1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
44 #include "space-info.h"
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
71 struct btrfs_end_io_wq {
75 struct btrfs_fs_info *info;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
81 static struct kmem_cache *btrfs_end_io_wq_cache;
83 int __init btrfs_end_io_wq_init(void)
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
90 if (!btrfs_end_io_wq_cache)
95 void __cold btrfs_end_io_wq_exit(void)
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
111 struct async_submit_bio {
114 extent_submit_bio_start_t *submit_bio_start;
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
121 struct btrfs_work work;
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
153 static struct btrfs_lockdep_keyset {
154 u64 id; /* root objectid */
155 const char *name_stem; /* lock name stem */
156 char names[BTRFS_MAX_LEVEL + 1][20];
157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171 { .id = 0, .name_stem = "tree" },
174 void __init btrfs_init_lockdep(void)
178 /* initialize lockdep class names */
179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 snprintf(ks->names[j], sizeof(ks->names[j]),
184 "btrfs-%s-%02d", ks->name_stem, j);
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
191 struct btrfs_lockdep_keyset *ks;
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
207 * Compute the csum of a btree block and store the result to provided buffer.
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
211 struct btrfs_fs_info *fs_info = buf->fs_info;
212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
219 kaddr = page_address(buf->pages[0]);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 PAGE_SIZE - BTRFS_CSUM_SIZE);
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
227 memset(result, 0, BTRFS_CSUM_SIZE);
228 crypto_shash_final(shash, result);
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 struct extent_buffer *eb, u64 parent_transid,
241 struct extent_state *cached_state = NULL;
243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
252 btrfs_tree_read_lock(eb);
253 btrfs_set_lock_blocking_read(eb);
256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
258 if (extent_buffer_uptodate(eb) &&
259 btrfs_header_generation(eb) == parent_transid) {
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
266 parent_transid, btrfs_header_generation(eb));
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
272 * block that has been freed and re-allocated. So don't clear uptodate
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
283 btrfs_tree_read_unlock_blocking(eb);
287 static bool btrfs_supported_super_csum(u16 csum_type)
290 case BTRFS_CSUM_TYPE_CRC32:
291 case BTRFS_CSUM_TYPE_XXHASH:
292 case BTRFS_CSUM_TYPE_SHA256:
293 case BTRFS_CSUM_TYPE_BLAKE2:
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
309 char result[BTRFS_CSUM_SIZE];
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
312 shash->tfm = fs_info->csum_shash;
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 struct btrfs_key *first_key, u64 parent_transid)
331 struct btrfs_fs_info *fs_info = eb->fs_info;
333 struct btrfs_key found_key;
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
398 struct btrfs_fs_info *fs_info = eb->fs_info;
399 struct extent_io_tree *io_tree;
404 int failed_mirror = 0;
406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
411 if (verify_parent_transid(io_tree, eb,
414 else if (btrfs_verify_level_key(eb, level,
415 first_key, parent_transid))
421 num_copies = btrfs_num_copies(fs_info,
426 if (!failed_mirror) {
428 failed_mirror = eb->read_mirror;
432 if (mirror_num == failed_mirror)
435 if (mirror_num > num_copies)
439 if (failed && !ret && failed_mirror)
440 btrfs_repair_eb_io_failure(eb, failed_mirror);
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
452 u64 start = page_offset(page);
454 u8 result[BTRFS_CSUM_SIZE];
455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456 struct extent_buffer *eb;
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
463 found_start = btrfs_header_bytenr(eb);
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
468 if (WARN_ON(found_start != start))
470 if (WARN_ON(!PageUptodate(page)))
473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
477 csum_tree_block(eb, result);
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
482 ret = btrfs_check_leaf_full(eb);
485 btrfs_print_tree(eb, 0);
487 "block=%llu write time tree block corruption detected",
489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
492 write_extent_buffer(eb, result, 0, csum_size);
497 static int check_tree_block_fsid(struct extent_buffer *eb)
499 struct btrfs_fs_info *fs_info = eb->fs_info;
500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501 u8 fsid[BTRFS_FSID_SIZE];
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
514 metadata_uuid = fs_devices->fsid;
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
532 struct extent_buffer *eb;
533 struct btrfs_fs_info *fs_info;
536 u8 result[BTRFS_CSUM_SIZE];
542 eb = (struct extent_buffer *)page->private;
543 fs_info = eb->fs_info;
544 csum_size = btrfs_super_csum_size(fs_info->super_copy);
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
549 atomic_inc(&eb->refs);
551 reads_done = atomic_dec_and_test(&eb->io_pages);
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
561 found_start = btrfs_header_bytenr(eb);
562 if (found_start != eb->start) {
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
568 if (check_tree_block_fsid(eb)) {
569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
574 found_level = btrfs_header_level(eb);
575 if (found_level >= BTRFS_MAX_LEVEL) {
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
585 csum_tree_block(eb, result);
587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593 fs_info->sb->s_id, eb->start,
594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
611 if (found_level > 0 && btrfs_check_node(eb))
615 set_extent_buffer_uptodate(eb);
618 "block=%llu read time tree block corruption detected",
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 btree_readahead_hook(eb, ret);
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
631 atomic_inc(&eb->io_pages);
632 clear_extent_buffer_uptodate(eb);
634 free_extent_buffer(eb);
639 static void end_workqueue_bio(struct bio *bio)
641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 struct btrfs_fs_info *fs_info;
643 struct btrfs_workqueue *wq;
645 fs_info = end_io_wq->info;
646 end_io_wq->status = bio->bi_status;
648 if (bio_op(bio) == REQ_OP_WRITE) {
649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650 wq = fs_info->endio_meta_write_workers;
651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652 wq = fs_info->endio_freespace_worker;
653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654 wq = fs_info->endio_raid56_workers;
656 wq = fs_info->endio_write_workers;
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659 wq = fs_info->endio_raid56_workers;
660 else if (end_io_wq->metadata)
661 wq = fs_info->endio_meta_workers;
663 wq = fs_info->endio_workers;
666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667 btrfs_queue_work(wq, &end_io_wq->work);
670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 enum btrfs_wq_endio_type metadata)
673 struct btrfs_end_io_wq *end_io_wq;
675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
677 return BLK_STS_RESOURCE;
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
681 end_io_wq->info = info;
682 end_io_wq->status = 0;
683 end_io_wq->bio = bio;
684 end_io_wq->metadata = metadata;
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
691 static void run_one_async_start(struct btrfs_work *work)
693 struct async_submit_bio *async;
696 async = container_of(work, struct async_submit_bio, work);
697 ret = async->submit_bio_start(async->private_data, async->bio,
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time. All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
711 static void run_one_async_done(struct btrfs_work *work)
713 struct async_submit_bio *async;
717 async = container_of(work, struct async_submit_bio, work);
718 inode = async->private_data;
720 /* If an error occurred we just want to clean up the bio and move on */
722 async->bio->bi_status = async->status;
723 bio_endio(async->bio);
728 * All of the bios that pass through here are from async helpers.
729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 * This changes nothing when cgroups aren't in use.
732 async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
735 async->bio->bi_status = ret;
736 bio_endio(async->bio);
740 static void run_one_async_free(struct btrfs_work *work)
742 struct async_submit_bio *async;
744 async = container_of(work, struct async_submit_bio, work);
748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 int mirror_num, unsigned long bio_flags,
750 u64 bio_offset, void *private_data,
751 extent_submit_bio_start_t *submit_bio_start)
753 struct async_submit_bio *async;
755 async = kmalloc(sizeof(*async), GFP_NOFS);
757 return BLK_STS_RESOURCE;
759 async->private_data = private_data;
761 async->mirror_num = mirror_num;
762 async->submit_bio_start = submit_bio_start;
764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
767 async->bio_offset = bio_offset;
771 if (op_is_sync(bio->bi_opf))
772 btrfs_set_work_high_priority(&async->work);
774 btrfs_queue_work(fs_info->workers, &async->work);
778 static blk_status_t btree_csum_one_bio(struct bio *bio)
780 struct bio_vec *bvec;
781 struct btrfs_root *root;
783 struct bvec_iter_all iter_all;
785 ASSERT(!bio_flagged(bio, BIO_CLONED));
786 bio_for_each_segment_all(bvec, bio, iter_all) {
787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
793 return errno_to_blk_status(ret);
796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
800 * when we're called for a write, we're already in the async
801 * submission context. Just jump into btrfs_map_bio
803 return btree_csum_one_bio(bio);
806 static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
809 if (atomic_read(&bi->sync_writers))
811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820 int async = check_async_write(fs_info, BTRFS_I(inode));
823 if (bio_op(bio) != REQ_OP_WRITE) {
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
834 ret = btree_csum_one_bio(bio);
837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844 0, inode, btree_submit_bio_start);
852 bio->bi_status = ret;
857 #ifdef CONFIG_MIGRATION
858 static int btree_migratepage(struct address_space *mapping,
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
875 return migrate_page(mapping, newpage, page, mode);
880 static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
883 struct btrfs_fs_info *fs_info;
886 if (wbc->sync_mode == WB_SYNC_NONE) {
888 if (wbc->for_kupdate)
891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 /* this is a bit racy, but that's ok */
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
899 return btree_write_cache_pages(mapping, wbc);
902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
904 if (PageWriteback(page) || PageDirty(page))
907 return try_release_extent_buffer(page);
910 static void btree_invalidatepage(struct page *page, unsigned int offset,
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
917 if (PagePrivate(page)) {
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
921 detach_page_private(page);
925 static int btree_set_page_dirty(struct page *page)
928 struct extent_buffer *eb;
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
937 return __set_page_dirty_nobuffers(page);
940 static const struct address_space_operations btree_aops = {
941 .writepages = btree_writepages,
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945 .migratepage = btree_migratepage,
947 .set_page_dirty = btree_set_page_dirty,
950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
952 struct extent_buffer *buf = NULL;
955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
961 free_extent_buffer_stale(buf);
963 free_extent_buffer(buf);
966 struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
976 * Read tree block at logical address @bytenr and do variant basic but critical
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
987 struct extent_buffer *buf = NULL;
990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
997 free_extent_buffer_stale(buf);
1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1006 struct btrfs_fs_info *fs_info = buf->fs_info;
1007 if (btrfs_header_generation(buf) ==
1008 fs_info->running_transaction->transid) {
1009 btrfs_assert_tree_locked(buf);
1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1014 fs_info->dirty_metadata_batch);
1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016 btrfs_set_lock_blocking_write(buf);
1017 clear_extent_buffer_dirty(buf);
1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026 root->fs_info = fs_info;
1028 root->commit_root = NULL;
1030 root->orphan_cleanup_state = 0;
1032 root->last_trans = 0;
1033 root->highest_objectid = 0;
1034 root->nr_delalloc_inodes = 0;
1035 root->nr_ordered_extents = 0;
1036 root->inode_tree = RB_ROOT;
1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 root->block_rsv = NULL;
1040 INIT_LIST_HEAD(&root->dirty_list);
1041 INIT_LIST_HEAD(&root->root_list);
1042 INIT_LIST_HEAD(&root->delalloc_inodes);
1043 INIT_LIST_HEAD(&root->delalloc_root);
1044 INIT_LIST_HEAD(&root->ordered_extents);
1045 INIT_LIST_HEAD(&root->ordered_root);
1046 INIT_LIST_HEAD(&root->reloc_dirty_list);
1047 INIT_LIST_HEAD(&root->logged_list[0]);
1048 INIT_LIST_HEAD(&root->logged_list[1]);
1049 spin_lock_init(&root->inode_lock);
1050 spin_lock_init(&root->delalloc_lock);
1051 spin_lock_init(&root->ordered_extent_lock);
1052 spin_lock_init(&root->accounting_lock);
1053 spin_lock_init(&root->log_extents_lock[0]);
1054 spin_lock_init(&root->log_extents_lock[1]);
1055 spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 mutex_init(&root->objectid_mutex);
1057 mutex_init(&root->log_mutex);
1058 mutex_init(&root->ordered_extent_mutex);
1059 mutex_init(&root->delalloc_mutex);
1060 init_waitqueue_head(&root->qgroup_flush_wait);
1061 init_waitqueue_head(&root->log_writer_wait);
1062 init_waitqueue_head(&root->log_commit_wait[0]);
1063 init_waitqueue_head(&root->log_commit_wait[1]);
1064 INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 atomic_set(&root->log_commit[0], 0);
1067 atomic_set(&root->log_commit[1], 0);
1068 atomic_set(&root->log_writers, 0);
1069 atomic_set(&root->log_batch, 0);
1070 refcount_set(&root->refs, 1);
1071 atomic_set(&root->snapshot_force_cow, 0);
1072 atomic_set(&root->nr_swapfiles, 0);
1073 root->log_transid = 0;
1074 root->log_transid_committed = -1;
1075 root->last_log_commit = 0;
1077 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079 extent_io_tree_init(fs_info, &root->log_csum_range,
1080 IO_TREE_LOG_CSUM_RANGE, NULL);
1083 memset(&root->root_key, 0, sizeof(root->root_key));
1084 memset(&root->root_item, 0, sizeof(root->root_item));
1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086 root->root_key.objectid = objectid;
1089 spin_lock_init(&root->root_item_lock);
1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 INIT_LIST_HEAD(&root->leak_list);
1093 spin_lock(&fs_info->fs_roots_radix_lock);
1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 spin_unlock(&fs_info->fs_roots_radix_lock);
1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100 u64 objectid, gfp_t flags)
1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1104 __setup_root(root, fs_info, objectid);
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1112 struct btrfs_root *root;
1115 return ERR_PTR(-EINVAL);
1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1119 return ERR_PTR(-ENOMEM);
1121 /* We don't use the stripesize in selftest, set it as sectorsize */
1122 root->alloc_bytenr = 0;
1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct extent_buffer *leaf;
1133 struct btrfs_root *tree_root = fs_info->tree_root;
1134 struct btrfs_root *root;
1135 struct btrfs_key key;
1136 unsigned int nofs_flag;
1140 * We're holding a transaction handle, so use a NOFS memory allocation
1141 * context to avoid deadlock if reclaim happens.
