Merge tag 'for-5.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-starfive.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         void *private_data;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117         /*
118          * bio_offset is optional, can be used if the pages in the bio
119          * can't tell us where in the file the bio should go
120          */
121         u64 bio_offset;
122         struct btrfs_work work;
123         blk_status_t status;
124 };
125
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155         u64                     id;             /* root objectid */
156         const char              *name_stem;     /* lock name stem */
157         char                    names[BTRFS_MAX_LEVEL + 1][20];
158         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
161         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
162         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
163         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
164         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
165         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
166         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
167         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
168         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
169         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
170         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
171         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172         { .id = 0,                              .name_stem = "tree"     },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177         int i, j;
178
179         /* initialize lockdep class names */
180         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184                         snprintf(ks->names[j], sizeof(ks->names[j]),
185                                  "btrfs-%s-%02d", ks->name_stem, j);
186         }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190                                     int level)
191 {
192         struct btrfs_lockdep_keyset *ks;
193
194         BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196         /* find the matching keyset, id 0 is the default entry */
197         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198                 if (ks->id == objectid)
199                         break;
200
201         lockdep_set_class_and_name(&eb->lock,
202                                    &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212                                     struct page *page, size_t pg_offset,
213                                     u64 start, u64 len)
214 {
215         struct extent_map_tree *em_tree = &inode->extent_tree;
216         struct extent_map *em;
217         int ret;
218
219         read_lock(&em_tree->lock);
220         em = lookup_extent_mapping(em_tree, start, len);
221         if (em) {
222                 read_unlock(&em_tree->lock);
223                 goto out;
224         }
225         read_unlock(&em_tree->lock);
226
227         em = alloc_extent_map();
228         if (!em) {
229                 em = ERR_PTR(-ENOMEM);
230                 goto out;
231         }
232         em->start = 0;
233         em->len = (u64)-1;
234         em->block_len = (u64)-1;
235         em->block_start = 0;
236
237         write_lock(&em_tree->lock);
238         ret = add_extent_mapping(em_tree, em, 0);
239         if (ret == -EEXIST) {
240                 free_extent_map(em);
241                 em = lookup_extent_mapping(em_tree, start, len);
242                 if (!em)
243                         em = ERR_PTR(-EIO);
244         } else if (ret) {
245                 free_extent_map(em);
246                 em = ERR_PTR(ret);
247         }
248         write_unlock(&em_tree->lock);
249
250 out:
251         return em;
252 }
253
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259         struct btrfs_fs_info *fs_info = buf->fs_info;
260         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262         char *kaddr;
263         int i;
264
265         shash->tfm = fs_info->csum_shash;
266         crypto_shash_init(shash);
267         kaddr = page_address(buf->pages[0]);
268         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269                             PAGE_SIZE - BTRFS_CSUM_SIZE);
270
271         for (i = 1; i < num_pages; i++) {
272                 kaddr = page_address(buf->pages[i]);
273                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
274         }
275         memset(result, 0, BTRFS_CSUM_SIZE);
276         crypto_shash_final(shash, result);
277 }
278
279 /*
280  * we can't consider a given block up to date unless the transid of the
281  * block matches the transid in the parent node's pointer.  This is how we
282  * detect blocks that either didn't get written at all or got written
283  * in the wrong place.
284  */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286                                  struct extent_buffer *eb, u64 parent_transid,
287                                  int atomic)
288 {
289         struct extent_state *cached_state = NULL;
290         int ret;
291         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292
293         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294                 return 0;
295
296         if (atomic)
297                 return -EAGAIN;
298
299         if (need_lock) {
300                 btrfs_tree_read_lock(eb);
301                 btrfs_set_lock_blocking_read(eb);
302         }
303
304         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305                          &cached_state);
306         if (extent_buffer_uptodate(eb) &&
307             btrfs_header_generation(eb) == parent_transid) {
308                 ret = 0;
309                 goto out;
310         }
311         btrfs_err_rl(eb->fs_info,
312                 "parent transid verify failed on %llu wanted %llu found %llu",
313                         eb->start,
314                         parent_transid, btrfs_header_generation(eb));
315         ret = 1;
316
317         /*
318          * Things reading via commit roots that don't have normal protection,
319          * like send, can have a really old block in cache that may point at a
320          * block that has been freed and re-allocated.  So don't clear uptodate
321          * if we find an eb that is under IO (dirty/writeback) because we could
322          * end up reading in the stale data and then writing it back out and
323          * making everybody very sad.
324          */
325         if (!extent_buffer_under_io(eb))
326                 clear_extent_buffer_uptodate(eb);
327 out:
328         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329                              &cached_state);
330         if (need_lock)
331                 btrfs_tree_read_unlock_blocking(eb);
332         return ret;
333 }
334
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337         switch (csum_type) {
338         case BTRFS_CSUM_TYPE_CRC32:
339         case BTRFS_CSUM_TYPE_XXHASH:
340         case BTRFS_CSUM_TYPE_SHA256:
341         case BTRFS_CSUM_TYPE_BLAKE2:
342                 return true;
343         default:
344                 return false;
345         }
346 }
347
348 /*
349  * Return 0 if the superblock checksum type matches the checksum value of that
350  * algorithm. Pass the raw disk superblock data.
351  */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353                                   char *raw_disk_sb)
354 {
355         struct btrfs_super_block *disk_sb =
356                 (struct btrfs_super_block *)raw_disk_sb;
357         char result[BTRFS_CSUM_SIZE];
358         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360         shash->tfm = fs_info->csum_shash;
361
362         /*
363          * The super_block structure does not span the whole
364          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365          * filled with zeros and is included in the checksum.
366          */
367         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369
370         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371                 return 1;
372
373         return 0;
374 }
375
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377                            struct btrfs_key *first_key, u64 parent_transid)
378 {
379         struct btrfs_fs_info *fs_info = eb->fs_info;
380         int found_level;
381         struct btrfs_key found_key;
382         int ret;
383
384         found_level = btrfs_header_level(eb);
385         if (found_level != level) {
386                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387                      KERN_ERR "BTRFS: tree level check failed\n");
388                 btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390                           eb->start, level, found_level);
391                 return -EIO;
392         }
393
394         if (!first_key)
395                 return 0;
396
397         /*
398          * For live tree block (new tree blocks in current transaction),
399          * we need proper lock context to avoid race, which is impossible here.
400          * So we only checks tree blocks which is read from disk, whose
401          * generation <= fs_info->last_trans_committed.
402          */
403         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404                 return 0;
405
406         /* We have @first_key, so this @eb must have at least one item */
407         if (btrfs_header_nritems(eb) == 0) {
408                 btrfs_err(fs_info,
409                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410                           eb->start);
411                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412                 return -EUCLEAN;
413         }
414
415         if (found_level)
416                 btrfs_node_key_to_cpu(eb, &found_key, 0);
417         else
418                 btrfs_item_key_to_cpu(eb, &found_key, 0);
419         ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
421         if (ret) {
422                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423                      KERN_ERR "BTRFS: tree first key check failed\n");
424                 btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426                           eb->start, parent_transid, first_key->objectid,
427                           first_key->type, first_key->offset,
428                           found_key.objectid, found_key.type,
429                           found_key.offset);
430         }
431         return ret;
432 }
433
434 /*
435  * helper to read a given tree block, doing retries as required when
436  * the checksums don't match and we have alternate mirrors to try.
437  *
438  * @parent_transid:     expected transid, skip check if 0
439  * @level:              expected level, mandatory check
440  * @first_key:          expected key of first slot, skip check if NULL
441  */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443                                           u64 parent_transid, int level,
444                                           struct btrfs_key *first_key)
445 {
446         struct btrfs_fs_info *fs_info = eb->fs_info;
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455         while (1) {
456                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458                 if (!ret) {
459                         if (verify_parent_transid(io_tree, eb,
460                                                    parent_transid, 0))
461                                 ret = -EIO;
462                         else if (btrfs_verify_level_key(eb, level,
463                                                 first_key, parent_transid))
464                                 ret = -EUCLEAN;
465                         else
466                                 break;
467                 }
468
469                 num_copies = btrfs_num_copies(fs_info,
470                                               eb->start, eb->len);
471                 if (num_copies == 1)
472                         break;
473
474                 if (!failed_mirror) {
475                         failed = 1;
476                         failed_mirror = eb->read_mirror;
477                 }
478
479                 mirror_num++;
480                 if (mirror_num == failed_mirror)
481                         mirror_num++;
482
483                 if (mirror_num > num_copies)
484                         break;
485         }
486
487         if (failed && !ret && failed_mirror)
488                 btrfs_repair_eb_io_failure(eb, failed_mirror);
489
490         return ret;
491 }
492
493 /*
494  * checksum a dirty tree block before IO.  This has extra checks to make sure
495  * we only fill in the checksum field in the first page of a multi-page block
496  */
497
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500         u64 start = page_offset(page);
501         u64 found_start;
502         u8 result[BTRFS_CSUM_SIZE];
503         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504         struct extent_buffer *eb;
505         int ret;
506
507         eb = (struct extent_buffer *)page->private;
508         if (page != eb->pages[0])
509                 return 0;
510
511         found_start = btrfs_header_bytenr(eb);
512         /*
513          * Please do not consolidate these warnings into a single if.
514          * It is useful to know what went wrong.
515          */
516         if (WARN_ON(found_start != start))
517                 return -EUCLEAN;
518         if (WARN_ON(!PageUptodate(page)))
519                 return -EUCLEAN;
520
521         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522                                     offsetof(struct btrfs_header, fsid),
523                                     BTRFS_FSID_SIZE) == 0);
524
525         csum_tree_block(eb, result);
526
527         if (btrfs_header_level(eb))
528                 ret = btrfs_check_node(eb);
529         else
530                 ret = btrfs_check_leaf_full(eb);
531
532         if (ret < 0) {
533                 btrfs_print_tree(eb, 0);
534                 btrfs_err(fs_info,
535                 "block=%llu write time tree block corruption detected",
536                           eb->start);
537                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538                 return ret;
539         }
540         write_extent_buffer(eb, result, 0, csum_size);
541
542         return 0;
543 }
544
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547         struct btrfs_fs_info *fs_info = eb->fs_info;
548         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
549         u8 fsid[BTRFS_FSID_SIZE];
550         int ret = 1;
551
552         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553                            BTRFS_FSID_SIZE);
554         while (fs_devices) {
555                 u8 *metadata_uuid;
556
557                 /*
558                  * Checking the incompat flag is only valid for the current
559                  * fs. For seed devices it's forbidden to have their uuid
560                  * changed so reading ->fsid in this case is fine
561                  */
562                 if (fs_devices == fs_info->fs_devices &&
563                     btrfs_fs_incompat(fs_info, METADATA_UUID))
564                         metadata_uuid = fs_devices->metadata_uuid;
565                 else
566                         metadata_uuid = fs_devices->fsid;
567
568                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
569                         ret = 0;
570                         break;
571                 }
572                 fs_devices = fs_devices->seed;
573         }
574         return ret;
575 }
576
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578                                       u64 phy_offset, struct page *page,
579                                       u64 start, u64 end, int mirror)
580 {
581         u64 found_start;
582         int found_level;
583         struct extent_buffer *eb;
584         struct btrfs_fs_info *fs_info;
585         u16 csum_size;
586         int ret = 0;
587         u8 result[BTRFS_CSUM_SIZE];
588         int reads_done;
589
590         if (!page->private)
591                 goto out;
592
593         eb = (struct extent_buffer *)page->private;
594         fs_info = eb->fs_info;
595         csum_size = btrfs_super_csum_size(fs_info->super_copy);
596
597         /* the pending IO might have been the only thing that kept this buffer
598          * in memory.  Make sure we have a ref for all this other checks
599          */
600         atomic_inc(&eb->refs);
601
602         reads_done = atomic_dec_and_test(&eb->io_pages);
603         if (!reads_done)
604                 goto err;
605
606         eb->read_mirror = mirror;
607         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608                 ret = -EIO;
609                 goto err;
610         }
611
612         found_start = btrfs_header_bytenr(eb);
613         if (found_start != eb->start) {
614                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615                              eb->start, found_start);
616                 ret = -EIO;
617                 goto err;
618         }
619         if (check_tree_block_fsid(eb)) {
620                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621                              eb->start);
622                 ret = -EIO;
623                 goto err;
624         }
625         found_level = btrfs_header_level(eb);
626         if (found_level >= BTRFS_MAX_LEVEL) {
627                 btrfs_err(fs_info, "bad tree block level %d on %llu",
628                           (int)btrfs_header_level(eb), eb->start);
629                 ret = -EIO;
630                 goto err;
631         }
632
633         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634                                        eb, found_level);
635
636         csum_tree_block(eb, result);
637
638         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639                 u8 val[BTRFS_CSUM_SIZE] = { 0 };
640
641                 read_extent_buffer(eb, &val, 0, csum_size);
642                 btrfs_warn_rl(fs_info,
643         "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
644                               fs_info->sb->s_id, eb->start,
645                               CSUM_FMT_VALUE(csum_size, val),
646                               CSUM_FMT_VALUE(csum_size, result),
647                               btrfs_header_level(eb));
648                 ret = -EUCLEAN;
649                 goto err;
650         }
651
652         /*
653          * If this is a leaf block and it is corrupt, set the corrupt bit so
654          * that we don't try and read the other copies of this block, just
655          * return -EIO.
656          */
657         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
658                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
659                 ret = -EIO;
660         }
661
662         if (found_level > 0 && btrfs_check_node(eb))
663                 ret = -EIO;
664
665         if (!ret)
666                 set_extent_buffer_uptodate(eb);
667         else
668                 btrfs_err(fs_info,
669                           "block=%llu read time tree block corruption detected",
670                           eb->start);
671 err:
672         if (reads_done &&
673             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
674                 btree_readahead_hook(eb, ret);
675
676         if (ret) {
677                 /*
678                  * our io error hook is going to dec the io pages
679                  * again, we have to make sure it has something
680                  * to decrement
681                  */
682                 atomic_inc(&eb->io_pages);
683                 clear_extent_buffer_uptodate(eb);
684         }
685         free_extent_buffer(eb);
686 out:
687         return ret;
688 }
689
690 static void end_workqueue_bio(struct bio *bio)
691 {
692         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
693         struct btrfs_fs_info *fs_info;
694         struct btrfs_workqueue *wq;
695
696         fs_info = end_io_wq->info;
697         end_io_wq->status = bio->bi_status;
698
699         if (bio_op(bio) == REQ_OP_WRITE) {
700                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
701                         wq = fs_info->endio_meta_write_workers;
702                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703                         wq = fs_info->endio_freespace_worker;
704                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
705                         wq = fs_info->endio_raid56_workers;
706                 else
707                         wq = fs_info->endio_write_workers;
708         } else {
709                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710                         wq = fs_info->endio_raid56_workers;
711                 else if (end_io_wq->metadata)
712                         wq = fs_info->endio_meta_workers;
713                 else
714                         wq = fs_info->endio_workers;
715         }
716
717         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
718         btrfs_queue_work(wq, &end_io_wq->work);
719 }
720
721 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
722                         enum btrfs_wq_endio_type metadata)
723 {
724         struct btrfs_end_io_wq *end_io_wq;
725
726         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
727         if (!end_io_wq)
728                 return BLK_STS_RESOURCE;
729
730         end_io_wq->private = bio->bi_private;
731         end_io_wq->end_io = bio->bi_end_io;
732         end_io_wq->info = info;
733         end_io_wq->status = 0;
734         end_io_wq->bio = bio;
735         end_io_wq->metadata = metadata;
736
737         bio->bi_private = end_io_wq;
738         bio->bi_end_io = end_workqueue_bio;
739         return 0;
740 }
741
742 static void run_one_async_start(struct btrfs_work *work)
743 {
744         struct async_submit_bio *async;
745         blk_status_t ret;
746
747         async = container_of(work, struct  async_submit_bio, work);
748         ret = async->submit_bio_start(async->private_data, async->bio,
749                                       async->bio_offset);
750         if (ret)
751                 async->status = ret;
752 }
753
754 /*
755  * In order to insert checksums into the metadata in large chunks, we wait
756  * until bio submission time.   All the pages in the bio are checksummed and
757  * sums are attached onto the ordered extent record.
758  *
759  * At IO completion time the csums attached on the ordered extent record are
760  * inserted into the tree.
761  */
762 static void run_one_async_done(struct btrfs_work *work)
763 {
764         struct async_submit_bio *async;
765         struct inode *inode;
766         blk_status_t ret;
767
768         async = container_of(work, struct  async_submit_bio, work);
769         inode = async->private_data;
770
771         /* If an error occurred we just want to clean up the bio and move on */
772         if (async->status) {
773                 async->bio->bi_status = async->status;
774                 bio_endio(async->bio);
775                 return;
776         }
777
778         /*
779          * All of the bios that pass through here are from async helpers.
780          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
781          * This changes nothing when cgroups aren't in use.
