btrfs: Add noenospc_debug mount option.
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING
387                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         eb = (struct extent_buffer *)page->private;
474         if (page != eb->pages[0])
475                 return 0;
476         found_start = btrfs_header_bytenr(eb);
477         if (WARN_ON(found_start != start || !PageUptodate(page)))
478                 return 0;
479         csum_tree_block(root, eb, 0);
480         return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484                                  struct extent_buffer *eb)
485 {
486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487         u8 fsid[BTRFS_UUID_SIZE];
488         int ret = 1;
489
490         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491         while (fs_devices) {
492                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493                         ret = 0;
494                         break;
495                 }
496                 fs_devices = fs_devices->seed;
497         }
498         return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot)                         \
502         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
503                    "root=%llu, slot=%d", reason,                        \
504                btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507                                struct extent_buffer *leaf)
508 {
509         struct btrfs_key key;
510         struct btrfs_key leaf_key;
511         u32 nritems = btrfs_header_nritems(leaf);
512         int slot;
513
514         if (nritems == 0)
515                 return 0;
516
517         /* Check the 0 item */
518         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519             BTRFS_LEAF_DATA_SIZE(root)) {
520                 CORRUPT("invalid item offset size pair", leaf, root, 0);
521                 return -EIO;
522         }
523
524         /*
525          * Check to make sure each items keys are in the correct order and their
526          * offsets make sense.  We only have to loop through nritems-1 because
527          * we check the current slot against the next slot, which verifies the
528          * next slot's offset+size makes sense and that the current's slot
529          * offset is correct.
530          */
531         for (slot = 0; slot < nritems - 1; slot++) {
532                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535                 /* Make sure the keys are in the right order */
536                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537                         CORRUPT("bad key order", leaf, root, slot);
538                         return -EIO;
539                 }
540
541                 /*
542                  * Make sure the offset and ends are right, remember that the
543                  * item data starts at the end of the leaf and grows towards the
544                  * front.
545                  */
546                 if (btrfs_item_offset_nr(leaf, slot) !=
547                         btrfs_item_end_nr(leaf, slot + 1)) {
548                         CORRUPT("slot offset bad", leaf, root, slot);
549                         return -EIO;
550                 }
551
552                 /*
553                  * Check to make sure that we don't point outside of the leaf,
554                  * just incase all the items are consistent to eachother, but
555                  * all point outside of the leaf.
556                  */
557                 if (btrfs_item_end_nr(leaf, slot) >
558                     BTRFS_LEAF_DATA_SIZE(root)) {
559                         CORRUPT("slot end outside of leaf", leaf, root, slot);
560                         return -EIO;
561                 }
562         }
563
564         return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568                                       u64 phy_offset, struct page *page,
569                                       u64 start, u64 end, int mirror)
570 {
571         u64 found_start;
572         int found_level;
573         struct extent_buffer *eb;
574         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575         int ret = 0;
576         int reads_done;
577
578         if (!page->private)
579                 goto out;
580
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601                                "%llu %llu\n",
602                                found_start, eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608                                eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613         if (found_level >= BTRFS_MAX_LEVEL) {
614                 btrfs_info(root->fs_info, "bad tree block level %d",
615                            (int)btrfs_header_level(eb));
616                 ret = -EIO;
617                 goto err;
618         }
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (reads_done &&
643             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644                 btree_readahead_hook(root, eb, eb->start, ret);
645
646         if (ret) {
647                 /*
648                  * our io error hook is going to dec the io pages
649                  * again, we have to make sure it has something
650                  * to decrement
651                  */
652                 atomic_inc(&eb->io_pages);
653                 clear_extent_buffer_uptodate(eb);
654         }
655         free_extent_buffer(eb);
656 out:
657         return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662         struct extent_buffer *eb;
663         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665         eb = (struct extent_buffer *)page->private;
666         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667         eb->read_mirror = failed_mirror;
668         atomic_dec(&eb->io_pages);
669         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670                 btree_readahead_hook(root, eb, eb->start, -EIO);
671         return -EIO;    /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676         struct end_io_wq *end_io_wq = bio->bi_private;
677         struct btrfs_fs_info *fs_info;
678
679         fs_info = end_io_wq->info;
680         end_io_wq->error = err;
681         end_io_wq->work.func = end_workqueue_fn;
682         end_io_wq->work.flags = 0;
683
684         if (bio->bi_rw & REQ_WRITE) {
685                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
686                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
687                                            &end_io_wq->work);
688                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
689                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
690                                            &end_io_wq->work);
691                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
692                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
693                                            &end_io_wq->work);
694                 else
695                         btrfs_queue_worker(&fs_info->endio_write_workers,
696                                            &end_io_wq->work);
697         } else {
698                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
699                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
700                                            &end_io_wq->work);
701                 else if (end_io_wq->metadata)
702                         btrfs_queue_worker(&fs_info->endio_meta_workers,
703                                            &end_io_wq->work);
704                 else
705                         btrfs_queue_worker(&fs_info->endio_workers,
706                                            &end_io_wq->work);
707         }
708 }
709
710 /*
711  * For the metadata arg you want
712  *
713  * 0 - if data
714  * 1 - if normal metadta
715  * 2 - if writing to the free space cache area
716  * 3 - raid parity work
717  */
718 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
719                         int metadata)
720 {
721         struct end_io_wq *end_io_wq;
722         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
723         if (!end_io_wq)
724                 return -ENOMEM;
725
726         end_io_wq->private = bio->bi_private;
727         end_io_wq->end_io = bio->bi_end_io;
728         end_io_wq->info = info;
729         end_io_wq->error = 0;
730         end_io_wq->bio = bio;
731         end_io_wq->metadata = metadata;
732
733         bio->bi_private = end_io_wq;
734         bio->bi_end_io = end_workqueue_bio;
735         return 0;
736 }
737
738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
739 {
740         unsigned long limit = min_t(unsigned long,
741                                     info->workers.max_workers,
742                                     info->fs_devices->open_devices);
743         return 256 * limit;
744 }
745
746 static void run_one_async_start(struct btrfs_work *work)
747 {
748         struct async_submit_bio *async;
749         int ret;
750
751         async = container_of(work, struct  async_submit_bio, work);
752         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
753                                       async->mirror_num, async->bio_flags,
754                                       async->bio_offset);
755         if (ret)
756                 async->error = ret;
757 }
758
759 static void run_one_async_done(struct btrfs_work *work)
760 {
761         struct btrfs_fs_info *fs_info;
762         struct async_submit_bio *async;
763         int limit;
764
765         async = container_of(work, struct  async_submit_bio, work);
766         fs_info = BTRFS_I(async->inode)->root->fs_info;
767
768         limit = btrfs_async_submit_limit(fs_info);
769         limit = limit * 2 / 3;
770
771         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
772             waitqueue_active(&fs_info->async_submit_wait))
773                 wake_up(&fs_info->async_submit_wait);
774
775         /* If an error occured we just want to clean up the bio and move on */
776         if (async->error) {
777                 bio_endio(async->bio, async->error);
778                 return;
779         }
780
781         async->submit_bio_done(async->inode, async->rw, async->bio,
782                                async->mirror_num, async->bio_flags,
783                                async->bio_offset);
784 }
785
786 static void run_one_async_free(struct btrfs_work *work)
787 {
788         struct async_submit_bio *async;
789
790         async = container_of(work, struct  async_submit_bio, work);
791         kfree(async);
792 }
793
794 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
795                         int rw, struct bio *bio, int mirror_num,
796                         unsigned long bio_flags,
797                         u64 bio_offset,
798                         extent_submit_bio_hook_t *submit_bio_start,
799                         extent_submit_bio_hook_t *submit_bio_done)
800 {
801         struct async_submit_bio *async;
802
803         async = kmalloc(sizeof(*async), GFP_NOFS);
804         if (!async)
805                 return -ENOMEM;
806
807         async->inode = inode;
808         async->rw = rw;
809         async->bio = bio;
810         async->mirror_num = mirror_num;
811         async->submit_bio_start = submit_bio_start;
812         async->submit_bio_done = submit_bio_done;
813
814         async->work.func = run_one_async_start;
815         async->work.ordered_func = run_one_async_done;
816         async->work.ordered_free = run_one_async_free;
817
818         async->work.flags = 0;
819         async->bio_flags = bio_flags;
820         async->bio_offset = bio_offset;
821
822         async->error = 0;
823
824         atomic_inc(&fs_info->nr_async_submits);
825
826         if (rw & REQ_SYNC)
827                 btrfs_set_work_high_prio(&async->work);
828
829         btrfs_queue_worker(&fs_info->workers, &async->work);
830
831         while (atomic_read(&fs_info->async_submit_draining) &&
832               atomic_read(&fs_info->nr_async_submits)) {
833                 wait_event(fs_info->async_submit_wait,
834                            (atomic_read(&fs_info->nr_async_submits) == 0));
835         }
836
837         return 0;
838 }
839
840 static int btree_csum_one_bio(struct bio *bio)
841 {
842         struct bio_vec *bvec = bio->bi_io_vec;
843         int bio_index = 0;
844         struct btrfs_root *root;
845         int ret = 0;
846
847         WARN_ON(bio->bi_vcnt <= 0);
848         while (bio_index < bio->bi_vcnt) {
849                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
850                 ret = csum_dirty_buffer(root, bvec->bv_page);
851                 if (ret)
852                         break;
853                 bio_index++;
854                 bvec++;
855         }
856         return ret;
857 }
858
859 static int __btree_submit_bio_start(struct inode *inode, int rw,
860                                     struct bio *bio, int mirror_num,
861                                     unsigned long bio_flags,
862                                     u64 bio_offset)
863 {
864         /*
865          * when we're called for a write, we're already in the async
866          * submission context.  Just jump into btrfs_map_bio
867          */
868         return btree_csum_one_bio(bio);
869 }
870
871 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
872                                  int mirror_num, unsigned long bio_flags,
873                                  u64 bio_offset)
874 {
875         int ret;
876
877         /*
878          * when we're called for a write, we're already in the async
879          * submission context.  Just jump into btrfs_map_bio
880          */
881         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
882         if (ret)
883                 bio_endio(bio, ret);
884         return ret;
885 }
886
887 static int check_async_write(struct inode *inode, unsigned long bio_flags)
888 {
889         if (bio_flags & EXTENT_BIO_TREE_LOG)
890                 return 0;
891 #ifdef CONFIG_X86
892         if (cpu_has_xmm4_2)
893                 return 0;
894 #endif
895         return 1;
896 }
897
898 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
899                                  int mirror_num, unsigned long bio_flags,
900                                  u64 bio_offset)
901 {
902         int async = check_async_write(inode, bio_flags);
903         int ret;
904
905         if (!(rw & REQ_WRITE)) {
906                 /*
907                  * called for a read, do the setup so that checksum validation
908                  * can happen in the async kernel threads
909                  */
910                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
911                                           bio, 1);
912                 if (ret)
913                         goto out_w_error;
914                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
915                                     mirror_num, 0);
916         } else if (!async) {
917                 ret = btree_csum_one_bio(bio);
918                 if (ret)
919                         goto out_w_error;
920                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
921                                     mirror_num, 0);
922         } else {
923                 /*
924                  * kthread helpers are used to submit writes so that
925                  * checksumming can happen in parallel across all CPUs
926                  */
927                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
928                                           inode, rw, bio, mirror_num, 0,
929                                           bio_offset,
930                                           __btree_submit_bio_start,
931                                           __btree_submit_bio_done);
932         }
933
934         if (ret) {
935 out_w_error:
936                 bio_endio(bio, ret);
937         }
938         return ret;
939 }
940
941 #ifdef CONFIG_MIGRATION
942 static int btree_migratepage(struct address_space *mapping,
943                         struct page *newpage, struct page *page,
944                         enum migrate_mode mode)
945 {
946         /*
947          * we can't safely write a btree page from here,
948          * we haven't done the locking hook
949          */
950         if (PageDirty(page))
951                 return -EAGAIN;
952         /*
953          * Buffers may be managed in a filesystem specific way.
954          * We must have no buffers or drop them.