1143 nofs_flag = memalloc_nofs_save();
1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145 memalloc_nofs_restore(nofs_flag);
1147 return ERR_PTR(-ENOMEM);
1149 root->root_key.objectid = objectid;
1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 root->root_key.offset = 0;
1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 BTRFS_NESTING_NORMAL);
1156 ret = PTR_ERR(leaf);
1162 btrfs_mark_buffer_dirty(leaf);
1164 root->commit_root = btrfs_root_node(root);
1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1167 root->root_item.flags = 0;
1168 root->root_item.byte_limit = 0;
1169 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 btrfs_set_root_generation(&root->root_item, trans->transid);
1171 btrfs_set_root_level(&root->root_item, 0);
1172 btrfs_set_root_refs(&root->root_item, 1);
1173 btrfs_set_root_used(&root->root_item, leaf->len);
1174 btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 btrfs_set_root_dirid(&root->root_item, 0);
1176 if (is_fstree(objectid))
1177 generate_random_guid(root->root_item.uuid);
1179 export_guid(root->root_item.uuid, &guid_null);
1180 root->root_item.drop_level = 0;
1182 key.objectid = objectid;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1189 btrfs_tree_unlock(leaf);
1195 btrfs_tree_unlock(leaf);
1196 btrfs_put_root(root);
1198 return ERR_PTR(ret);
1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info)
1204 struct btrfs_root *root;
1205 struct extent_buffer *leaf;
1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1209 return ERR_PTR(-ENOMEM);
1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1216 * DON'T set SHAREABLE bit for log trees.
1218 * Log trees are not exposed to user space thus can't be snapshotted,
1219 * and they go away before a real commit is actually done.
1221 * They do store pointers to file data extents, and those reference
1222 * counts still get updated (along with back refs to the log tree).
1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1228 btrfs_put_root(root);
1229 return ERR_CAST(leaf);
1234 btrfs_mark_buffer_dirty(root->node);
1235 btrfs_tree_unlock(root->node);
1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
1242 struct btrfs_root *log_root;
1244 log_root = alloc_log_tree(trans, fs_info);
1245 if (IS_ERR(log_root))
1246 return PTR_ERR(log_root);
1247 WARN_ON(fs_info->log_root_tree);
1248 fs_info->log_root_tree = log_root;
1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root)
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_root *log_root;
1257 struct btrfs_inode_item *inode_item;
1259 log_root = alloc_log_tree(trans, fs_info);
1260 if (IS_ERR(log_root))
1261 return PTR_ERR(log_root);
1263 log_root->last_trans = trans->transid;
1264 log_root->root_key.offset = root->root_key.objectid;
1266 inode_item = &log_root->root_item.inode;
1267 btrfs_set_stack_inode_generation(inode_item, 1);
1268 btrfs_set_stack_inode_size(inode_item, 3);
1269 btrfs_set_stack_inode_nlink(inode_item, 1);
1270 btrfs_set_stack_inode_nbytes(inode_item,
1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1274 btrfs_set_root_node(&log_root->root_item, log_root->node);
1276 WARN_ON(root->log_root);
1277 root->log_root = log_root;
1278 root->log_transid = 0;
1279 root->log_transid_committed = -1;
1280 root->last_log_commit = 0;
1284 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1285 struct btrfs_key *key)
1287 struct btrfs_root *root;
1288 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1289 struct btrfs_path *path;
1294 path = btrfs_alloc_path();
1296 return ERR_PTR(-ENOMEM);
1298 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1304 ret = btrfs_find_root(tree_root, key, path,
1305 &root->root_item, &root->root_key);
1312 generation = btrfs_root_generation(&root->root_item);
1313 level = btrfs_root_level(&root->root_item);
1314 root->node = read_tree_block(fs_info,
1315 btrfs_root_bytenr(&root->root_item),
1316 generation, level, NULL);
1317 if (IS_ERR(root->node)) {
1318 ret = PTR_ERR(root->node);
1321 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1325 root->commit_root = btrfs_root_node(root);
1327 btrfs_free_path(path);
1331 btrfs_put_root(root);
1333 root = ERR_PTR(ret);
1338 * Initialize subvolume root in-memory structure
1340 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1342 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1345 unsigned int nofs_flag;
1347 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1348 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1350 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1356 * We might be called under a transaction (e.g. indirect backref
1357 * resolution) which could deadlock if it triggers memory reclaim
1359 nofs_flag = memalloc_nofs_save();
1360 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1361 memalloc_nofs_restore(nofs_flag);
1365 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1366 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1367 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1368 btrfs_check_and_init_root_item(&root->root_item);
1371 btrfs_init_free_ino_ctl(root);
1372 spin_lock_init(&root->ino_cache_lock);
1373 init_waitqueue_head(&root->ino_cache_wait);
1376 * Don't assign anonymous block device to roots that are not exposed to
1377 * userspace, the id pool is limited to 1M
1379 if (is_fstree(root->root_key.objectid) &&
1380 btrfs_root_refs(&root->root_item) > 0) {
1382 ret = get_anon_bdev(&root->anon_dev);
1386 root->anon_dev = anon_dev;
1390 mutex_lock(&root->objectid_mutex);
1391 ret = btrfs_find_highest_objectid(root,
1392 &root->highest_objectid);
1394 mutex_unlock(&root->objectid_mutex);
1398 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1400 mutex_unlock(&root->objectid_mutex);
1404 /* The caller is responsible to call btrfs_free_fs_root */
1408 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1411 struct btrfs_root *root;
1413 spin_lock(&fs_info->fs_roots_radix_lock);
1414 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1415 (unsigned long)root_id);
1417 root = btrfs_grab_root(root);
1418 spin_unlock(&fs_info->fs_roots_radix_lock);
1422 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1423 struct btrfs_root *root)
1427 ret = radix_tree_preload(GFP_NOFS);
1431 spin_lock(&fs_info->fs_roots_radix_lock);
1432 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1433 (unsigned long)root->root_key.objectid,
1436 btrfs_grab_root(root);
1437 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1439 spin_unlock(&fs_info->fs_roots_radix_lock);
1440 radix_tree_preload_end();
1445 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1447 #ifdef CONFIG_BTRFS_DEBUG
1448 struct btrfs_root *root;
1450 while (!list_empty(&fs_info->allocated_roots)) {
1451 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1453 root = list_first_entry(&fs_info->allocated_roots,
1454 struct btrfs_root, leak_list);
1455 btrfs_err(fs_info, "leaked root %s refcount %d",
1456 btrfs_root_name(root->root_key.objectid, buf),
1457 refcount_read(&root->refs));
1458 while (refcount_read(&root->refs) > 1)
1459 btrfs_put_root(root);
1460 btrfs_put_root(root);
1465 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1467 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1468 percpu_counter_destroy(&fs_info->delalloc_bytes);
1469 percpu_counter_destroy(&fs_info->dio_bytes);
1470 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1471 btrfs_free_csum_hash(fs_info);
1472 btrfs_free_stripe_hash_table(fs_info);
1473 btrfs_free_ref_cache(fs_info);
1474 kfree(fs_info->balance_ctl);
1475 kfree(fs_info->delayed_root);
1476 btrfs_put_root(fs_info->extent_root);
1477 btrfs_put_root(fs_info->tree_root);
1478 btrfs_put_root(fs_info->chunk_root);
1479 btrfs_put_root(fs_info->dev_root);
1480 btrfs_put_root(fs_info->csum_root);
1481 btrfs_put_root(fs_info->quota_root);
1482 btrfs_put_root(fs_info->uuid_root);
1483 btrfs_put_root(fs_info->free_space_root);
1484 btrfs_put_root(fs_info->fs_root);
1485 btrfs_put_root(fs_info->data_reloc_root);
1486 btrfs_check_leaked_roots(fs_info);
1487 btrfs_extent_buffer_leak_debug_check(fs_info);
1488 kfree(fs_info->super_copy);
1489 kfree(fs_info->super_for_commit);
1495 * Get an in-memory reference of a root structure.
1497 * For essential trees like root/extent tree, we grab it from fs_info directly.
1498 * For subvolume trees, we check the cached filesystem roots first. If not
1499 * found, then read it from disk and add it to cached fs roots.
1501 * Caller should release the root by calling btrfs_put_root() after the usage.
1503 * NOTE: Reloc and log trees can't be read by this function as they share the
1504 * same root objectid.
1506 * @objectid: root id
1507 * @anon_dev: preallocated anonymous block device number for new roots,
1508 * pass 0 for new allocation.
1509 * @check_ref: whether to check root item references, If true, return -ENOENT
1512 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1513 u64 objectid, dev_t anon_dev,
1516 struct btrfs_root *root;
1517 struct btrfs_path *path;
1518 struct btrfs_key key;
1521 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1522 return btrfs_grab_root(fs_info->tree_root);
1523 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1524 return btrfs_grab_root(fs_info->extent_root);
1525 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1526 return btrfs_grab_root(fs_info->chunk_root);
1527 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1528 return btrfs_grab_root(fs_info->dev_root);
1529 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1530 return btrfs_grab_root(fs_info->csum_root);
1531 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1532 return btrfs_grab_root(fs_info->quota_root) ?
1533 fs_info->quota_root : ERR_PTR(-ENOENT);
1534 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1535 return btrfs_grab_root(fs_info->uuid_root) ?
1536 fs_info->uuid_root : ERR_PTR(-ENOENT);
1537 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1538 return btrfs_grab_root(fs_info->free_space_root) ?