782          */
783         async->bio->bi_opf |= REQ_CGROUP_PUNT;
784         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
785         if (ret) {
786                 async->bio->bi_status = ret;
787                 bio_endio(async->bio);
788         }
789 }
790
791 static void run_one_async_free(struct btrfs_work *work)
792 {
793         struct async_submit_bio *async;
794
795         async = container_of(work, struct  async_submit_bio, work);
796         kfree(async);
797 }
798
799 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
800                                  int mirror_num, unsigned long bio_flags,
801                                  u64 bio_offset, void *private_data,
802                                  extent_submit_bio_start_t *submit_bio_start)
803 {
804         struct async_submit_bio *async;
805
806         async = kmalloc(sizeof(*async), GFP_NOFS);
807         if (!async)
808                 return BLK_STS_RESOURCE;
809
810         async->private_data = private_data;
811         async->bio = bio;
812         async->mirror_num = mirror_num;
813         async->submit_bio_start = submit_bio_start;
814
815         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
816                         run_one_async_free);
817
818         async->bio_offset = bio_offset;
819
820         async->status = 0;
821
822         if (op_is_sync(bio->bi_opf))
823                 btrfs_set_work_high_priority(&async->work);
824
825         btrfs_queue_work(fs_info->workers, &async->work);
826         return 0;
827 }
828
829 static blk_status_t btree_csum_one_bio(struct bio *bio)
830 {
831         struct bio_vec *bvec;
832         struct btrfs_root *root;
833         int ret = 0;
834         struct bvec_iter_all iter_all;
835
836         ASSERT(!bio_flagged(bio, BIO_CLONED));
837         bio_for_each_segment_all(bvec, bio, iter_all) {
838                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
839                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
840                 if (ret)
841                         break;
842         }
843
844         return errno_to_blk_status(ret);
845 }
846
847 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
848                                              u64 bio_offset)
849 {
850         /*
851          * when we're called for a write, we're already in the async
852          * submission context.  Just jump into btrfs_map_bio
853          */
854         return btree_csum_one_bio(bio);
855 }
856
857 static int check_async_write(struct btrfs_fs_info *fs_info,
858                              struct btrfs_inode *bi)
859 {
860         if (atomic_read(&bi->sync_writers))
861                 return 0;
862         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
863                 return 0;
864         return 1;
865 }
866
867 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
868                                           int mirror_num,
869                                           unsigned long bio_flags)
870 {
871         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
872         int async = check_async_write(fs_info, BTRFS_I(inode));
873         blk_status_t ret;
874
875         if (bio_op(bio) != REQ_OP_WRITE) {
876                 /*
877                  * called for a read, do the setup so that checksum validation
878                  * can happen in the async kernel threads
879                  */
880                 ret = btrfs_bio_wq_end_io(fs_info, bio,
881                                           BTRFS_WQ_ENDIO_METADATA);
882                 if (ret)
883                         goto out_w_error;
884                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
885         } else if (!async) {
886                 ret = btree_csum_one_bio(bio);
887                 if (ret)
888                         goto out_w_error;
889                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
890         } else {
891                 /*
892                  * kthread helpers are used to submit writes so that
893                  * checksumming can happen in parallel across all CPUs
894                  */
895                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
896                                           0, inode, btree_submit_bio_start);
897         }
898
899         if (ret)
900                 goto out_w_error;
901         return 0;
902
903 out_w_error:
904         bio->bi_status = ret;
905         bio_endio(bio);
906         return ret;
907 }
908
909 #ifdef CONFIG_MIGRATION
910 static int btree_migratepage(struct address_space *mapping,
911                         struct page *newpage, struct page *page,
912                         enum migrate_mode mode)
913 {
914         /*
915          * we can't safely write a btree page from here,
916          * we haven't done the locking hook
917          */
918         if (PageDirty(page))
919                 return -EAGAIN;
920         /*
921          * Buffers may be managed in a filesystem specific way.
922          * We must have no buffers or drop them.
923          */
924         if (page_has_private(page) &&
925             !try_to_release_page(page, GFP_KERNEL))
926                 return -EAGAIN;
927         return migrate_page(mapping, newpage, page, mode);
928 }
929 #endif
930
931
932 static int btree_writepages(struct address_space *mapping,
933                             struct writeback_control *wbc)
934 {
935         struct btrfs_fs_info *fs_info;
936         int ret;
937
938         if (wbc->sync_mode == WB_SYNC_NONE) {
939
940                 if (wbc->for_kupdate)
941                         return 0;
942
943                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
944                 /* this is a bit racy, but that's ok */
945                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
946                                              BTRFS_DIRTY_METADATA_THRESH,
947                                              fs_info->dirty_metadata_batch);
948                 if (ret < 0)
949                         return 0;
950         }
951         return btree_write_cache_pages(mapping, wbc);
952 }
953
954 static int btree_readpage(struct file *file, struct page *page)
955 {
956         return extent_read_full_page(page, btree_get_extent, 0);
957 }
958
959 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
960 {
961         if (PageWriteback(page) || PageDirty(page))
962                 return 0;
963
964         return try_release_extent_buffer(page);
965 }
966
967 static void btree_invalidatepage(struct page *page, unsigned int offset,
968                                  unsigned int length)
969 {
970         struct extent_io_tree *tree;
971         tree = &BTRFS_I(page->mapping->host)->io_tree;
972         extent_invalidatepage(tree, page, offset);
973         btree_releasepage(page, GFP_NOFS);
974         if (PagePrivate(page)) {
975                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
976                            "page private not zero on page %llu",
977                            (unsigned long long)page_offset(page));
978                 detach_page_private(page);
979         }
980 }
981
982 static int btree_set_page_dirty(struct page *page)
983 {
984 #ifdef DEBUG
985         struct extent_buffer *eb;
986
987         BUG_ON(!PagePrivate(page));
988         eb = (struct extent_buffer *)page->private;
989         BUG_ON(!eb);
990         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
991         BUG_ON(!atomic_read(&eb->refs));
992         btrfs_assert_tree_locked(eb);
993 #endif
994         return __set_page_dirty_nobuffers(page);
995 }
996
997 static const struct address_space_operations btree_aops = {
998         .readpage       = btree_readpage,
999         .writepages     = btree_writepages,
1000         .releasepage    = btree_releasepage,
1001         .invalidatepage = btree_invalidatepage,
1002 #ifdef CONFIG_MIGRATION
1003         .migratepage    = btree_migratepage,
1004 #endif
1005         .set_page_dirty = btree_set_page_dirty,
1006 };
1007
1008 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1009 {
1010         struct extent_buffer *buf = NULL;
1011         int ret;
1012
1013         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1014         if (IS_ERR(buf))
1015                 return;
1016
1017         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1018         if (ret < 0)
1019                 free_extent_buffer_stale(buf);
1020         else
1021                 free_extent_buffer(buf);
1022 }
1023
1024 struct extent_buffer *btrfs_find_create_tree_block(
1025                                                 struct btrfs_fs_info *fs_info,
1026                                                 u64 bytenr)
1027 {
1028         if (btrfs_is_testing(fs_info))
1029                 return alloc_test_extent_buffer(fs_info, bytenr);
1030         return alloc_extent_buffer(fs_info, bytenr);
1031 }
1032
1033 /*
1034  * Read tree block at logical address @bytenr and do variant basic but critical
1035  * verification.
1036  *
1037  * @parent_transid:     expected transid of this tree block, skip check if 0
1038  * @level:              expected level, mandatory check
1039  * @first_key:          expected key in slot 0, skip check if NULL
1040  */
1041 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1042                                       u64 parent_transid, int level,
1043                                       struct btrfs_key *first_key)
1044 {
1045         struct extent_buffer *buf = NULL;
1046         int ret;
1047
1048         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1049         if (IS_ERR(buf))
1050                 return buf;
1051
1052         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1053                                              level, first_key);
1054         if (ret) {
1055                 free_extent_buffer_stale(buf);
1056                 return ERR_PTR(ret);
1057         }
1058         return buf;
1059
1060 }
1061
1062 void btrfs_clean_tree_block(struct extent_buffer *buf)
1063 {
1064         struct btrfs_fs_info *fs_info = buf->fs_info;
1065         if (btrfs_header_generation(buf) ==
1066             fs_info->running_transaction->transid) {
1067                 btrfs_assert_tree_locked(buf);
1068
1069                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1070                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1071                                                  -buf->len,
1072                                                  fs_info->dirty_metadata_batch);
1073                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1074                         btrfs_set_lock_blocking_write(buf);
1075                         clear_extent_buffer_dirty(buf);
1076                 }
1077         }
1078 }
1079
1080 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1081                          u64 objectid)
1082 {
1083         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1084         root->fs_info = fs_info;
1085         root->node = NULL;
1086         root->commit_root = NULL;
1087         root->state = 0;
1088         root->orphan_cleanup_state = 0;
1089
1090         root->last_trans = 0;
1091         root->highest_objectid = 0;
1092         root->nr_delalloc_inodes = 0;
1093         root->nr_ordered_extents = 0;
1094         root->inode_tree = RB_ROOT;
1095         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1096         root->block_rsv = NULL;
1097
1098         INIT_LIST_HEAD(&root->dirty_list);
1099         INIT_LIST_HEAD(&root->root_list);
1100         INIT_LIST_HEAD(&root->delalloc_inodes);
1101         INIT_LIST_HEAD(&root->delalloc_root);
1102         INIT_LIST_HEAD(&root->ordered_extents);
1103         INIT_LIST_HEAD(&root->ordered_root);
1104         INIT_LIST_HEAD(&root->reloc_dirty_list);
1105         INIT_LIST_HEAD(&root->logged_list[0]);
1106         INIT_LIST_HEAD(&root->logged_list[1]);
1107         spin_lock_init(&root->inode_lock);
1108         spin_lock_init(&root->delalloc_lock);
1109         spin_lock_init(&root->ordered_extent_lock);
1110         spin_lock_init(&root->accounting_lock);
1111         spin_lock_init(&root->log_extents_lock[0]);
1112         spin_lock_init(&root->log_extents_lock[1]);
1113         spin_lock_init(&root->qgroup_meta_rsv_lock);
1114         mutex_init(&root->objectid_mutex);
1115         mutex_init(&root->log_mutex);
1116         mutex_init(&root->ordered_extent_mutex);
1117         mutex_init(&root->delalloc_mutex);
1118         init_waitqueue_head(&root->qgroup_flush_wait);
1119         init_waitqueue_head(&root->log_writer_wait);
1120         init_waitqueue_head(&root->log_commit_wait[0]);
1121         init_waitqueue_head(&root->log_commit_wait[1]);
1122         INIT_LIST_HEAD(&root->log_ctxs[0]);
1123         INIT_LIST_HEAD(&root->log_ctxs[1]);
1124         atomic_set(&root->log_commit[0], 0);
1125         atomic_set(&root->log_commit[1], 0);
1126         atomic_set(&root->log_writers, 0);
1127         atomic_set(&root->log_batch, 0);
1128         refcount_set(&root->refs, 1);
1129         atomic_set(&root->snapshot_force_cow, 0);
1130         atomic_set(&root->nr_swapfiles, 0);
1131         root->log_transid = 0;
1132         root->log_transid_committed = -1;
1133         root->last_log_commit = 0;
1134         if (!dummy) {
1135                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137                 extent_io_tree_init(fs_info, &root->log_csum_range,
1138                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1139         }
1140
1141         memset(&root->root_key, 0, sizeof(root->root_key));
1142         memset(&root->root_item, 0, sizeof(root->root_item));
1143         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1144         root->root_key.objectid = objectid;
1145         root->anon_dev = 0;
1146
1147         spin_lock_init(&root->root_item_lock);
1148         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1149 #ifdef CONFIG_BTRFS_DEBUG
1150         INIT_LIST_HEAD(&root->leak_list);
1151         spin_lock(&fs_info->fs_roots_radix_lock);
1152         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1153         spin_unlock(&fs_info->fs_roots_radix_lock);
1154 #endif
1155 }
1156
1157 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1158                                            u64 objectid, gfp_t flags)
1159 {
1160         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1161         if (root)
1162                 __setup_root(root, fs_info, objectid);
1163         return root;
1164 }
1165
1166 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167 /* Should only be used by the testing infrastructure */
1168 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1169 {
1170         struct btrfs_root *root;
1171
1172         if (!fs_info)
1173                 return ERR_PTR(-EINVAL);
1174
1175         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1176         if (!root)
1177                 return ERR_PTR(-ENOMEM);
1178
1179         /* We don't use the stripesize in selftest, set it as sectorsize */
1180         root->alloc_bytenr = 0;
1181
1182         return root;
1183 }
1184 #endif
1185
1186 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1187                                      u64 objectid)
1188 {
1189         struct btrfs_fs_info *fs_info = trans->fs_info;
1190         struct extent_buffer *leaf;
1191         struct btrfs_root *tree_root = fs_info->tree_root;
1192         struct btrfs_root *root;
1193         struct btrfs_key key;
1194         unsigned int nofs_flag;
1195         int ret = 0;
1196
1197         /*
1198          * We're holding a transaction handle, so use a NOFS memory allocation
1199          * context to avoid deadlock if reclaim happens.
1200          */
1201         nofs_flag = memalloc_nofs_save();
1202         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1203         memalloc_nofs_restore(nofs_flag);
1204         if (!root)
1205                 return ERR_PTR(-ENOMEM);
1206
1207         root->root_key.objectid = objectid;
1208         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209         root->root_key.offset = 0;
1210
1211         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1212         if (IS_ERR(leaf)) {
1213                 ret = PTR_ERR(leaf);
1214                 leaf = NULL;
1215                 goto fail;
1216         }
1217
1218         root->node = leaf;
1219         btrfs_mark_buffer_dirty(leaf);
1220
1221         root->commit_root = btrfs_root_node(root);
1222         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1223
1224         root->root_item.flags = 0;
1225         root->root_item.byte_limit = 0;
1226         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1227         btrfs_set_root_generation(&root->root_item, trans->transid);
1228         btrfs_set_root_level(&root->root_item, 0);
1229         btrfs_set_root_refs(&root->root_item, 1);
1230         btrfs_set_root_used(&root->root_item, leaf->len);
1231         btrfs_set_root_last_snapshot(&root->root_item, 0);
1232         btrfs_set_root_dirid(&root->root_item, 0);
1233         if (is_fstree(objectid))
1234                 generate_random_guid(root->root_item.uuid);
1235         else
1236                 export_guid(root->root_item.uuid, &guid_null);
1237         root->root_item.drop_level = 0;
1238
1239         key.objectid = objectid;
1240         key.type = BTRFS_ROOT_ITEM_KEY;
1241         key.offset = 0;
1242         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1243         if (ret)
1244                 goto fail;
1245
1246         btrfs_tree_unlock(leaf);
1247
1248         return root;
1249
1250 fail:
1251         if (leaf)
1252                 btrfs_tree_unlock(leaf);
1253         btrfs_put_root(root);
1254
1255         return ERR_PTR(ret);
1256 }
1257
1258 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259                                          struct btrfs_fs_info *fs_info)
1260 {
1261         struct btrfs_root *root;
1262         struct extent_buffer *leaf;
1263
1264         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1265         if (!root)
1266                 return ERR_PTR(-ENOMEM);
1267
1268         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1269         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1271
1272         /*
1273          * DON'T set SHAREABLE bit for log trees.
1274          *
1275          * Log trees are not exposed to user space thus can't be snapshotted,
1276          * and they go away before a real commit is actually done.
1277          *
1278          * They do store pointers to file data extents, and those reference
1279          * counts still get updated (along with back refs to the log tree).