955          */
956         if (page_has_private(page) &&
957             !try_to_release_page(page, GFP_KERNEL))
958                 return -EAGAIN;
959         return migrate_page(mapping, newpage, page, mode);
960 }
961 #endif
962
963
964 static int btree_writepages(struct address_space *mapping,
965                             struct writeback_control *wbc)
966 {
967         struct btrfs_fs_info *fs_info;
968         int ret;
969
970         if (wbc->sync_mode == WB_SYNC_NONE) {
971
972                 if (wbc->for_kupdate)
973                         return 0;
974
975                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976                 /* this is a bit racy, but that's ok */
977                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978                                              BTRFS_DIRTY_METADATA_THRESH);
979                 if (ret < 0)
980                         return 0;
981         }
982         return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987         struct extent_io_tree *tree;
988         tree = &BTRFS_I(page->mapping->host)->io_tree;
989         return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994         if (PageWriteback(page) || PageDirty(page))
995                 return 0;
996
997         return try_release_extent_buffer(page);
998 }
999
1000 static void btree_invalidatepage(struct page *page, unsigned int offset,
1001                                  unsigned int length)
1002 {
1003         struct extent_io_tree *tree;
1004         tree = &BTRFS_I(page->mapping->host)->io_tree;
1005         extent_invalidatepage(tree, page, offset);
1006         btree_releasepage(page, GFP_NOFS);
1007         if (PagePrivate(page)) {
1008                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1009                            "page private not zero on page %llu",
1010                            (unsigned long long)page_offset(page));
1011                 ClearPagePrivate(page);
1012                 set_page_private(page, 0);
1013                 page_cache_release(page);
1014         }
1015 }
1016
1017 static int btree_set_page_dirty(struct page *page)
1018 {
1019 #ifdef DEBUG
1020         struct extent_buffer *eb;
1021
1022         BUG_ON(!PagePrivate(page));
1023         eb = (struct extent_buffer *)page->private;
1024         BUG_ON(!eb);
1025         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1026         BUG_ON(!atomic_read(&eb->refs));
1027         btrfs_assert_tree_locked(eb);
1028 #endif
1029         return __set_page_dirty_nobuffers(page);
1030 }
1031
1032 static const struct address_space_operations btree_aops = {
1033         .readpage       = btree_readpage,
1034         .writepages     = btree_writepages,
1035         .releasepage    = btree_releasepage,
1036         .invalidatepage = btree_invalidatepage,
1037 #ifdef CONFIG_MIGRATION
1038         .migratepage    = btree_migratepage,
1039 #endif
1040         .set_page_dirty = btree_set_page_dirty,
1041 };
1042
1043 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1044                          u64 parent_transid)
1045 {
1046         struct extent_buffer *buf = NULL;
1047         struct inode *btree_inode = root->fs_info->btree_inode;
1048         int ret = 0;
1049
1050         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1051         if (!buf)
1052                 return 0;
1053         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1054                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1055         free_extent_buffer(buf);
1056         return ret;
1057 }
1058
1059 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1060                          int mirror_num, struct extent_buffer **eb)
1061 {
1062         struct extent_buffer *buf = NULL;
1063         struct inode *btree_inode = root->fs_info->btree_inode;
1064         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1065         int ret;
1066
1067         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1068         if (!buf)
1069                 return 0;
1070
1071         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1072
1073         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1074                                        btree_get_extent, mirror_num);
1075         if (ret) {
1076                 free_extent_buffer(buf);
1077                 return ret;
1078         }
1079
1080         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1081                 free_extent_buffer(buf);
1082                 return -EIO;
1083         } else if (extent_buffer_uptodate(buf)) {
1084                 *eb = buf;
1085         } else {
1086                 free_extent_buffer(buf);
1087         }
1088         return 0;
1089 }
1090
1091 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1092                                             u64 bytenr, u32 blocksize)
1093 {
1094         return find_extent_buffer(root->fs_info, bytenr);
1095 }
1096
1097 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1098                                                  u64 bytenr, u32 blocksize)
1099 {
1100         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1101 }
1102
1103
1104 int btrfs_write_tree_block(struct extent_buffer *buf)
1105 {
1106         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1107                                         buf->start + buf->len - 1);
1108 }
1109
1110 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1111 {
1112         return filemap_fdatawait_range(buf->pages[0]->mapping,
1113                                        buf->start, buf->start + buf->len - 1);
1114 }
1115
1116 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1117                                       u32 blocksize, u64 parent_transid)
1118 {
1119         struct extent_buffer *buf = NULL;
1120         int ret;
1121
1122         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1123         if (!buf)
1124                 return NULL;
1125
1126         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1127         if (ret) {
1128                 free_extent_buffer(buf);
1129                 return NULL;
1130         }
1131         return buf;
1132
1133 }
1134
1135 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1136                       struct extent_buffer *buf)
1137 {
1138         struct btrfs_fs_info *fs_info = root->fs_info;
1139
1140         if (btrfs_header_generation(buf) ==
1141             fs_info->running_transaction->transid) {
1142                 btrfs_assert_tree_locked(buf);
1143
1144                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1145                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1146                                              -buf->len,
1147                                              fs_info->dirty_metadata_batch);
1148                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1149                         btrfs_set_lock_blocking(buf);
1150                         clear_extent_buffer_dirty(buf);
1151                 }
1152         }
1153 }
1154
1155 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1156                          u32 stripesize, struct btrfs_root *root,
1157                          struct btrfs_fs_info *fs_info,
1158                          u64 objectid)
1159 {
1160         root->node = NULL;
1161         root->commit_root = NULL;
1162         root->sectorsize = sectorsize;
1163         root->nodesize = nodesize;
1164         root->leafsize = leafsize;
1165         root->stripesize = stripesize;
1166         root->ref_cows = 0;
1167         root->track_dirty = 0;
1168         root->in_radix = 0;
1169         root->orphan_item_inserted = 0;
1170         root->orphan_cleanup_state = 0;
1171
1172         root->objectid = objectid;
1173         root->last_trans = 0;
1174         root->highest_objectid = 0;
1175         root->nr_delalloc_inodes = 0;
1176         root->nr_ordered_extents = 0;
1177         root->name = NULL;
1178         root->inode_tree = RB_ROOT;
1179         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1180         root->block_rsv = NULL;
1181         root->orphan_block_rsv = NULL;
1182
1183         INIT_LIST_HEAD(&root->dirty_list);
1184         INIT_LIST_HEAD(&root->root_list);
1185         INIT_LIST_HEAD(&root->delalloc_inodes);
1186         INIT_LIST_HEAD(&root->delalloc_root);
1187         INIT_LIST_HEAD(&root->ordered_extents);
1188         INIT_LIST_HEAD(&root->ordered_root);
1189         INIT_LIST_HEAD(&root->logged_list[0]);
1190         INIT_LIST_HEAD(&root->logged_list[1]);
1191         spin_lock_init(&root->orphan_lock);
1192         spin_lock_init(&root->inode_lock);
1193         spin_lock_init(&root->delalloc_lock);
1194         spin_lock_init(&root->ordered_extent_lock);
1195         spin_lock_init(&root->accounting_lock);
1196         spin_lock_init(&root->log_extents_lock[0]);
1197         spin_lock_init(&root->log_extents_lock[1]);
1198         mutex_init(&root->objectid_mutex);
1199         mutex_init(&root->log_mutex);
1200         init_waitqueue_head(&root->log_writer_wait);
1201         init_waitqueue_head(&root->log_commit_wait[0]);
1202         init_waitqueue_head(&root->log_commit_wait[1]);
1203         atomic_set(&root->log_commit[0], 0);
1204         atomic_set(&root->log_commit[1], 0);
1205         atomic_set(&root->log_writers, 0);
1206         atomic_set(&root->log_batch, 0);
1207         atomic_set(&root->orphan_inodes, 0);
1208         atomic_set(&root->refs, 1);
1209         root->log_transid = 0;
1210         root->last_log_commit = 0;
1211         if (fs_info)
1212                 extent_io_tree_init(&root->dirty_log_pages,
1213                                      fs_info->btree_inode->i_mapping);
1214
1215         memset(&root->root_key, 0, sizeof(root->root_key));
1216         memset(&root->root_item, 0, sizeof(root->root_item));
1217         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1218         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1219         if (fs_info)
1220                 root->defrag_trans_start = fs_info->generation;
1221         else
1222                 root->defrag_trans_start = 0;
1223         init_completion(&root->kobj_unregister);
1224         root->defrag_running = 0;
1225         root->root_key.objectid = objectid;
1226         root->anon_dev = 0;
1227
1228         spin_lock_init(&root->root_item_lock);
1229 }
1230
1231 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1232 {
1233         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1234         if (root)
1235                 root->fs_info = fs_info;
1236         return root;
1237 }
1238
1239 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240 /* Should only be used by the testing infrastructure */
1241 struct btrfs_root *btrfs_alloc_dummy_root(void)
1242 {
1243         struct btrfs_root *root;
1244
1245         root = btrfs_alloc_root(NULL);
1246         if (!root)
1247                 return ERR_PTR(-ENOMEM);
1248         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1249         root->dummy_root = 1;
1250
1251         return root;
1252 }
1253 #endif
1254
1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256                                      struct btrfs_fs_info *fs_info,
1257                                      u64 objectid)
1258 {
1259         struct extent_buffer *leaf;
1260         struct btrfs_root *tree_root = fs_info->tree_root;
1261         struct btrfs_root *root;
1262         struct btrfs_key key;
1263         int ret = 0;
1264         uuid_le uuid;
1265
1266         root = btrfs_alloc_root(fs_info);
1267         if (!root)
1268                 return ERR_PTR(-ENOMEM);
1269
1270         __setup_root(tree_root->nodesize, tree_root->leafsize,
1271                      tree_root->sectorsize, tree_root->stripesize,
1272                      root, fs_info, objectid);
1273         root->root_key.objectid = objectid;
1274         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1275         root->root_key.offset = 0;
1276
1277         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1278                                       0, objectid, NULL, 0, 0, 0);
1279         if (IS_ERR(leaf)) {
1280                 ret = PTR_ERR(leaf);
1281                 leaf = NULL;
1282                 goto fail;
1283         }
1284
1285         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1286         btrfs_set_header_bytenr(leaf, leaf->start);
1287         btrfs_set_header_generation(leaf, trans->transid);
1288         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1289         btrfs_set_header_owner(leaf, objectid);
1290         root->node = leaf;
1291
1292         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1293                             BTRFS_FSID_SIZE);
1294         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1295                             btrfs_header_chunk_tree_uuid(leaf),
1296                             BTRFS_UUID_SIZE);
1297         btrfs_mark_buffer_dirty(leaf);
1298
1299         root->commit_root = btrfs_root_node(root);
1300         root->track_dirty = 1;
1301
1302
1303         root->root_item.flags = 0;
1304         root->root_item.byte_limit = 0;
1305         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1306         btrfs_set_root_generation(&root->root_item, trans->transid);
1307         btrfs_set_root_level(&root->root_item, 0);
1308         btrfs_set_root_refs(&root->root_item, 1);
1309         btrfs_set_root_used(&root->root_item, leaf->len);
1310         btrfs_set_root_last_snapshot(&root->root_item, 0);
1311         btrfs_set_root_dirid(&root->root_item, 0);
1312         uuid_le_gen(&uuid);
1313         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1314         root->root_item.drop_level = 0;
1315
1316         key.objectid = objectid;
1317         key.type = BTRFS_ROOT_ITEM_KEY;
1318         key.offset = 0;
1319         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1320         if (ret)
1321                 goto fail;
1322
1323         btrfs_tree_unlock(leaf);
1324
1325         return root;
1326
1327 fail:
1328         if (leaf) {
1329                 btrfs_tree_unlock(leaf);
1330                 free_extent_buffer(leaf);
1331         }
1332         kfree(root);
1333
1334         return ERR_PTR(ret);
1335 }
1336
1337 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1338                                          struct btrfs_fs_info *fs_info)
1339 {
1340         struct btrfs_root *root;
1341         struct btrfs_root *tree_root = fs_info->tree_root;
1342         struct extent_buffer *leaf;
1343
1344         root = btrfs_alloc_root(fs_info);
1345         if (!root)
1346                 return ERR_PTR(-ENOMEM);
1347
1348         __setup_root(tree_root->nodesize, tree_root->leafsize,
1349                      tree_root->sectorsize, tree_root->stripesize,
1350                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1351
1352         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1353         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1355         /*
1356          * log trees do not get reference counted because they go away
1357          * before a real commit is actually done.  They do store pointers
1358          * to file data extents, and those reference counts still get
1359          * updated (along with back refs to the log tree).