1539 fs_info->free_space_root : ERR_PTR(-ENOENT);
1541 root = btrfs_lookup_fs_root(fs_info, objectid);
1543 /* Shouldn't get preallocated anon_dev for cached roots */
1545 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1546 btrfs_put_root(root);
1547 return ERR_PTR(-ENOENT);
1552 key.objectid = objectid;
1553 key.type = BTRFS_ROOT_ITEM_KEY;
1554 key.offset = (u64)-1;
1555 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1559 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1564 ret = btrfs_init_fs_root(root, anon_dev);
1568 path = btrfs_alloc_path();
1573 key.objectid = BTRFS_ORPHAN_OBJECTID;
1574 key.type = BTRFS_ORPHAN_ITEM_KEY;
1575 key.offset = objectid;
1577 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1578 btrfs_free_path(path);
1582 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1584 ret = btrfs_insert_fs_root(fs_info, root);
1586 btrfs_put_root(root);
1593 btrfs_put_root(root);
1594 return ERR_PTR(ret);
1598 * Get in-memory reference of a root structure
1600 * @objectid: tree objectid
1601 * @check_ref: if set, verify that the tree exists and the item has at least
1604 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1605 u64 objectid, bool check_ref)
1607 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1611 * Get in-memory reference of a root structure, created as new, optionally pass
1612 * the anonymous block device id
1614 * @objectid: tree objectid
1615 * @anon_dev: if zero, allocate a new anonymous block device or use the
1618 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1619 u64 objectid, dev_t anon_dev)
1621 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1625 * called by the kthread helper functions to finally call the bio end_io
1626 * functions. This is where read checksum verification actually happens
1628 static void end_workqueue_fn(struct btrfs_work *work)
1631 struct btrfs_end_io_wq *end_io_wq;
1633 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1634 bio = end_io_wq->bio;
1636 bio->bi_status = end_io_wq->status;
1637 bio->bi_private = end_io_wq->private;
1638 bio->bi_end_io = end_io_wq->end_io;
1640 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1643 static int cleaner_kthread(void *arg)
1645 struct btrfs_root *root = arg;
1646 struct btrfs_fs_info *fs_info = root->fs_info;
1652 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1654 /* Make the cleaner go to sleep early. */
1655 if (btrfs_need_cleaner_sleep(fs_info))
1659 * Do not do anything if we might cause open_ctree() to block
1660 * before we have finished mounting the filesystem.
1662 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1665 if (!mutex_trylock(&fs_info->cleaner_mutex))
1669 * Avoid the problem that we change the status of the fs
1670 * during the above check and trylock.
1672 if (btrfs_need_cleaner_sleep(fs_info)) {
1673 mutex_unlock(&fs_info->cleaner_mutex);
1677 btrfs_run_delayed_iputs(fs_info);
1679 again = btrfs_clean_one_deleted_snapshot(root);
1680 mutex_unlock(&fs_info->cleaner_mutex);
1683 * The defragger has dealt with the R/O remount and umount,
1684 * needn't do anything special here.
1686 btrfs_run_defrag_inodes(fs_info);
1689 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1690 * with relocation (btrfs_relocate_chunk) and relocation
1691 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1692 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1693 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1694 * unused block groups.
1696 btrfs_delete_unused_bgs(fs_info);
1698 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1699 if (kthread_should_park())
1701 if (kthread_should_stop())
1704 set_current_state(TASK_INTERRUPTIBLE);
1706 __set_current_state(TASK_RUNNING);
1711 static int transaction_kthread(void *arg)
1713 struct btrfs_root *root = arg;
1714 struct btrfs_fs_info *fs_info = root->fs_info;
1715 struct btrfs_trans_handle *trans;
1716 struct btrfs_transaction *cur;
1719 unsigned long delay;
1723 cannot_commit = false;
1724 delay = HZ * fs_info->commit_interval;
1725 mutex_lock(&fs_info->transaction_kthread_mutex);
1727 spin_lock(&fs_info->trans_lock);
1728 cur = fs_info->running_transaction;
1730 spin_unlock(&fs_info->trans_lock);
1734 now = ktime_get_seconds();
1735 if (cur->state < TRANS_STATE_COMMIT_START &&
1736 (now < cur->start_time ||
1737 now - cur->start_time < fs_info->commit_interval)) {
1738 spin_unlock(&fs_info->trans_lock);
1742 transid = cur->transid;
1743 spin_unlock(&fs_info->trans_lock);
1745 /* If the file system is aborted, this will always fail. */
1746 trans = btrfs_attach_transaction(root);
1747 if (IS_ERR(trans)) {
1748 if (PTR_ERR(trans) != -ENOENT)
1749 cannot_commit = true;
1752 if (transid == trans->transid) {
1753 btrfs_commit_transaction(trans);
1755 btrfs_end_transaction(trans);
1758 wake_up_process(fs_info->cleaner_kthread);
1759 mutex_unlock(&fs_info->transaction_kthread_mutex);
1761 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1762 &fs_info->fs_state)))
1763 btrfs_cleanup_transaction(fs_info);
1764 if (!kthread_should_stop() &&
1765 (!btrfs_transaction_blocked(fs_info) ||
1767 schedule_timeout_interruptible(delay);
1768 } while (!kthread_should_stop());
1773 * This will find the highest generation in the array of root backups. The
1774 * index of the highest array is returned, or -EINVAL if we can't find
1777 * We check to make sure the array is valid by comparing the
1778 * generation of the latest root in the array with the generation
1779 * in the super block. If they don't match we pitch it.
1781 static int find_newest_super_backup(struct btrfs_fs_info *info)
1783 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1785 struct btrfs_root_backup *root_backup;
1788 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1789 root_backup = info->super_copy->super_roots + i;
1790 cur = btrfs_backup_tree_root_gen(root_backup);
1791 if (cur == newest_gen)
1799 * copy all the root pointers into the super backup array.
1800 * this will bump the backup pointer by one when it is
1803 static void backup_super_roots(struct btrfs_fs_info *info)
1805 const int next_backup = info->backup_root_index;
1806 struct btrfs_root_backup *root_backup;
1808 root_backup = info->super_for_commit->super_roots + next_backup;
1811 * make sure all of our padding and empty slots get zero filled
1812 * regardless of which ones we use today
1814 memset(root_backup, 0, sizeof(*root_backup));
1816 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1818 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1819 btrfs_set_backup_tree_root_gen(root_backup,
1820 btrfs_header_generation(info->tree_root->node));
1822 btrfs_set_backup_tree_root_level(root_backup,
1823 btrfs_header_level(info->tree_root->node));
1825 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1826 btrfs_set_backup_chunk_root_gen(root_backup,
1827 btrfs_header_generation(info->chunk_root->node));
1828 btrfs_set_backup_chunk_root_level(root_backup,
1829 btrfs_header_level(info->chunk_root->node));
1831 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1832 btrfs_set_backup_extent_root_gen(root_backup,
1833 btrfs_header_generation(info->extent_root->node));
1834 btrfs_set_backup_extent_root_level(root_backup,
1835 btrfs_header_level(info->extent_root->node));
1838 * we might commit during log recovery, which happens before we set
1839 * the fs_root. Make sure it is valid before we fill it in.
1841 if (info->fs_root && info->fs_root->node) {
1842 btrfs_set_backup_fs_root(root_backup,
1843 info->fs_root->node->start);
1844 btrfs_set_backup_fs_root_gen(root_backup,
1845 btrfs_header_generation(info->fs_root->node));
1846 btrfs_set_backup_fs_root_level(root_backup,
1847 btrfs_header_level(info->fs_root->node));
1850 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1851 btrfs_set_backup_dev_root_gen(root_backup,
1852 btrfs_header_generation(info->dev_root->node));
1853 btrfs_set_backup_dev_root_level(root_backup,
1854 btrfs_header_level(info->dev_root->node));
1856 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1857 btrfs_set_backup_csum_root_gen(root_backup,
1858 btrfs_header_generation(info->csum_root->node));
1859 btrfs_set_backup_csum_root_level(root_backup,
1860 btrfs_header_level(info->csum_root->node));
1862 btrfs_set_backup_total_bytes(root_backup,
1863 btrfs_super_total_bytes(info->super_copy));
1864 btrfs_set_backup_bytes_used(root_backup,
1865 btrfs_super_bytes_used(info->super_copy));
1866 btrfs_set_backup_num_devices(root_backup,
1867 btrfs_super_num_devices(info->super_copy));
1870 * if we don't copy this out to the super_copy, it won't get remembered
1871 * for the next commit
1873 memcpy(&info->super_copy->super_roots,
1874 &info->super_for_commit->super_roots,
1875 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1879 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1880 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1882 * fs_info - filesystem whose backup roots need to be read
1883 * priority - priority of backup root required
1885 * Returns backup root index on success and -EINVAL otherwise.
1887 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1889 int backup_index = find_newest_super_backup(fs_info);
1890 struct btrfs_super_block *super = fs_info->super_copy;
1891 struct btrfs_root_backup *root_backup;
1893 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1895 return backup_index;
1897 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1898 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1903 root_backup = super->super_roots + backup_index;
1905 btrfs_set_super_generation(super,
1906 btrfs_backup_tree_root_gen(root_backup));
1907 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1908 btrfs_set_super_root_level(super,
1909 btrfs_backup_tree_root_level(root_backup));
1910 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1913 * Fixme: the total bytes and num_devices need to match or we should
1916 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1917 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1919 return backup_index;
1922 /* helper to cleanup workers */
1923 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1925 btrfs_destroy_workqueue(fs_info->fixup_workers);
1926 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1927 btrfs_destroy_workqueue(fs_info->workers);
1928 btrfs_destroy_workqueue(fs_info->endio_workers);
1929 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1930 btrfs_destroy_workqueue(fs_info->rmw_workers);
1931 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1932 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1933 btrfs_destroy_workqueue(fs_info->delayed_workers);
1934 btrfs_destroy_workqueue(fs_info->caching_workers);
1935 btrfs_destroy_workqueue(fs_info->readahead_workers);
1936 btrfs_destroy_workqueue(fs_info->flush_workers);
1937 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1938 if (fs_info->discard_ctl.discard_workers)
1939 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1941 * Now that all other work queues are destroyed, we can safely destroy
1942 * the queues used for metadata I/O, since tasks from those other work
1943 * queues can do metadata I/O operations.
1945 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1946 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1949 static void free_root_extent_buffers(struct btrfs_root *root)
1952 free_extent_buffer(root->node);
1953 free_extent_buffer(root->commit_root);
1955 root->commit_root = NULL;
1959 /* helper to cleanup tree roots */
1960 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1962 free_root_extent_buffers(info->tree_root);
1964 free_root_extent_buffers(info->dev_root);
1965 free_root_extent_buffers(info->extent_root);
1966 free_root_extent_buffers(info->csum_root);
1967 free_root_extent_buffers(info->quota_root);
1968 free_root_extent_buffers(info->uuid_root);
1969 free_root_extent_buffers(info->fs_root);
1970 free_root_extent_buffers(info->data_reloc_root);
1971 if (free_chunk_root)
1972 free_root_extent_buffers(info->chunk_root);
1973 free_root_extent_buffers(info->free_space_root);
1976 void btrfs_put_root(struct btrfs_root *root)
1981 if (refcount_dec_and_test(&root->refs)) {
1982 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1983 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1985 free_anon_bdev(root->anon_dev);
1986 btrfs_drew_lock_destroy(&root->snapshot_lock);
1987 free_root_extent_buffers(root);
1988 kfree(root->free_ino_ctl);
1989 kfree(root->free_ino_pinned);
1990 #ifdef CONFIG_BTRFS_DEBUG
1991 spin_lock(&root->fs_info->fs_roots_radix_lock);
1992 list_del_init(&root->leak_list);
1993 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1999 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2002 struct btrfs_root *gang[8];
2005 while (!list_empty(&fs_info->dead_roots)) {
2006 gang[0] = list_entry(fs_info->dead_roots.next,
2007 struct btrfs_root, root_list);
2008 list_del(&gang[0]->root_list);
2010 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2011 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2012 btrfs_put_root(gang[0]);
2016 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2021 for (i = 0; i < ret; i++)
2022 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2026 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2028 mutex_init(&fs_info->scrub_lock);
2029 atomic_set(&fs_info->scrubs_running, 0);
2030 atomic_set(&fs_info->scrub_pause_req, 0);
2031 atomic_set(&fs_info->scrubs_paused, 0);
2032 atomic_set(&fs_info->scrub_cancel_req, 0);
2033 init_waitqueue_head(&fs_info->scrub_pause_wait);
2034 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2037 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2039 spin_lock_init(&fs_info->balance_lock);
2040 mutex_init(&fs_info->balance_mutex);
2041 atomic_set(&fs_info->balance_pause_req, 0);
2042 atomic_set(&fs_info->balance_cancel_req, 0);
2043 fs_info->balance_ctl = NULL;
2044 init_waitqueue_head(&fs_info->balance_wait_q);
2047 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2049 struct inode *inode = fs_info->btree_inode;
2051 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2052 set_nlink(inode, 1);
2054 * we set the i_size on the btree inode to the max possible int.