1280          */
1281
1282         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283                         NULL, 0, 0, 0);
1284         if (IS_ERR(leaf)) {
1285                 btrfs_put_root(root);
1286                 return ERR_CAST(leaf);
1287         }
1288
1289         root->node = leaf;
1290
1291         btrfs_mark_buffer_dirty(root->node);
1292         btrfs_tree_unlock(root->node);
1293         return root;
1294 }
1295
1296 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297                              struct btrfs_fs_info *fs_info)
1298 {
1299         struct btrfs_root *log_root;
1300
1301         log_root = alloc_log_tree(trans, fs_info);
1302         if (IS_ERR(log_root))
1303                 return PTR_ERR(log_root);
1304         WARN_ON(fs_info->log_root_tree);
1305         fs_info->log_root_tree = log_root;
1306         return 0;
1307 }
1308
1309 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310                        struct btrfs_root *root)
1311 {
1312         struct btrfs_fs_info *fs_info = root->fs_info;
1313         struct btrfs_root *log_root;
1314         struct btrfs_inode_item *inode_item;
1315
1316         log_root = alloc_log_tree(trans, fs_info);
1317         if (IS_ERR(log_root))
1318                 return PTR_ERR(log_root);
1319
1320         log_root->last_trans = trans->transid;
1321         log_root->root_key.offset = root->root_key.objectid;
1322
1323         inode_item = &log_root->root_item.inode;
1324         btrfs_set_stack_inode_generation(inode_item, 1);
1325         btrfs_set_stack_inode_size(inode_item, 3);
1326         btrfs_set_stack_inode_nlink(inode_item, 1);
1327         btrfs_set_stack_inode_nbytes(inode_item,
1328                                      fs_info->nodesize);
1329         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1330
1331         btrfs_set_root_node(&log_root->root_item, log_root->node);
1332
1333         WARN_ON(root->log_root);
1334         root->log_root = log_root;
1335         root->log_transid = 0;
1336         root->log_transid_committed = -1;
1337         root->last_log_commit = 0;
1338         return 0;
1339 }
1340
1341 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1342                                         struct btrfs_key *key)
1343 {
1344         struct btrfs_root *root;
1345         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1346         struct btrfs_path *path;
1347         u64 generation;
1348         int ret;
1349         int level;
1350
1351         path = btrfs_alloc_path();
1352         if (!path)
1353                 return ERR_PTR(-ENOMEM);
1354
1355         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1356         if (!root) {
1357                 ret = -ENOMEM;
1358                 goto alloc_fail;
1359         }
1360
1361         ret = btrfs_find_root(tree_root, key, path,
1362                               &root->root_item, &root->root_key);
1363         if (ret) {
1364                 if (ret > 0)
1365                         ret = -ENOENT;
1366                 goto find_fail;
1367         }
1368
1369         generation = btrfs_root_generation(&root->root_item);
1370         level = btrfs_root_level(&root->root_item);
1371         root->node = read_tree_block(fs_info,
1372                                      btrfs_root_bytenr(&root->root_item),
1373                                      generation, level, NULL);
1374         if (IS_ERR(root->node)) {
1375                 ret = PTR_ERR(root->node);
1376                 root->node = NULL;
1377                 goto find_fail;
1378         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1379                 ret = -EIO;
1380                 goto find_fail;
1381         }
1382         root->commit_root = btrfs_root_node(root);
1383 out:
1384         btrfs_free_path(path);
1385         return root;
1386
1387 find_fail:
1388         btrfs_put_root(root);
1389 alloc_fail:
1390         root = ERR_PTR(ret);
1391         goto out;
1392 }
1393
1394 /*
1395  * Initialize subvolume root in-memory structure
1396  *
1397  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1398  */
1399 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1400 {
1401         int ret;
1402         unsigned int nofs_flag;
1403
1404         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1405         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1406                                         GFP_NOFS);
1407         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1408                 ret = -ENOMEM;
1409                 goto fail;
1410         }
1411
1412         /*
1413          * We might be called under a transaction (e.g. indirect backref
1414          * resolution) which could deadlock if it triggers memory reclaim
1415          */
1416         nofs_flag = memalloc_nofs_save();
1417         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1418         memalloc_nofs_restore(nofs_flag);
1419         if (ret)
1420                 goto fail;
1421
1422         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1423             root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1424                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1425                 btrfs_check_and_init_root_item(&root->root_item);
1426         }
1427
1428         btrfs_init_free_ino_ctl(root);
1429         spin_lock_init(&root->ino_cache_lock);
1430         init_waitqueue_head(&root->ino_cache_wait);
1431
1432         /*
1433          * Don't assign anonymous block device to roots that are not exposed to
1434          * userspace, the id pool is limited to 1M
1435          */
1436         if (is_fstree(root->root_key.objectid) &&
1437             btrfs_root_refs(&root->root_item) > 0) {
1438                 if (!anon_dev) {
1439                         ret = get_anon_bdev(&root->anon_dev);
1440                         if (ret)
1441                                 goto fail;
1442                 } else {
1443                         root->anon_dev = anon_dev;
1444                 }
1445         }
1446
1447         mutex_lock(&root->objectid_mutex);
1448         ret = btrfs_find_highest_objectid(root,
1449                                         &root->highest_objectid);
1450         if (ret) {
1451                 mutex_unlock(&root->objectid_mutex);
1452                 goto fail;
1453         }
1454
1455         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1456
1457         mutex_unlock(&root->objectid_mutex);
1458
1459         return 0;
1460 fail:
1461         /* The caller is responsible to call btrfs_free_fs_root */
1462         return ret;
1463 }
1464
1465 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1466                                                u64 root_id)
1467 {
1468         struct btrfs_root *root;
1469
1470         spin_lock(&fs_info->fs_roots_radix_lock);
1471         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1472                                  (unsigned long)root_id);
1473         if (root)
1474                 root = btrfs_grab_root(root);
1475         spin_unlock(&fs_info->fs_roots_radix_lock);
1476         return root;
1477 }
1478
1479 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1480                          struct btrfs_root *root)
1481 {
1482         int ret;
1483
1484         ret = radix_tree_preload(GFP_NOFS);
1485         if (ret)
1486                 return ret;
1487
1488         spin_lock(&fs_info->fs_roots_radix_lock);
1489         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1490                                 (unsigned long)root->root_key.objectid,
1491                                 root);
1492         if (ret == 0) {
1493                 btrfs_grab_root(root);
1494                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1495         }
1496         spin_unlock(&fs_info->fs_roots_radix_lock);
1497         radix_tree_preload_end();
1498
1499         return ret;
1500 }
1501
1502 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1503 {
1504 #ifdef CONFIG_BTRFS_DEBUG
1505         struct btrfs_root *root;
1506
1507         while (!list_empty(&fs_info->allocated_roots)) {
1508                 root = list_first_entry(&fs_info->allocated_roots,
1509                                         struct btrfs_root, leak_list);
1510                 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1511                           root->root_key.objectid, root->root_key.offset,
1512                           refcount_read(&root->refs));
1513                 while (refcount_read(&root->refs) > 1)
1514                         btrfs_put_root(root);
1515                 btrfs_put_root(root);
1516         }
1517 #endif
1518 }
1519
1520 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1521 {
1522         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1523         percpu_counter_destroy(&fs_info->delalloc_bytes);
1524         percpu_counter_destroy(&fs_info->dio_bytes);
1525         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1526         btrfs_free_csum_hash(fs_info);
1527         btrfs_free_stripe_hash_table(fs_info);
1528         btrfs_free_ref_cache(fs_info);
1529         kfree(fs_info->balance_ctl);
1530         kfree(fs_info->delayed_root);
1531         btrfs_put_root(fs_info->extent_root);
1532         btrfs_put_root(fs_info->tree_root);
1533         btrfs_put_root(fs_info->chunk_root);
1534         btrfs_put_root(fs_info->dev_root);
1535         btrfs_put_root(fs_info->csum_root);
1536         btrfs_put_root(fs_info->quota_root);
1537         btrfs_put_root(fs_info->uuid_root);
1538         btrfs_put_root(fs_info->free_space_root);
1539         btrfs_put_root(fs_info->fs_root);
1540         btrfs_put_root(fs_info->data_reloc_root);
1541         btrfs_check_leaked_roots(fs_info);
1542         btrfs_extent_buffer_leak_debug_check(fs_info);
1543         kfree(fs_info->super_copy);
1544         kfree(fs_info->super_for_commit);
1545         kvfree(fs_info);
1546 }
1547
1548
1549 /*
1550  * Get an in-memory reference of a root structure.
1551  *
1552  * For essential trees like root/extent tree, we grab it from fs_info directly.
1553  * For subvolume trees, we check the cached filesystem roots first. If not
1554  * found, then read it from disk and add it to cached fs roots.
1555  *
1556  * Caller should release the root by calling btrfs_put_root() after the usage.
1557  *
1558  * NOTE: Reloc and log trees can't be read by this function as they share the
1559  *       same root objectid.
1560  *
1561  * @objectid:   root id
1562  * @anon_dev:   preallocated anonymous block device number for new roots,
1563  *              pass 0 for new allocation.
1564  * @check_ref:  whether to check root item references, If true, return -ENOENT
1565  *              for orphan roots
1566  */
1567 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1568                                              u64 objectid, dev_t anon_dev,
1569                                              bool check_ref)
1570 {
1571         struct btrfs_root *root;
1572         struct btrfs_path *path;
1573         struct btrfs_key key;
1574         int ret;
1575
1576         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1577                 return btrfs_grab_root(fs_info->tree_root);
1578         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579                 return btrfs_grab_root(fs_info->extent_root);
1580         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581                 return btrfs_grab_root(fs_info->chunk_root);
1582         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1583                 return btrfs_grab_root(fs_info->dev_root);
1584         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1585                 return btrfs_grab_root(fs_info->csum_root);
1586         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587                 return btrfs_grab_root(fs_info->quota_root) ?
1588                         fs_info->quota_root : ERR_PTR(-ENOENT);
1589         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1590                 return btrfs_grab_root(fs_info->uuid_root) ?
1591                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1592         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593                 return btrfs_grab_root(fs_info->free_space_root) ?
1594                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1595 again:
1596         root = btrfs_lookup_fs_root(fs_info, objectid);
1597         if (root) {
1598                 /* Shouldn't get preallocated anon_dev for cached roots */
1599                 ASSERT(!anon_dev);
1600                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1601                         btrfs_put_root(root);
1602                         return ERR_PTR(-ENOENT);
1603                 }
1604                 return root;
1605         }
1606
1607         key.objectid = objectid;
1608         key.type = BTRFS_ROOT_ITEM_KEY;
1609         key.offset = (u64)-1;
1610         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1611         if (IS_ERR(root))
1612                 return root;
1613
1614         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1615                 ret = -ENOENT;
1616                 goto fail;
1617         }
1618
1619         ret = btrfs_init_fs_root(root, anon_dev);
1620         if (ret)
1621                 goto fail;
1622
1623         path = btrfs_alloc_path();
1624         if (!path) {
1625                 ret = -ENOMEM;
1626                 goto fail;
1627         }
1628         key.objectid = BTRFS_ORPHAN_OBJECTID;
1629         key.type = BTRFS_ORPHAN_ITEM_KEY;
1630         key.offset = objectid;
1631
1632         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1633         btrfs_free_path(path);
1634         if (ret < 0)
1635                 goto fail;
1636         if (ret == 0)
1637                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1638
1639         ret = btrfs_insert_fs_root(fs_info, root);
1640         if (ret) {
1641                 btrfs_put_root(root);
1642                 if (ret == -EEXIST)
1643                         goto again;
1644                 goto fail;
1645         }
1646         return root;
1647 fail:
1648         btrfs_put_root(root);
1649         return ERR_PTR(ret);
1650 }
1651
1652 /*
1653  * Get in-memory reference of a root structure
1654  *
1655  * @objectid:   tree objectid
1656  * @check_ref:  if set, verify that the tree exists and the item has at least
1657  *              one reference
1658  */
1659 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660                                      u64 objectid, bool check_ref)
1661 {
1662         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1663 }
1664
1665 /*
1666  * Get in-memory reference of a root structure, created as new, optionally pass
1667  * the anonymous block device id
1668  *
1669  * @objectid:   tree objectid
1670  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1671  *              parameter value
1672  */
1673 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1674                                          u64 objectid, dev_t anon_dev)
1675 {
1676         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1677 }
1678
1679 /*
1680  * called by the kthread helper functions to finally call the bio end_io
1681  * functions.  This is where read checksum verification actually happens
1682  */
1683 static void end_workqueue_fn(struct btrfs_work *work)
1684 {
1685         struct bio *bio;
1686         struct btrfs_end_io_wq *end_io_wq;
1687
1688         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1689         bio = end_io_wq->bio;
1690
1691         bio->bi_status = end_io_wq->status;
1692         bio->bi_private = end_io_wq->private;
1693         bio->bi_end_io = end_io_wq->end_io;
1694         bio_endio(bio);
1695         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1696 }
1697
1698 static int cleaner_kthread(void *arg)
1699 {
1700         struct btrfs_root *root = arg;
1701         struct btrfs_fs_info *fs_info = root->fs_info;
1702         int again;
1703
1704         while (1) {
1705                 again = 0;
1706
1707                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1708
1709                 /* Make the cleaner go to sleep early. */
1710                 if (btrfs_need_cleaner_sleep(fs_info))
1711                         goto sleep;
1712
1713                 /*
1714                  * Do not do anything if we might cause open_ctree() to block
1715                  * before we have finished mounting the filesystem.
1716                  */
1717                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1718                         goto sleep;
1719
1720                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1721                         goto sleep;
1722
1723                 /*
1724                  * Avoid the problem that we change the status of the fs
1725                  * during the above check and trylock.
1726                  */
1727                 if (btrfs_need_cleaner_sleep(fs_info)) {
1728                         mutex_unlock(&fs_info->cleaner_mutex);
1729                         goto sleep;
1730                 }
1731
1732                 btrfs_run_delayed_iputs(fs_info);
1733
1734                 again = btrfs_clean_one_deleted_snapshot(root);
1735                 mutex_unlock(&fs_info->cleaner_mutex);
1736
1737                 /*
1738                  * The defragger has dealt with the R/O remount and umount,
1739                  * needn't do anything special here.
1740                  */
1741                 btrfs_run_defrag_inodes(fs_info);
1742
1743                 /*
1744                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1745                  * with relocation (btrfs_relocate_chunk) and relocation
1746                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1747                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1748                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1749                  * unused block groups.
1750                  */
1751                 btrfs_delete_unused_bgs(fs_info);
1752 sleep:
1753                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1754                 if (kthread_should_park())
1755                         kthread_parkme();
1756                 if (kthread_should_stop())
1757                         return 0;
1758                 if (!again) {
1759                         set_current_state(TASK_INTERRUPTIBLE);
1760                         schedule();
1761                         __set_current_state(TASK_RUNNING);
1762                 }
1763         }
1764 }
1765
1766 static int transaction_kthread(void *arg)
1767 {
1768         struct btrfs_root *root = arg;
1769         struct btrfs_fs_info *fs_info = root->fs_info;
1770         struct btrfs_trans_handle *trans;
1771         struct btrfs_transaction *cur;
1772         u64 transid;
1773         time64_t now;
1774         unsigned long delay;
1775         bool cannot_commit;
1776
1777         do {
1778                 cannot_commit = false;
1779                 delay = HZ * fs_info->commit_interval;
1780                 mutex_lock(&fs_info->transaction_kthread_mutex);
1781
1782                 spin_lock(&fs_info->trans_lock);
1783                 cur = fs_info->running_transaction;
1784                 if (!cur) {
1785                         spin_unlock(&fs_info->trans_lock);
1786                         goto sleep;
1787                 }
1788
1789                 now = ktime_get_seconds();
1790                 if (cur->state < TRANS_STATE_COMMIT_START &&
1791                     (now < cur->start_time ||
1792                      now - cur->start_time < fs_info->commit_interval)) {
1793                         spin_unlock(&fs_info->trans_lock);
1794                         delay = HZ * 5;
1795                         goto sleep;
1796                 }
1797                 transid = cur->transid;
1798                 spin_unlock(&fs_info->trans_lock);
1799
1800                 /* If the file system is aborted, this will always fail. */
1801                 trans = btrfs_attach_transaction(root);
1802                 if (IS_ERR(trans)) {
1803                         if (PTR_ERR(trans) != -ENOENT)
1804                                 cannot_commit = true;
1805                         goto sleep;
1806                 }
1807                 if (transid == trans->transid) {
1808                         btrfs_commit_transaction(trans);
1809                 } else {
1810                         btrfs_end_transaction(trans);
1811                 }
1812 sleep:
1813                 wake_up_process(fs_info->cleaner_kthread);
1814                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1815
1816                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1817                                       &fs_info->fs_state)))
1818                         btrfs_cleanup_transaction(fs_info);
1819                 if (!kthread_should_stop() &&
1820                                 (!btrfs_transaction_blocked(fs_info) ||
1821                                  cannot_commit))
1822                         schedule_timeout_interruptible(delay);
1823         } while (!kthread_should_stop());
1824         return 0;
1825 }
1826
1827 /*
1828  * This will find the highest generation in the array of root backups.  The
1829  * index of the highest array is returned, or -EINVAL if we can't find
1830  * anything.
1831  *
1832  * We check to make sure the array is valid by comparing the
1833  * generation of the latest  root in the array with the generation
1834  * in the super block.  If they don't match we pitch it.
1835  */
1836 static int find_newest_super_backup(struct btrfs_fs_info *info)
1837 {
1838         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1839         u64 cur;
1840         struct btrfs_root_backup *root_backup;
1841         int i;
1842
1843         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1844                 root_backup = info->super_copy->super_roots + i;
1845                 cur = btrfs_backup_tree_root_gen(root_backup);
1846                 if (cur == newest_gen)
1847                         return i;
1848         }
1849
1850         return -EINVAL;
1851 }
1852
1853 /*
1854  * copy all the root pointers into the super backup array.
1855  * this will bump the backup pointer by one when it is
1856  * done
1857  */
1858 static void backup_super_roots(struct btrfs_fs_info *info)
1859 {
1860         const int next_backup = info->backup_root_index;
1861         struct btrfs_root_backup *root_backup;
1862
1863         root_backup = info->super_for_commit->super_roots + next_backup;
1864
1865         /*
1866          * make sure all of our padding and empty slots get zero filled
1867          * regardless of which ones we use today
1868          */
1869         memset(root_backup, 0, sizeof(*root_backup));
1870
1871         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872
1873         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1874         btrfs_set_backup_tree_root_gen(root_backup,
1875                                btrfs_header_generation(info->tree_root->node));
1876
1877         btrfs_set_backup_tree_root_level(root_backup,
1878                                btrfs_header_level(info->tree_root->node));
1879
1880         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1881         btrfs_set_backup_chunk_root_gen(root_backup,
1882                                btrfs_header_generation(info->chunk_root->node));
1883         btrfs_set_backup_chunk_root_level(root_backup,
1884                                btrfs_header_level(info->chunk_root->node));
1885
1886         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1887         btrfs_set_backup_extent_root_gen(root_backup,
1888                                btrfs_header_generation(info->extent_root->node));
1889         btrfs_set_backup_extent_root_level(root_backup,
1890                                btrfs_header_level(info->extent_root->node));
1891
1892         /*
1893          * we might commit during log recovery, which happens before we set
1894          * the fs_root.  Make sure it is valid before we fill it in.