1360          */
1361         root->ref_cows = 0;
1362
1363         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1364                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1365                                       0, 0, 0);
1366         if (IS_ERR(leaf)) {
1367                 kfree(root);
1368                 return ERR_CAST(leaf);
1369         }
1370
1371         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1372         btrfs_set_header_bytenr(leaf, leaf->start);
1373         btrfs_set_header_generation(leaf, trans->transid);
1374         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1375         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1376         root->node = leaf;
1377
1378         write_extent_buffer(root->node, root->fs_info->fsid,
1379                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1380         btrfs_mark_buffer_dirty(root->node);
1381         btrfs_tree_unlock(root->node);
1382         return root;
1383 }
1384
1385 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1386                              struct btrfs_fs_info *fs_info)
1387 {
1388         struct btrfs_root *log_root;
1389
1390         log_root = alloc_log_tree(trans, fs_info);
1391         if (IS_ERR(log_root))
1392                 return PTR_ERR(log_root);
1393         WARN_ON(fs_info->log_root_tree);
1394         fs_info->log_root_tree = log_root;
1395         return 0;
1396 }
1397
1398 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1399                        struct btrfs_root *root)
1400 {
1401         struct btrfs_root *log_root;
1402         struct btrfs_inode_item *inode_item;
1403
1404         log_root = alloc_log_tree(trans, root->fs_info);
1405         if (IS_ERR(log_root))
1406                 return PTR_ERR(log_root);
1407
1408         log_root->last_trans = trans->transid;
1409         log_root->root_key.offset = root->root_key.objectid;
1410
1411         inode_item = &log_root->root_item.inode;
1412         btrfs_set_stack_inode_generation(inode_item, 1);
1413         btrfs_set_stack_inode_size(inode_item, 3);
1414         btrfs_set_stack_inode_nlink(inode_item, 1);
1415         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1416         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1417
1418         btrfs_set_root_node(&log_root->root_item, log_root->node);
1419
1420         WARN_ON(root->log_root);
1421         root->log_root = log_root;
1422         root->log_transid = 0;
1423         root->last_log_commit = 0;
1424         return 0;
1425 }
1426
1427 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1428                                                struct btrfs_key *key)
1429 {
1430         struct btrfs_root *root;
1431         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1432         struct btrfs_path *path;
1433         u64 generation;
1434         u32 blocksize;
1435         int ret;
1436
1437         path = btrfs_alloc_path();
1438         if (!path)
1439                 return ERR_PTR(-ENOMEM);
1440
1441         root = btrfs_alloc_root(fs_info);
1442         if (!root) {
1443                 ret = -ENOMEM;
1444                 goto alloc_fail;
1445         }
1446
1447         __setup_root(tree_root->nodesize, tree_root->leafsize,
1448                      tree_root->sectorsize, tree_root->stripesize,
1449                      root, fs_info, key->objectid);
1450
1451         ret = btrfs_find_root(tree_root, key, path,
1452                               &root->root_item, &root->root_key);
1453         if (ret) {
1454                 if (ret > 0)
1455                         ret = -ENOENT;
1456                 goto find_fail;
1457         }
1458
1459         generation = btrfs_root_generation(&root->root_item);
1460         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1461         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1462                                      blocksize, generation);
1463         if (!root->node) {
1464                 ret = -ENOMEM;
1465                 goto find_fail;
1466         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1467                 ret = -EIO;
1468                 goto read_fail;
1469         }
1470         root->commit_root = btrfs_root_node(root);
1471 out:
1472         btrfs_free_path(path);
1473         return root;
1474
1475 read_fail:
1476         free_extent_buffer(root->node);
1477 find_fail:
1478         kfree(root);
1479 alloc_fail:
1480         root = ERR_PTR(ret);
1481         goto out;
1482 }
1483
1484 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1485                                       struct btrfs_key *location)
1486 {
1487         struct btrfs_root *root;
1488
1489         root = btrfs_read_tree_root(tree_root, location);
1490         if (IS_ERR(root))
1491                 return root;
1492
1493         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1494                 root->ref_cows = 1;
1495                 btrfs_check_and_init_root_item(&root->root_item);
1496         }
1497
1498         return root;
1499 }
1500
1501 int btrfs_init_fs_root(struct btrfs_root *root)
1502 {
1503         int ret;
1504
1505         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1506         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1507                                         GFP_NOFS);
1508         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1509                 ret = -ENOMEM;
1510                 goto fail;
1511         }
1512
1513         btrfs_init_free_ino_ctl(root);
1514         mutex_init(&root->fs_commit_mutex);
1515         spin_lock_init(&root->cache_lock);
1516         init_waitqueue_head(&root->cache_wait);
1517
1518         ret = get_anon_bdev(&root->anon_dev);
1519         if (ret)
1520                 goto fail;
1521         return 0;
1522 fail:
1523         kfree(root->free_ino_ctl);
1524         kfree(root->free_ino_pinned);
1525         return ret;
1526 }
1527
1528 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1529                                                u64 root_id)
1530 {
1531         struct btrfs_root *root;
1532
1533         spin_lock(&fs_info->fs_roots_radix_lock);
1534         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1535                                  (unsigned long)root_id);
1536         spin_unlock(&fs_info->fs_roots_radix_lock);
1537         return root;
1538 }
1539
1540 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1541                          struct btrfs_root *root)
1542 {
1543         int ret;
1544
1545         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1546         if (ret)
1547                 return ret;
1548
1549         spin_lock(&fs_info->fs_roots_radix_lock);
1550         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1551                                 (unsigned long)root->root_key.objectid,
1552                                 root);
1553         if (ret == 0)
1554                 root->in_radix = 1;
1555         spin_unlock(&fs_info->fs_roots_radix_lock);
1556         radix_tree_preload_end();
1557
1558         return ret;
1559 }
1560
1561 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1562                                      struct btrfs_key *location,
1563                                      bool check_ref)
1564 {
1565         struct btrfs_root *root;
1566         int ret;
1567
1568         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1569                 return fs_info->tree_root;
1570         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1571                 return fs_info->extent_root;
1572         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1573                 return fs_info->chunk_root;
1574         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1575                 return fs_info->dev_root;
1576         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1577                 return fs_info->csum_root;
1578         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1579                 return fs_info->quota_root ? fs_info->quota_root :
1580                                              ERR_PTR(-ENOENT);
1581         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1582                 return fs_info->uuid_root ? fs_info->uuid_root :
1583                                             ERR_PTR(-ENOENT);
1584 again:
1585         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1586         if (root) {
1587                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1588                         return ERR_PTR(-ENOENT);
1589                 return root;
1590         }
1591
1592         root = btrfs_read_fs_root(fs_info->tree_root, location);
1593         if (IS_ERR(root))
1594                 return root;
1595
1596         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1597                 ret = -ENOENT;
1598                 goto fail;
1599         }
1600
1601         ret = btrfs_init_fs_root(root);
1602         if (ret)
1603                 goto fail;
1604
1605         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1606                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1607         if (ret < 0)
1608                 goto fail;
1609         if (ret == 0)
1610                 root->orphan_item_inserted = 1;
1611
1612         ret = btrfs_insert_fs_root(fs_info, root);
1613         if (ret) {
1614                 if (ret == -EEXIST) {
1615                         free_fs_root(root);
1616                         goto again;
1617                 }
1618                 goto fail;
1619         }
1620         return root;
1621 fail:
1622         free_fs_root(root);
1623         return ERR_PTR(ret);
1624 }
1625
1626 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1627 {
1628         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1629         int ret = 0;
1630         struct btrfs_device *device;
1631         struct backing_dev_info *bdi;
1632
1633         rcu_read_lock();
1634         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1635                 if (!device->bdev)
1636                         continue;
1637                 bdi = blk_get_backing_dev_info(device->bdev);
1638                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1639                         ret = 1;
1640                         break;
1641                 }
1642         }
1643         rcu_read_unlock();
1644         return ret;
1645 }
1646
1647 /*
1648  * If this fails, caller must call bdi_destroy() to get rid of the
1649  * bdi again.
1650  */
1651 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1652 {
1653         int err;
1654
1655         bdi->capabilities = BDI_CAP_MAP_COPY;
1656         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1657         if (err)
1658                 return err;
1659
1660         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1661         bdi->congested_fn       = btrfs_congested_fn;
1662         bdi->congested_data     = info;
1663         return 0;
1664 }
1665
1666 /*
1667  * called by the kthread helper functions to finally call the bio end_io
1668  * functions.  This is where read checksum verification actually happens
1669  */
1670 static void end_workqueue_fn(struct btrfs_work *work)
1671 {
1672         struct bio *bio;
1673         struct end_io_wq *end_io_wq;
1674         int error;
1675
1676         end_io_wq = container_of(work, struct end_io_wq, work);
1677         bio = end_io_wq->bio;
1678
1679         error = end_io_wq->error;
1680         bio->bi_private = end_io_wq->private;
1681         bio->bi_end_io = end_io_wq->end_io;
1682         kfree(end_io_wq);
1683         bio_endio(bio, error);
1684 }
1685
1686 static int cleaner_kthread(void *arg)
1687 {
1688         struct btrfs_root *root = arg;
1689         int again;
1690
1691         do {
1692                 again = 0;
1693
1694                 /* Make the cleaner go to sleep early. */
1695                 if (btrfs_need_cleaner_sleep(root))
1696                         goto sleep;
1697
1698                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1699                         goto sleep;
1700
1701                 /*
1702                  * Avoid the problem that we change the status of the fs
1703                  * during the above check and trylock.
1704                  */
1705                 if (btrfs_need_cleaner_sleep(root)) {
1706                         mutex_unlock(&root->fs_info->cleaner_mutex);
1707                         goto sleep;
1708                 }
1709
1710                 btrfs_run_delayed_iputs(root);
1711                 again = btrfs_clean_one_deleted_snapshot(root);
1712                 mutex_unlock(&root->fs_info->cleaner_mutex);
1713
1714                 /*
1715                  * The defragger has dealt with the R/O remount and umount,
1716                  * needn't do anything special here.
1717                  */
1718                 btrfs_run_defrag_inodes(root->fs_info);
1719 sleep:
1720                 if (!try_to_freeze() && !again) {
1721                         set_current_state(TASK_INTERRUPTIBLE);
1722                         if (!kthread_should_stop())
1723                                 schedule();
1724                         __set_current_state(TASK_RUNNING);
1725                 }
1726         } while (!kthread_should_stop());
1727         return 0;
1728 }
1729
1730 static int transaction_kthread(void *arg)
1731 {
1732         struct btrfs_root *root = arg;
1733         struct btrfs_trans_handle *trans;
1734         struct btrfs_transaction *cur;
1735         u64 transid;
1736         unsigned long now;
1737         unsigned long delay;
1738         bool cannot_commit;
1739
1740         do {
1741                 cannot_commit = false;
1742                 delay = HZ * root->fs_info->commit_interval;
1743                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1744
1745                 spin_lock(&root->fs_info->trans_lock);
1746                 cur = root->fs_info->running_transaction;
1747                 if (!cur) {
1748                         spin_unlock(&root->fs_info->trans_lock);
1749                         goto sleep;
1750                 }
1751
1752                 now = get_seconds();
1753                 if (cur->state < TRANS_STATE_BLOCKED &&
1754                     (now < cur->start_time ||
1755                      now - cur->start_time < root->fs_info->commit_interval)) {
1756                         spin_unlock(&root->fs_info->trans_lock);
1757                         delay = HZ * 5;
1758                         goto sleep;
1759                 }
1760                 transid = cur->transid;
1761                 spin_unlock(&root->fs_info->trans_lock);
1762
1763                 /* If the file system is aborted, this will always fail. */
1764                 trans = btrfs_attach_transaction(root);
1765                 if (IS_ERR(trans)) {
1766                         if (PTR_ERR(trans) != -ENOENT)
1767                                 cannot_commit = true;
1768                         goto sleep;
1769                 }
1770                 if (transid == trans->transid) {
1771                         btrfs_commit_transaction(trans, root);
1772                 } else {
1773                         btrfs_end_transaction(trans, root);
1774                 }
1775 sleep:
1776                 wake_up_process(root->fs_info->cleaner_kthread);
1777                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1778
1779                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1780                                       &root->fs_info->fs_state)))
1781                         btrfs_cleanup_transaction(root);
1782                 if (!try_to_freeze()) {
1783                         set_current_state(TASK_INTERRUPTIBLE);
1784                         if (!kthread_should_stop() &&
1785                             (!btrfs_transaction_blocked(root->fs_info) ||
1786                              cannot_commit))
1787                                 schedule_timeout(delay);
1788                         __set_current_state(TASK_RUNNING);
1789                 }
1790         } while (!kthread_should_stop());
1791         return 0;
1792 }
1793
1794 /*
1795  * this will find the highest generation in the array of
1796  * root backups.  The index of the highest array is returned,
1797  * or -1 if we can't find anything.
1798  *
1799  * We check to make sure the array is valid by comparing the
1800  * generation of the latest  root in the array with the generation
1801  * in the super block.  If they don't match we pitch it.
1802  */
1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804 {
1805         u64 cur;
1806         int newest_index = -1;
1807         struct btrfs_root_backup *root_backup;
1808         int i;
1809
1810         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811                 root_backup = info->super_copy->super_roots + i;
1812                 cur = btrfs_backup_tree_root_gen(root_backup);
1813                 if (cur == newest_gen)
1814                         newest_index = i;
1815         }
1816
1817         /* check to see if we actually wrapped around */
1818         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819                 root_backup = info->super_copy->super_roots;
1820                 cur = btrfs_backup_tree_root_gen(root_backup);
1821                 if (cur == newest_gen)
1822                         newest_index = 0;
1823         }
1824         return newest_index;
1825 }
1826
1827
1828 /*
1829  * find the oldest backup so we know where to store new entries
1830  * in the backup array.  This will set the backup_root_index
1831  * field in the fs_info struct
1832  */
1833 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834                                      u64 newest_gen)
1835 {
1836         int newest_index = -1;
1837
1838         newest_index = find_newest_super_backup(info, newest_gen);
1839         /* if there was garbage in there, just move along */
1840         if (newest_index == -1) {
1841                 info->backup_root_index = 0;
1842         } else {
1843                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844         }
1845 }
1846
1847 /*
1848  * copy all the root pointers into the super backup array.
1849  * this will bump the backup pointer by one when it is
1850  * done
1851  */
1852 static void backup_super_roots(struct btrfs_fs_info *info)
1853 {
1854         int next_backup;
1855         struct btrfs_root_backup *root_backup;
1856         int last_backup;
1857
1858         next_backup = info->backup_root_index;
1859         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860                 BTRFS_NUM_BACKUP_ROOTS;
1861
1862         /*
1863          * just overwrite the last backup if we're at the same generation
1864          * this happens only at umount
1865          */
1866         root_backup = info->super_for_commit->super_roots + last_backup;
1867         if (btrfs_backup_tree_root_gen(root_backup) ==
1868             btrfs_header_generation(info->tree_root->node))
1869                 next_backup = last_backup;
1870
1871         root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873         /*
1874          * make sure all of our padding and empty slots get zero filled
1875          * regardless of which ones we use today
1876          */
1877         memset(root_backup, 0, sizeof(*root_backup));
1878
1879         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882         btrfs_set_backup_tree_root_gen(root_backup,
1883                                btrfs_header_generation(info->tree_root->node));
1884
1885         btrfs_set_backup_tree_root_level(root_backup,
1886                                btrfs_header_level(info->tree_root->node));
1887
1888         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889         btrfs_set_backup_chunk_root_gen(root_backup,
1890                                btrfs_header_generation(info->chunk_root->node));
1891         btrfs_set_backup_chunk_root_level(root_backup,
1892                                btrfs_header_level(info->chunk_root->node));
1893
1894         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895         btrfs_set_backup_extent_root_gen(root_backup,
1896                                btrfs_header_generation(info->extent_root->node));
1897         btrfs_set_backup_extent_root_level(root_backup,
1898                                btrfs_header_level(info->extent_root->node));
1899
1900         /*
1901          * we might commit during log recovery, which happens before we set
1902          * the fs_root.  Make sure it is valid before we fill it in.
1903          */
1904         if (info->fs_root && info->fs_root->node) {
1905                 btrfs_set_backup_fs_root(root_backup,
1906                                          info->fs_root->node->start);
1907                 btrfs_set_backup_fs_root_gen(root_backup,
1908                                btrfs_header_generation(info->fs_root->node));
1909                 btrfs_set_backup_fs_root_level(root_backup,
1910                                btrfs_header_level(info->fs_root->node));
1911         }
1912
1913         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914         btrfs_set_backup_dev_root_gen(root_backup,
1915                                btrfs_header_generation(info->dev_root->node));
1916         btrfs_set_backup_dev_root_level(root_backup,
1917                                        btrfs_header_level(info->dev_root->node));
1918
1919         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920         btrfs_set_backup_csum_root_gen(root_backup,
1921                                btrfs_header_generation(info->csum_root->node));
1922         btrfs_set_backup_csum_root_level(root_backup,
1923                                btrfs_header_level(info->csum_root->node));
1924
1925         btrfs_set_backup_total_bytes(root_backup,
1926                              btrfs_super_total_bytes(info->super_copy));
1927         btrfs_set_backup_bytes_used(root_backup,
1928                              btrfs_super_bytes_used(info->super_copy));
1929         btrfs_set_backup_num_devices(root_backup,
1930                              btrfs_super_num_devices(info->super_copy));
1931
1932         /*
1933          * if we don't copy this out to the super_copy, it won't get remembered
1934          * for the next commit
1935          */
1936         memcpy(&info->super_copy->super_roots,
1937                &info->super_for_commit->super_roots,
1938                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939 }
1940
1941 /*
1942  * this copies info out of the root backup array and back into
1943  * the in-memory super block.  It is meant to help iterate through
1944  * the array, so you send it the number of backups you've already
1945  * tried and the last backup index you used.
