4625
4626         cur_trans->state = TRANS_STATE_COMMIT_START;
4627         wake_up(&fs_info->transaction_blocked_wait);
4628
4629         cur_trans->state = TRANS_STATE_UNBLOCKED;
4630         wake_up(&fs_info->transaction_wait);
4631
4632         btrfs_destroy_delayed_inodes(fs_info);
4633
4634         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4635                                      EXTENT_DIRTY);
4636         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4637
4638         cur_trans->state =TRANS_STATE_COMPLETED;
4639         wake_up(&cur_trans->commit_wait);
4640 }
4641
4642 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4643 {
4644         struct btrfs_transaction *t;
4645
4646         mutex_lock(&fs_info->transaction_kthread_mutex);
4647
4648         spin_lock(&fs_info->trans_lock);
4649         while (!list_empty(&fs_info->trans_list)) {
4650                 t = list_first_entry(&fs_info->trans_list,
4651                                      struct btrfs_transaction, list);
4652                 if (t->state >= TRANS_STATE_COMMIT_START) {
4653                         refcount_inc(&t->use_count);
4654                         spin_unlock(&fs_info->trans_lock);
4655                         btrfs_wait_for_commit(fs_info, t->transid);
4656                         btrfs_put_transaction(t);
4657                         spin_lock(&fs_info->trans_lock);
4658                         continue;
4659                 }
4660                 if (t == fs_info->running_transaction) {
4661                         t->state = TRANS_STATE_COMMIT_DOING;
4662                         spin_unlock(&fs_info->trans_lock);
4663                         /*
4664                          * We wait for 0 num_writers since we don't hold a trans
4665                          * handle open currently for this transaction.
4666                          */
4667                         wait_event(t->writer_wait,
4668                                    atomic_read(&t->num_writers) == 0);
4669                 } else {
4670                         spin_unlock(&fs_info->trans_lock);
4671                 }
4672                 btrfs_cleanup_one_transaction(t, fs_info);
4673
4674                 spin_lock(&fs_info->trans_lock);
4675                 if (t == fs_info->running_transaction)
4676                         fs_info->running_transaction = NULL;
4677                 list_del_init(&t->list);
4678                 spin_unlock(&fs_info->trans_lock);
4679
4680                 btrfs_put_transaction(t);
4681                 trace_btrfs_transaction_commit(fs_info->tree_root);
4682                 spin_lock(&fs_info->trans_lock);
4683         }
4684         spin_unlock(&fs_info->trans_lock);
4685         btrfs_destroy_all_ordered_extents(fs_info);
4686         btrfs_destroy_delayed_inodes(fs_info);
4687         btrfs_assert_delayed_root_empty(fs_info);
4688         btrfs_destroy_all_delalloc_inodes(fs_info);
4689         btrfs_drop_all_logs(fs_info);
4690         mutex_unlock(&fs_info->transaction_kthread_mutex);
4691
4692         return 0;
4693 }