1895          */
1896         if (info->fs_root && info->fs_root->node) {
1897                 btrfs_set_backup_fs_root(root_backup,
1898                                          info->fs_root->node->start);
1899                 btrfs_set_backup_fs_root_gen(root_backup,
1900                                btrfs_header_generation(info->fs_root->node));
1901                 btrfs_set_backup_fs_root_level(root_backup,
1902                                btrfs_header_level(info->fs_root->node));
1903         }
1904
1905         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1906         btrfs_set_backup_dev_root_gen(root_backup,
1907                                btrfs_header_generation(info->dev_root->node));
1908         btrfs_set_backup_dev_root_level(root_backup,
1909                                        btrfs_header_level(info->dev_root->node));
1910
1911         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1912         btrfs_set_backup_csum_root_gen(root_backup,
1913                                btrfs_header_generation(info->csum_root->node));
1914         btrfs_set_backup_csum_root_level(root_backup,
1915                                btrfs_header_level(info->csum_root->node));
1916
1917         btrfs_set_backup_total_bytes(root_backup,
1918                              btrfs_super_total_bytes(info->super_copy));
1919         btrfs_set_backup_bytes_used(root_backup,
1920                              btrfs_super_bytes_used(info->super_copy));
1921         btrfs_set_backup_num_devices(root_backup,
1922                              btrfs_super_num_devices(info->super_copy));
1923
1924         /*
1925          * if we don't copy this out to the super_copy, it won't get remembered
1926          * for the next commit
1927          */
1928         memcpy(&info->super_copy->super_roots,
1929                &info->super_for_commit->super_roots,
1930                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1931 }
1932
1933 /*
1934  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1935  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1936  *
1937  * fs_info - filesystem whose backup roots need to be read
1938  * priority - priority of backup root required
1939  *
1940  * Returns backup root index on success and -EINVAL otherwise.
1941  */
1942 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1943 {
1944         int backup_index = find_newest_super_backup(fs_info);
1945         struct btrfs_super_block *super = fs_info->super_copy;
1946         struct btrfs_root_backup *root_backup;
1947
1948         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1949                 if (priority == 0)
1950                         return backup_index;
1951
1952                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1953                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1954         } else {
1955                 return -EINVAL;
1956         }
1957
1958         root_backup = super->super_roots + backup_index;
1959
1960         btrfs_set_super_generation(super,
1961                                    btrfs_backup_tree_root_gen(root_backup));
1962         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1963         btrfs_set_super_root_level(super,
1964                                    btrfs_backup_tree_root_level(root_backup));
1965         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1966
1967         /*
1968          * Fixme: the total bytes and num_devices need to match or we should
1969          * need a fsck
1970          */
1971         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1972         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1973
1974         return backup_index;
1975 }
1976
1977 /* helper to cleanup workers */
1978 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1979 {
1980         btrfs_destroy_workqueue(fs_info->fixup_workers);
1981         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1982         btrfs_destroy_workqueue(fs_info->workers);
1983         btrfs_destroy_workqueue(fs_info->endio_workers);
1984         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1985         btrfs_destroy_workqueue(fs_info->rmw_workers);
1986         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1987         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1988         btrfs_destroy_workqueue(fs_info->delayed_workers);
1989         btrfs_destroy_workqueue(fs_info->caching_workers);
1990         btrfs_destroy_workqueue(fs_info->readahead_workers);
1991         btrfs_destroy_workqueue(fs_info->flush_workers);
1992         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1993         if (fs_info->discard_ctl.discard_workers)
1994                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1995         /*
1996          * Now that all other work queues are destroyed, we can safely destroy
1997          * the queues used for metadata I/O, since tasks from those other work
1998          * queues can do metadata I/O operations.
1999          */
2000         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2001         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2002 }
2003
2004 static void free_root_extent_buffers(struct btrfs_root *root)
2005 {
2006         if (root) {
2007                 free_extent_buffer(root->node);
2008                 free_extent_buffer(root->commit_root);
2009                 root->node = NULL;
2010                 root->commit_root = NULL;
2011         }
2012 }
2013
2014 /* helper to cleanup tree roots */
2015 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2016 {
2017         free_root_extent_buffers(info->tree_root);
2018
2019         free_root_extent_buffers(info->dev_root);
2020         free_root_extent_buffers(info->extent_root);
2021         free_root_extent_buffers(info->csum_root);
2022         free_root_extent_buffers(info->quota_root);
2023         free_root_extent_buffers(info->uuid_root);
2024         free_root_extent_buffers(info->fs_root);
2025         free_root_extent_buffers(info->data_reloc_root);
2026         if (free_chunk_root)
2027                 free_root_extent_buffers(info->chunk_root);
2028         free_root_extent_buffers(info->free_space_root);
2029 }
2030
2031 void btrfs_put_root(struct btrfs_root *root)
2032 {
2033         if (!root)
2034                 return;
2035
2036         if (refcount_dec_and_test(&root->refs)) {
2037                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2038                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2039                 if (root->anon_dev)
2040                         free_anon_bdev(root->anon_dev);
2041                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2042                 free_root_extent_buffers(root);
2043                 kfree(root->free_ino_ctl);
2044                 kfree(root->free_ino_pinned);
2045 #ifdef CONFIG_BTRFS_DEBUG
2046                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2047                 list_del_init(&root->leak_list);
2048                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2049 #endif
2050                 kfree(root);
2051         }
2052 }
2053
2054 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2055 {
2056         int ret;
2057         struct btrfs_root *gang[8];
2058         int i;
2059
2060         while (!list_empty(&fs_info->dead_roots)) {
2061                 gang[0] = list_entry(fs_info->dead_roots.next,
2062                                      struct btrfs_root, root_list);
2063                 list_del(&gang[0]->root_list);
2064
2065                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2066                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2067                 btrfs_put_root(gang[0]);
2068         }
2069
2070         while (1) {
2071                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2072                                              (void **)gang, 0,
2073                                              ARRAY_SIZE(gang));
2074                 if (!ret)
2075                         break;
2076                 for (i = 0; i < ret; i++)
2077                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2078         }
2079 }
2080
2081 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082 {
2083         mutex_init(&fs_info->scrub_lock);
2084         atomic_set(&fs_info->scrubs_running, 0);
2085         atomic_set(&fs_info->scrub_pause_req, 0);
2086         atomic_set(&fs_info->scrubs_paused, 0);
2087         atomic_set(&fs_info->scrub_cancel_req, 0);
2088         init_waitqueue_head(&fs_info->scrub_pause_wait);
2089         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090 }
2091
2092 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093 {
2094         spin_lock_init(&fs_info->balance_lock);
2095         mutex_init(&fs_info->balance_mutex);
2096         atomic_set(&fs_info->balance_pause_req, 0);
2097         atomic_set(&fs_info->balance_cancel_req, 0);
2098         fs_info->balance_ctl = NULL;
2099         init_waitqueue_head(&fs_info->balance_wait_q);
2100 }
2101
2102 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103 {
2104         struct inode *inode = fs_info->btree_inode;
2105
2106         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107         set_nlink(inode, 1);
2108         /*
2109          * we set the i_size on the btree inode to the max possible int.
2110          * the real end of the address space is determined by all of
2111          * the devices in the system
2112          */
2113         inode->i_size = OFFSET_MAX;
2114         inode->i_mapping->a_ops = &btree_aops;
2115
2116         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118                             IO_TREE_INODE_IO, inode);
2119         BTRFS_I(inode)->io_tree.track_uptodate = false;
2120         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2125         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127         btrfs_insert_inode_hash(inode);
2128 }
2129
2130 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131 {
2132         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133         init_rwsem(&fs_info->dev_replace.rwsem);
2134         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2135 }
2136
2137 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138 {
2139         spin_lock_init(&fs_info->qgroup_lock);
2140         mutex_init(&fs_info->qgroup_ioctl_lock);
2141         fs_info->qgroup_tree = RB_ROOT;
2142         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143         fs_info->qgroup_seq = 1;
2144         fs_info->qgroup_ulist = NULL;
2145         fs_info->qgroup_rescan_running = false;
2146         mutex_init(&fs_info->qgroup_rescan_lock);
2147 }
2148
2149 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150                 struct btrfs_fs_devices *fs_devices)
2151 {
2152         u32 max_active = fs_info->thread_pool_size;
2153         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155         fs_info->workers =
2156                 btrfs_alloc_workqueue(fs_info, "worker",
2157                                       flags | WQ_HIGHPRI, max_active, 16);
2158
2159         fs_info->delalloc_workers =
2160                 btrfs_alloc_workqueue(fs_info, "delalloc",
2161                                       flags, max_active, 2);
2162
2163         fs_info->flush_workers =
2164                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165                                       flags, max_active, 0);
2166
2167         fs_info->caching_workers =
2168                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
2170         fs_info->fixup_workers =
2171                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2172
2173         /*
2174          * endios are largely parallel and should have a very
2175          * low idle thresh
2176          */
2177         fs_info->endio_workers =
2178                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2179         fs_info->endio_meta_workers =
2180                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2181                                       max_active, 4);
2182         fs_info->endio_meta_write_workers =
2183                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2184                                       max_active, 2);
2185         fs_info->endio_raid56_workers =
2186                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2187                                       max_active, 4);
2188         fs_info->rmw_workers =
2189                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2190         fs_info->endio_write_workers =
2191                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2192                                       max_active, 2);
2193         fs_info->endio_freespace_worker =
2194                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2195                                       max_active, 0);
2196         fs_info->delayed_workers =
2197                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2198                                       max_active, 0);
2199         fs_info->readahead_workers =
2200                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2201                                       max_active, 2);
2202         fs_info->qgroup_rescan_workers =
2203                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2204         fs_info->discard_ctl.discard_workers =
2205                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2206
2207         if (!(fs_info->workers && fs_info->delalloc_workers &&
2208               fs_info->flush_workers &&
2209               fs_info->endio_workers && fs_info->endio_meta_workers &&
2210               fs_info->endio_meta_write_workers &&
2211               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2212               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2213               fs_info->caching_workers && fs_info->readahead_workers &&
2214               fs_info->fixup_workers && fs_info->delayed_workers &&
2215               fs_info->qgroup_rescan_workers &&
2216               fs_info->discard_ctl.discard_workers)) {
2217                 return -ENOMEM;
2218         }
2219
2220         return 0;
2221 }
2222
2223 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2224 {
2225         struct crypto_shash *csum_shash;
2226         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2227
2228         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2229
2230         if (IS_ERR(csum_shash)) {
2231                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2232                           csum_driver);
2233                 return PTR_ERR(csum_shash);
2234         }
2235
2236         fs_info->csum_shash = csum_shash;
2237
2238         return 0;
2239 }
2240
2241 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2242                             struct btrfs_fs_devices *fs_devices)
2243 {
2244         int ret;
2245         struct btrfs_root *log_tree_root;
2246         struct btrfs_super_block *disk_super = fs_info->super_copy;
2247         u64 bytenr = btrfs_super_log_root(disk_super);
2248         int level = btrfs_super_log_root_level(disk_super);
2249
2250         if (fs_devices->rw_devices == 0) {
2251                 btrfs_warn(fs_info, "log replay required on RO media");
2252                 return -EIO;
2253         }
2254
2255         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2256                                          GFP_KERNEL);
2257         if (!log_tree_root)
2258                 return -ENOMEM;
2259
2260         log_tree_root->node = read_tree_block(fs_info, bytenr,
2261                                               fs_info->generation + 1,
2262                                               level, NULL);
2263         if (IS_ERR(log_tree_root->node)) {
2264                 btrfs_warn(fs_info, "failed to read log tree");
2265                 ret = PTR_ERR(log_tree_root->node);
2266                 log_tree_root->node = NULL;
2267                 btrfs_put_root(log_tree_root);
2268                 return ret;
2269         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2270                 btrfs_err(fs_info, "failed to read log tree");
2271                 btrfs_put_root(log_tree_root);
2272                 return -EIO;
2273         }
2274         /* returns with log_tree_root freed on success */
2275         ret = btrfs_recover_log_trees(log_tree_root);
2276         if (ret) {
2277                 btrfs_handle_fs_error(fs_info, ret,
2278                                       "Failed to recover log tree");
2279                 btrfs_put_root(log_tree_root);
2280                 return ret;
2281         }
2282
2283         if (sb_rdonly(fs_info->sb)) {
2284                 ret = btrfs_commit_super(fs_info);
2285                 if (ret)
2286                         return ret;
2287         }
2288
2289         return 0;
2290 }
2291
2292 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2293 {
2294         struct btrfs_root *tree_root = fs_info->tree_root;
2295         struct btrfs_root *root;
2296         struct btrfs_key location;
2297         int ret;
2298
2299         BUG_ON(!fs_info->tree_root);
2300
2301         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2302         location.type = BTRFS_ROOT_ITEM_KEY;
2303         location.offset = 0;
2304
2305         root = btrfs_read_tree_root(tree_root, &location);
2306         if (IS_ERR(root)) {
2307                 ret = PTR_ERR(root);
2308                 goto out;
2309         }
2310         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311         fs_info->extent_root = root;
2312
2313         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2314         root = btrfs_read_tree_root(tree_root, &location);
2315         if (IS_ERR(root)) {
2316                 ret = PTR_ERR(root);
2317                 goto out;
2318         }
2319         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320         fs_info->dev_root = root;
2321         btrfs_init_devices_late(fs_info);
2322
2323         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2324         root = btrfs_read_tree_root(tree_root, &location);
2325         if (IS_ERR(root)) {
2326                 ret = PTR_ERR(root);
2327                 goto out;
2328         }
2329         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330         fs_info->csum_root = root;
2331
2332         /*
2333          * This tree can share blocks with some other fs tree during relocation
2334          * and we need a proper setup by btrfs_get_fs_root
2335          */
2336         root = btrfs_get_fs_root(tree_root->fs_info,
2337                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2338         if (IS_ERR(root)) {
2339                 ret = PTR_ERR(root);
2340                 goto out;
2341         }
2342         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343         fs_info->data_reloc_root = root;
2344
2345         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2346         root = btrfs_read_tree_root(tree_root, &location);
2347         if (!IS_ERR(root)) {
2348                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2350                 fs_info->quota_root = root;
2351         }
2352
2353         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2354         root = btrfs_read_tree_root(tree_root, &location);
2355         if (IS_ERR(root)) {
2356                 ret = PTR_ERR(root);
2357                 if (ret != -ENOENT)
2358                         goto out;
2359         } else {
2360                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361                 fs_info->uuid_root = root;
2362         }
2363
2364         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2365                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2366                 root = btrfs_read_tree_root(tree_root, &location);
2367                 if (IS_ERR(root)) {
2368                         ret = PTR_ERR(root);
2369                         goto out;
2370                 }
2371                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372                 fs_info->free_space_root = root;
2373         }
2374
2375         return 0;
2376 out:
2377         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2378                    location.objectid, ret);
2379         return ret;
2380 }
2381
2382 /*
2383  * Real super block validation
2384  * NOTE: super csum type and incompat features will not be checked here.
2385  *
2386  * @sb:         super block to check
2387  * @mirror_num: the super block number to check its bytenr:
2388  *              0       the primary (1st) sb
2389  *              1, 2    2nd and 3rd backup copy
2390  *             -1       skip bytenr check
2391  */
2392 static int validate_super(struct btrfs_fs_info *fs_info,
2393                             struct btrfs_super_block *sb, int mirror_num)
2394 {
2395         u64 nodesize = btrfs_super_nodesize(sb);
2396         u64 sectorsize = btrfs_super_sectorsize(sb);
2397         int ret = 0;
2398
2399         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2400                 btrfs_err(fs_info, "no valid FS found");
2401                 ret = -EINVAL;
2402         }
2403         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2404                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2405                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2406                 ret = -EINVAL;
2407         }
2408         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2410                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2411                 ret = -EINVAL;
2412         }
2413         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2414                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2415                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2416                 ret = -EINVAL;
2417         }
2418         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2420                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2421                 ret = -EINVAL;
2422         }
2423
2424         /*
2425          * Check sectorsize and nodesize first, other check will need it.