2055 * the real end of the address space is determined by all of
2056 * the devices in the system
2058 inode->i_size = OFFSET_MAX;
2059 inode->i_mapping->a_ops = &btree_aops;
2061 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2062 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2063 IO_TREE_BTREE_INODE_IO, inode);
2064 BTRFS_I(inode)->io_tree.track_uptodate = false;
2065 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2067 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2068 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2069 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2070 btrfs_insert_inode_hash(inode);
2073 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2075 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2076 init_rwsem(&fs_info->dev_replace.rwsem);
2077 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2080 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2082 spin_lock_init(&fs_info->qgroup_lock);
2083 mutex_init(&fs_info->qgroup_ioctl_lock);
2084 fs_info->qgroup_tree = RB_ROOT;
2085 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2086 fs_info->qgroup_seq = 1;
2087 fs_info->qgroup_ulist = NULL;
2088 fs_info->qgroup_rescan_running = false;
2089 mutex_init(&fs_info->qgroup_rescan_lock);
2092 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2093 struct btrfs_fs_devices *fs_devices)
2095 u32 max_active = fs_info->thread_pool_size;
2096 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2099 btrfs_alloc_workqueue(fs_info, "worker",
2100 flags | WQ_HIGHPRI, max_active, 16);
2102 fs_info->delalloc_workers =
2103 btrfs_alloc_workqueue(fs_info, "delalloc",
2104 flags, max_active, 2);
2106 fs_info->flush_workers =
2107 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2108 flags, max_active, 0);
2110 fs_info->caching_workers =
2111 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2113 fs_info->fixup_workers =
2114 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2117 * endios are largely parallel and should have a very
2120 fs_info->endio_workers =
2121 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2122 fs_info->endio_meta_workers =
2123 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2125 fs_info->endio_meta_write_workers =
2126 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2128 fs_info->endio_raid56_workers =
2129 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2131 fs_info->rmw_workers =
2132 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2133 fs_info->endio_write_workers =
2134 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2136 fs_info->endio_freespace_worker =
2137 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2139 fs_info->delayed_workers =
2140 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2142 fs_info->readahead_workers =
2143 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2145 fs_info->qgroup_rescan_workers =
2146 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2147 fs_info->discard_ctl.discard_workers =
2148 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2150 if (!(fs_info->workers && fs_info->delalloc_workers &&
2151 fs_info->flush_workers &&
2152 fs_info->endio_workers && fs_info->endio_meta_workers &&
2153 fs_info->endio_meta_write_workers &&
2154 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2155 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2156 fs_info->caching_workers && fs_info->readahead_workers &&
2157 fs_info->fixup_workers && fs_info->delayed_workers &&
2158 fs_info->qgroup_rescan_workers &&
2159 fs_info->discard_ctl.discard_workers)) {
2166 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2168 struct crypto_shash *csum_shash;
2169 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2171 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2173 if (IS_ERR(csum_shash)) {
2174 btrfs_err(fs_info, "error allocating %s hash for checksum",
2176 return PTR_ERR(csum_shash);
2179 fs_info->csum_shash = csum_shash;
2184 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2185 struct btrfs_fs_devices *fs_devices)
2188 struct btrfs_root *log_tree_root;
2189 struct btrfs_super_block *disk_super = fs_info->super_copy;
2190 u64 bytenr = btrfs_super_log_root(disk_super);
2191 int level = btrfs_super_log_root_level(disk_super);
2193 if (fs_devices->rw_devices == 0) {
2194 btrfs_warn(fs_info, "log replay required on RO media");
2198 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2203 log_tree_root->node = read_tree_block(fs_info, bytenr,
2204 fs_info->generation + 1,
2206 if (IS_ERR(log_tree_root->node)) {
2207 btrfs_warn(fs_info, "failed to read log tree");
2208 ret = PTR_ERR(log_tree_root->node);
2209 log_tree_root->node = NULL;
2210 btrfs_put_root(log_tree_root);
2212 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2213 btrfs_err(fs_info, "failed to read log tree");
2214 btrfs_put_root(log_tree_root);
2217 /* returns with log_tree_root freed on success */
2218 ret = btrfs_recover_log_trees(log_tree_root);
2220 btrfs_handle_fs_error(fs_info, ret,
2221 "Failed to recover log tree");
2222 btrfs_put_root(log_tree_root);
2226 if (sb_rdonly(fs_info->sb)) {
2227 ret = btrfs_commit_super(fs_info);
2235 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2237 struct btrfs_root *tree_root = fs_info->tree_root;
2238 struct btrfs_root *root;
2239 struct btrfs_key location;
2242 BUG_ON(!fs_info->tree_root);
2244 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2245 location.type = BTRFS_ROOT_ITEM_KEY;
2246 location.offset = 0;
2248 root = btrfs_read_tree_root(tree_root, &location);
2250 ret = PTR_ERR(root);
2253 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2254 fs_info->extent_root = root;
2256 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2257 root = btrfs_read_tree_root(tree_root, &location);
2259 ret = PTR_ERR(root);
2262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2263 fs_info->dev_root = root;
2264 btrfs_init_devices_late(fs_info);
2266 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2267 root = btrfs_read_tree_root(tree_root, &location);
2269 ret = PTR_ERR(root);
2272 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2273 fs_info->csum_root = root;
2276 * This tree can share blocks with some other fs tree during relocation
2277 * and we need a proper setup by btrfs_get_fs_root
2279 root = btrfs_get_fs_root(tree_root->fs_info,
2280 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2282 ret = PTR_ERR(root);
2285 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286 fs_info->data_reloc_root = root;
2288 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2289 root = btrfs_read_tree_root(tree_root, &location);
2290 if (!IS_ERR(root)) {
2291 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2292 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2293 fs_info->quota_root = root;
2296 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2297 root = btrfs_read_tree_root(tree_root, &location);
2299 ret = PTR_ERR(root);
2303 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2304 fs_info->uuid_root = root;
2307 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2308 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2309 root = btrfs_read_tree_root(tree_root, &location);
2311 ret = PTR_ERR(root);
2314 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315 fs_info->free_space_root = root;
2320 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2321 location.objectid, ret);
2326 * Real super block validation
2327 * NOTE: super csum type and incompat features will not be checked here.
2329 * @sb: super block to check
2330 * @mirror_num: the super block number to check its bytenr:
2331 * 0 the primary (1st) sb
2332 * 1, 2 2nd and 3rd backup copy
2333 * -1 skip bytenr check
2335 static int validate_super(struct btrfs_fs_info *fs_info,
2336 struct btrfs_super_block *sb, int mirror_num)
2338 u64 nodesize = btrfs_super_nodesize(sb);
2339 u64 sectorsize = btrfs_super_sectorsize(sb);
2342 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2343 btrfs_err(fs_info, "no valid FS found");
2346 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2347 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2348 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2351 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2352 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2353 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2356 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2357 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2358 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2361 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2362 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2363 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2368 * Check sectorsize and nodesize first, other check will need it.
2369 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2371 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2372 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2373 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2376 /* Only PAGE SIZE is supported yet */
2377 if (sectorsize != PAGE_SIZE) {
2379 "sectorsize %llu not supported yet, only support %lu",
2380 sectorsize, PAGE_SIZE);
2383 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2384 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2385 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2388 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2389 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2390 le32_to_cpu(sb->__unused_leafsize), nodesize);
2394 /* Root alignment check */
2395 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2396 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2397 btrfs_super_root(sb));
2400 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2401 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2402 btrfs_super_chunk_root(sb));
2405 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2406 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2407 btrfs_super_log_root(sb));
2411 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2412 BTRFS_FSID_SIZE) != 0) {
2414 "dev_item UUID does not match metadata fsid: %pU != %pU",
2415 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2420 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2423 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2424 btrfs_err(fs_info, "bytes_used is too small %llu",
2425 btrfs_super_bytes_used(sb));
2428 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2429 btrfs_err(fs_info, "invalid stripesize %u",
2430 btrfs_super_stripesize(sb));
2433 if (btrfs_super_num_devices(sb) > (1UL << 31))
2434 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2435 btrfs_super_num_devices(sb));
2436 if (btrfs_super_num_devices(sb) == 0) {
2437 btrfs_err(fs_info, "number of devices is 0");
2441 if (mirror_num >= 0 &&
2442 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2443 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2444 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2449 * Obvious sys_chunk_array corruptions, it must hold at least one key
2452 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2453 btrfs_err(fs_info, "system chunk array too big %u > %u",
2454 btrfs_super_sys_array_size(sb),
2455 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2458 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2459 + sizeof(struct btrfs_chunk)) {
2460 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2461 btrfs_super_sys_array_size(sb),
2462 sizeof(struct btrfs_disk_key)
2463 + sizeof(struct btrfs_chunk));
2468 * The generation is a global counter, we'll trust it more than the others
2469 * but it's still possible that it's the one that's wrong.
2471 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2473 "suspicious: generation < chunk_root_generation: %llu < %llu",
2474 btrfs_super_generation(sb),
2475 btrfs_super_chunk_root_generation(sb));
2476 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2477 && btrfs_super_cache_generation(sb) != (u64)-1)
2479 "suspicious: generation < cache_generation: %llu < %llu",
2480 btrfs_super_generation(sb),
2481 btrfs_super_cache_generation(sb));
2487 * Validation of super block at mount time.
2488 * Some checks already done early at mount time, like csum type and incompat
2489 * flags will be skipped.
2491 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2493 return validate_super(fs_info, fs_info->super_copy, 0);
2497 * Validation of super block at write time.
2498 * Some checks like bytenr check will be skipped as their values will be
2500 * Extra checks like csum type and incompat flags will be done here.