1946  *
1947  * this returns -1 when it has tried all the backups
1948  */
1949 static noinline int next_root_backup(struct btrfs_fs_info *info,
1950                                      struct btrfs_super_block *super,
1951                                      int *num_backups_tried, int *backup_index)
1952 {
1953         struct btrfs_root_backup *root_backup;
1954         int newest = *backup_index;
1955
1956         if (*num_backups_tried == 0) {
1957                 u64 gen = btrfs_super_generation(super);
1958
1959                 newest = find_newest_super_backup(info, gen);
1960                 if (newest == -1)
1961                         return -1;
1962
1963                 *backup_index = newest;
1964                 *num_backups_tried = 1;
1965         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966                 /* we've tried all the backups, all done */
1967                 return -1;
1968         } else {
1969                 /* jump to the next oldest backup */
1970                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971                         BTRFS_NUM_BACKUP_ROOTS;
1972                 *backup_index = newest;
1973                 *num_backups_tried += 1;
1974         }
1975         root_backup = super->super_roots + newest;
1976
1977         btrfs_set_super_generation(super,
1978                                    btrfs_backup_tree_root_gen(root_backup));
1979         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980         btrfs_set_super_root_level(super,
1981                                    btrfs_backup_tree_root_level(root_backup));
1982         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984         /*
1985          * fixme: the total bytes and num_devices need to match or we should
1986          * need a fsck
1987          */
1988         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990         return 0;
1991 }
1992
1993 /* helper to cleanup workers */
1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995 {
1996         btrfs_stop_workers(&fs_info->generic_worker);
1997         btrfs_stop_workers(&fs_info->fixup_workers);
1998         btrfs_stop_workers(&fs_info->delalloc_workers);
1999         btrfs_stop_workers(&fs_info->workers);
2000         btrfs_stop_workers(&fs_info->endio_workers);
2001         btrfs_stop_workers(&fs_info->endio_meta_workers);
2002         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2003         btrfs_stop_workers(&fs_info->rmw_workers);
2004         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2005         btrfs_stop_workers(&fs_info->endio_write_workers);
2006         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2007         btrfs_stop_workers(&fs_info->submit_workers);
2008         btrfs_stop_workers(&fs_info->delayed_workers);
2009         btrfs_stop_workers(&fs_info->caching_workers);
2010         btrfs_stop_workers(&fs_info->readahead_workers);
2011         btrfs_stop_workers(&fs_info->flush_workers);
2012         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2013 }
2014
2015 static void free_root_extent_buffers(struct btrfs_root *root)
2016 {
2017         if (root) {
2018                 free_extent_buffer(root->node);
2019                 free_extent_buffer(root->commit_root);
2020                 root->node = NULL;
2021                 root->commit_root = NULL;
2022         }
2023 }
2024
2025 /* helper to cleanup tree roots */
2026 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2027 {
2028         free_root_extent_buffers(info->tree_root);
2029
2030         free_root_extent_buffers(info->dev_root);
2031         free_root_extent_buffers(info->extent_root);
2032         free_root_extent_buffers(info->csum_root);
2033         free_root_extent_buffers(info->quota_root);
2034         free_root_extent_buffers(info->uuid_root);
2035         if (chunk_root)
2036                 free_root_extent_buffers(info->chunk_root);
2037 }
2038
2039 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2040 {
2041         int ret;
2042         struct btrfs_root *gang[8];
2043         int i;
2044
2045         while (!list_empty(&fs_info->dead_roots)) {
2046                 gang[0] = list_entry(fs_info->dead_roots.next,
2047                                      struct btrfs_root, root_list);
2048                 list_del(&gang[0]->root_list);
2049
2050                 if (gang[0]->in_radix) {
2051                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2052                 } else {
2053                         free_extent_buffer(gang[0]->node);
2054                         free_extent_buffer(gang[0]->commit_root);
2055                         btrfs_put_fs_root(gang[0]);
2056                 }
2057         }
2058
2059         while (1) {
2060                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2061                                              (void **)gang, 0,
2062                                              ARRAY_SIZE(gang));
2063                 if (!ret)
2064                         break;
2065                 for (i = 0; i < ret; i++)
2066                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2067         }
2068 }
2069
2070 int open_ctree(struct super_block *sb,
2071                struct btrfs_fs_devices *fs_devices,
2072                char *options)
2073 {
2074         u32 sectorsize;
2075         u32 nodesize;
2076         u32 leafsize;
2077         u32 blocksize;
2078         u32 stripesize;
2079         u64 generation;
2080         u64 features;
2081         struct btrfs_key location;
2082         struct buffer_head *bh;
2083         struct btrfs_super_block *disk_super;
2084         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2085         struct btrfs_root *tree_root;
2086         struct btrfs_root *extent_root;
2087         struct btrfs_root *csum_root;
2088         struct btrfs_root *chunk_root;
2089         struct btrfs_root *dev_root;
2090         struct btrfs_root *quota_root;
2091         struct btrfs_root *uuid_root;
2092         struct btrfs_root *log_tree_root;
2093         int ret;
2094         int err = -EINVAL;
2095         int num_backups_tried = 0;
2096         int backup_index = 0;
2097         bool create_uuid_tree;
2098         bool check_uuid_tree;
2099
2100         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2101         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2102         if (!tree_root || !chunk_root) {
2103                 err = -ENOMEM;
2104                 goto fail;
2105         }
2106
2107         ret = init_srcu_struct(&fs_info->subvol_srcu);
2108         if (ret) {
2109                 err = ret;
2110                 goto fail;
2111         }
2112
2113         ret = setup_bdi(fs_info, &fs_info->bdi);
2114         if (ret) {
2115                 err = ret;
2116                 goto fail_srcu;
2117         }
2118
2119         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2120         if (ret) {
2121                 err = ret;
2122                 goto fail_bdi;
2123         }
2124         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2125                                         (1 + ilog2(nr_cpu_ids));
2126
2127         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2128         if (ret) {
2129                 err = ret;
2130                 goto fail_dirty_metadata_bytes;
2131         }
2132
2133         fs_info->btree_inode = new_inode(sb);
2134         if (!fs_info->btree_inode) {
2135                 err = -ENOMEM;
2136                 goto fail_delalloc_bytes;
2137         }
2138
2139         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2140
2141         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2142         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2143         INIT_LIST_HEAD(&fs_info->trans_list);
2144         INIT_LIST_HEAD(&fs_info->dead_roots);
2145         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2146         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2147         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2148         spin_lock_init(&fs_info->delalloc_root_lock);
2149         spin_lock_init(&fs_info->trans_lock);
2150         spin_lock_init(&fs_info->fs_roots_radix_lock);
2151         spin_lock_init(&fs_info->delayed_iput_lock);
2152         spin_lock_init(&fs_info->defrag_inodes_lock);
2153         spin_lock_init(&fs_info->free_chunk_lock);
2154         spin_lock_init(&fs_info->tree_mod_seq_lock);
2155         spin_lock_init(&fs_info->super_lock);
2156         spin_lock_init(&fs_info->buffer_lock);
2157         rwlock_init(&fs_info->tree_mod_log_lock);
2158         mutex_init(&fs_info->reloc_mutex);
2159         seqlock_init(&fs_info->profiles_lock);
2160
2161         init_completion(&fs_info->kobj_unregister);
2162         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2163         INIT_LIST_HEAD(&fs_info->space_info);
2164         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2165         btrfs_mapping_init(&fs_info->mapping_tree);
2166         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2167                              BTRFS_BLOCK_RSV_GLOBAL);
2168         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2169                              BTRFS_BLOCK_RSV_DELALLOC);
2170         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2171         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2172         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2173         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2174                              BTRFS_BLOCK_RSV_DELOPS);
2175         atomic_set(&fs_info->nr_async_submits, 0);
2176         atomic_set(&fs_info->async_delalloc_pages, 0);
2177         atomic_set(&fs_info->async_submit_draining, 0);
2178         atomic_set(&fs_info->nr_async_bios, 0);
2179         atomic_set(&fs_info->defrag_running, 0);
2180         atomic64_set(&fs_info->tree_mod_seq, 0);
2181         fs_info->sb = sb;
2182         fs_info->max_inline = 8192 * 1024;
2183         fs_info->metadata_ratio = 0;
2184         fs_info->defrag_inodes = RB_ROOT;
2185         fs_info->free_chunk_space = 0;
2186         fs_info->tree_mod_log = RB_ROOT;
2187         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2188
2189         /* readahead state */
2190         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2191         spin_lock_init(&fs_info->reada_lock);
2192
2193         fs_info->thread_pool_size = min_t(unsigned long,
2194                                           num_online_cpus() + 2, 8);
2195
2196         INIT_LIST_HEAD(&fs_info->ordered_roots);
2197         spin_lock_init(&fs_info->ordered_root_lock);
2198         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2199                                         GFP_NOFS);
2200         if (!fs_info->delayed_root) {
2201                 err = -ENOMEM;
2202                 goto fail_iput;
2203         }
2204         btrfs_init_delayed_root(fs_info->delayed_root);
2205
2206         mutex_init(&fs_info->scrub_lock);
2207         atomic_set(&fs_info->scrubs_running, 0);
2208         atomic_set(&fs_info->scrub_pause_req, 0);
2209         atomic_set(&fs_info->scrubs_paused, 0);
2210         atomic_set(&fs_info->scrub_cancel_req, 0);
2211         init_waitqueue_head(&fs_info->scrub_pause_wait);
2212         fs_info->scrub_workers_refcnt = 0;
2213 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2214         fs_info->check_integrity_print_mask = 0;
2215 #endif
2216
2217         spin_lock_init(&fs_info->balance_lock);
2218         mutex_init(&fs_info->balance_mutex);
2219         atomic_set(&fs_info->balance_running, 0);
2220         atomic_set(&fs_info->balance_pause_req, 0);
2221         atomic_set(&fs_info->balance_cancel_req, 0);
2222         fs_info->balance_ctl = NULL;
2223         init_waitqueue_head(&fs_info->balance_wait_q);
2224
2225         sb->s_blocksize = 4096;
2226         sb->s_blocksize_bits = blksize_bits(4096);
2227         sb->s_bdi = &fs_info->bdi;
2228
2229         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2230         set_nlink(fs_info->btree_inode, 1);
2231         /*
2232          * we set the i_size on the btree inode to the max possible int.
2233          * the real end of the address space is determined by all of
2234          * the devices in the system
2235          */
2236         fs_info->btree_inode->i_size = OFFSET_MAX;
2237         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2238         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2239
2240         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2241         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2242                              fs_info->btree_inode->i_mapping);
2243         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2244         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2245
2246         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2247
2248         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2249         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2250                sizeof(struct btrfs_key));
2251         set_bit(BTRFS_INODE_DUMMY,
2252                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2253         btrfs_insert_inode_hash(fs_info->btree_inode);
2254
2255         spin_lock_init(&fs_info->block_group_cache_lock);
2256         fs_info->block_group_cache_tree = RB_ROOT;
2257         fs_info->first_logical_byte = (u64)-1;
2258
2259         extent_io_tree_init(&fs_info->freed_extents[0],
2260                              fs_info->btree_inode->i_mapping);
2261         extent_io_tree_init(&fs_info->freed_extents[1],
2262                              fs_info->btree_inode->i_mapping);
2263         fs_info->pinned_extents = &fs_info->freed_extents[0];
2264         fs_info->do_barriers = 1;
2265
2266
2267         mutex_init(&fs_info->ordered_operations_mutex);
2268         mutex_init(&fs_info->ordered_extent_flush_mutex);
2269         mutex_init(&fs_info->tree_log_mutex);
2270         mutex_init(&fs_info->chunk_mutex);
2271         mutex_init(&fs_info->transaction_kthread_mutex);
2272         mutex_init(&fs_info->cleaner_mutex);
2273         mutex_init(&fs_info->volume_mutex);
2274         init_rwsem(&fs_info->extent_commit_sem);
2275         init_rwsem(&fs_info->cleanup_work_sem);
2276         init_rwsem(&fs_info->subvol_sem);
2277         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2278         fs_info->dev_replace.lock_owner = 0;
2279         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2280         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2281         mutex_init(&fs_info->dev_replace.lock_management_lock);
2282         mutex_init(&fs_info->dev_replace.lock);
2283
2284         spin_lock_init(&fs_info->qgroup_lock);
2285         mutex_init(&fs_info->qgroup_ioctl_lock);
2286         fs_info->qgroup_tree = RB_ROOT;
2287         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2288         fs_info->qgroup_seq = 1;
2289         fs_info->quota_enabled = 0;
2290         fs_info->pending_quota_state = 0;
2291         fs_info->qgroup_ulist = NULL;
2292         mutex_init(&fs_info->qgroup_rescan_lock);
2293
2294         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2295         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2296
2297         init_waitqueue_head(&fs_info->transaction_throttle);
2298         init_waitqueue_head(&fs_info->transaction_wait);
2299         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2300         init_waitqueue_head(&fs_info->async_submit_wait);
2301
2302         ret = btrfs_alloc_stripe_hash_table(fs_info);
2303         if (ret) {
2304                 err = ret;
2305                 goto fail_alloc;
2306         }
2307
2308         __setup_root(4096, 4096, 4096, 4096, tree_root,
2309                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2310
2311         invalidate_bdev(fs_devices->latest_bdev);
2312
2313         /*
2314          * Read super block and check the signature bytes only
2315          */
2316         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2317         if (!bh) {
2318                 err = -EINVAL;
2319                 goto fail_alloc;
2320         }
2321
2322         /*
2323          * We want to check superblock checksum, the type is stored inside.