2426          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2427          */
2428         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2429             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2430                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2431                 ret = -EINVAL;
2432         }
2433         /* Only PAGE SIZE is supported yet */
2434         if (sectorsize != PAGE_SIZE) {
2435                 btrfs_err(fs_info,
2436                         "sectorsize %llu not supported yet, only support %lu",
2437                         sectorsize, PAGE_SIZE);
2438                 ret = -EINVAL;
2439         }
2440         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2441             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2442                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2443                 ret = -EINVAL;
2444         }
2445         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2446                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2447                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2448                 ret = -EINVAL;
2449         }
2450
2451         /* Root alignment check */
2452         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2453                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2454                            btrfs_super_root(sb));
2455                 ret = -EINVAL;
2456         }
2457         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2458                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2459                            btrfs_super_chunk_root(sb));
2460                 ret = -EINVAL;
2461         }
2462         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2463                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2464                            btrfs_super_log_root(sb));
2465                 ret = -EINVAL;
2466         }
2467
2468         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2469                    BTRFS_FSID_SIZE) != 0) {
2470                 btrfs_err(fs_info,
2471                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2472                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2473                 ret = -EINVAL;
2474         }
2475
2476         /*
2477          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2478          * done later
2479          */
2480         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2481                 btrfs_err(fs_info, "bytes_used is too small %llu",
2482                           btrfs_super_bytes_used(sb));
2483                 ret = -EINVAL;
2484         }
2485         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2486                 btrfs_err(fs_info, "invalid stripesize %u",
2487                           btrfs_super_stripesize(sb));
2488                 ret = -EINVAL;
2489         }
2490         if (btrfs_super_num_devices(sb) > (1UL << 31))
2491                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2492                            btrfs_super_num_devices(sb));
2493         if (btrfs_super_num_devices(sb) == 0) {
2494                 btrfs_err(fs_info, "number of devices is 0");
2495                 ret = -EINVAL;
2496         }
2497
2498         if (mirror_num >= 0 &&
2499             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2500                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2501                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2502                 ret = -EINVAL;
2503         }
2504
2505         /*
2506          * Obvious sys_chunk_array corruptions, it must hold at least one key
2507          * and one chunk
2508          */
2509         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2510                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2511                           btrfs_super_sys_array_size(sb),
2512                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2513                 ret = -EINVAL;
2514         }
2515         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2516                         + sizeof(struct btrfs_chunk)) {
2517                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2518                           btrfs_super_sys_array_size(sb),
2519                           sizeof(struct btrfs_disk_key)
2520                           + sizeof(struct btrfs_chunk));
2521                 ret = -EINVAL;
2522         }
2523
2524         /*
2525          * The generation is a global counter, we'll trust it more than the others
2526          * but it's still possible that it's the one that's wrong.
2527          */
2528         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2529                 btrfs_warn(fs_info,
2530                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2531                         btrfs_super_generation(sb),
2532                         btrfs_super_chunk_root_generation(sb));
2533         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2534             && btrfs_super_cache_generation(sb) != (u64)-1)
2535                 btrfs_warn(fs_info,
2536                         "suspicious: generation < cache_generation: %llu < %llu",
2537                         btrfs_super_generation(sb),
2538                         btrfs_super_cache_generation(sb));
2539
2540         return ret;
2541 }
2542
2543 /*
2544  * Validation of super block at mount time.
2545  * Some checks already done early at mount time, like csum type and incompat
2546  * flags will be skipped.
2547  */
2548 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2549 {
2550         return validate_super(fs_info, fs_info->super_copy, 0);
2551 }
2552
2553 /*
2554  * Validation of super block at write time.
2555  * Some checks like bytenr check will be skipped as their values will be
2556  * overwritten soon.
2557  * Extra checks like csum type and incompat flags will be done here.
2558  */
2559 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2560                                       struct btrfs_super_block *sb)
2561 {
2562         int ret;
2563
2564         ret = validate_super(fs_info, sb, -1);
2565         if (ret < 0)
2566                 goto out;
2567         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2568                 ret = -EUCLEAN;
2569                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2570                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2571                 goto out;
2572         }
2573         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2574                 ret = -EUCLEAN;
2575                 btrfs_err(fs_info,
2576                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2577                           btrfs_super_incompat_flags(sb),
2578                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2579                 goto out;
2580         }
2581 out:
2582         if (ret < 0)
2583                 btrfs_err(fs_info,
2584                 "super block corruption detected before writing it to disk");
2585         return ret;
2586 }
2587
2588 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2589 {
2590         int backup_index = find_newest_super_backup(fs_info);
2591         struct btrfs_super_block *sb = fs_info->super_copy;
2592         struct btrfs_root *tree_root = fs_info->tree_root;
2593         bool handle_error = false;
2594         int ret = 0;
2595         int i;
2596
2597         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2598                 u64 generation;
2599                 int level;
2600
2601                 if (handle_error) {
2602                         if (!IS_ERR(tree_root->node))
2603                                 free_extent_buffer(tree_root->node);
2604                         tree_root->node = NULL;
2605
2606                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2607                                 break;
2608
2609                         free_root_pointers(fs_info, 0);
2610
2611                         /*
2612                          * Don't use the log in recovery mode, it won't be
2613                          * valid
2614                          */
2615                         btrfs_set_super_log_root(sb, 0);
2616
2617                         /* We can't trust the free space cache either */
2618                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2619
2620                         ret = read_backup_root(fs_info, i);
2621                         backup_index = ret;
2622                         if (ret < 0)
2623                                 return ret;
2624                 }
2625                 generation = btrfs_super_generation(sb);
2626                 level = btrfs_super_root_level(sb);
2627                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2628                                                   generation, level, NULL);
2629                 if (IS_ERR(tree_root->node) ||
2630                     !extent_buffer_uptodate(tree_root->node)) {
2631                         handle_error = true;
2632
2633                         if (IS_ERR(tree_root->node)) {
2634                                 ret = PTR_ERR(tree_root->node);
2635                                 tree_root->node = NULL;
2636                         } else if (!extent_buffer_uptodate(tree_root->node)) {
2637                                 ret = -EUCLEAN;
2638                         }
2639
2640                         btrfs_warn(fs_info, "failed to read tree root");
2641                         continue;
2642                 }
2643
2644                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2645                 tree_root->commit_root = btrfs_root_node(tree_root);
2646                 btrfs_set_root_refs(&tree_root->root_item, 1);
2647
2648                 /*
2649                  * No need to hold btrfs_root::objectid_mutex since the fs
2650                  * hasn't been fully initialised and we are the only user
2651                  */
2652                 ret = btrfs_find_highest_objectid(tree_root,
2653                                                 &tree_root->highest_objectid);
2654                 if (ret < 0) {
2655                         handle_error = true;
2656                         continue;
2657                 }
2658
2659                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2660
2661                 ret = btrfs_read_roots(fs_info);
2662                 if (ret < 0) {
2663                         handle_error = true;
2664                         continue;
2665                 }
2666
2667                 /* All successful */
2668                 fs_info->generation = generation;
2669                 fs_info->last_trans_committed = generation;
2670
2671                 /* Always begin writing backup roots after the one being used */
2672                 if (backup_index < 0) {
2673                         fs_info->backup_root_index = 0;
2674                 } else {
2675                         fs_info->backup_root_index = backup_index + 1;
2676                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2677                 }
2678                 break;
2679         }
2680
2681         return ret;
2682 }
2683
2684 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2685 {
2686         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2687         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2688         INIT_LIST_HEAD(&fs_info->trans_list);
2689         INIT_LIST_HEAD(&fs_info->dead_roots);
2690         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2691         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2692         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2693         spin_lock_init(&fs_info->delalloc_root_lock);
2694         spin_lock_init(&fs_info->trans_lock);
2695         spin_lock_init(&fs_info->fs_roots_radix_lock);
2696         spin_lock_init(&fs_info->delayed_iput_lock);
2697         spin_lock_init(&fs_info->defrag_inodes_lock);
2698         spin_lock_init(&fs_info->super_lock);
2699         spin_lock_init(&fs_info->buffer_lock);
2700         spin_lock_init(&fs_info->unused_bgs_lock);
2701         rwlock_init(&fs_info->tree_mod_log_lock);
2702         mutex_init(&fs_info->unused_bg_unpin_mutex);
2703         mutex_init(&fs_info->delete_unused_bgs_mutex);
2704         mutex_init(&fs_info->reloc_mutex);
2705         mutex_init(&fs_info->delalloc_root_mutex);
2706         seqlock_init(&fs_info->profiles_lock);
2707
2708         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2709         INIT_LIST_HEAD(&fs_info->space_info);
2710         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2711         INIT_LIST_HEAD(&fs_info->unused_bgs);
2712 #ifdef CONFIG_BTRFS_DEBUG
2713         INIT_LIST_HEAD(&fs_info->allocated_roots);
2714         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2715         spin_lock_init(&fs_info->eb_leak_lock);
2716 #endif
2717         extent_map_tree_init(&fs_info->mapping_tree);
2718         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2719                              BTRFS_BLOCK_RSV_GLOBAL);
2720         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2721         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2722         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2723         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2724                              BTRFS_BLOCK_RSV_DELOPS);
2725         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2726                              BTRFS_BLOCK_RSV_DELREFS);
2727
2728         atomic_set(&fs_info->async_delalloc_pages, 0);
2729         atomic_set(&fs_info->defrag_running, 0);
2730         atomic_set(&fs_info->reada_works_cnt, 0);
2731         atomic_set(&fs_info->nr_delayed_iputs, 0);
2732         atomic64_set(&fs_info->tree_mod_seq, 0);
2733         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2734         fs_info->metadata_ratio = 0;
2735         fs_info->defrag_inodes = RB_ROOT;
2736         atomic64_set(&fs_info->free_chunk_space, 0);
2737         fs_info->tree_mod_log = RB_ROOT;
2738         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2739         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2740         /* readahead state */
2741         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2742         spin_lock_init(&fs_info->reada_lock);
2743         btrfs_init_ref_verify(fs_info);
2744
2745         fs_info->thread_pool_size = min_t(unsigned long,
2746                                           num_online_cpus() + 2, 8);
2747
2748         INIT_LIST_HEAD(&fs_info->ordered_roots);
2749         spin_lock_init(&fs_info->ordered_root_lock);
2750
2751         btrfs_init_scrub(fs_info);
2752 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2753         fs_info->check_integrity_print_mask = 0;
2754 #endif
2755         btrfs_init_balance(fs_info);
2756         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2757
2758         spin_lock_init(&fs_info->block_group_cache_lock);
2759         fs_info->block_group_cache_tree = RB_ROOT;
2760         fs_info->first_logical_byte = (u64)-1;
2761
2762         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2763                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2764         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2765
2766         mutex_init(&fs_info->ordered_operations_mutex);
2767         mutex_init(&fs_info->tree_log_mutex);
2768         mutex_init(&fs_info->chunk_mutex);
2769         mutex_init(&fs_info->transaction_kthread_mutex);
2770         mutex_init(&fs_info->cleaner_mutex);
2771         mutex_init(&fs_info->ro_block_group_mutex);
2772         init_rwsem(&fs_info->commit_root_sem);
2773         init_rwsem(&fs_info->cleanup_work_sem);
2774         init_rwsem(&fs_info->subvol_sem);
2775         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2776
2777         btrfs_init_dev_replace_locks(fs_info);
2778         btrfs_init_qgroup(fs_info);
2779         btrfs_discard_init(fs_info);
2780
2781         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2782         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2783
2784         init_waitqueue_head(&fs_info->transaction_throttle);
2785         init_waitqueue_head(&fs_info->transaction_wait);
2786         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2787         init_waitqueue_head(&fs_info->async_submit_wait);
2788         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2789
2790         /* Usable values until the real ones are cached from the superblock */
2791         fs_info->nodesize = 4096;
2792         fs_info->sectorsize = 4096;
2793         fs_info->stripesize = 4096;
2794
2795         spin_lock_init(&fs_info->swapfile_pins_lock);
2796         fs_info->swapfile_pins = RB_ROOT;
2797
2798         fs_info->send_in_progress = 0;
2799 }
2800
2801 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2802 {
2803         int ret;
2804
2805         fs_info->sb = sb;
2806         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2807         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2808
2809         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2810         if (ret)
2811                 return ret;
2812
2813         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2814         if (ret)
2815                 return ret;
2816
2817         fs_info->dirty_metadata_batch = PAGE_SIZE *
2818                                         (1 + ilog2(nr_cpu_ids));
2819
2820         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2821         if (ret)
2822                 return ret;
2823
2824         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2825                         GFP_KERNEL);
2826         if (ret)
2827                 return ret;
2828
2829         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2830                                         GFP_KERNEL);
2831         if (!fs_info->delayed_root)
2832                 return -ENOMEM;
2833         btrfs_init_delayed_root(fs_info->delayed_root);
2834
2835         return btrfs_alloc_stripe_hash_table(fs_info);
2836 }
2837
2838 static int btrfs_uuid_rescan_kthread(void *data)
2839 {
2840         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2841         int ret;
2842
2843         /*
2844          * 1st step is to iterate through the existing UUID tree and
2845          * to delete all entries that contain outdated data.
2846          * 2nd step is to add all missing entries to the UUID tree.
2847          */
2848         ret = btrfs_uuid_tree_iterate(fs_info);
2849         if (ret < 0) {
2850                 if (ret != -EINTR)
2851                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2852                                    ret);
2853                 up(&fs_info->uuid_tree_rescan_sem);
2854                 return ret;
2855         }
2856         return btrfs_uuid_scan_kthread(data);
2857 }
2858
2859 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2860 {
2861         struct task_struct *task;
2862
2863         down(&fs_info->uuid_tree_rescan_sem);
2864         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2865         if (IS_ERR(task)) {
2866                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2867                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2868                 up(&fs_info->uuid_tree_rescan_sem);
2869                 return PTR_ERR(task);
2870         }
2871
2872         return 0;
2873 }
2874
2875 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2876                       char *options)
2877 {
2878         u32 sectorsize;
2879         u32 nodesize;
2880         u32 stripesize;
2881         u64 generation;
2882         u64 features;
2883         u16 csum_type;
2884         struct btrfs_super_block *disk_super;
2885         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2886         struct btrfs_root *tree_root;
2887         struct btrfs_root *chunk_root;
2888         int ret;
2889         int err = -EINVAL;
2890         int clear_free_space_tree = 0;
2891         int level;
2892
2893         ret = init_mount_fs_info(fs_info, sb);
2894         if (ret) {
2895                 err = ret;
2896                 goto fail;
2897         }
2898
2899         /* These need to be init'ed before we start creating inodes and such. */
2900         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2901                                      GFP_KERNEL);
2902         fs_info->tree_root = tree_root;
2903         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2904                                       GFP_KERNEL);
2905         fs_info->chunk_root = chunk_root;
2906         if (!tree_root || !chunk_root) {
2907                 err = -ENOMEM;
2908                 goto fail;
2909         }
2910
2911         fs_info->btree_inode = new_inode(sb);
2912         if (!fs_info->btree_inode) {
2913                 err = -ENOMEM;
2914                 goto fail;
2915         }
2916         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2917         btrfs_init_btree_inode(fs_info);
2918
2919         invalidate_bdev(fs_devices->latest_bdev);
2920
2921         /*
2922          * Read super block and check the signature bytes only
2923          */
2924         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2925         if (IS_ERR(disk_super)) {
2926                 err = PTR_ERR(disk_super);
2927                 goto fail_alloc;
2928         }
2929
2930         /*
2931          * Verify the type first, if that or the the checksum value are
2932          * corrupted, we'll find out
2933          */
2934         csum_type = btrfs_super_csum_type(disk_super);
2935         if (!btrfs_supported_super_csum(csum_type)) {
2936                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2937                           csum_type);
2938                 err = -EINVAL;
2939                 btrfs_release_disk_super(disk_super);
2940                 goto fail_alloc;
2941         }
2942
2943         ret = btrfs_init_csum_hash(fs_info, csum_type);
2944         if (ret) {
2945                 err = ret;
2946                 btrfs_release_disk_super(disk_super);
2947                 goto fail_alloc;
2948         }
2949
2950         /*
2951          * We want to check superblock checksum, the type is stored inside.
2952          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2953          */
2954         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2955                 btrfs_err(fs_info, "superblock checksum mismatch");
2956                 err = -EINVAL;
2957                 btrfs_release_disk_super(disk_super);
2958                 goto fail_alloc;
2959         }
2960
2961         /*
2962          * super_copy is zeroed at allocation time and we never touch the
2963          * following bytes up to INFO_SIZE, the checksum is calculated from
2964          * the whole block of INFO_SIZE
2965          */
2966         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2967         btrfs_release_disk_super(disk_super);
2968
2969         disk_super = fs_info->super_copy;
2970
2971         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2972                        BTRFS_FSID_SIZE));
2973
2974         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2975                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2976                                 fs_info->super_copy->metadata_uuid,
2977                                 BTRFS_FSID_SIZE));
2978         }
2979
2980         features = btrfs_super_flags(disk_super);
2981         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2982                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2983                 btrfs_set_super_flags(disk_super, features);
2984                 btrfs_info(fs_info,
2985                         "found metadata UUID change in progress flag, clearing");
2986         }
2987
2988         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2989                sizeof(*fs_info->super_for_commit));
2990
2991         ret = btrfs_validate_mount_super(fs_info);
2992         if (ret) {
2993                 btrfs_err(fs_info, "superblock contains fatal errors");
2994                 err = -EINVAL;
2995                 goto fail_alloc;
2996         }
2997
2998         if (!btrfs_super_root(disk_super))
2999                 goto fail_alloc;
3000
3001         /* check FS state, whether FS is broken. */
3002         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3003                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3004
3005         /*
3006          * In the long term, we'll store the compression type in the super
3007          * block, and it'll be used for per file compression control.