2502 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2503 struct btrfs_super_block *sb)
2507 ret = validate_super(fs_info, sb, -1);
2510 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2512 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2513 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2516 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2519 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2520 btrfs_super_incompat_flags(sb),
2521 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2527 "super block corruption detected before writing it to disk");
2531 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2533 int backup_index = find_newest_super_backup(fs_info);
2534 struct btrfs_super_block *sb = fs_info->super_copy;
2535 struct btrfs_root *tree_root = fs_info->tree_root;
2536 bool handle_error = false;
2540 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2545 if (!IS_ERR(tree_root->node))
2546 free_extent_buffer(tree_root->node);
2547 tree_root->node = NULL;
2549 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2552 free_root_pointers(fs_info, 0);
2555 * Don't use the log in recovery mode, it won't be
2558 btrfs_set_super_log_root(sb, 0);
2560 /* We can't trust the free space cache either */
2561 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2563 ret = read_backup_root(fs_info, i);
2568 generation = btrfs_super_generation(sb);
2569 level = btrfs_super_root_level(sb);
2570 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2571 generation, level, NULL);
2572 if (IS_ERR(tree_root->node)) {
2573 handle_error = true;
2574 ret = PTR_ERR(tree_root->node);
2575 tree_root->node = NULL;
2576 btrfs_warn(fs_info, "couldn't read tree root");
2579 } else if (!extent_buffer_uptodate(tree_root->node)) {
2580 handle_error = true;
2582 btrfs_warn(fs_info, "error while reading tree root");
2586 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2587 tree_root->commit_root = btrfs_root_node(tree_root);
2588 btrfs_set_root_refs(&tree_root->root_item, 1);
2591 * No need to hold btrfs_root::objectid_mutex since the fs
2592 * hasn't been fully initialised and we are the only user
2594 ret = btrfs_find_highest_objectid(tree_root,
2595 &tree_root->highest_objectid);
2597 handle_error = true;
2601 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2603 ret = btrfs_read_roots(fs_info);
2605 handle_error = true;
2609 /* All successful */
2610 fs_info->generation = generation;
2611 fs_info->last_trans_committed = generation;
2613 /* Always begin writing backup roots after the one being used */
2614 if (backup_index < 0) {
2615 fs_info->backup_root_index = 0;
2617 fs_info->backup_root_index = backup_index + 1;
2618 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2626 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2628 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2629 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2630 INIT_LIST_HEAD(&fs_info->trans_list);
2631 INIT_LIST_HEAD(&fs_info->dead_roots);
2632 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2633 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2634 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2635 spin_lock_init(&fs_info->delalloc_root_lock);
2636 spin_lock_init(&fs_info->trans_lock);
2637 spin_lock_init(&fs_info->fs_roots_radix_lock);
2638 spin_lock_init(&fs_info->delayed_iput_lock);
2639 spin_lock_init(&fs_info->defrag_inodes_lock);
2640 spin_lock_init(&fs_info->super_lock);
2641 spin_lock_init(&fs_info->buffer_lock);
2642 spin_lock_init(&fs_info->unused_bgs_lock);
2643 rwlock_init(&fs_info->tree_mod_log_lock);
2644 mutex_init(&fs_info->unused_bg_unpin_mutex);
2645 mutex_init(&fs_info->delete_unused_bgs_mutex);
2646 mutex_init(&fs_info->reloc_mutex);
2647 mutex_init(&fs_info->delalloc_root_mutex);
2648 seqlock_init(&fs_info->profiles_lock);
2650 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2651 INIT_LIST_HEAD(&fs_info->space_info);
2652 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2653 INIT_LIST_HEAD(&fs_info->unused_bgs);
2654 #ifdef CONFIG_BTRFS_DEBUG
2655 INIT_LIST_HEAD(&fs_info->allocated_roots);
2656 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2657 spin_lock_init(&fs_info->eb_leak_lock);
2659 extent_map_tree_init(&fs_info->mapping_tree);
2660 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2661 BTRFS_BLOCK_RSV_GLOBAL);
2662 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2663 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2664 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2665 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2666 BTRFS_BLOCK_RSV_DELOPS);
2667 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2668 BTRFS_BLOCK_RSV_DELREFS);
2670 atomic_set(&fs_info->async_delalloc_pages, 0);
2671 atomic_set(&fs_info->defrag_running, 0);
2672 atomic_set(&fs_info->reada_works_cnt, 0);
2673 atomic_set(&fs_info->nr_delayed_iputs, 0);
2674 atomic64_set(&fs_info->tree_mod_seq, 0);
2675 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2676 fs_info->metadata_ratio = 0;
2677 fs_info->defrag_inodes = RB_ROOT;
2678 atomic64_set(&fs_info->free_chunk_space, 0);
2679 fs_info->tree_mod_log = RB_ROOT;
2680 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2681 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2682 /* readahead state */
2683 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2684 spin_lock_init(&fs_info->reada_lock);
2685 btrfs_init_ref_verify(fs_info);
2687 fs_info->thread_pool_size = min_t(unsigned long,
2688 num_online_cpus() + 2, 8);
2690 INIT_LIST_HEAD(&fs_info->ordered_roots);
2691 spin_lock_init(&fs_info->ordered_root_lock);
2693 btrfs_init_scrub(fs_info);
2694 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2695 fs_info->check_integrity_print_mask = 0;
2697 btrfs_init_balance(fs_info);
2698 btrfs_init_async_reclaim_work(fs_info);
2700 spin_lock_init(&fs_info->block_group_cache_lock);
2701 fs_info->block_group_cache_tree = RB_ROOT;
2702 fs_info->first_logical_byte = (u64)-1;
2704 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2705 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2706 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2708 mutex_init(&fs_info->ordered_operations_mutex);
2709 mutex_init(&fs_info->tree_log_mutex);
2710 mutex_init(&fs_info->chunk_mutex);
2711 mutex_init(&fs_info->transaction_kthread_mutex);
2712 mutex_init(&fs_info->cleaner_mutex);
2713 mutex_init(&fs_info->ro_block_group_mutex);
2714 init_rwsem(&fs_info->commit_root_sem);
2715 init_rwsem(&fs_info->cleanup_work_sem);
2716 init_rwsem(&fs_info->subvol_sem);
2717 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2719 btrfs_init_dev_replace_locks(fs_info);
2720 btrfs_init_qgroup(fs_info);
2721 btrfs_discard_init(fs_info);
2723 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2724 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2726 init_waitqueue_head(&fs_info->transaction_throttle);
2727 init_waitqueue_head(&fs_info->transaction_wait);
2728 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2729 init_waitqueue_head(&fs_info->async_submit_wait);
2730 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2732 /* Usable values until the real ones are cached from the superblock */
2733 fs_info->nodesize = 4096;
2734 fs_info->sectorsize = 4096;
2735 fs_info->stripesize = 4096;
2737 spin_lock_init(&fs_info->swapfile_pins_lock);
2738 fs_info->swapfile_pins = RB_ROOT;
2740 fs_info->send_in_progress = 0;
2743 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2748 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2749 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2751 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2755 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2759 fs_info->dirty_metadata_batch = PAGE_SIZE *
2760 (1 + ilog2(nr_cpu_ids));
2762 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2766 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2771 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2773 if (!fs_info->delayed_root)
2775 btrfs_init_delayed_root(fs_info->delayed_root);
2777 return btrfs_alloc_stripe_hash_table(fs_info);
2780 static int btrfs_uuid_rescan_kthread(void *data)
2782 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2786 * 1st step is to iterate through the existing UUID tree and
2787 * to delete all entries that contain outdated data.
2788 * 2nd step is to add all missing entries to the UUID tree.
2790 ret = btrfs_uuid_tree_iterate(fs_info);
2793 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2795 up(&fs_info->uuid_tree_rescan_sem);
2798 return btrfs_uuid_scan_kthread(data);
2801 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2803 struct task_struct *task;
2805 down(&fs_info->uuid_tree_rescan_sem);
2806 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2808 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2809 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2810 up(&fs_info->uuid_tree_rescan_sem);
2811 return PTR_ERR(task);
2817 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2826 struct btrfs_super_block *disk_super;
2827 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2828 struct btrfs_root *tree_root;
2829 struct btrfs_root *chunk_root;
2832 int clear_free_space_tree = 0;
2835 ret = init_mount_fs_info(fs_info, sb);
2841 /* These need to be init'ed before we start creating inodes and such. */
2842 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2844 fs_info->tree_root = tree_root;
2845 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2847 fs_info->chunk_root = chunk_root;
2848 if (!tree_root || !chunk_root) {
2853 fs_info->btree_inode = new_inode(sb);
2854 if (!fs_info->btree_inode) {
2858 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2859 btrfs_init_btree_inode(fs_info);
2861 invalidate_bdev(fs_devices->latest_bdev);
2864 * Read super block and check the signature bytes only
2866 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2867 if (IS_ERR(disk_super)) {
2868 err = PTR_ERR(disk_super);
2873 * Verify the type first, if that or the checksum value are
2874 * corrupted, we'll find out
2876 csum_type = btrfs_super_csum_type(disk_super);
2877 if (!btrfs_supported_super_csum(csum_type)) {
2878 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2881 btrfs_release_disk_super(disk_super);
2885 ret = btrfs_init_csum_hash(fs_info, csum_type);
2888 btrfs_release_disk_super(disk_super);
2893 * We want to check superblock checksum, the type is stored inside.
2894 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2896 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2897 btrfs_err(fs_info, "superblock checksum mismatch");
2899 btrfs_release_disk_super(disk_super);
2904 * super_copy is zeroed at allocation time and we never touch the
2905 * following bytes up to INFO_SIZE, the checksum is calculated from
2906 * the whole block of INFO_SIZE
2908 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2909 btrfs_release_disk_super(disk_super);
2911 disk_super = fs_info->super_copy;
2913 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2916 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2917 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2918 fs_info->super_copy->metadata_uuid,
2922 features = btrfs_super_flags(disk_super);
2923 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2924 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2925 btrfs_set_super_flags(disk_super, features);
2927 "found metadata UUID change in progress flag, clearing");
2930 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2931 sizeof(*fs_info->super_for_commit));
2933 ret = btrfs_validate_mount_super(fs_info);
2935 btrfs_err(fs_info, "superblock contains fatal errors");
2940 if (!btrfs_super_root(disk_super))
2943 /* check FS state, whether FS is broken. */
2944 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2945 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2948 * In the long term, we'll store the compression type in the super
2949 * block, and it'll be used for per file compression control.
2951 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2953 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2959 features = btrfs_super_incompat_flags(disk_super) &
2960 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2963 "cannot mount because of unsupported optional features (%llx)",
2969 features = btrfs_super_incompat_flags(disk_super);
2970 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2971 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2972 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2973 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2974 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2976 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2977 btrfs_info(fs_info, "has skinny extents");
2980 * flag our filesystem as having big metadata blocks if
2981 * they are bigger than the page size
2983 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2984 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2986 "flagging fs with big metadata feature");
2987 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2990 nodesize = btrfs_super_nodesize(disk_super);
2991 sectorsize = btrfs_super_sectorsize(disk_super);
2992 stripesize = sectorsize;
2993 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2994 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2996 /* Cache block sizes */
2997 fs_info->nodesize = nodesize;
2998 fs_info->sectorsize = sectorsize;
2999 fs_info->stripesize = stripesize;
3002 * mixed block groups end up with duplicate but slightly offset
3003 * extent buffers for the same range. It leads to corruptions
3005 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3006 (sectorsize != nodesize)) {
3008 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3009 nodesize, sectorsize);
3014 * Needn't use the lock because there is no other task which will
3017 btrfs_set_super_incompat_flags(disk_super, features);
3019 features = btrfs_super_compat_ro_flags(disk_super) &
3020 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3021 if (!sb_rdonly(sb) && features) {
3023 "cannot mount read-write because of unsupported optional features (%llx)",
3029 ret = btrfs_init_workqueues(fs_info, fs_devices);
3032 goto fail_sb_buffer;
3035 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3036 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3038 sb->s_blocksize = sectorsize;
3039 sb->s_blocksize_bits = blksize_bits(sectorsize);
3040 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3042 mutex_lock(&fs_info->chunk_mutex);
3043 ret = btrfs_read_sys_array(fs_info);
3044 mutex_unlock(&fs_info->chunk_mutex);
3046 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3047 goto fail_sb_buffer;
3050 generation = btrfs_super_chunk_root_generation(disk_super);
3051 level = btrfs_super_chunk_root_level(disk_super);
3053 chunk_root->node = read_tree_block(fs_info,
3054 btrfs_super_chunk_root(disk_super),
3055 generation, level, NULL);
3056 if (IS_ERR(chunk_root->node) ||
3057 !extent_buffer_uptodate(chunk_root->node)) {
3058 btrfs_err(fs_info, "failed to read chunk root");
3059 if (!IS_ERR(chunk_root->node))
3060 free_extent_buffer(chunk_root->node);
3061 chunk_root->node = NULL;
3062 goto fail_tree_roots;
3064 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3065 chunk_root->commit_root = btrfs_root_node(chunk_root);
3067 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3068 offsetof(struct btrfs_header, chunk_tree_uuid),
3071 ret = btrfs_read_chunk_tree(fs_info);
3073 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3074 goto fail_tree_roots;
3078 * Keep the devid that is marked to be the target device for the
3079 * device replace procedure
3081 btrfs_free_extra_devids(fs_devices, 0);
3083 if (!fs_devices->latest_bdev) {
3084 btrfs_err(fs_info, "failed to read devices");
3085 goto fail_tree_roots;
3088 ret = init_tree_roots(fs_info);
3090 goto fail_tree_roots;
3093 * If we have a uuid root and we're not being told to rescan we need to
3094 * check the generation here so we can set the
3095 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3096 * transaction during a balance or the log replay without updating the
3097 * uuid generation, and then if we crash we would rescan the uuid tree,
3098 * even though it was perfectly fine.