2324          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2325          */
2326         if (btrfs_check_super_csum(bh->b_data)) {
2327                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2328                 err = -EINVAL;
2329                 goto fail_alloc;
2330         }
2331
2332         /*
2333          * super_copy is zeroed at allocation time and we never touch the
2334          * following bytes up to INFO_SIZE, the checksum is calculated from
2335          * the whole block of INFO_SIZE
2336          */
2337         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2338         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2339                sizeof(*fs_info->super_for_commit));
2340         brelse(bh);
2341
2342         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2343
2344         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2345         if (ret) {
2346                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2347                 err = -EINVAL;
2348                 goto fail_alloc;
2349         }
2350
2351         disk_super = fs_info->super_copy;
2352         if (!btrfs_super_root(disk_super))
2353                 goto fail_alloc;
2354
2355         /* check FS state, whether FS is broken. */
2356         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2357                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2358
2359         /*
2360          * run through our array of backup supers and setup
2361          * our ring pointer to the oldest one
2362          */
2363         generation = btrfs_super_generation(disk_super);
2364         find_oldest_super_backup(fs_info, generation);
2365
2366         /*
2367          * In the long term, we'll store the compression type in the super
2368          * block, and it'll be used for per file compression control.
2369          */
2370         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2371
2372         ret = btrfs_parse_options(tree_root, options);
2373         if (ret) {
2374                 err = ret;
2375                 goto fail_alloc;
2376         }
2377
2378         features = btrfs_super_incompat_flags(disk_super) &
2379                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2380         if (features) {
2381                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2382                        "unsupported optional features (%Lx).\n",
2383                        features);
2384                 err = -EINVAL;
2385                 goto fail_alloc;
2386         }
2387
2388         if (btrfs_super_leafsize(disk_super) !=
2389             btrfs_super_nodesize(disk_super)) {
2390                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2391                        "blocksizes don't match.  node %d leaf %d\n",
2392                        btrfs_super_nodesize(disk_super),
2393                        btrfs_super_leafsize(disk_super));
2394                 err = -EINVAL;
2395                 goto fail_alloc;
2396         }
2397         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2398                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2399                        "blocksize (%d) was too large\n",
2400                        btrfs_super_leafsize(disk_super));
2401                 err = -EINVAL;
2402                 goto fail_alloc;
2403         }
2404
2405         features = btrfs_super_incompat_flags(disk_super);
2406         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2407         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2408                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2409
2410         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2411                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2412
2413         /*
2414          * flag our filesystem as having big metadata blocks if
2415          * they are bigger than the page size
2416          */
2417         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2418                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2419                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2420                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2421         }
2422
2423         nodesize = btrfs_super_nodesize(disk_super);
2424         leafsize = btrfs_super_leafsize(disk_super);
2425         sectorsize = btrfs_super_sectorsize(disk_super);
2426         stripesize = btrfs_super_stripesize(disk_super);
2427         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2428         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2429
2430         /*
2431          * mixed block groups end up with duplicate but slightly offset
2432          * extent buffers for the same range.  It leads to corruptions
2433          */
2434         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2435             (sectorsize != leafsize)) {
2436                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2437                                 "are not allowed for mixed block groups on %s\n",
2438                                 sb->s_id);
2439                 goto fail_alloc;
2440         }
2441
2442         /*
2443          * Needn't use the lock because there is no other task which will
2444          * update the flag.
2445          */
2446         btrfs_set_super_incompat_flags(disk_super, features);
2447
2448         features = btrfs_super_compat_ro_flags(disk_super) &
2449                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2450         if (!(sb->s_flags & MS_RDONLY) && features) {
2451                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2452                        "unsupported option features (%Lx).\n",
2453                        features);
2454                 err = -EINVAL;
2455                 goto fail_alloc;
2456         }
2457
2458         btrfs_init_workers(&fs_info->generic_worker,
2459                            "genwork", 1, NULL);
2460
2461         btrfs_init_workers(&fs_info->workers, "worker",
2462                            fs_info->thread_pool_size,
2463                            &fs_info->generic_worker);
2464
2465         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2466                            fs_info->thread_pool_size, NULL);
2467
2468         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2469                            fs_info->thread_pool_size, NULL);
2470
2471         btrfs_init_workers(&fs_info->submit_workers, "submit",
2472                            min_t(u64, fs_devices->num_devices,
2473                            fs_info->thread_pool_size), NULL);
2474
2475         btrfs_init_workers(&fs_info->caching_workers, "cache",
2476                            fs_info->thread_pool_size, NULL);
2477
2478         /* a higher idle thresh on the submit workers makes it much more
2479          * likely that bios will be send down in a sane order to the
2480          * devices
2481          */
2482         fs_info->submit_workers.idle_thresh = 64;
2483
2484         fs_info->workers.idle_thresh = 16;
2485         fs_info->workers.ordered = 1;
2486
2487         fs_info->delalloc_workers.idle_thresh = 2;
2488         fs_info->delalloc_workers.ordered = 1;
2489
2490         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2491                            &fs_info->generic_worker);
2492         btrfs_init_workers(&fs_info->endio_workers, "endio",
2493                            fs_info->thread_pool_size,
2494                            &fs_info->generic_worker);
2495         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2496                            fs_info->thread_pool_size,
2497                            &fs_info->generic_worker);
2498         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2499                            "endio-meta-write", fs_info->thread_pool_size,
2500                            &fs_info->generic_worker);
2501         btrfs_init_workers(&fs_info->endio_raid56_workers,
2502                            "endio-raid56", fs_info->thread_pool_size,
2503                            &fs_info->generic_worker);
2504         btrfs_init_workers(&fs_info->rmw_workers,
2505                            "rmw", fs_info->thread_pool_size,
2506                            &fs_info->generic_worker);
2507         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2508                            fs_info->thread_pool_size,
2509                            &fs_info->generic_worker);
2510         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2511                            1, &fs_info->generic_worker);
2512         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2513                            fs_info->thread_pool_size,
2514                            &fs_info->generic_worker);
2515         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2516                            fs_info->thread_pool_size,
2517                            &fs_info->generic_worker);
2518         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2519                            &fs_info->generic_worker);
2520
2521         /*
2522          * endios are largely parallel and should have a very
2523          * low idle thresh
2524          */
2525         fs_info->endio_workers.idle_thresh = 4;
2526         fs_info->endio_meta_workers.idle_thresh = 4;
2527         fs_info->endio_raid56_workers.idle_thresh = 4;
2528         fs_info->rmw_workers.idle_thresh = 2;
2529
2530         fs_info->endio_write_workers.idle_thresh = 2;
2531         fs_info->endio_meta_write_workers.idle_thresh = 2;
2532         fs_info->readahead_workers.idle_thresh = 2;
2533
2534         /*
2535          * btrfs_start_workers can really only fail because of ENOMEM so just
2536          * return -ENOMEM if any of these fail.
2537          */
2538         ret = btrfs_start_workers(&fs_info->workers);
2539         ret |= btrfs_start_workers(&fs_info->generic_worker);
2540         ret |= btrfs_start_workers(&fs_info->submit_workers);
2541         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2542         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2543         ret |= btrfs_start_workers(&fs_info->endio_workers);
2544         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2545         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2546         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2547         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2548         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2549         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2550         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2551         ret |= btrfs_start_workers(&fs_info->caching_workers);
2552         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2553         ret |= btrfs_start_workers(&fs_info->flush_workers);
2554         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2555         if (ret) {
2556                 err = -ENOMEM;
2557                 goto fail_sb_buffer;
2558         }
2559
2560         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2561         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2562                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2563
2564         tree_root->nodesize = nodesize;
2565         tree_root->leafsize = leafsize;
2566         tree_root->sectorsize = sectorsize;
2567         tree_root->stripesize = stripesize;
2568
2569         sb->s_blocksize = sectorsize;
2570         sb->s_blocksize_bits = blksize_bits(sectorsize);
2571
2572         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2573                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2574                 goto fail_sb_buffer;
2575         }
2576
2577         if (sectorsize != PAGE_SIZE) {
2578                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2579                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2580                 goto fail_sb_buffer;
2581         }
2582
2583         mutex_lock(&fs_info->chunk_mutex);
2584         ret = btrfs_read_sys_array(tree_root);
2585         mutex_unlock(&fs_info->chunk_mutex);
2586         if (ret) {
2587                 printk(KERN_WARNING "BTRFS: failed to read the system "
2588                        "array on %s\n", sb->s_id);
2589                 goto fail_sb_buffer;
2590         }
2591
2592         blocksize = btrfs_level_size(tree_root,
2593                                      btrfs_super_chunk_root_level(disk_super));
2594         generation = btrfs_super_chunk_root_generation(disk_super);
2595
2596         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2597                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2598
2599         chunk_root->node = read_tree_block(chunk_root,
2600                                            btrfs_super_chunk_root(disk_super),
2601                                            blocksize, generation);
2602         if (!chunk_root->node ||
2603             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2604                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2605                        sb->s_id);
2606                 goto fail_tree_roots;
2607         }
2608         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2609         chunk_root->commit_root = btrfs_root_node(chunk_root);
2610
2611         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2612            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2613
2614         ret = btrfs_read_chunk_tree(chunk_root);
2615         if (ret) {
2616                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2617                        sb->s_id);
2618                 goto fail_tree_roots;
2619         }
2620
2621         /*
2622          * keep the device that is marked to be the target device for the
2623          * dev_replace procedure
2624          */
2625         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2626
2627         if (!fs_devices->latest_bdev) {
2628                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2629                        sb->s_id);
2630                 goto fail_tree_roots;
2631         }
2632
2633 retry_root_backup:
2634         blocksize = btrfs_level_size(tree_root,
2635                                      btrfs_super_root_level(disk_super));
2636         generation = btrfs_super_generation(disk_super);
2637
2638         tree_root->node = read_tree_block(tree_root,
2639                                           btrfs_super_root(disk_super),
2640                                           blocksize, generation);
2641         if (!tree_root->node ||
2642             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2643                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2644                        sb->s_id);
2645
2646                 goto recovery_tree_root;
2647         }
2648
2649         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2650         tree_root->commit_root = btrfs_root_node(tree_root);
2651         btrfs_set_root_refs(&tree_root->root_item, 1);
2652
2653         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2654         location.type = BTRFS_ROOT_ITEM_KEY;
2655         location.offset = 0;
2656
2657         extent_root = btrfs_read_tree_root(tree_root, &location);
2658         if (IS_ERR(extent_root)) {
2659                 ret = PTR_ERR(extent_root);
2660                 goto recovery_tree_root;
2661         }
2662         extent_root->track_dirty = 1;
2663         fs_info->extent_root = extent_root;
2664
2665         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2666         dev_root = btrfs_read_tree_root(tree_root, &location);
2667         if (IS_ERR(dev_root)) {
2668                 ret = PTR_ERR(dev_root);
2669                 goto recovery_tree_root;
2670         }
2671         dev_root->track_dirty = 1;
2672         fs_info->dev_root = dev_root;
2673         btrfs_init_devices_late(fs_info);
2674
2675         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2676         csum_root = btrfs_read_tree_root(tree_root, &location);
2677         if (IS_ERR(csum_root)) {
2678                 ret = PTR_ERR(csum_root);
2679                 goto recovery_tree_root;
2680         }
2681         csum_root->track_dirty = 1;
2682         fs_info->csum_root = csum_root;
2683
2684         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2685         quota_root = btrfs_read_tree_root(tree_root, &location);
2686         if (!IS_ERR(quota_root)) {
2687                 quota_root->track_dirty = 1;
2688                 fs_info->quota_enabled = 1;
2689                 fs_info->pending_quota_state = 1;
2690                 fs_info->quota_root = quota_root;
2691         }
2692
2693         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2694         uuid_root = btrfs_read_tree_root(tree_root, &location);
2695         if (IS_ERR(uuid_root)) {
2696                 ret = PTR_ERR(uuid_root);
2697                 if (ret != -ENOENT)
2698                         goto recovery_tree_root;
2699                 create_uuid_tree = true;
2700                 check_uuid_tree = false;
2701         } else {
2702                 uuid_root->track_dirty = 1;
2703                 fs_info->uuid_root = uuid_root;
2704                 create_uuid_tree = false;
2705                 check_uuid_tree =
2706                     generation != btrfs_super_uuid_tree_generation(disk_super);
2707         }
2708
2709         fs_info->generation = generation;
2710         fs_info->last_trans_committed = generation;
2711
2712         ret = btrfs_recover_balance(fs_info);
2713         if (ret) {
2714                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2715                 goto fail_block_groups;
2716         }
2717
2718         ret = btrfs_init_dev_stats(fs_info);
2719         if (ret) {
2720                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2721                        ret);
2722                 goto fail_block_groups;