3008          */
3009         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3010
3011         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3012         if (ret) {
3013                 err = ret;
3014                 goto fail_alloc;
3015         }
3016
3017         features = btrfs_super_incompat_flags(disk_super) &
3018                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3019         if (features) {
3020                 btrfs_err(fs_info,
3021                     "cannot mount because of unsupported optional features (%llx)",
3022                     features);
3023                 err = -EINVAL;
3024                 goto fail_alloc;
3025         }
3026
3027         features = btrfs_super_incompat_flags(disk_super);
3028         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3029         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3030                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3031         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3032                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3033
3034         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3035                 btrfs_info(fs_info, "has skinny extents");
3036
3037         /*
3038          * flag our filesystem as having big metadata blocks if
3039          * they are bigger than the page size
3040          */
3041         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3042                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3043                         btrfs_info(fs_info,
3044                                 "flagging fs with big metadata feature");
3045                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3046         }
3047
3048         nodesize = btrfs_super_nodesize(disk_super);
3049         sectorsize = btrfs_super_sectorsize(disk_super);
3050         stripesize = sectorsize;
3051         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3052         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3053
3054         /* Cache block sizes */
3055         fs_info->nodesize = nodesize;
3056         fs_info->sectorsize = sectorsize;
3057         fs_info->stripesize = stripesize;
3058
3059         /*
3060          * mixed block groups end up with duplicate but slightly offset
3061          * extent buffers for the same range.  It leads to corruptions
3062          */
3063         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3064             (sectorsize != nodesize)) {
3065                 btrfs_err(fs_info,
3066 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3067                         nodesize, sectorsize);
3068                 goto fail_alloc;
3069         }
3070
3071         /*
3072          * Needn't use the lock because there is no other task which will
3073          * update the flag.
3074          */
3075         btrfs_set_super_incompat_flags(disk_super, features);
3076
3077         features = btrfs_super_compat_ro_flags(disk_super) &
3078                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3079         if (!sb_rdonly(sb) && features) {
3080                 btrfs_err(fs_info,
3081         "cannot mount read-write because of unsupported optional features (%llx)",
3082                        features);
3083                 err = -EINVAL;
3084                 goto fail_alloc;
3085         }
3086
3087         ret = btrfs_init_workqueues(fs_info, fs_devices);
3088         if (ret) {
3089                 err = ret;
3090                 goto fail_sb_buffer;
3091         }
3092
3093         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3094         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3095         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3096         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3097
3098         sb->s_blocksize = sectorsize;
3099         sb->s_blocksize_bits = blksize_bits(sectorsize);
3100         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3101
3102         mutex_lock(&fs_info->chunk_mutex);
3103         ret = btrfs_read_sys_array(fs_info);
3104         mutex_unlock(&fs_info->chunk_mutex);
3105         if (ret) {
3106                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3107                 goto fail_sb_buffer;
3108         }
3109
3110         generation = btrfs_super_chunk_root_generation(disk_super);
3111         level = btrfs_super_chunk_root_level(disk_super);
3112
3113         chunk_root->node = read_tree_block(fs_info,
3114                                            btrfs_super_chunk_root(disk_super),
3115                                            generation, level, NULL);
3116         if (IS_ERR(chunk_root->node) ||
3117             !extent_buffer_uptodate(chunk_root->node)) {
3118                 btrfs_err(fs_info, "failed to read chunk root");
3119                 if (!IS_ERR(chunk_root->node))
3120                         free_extent_buffer(chunk_root->node);
3121                 chunk_root->node = NULL;
3122                 goto fail_tree_roots;
3123         }
3124         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3125         chunk_root->commit_root = btrfs_root_node(chunk_root);
3126
3127         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3128                            offsetof(struct btrfs_header, chunk_tree_uuid),
3129                            BTRFS_UUID_SIZE);
3130
3131         ret = btrfs_read_chunk_tree(fs_info);
3132         if (ret) {
3133                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3134                 goto fail_tree_roots;
3135         }
3136
3137         /*
3138          * Keep the devid that is marked to be the target device for the
3139          * device replace procedure
3140          */
3141         btrfs_free_extra_devids(fs_devices, 0);
3142
3143         if (!fs_devices->latest_bdev) {
3144                 btrfs_err(fs_info, "failed to read devices");
3145                 goto fail_tree_roots;
3146         }
3147
3148         ret = init_tree_roots(fs_info);
3149         if (ret)
3150                 goto fail_tree_roots;
3151
3152         /*
3153          * If we have a uuid root and we're not being told to rescan we need to
3154          * check the generation here so we can set the
3155          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3156          * transaction during a balance or the log replay without updating the
3157          * uuid generation, and then if we crash we would rescan the uuid tree,
3158          * even though it was perfectly fine.
3159          */
3160         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3161             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3162                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3163
3164         ret = btrfs_verify_dev_extents(fs_info);
3165         if (ret) {
3166                 btrfs_err(fs_info,
3167                           "failed to verify dev extents against chunks: %d",
3168                           ret);
3169                 goto fail_block_groups;
3170         }
3171         ret = btrfs_recover_balance(fs_info);
3172         if (ret) {
3173                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3174                 goto fail_block_groups;
3175         }
3176
3177         ret = btrfs_init_dev_stats(fs_info);
3178         if (ret) {
3179                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3180                 goto fail_block_groups;
3181         }
3182
3183         ret = btrfs_init_dev_replace(fs_info);
3184         if (ret) {
3185                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3186                 goto fail_block_groups;
3187         }
3188
3189         btrfs_free_extra_devids(fs_devices, 1);
3190
3191         ret = btrfs_sysfs_add_fsid(fs_devices);
3192         if (ret) {
3193                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3194                                 ret);
3195                 goto fail_block_groups;
3196         }
3197
3198         ret = btrfs_sysfs_add_mounted(fs_info);
3199         if (ret) {
3200                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3201                 goto fail_fsdev_sysfs;
3202         }
3203
3204         ret = btrfs_init_space_info(fs_info);
3205         if (ret) {
3206                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3207                 goto fail_sysfs;
3208         }
3209
3210         ret = btrfs_read_block_groups(fs_info);
3211         if (ret) {
3212                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3213                 goto fail_sysfs;
3214         }
3215
3216         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3217                 btrfs_warn(fs_info,
3218                 "writable mount is not allowed due to too many missing devices");
3219                 goto fail_sysfs;
3220         }
3221
3222         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3223                                                "btrfs-cleaner");
3224         if (IS_ERR(fs_info->cleaner_kthread))
3225                 goto fail_sysfs;
3226
3227         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3228                                                    tree_root,
3229                                                    "btrfs-transaction");
3230         if (IS_ERR(fs_info->transaction_kthread))
3231                 goto fail_cleaner;
3232
3233         if (!btrfs_test_opt(fs_info, NOSSD) &&
3234             !fs_info->fs_devices->rotating) {
3235                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3236         }
3237
3238         /*
3239          * Mount does not set all options immediately, we can do it now and do
3240          * not have to wait for transaction commit
3241          */
3242         btrfs_apply_pending_changes(fs_info);
3243
3244 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3245         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3246                 ret = btrfsic_mount(fs_info, fs_devices,
3247                                     btrfs_test_opt(fs_info,
3248                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3249                                     1 : 0,
3250                                     fs_info->check_integrity_print_mask);
3251                 if (ret)
3252                         btrfs_warn(fs_info,
3253                                 "failed to initialize integrity check module: %d",
3254                                 ret);
3255         }
3256 #endif
3257         ret = btrfs_read_qgroup_config(fs_info);
3258         if (ret)
3259                 goto fail_trans_kthread;
3260
3261         if (btrfs_build_ref_tree(fs_info))
3262                 btrfs_err(fs_info, "couldn't build ref tree");
3263
3264         /* do not make disk changes in broken FS or nologreplay is given */
3265         if (btrfs_super_log_root(disk_super) != 0 &&
3266             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3267                 btrfs_info(fs_info, "start tree-log replay");
3268                 ret = btrfs_replay_log(fs_info, fs_devices);
3269                 if (ret) {
3270                         err = ret;
3271                         goto fail_qgroup;
3272                 }
3273         }
3274
3275         ret = btrfs_find_orphan_roots(fs_info);
3276         if (ret)
3277                 goto fail_qgroup;
3278
3279         if (!sb_rdonly(sb)) {
3280                 ret = btrfs_cleanup_fs_roots(fs_info);
3281                 if (ret)
3282                         goto fail_qgroup;
3283
3284                 mutex_lock(&fs_info->cleaner_mutex);
3285                 ret = btrfs_recover_relocation(tree_root);
3286                 mutex_unlock(&fs_info->cleaner_mutex);
3287                 if (ret < 0) {
3288                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3289                                         ret);
3290                         err = -EINVAL;
3291                         goto fail_qgroup;
3292                 }
3293         }
3294
3295         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3296         if (IS_ERR(fs_info->fs_root)) {
3297                 err = PTR_ERR(fs_info->fs_root);
3298                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3299                 fs_info->fs_root = NULL;
3300                 goto fail_qgroup;
3301         }
3302
3303         if (sb_rdonly(sb))
3304                 return 0;
3305
3306         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3307             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3308                 clear_free_space_tree = 1;
3309         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3310                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3311                 btrfs_warn(fs_info, "free space tree is invalid");
3312                 clear_free_space_tree = 1;
3313         }
3314
3315         if (clear_free_space_tree) {
3316                 btrfs_info(fs_info, "clearing free space tree");
3317                 ret = btrfs_clear_free_space_tree(fs_info);
3318                 if (ret) {
3319                         btrfs_warn(fs_info,
3320                                    "failed to clear free space tree: %d", ret);
3321                         close_ctree(fs_info);
3322                         return ret;
3323                 }
3324         }
3325
3326         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3327             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3328                 btrfs_info(fs_info, "creating free space tree");
3329                 ret = btrfs_create_free_space_tree(fs_info);
3330                 if (ret) {
3331                         btrfs_warn(fs_info,
3332                                 "failed to create free space tree: %d", ret);
3333                         close_ctree(fs_info);
3334                         return ret;
3335                 }
3336         }
3337
3338         down_read(&fs_info->cleanup_work_sem);
3339         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3340             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3341                 up_read(&fs_info->cleanup_work_sem);
3342                 close_ctree(fs_info);
3343                 return ret;
3344         }
3345         up_read(&fs_info->cleanup_work_sem);
3346
3347         ret = btrfs_resume_balance_async(fs_info);
3348         if (ret) {
3349                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3350                 close_ctree(fs_info);
3351                 return ret;
3352         }
3353
3354         ret = btrfs_resume_dev_replace_async(fs_info);
3355         if (ret) {
3356                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3357                 close_ctree(fs_info);
3358                 return ret;
3359         }
3360
3361         btrfs_qgroup_rescan_resume(fs_info);
3362         btrfs_discard_resume(fs_info);
3363
3364         if (!fs_info->uuid_root) {
3365                 btrfs_info(fs_info, "creating UUID tree");
3366                 ret = btrfs_create_uuid_tree(fs_info);
3367                 if (ret) {
3368                         btrfs_warn(fs_info,
3369                                 "failed to create the UUID tree: %d", ret);
3370                         close_ctree(fs_info);
3371                         return ret;
3372                 }
3373         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3374                    fs_info->generation !=
3375                                 btrfs_super_uuid_tree_generation(disk_super)) {
3376                 btrfs_info(fs_info, "checking UUID tree");
3377                 ret = btrfs_check_uuid_tree(fs_info);
3378                 if (ret) {
3379                         btrfs_warn(fs_info,
3380                                 "failed to check the UUID tree: %d", ret);
3381                         close_ctree(fs_info);
3382                         return ret;
3383                 }
3384         }
3385         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3386
3387         /*
3388          * backuproot only affect mount behavior, and if open_ctree succeeded,
3389          * no need to keep the flag
3390          */
3391         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3392
3393         return 0;
3394
3395 fail_qgroup:
3396         btrfs_free_qgroup_config(fs_info);
3397 fail_trans_kthread:
3398         kthread_stop(fs_info->transaction_kthread);
3399         btrfs_cleanup_transaction(fs_info);
3400         btrfs_free_fs_roots(fs_info);
3401 fail_cleaner:
3402         kthread_stop(fs_info->cleaner_kthread);
3403
3404         /*
3405          * make sure we're done with the btree inode before we stop our
3406          * kthreads
3407          */
3408         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3409
3410 fail_sysfs:
3411         btrfs_sysfs_remove_mounted(fs_info);
3412
3413 fail_fsdev_sysfs:
3414         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3415
3416 fail_block_groups:
3417         btrfs_put_block_group_cache(fs_info);
3418
3419 fail_tree_roots:
3420         if (fs_info->data_reloc_root)
3421                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3422         free_root_pointers(fs_info, true);
3423         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3424
3425 fail_sb_buffer:
3426         btrfs_stop_all_workers(fs_info);
3427         btrfs_free_block_groups(fs_info);
3428 fail_alloc:
3429         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3430
3431         iput(fs_info->btree_inode);
3432 fail:
3433         btrfs_close_devices(fs_info->fs_devices);
3434         return err;
3435 }
3436 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3437
3438 static void btrfs_end_super_write(struct bio *bio)
3439 {
3440         struct btrfs_device *device = bio->bi_private;
3441         struct bio_vec *bvec;
3442         struct bvec_iter_all iter_all;
3443         struct page *page;
3444
3445         bio_for_each_segment_all(bvec, bio, iter_all) {
3446                 page = bvec->bv_page;
3447
3448                 if (bio->bi_status) {
3449                         btrfs_warn_rl_in_rcu(device->fs_info,
3450                                 "lost page write due to IO error on %s (%d)",
3451                                 rcu_str_deref(device->name),
3452                                 blk_status_to_errno(bio->bi_status));
3453                         ClearPageUptodate(page);
3454                         SetPageError(page);
3455                         btrfs_dev_stat_inc_and_print(device,
3456                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3457                 } else {
3458                         SetPageUptodate(page);
3459                 }
3460
3461                 put_page(page);
3462                 unlock_page(page);
3463         }
3464
3465         bio_put(bio);
3466 }
3467
3468 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3469                                                    int copy_num)
3470 {
3471         struct btrfs_super_block *super;
3472         struct page *page;
3473         u64 bytenr;
3474         struct address_space *mapping = bdev->bd_inode->i_mapping;
3475
3476         bytenr = btrfs_sb_offset(copy_num);
3477         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3478                 return ERR_PTR(-EINVAL);
3479
3480         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3481         if (IS_ERR(page))
3482                 return ERR_CAST(page);
3483
3484         super = page_address(page);
3485         if (btrfs_super_bytenr(super) != bytenr ||
3486                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3487                 btrfs_release_disk_super(super);
3488                 return ERR_PTR(-EINVAL);
3489         }
3490
3491         return super;
3492 }
3493
3494
3495 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3496 {
3497         struct btrfs_super_block *super, *latest = NULL;
3498         int i;
3499         u64 transid = 0;
3500
3501         /* we would like to check all the supers, but that would make
3502          * a btrfs mount succeed after a mkfs from a different FS.
3503          * So, we need to add a special mount option to scan for
3504          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3505          */
3506         for (i = 0; i < 1; i++) {
3507                 super = btrfs_read_dev_one_super(bdev, i);
3508                 if (IS_ERR(super))
3509                         continue;
3510
3511                 if (!latest || btrfs_super_generation(super) > transid) {
3512                         if (latest)
3513                                 btrfs_release_disk_super(super);
3514
3515                         latest = super;
3516                         transid = btrfs_super_generation(super);
3517                 }
3518         }
3519
3520         return super;
3521 }
3522
3523 /*
3524  * Write superblock @sb to the @device. Do not wait for completion, all the
3525  * pages we use for writing are locked.
3526  *
3527  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3528  * the expected device size at commit time. Note that max_mirrors must be
3529  * same for write and wait phases.
3530  *
3531  * Return number of errors when page is not found or submission fails.
3532  */
3533 static int write_dev_supers(struct btrfs_device *device,
3534                             struct btrfs_super_block *sb, int max_mirrors)
3535 {
3536         struct btrfs_fs_info *fs_info = device->fs_info;
3537         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3538         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3539         int i;
3540         int errors = 0;
3541         u64 bytenr;
3542
3543         if (max_mirrors == 0)
3544                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3545
3546         shash->tfm = fs_info->csum_shash;
3547
3548         for (i = 0; i < max_mirrors; i++) {
3549                 struct page *page;
3550                 struct bio *bio;
3551                 struct btrfs_super_block *disk_super;
3552
3553                 bytenr = btrfs_sb_offset(i);
3554                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555                     device->commit_total_bytes)
3556                         break;
3557
3558                 btrfs_set_super_bytenr(sb, bytenr);
3559
3560                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3561                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3562                                     sb->csum);
3563
3564                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3565                                            GFP_NOFS);
3566                 if (!page) {
3567                         btrfs_err(device->fs_info,
3568                             "couldn't get super block page for bytenr %llu",
3569                             bytenr);
3570                         errors++;
3571                         continue;
3572                 }
3573
3574                 /* Bump the refcount for wait_dev_supers() */
3575                 get_page(page);
3576
3577                 disk_super = page_address(page);
3578                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3579
3580                 /*
3581                  * Directly use bios here instead of relying on the page cache
3582                  * to do I/O, so we don't lose the ability to do integrity
3583                  * checking.
3584                  */
3585                 bio = bio_alloc(GFP_NOFS, 1);
3586                 bio_set_dev(bio, device->bdev);
3587                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3588                 bio->bi_private = device;
3589                 bio->bi_end_io = btrfs_end_super_write;
3590                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3591                                offset_in_page(bytenr));
3592
3593                 /*
3594                  * We FUA only the first super block.  The others we allow to
3595                  * go down lazy and there's a short window where the on-disk
3596                  * copies might still contain the older version.