3100 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3101 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3102 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3104 ret = btrfs_verify_dev_extents(fs_info);
3107 "failed to verify dev extents against chunks: %d",
3109 goto fail_block_groups;
3111 ret = btrfs_recover_balance(fs_info);
3113 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3114 goto fail_block_groups;
3117 ret = btrfs_init_dev_stats(fs_info);
3119 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3120 goto fail_block_groups;
3123 ret = btrfs_init_dev_replace(fs_info);
3125 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3126 goto fail_block_groups;
3129 btrfs_free_extra_devids(fs_devices, 1);
3131 ret = btrfs_sysfs_add_fsid(fs_devices);
3133 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3135 goto fail_block_groups;
3138 ret = btrfs_sysfs_add_mounted(fs_info);
3140 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3141 goto fail_fsdev_sysfs;
3144 ret = btrfs_init_space_info(fs_info);
3146 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3150 ret = btrfs_read_block_groups(fs_info);
3152 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3156 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3158 "writable mount is not allowed due to too many missing devices");
3162 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3164 if (IS_ERR(fs_info->cleaner_kthread))
3167 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3169 "btrfs-transaction");
3170 if (IS_ERR(fs_info->transaction_kthread))
3173 if (!btrfs_test_opt(fs_info, NOSSD) &&
3174 !fs_info->fs_devices->rotating) {
3175 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3179 * Mount does not set all options immediately, we can do it now and do
3180 * not have to wait for transaction commit
3182 btrfs_apply_pending_changes(fs_info);
3184 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3185 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3186 ret = btrfsic_mount(fs_info, fs_devices,
3187 btrfs_test_opt(fs_info,
3188 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3190 fs_info->check_integrity_print_mask);
3193 "failed to initialize integrity check module: %d",
3197 ret = btrfs_read_qgroup_config(fs_info);
3199 goto fail_trans_kthread;
3201 if (btrfs_build_ref_tree(fs_info))
3202 btrfs_err(fs_info, "couldn't build ref tree");
3204 /* do not make disk changes in broken FS or nologreplay is given */
3205 if (btrfs_super_log_root(disk_super) != 0 &&
3206 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3207 btrfs_info(fs_info, "start tree-log replay");
3208 ret = btrfs_replay_log(fs_info, fs_devices);
3215 ret = btrfs_find_orphan_roots(fs_info);
3219 if (!sb_rdonly(sb)) {
3220 ret = btrfs_cleanup_fs_roots(fs_info);
3224 mutex_lock(&fs_info->cleaner_mutex);
3225 ret = btrfs_recover_relocation(tree_root);
3226 mutex_unlock(&fs_info->cleaner_mutex);
3228 btrfs_warn(fs_info, "failed to recover relocation: %d",
3235 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3236 if (IS_ERR(fs_info->fs_root)) {
3237 err = PTR_ERR(fs_info->fs_root);
3238 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3239 fs_info->fs_root = NULL;
3246 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3247 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3248 clear_free_space_tree = 1;
3249 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3250 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3251 btrfs_warn(fs_info, "free space tree is invalid");
3252 clear_free_space_tree = 1;
3255 if (clear_free_space_tree) {
3256 btrfs_info(fs_info, "clearing free space tree");
3257 ret = btrfs_clear_free_space_tree(fs_info);
3260 "failed to clear free space tree: %d", ret);
3261 close_ctree(fs_info);
3266 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3267 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3268 btrfs_info(fs_info, "creating free space tree");
3269 ret = btrfs_create_free_space_tree(fs_info);
3272 "failed to create free space tree: %d", ret);
3273 close_ctree(fs_info);
3278 down_read(&fs_info->cleanup_work_sem);
3279 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3280 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3281 up_read(&fs_info->cleanup_work_sem);
3282 close_ctree(fs_info);
3285 up_read(&fs_info->cleanup_work_sem);
3287 ret = btrfs_resume_balance_async(fs_info);
3289 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3290 close_ctree(fs_info);
3294 ret = btrfs_resume_dev_replace_async(fs_info);
3296 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3297 close_ctree(fs_info);
3301 btrfs_qgroup_rescan_resume(fs_info);
3302 btrfs_discard_resume(fs_info);
3304 if (!fs_info->uuid_root) {
3305 btrfs_info(fs_info, "creating UUID tree");
3306 ret = btrfs_create_uuid_tree(fs_info);
3309 "failed to create the UUID tree: %d", ret);
3310 close_ctree(fs_info);
3313 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3314 fs_info->generation !=
3315 btrfs_super_uuid_tree_generation(disk_super)) {
3316 btrfs_info(fs_info, "checking UUID tree");
3317 ret = btrfs_check_uuid_tree(fs_info);
3320 "failed to check the UUID tree: %d", ret);
3321 close_ctree(fs_info);
3325 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3328 * backuproot only affect mount behavior, and if open_ctree succeeded,
3329 * no need to keep the flag
3331 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3336 btrfs_free_qgroup_config(fs_info);
3338 kthread_stop(fs_info->transaction_kthread);
3339 btrfs_cleanup_transaction(fs_info);
3340 btrfs_free_fs_roots(fs_info);
3342 kthread_stop(fs_info->cleaner_kthread);
3345 * make sure we're done with the btree inode before we stop our
3348 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3351 btrfs_sysfs_remove_mounted(fs_info);
3354 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3357 btrfs_put_block_group_cache(fs_info);
3360 if (fs_info->data_reloc_root)
3361 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3362 free_root_pointers(fs_info, true);
3363 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3366 btrfs_stop_all_workers(fs_info);
3367 btrfs_free_block_groups(fs_info);
3369 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3371 iput(fs_info->btree_inode);
3373 btrfs_close_devices(fs_info->fs_devices);
3376 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3378 static void btrfs_end_super_write(struct bio *bio)
3380 struct btrfs_device *device = bio->bi_private;
3381 struct bio_vec *bvec;
3382 struct bvec_iter_all iter_all;
3385 bio_for_each_segment_all(bvec, bio, iter_all) {
3386 page = bvec->bv_page;
3388 if (bio->bi_status) {
3389 btrfs_warn_rl_in_rcu(device->fs_info,
3390 "lost page write due to IO error on %s (%d)",
3391 rcu_str_deref(device->name),
3392 blk_status_to_errno(bio->bi_status));
3393 ClearPageUptodate(page);
3395 btrfs_dev_stat_inc_and_print(device,
3396 BTRFS_DEV_STAT_WRITE_ERRS);
3398 SetPageUptodate(page);
3408 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3411 struct btrfs_super_block *super;
3414 struct address_space *mapping = bdev->bd_inode->i_mapping;
3416 bytenr = btrfs_sb_offset(copy_num);
3417 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3418 return ERR_PTR(-EINVAL);
3420 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3422 return ERR_CAST(page);
3424 super = page_address(page);
3425 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3426 btrfs_release_disk_super(super);
3427 return ERR_PTR(-ENODATA);
3430 if (btrfs_super_bytenr(super) != bytenr) {
3431 btrfs_release_disk_super(super);
3432 return ERR_PTR(-EINVAL);
3439 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3441 struct btrfs_super_block *super, *latest = NULL;
3445 /* we would like to check all the supers, but that would make
3446 * a btrfs mount succeed after a mkfs from a different FS.
3447 * So, we need to add a special mount option to scan for
3448 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3450 for (i = 0; i < 1; i++) {
3451 super = btrfs_read_dev_one_super(bdev, i);
3455 if (!latest || btrfs_super_generation(super) > transid) {
3457 btrfs_release_disk_super(super);
3460 transid = btrfs_super_generation(super);
3468 * Write superblock @sb to the @device. Do not wait for completion, all the
3469 * pages we use for writing are locked.
3471 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3472 * the expected device size at commit time. Note that max_mirrors must be
3473 * same for write and wait phases.
3475 * Return number of errors when page is not found or submission fails.
3477 static int write_dev_supers(struct btrfs_device *device,
3478 struct btrfs_super_block *sb, int max_mirrors)
3480 struct btrfs_fs_info *fs_info = device->fs_info;
3481 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3482 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3487 if (max_mirrors == 0)
3488 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3490 shash->tfm = fs_info->csum_shash;
3492 for (i = 0; i < max_mirrors; i++) {
3495 struct btrfs_super_block *disk_super;
3497 bytenr = btrfs_sb_offset(i);
3498 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3499 device->commit_total_bytes)
3502 btrfs_set_super_bytenr(sb, bytenr);
3504 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3505 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3508 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3511 btrfs_err(device->fs_info,
3512 "couldn't get super block page for bytenr %llu",
3518 /* Bump the refcount for wait_dev_supers() */
3521 disk_super = page_address(page);
3522 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3525 * Directly use bios here instead of relying on the page cache
3526 * to do I/O, so we don't lose the ability to do integrity
3529 bio = bio_alloc(GFP_NOFS, 1);
3530 bio_set_dev(bio, device->bdev);
3531 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3532 bio->bi_private = device;
3533 bio->bi_end_io = btrfs_end_super_write;
3534 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3535 offset_in_page(bytenr));
3538 * We FUA only the first super block. The others we allow to
3539 * go down lazy and there's a short window where the on-disk
3540 * copies might still contain the older version.
3542 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3543 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3544 bio->bi_opf |= REQ_FUA;
3546 btrfsic_submit_bio(bio);
3548 return errors < i ? 0 : -1;
3552 * Wait for write completion of superblocks done by write_dev_supers,
3553 * @max_mirrors same for write and wait phases.
3555 * Return number of errors when page is not found or not marked up to
3558 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3562 bool primary_failed = false;
3565 if (max_mirrors == 0)
3566 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3568 for (i = 0; i < max_mirrors; i++) {
3571 bytenr = btrfs_sb_offset(i);
3572 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3573 device->commit_total_bytes)
3576 page = find_get_page(device->bdev->bd_inode->i_mapping,
3577 bytenr >> PAGE_SHIFT);
3581 primary_failed = true;
3584 /* Page is submitted locked and unlocked once the IO completes */
3585 wait_on_page_locked(page);
3586 if (PageError(page)) {
3589 primary_failed = true;
3592 /* Drop our reference */
3595 /* Drop the reference from the writing run */
3599 /* log error, force error return */
3600 if (primary_failed) {
3601 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3606 return errors < i ? 0 : -1;
3610 * endio for the write_dev_flush, this will wake anyone waiting
3611 * for the barrier when it is done
3613 static void btrfs_end_empty_barrier(struct bio *bio)
3615 complete(bio->bi_private);
3619 * Submit a flush request to the device if it supports it. Error handling is
3620 * done in the waiting counterpart.
3622 static void write_dev_flush(struct btrfs_device *device)
3624 struct request_queue *q = bdev_get_queue(device->bdev);
3625 struct bio *bio = device->flush_bio;
3627 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3631 bio->bi_end_io = btrfs_end_empty_barrier;
3632 bio_set_dev(bio, device->bdev);
3633 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3634 init_completion(&device->flush_wait);
3635 bio->bi_private = &device->flush_wait;
3637 btrfsic_submit_bio(bio);
3638 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3642 * If the flush bio has been submitted by write_dev_flush, wait for it.
3644 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3646 struct bio *bio = device->flush_bio;
3648 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3651 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3652 wait_for_completion_io(&device->flush_wait);
3654 return bio->bi_status;
3657 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3659 if (!btrfs_check_rw_degradable(fs_info, NULL))
3665 * send an empty flush down to each device in parallel,
3666 * then wait for them
3668 static int barrier_all_devices(struct btrfs_fs_info *info)
3670 struct list_head *head;
3671 struct btrfs_device *dev;
3672 int errors_wait = 0;
3675 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3676 /* send down all the barriers */
3677 head = &info->fs_devices->devices;
3678 list_for_each_entry(dev, head, dev_list) {
3679 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3683 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3684 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3687 write_dev_flush(dev);
3688 dev->last_flush_error = BLK_STS_OK;
3691 /* wait for all the barriers */
3692 list_for_each_entry(dev, head, dev_list) {
3693 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3699 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3700 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3703 ret = wait_dev_flush(dev);
3705 dev->last_flush_error = ret;
3706 btrfs_dev_stat_inc_and_print(dev,
3707 BTRFS_DEV_STAT_FLUSH_ERRS);
3714 * At some point we need the status of all disks
3715 * to arrive at the volume status. So error checking
3716 * is being pushed to a separate loop.