2723         }
2724
2725         ret = btrfs_init_dev_replace(fs_info);
2726         if (ret) {
2727                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2728                 goto fail_block_groups;
2729         }
2730
2731         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2732
2733         ret = btrfs_sysfs_add_one(fs_info);
2734         if (ret) {
2735                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2736                 goto fail_block_groups;
2737         }
2738
2739         ret = btrfs_init_space_info(fs_info);
2740         if (ret) {
2741                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2742                 goto fail_block_groups;
2743         }
2744
2745         ret = btrfs_read_block_groups(extent_root);
2746         if (ret) {
2747                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2748                 goto fail_block_groups;
2749         }
2750         fs_info->num_tolerated_disk_barrier_failures =
2751                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2752         if (fs_info->fs_devices->missing_devices >
2753              fs_info->num_tolerated_disk_barrier_failures &&
2754             !(sb->s_flags & MS_RDONLY)) {
2755                 printk(KERN_WARNING "BTRFS: "
2756                         "too many missing devices, writeable mount is not allowed\n");
2757                 goto fail_block_groups;
2758         }
2759
2760         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2761                                                "btrfs-cleaner");
2762         if (IS_ERR(fs_info->cleaner_kthread))
2763                 goto fail_block_groups;
2764
2765         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2766                                                    tree_root,
2767                                                    "btrfs-transaction");
2768         if (IS_ERR(fs_info->transaction_kthread))
2769                 goto fail_cleaner;
2770
2771         if (!btrfs_test_opt(tree_root, SSD) &&
2772             !btrfs_test_opt(tree_root, NOSSD) &&
2773             !fs_info->fs_devices->rotating) {
2774                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2775                        "mode\n");
2776                 btrfs_set_opt(fs_info->mount_opt, SSD);
2777         }
2778
2779 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2780         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2781                 ret = btrfsic_mount(tree_root, fs_devices,
2782                                     btrfs_test_opt(tree_root,
2783                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2784                                     1 : 0,
2785                                     fs_info->check_integrity_print_mask);
2786                 if (ret)
2787                         printk(KERN_WARNING "BTRFS: failed to initialize"
2788                                " integrity check module %s\n", sb->s_id);
2789         }
2790 #endif
2791         ret = btrfs_read_qgroup_config(fs_info);
2792         if (ret)
2793                 goto fail_trans_kthread;
2794
2795         /* do not make disk changes in broken FS */
2796         if (btrfs_super_log_root(disk_super) != 0) {
2797                 u64 bytenr = btrfs_super_log_root(disk_super);
2798
2799                 if (fs_devices->rw_devices == 0) {
2800                         printk(KERN_WARNING "BTRFS: log replay required "
2801                                "on RO media\n");
2802                         err = -EIO;
2803                         goto fail_qgroup;
2804                 }
2805                 blocksize =
2806                      btrfs_level_size(tree_root,
2807                                       btrfs_super_log_root_level(disk_super));
2808
2809                 log_tree_root = btrfs_alloc_root(fs_info);
2810                 if (!log_tree_root) {
2811                         err = -ENOMEM;
2812                         goto fail_qgroup;
2813                 }
2814
2815                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2816                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2817
2818                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2819                                                       blocksize,
2820                                                       generation + 1);
2821                 if (!log_tree_root->node ||
2822                     !extent_buffer_uptodate(log_tree_root->node)) {
2823                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2824                         free_extent_buffer(log_tree_root->node);
2825                         kfree(log_tree_root);
2826                         goto fail_trans_kthread;
2827                 }
2828                 /* returns with log_tree_root freed on success */
2829                 ret = btrfs_recover_log_trees(log_tree_root);
2830                 if (ret) {
2831                         btrfs_error(tree_root->fs_info, ret,
2832                                     "Failed to recover log tree");
2833                         free_extent_buffer(log_tree_root->node);
2834                         kfree(log_tree_root);
2835                         goto fail_trans_kthread;
2836                 }
2837
2838                 if (sb->s_flags & MS_RDONLY) {
2839                         ret = btrfs_commit_super(tree_root);
2840                         if (ret)
2841                                 goto fail_trans_kthread;
2842                 }
2843         }
2844
2845         ret = btrfs_find_orphan_roots(tree_root);
2846         if (ret)
2847                 goto fail_trans_kthread;
2848
2849         if (!(sb->s_flags & MS_RDONLY)) {
2850                 ret = btrfs_cleanup_fs_roots(fs_info);
2851                 if (ret)
2852                         goto fail_trans_kthread;
2853
2854                 ret = btrfs_recover_relocation(tree_root);
2855                 if (ret < 0) {
2856                         printk(KERN_WARNING
2857                                "BTRFS: failed to recover relocation\n");
2858                         err = -EINVAL;
2859                         goto fail_qgroup;
2860                 }
2861         }
2862
2863         location.objectid = BTRFS_FS_TREE_OBJECTID;
2864         location.type = BTRFS_ROOT_ITEM_KEY;
2865         location.offset = 0;
2866
2867         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2868         if (IS_ERR(fs_info->fs_root)) {
2869                 err = PTR_ERR(fs_info->fs_root);
2870                 goto fail_qgroup;
2871         }
2872
2873         if (sb->s_flags & MS_RDONLY)
2874                 return 0;
2875
2876         down_read(&fs_info->cleanup_work_sem);
2877         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2878             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2879                 up_read(&fs_info->cleanup_work_sem);
2880                 close_ctree(tree_root);
2881                 return ret;
2882         }
2883         up_read(&fs_info->cleanup_work_sem);
2884
2885         ret = btrfs_resume_balance_async(fs_info);
2886         if (ret) {
2887                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2888                 close_ctree(tree_root);
2889                 return ret;
2890         }
2891
2892         ret = btrfs_resume_dev_replace_async(fs_info);
2893         if (ret) {
2894                 pr_warn("BTRFS: failed to resume dev_replace\n");
2895                 close_ctree(tree_root);
2896                 return ret;
2897         }
2898
2899         btrfs_qgroup_rescan_resume(fs_info);
2900
2901         if (create_uuid_tree) {
2902                 pr_info("BTRFS: creating UUID tree\n");
2903                 ret = btrfs_create_uuid_tree(fs_info);
2904                 if (ret) {
2905                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2906                                 ret);
2907                         close_ctree(tree_root);
2908                         return ret;
2909                 }
2910         } else if (check_uuid_tree ||
2911                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2912                 pr_info("BTRFS: checking UUID tree\n");
2913                 ret = btrfs_check_uuid_tree(fs_info);
2914                 if (ret) {
2915                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2916                                 ret);
2917                         close_ctree(tree_root);
2918                         return ret;
2919                 }
2920         } else {
2921                 fs_info->update_uuid_tree_gen = 1;
2922         }
2923
2924         return 0;
2925
2926 fail_qgroup:
2927         btrfs_free_qgroup_config(fs_info);
2928 fail_trans_kthread:
2929         kthread_stop(fs_info->transaction_kthread);
2930         btrfs_cleanup_transaction(fs_info->tree_root);
2931         del_fs_roots(fs_info);
2932 fail_cleaner:
2933         kthread_stop(fs_info->cleaner_kthread);
2934
2935         /*
2936          * make sure we're done with the btree inode before we stop our
2937          * kthreads
2938          */
2939         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2940
2941 fail_block_groups:
2942         btrfs_put_block_group_cache(fs_info);
2943         btrfs_free_block_groups(fs_info);
2944
2945 fail_tree_roots:
2946         free_root_pointers(fs_info, 1);
2947         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2948
2949 fail_sb_buffer:
2950         btrfs_stop_all_workers(fs_info);
2951 fail_alloc:
2952 fail_iput:
2953         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2954
2955         iput(fs_info->btree_inode);
2956 fail_delalloc_bytes:
2957         percpu_counter_destroy(&fs_info->delalloc_bytes);
2958 fail_dirty_metadata_bytes:
2959         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2960 fail_bdi:
2961         bdi_destroy(&fs_info->bdi);
2962 fail_srcu:
2963         cleanup_srcu_struct(&fs_info->subvol_srcu);
2964 fail:
2965         btrfs_free_stripe_hash_table(fs_info);
2966         btrfs_close_devices(fs_info->fs_devices);
2967         return err;
2968
2969 recovery_tree_root:
2970         if (!btrfs_test_opt(tree_root, RECOVERY))
2971                 goto fail_tree_roots;
2972
2973         free_root_pointers(fs_info, 0);
2974
2975         /* don't use the log in recovery mode, it won't be valid */
2976         btrfs_set_super_log_root(disk_super, 0);
2977
2978         /* we can't trust the free space cache either */
2979         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2980
2981         ret = next_root_backup(fs_info, fs_info->super_copy,
2982                                &num_backups_tried, &backup_index);
2983         if (ret == -1)
2984                 goto fail_block_groups;
2985         goto retry_root_backup;
2986 }
2987
2988 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2989 {
2990         if (uptodate) {
2991                 set_buffer_uptodate(bh);
2992         } else {
2993                 struct btrfs_device *device = (struct btrfs_device *)
2994                         bh->b_private;
2995
2996                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
2997                                           "I/O error on %s\n",
2998                                           rcu_str_deref(device->name));
2999                 /* note, we dont' set_buffer_write_io_error because we have
3000                  * our own ways of dealing with the IO errors
3001                  */
3002                 clear_buffer_uptodate(bh);
3003                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3004         }
3005         unlock_buffer(bh);
3006         put_bh(bh);
3007 }
3008
3009 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3010 {
3011         struct buffer_head *bh;
3012         struct buffer_head *latest = NULL;
3013         struct btrfs_super_block *super;
3014         int i;
3015         u64 transid = 0;
3016         u64 bytenr;
3017
3018         /* we would like to check all the supers, but that would make
3019          * a btrfs mount succeed after a mkfs from a different FS.
3020          * So, we need to add a special mount option to scan for
3021          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3022          */
3023         for (i = 0; i < 1; i++) {
3024                 bytenr = btrfs_sb_offset(i);
3025                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3026                                         i_size_read(bdev->bd_inode))
3027                         break;
3028                 bh = __bread(bdev, bytenr / 4096,
3029                                         BTRFS_SUPER_INFO_SIZE);
3030                 if (!bh)
3031                         continue;
3032
3033                 super = (struct btrfs_super_block *)bh->b_data;
3034                 if (btrfs_super_bytenr(super) != bytenr ||
3035                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3036                         brelse(bh);
3037                         continue;
3038                 }
3039
3040                 if (!latest || btrfs_super_generation(super) > transid) {
3041                         brelse(latest);
3042                         latest = bh;
3043                         transid = btrfs_super_generation(super);
3044                 } else {
3045                         brelse(bh);
3046                 }
3047         }
3048         return latest;
3049 }
3050
3051 /*
3052  * this should be called twice, once with wait == 0 and
3053  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3054  * we write are pinned.
3055  *
3056  * They are released when wait == 1 is done.
3057  * max_mirrors must be the same for both runs, and it indicates how
3058  * many supers on this one device should be written.
3059  *
3060  * max_mirrors == 0 means to write them all.
3061  */
3062 static int write_dev_supers(struct btrfs_device *device,
3063                             struct btrfs_super_block *sb,
3064                             int do_barriers, int wait, int max_mirrors)
3065 {
3066         struct buffer_head *bh;
3067         int i;
3068         int ret;
3069         int errors = 0;
3070         u32 crc;
3071         u64 bytenr;
3072
3073         if (max_mirrors == 0)
3074                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3075
3076         for (i = 0; i < max_mirrors; i++) {
3077                 bytenr = btrfs_sb_offset(i);
3078                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3079                         break;
3080
3081                 if (wait) {
3082                         bh = __find_get_block(device->bdev, bytenr / 4096,
3083                                               BTRFS_SUPER_INFO_SIZE);
3084                         if (!bh) {
3085                                 errors++;
3086                                 continue;
3087                         }
3088                         wait_on_buffer(bh);
3089                         if (!buffer_uptodate(bh))
3090                                 errors++;
3091
3092                         /* drop our reference */
3093                         brelse(bh);
3094
3095                         /* drop the reference from the wait == 0 run */
3096                         brelse(bh);
3097                         continue;
3098                 } else {
3099                         btrfs_set_super_bytenr(sb, bytenr);
3100
3101                         crc = ~(u32)0;
3102                         crc = btrfs_csum_data((char *)sb +
3103                                               BTRFS_CSUM_SIZE, crc,
3104                                               BTRFS_SUPER_INFO_SIZE -
3105                                               BTRFS_CSUM_SIZE);
3106                         btrfs_csum_final(crc, sb->csum);
3107
3108                         /*
3109                          * one reference for us, and we leave it for the
3110                          * caller
3111                          */
3112                         bh = __getblk(device->bdev, bytenr / 4096,
3113                                       BTRFS_SUPER_INFO_SIZE);
3114                         if (!bh) {
3115                                 printk(KERN_ERR "BTRFS: couldn't get super "
3116                                        "buffer head for bytenr %Lu\n", bytenr);
3117                                 errors++;
3118                                 continue;
3119                         }
3120
3121                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3122
3123                         /* one reference for submit_bh */
3124                         get_bh(bh);
3125
3126                         set_buffer_uptodate(bh);
3127                         lock_buffer(bh);
3128                         bh->b_end_io = btrfs_end_buffer_write_sync;
3129                         bh->b_private = device;
3130                 }
3131
3132                 /*
3133                  * we fua the first super.  The others we allow
3134                  * to go down lazy.
3135                  */
3136                 if (i == 0)
3137                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3138                 else
3139                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3140                 if (ret)
3141                         errors++;
3142         }
3143         return errors < i ? 0 : -1;
3144 }
3145
3146 /*
3147  * endio for the write_dev_flush, this will wake anyone waiting
3148  * for the barrier when it is done
3149  */
3150 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3151 {
3152         if (err) {
3153                 if (err == -EOPNOTSUPP)
3154                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3155                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3156         }
3157         if (bio->bi_private)
3158                 complete(bio->bi_private);
3159         bio_put(bio);
3160 }
3161
3162 /*
3163  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3164  * sent down.  With wait == 1, it waits for the previous flush.