3597                  */
3598                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3599                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3600                         bio->bi_opf |= REQ_FUA;
3601
3602                 btrfsic_submit_bio(bio);
3603         }
3604         return errors < i ? 0 : -1;
3605 }
3606
3607 /*
3608  * Wait for write completion of superblocks done by write_dev_supers,
3609  * @max_mirrors same for write and wait phases.
3610  *
3611  * Return number of errors when page is not found or not marked up to
3612  * date.
3613  */
3614 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3615 {
3616         int i;
3617         int errors = 0;
3618         bool primary_failed = false;
3619         u64 bytenr;
3620
3621         if (max_mirrors == 0)
3622                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3623
3624         for (i = 0; i < max_mirrors; i++) {
3625                 struct page *page;
3626
3627                 bytenr = btrfs_sb_offset(i);
3628                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3629                     device->commit_total_bytes)
3630                         break;
3631
3632                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3633                                      bytenr >> PAGE_SHIFT);
3634                 if (!page) {
3635                         errors++;
3636                         if (i == 0)
3637                                 primary_failed = true;
3638                         continue;
3639                 }
3640                 /* Page is submitted locked and unlocked once the IO completes */
3641                 wait_on_page_locked(page);
3642                 if (PageError(page)) {
3643                         errors++;
3644                         if (i == 0)
3645                                 primary_failed = true;
3646                 }
3647
3648                 /* Drop our reference */
3649                 put_page(page);
3650
3651                 /* Drop the reference from the writing run */
3652                 put_page(page);
3653         }
3654
3655         /* log error, force error return */
3656         if (primary_failed) {
3657                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3658                           device->devid);
3659                 return -1;
3660         }
3661
3662         return errors < i ? 0 : -1;
3663 }
3664
3665 /*
3666  * endio for the write_dev_flush, this will wake anyone waiting
3667  * for the barrier when it is done
3668  */
3669 static void btrfs_end_empty_barrier(struct bio *bio)
3670 {
3671         complete(bio->bi_private);
3672 }
3673
3674 /*
3675  * Submit a flush request to the device if it supports it. Error handling is
3676  * done in the waiting counterpart.
3677  */
3678 static void write_dev_flush(struct btrfs_device *device)
3679 {
3680         struct request_queue *q = bdev_get_queue(device->bdev);
3681         struct bio *bio = device->flush_bio;
3682
3683         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3684                 return;
3685
3686         bio_reset(bio);
3687         bio->bi_end_io = btrfs_end_empty_barrier;
3688         bio_set_dev(bio, device->bdev);
3689         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3690         init_completion(&device->flush_wait);
3691         bio->bi_private = &device->flush_wait;
3692
3693         btrfsic_submit_bio(bio);
3694         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3695 }
3696
3697 /*
3698  * If the flush bio has been submitted by write_dev_flush, wait for it.
3699  */
3700 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3701 {
3702         struct bio *bio = device->flush_bio;
3703
3704         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3705                 return BLK_STS_OK;
3706
3707         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3708         wait_for_completion_io(&device->flush_wait);
3709
3710         return bio->bi_status;
3711 }
3712
3713 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3714 {
3715         if (!btrfs_check_rw_degradable(fs_info, NULL))
3716                 return -EIO;
3717         return 0;
3718 }
3719
3720 /*
3721  * send an empty flush down to each device in parallel,
3722  * then wait for them
3723  */
3724 static int barrier_all_devices(struct btrfs_fs_info *info)
3725 {
3726         struct list_head *head;
3727         struct btrfs_device *dev;
3728         int errors_wait = 0;
3729         blk_status_t ret;
3730
3731         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3732         /* send down all the barriers */
3733         head = &info->fs_devices->devices;
3734         list_for_each_entry(dev, head, dev_list) {
3735                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3736                         continue;
3737                 if (!dev->bdev)
3738                         continue;
3739                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3740                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3741                         continue;
3742
3743                 write_dev_flush(dev);
3744                 dev->last_flush_error = BLK_STS_OK;
3745         }
3746
3747         /* wait for all the barriers */
3748         list_for_each_entry(dev, head, dev_list) {
3749                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3750                         continue;
3751                 if (!dev->bdev) {
3752                         errors_wait++;
3753                         continue;
3754                 }
3755                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3756                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3757                         continue;
3758
3759                 ret = wait_dev_flush(dev);
3760                 if (ret) {
3761                         dev->last_flush_error = ret;
3762                         btrfs_dev_stat_inc_and_print(dev,
3763                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3764                         errors_wait++;
3765                 }
3766         }
3767
3768         if (errors_wait) {
3769                 /*
3770                  * At some point we need the status of all disks
3771                  * to arrive at the volume status. So error checking
3772                  * is being pushed to a separate loop.
3773                  */
3774                 return check_barrier_error(info);
3775         }
3776         return 0;
3777 }
3778
3779 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3780 {
3781         int raid_type;
3782         int min_tolerated = INT_MAX;
3783
3784         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3785             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3786                 min_tolerated = min_t(int, min_tolerated,
3787                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3788                                     tolerated_failures);
3789
3790         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3791                 if (raid_type == BTRFS_RAID_SINGLE)
3792                         continue;
3793                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3794                         continue;
3795                 min_tolerated = min_t(int, min_tolerated,
3796                                     btrfs_raid_array[raid_type].
3797                                     tolerated_failures);
3798         }
3799
3800         if (min_tolerated == INT_MAX) {
3801                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3802                 min_tolerated = 0;
3803         }
3804
3805         return min_tolerated;
3806 }
3807
3808 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3809 {
3810         struct list_head *head;
3811         struct btrfs_device *dev;
3812         struct btrfs_super_block *sb;
3813         struct btrfs_dev_item *dev_item;
3814         int ret;
3815         int do_barriers;
3816         int max_errors;
3817         int total_errors = 0;
3818         u64 flags;
3819
3820         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3821
3822         /*
3823          * max_mirrors == 0 indicates we're from commit_transaction,
3824          * not from fsync where the tree roots in fs_info have not
3825          * been consistent on disk.
3826          */
3827         if (max_mirrors == 0)
3828                 backup_super_roots(fs_info);
3829
3830         sb = fs_info->super_for_commit;
3831         dev_item = &sb->dev_item;
3832
3833         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3834         head = &fs_info->fs_devices->devices;
3835         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3836
3837         if (do_barriers) {
3838                 ret = barrier_all_devices(fs_info);
3839                 if (ret) {
3840                         mutex_unlock(
3841                                 &fs_info->fs_devices->device_list_mutex);
3842                         btrfs_handle_fs_error(fs_info, ret,
3843                                               "errors while submitting device barriers.");
3844                         return ret;
3845                 }
3846         }
3847
3848         list_for_each_entry(dev, head, dev_list) {
3849                 if (!dev->bdev) {
3850                         total_errors++;
3851                         continue;
3852                 }
3853                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3854                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3855                         continue;
3856
3857                 btrfs_set_stack_device_generation(dev_item, 0);
3858                 btrfs_set_stack_device_type(dev_item, dev->type);
3859                 btrfs_set_stack_device_id(dev_item, dev->devid);
3860                 btrfs_set_stack_device_total_bytes(dev_item,
3861                                                    dev->commit_total_bytes);
3862                 btrfs_set_stack_device_bytes_used(dev_item,
3863                                                   dev->commit_bytes_used);
3864                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3865                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3866                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3867                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3868                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3869                        BTRFS_FSID_SIZE);
3870
3871                 flags = btrfs_super_flags(sb);
3872                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3873
3874                 ret = btrfs_validate_write_super(fs_info, sb);
3875                 if (ret < 0) {
3876                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3878                                 "unexpected superblock corruption detected");
3879                         return -EUCLEAN;
3880                 }
3881
3882                 ret = write_dev_supers(dev, sb, max_mirrors);
3883                 if (ret)
3884                         total_errors++;
3885         }
3886         if (total_errors > max_errors) {
3887                 btrfs_err(fs_info, "%d errors while writing supers",
3888                           total_errors);
3889                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890
3891                 /* FUA is masked off if unsupported and can't be the reason */
3892                 btrfs_handle_fs_error(fs_info, -EIO,
3893                                       "%d errors while writing supers",
3894                                       total_errors);
3895                 return -EIO;
3896         }
3897
3898         total_errors = 0;
3899         list_for_each_entry(dev, head, dev_list) {
3900                 if (!dev->bdev)
3901                         continue;
3902                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3903                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3904                         continue;
3905
3906                 ret = wait_dev_supers(dev, max_mirrors);
3907                 if (ret)
3908                         total_errors++;
3909         }
3910         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3911         if (total_errors > max_errors) {
3912                 btrfs_handle_fs_error(fs_info, -EIO,
3913                                       "%d errors while writing supers",
3914                                       total_errors);
3915                 return -EIO;
3916         }
3917         return 0;
3918 }
3919
3920 /* Drop a fs root from the radix tree and free it. */
3921 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3922                                   struct btrfs_root *root)
3923 {
3924         bool drop_ref = false;
3925
3926         spin_lock(&fs_info->fs_roots_radix_lock);
3927         radix_tree_delete(&fs_info->fs_roots_radix,
3928                           (unsigned long)root->root_key.objectid);
3929         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3930                 drop_ref = true;
3931         spin_unlock(&fs_info->fs_roots_radix_lock);
3932
3933         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3934                 ASSERT(root->log_root == NULL);
3935                 if (root->reloc_root) {
3936                         btrfs_put_root(root->reloc_root);
3937                         root->reloc_root = NULL;
3938                 }
3939         }
3940
3941         if (root->free_ino_pinned)
3942                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3943         if (root->free_ino_ctl)
3944                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3945         if (root->ino_cache_inode) {
3946                 iput(root->ino_cache_inode);
3947                 root->ino_cache_inode = NULL;
3948         }
3949         if (drop_ref)
3950                 btrfs_put_root(root);
3951 }
3952
3953 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3954 {
3955         u64 root_objectid = 0;
3956         struct btrfs_root *gang[8];
3957         int i = 0;
3958         int err = 0;
3959         unsigned int ret = 0;
3960
3961         while (1) {
3962                 spin_lock(&fs_info->fs_roots_radix_lock);
3963                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3964                                              (void **)gang, root_objectid,
3965                                              ARRAY_SIZE(gang));
3966                 if (!ret) {
3967                         spin_unlock(&fs_info->fs_roots_radix_lock);
3968                         break;
3969                 }
3970                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3971
3972                 for (i = 0; i < ret; i++) {
3973                         /* Avoid to grab roots in dead_roots */
3974                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3975                                 gang[i] = NULL;
3976                                 continue;
3977                         }
3978                         /* grab all the search result for later use */
3979                         gang[i] = btrfs_grab_root(gang[i]);
3980                 }
3981                 spin_unlock(&fs_info->fs_roots_radix_lock);
3982
3983                 for (i = 0; i < ret; i++) {
3984                         if (!gang[i])
3985                                 continue;
3986                         root_objectid = gang[i]->root_key.objectid;
3987                         err = btrfs_orphan_cleanup(gang[i]);
3988                         if (err)
3989                                 break;
3990                         btrfs_put_root(gang[i]);
3991                 }
3992                 root_objectid++;
3993         }
3994
3995         /* release the uncleaned roots due to error */
3996         for (; i < ret; i++) {
3997                 if (gang[i])
3998                         btrfs_put_root(gang[i]);
3999         }
4000         return err;
4001 }
4002
4003 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4004 {
4005         struct btrfs_root *root = fs_info->tree_root;
4006         struct btrfs_trans_handle *trans;
4007
4008         mutex_lock(&fs_info->cleaner_mutex);
4009         btrfs_run_delayed_iputs(fs_info);
4010         mutex_unlock(&fs_info->cleaner_mutex);
4011         wake_up_process(fs_info->cleaner_kthread);
4012
4013         /* wait until ongoing cleanup work done */
4014         down_write(&fs_info->cleanup_work_sem);
4015         up_write(&fs_info->cleanup_work_sem);
4016
4017         trans = btrfs_join_transaction(root);
4018         if (IS_ERR(trans))
4019                 return PTR_ERR(trans);
4020         return btrfs_commit_transaction(trans);
4021 }
4022
4023 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4024 {
4025         int ret;
4026
4027         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4028         /*
4029          * We don't want the cleaner to start new transactions, add more delayed
4030          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4031          * because that frees the task_struct, and the transaction kthread might
4032          * still try to wake up the cleaner.
4033          */
4034         kthread_park(fs_info->cleaner_kthread);
4035
4036         /* wait for the qgroup rescan worker to stop */
4037         btrfs_qgroup_wait_for_completion(fs_info, false);
4038
4039         /* wait for the uuid_scan task to finish */
4040         down(&fs_info->uuid_tree_rescan_sem);
4041         /* avoid complains from lockdep et al., set sem back to initial state */
4042         up(&fs_info->uuid_tree_rescan_sem);
4043
4044         /* pause restriper - we want to resume on mount */
4045         btrfs_pause_balance(fs_info);
4046
4047         btrfs_dev_replace_suspend_for_unmount(fs_info);
4048
4049         btrfs_scrub_cancel(fs_info);
4050
4051         /* wait for any defraggers to finish */
4052         wait_event(fs_info->transaction_wait,
4053                    (atomic_read(&fs_info->defrag_running) == 0));
4054
4055         /* clear out the rbtree of defraggable inodes */
4056         btrfs_cleanup_defrag_inodes(fs_info);
4057
4058         cancel_work_sync(&fs_info->async_reclaim_work);
4059
4060         /* Cancel or finish ongoing discard work */
4061         btrfs_discard_cleanup(fs_info);
4062
4063         if (!sb_rdonly(fs_info->sb)) {
4064                 /*
4065                  * The cleaner kthread is stopped, so do one final pass over
4066                  * unused block groups.
4067                  */
4068                 btrfs_delete_unused_bgs(fs_info);
4069
4070                 /*
4071                  * There might be existing delayed inode workers still running
4072                  * and holding an empty delayed inode item. We must wait for
4073                  * them to complete first because they can create a transaction.
4074                  * This happens when someone calls btrfs_balance_delayed_items()
4075                  * and then a transaction commit runs the same delayed nodes
4076                  * before any delayed worker has done something with the nodes.
4077                  * We must wait for any worker here and not at transaction
4078                  * commit time since that could cause a deadlock.
4079                  * This is a very rare case.
4080                  */
4081                 btrfs_flush_workqueue(fs_info->delayed_workers);
4082
4083                 ret = btrfs_commit_super(fs_info);
4084                 if (ret)
4085                         btrfs_err(fs_info, "commit super ret %d", ret);
4086         }
4087
4088         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4089             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4090                 btrfs_error_commit_super(fs_info);
4091
4092         kthread_stop(fs_info->transaction_kthread);
4093         kthread_stop(fs_info->cleaner_kthread);
4094
4095         ASSERT(list_empty(&fs_info->delayed_iputs));
4096         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4097
4098         if (btrfs_check_quota_leak(fs_info)) {
4099                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4100                 btrfs_err(fs_info, "qgroup reserved space leaked");
4101         }
4102
4103         btrfs_free_qgroup_config(fs_info);
4104         ASSERT(list_empty(&fs_info->delalloc_roots));
4105
4106         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4107                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4108                        percpu_counter_sum(&fs_info->delalloc_bytes));
4109         }
4110
4111         if (percpu_counter_sum(&fs_info->dio_bytes))
4112                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4113                            percpu_counter_sum(&fs_info->dio_bytes));
4114
4115         btrfs_sysfs_remove_mounted(fs_info);
4116         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4117
4118         btrfs_put_block_group_cache(fs_info);
4119
4120         /*
4121          * we must make sure there is not any read request to
4122          * submit after we stopping all workers.
4123          */
4124         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4125         btrfs_stop_all_workers(fs_info);
4126
4127         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4128         free_root_pointers(fs_info, true);
4129         btrfs_free_fs_roots(fs_info);
4130
4131         /*
4132          * We must free the block groups after dropping the fs_roots as we could
4133          * have had an IO error and have left over tree log blocks that aren't
4134          * cleaned up until the fs roots are freed.  This makes the block group
4135          * accounting appear to be wrong because there's pending reserved bytes,
4136          * so make sure we do the block group cleanup afterwards.
4137          */
4138         btrfs_free_block_groups(fs_info);
4139
4140         iput(fs_info->btree_inode);
4141
4142 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4143         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4144                 btrfsic_unmount(fs_info->fs_devices);
4145 #endif
4146
4147         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4148         btrfs_close_devices(fs_info->fs_devices);
4149 }
4150
4151 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4152                           int atomic)
4153 {
4154         int ret;
4155         struct inode *btree_inode = buf->pages[0]->mapping->host;
4156
4157         ret = extent_buffer_uptodate(buf);
4158         if (!ret)
4159                 return ret;
4160
4161         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4162                                     parent_transid, atomic);
4163         if (ret == -EAGAIN)
4164                 return ret;
4165         return !ret;
4166 }
4167
4168 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4169 {
4170         struct btrfs_fs_info *fs_info;
4171         struct btrfs_root *root;
4172         u64 transid = btrfs_header_generation(buf);
4173         int was_dirty;
4174
4175 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4176         /*
4177          * This is a fast path so only do this check if we have sanity tests
4178          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4179          * outside of the sanity tests.