3718 return check_barrier_error(info);
3723 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3726 int min_tolerated = INT_MAX;
3728 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3729 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3730 min_tolerated = min_t(int, min_tolerated,
3731 btrfs_raid_array[BTRFS_RAID_SINGLE].
3732 tolerated_failures);
3734 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3735 if (raid_type == BTRFS_RAID_SINGLE)
3737 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3739 min_tolerated = min_t(int, min_tolerated,
3740 btrfs_raid_array[raid_type].
3741 tolerated_failures);
3744 if (min_tolerated == INT_MAX) {
3745 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3749 return min_tolerated;
3752 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3754 struct list_head *head;
3755 struct btrfs_device *dev;
3756 struct btrfs_super_block *sb;
3757 struct btrfs_dev_item *dev_item;
3761 int total_errors = 0;
3764 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3767 * max_mirrors == 0 indicates we're from commit_transaction,
3768 * not from fsync where the tree roots in fs_info have not
3769 * been consistent on disk.
3771 if (max_mirrors == 0)
3772 backup_super_roots(fs_info);
3774 sb = fs_info->super_for_commit;
3775 dev_item = &sb->dev_item;
3777 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3778 head = &fs_info->fs_devices->devices;
3779 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3782 ret = barrier_all_devices(fs_info);
3785 &fs_info->fs_devices->device_list_mutex);
3786 btrfs_handle_fs_error(fs_info, ret,
3787 "errors while submitting device barriers.");
3792 list_for_each_entry(dev, head, dev_list) {
3797 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3798 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3801 btrfs_set_stack_device_generation(dev_item, 0);
3802 btrfs_set_stack_device_type(dev_item, dev->type);
3803 btrfs_set_stack_device_id(dev_item, dev->devid);
3804 btrfs_set_stack_device_total_bytes(dev_item,
3805 dev->commit_total_bytes);
3806 btrfs_set_stack_device_bytes_used(dev_item,
3807 dev->commit_bytes_used);
3808 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3809 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3810 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3811 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3812 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3815 flags = btrfs_super_flags(sb);
3816 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3818 ret = btrfs_validate_write_super(fs_info, sb);
3820 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3821 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3822 "unexpected superblock corruption detected");
3826 ret = write_dev_supers(dev, sb, max_mirrors);
3830 if (total_errors > max_errors) {
3831 btrfs_err(fs_info, "%d errors while writing supers",
3833 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3835 /* FUA is masked off if unsupported and can't be the reason */
3836 btrfs_handle_fs_error(fs_info, -EIO,
3837 "%d errors while writing supers",
3843 list_for_each_entry(dev, head, dev_list) {
3846 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3847 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3850 ret = wait_dev_supers(dev, max_mirrors);
3854 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3855 if (total_errors > max_errors) {
3856 btrfs_handle_fs_error(fs_info, -EIO,
3857 "%d errors while writing supers",
3864 /* Drop a fs root from the radix tree and free it. */
3865 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3866 struct btrfs_root *root)
3868 bool drop_ref = false;
3870 spin_lock(&fs_info->fs_roots_radix_lock);
3871 radix_tree_delete(&fs_info->fs_roots_radix,
3872 (unsigned long)root->root_key.objectid);
3873 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3875 spin_unlock(&fs_info->fs_roots_radix_lock);
3877 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3878 ASSERT(root->log_root == NULL);
3879 if (root->reloc_root) {
3880 btrfs_put_root(root->reloc_root);
3881 root->reloc_root = NULL;
3885 if (root->free_ino_pinned)
3886 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3887 if (root->free_ino_ctl)
3888 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3889 if (root->ino_cache_inode) {
3890 iput(root->ino_cache_inode);
3891 root->ino_cache_inode = NULL;
3894 btrfs_put_root(root);
3897 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3899 u64 root_objectid = 0;
3900 struct btrfs_root *gang[8];
3903 unsigned int ret = 0;
3906 spin_lock(&fs_info->fs_roots_radix_lock);
3907 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3908 (void **)gang, root_objectid,
3911 spin_unlock(&fs_info->fs_roots_radix_lock);
3914 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3916 for (i = 0; i < ret; i++) {
3917 /* Avoid to grab roots in dead_roots */
3918 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3922 /* grab all the search result for later use */
3923 gang[i] = btrfs_grab_root(gang[i]);
3925 spin_unlock(&fs_info->fs_roots_radix_lock);
3927 for (i = 0; i < ret; i++) {
3930 root_objectid = gang[i]->root_key.objectid;
3931 err = btrfs_orphan_cleanup(gang[i]);
3934 btrfs_put_root(gang[i]);
3939 /* release the uncleaned roots due to error */
3940 for (; i < ret; i++) {
3942 btrfs_put_root(gang[i]);
3947 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3949 struct btrfs_root *root = fs_info->tree_root;
3950 struct btrfs_trans_handle *trans;
3952 mutex_lock(&fs_info->cleaner_mutex);
3953 btrfs_run_delayed_iputs(fs_info);
3954 mutex_unlock(&fs_info->cleaner_mutex);
3955 wake_up_process(fs_info->cleaner_kthread);
3957 /* wait until ongoing cleanup work done */
3958 down_write(&fs_info->cleanup_work_sem);
3959 up_write(&fs_info->cleanup_work_sem);
3961 trans = btrfs_join_transaction(root);
3963 return PTR_ERR(trans);
3964 return btrfs_commit_transaction(trans);
3967 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3971 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3973 * We don't want the cleaner to start new transactions, add more delayed
3974 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3975 * because that frees the task_struct, and the transaction kthread might
3976 * still try to wake up the cleaner.
3978 kthread_park(fs_info->cleaner_kthread);
3980 /* wait for the qgroup rescan worker to stop */
3981 btrfs_qgroup_wait_for_completion(fs_info, false);
3983 /* wait for the uuid_scan task to finish */
3984 down(&fs_info->uuid_tree_rescan_sem);
3985 /* avoid complains from lockdep et al., set sem back to initial state */
3986 up(&fs_info->uuid_tree_rescan_sem);
3988 /* pause restriper - we want to resume on mount */
3989 btrfs_pause_balance(fs_info);
3991 btrfs_dev_replace_suspend_for_unmount(fs_info);
3993 btrfs_scrub_cancel(fs_info);
3995 /* wait for any defraggers to finish */
3996 wait_event(fs_info->transaction_wait,
3997 (atomic_read(&fs_info->defrag_running) == 0));
3999 /* clear out the rbtree of defraggable inodes */
4000 btrfs_cleanup_defrag_inodes(fs_info);
4002 cancel_work_sync(&fs_info->async_reclaim_work);
4003 cancel_work_sync(&fs_info->async_data_reclaim_work);
4005 /* Cancel or finish ongoing discard work */
4006 btrfs_discard_cleanup(fs_info);
4008 if (!sb_rdonly(fs_info->sb)) {
4010 * The cleaner kthread is stopped, so do one final pass over
4011 * unused block groups.
4013 btrfs_delete_unused_bgs(fs_info);
4016 * There might be existing delayed inode workers still running
4017 * and holding an empty delayed inode item. We must wait for
4018 * them to complete first because they can create a transaction.
4019 * This happens when someone calls btrfs_balance_delayed_items()
4020 * and then a transaction commit runs the same delayed nodes
4021 * before any delayed worker has done something with the nodes.
4022 * We must wait for any worker here and not at transaction
4023 * commit time since that could cause a deadlock.
4024 * This is a very rare case.
4026 btrfs_flush_workqueue(fs_info->delayed_workers);
4028 ret = btrfs_commit_super(fs_info);
4030 btrfs_err(fs_info, "commit super ret %d", ret);
4033 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4034 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4035 btrfs_error_commit_super(fs_info);
4037 kthread_stop(fs_info->transaction_kthread);
4038 kthread_stop(fs_info->cleaner_kthread);
4040 ASSERT(list_empty(&fs_info->delayed_iputs));
4041 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4043 if (btrfs_check_quota_leak(fs_info)) {
4044 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4045 btrfs_err(fs_info, "qgroup reserved space leaked");
4048 btrfs_free_qgroup_config(fs_info);
4049 ASSERT(list_empty(&fs_info->delalloc_roots));
4051 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4052 btrfs_info(fs_info, "at unmount delalloc count %lld",
4053 percpu_counter_sum(&fs_info->delalloc_bytes));
4056 if (percpu_counter_sum(&fs_info->dio_bytes))
4057 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4058 percpu_counter_sum(&fs_info->dio_bytes));
4060 btrfs_sysfs_remove_mounted(fs_info);
4061 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4063 btrfs_put_block_group_cache(fs_info);
4066 * we must make sure there is not any read request to
4067 * submit after we stopping all workers.
4069 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4070 btrfs_stop_all_workers(fs_info);
4072 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4073 free_root_pointers(fs_info, true);
4074 btrfs_free_fs_roots(fs_info);
4077 * We must free the block groups after dropping the fs_roots as we could
4078 * have had an IO error and have left over tree log blocks that aren't
4079 * cleaned up until the fs roots are freed. This makes the block group
4080 * accounting appear to be wrong because there's pending reserved bytes,
4081 * so make sure we do the block group cleanup afterwards.
4083 btrfs_free_block_groups(fs_info);
4085 iput(fs_info->btree_inode);
4087 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4088 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4089 btrfsic_unmount(fs_info->fs_devices);
4092 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4093 btrfs_close_devices(fs_info->fs_devices);
4096 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4100 struct inode *btree_inode = buf->pages[0]->mapping->host;
4102 ret = extent_buffer_uptodate(buf);
4106 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4107 parent_transid, atomic);
4113 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4115 struct btrfs_fs_info *fs_info;
4116 struct btrfs_root *root;
4117 u64 transid = btrfs_header_generation(buf);
4120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4122 * This is a fast path so only do this check if we have sanity tests
4123 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4124 * outside of the sanity tests.
4126 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4129 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4130 fs_info = root->fs_info;
4131 btrfs_assert_tree_locked(buf);
4132 if (transid != fs_info->generation)
4133 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4134 buf->start, transid, fs_info->generation);
4135 was_dirty = set_extent_buffer_dirty(buf);
4137 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4139 fs_info->dirty_metadata_batch);
4140 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4142 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4143 * but item data not updated.
4144 * So here we should only check item pointers, not item data.
4146 if (btrfs_header_level(buf) == 0 &&
4147 btrfs_check_leaf_relaxed(buf)) {
4148 btrfs_print_leaf(buf);
4154 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4158 * looks as though older kernels can get into trouble with
4159 * this code, they end up stuck in balance_dirty_pages forever
4163 if (current->flags & PF_MEMALLOC)
4167 btrfs_balance_delayed_items(fs_info);
4169 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4170 BTRFS_DIRTY_METADATA_THRESH,
4171 fs_info->dirty_metadata_batch);
4173 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4177 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4179 __btrfs_btree_balance_dirty(fs_info, 1);
4182 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4184 __btrfs_btree_balance_dirty(fs_info, 0);
4187 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4188 struct btrfs_key *first_key)
4190 return btree_read_extent_buffer_pages(buf, parent_transid,
4194 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4196 /* cleanup FS via transaction */
4197 btrfs_cleanup_transaction(fs_info);
4199 mutex_lock(&fs_info->cleaner_mutex);
4200 btrfs_run_delayed_iputs(fs_info);
4201 mutex_unlock(&fs_info->cleaner_mutex);
4203 down_write(&fs_info->cleanup_work_sem);
4204 up_write(&fs_info->cleanup_work_sem);
4207 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4209 struct btrfs_root *gang[8];
4210 u64 root_objectid = 0;
4213 spin_lock(&fs_info->fs_roots_radix_lock);
4214 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4215 (void **)gang, root_objectid,
4216 ARRAY_SIZE(gang))) != 0) {
4219 for (i = 0; i < ret; i++)
4220 gang[i] = btrfs_grab_root(gang[i]);
4221 spin_unlock(&fs_info->fs_roots_radix_lock);
4223 for (i = 0; i < ret; i++) {
4226 root_objectid = gang[i]->root_key.objectid;
4227 btrfs_free_log(NULL, gang[i]);
4228 btrfs_put_root(gang[i]);
4231 spin_lock(&fs_info->fs_roots_radix_lock);
4233 spin_unlock(&fs_info->fs_roots_radix_lock);
4234 btrfs_free_log_root_tree(NULL, fs_info);
4237 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4239 struct btrfs_ordered_extent *ordered;
4241 spin_lock(&root->ordered_extent_lock);
4243 * This will just short circuit the ordered completion stuff which will
4244 * make sure the ordered extent gets properly cleaned up.