3165  *
3166  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3167  * capable
3168  */
3169 static int write_dev_flush(struct btrfs_device *device, int wait)
3170 {
3171         struct bio *bio;
3172         int ret = 0;
3173
3174         if (device->nobarriers)
3175                 return 0;
3176
3177         if (wait) {
3178                 bio = device->flush_bio;
3179                 if (!bio)
3180                         return 0;
3181
3182                 wait_for_completion(&device->flush_wait);
3183
3184                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3185                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3186                                       rcu_str_deref(device->name));
3187                         device->nobarriers = 1;
3188                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3189                         ret = -EIO;
3190                         btrfs_dev_stat_inc_and_print(device,
3191                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3192                 }
3193
3194                 /* drop the reference from the wait == 0 run */
3195                 bio_put(bio);
3196                 device->flush_bio = NULL;
3197
3198                 return ret;
3199         }
3200
3201         /*
3202          * one reference for us, and we leave it for the
3203          * caller
3204          */
3205         device->flush_bio = NULL;
3206         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3207         if (!bio)
3208                 return -ENOMEM;
3209
3210         bio->bi_end_io = btrfs_end_empty_barrier;
3211         bio->bi_bdev = device->bdev;
3212         init_completion(&device->flush_wait);
3213         bio->bi_private = &device->flush_wait;
3214         device->flush_bio = bio;
3215
3216         bio_get(bio);
3217         btrfsic_submit_bio(WRITE_FLUSH, bio);
3218
3219         return 0;
3220 }
3221
3222 /*
3223  * send an empty flush down to each device in parallel,
3224  * then wait for them
3225  */
3226 static int barrier_all_devices(struct btrfs_fs_info *info)
3227 {
3228         struct list_head *head;
3229         struct btrfs_device *dev;
3230         int errors_send = 0;
3231         int errors_wait = 0;
3232         int ret;
3233
3234         /* send down all the barriers */
3235         head = &info->fs_devices->devices;
3236         list_for_each_entry_rcu(dev, head, dev_list) {
3237                 if (!dev->bdev) {
3238                         errors_send++;
3239                         continue;
3240                 }
3241                 if (!dev->in_fs_metadata || !dev->writeable)
3242                         continue;
3243
3244                 ret = write_dev_flush(dev, 0);
3245                 if (ret)
3246                         errors_send++;
3247         }
3248
3249         /* wait for all the barriers */
3250         list_for_each_entry_rcu(dev, head, dev_list) {
3251                 if (!dev->bdev) {
3252                         errors_wait++;
3253                         continue;
3254                 }
3255                 if (!dev->in_fs_metadata || !dev->writeable)
3256                         continue;
3257
3258                 ret = write_dev_flush(dev, 1);
3259                 if (ret)
3260                         errors_wait++;
3261         }
3262         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3263             errors_wait > info->num_tolerated_disk_barrier_failures)
3264                 return -EIO;
3265         return 0;
3266 }
3267
3268 int btrfs_calc_num_tolerated_disk_barrier_failures(
3269         struct btrfs_fs_info *fs_info)
3270 {
3271         struct btrfs_ioctl_space_info space;
3272         struct btrfs_space_info *sinfo;
3273         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3274                        BTRFS_BLOCK_GROUP_SYSTEM,
3275                        BTRFS_BLOCK_GROUP_METADATA,
3276                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3277         int num_types = 4;
3278         int i;
3279         int c;
3280         int num_tolerated_disk_barrier_failures =
3281                 (int)fs_info->fs_devices->num_devices;
3282
3283         for (i = 0; i < num_types; i++) {
3284                 struct btrfs_space_info *tmp;
3285
3286                 sinfo = NULL;
3287                 rcu_read_lock();
3288                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3289                         if (tmp->flags == types[i]) {
3290                                 sinfo = tmp;
3291                                 break;
3292                         }
3293                 }
3294                 rcu_read_unlock();
3295
3296                 if (!sinfo)
3297                         continue;
3298
3299                 down_read(&sinfo->groups_sem);
3300                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3301                         if (!list_empty(&sinfo->block_groups[c])) {
3302                                 u64 flags;
3303
3304                                 btrfs_get_block_group_info(
3305                                         &sinfo->block_groups[c], &space);
3306                                 if (space.total_bytes == 0 ||
3307                                     space.used_bytes == 0)
3308                                         continue;
3309                                 flags = space.flags;
3310                                 /*
3311                                  * return
3312                                  * 0: if dup, single or RAID0 is configured for
3313                                  *    any of metadata, system or data, else
3314                                  * 1: if RAID5 is configured, or if RAID1 or
3315                                  *    RAID10 is configured and only two mirrors
3316                                  *    are used, else
3317                                  * 2: if RAID6 is configured, else
3318                                  * num_mirrors - 1: if RAID1 or RAID10 is
3319                                  *                  configured and more than
3320                                  *                  2 mirrors are used.
3321                                  */
3322                                 if (num_tolerated_disk_barrier_failures > 0 &&
3323                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3324                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3325                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3326                                       == 0)))
3327                                         num_tolerated_disk_barrier_failures = 0;
3328                                 else if (num_tolerated_disk_barrier_failures > 1) {
3329                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3330                                             BTRFS_BLOCK_GROUP_RAID5 |
3331                                             BTRFS_BLOCK_GROUP_RAID10)) {
3332                                                 num_tolerated_disk_barrier_failures = 1;
3333                                         } else if (flags &
3334                                                    BTRFS_BLOCK_GROUP_RAID6) {
3335                                                 num_tolerated_disk_barrier_failures = 2;
3336                                         }
3337                                 }
3338                         }
3339                 }
3340                 up_read(&sinfo->groups_sem);
3341         }
3342
3343         return num_tolerated_disk_barrier_failures;
3344 }
3345
3346 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3347 {
3348         struct list_head *head;
3349         struct btrfs_device *dev;
3350         struct btrfs_super_block *sb;
3351         struct btrfs_dev_item *dev_item;
3352         int ret;
3353         int do_barriers;
3354         int max_errors;
3355         int total_errors = 0;
3356         u64 flags;
3357
3358         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3359         backup_super_roots(root->fs_info);
3360
3361         sb = root->fs_info->super_for_commit;
3362         dev_item = &sb->dev_item;
3363
3364         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3365         head = &root->fs_info->fs_devices->devices;
3366         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3367
3368         if (do_barriers) {
3369                 ret = barrier_all_devices(root->fs_info);
3370                 if (ret) {
3371                         mutex_unlock(
3372                                 &root->fs_info->fs_devices->device_list_mutex);
3373                         btrfs_error(root->fs_info, ret,
3374                                     "errors while submitting device barriers.");
3375                         return ret;
3376                 }
3377         }
3378
3379         list_for_each_entry_rcu(dev, head, dev_list) {
3380                 if (!dev->bdev) {
3381                         total_errors++;
3382                         continue;
3383                 }
3384                 if (!dev->in_fs_metadata || !dev->writeable)
3385                         continue;
3386
3387                 btrfs_set_stack_device_generation(dev_item, 0);
3388                 btrfs_set_stack_device_type(dev_item, dev->type);
3389                 btrfs_set_stack_device_id(dev_item, dev->devid);
3390                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3391                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3392                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3393                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3394                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3395                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3396                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3397
3398                 flags = btrfs_super_flags(sb);
3399                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3400
3401                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3402                 if (ret)
3403                         total_errors++;
3404         }
3405         if (total_errors > max_errors) {
3406                 btrfs_err(root->fs_info, "%d errors while writing supers",
3407                        total_errors);
3408                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3409
3410                 /* FUA is masked off if unsupported and can't be the reason */
3411                 btrfs_error(root->fs_info, -EIO,
3412                             "%d errors while writing supers", total_errors);
3413                 return -EIO;
3414         }
3415
3416         total_errors = 0;
3417         list_for_each_entry_rcu(dev, head, dev_list) {
3418                 if (!dev->bdev)
3419                         continue;
3420                 if (!dev->in_fs_metadata || !dev->writeable)
3421                         continue;
3422
3423                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3424                 if (ret)
3425                         total_errors++;
3426         }
3427         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3428         if (total_errors > max_errors) {
3429                 btrfs_error(root->fs_info, -EIO,
3430                             "%d errors while writing supers", total_errors);
3431                 return -EIO;
3432         }
3433         return 0;
3434 }
3435
3436 int write_ctree_super(struct btrfs_trans_handle *trans,
3437                       struct btrfs_root *root, int max_mirrors)
3438 {
3439         return write_all_supers(root, max_mirrors);
3440 }
3441
3442 /* Drop a fs root from the radix tree and free it. */
3443 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3444                                   struct btrfs_root *root)
3445 {
3446         spin_lock(&fs_info->fs_roots_radix_lock);
3447         radix_tree_delete(&fs_info->fs_roots_radix,
3448                           (unsigned long)root->root_key.objectid);
3449         spin_unlock(&fs_info->fs_roots_radix_lock);
3450
3451         if (btrfs_root_refs(&root->root_item) == 0)
3452                 synchronize_srcu(&fs_info->subvol_srcu);
3453
3454         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3455                 btrfs_free_log(NULL, root);
3456                 btrfs_free_log_root_tree(NULL, fs_info);
3457         }
3458
3459         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3460         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3461         free_fs_root(root);
3462 }
3463
3464 static void free_fs_root(struct btrfs_root *root)
3465 {
3466         iput(root->cache_inode);
3467         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3468         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3469         root->orphan_block_rsv = NULL;
3470         if (root->anon_dev)
3471                 free_anon_bdev(root->anon_dev);
3472         free_extent_buffer(root->node);
3473         free_extent_buffer(root->commit_root);
3474         kfree(root->free_ino_ctl);
3475         kfree(root->free_ino_pinned);
3476         kfree(root->name);
3477         btrfs_put_fs_root(root);
3478 }
3479
3480 void btrfs_free_fs_root(struct btrfs_root *root)
3481 {
3482         free_fs_root(root);
3483 }
3484
3485 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3486 {
3487         u64 root_objectid = 0;
3488         struct btrfs_root *gang[8];
3489         int i;
3490         int ret;
3491
3492         while (1) {
3493                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3494                                              (void **)gang, root_objectid,
3495                                              ARRAY_SIZE(gang));
3496                 if (!ret)
3497                         break;
3498
3499                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3500                 for (i = 0; i < ret; i++) {
3501                         int err;
3502
3503                         root_objectid = gang[i]->root_key.objectid;
3504                         err = btrfs_orphan_cleanup(gang[i]);
3505                         if (err)
3506                                 return err;
3507                 }
3508                 root_objectid++;
3509         }
3510         return 0;
3511 }
3512
3513 int btrfs_commit_super(struct btrfs_root *root)
3514 {
3515         struct btrfs_trans_handle *trans;
3516
3517         mutex_lock(&root->fs_info->cleaner_mutex);
3518         btrfs_run_delayed_iputs(root);
3519         mutex_unlock(&root->fs_info->cleaner_mutex);
3520         wake_up_process(root->fs_info->cleaner_kthread);
3521
3522         /* wait until ongoing cleanup work done */
3523         down_write(&root->fs_info->cleanup_work_sem);
3524         up_write(&root->fs_info->cleanup_work_sem);
3525
3526         trans = btrfs_join_transaction(root);
3527         if (IS_ERR(trans))
3528                 return PTR_ERR(trans);
3529         return btrfs_commit_transaction(trans, root);
3530 }
3531
3532 int close_ctree(struct btrfs_root *root)
3533 {
3534         struct btrfs_fs_info *fs_info = root->fs_info;
3535         int ret;
3536
3537         fs_info->closing = 1;
3538         smp_mb();
3539
3540         /* wait for the uuid_scan task to finish */
3541         down(&fs_info->uuid_tree_rescan_sem);
3542         /* avoid complains from lockdep et al., set sem back to initial state */
3543         up(&fs_info->uuid_tree_rescan_sem);
3544
3545         /* pause restriper - we want to resume on mount */
3546         btrfs_pause_balance(fs_info);
3547
3548         btrfs_dev_replace_suspend_for_unmount(fs_info);
3549
3550         btrfs_scrub_cancel(fs_info);
3551
3552         /* wait for any defraggers to finish */
3553         wait_event(fs_info->transaction_wait,
3554                    (atomic_read(&fs_info->defrag_running) == 0));
3555
3556         /* clear out the rbtree of defraggable inodes */
3557         btrfs_cleanup_defrag_inodes(fs_info);
3558
3559         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3560                 ret = btrfs_commit_super(root);
3561                 if (ret)
3562                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3563         }
3564
3565         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3566                 btrfs_error_commit_super(root);
3567
3568         btrfs_put_block_group_cache(fs_info);
3569
3570         kthread_stop(fs_info->transaction_kthread);
3571         kthread_stop(fs_info->cleaner_kthread);
3572
3573         fs_info->closing = 2;
3574         smp_mb();
3575
3576         btrfs_free_qgroup_config(root->fs_info);
3577
3578         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3579                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3580                        percpu_counter_sum(&fs_info->delalloc_bytes));
3581         }
3582
3583         btrfs_sysfs_remove_one(fs_info);
3584
3585         del_fs_roots(fs_info);
3586
3587         btrfs_free_block_groups(fs_info);
3588
3589         btrfs_stop_all_workers(fs_info);
3590
3591         free_root_pointers(fs_info, 1);
3592
3593         iput(fs_info->btree_inode);
3594
3595 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3596         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3597                 btrfsic_unmount(root, fs_info->fs_devices);
3598 #endif
3599
3600         btrfs_close_devices(fs_info->fs_devices);
3601         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3602
3603         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3604         percpu_counter_destroy(&fs_info->delalloc_bytes);
3605         bdi_destroy(&fs_info->bdi);
3606         cleanup_srcu_struct(&fs_info->subvol_srcu);
3607
3608         btrfs_free_stripe_hash_table(fs_info);
3609
3610         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3611         root->orphan_block_rsv = NULL;
3612
3613         return 0;
3614 }
3615
3616 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3617                           int atomic)
3618 {
3619         int ret;
3620         struct inode *btree_inode = buf->pages[0]->mapping->host;
3621
3622         ret = extent_buffer_uptodate(buf);
3623         if (!ret)
3624                 return ret;
3625
3626         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3627                                     parent_transid, atomic);
3628         if (ret == -EAGAIN)
3629                 return ret;
3630         return !ret;
3631 }
3632
3633 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3634 {
3635         return set_extent_buffer_uptodate(buf);
3636 }
3637
3638 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3639 {
3640         struct btrfs_root *root;
3641         u64 transid = btrfs_header_generation(buf);
3642         int was_dirty;
3643
3644 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3645         /*
3646          * This is a fast path so only do this check if we have sanity tests
3647          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3648          * outside of the sanity tests.