4180          */
4181         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4182                 return;
4183 #endif
4184         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4185         fs_info = root->fs_info;
4186         btrfs_assert_tree_locked(buf);
4187         if (transid != fs_info->generation)
4188                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4189                         buf->start, transid, fs_info->generation);
4190         was_dirty = set_extent_buffer_dirty(buf);
4191         if (!was_dirty)
4192                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4193                                          buf->len,
4194                                          fs_info->dirty_metadata_batch);
4195 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4196         /*
4197          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4198          * but item data not updated.
4199          * So here we should only check item pointers, not item data.
4200          */
4201         if (btrfs_header_level(buf) == 0 &&
4202             btrfs_check_leaf_relaxed(buf)) {
4203                 btrfs_print_leaf(buf);
4204                 ASSERT(0);
4205         }
4206 #endif
4207 }
4208
4209 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4210                                         int flush_delayed)
4211 {
4212         /*
4213          * looks as though older kernels can get into trouble with
4214          * this code, they end up stuck in balance_dirty_pages forever
4215          */
4216         int ret;
4217
4218         if (current->flags & PF_MEMALLOC)
4219                 return;
4220
4221         if (flush_delayed)
4222                 btrfs_balance_delayed_items(fs_info);
4223
4224         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4225                                      BTRFS_DIRTY_METADATA_THRESH,
4226                                      fs_info->dirty_metadata_batch);
4227         if (ret > 0) {
4228                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4229         }
4230 }
4231
4232 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4233 {
4234         __btrfs_btree_balance_dirty(fs_info, 1);
4235 }
4236
4237 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4238 {
4239         __btrfs_btree_balance_dirty(fs_info, 0);
4240 }
4241
4242 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4243                       struct btrfs_key *first_key)
4244 {
4245         return btree_read_extent_buffer_pages(buf, parent_transid,
4246                                               level, first_key);
4247 }
4248
4249 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4250 {
4251         /* cleanup FS via transaction */
4252         btrfs_cleanup_transaction(fs_info);
4253
4254         mutex_lock(&fs_info->cleaner_mutex);
4255         btrfs_run_delayed_iputs(fs_info);
4256         mutex_unlock(&fs_info->cleaner_mutex);
4257
4258         down_write(&fs_info->cleanup_work_sem);
4259         up_write(&fs_info->cleanup_work_sem);
4260 }
4261
4262 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4263 {
4264         struct btrfs_root *gang[8];
4265         u64 root_objectid = 0;
4266         int ret;
4267
4268         spin_lock(&fs_info->fs_roots_radix_lock);
4269         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4270                                              (void **)gang, root_objectid,
4271                                              ARRAY_SIZE(gang))) != 0) {
4272                 int i;
4273
4274                 for (i = 0; i < ret; i++)
4275                         gang[i] = btrfs_grab_root(gang[i]);
4276                 spin_unlock(&fs_info->fs_roots_radix_lock);
4277
4278                 for (i = 0; i < ret; i++) {
4279                         if (!gang[i])
4280                                 continue;
4281                         root_objectid = gang[i]->root_key.objectid;
4282                         btrfs_free_log(NULL, gang[i]);
4283                         btrfs_put_root(gang[i]);
4284                 }
4285                 root_objectid++;
4286                 spin_lock(&fs_info->fs_roots_radix_lock);
4287         }
4288         spin_unlock(&fs_info->fs_roots_radix_lock);
4289         btrfs_free_log_root_tree(NULL, fs_info);
4290 }
4291
4292 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4293 {
4294         struct btrfs_ordered_extent *ordered;
4295
4296         spin_lock(&root->ordered_extent_lock);
4297         /*
4298          * This will just short circuit the ordered completion stuff which will
4299          * make sure the ordered extent gets properly cleaned up.
4300          */
4301         list_for_each_entry(ordered, &root->ordered_extents,
4302                             root_extent_list)
4303                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4304         spin_unlock(&root->ordered_extent_lock);
4305 }
4306
4307 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4308 {
4309         struct btrfs_root *root;
4310         struct list_head splice;
4311
4312         INIT_LIST_HEAD(&splice);
4313
4314         spin_lock(&fs_info->ordered_root_lock);
4315         list_splice_init(&fs_info->ordered_roots, &splice);
4316         while (!list_empty(&splice)) {
4317                 root = list_first_entry(&splice, struct btrfs_root,
4318                                         ordered_root);
4319                 list_move_tail(&root->ordered_root,
4320                                &fs_info->ordered_roots);
4321
4322                 spin_unlock(&fs_info->ordered_root_lock);
4323                 btrfs_destroy_ordered_extents(root);
4324
4325                 cond_resched();
4326                 spin_lock(&fs_info->ordered_root_lock);
4327         }
4328         spin_unlock(&fs_info->ordered_root_lock);
4329
4330         /*
4331          * We need this here because if we've been flipped read-only we won't
4332          * get sync() from the umount, so we need to make sure any ordered
4333          * extents that haven't had their dirty pages IO start writeout yet
4334          * actually get run and error out properly.
4335          */
4336         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4337 }
4338
4339 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4340                                       struct btrfs_fs_info *fs_info)
4341 {
4342         struct rb_node *node;
4343         struct btrfs_delayed_ref_root *delayed_refs;
4344         struct btrfs_delayed_ref_node *ref;
4345         int ret = 0;
4346
4347         delayed_refs = &trans->delayed_refs;
4348
4349         spin_lock(&delayed_refs->lock);
4350         if (atomic_read(&delayed_refs->num_entries) == 0) {
4351                 spin_unlock(&delayed_refs->lock);
4352                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4353                 return ret;
4354         }
4355
4356         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4357                 struct btrfs_delayed_ref_head *head;
4358                 struct rb_node *n;
4359                 bool pin_bytes = false;
4360
4361                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4362                                 href_node);
4363                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4364                         continue;
4365
4366                 spin_lock(&head->lock);
4367                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4368                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4369                                        ref_node);
4370                         ref->in_tree = 0;
4371                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4372                         RB_CLEAR_NODE(&ref->ref_node);
4373                         if (!list_empty(&ref->add_list))
4374                                 list_del(&ref->add_list);
4375                         atomic_dec(&delayed_refs->num_entries);
4376                         btrfs_put_delayed_ref(ref);
4377                 }
4378                 if (head->must_insert_reserved)
4379                         pin_bytes = true;
4380                 btrfs_free_delayed_extent_op(head->extent_op);
4381                 btrfs_delete_ref_head(delayed_refs, head);
4382                 spin_unlock(&head->lock);
4383                 spin_unlock(&delayed_refs->lock);
4384                 mutex_unlock(&head->mutex);
4385
4386                 if (pin_bytes) {
4387                         struct btrfs_block_group *cache;
4388
4389                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4390                         BUG_ON(!cache);
4391
4392                         spin_lock(&cache->space_info->lock);
4393                         spin_lock(&cache->lock);
4394                         cache->pinned += head->num_bytes;
4395                         btrfs_space_info_update_bytes_pinned(fs_info,
4396                                 cache->space_info, head->num_bytes);
4397                         cache->reserved -= head->num_bytes;
4398                         cache->space_info->bytes_reserved -= head->num_bytes;
4399                         spin_unlock(&cache->lock);
4400                         spin_unlock(&cache->space_info->lock);
4401                         percpu_counter_add_batch(
4402                                 &cache->space_info->total_bytes_pinned,
4403                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4404
4405                         btrfs_put_block_group(cache);
4406
4407                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4408                                 head->bytenr + head->num_bytes - 1);
4409                 }
4410                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4411                 btrfs_put_delayed_ref_head(head);
4412                 cond_resched();
4413                 spin_lock(&delayed_refs->lock);
4414         }
4415         btrfs_qgroup_destroy_extent_records(trans);
4416
4417         spin_unlock(&delayed_refs->lock);
4418
4419         return ret;
4420 }
4421
4422 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4423 {
4424         struct btrfs_inode *btrfs_inode;
4425         struct list_head splice;
4426
4427         INIT_LIST_HEAD(&splice);
4428
4429         spin_lock(&root->delalloc_lock);
4430         list_splice_init(&root->delalloc_inodes, &splice);
4431
4432         while (!list_empty(&splice)) {
4433                 struct inode *inode = NULL;
4434                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4435                                                delalloc_inodes);
4436                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4437                 spin_unlock(&root->delalloc_lock);
4438
4439                 /*
4440                  * Make sure we get a live inode and that it'll not disappear
4441                  * meanwhile.
4442                  */
4443                 inode = igrab(&btrfs_inode->vfs_inode);
4444                 if (inode) {
4445                         invalidate_inode_pages2(inode->i_mapping);
4446                         iput(inode);
4447                 }
4448                 spin_lock(&root->delalloc_lock);
4449         }
4450         spin_unlock(&root->delalloc_lock);
4451 }
4452
4453 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4454 {
4455         struct btrfs_root *root;
4456         struct list_head splice;
4457
4458         INIT_LIST_HEAD(&splice);
4459
4460         spin_lock(&fs_info->delalloc_root_lock);
4461         list_splice_init(&fs_info->delalloc_roots, &splice);
4462         while (!list_empty(&splice)) {
4463                 root = list_first_entry(&splice, struct btrfs_root,
4464                                          delalloc_root);
4465                 root = btrfs_grab_root(root);
4466                 BUG_ON(!root);
4467                 spin_unlock(&fs_info->delalloc_root_lock);
4468
4469                 btrfs_destroy_delalloc_inodes(root);
4470                 btrfs_put_root(root);
4471
4472                 spin_lock(&fs_info->delalloc_root_lock);
4473         }
4474         spin_unlock(&fs_info->delalloc_root_lock);
4475 }
4476
4477 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4478                                         struct extent_io_tree *dirty_pages,
4479                                         int mark)
4480 {
4481         int ret;
4482         struct extent_buffer *eb;
4483         u64 start = 0;
4484         u64 end;
4485
4486         while (1) {
4487                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4488                                             mark, NULL);
4489                 if (ret)
4490                         break;
4491
4492                 clear_extent_bits(dirty_pages, start, end, mark);
4493                 while (start <= end) {
4494                         eb = find_extent_buffer(fs_info, start);
4495                         start += fs_info->nodesize;
4496                         if (!eb)
4497                                 continue;
4498                         wait_on_extent_buffer_writeback(eb);
4499
4500                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4501                                                &eb->bflags))
4502                                 clear_extent_buffer_dirty(eb);
4503                         free_extent_buffer_stale(eb);
4504                 }
4505         }
4506
4507         return ret;
4508 }
4509
4510 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4511                                        struct extent_io_tree *unpin)
4512 {
4513         u64 start;
4514         u64 end;
4515         int ret;
4516
4517         while (1) {
4518                 struct extent_state *cached_state = NULL;
4519
4520                 /*
4521                  * The btrfs_finish_extent_commit() may get the same range as
4522                  * ours between find_first_extent_bit and clear_extent_dirty.
4523                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4524                  * the same extent range.
4525                  */
4526                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4527                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4528                                             EXTENT_DIRTY, &cached_state);
4529                 if (ret) {
4530                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4531                         break;
4532                 }
4533
4534                 clear_extent_dirty(unpin, start, end, &cached_state);
4535                 free_extent_state(cached_state);
4536                 btrfs_error_unpin_extent_range(fs_info, start, end);
4537                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4538                 cond_resched();
4539         }
4540
4541         return 0;
4542 }
4543
4544 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4545 {
4546         struct inode *inode;
4547
4548         inode = cache->io_ctl.inode;
4549         if (inode) {
4550                 invalidate_inode_pages2(inode->i_mapping);
4551                 BTRFS_I(inode)->generation = 0;
4552                 cache->io_ctl.inode = NULL;
4553                 iput(inode);
4554         }
4555         ASSERT(cache->io_ctl.pages == NULL);
4556         btrfs_put_block_group(cache);
4557 }
4558
4559 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4560                              struct btrfs_fs_info *fs_info)
4561 {
4562         struct btrfs_block_group *cache;
4563
4564         spin_lock(&cur_trans->dirty_bgs_lock);
4565         while (!list_empty(&cur_trans->dirty_bgs)) {
4566                 cache = list_first_entry(&cur_trans->dirty_bgs,
4567                                          struct btrfs_block_group,
4568                                          dirty_list);
4569
4570                 if (!list_empty(&cache->io_list)) {
4571                         spin_unlock(&cur_trans->dirty_bgs_lock);
4572                         list_del_init(&cache->io_list);
4573                         btrfs_cleanup_bg_io(cache);
4574                         spin_lock(&cur_trans->dirty_bgs_lock);
4575                 }
4576
4577                 list_del_init(&cache->dirty_list);
4578                 spin_lock(&cache->lock);
4579                 cache->disk_cache_state = BTRFS_DC_ERROR;
4580                 spin_unlock(&cache->lock);
4581
4582                 spin_unlock(&cur_trans->dirty_bgs_lock);
4583                 btrfs_put_block_group(cache);
4584                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4585                 spin_lock(&cur_trans->dirty_bgs_lock);
4586         }
4587         spin_unlock(&cur_trans->dirty_bgs_lock);
4588
4589         /*
4590          * Refer to the definition of io_bgs member for details why it's safe
4591          * to use it without any locking
4592          */
4593         while (!list_empty(&cur_trans->io_bgs)) {
4594                 cache = list_first_entry(&cur_trans->io_bgs,
4595                                          struct btrfs_block_group,
4596                                          io_list);
4597
4598                 list_del_init(&cache->io_list);
4599                 spin_lock(&cache->lock);
4600                 cache->disk_cache_state = BTRFS_DC_ERROR;
4601                 spin_unlock(&cache->lock);
4602                 btrfs_cleanup_bg_io(cache);
4603         }
4604 }
4605
4606 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4607                                    struct btrfs_fs_info *fs_info)
4608 {
4609         struct btrfs_device *dev, *tmp;
4610
4611         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4612         ASSERT(list_empty(&cur_trans->dirty_bgs));
4613         ASSERT(list_empty(&cur_trans->io_bgs));
4614
4615         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4616                                  post_commit_list) {
4617                 list_del_init(&dev->post_commit_list);
4618         }
4619
4620         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4621
4622         cur_trans->state = TRANS_STATE_COMMIT_START;
4623         wake_up(&fs_info->transaction_blocked_wait);
4624
4625         cur_trans->state = TRANS_STATE_UNBLOCKED;
4626         wake_up(&fs_info->transaction_wait);
4627
4628         btrfs_destroy_delayed_inodes(fs_info);
4629
4630         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4631                                      EXTENT_DIRTY);
4632         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4633
4634         cur_trans->state =TRANS_STATE_COMPLETED;
4635         wake_up(&cur_trans->commit_wait);
4636 }
4637
4638 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4639 {
4640         struct btrfs_transaction *t;
4641
4642         mutex_lock(&fs_info->transaction_kthread_mutex);
4643
4644         spin_lock(&fs_info->trans_lock);
4645         while (!list_empty(&fs_info->trans_list)) {
4646                 t = list_first_entry(&fs_info->trans_list,
4647                                      struct btrfs_transaction, list);
4648                 if (t->state >= TRANS_STATE_COMMIT_START) {
4649                         refcount_inc(&t->use_count);
4650                         spin_unlock(&fs_info->trans_lock);
4651                         btrfs_wait_for_commit(fs_info, t->transid);
4652                         btrfs_put_transaction(t);
4653                         spin_lock(&fs_info->trans_lock);
4654                         continue;
4655                 }
4656                 if (t == fs_info->running_transaction) {
4657                         t->state = TRANS_STATE_COMMIT_DOING;
4658                         spin_unlock(&fs_info->trans_lock);
4659                         /*
4660                          * We wait for 0 num_writers since we don't hold a trans
4661                          * handle open currently for this transaction.
4662                          */
4663                         wait_event(t->writer_wait,
4664                                    atomic_read(&t->num_writers) == 0);
4665                 } else {
4666                         spin_unlock(&fs_info->trans_lock);
4667                 }
4668                 btrfs_cleanup_one_transaction(t, fs_info);
4669
4670                 spin_lock(&fs_info->trans_lock);
4671                 if (t == fs_info->running_transaction)
4672                         fs_info->running_transaction = NULL;
4673                 list_del_init(&t->list);
4674                 spin_unlock(&fs_info->trans_lock);
4675
4676                 btrfs_put_transaction(t);
4677                 trace_btrfs_transaction_commit(fs_info->tree_root);
4678                 spin_lock(&fs_info->trans_lock);
4679         }
4680         spin_unlock(&fs_info->trans_lock);
4681         btrfs_destroy_all_ordered_extents(fs_info);
4682         btrfs_destroy_delayed_inodes(fs_info);
4683         btrfs_assert_delayed_root_empty(fs_info);
4684         btrfs_destroy_all_delalloc_inodes(fs_info);
4685         btrfs_drop_all_logs(fs_info);
4686         mutex_unlock(&fs_info->transaction_kthread_mutex);
4687
4688         return 0;
4689 }
4690
4691 static const struct extent_io_ops btree_extent_io_ops = {
4692         /* mandatory callbacks */
4693         .submit_bio_hook = btree_submit_bio_hook,
4694         .readpage_end_io_hook = btree_readpage_end_io_hook,
4695 };