4246 list_for_each_entry(ordered, &root->ordered_extents,
4248 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4249 spin_unlock(&root->ordered_extent_lock);
4252 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4254 struct btrfs_root *root;
4255 struct list_head splice;
4257 INIT_LIST_HEAD(&splice);
4259 spin_lock(&fs_info->ordered_root_lock);
4260 list_splice_init(&fs_info->ordered_roots, &splice);
4261 while (!list_empty(&splice)) {
4262 root = list_first_entry(&splice, struct btrfs_root,
4264 list_move_tail(&root->ordered_root,
4265 &fs_info->ordered_roots);
4267 spin_unlock(&fs_info->ordered_root_lock);
4268 btrfs_destroy_ordered_extents(root);
4271 spin_lock(&fs_info->ordered_root_lock);
4273 spin_unlock(&fs_info->ordered_root_lock);
4276 * We need this here because if we've been flipped read-only we won't
4277 * get sync() from the umount, so we need to make sure any ordered
4278 * extents that haven't had their dirty pages IO start writeout yet
4279 * actually get run and error out properly.
4281 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4284 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4285 struct btrfs_fs_info *fs_info)
4287 struct rb_node *node;
4288 struct btrfs_delayed_ref_root *delayed_refs;
4289 struct btrfs_delayed_ref_node *ref;
4292 delayed_refs = &trans->delayed_refs;
4294 spin_lock(&delayed_refs->lock);
4295 if (atomic_read(&delayed_refs->num_entries) == 0) {
4296 spin_unlock(&delayed_refs->lock);
4297 btrfs_debug(fs_info, "delayed_refs has NO entry");
4301 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4302 struct btrfs_delayed_ref_head *head;
4304 bool pin_bytes = false;
4306 head = rb_entry(node, struct btrfs_delayed_ref_head,
4308 if (btrfs_delayed_ref_lock(delayed_refs, head))
4311 spin_lock(&head->lock);
4312 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4313 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4316 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4317 RB_CLEAR_NODE(&ref->ref_node);
4318 if (!list_empty(&ref->add_list))
4319 list_del(&ref->add_list);
4320 atomic_dec(&delayed_refs->num_entries);
4321 btrfs_put_delayed_ref(ref);
4323 if (head->must_insert_reserved)
4325 btrfs_free_delayed_extent_op(head->extent_op);
4326 btrfs_delete_ref_head(delayed_refs, head);
4327 spin_unlock(&head->lock);
4328 spin_unlock(&delayed_refs->lock);
4329 mutex_unlock(&head->mutex);
4332 struct btrfs_block_group *cache;
4334 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4337 spin_lock(&cache->space_info->lock);
4338 spin_lock(&cache->lock);
4339 cache->pinned += head->num_bytes;
4340 btrfs_space_info_update_bytes_pinned(fs_info,
4341 cache->space_info, head->num_bytes);
4342 cache->reserved -= head->num_bytes;
4343 cache->space_info->bytes_reserved -= head->num_bytes;
4344 spin_unlock(&cache->lock);
4345 spin_unlock(&cache->space_info->lock);
4346 percpu_counter_add_batch(
4347 &cache->space_info->total_bytes_pinned,
4348 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4350 btrfs_put_block_group(cache);
4352 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4353 head->bytenr + head->num_bytes - 1);
4355 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4356 btrfs_put_delayed_ref_head(head);
4358 spin_lock(&delayed_refs->lock);
4360 btrfs_qgroup_destroy_extent_records(trans);
4362 spin_unlock(&delayed_refs->lock);
4367 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4369 struct btrfs_inode *btrfs_inode;
4370 struct list_head splice;
4372 INIT_LIST_HEAD(&splice);
4374 spin_lock(&root->delalloc_lock);
4375 list_splice_init(&root->delalloc_inodes, &splice);
4377 while (!list_empty(&splice)) {
4378 struct inode *inode = NULL;
4379 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4381 __btrfs_del_delalloc_inode(root, btrfs_inode);
4382 spin_unlock(&root->delalloc_lock);
4385 * Make sure we get a live inode and that it'll not disappear
4388 inode = igrab(&btrfs_inode->vfs_inode);
4390 invalidate_inode_pages2(inode->i_mapping);
4393 spin_lock(&root->delalloc_lock);
4395 spin_unlock(&root->delalloc_lock);
4398 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4400 struct btrfs_root *root;
4401 struct list_head splice;
4403 INIT_LIST_HEAD(&splice);
4405 spin_lock(&fs_info->delalloc_root_lock);
4406 list_splice_init(&fs_info->delalloc_roots, &splice);
4407 while (!list_empty(&splice)) {
4408 root = list_first_entry(&splice, struct btrfs_root,
4410 root = btrfs_grab_root(root);
4412 spin_unlock(&fs_info->delalloc_root_lock);
4414 btrfs_destroy_delalloc_inodes(root);
4415 btrfs_put_root(root);
4417 spin_lock(&fs_info->delalloc_root_lock);
4419 spin_unlock(&fs_info->delalloc_root_lock);
4422 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4423 struct extent_io_tree *dirty_pages,
4427 struct extent_buffer *eb;
4432 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4437 clear_extent_bits(dirty_pages, start, end, mark);
4438 while (start <= end) {
4439 eb = find_extent_buffer(fs_info, start);
4440 start += fs_info->nodesize;
4443 wait_on_extent_buffer_writeback(eb);
4445 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4447 clear_extent_buffer_dirty(eb);
4448 free_extent_buffer_stale(eb);
4455 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4456 struct extent_io_tree *unpin)
4463 struct extent_state *cached_state = NULL;
4466 * The btrfs_finish_extent_commit() may get the same range as
4467 * ours between find_first_extent_bit and clear_extent_dirty.
4468 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4469 * the same extent range.
4471 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4472 ret = find_first_extent_bit(unpin, 0, &start, &end,
4473 EXTENT_DIRTY, &cached_state);
4475 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4479 clear_extent_dirty(unpin, start, end, &cached_state);
4480 free_extent_state(cached_state);
4481 btrfs_error_unpin_extent_range(fs_info, start, end);
4482 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4489 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4491 struct inode *inode;
4493 inode = cache->io_ctl.inode;
4495 invalidate_inode_pages2(inode->i_mapping);
4496 BTRFS_I(inode)->generation = 0;
4497 cache->io_ctl.inode = NULL;
4500 ASSERT(cache->io_ctl.pages == NULL);
4501 btrfs_put_block_group(cache);
4504 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4505 struct btrfs_fs_info *fs_info)
4507 struct btrfs_block_group *cache;
4509 spin_lock(&cur_trans->dirty_bgs_lock);
4510 while (!list_empty(&cur_trans->dirty_bgs)) {
4511 cache = list_first_entry(&cur_trans->dirty_bgs,
4512 struct btrfs_block_group,
4515 if (!list_empty(&cache->io_list)) {
4516 spin_unlock(&cur_trans->dirty_bgs_lock);
4517 list_del_init(&cache->io_list);
4518 btrfs_cleanup_bg_io(cache);
4519 spin_lock(&cur_trans->dirty_bgs_lock);
4522 list_del_init(&cache->dirty_list);
4523 spin_lock(&cache->lock);
4524 cache->disk_cache_state = BTRFS_DC_ERROR;
4525 spin_unlock(&cache->lock);
4527 spin_unlock(&cur_trans->dirty_bgs_lock);
4528 btrfs_put_block_group(cache);
4529 btrfs_delayed_refs_rsv_release(fs_info, 1);
4530 spin_lock(&cur_trans->dirty_bgs_lock);
4532 spin_unlock(&cur_trans->dirty_bgs_lock);
4535 * Refer to the definition of io_bgs member for details why it's safe
4536 * to use it without any locking
4538 while (!list_empty(&cur_trans->io_bgs)) {
4539 cache = list_first_entry(&cur_trans->io_bgs,
4540 struct btrfs_block_group,
4543 list_del_init(&cache->io_list);
4544 spin_lock(&cache->lock);
4545 cache->disk_cache_state = BTRFS_DC_ERROR;
4546 spin_unlock(&cache->lock);
4547 btrfs_cleanup_bg_io(cache);
4551 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4552 struct btrfs_fs_info *fs_info)
4554 struct btrfs_device *dev, *tmp;
4556 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4557 ASSERT(list_empty(&cur_trans->dirty_bgs));
4558 ASSERT(list_empty(&cur_trans->io_bgs));
4560 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4562 list_del_init(&dev->post_commit_list);
4565 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4567 cur_trans->state = TRANS_STATE_COMMIT_START;
4568 wake_up(&fs_info->transaction_blocked_wait);
4570 cur_trans->state = TRANS_STATE_UNBLOCKED;
4571 wake_up(&fs_info->transaction_wait);
4573 btrfs_destroy_delayed_inodes(fs_info);
4575 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4577 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4579 cur_trans->state =TRANS_STATE_COMPLETED;
4580 wake_up(&cur_trans->commit_wait);
4583 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4585 struct btrfs_transaction *t;
4587 mutex_lock(&fs_info->transaction_kthread_mutex);
4589 spin_lock(&fs_info->trans_lock);
4590 while (!list_empty(&fs_info->trans_list)) {
4591 t = list_first_entry(&fs_info->trans_list,
4592 struct btrfs_transaction, list);
4593 if (t->state >= TRANS_STATE_COMMIT_START) {
4594 refcount_inc(&t->use_count);
4595 spin_unlock(&fs_info->trans_lock);
4596 btrfs_wait_for_commit(fs_info, t->transid);
4597 btrfs_put_transaction(t);
4598 spin_lock(&fs_info->trans_lock);
4601 if (t == fs_info->running_transaction) {
4602 t->state = TRANS_STATE_COMMIT_DOING;
4603 spin_unlock(&fs_info->trans_lock);
4605 * We wait for 0 num_writers since we don't hold a trans
4606 * handle open currently for this transaction.
4608 wait_event(t->writer_wait,
4609 atomic_read(&t->num_writers) == 0);
4611 spin_unlock(&fs_info->trans_lock);
4613 btrfs_cleanup_one_transaction(t, fs_info);
4615 spin_lock(&fs_info->trans_lock);
4616 if (t == fs_info->running_transaction)
4617 fs_info->running_transaction = NULL;
4618 list_del_init(&t->list);
4619 spin_unlock(&fs_info->trans_lock);
4621 btrfs_put_transaction(t);
4622 trace_btrfs_transaction_commit(fs_info->tree_root);
4623 spin_lock(&fs_info->trans_lock);
4625 spin_unlock(&fs_info->trans_lock);
4626 btrfs_destroy_all_ordered_extents(fs_info);
4627 btrfs_destroy_delayed_inodes(fs_info);
4628 btrfs_assert_delayed_root_empty(fs_info);
4629 btrfs_destroy_all_delalloc_inodes(fs_info);
4630 btrfs_drop_all_logs(fs_info);
4631 mutex_unlock(&fs_info->transaction_kthread_mutex);