3649          */
3650         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3651                 return;
3652 #endif
3653         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3654         btrfs_assert_tree_locked(buf);
3655         if (transid != root->fs_info->generation)
3656                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3657                        "found %llu running %llu\n",
3658                         buf->start, transid, root->fs_info->generation);
3659         was_dirty = set_extent_buffer_dirty(buf);
3660         if (!was_dirty)
3661                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3662                                      buf->len,
3663                                      root->fs_info->dirty_metadata_batch);
3664 }
3665
3666 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3667                                         int flush_delayed)
3668 {
3669         /*
3670          * looks as though older kernels can get into trouble with
3671          * this code, they end up stuck in balance_dirty_pages forever
3672          */
3673         int ret;
3674
3675         if (current->flags & PF_MEMALLOC)
3676                 return;
3677
3678         if (flush_delayed)
3679                 btrfs_balance_delayed_items(root);
3680
3681         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3682                                      BTRFS_DIRTY_METADATA_THRESH);
3683         if (ret > 0) {
3684                 balance_dirty_pages_ratelimited(
3685                                    root->fs_info->btree_inode->i_mapping);
3686         }
3687         return;
3688 }
3689
3690 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3691 {
3692         __btrfs_btree_balance_dirty(root, 1);
3693 }
3694
3695 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3696 {
3697         __btrfs_btree_balance_dirty(root, 0);
3698 }
3699
3700 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3701 {
3702         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3703         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3704 }
3705
3706 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3707                               int read_only)
3708 {
3709         /*
3710          * Placeholder for checks
3711          */
3712         return 0;
3713 }
3714
3715 static void btrfs_error_commit_super(struct btrfs_root *root)
3716 {
3717         mutex_lock(&root->fs_info->cleaner_mutex);
3718         btrfs_run_delayed_iputs(root);
3719         mutex_unlock(&root->fs_info->cleaner_mutex);
3720
3721         down_write(&root->fs_info->cleanup_work_sem);
3722         up_write(&root->fs_info->cleanup_work_sem);
3723
3724         /* cleanup FS via transaction */
3725         btrfs_cleanup_transaction(root);
3726 }
3727
3728 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3729                                              struct btrfs_root *root)
3730 {
3731         struct btrfs_inode *btrfs_inode;
3732         struct list_head splice;
3733
3734         INIT_LIST_HEAD(&splice);
3735
3736         mutex_lock(&root->fs_info->ordered_operations_mutex);
3737         spin_lock(&root->fs_info->ordered_root_lock);
3738
3739         list_splice_init(&t->ordered_operations, &splice);
3740         while (!list_empty(&splice)) {
3741                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3742                                          ordered_operations);
3743
3744                 list_del_init(&btrfs_inode->ordered_operations);
3745                 spin_unlock(&root->fs_info->ordered_root_lock);
3746
3747                 btrfs_invalidate_inodes(btrfs_inode->root);
3748
3749                 spin_lock(&root->fs_info->ordered_root_lock);
3750         }
3751
3752         spin_unlock(&root->fs_info->ordered_root_lock);
3753         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3754 }
3755
3756 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3757 {
3758         struct btrfs_ordered_extent *ordered;
3759
3760         spin_lock(&root->ordered_extent_lock);
3761         /*
3762          * This will just short circuit the ordered completion stuff which will
3763          * make sure the ordered extent gets properly cleaned up.
3764          */
3765         list_for_each_entry(ordered, &root->ordered_extents,
3766                             root_extent_list)
3767                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3768         spin_unlock(&root->ordered_extent_lock);
3769 }
3770
3771 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3772 {
3773         struct btrfs_root *root;
3774         struct list_head splice;
3775
3776         INIT_LIST_HEAD(&splice);
3777
3778         spin_lock(&fs_info->ordered_root_lock);
3779         list_splice_init(&fs_info->ordered_roots, &splice);
3780         while (!list_empty(&splice)) {
3781                 root = list_first_entry(&splice, struct btrfs_root,
3782                                         ordered_root);
3783                 list_move_tail(&root->ordered_root,
3784                                &fs_info->ordered_roots);
3785
3786                 btrfs_destroy_ordered_extents(root);
3787
3788                 cond_resched_lock(&fs_info->ordered_root_lock);
3789         }
3790         spin_unlock(&fs_info->ordered_root_lock);
3791 }
3792
3793 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3794                                       struct btrfs_root *root)
3795 {
3796         struct rb_node *node;
3797         struct btrfs_delayed_ref_root *delayed_refs;
3798         struct btrfs_delayed_ref_node *ref;
3799         int ret = 0;
3800
3801         delayed_refs = &trans->delayed_refs;
3802
3803         spin_lock(&delayed_refs->lock);
3804         if (delayed_refs->num_entries == 0) {
3805                 spin_unlock(&delayed_refs->lock);
3806                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3807                 return ret;
3808         }
3809
3810         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3811                 struct btrfs_delayed_ref_head *head = NULL;
3812                 bool pin_bytes = false;
3813
3814                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3815                 atomic_set(&ref->refs, 1);
3816                 if (btrfs_delayed_ref_is_head(ref)) {
3817
3818                         head = btrfs_delayed_node_to_head(ref);
3819                         if (!mutex_trylock(&head->mutex)) {
3820                                 atomic_inc(&ref->refs);
3821                                 spin_unlock(&delayed_refs->lock);
3822
3823                                 /* Need to wait for the delayed ref to run */
3824                                 mutex_lock(&head->mutex);
3825                                 mutex_unlock(&head->mutex);
3826                                 btrfs_put_delayed_ref(ref);
3827
3828                                 spin_lock(&delayed_refs->lock);
3829                                 continue;
3830                         }
3831
3832                         if (head->must_insert_reserved)
3833                                 pin_bytes = true;
3834                         btrfs_free_delayed_extent_op(head->extent_op);
3835                         delayed_refs->num_heads--;
3836                         if (list_empty(&head->cluster))
3837                                 delayed_refs->num_heads_ready--;
3838                         list_del_init(&head->cluster);
3839                 }
3840
3841                 ref->in_tree = 0;
3842                 rb_erase(&ref->rb_node, &delayed_refs->root);
3843                 if (head)
3844                         rb_erase(&head->href_node, &delayed_refs->href_root);
3845
3846                 delayed_refs->num_entries--;
3847                 spin_unlock(&delayed_refs->lock);
3848                 if (head) {
3849                         if (pin_bytes)
3850                                 btrfs_pin_extent(root, ref->bytenr,
3851                                                  ref->num_bytes, 1);
3852                         mutex_unlock(&head->mutex);
3853                 }
3854                 btrfs_put_delayed_ref(ref);
3855
3856                 cond_resched();
3857                 spin_lock(&delayed_refs->lock);
3858         }
3859
3860         spin_unlock(&delayed_refs->lock);
3861
3862         return ret;
3863 }
3864
3865 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3866 {
3867         struct btrfs_inode *btrfs_inode;
3868         struct list_head splice;
3869
3870         INIT_LIST_HEAD(&splice);
3871
3872         spin_lock(&root->delalloc_lock);
3873         list_splice_init(&root->delalloc_inodes, &splice);
3874
3875         while (!list_empty(&splice)) {
3876                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3877                                                delalloc_inodes);
3878
3879                 list_del_init(&btrfs_inode->delalloc_inodes);
3880                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3881                           &btrfs_inode->runtime_flags);
3882                 spin_unlock(&root->delalloc_lock);
3883
3884                 btrfs_invalidate_inodes(btrfs_inode->root);
3885
3886                 spin_lock(&root->delalloc_lock);
3887         }
3888
3889         spin_unlock(&root->delalloc_lock);
3890 }
3891
3892 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3893 {
3894         struct btrfs_root *root;
3895         struct list_head splice;
3896
3897         INIT_LIST_HEAD(&splice);
3898
3899         spin_lock(&fs_info->delalloc_root_lock);
3900         list_splice_init(&fs_info->delalloc_roots, &splice);
3901         while (!list_empty(&splice)) {
3902                 root = list_first_entry(&splice, struct btrfs_root,
3903                                          delalloc_root);
3904                 list_del_init(&root->delalloc_root);
3905                 root = btrfs_grab_fs_root(root);
3906                 BUG_ON(!root);
3907                 spin_unlock(&fs_info->delalloc_root_lock);
3908
3909                 btrfs_destroy_delalloc_inodes(root);
3910                 btrfs_put_fs_root(root);
3911
3912                 spin_lock(&fs_info->delalloc_root_lock);
3913         }
3914         spin_unlock(&fs_info->delalloc_root_lock);
3915 }
3916
3917 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3918                                         struct extent_io_tree *dirty_pages,
3919                                         int mark)
3920 {
3921         int ret;
3922         struct extent_buffer *eb;
3923         u64 start = 0;
3924         u64 end;
3925
3926         while (1) {
3927                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3928                                             mark, NULL);
3929                 if (ret)
3930                         break;
3931
3932                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3933                 while (start <= end) {
3934                         eb = btrfs_find_tree_block(root, start,
3935                                                    root->leafsize);
3936                         start += root->leafsize;
3937                         if (!eb)
3938                                 continue;
3939                         wait_on_extent_buffer_writeback(eb);
3940
3941                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3942                                                &eb->bflags))
3943                                 clear_extent_buffer_dirty(eb);
3944                         free_extent_buffer_stale(eb);
3945                 }
3946         }
3947
3948         return ret;
3949 }
3950
3951 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3952                                        struct extent_io_tree *pinned_extents)
3953 {
3954         struct extent_io_tree *unpin;
3955         u64 start;
3956         u64 end;
3957         int ret;
3958         bool loop = true;
3959
3960         unpin = pinned_extents;
3961 again:
3962         while (1) {
3963                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3964                                             EXTENT_DIRTY, NULL);
3965                 if (ret)
3966                         break;
3967
3968                 /* opt_discard */
3969                 if (btrfs_test_opt(root, DISCARD))
3970                         ret = btrfs_error_discard_extent(root, start,
3971                                                          end + 1 - start,
3972                                                          NULL);
3973
3974                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3975                 btrfs_error_unpin_extent_range(root, start, end);
3976                 cond_resched();
3977         }
3978
3979         if (loop) {
3980                 if (unpin == &root->fs_info->freed_extents[0])
3981                         unpin = &root->fs_info->freed_extents[1];
3982                 else
3983                         unpin = &root->fs_info->freed_extents[0];
3984                 loop = false;
3985                 goto again;
3986         }
3987
3988         return 0;
3989 }
3990
3991 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3992                                    struct btrfs_root *root)
3993 {
3994         btrfs_destroy_ordered_operations(cur_trans, root);
3995
3996         btrfs_destroy_delayed_refs(cur_trans, root);
3997
3998         cur_trans->state = TRANS_STATE_COMMIT_START;
3999         wake_up(&root->fs_info->transaction_blocked_wait);
4000
4001         cur_trans->state = TRANS_STATE_UNBLOCKED;
4002         wake_up(&root->fs_info->transaction_wait);
4003
4004         btrfs_destroy_delayed_inodes(root);
4005         btrfs_assert_delayed_root_empty(root);
4006
4007         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4008                                      EXTENT_DIRTY);
4009         btrfs_destroy_pinned_extent(root,
4010                                     root->fs_info->pinned_extents);
4011
4012         cur_trans->state =TRANS_STATE_COMPLETED;
4013         wake_up(&cur_trans->commit_wait);
4014
4015         /*
4016         memset(cur_trans, 0, sizeof(*cur_trans));
4017         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4018         */
4019 }
4020
4021 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4022 {
4023         struct btrfs_transaction *t;
4024
4025         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4026
4027         spin_lock(&root->fs_info->trans_lock);
4028         while (!list_empty(&root->fs_info->trans_list)) {
4029                 t = list_first_entry(&root->fs_info->trans_list,
4030                                      struct btrfs_transaction, list);
4031                 if (t->state >= TRANS_STATE_COMMIT_START) {
4032                         atomic_inc(&t->use_count);
4033                         spin_unlock(&root->fs_info->trans_lock);
4034                         btrfs_wait_for_commit(root, t->transid);
4035                         btrfs_put_transaction(t);
4036                         spin_lock(&root->fs_info->trans_lock);
4037                         continue;
4038                 }
4039                 if (t == root->fs_info->running_transaction) {
4040                         t->state = TRANS_STATE_COMMIT_DOING;
4041                         spin_unlock(&root->fs_info->trans_lock);
4042                         /*
4043                          * We wait for 0 num_writers since we don't hold a trans
4044                          * handle open currently for this transaction.
4045                          */
4046                         wait_event(t->writer_wait,
4047                                    atomic_read(&t->num_writers) == 0);
4048                 } else {
4049                         spin_unlock(&root->fs_info->trans_lock);
4050                 }
4051                 btrfs_cleanup_one_transaction(t, root);
4052
4053                 spin_lock(&root->fs_info->trans_lock);
4054                 if (t == root->fs_info->running_transaction)
4055                         root->fs_info->running_transaction = NULL;
4056                 list_del_init(&t->list);
4057                 spin_unlock(&root->fs_info->trans_lock);
4058
4059                 btrfs_put_transaction(t);
4060                 trace_btrfs_transaction_commit(root);
4061                 spin_lock(&root->fs_info->trans_lock);
4062         }
4063         spin_unlock(&root->fs_info->trans_lock);
4064         btrfs_destroy_all_ordered_extents(root->fs_info);
4065         btrfs_destroy_delayed_inodes(root);
4066         btrfs_assert_delayed_root_empty(root);
4067         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4068         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4069         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4070
4071         return 0;
4072 }
4073
4074 static struct extent_io_ops btree_extent_io_ops = {
4075         .readpage_end_io_hook = btree_readpage_end_io_hook,
4076         .readpage_io_failed_hook = btree_io_failed_hook,
4077         .submit_bio_hook = btree_submit_bio_hook,
4078         /* note we're sharing with inode.c for the merge bio hook */
4079         .merge_bio_hook = btrfs_merge_bio_hook,
4080 };