ext4: force inode writes when nfsd calls commit_metadata()
[platform/kernel/linux-exynos.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 #include "tree-checker.h"
54
55 #ifdef CONFIG_X86
56 #include <asm/cpufeature.h>
57 #endif
58
59 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
60                                  BTRFS_HEADER_FLAG_RELOC |\
61                                  BTRFS_SUPER_FLAG_ERROR |\
62                                  BTRFS_SUPER_FLAG_SEEDING |\
63                                  BTRFS_SUPER_FLAG_METADUMP |\
64                                  BTRFS_SUPER_FLAG_METADUMP_V2)
65
66 static const struct extent_io_ops btree_extent_io_ops;
67 static void end_workqueue_fn(struct btrfs_work *work);
68 static void free_fs_root(struct btrfs_root *root);
69 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
72                                       struct btrfs_fs_info *fs_info);
73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
74 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
75                                         struct extent_io_tree *dirty_pages,
76                                         int mark);
77 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
78                                        struct extent_io_tree *pinned_extents);
79 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
80 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
81
82 /*
83  * btrfs_end_io_wq structs are used to do processing in task context when an IO
84  * is complete.  This is used during reads to verify checksums, and it is used
85  * by writes to insert metadata for new file extents after IO is complete.
86  */
87 struct btrfs_end_io_wq {
88         struct bio *bio;
89         bio_end_io_t *end_io;
90         void *private;
91         struct btrfs_fs_info *info;
92         blk_status_t status;
93         enum btrfs_wq_endio_type metadata;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         void *private_data;
123         struct btrfs_fs_info *fs_info;
124         struct bio *bio;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int mirror_num;
128         unsigned long bio_flags;
129         /*
130          * bio_offset is optional, can be used if the pages in the bio
131          * can't tell us where in the file the bio should go
132          */
133         u64 bio_offset;
134         struct btrfs_work work;
135         blk_status_t status;
136 };
137
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167         u64                     id;             /* root objectid */
168         const char              *name_stem;     /* lock name stem */
169         char                    names[BTRFS_MAX_LEVEL + 1][20];
170         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
173         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
174         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
175         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
176         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
177         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
178         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
179         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
180         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
181         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
182         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
183         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184         { .id = 0,                              .name_stem = "tree"     },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189         int i, j;
190
191         /* initialize lockdep class names */
192         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196                         snprintf(ks->names[j], sizeof(ks->names[j]),
197                                  "btrfs-%s-%02d", ks->name_stem, j);
198         }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202                                     int level)
203 {
204         struct btrfs_lockdep_keyset *ks;
205
206         BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208         /* find the matching keyset, id 0 is the default entry */
209         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210                 if (ks->id == objectid)
211                         break;
212
213         lockdep_set_class_and_name(&eb->lock,
214                                    &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
224                 struct page *page, size_t pg_offset, u64 start, u64 len,
225                 int create)
226 {
227         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
228         struct extent_map_tree *em_tree = &inode->extent_tree;
229         struct extent_map *em;
230         int ret;
231
232         read_lock(&em_tree->lock);
233         em = lookup_extent_mapping(em_tree, start, len);
234         if (em) {
235                 em->bdev = fs_info->fs_devices->latest_bdev;
236                 read_unlock(&em_tree->lock);
237                 goto out;
238         }
239         read_unlock(&em_tree->lock);
240
241         em = alloc_extent_map();
242         if (!em) {
243                 em = ERR_PTR(-ENOMEM);
244                 goto out;
245         }
246         em->start = 0;
247         em->len = (u64)-1;
248         em->block_len = (u64)-1;
249         em->block_start = 0;
250         em->bdev = fs_info->fs_devices->latest_bdev;
251
252         write_lock(&em_tree->lock);
253         ret = add_extent_mapping(em_tree, em, 0);
254         if (ret == -EEXIST) {
255                 free_extent_map(em);
256                 em = lookup_extent_mapping(em_tree, start, len);
257                 if (!em)
258                         em = ERR_PTR(-EIO);
259         } else if (ret) {
260                 free_extent_map(em);
261                 em = ERR_PTR(ret);
262         }
263         write_unlock(&em_tree->lock);
264
265 out:
266         return em;
267 }
268
269 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
270 {
271         return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, u8 *result)
275 {
276         put_unaligned_le32(~crc, result);
277 }
278
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284                            struct extent_buffer *buf,
285                            int verify)
286 {
287         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288         char *result = NULL;
289         unsigned long len;
290         unsigned long cur_len;
291         unsigned long offset = BTRFS_CSUM_SIZE;
292         char *kaddr;
293         unsigned long map_start;
294         unsigned long map_len;
295         int err;
296         u32 crc = ~(u32)0;
297         unsigned long inline_result;
298
299         len = buf->len - offset;
300         while (len > 0) {
301                 err = map_private_extent_buffer(buf, offset, 32,
302                                         &kaddr, &map_start, &map_len);
303                 if (err)
304                         return err;
305                 cur_len = min(len, map_len - (offset - map_start));
306                 crc = btrfs_csum_data(kaddr + offset - map_start,
307                                       crc, cur_len);
308                 len -= cur_len;
309                 offset += cur_len;
310         }
311         if (csum_size > sizeof(inline_result)) {
312                 result = kzalloc(csum_size, GFP_NOFS);
313                 if (!result)
314                         return -ENOMEM;
315         } else {
316                 result = (char *)&inline_result;
317         }
318
319         btrfs_csum_final(crc, result);
320
321         if (verify) {
322                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323                         u32 val;
324                         u32 found = 0;
325                         memcpy(&found, result, csum_size);
326
327                         read_extent_buffer(buf, &val, 0, csum_size);
328                         btrfs_warn_rl(fs_info,
329                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
330                                 fs_info->sb->s_id, buf->start,
331                                 val, found, btrfs_header_level(buf));
332                         if (result != (char *)&inline_result)
333                                 kfree(result);
334                         return -EUCLEAN;
335                 }
336         } else {
337                 write_extent_buffer(buf, result, 0, csum_size);
338         }
339         if (result != (char *)&inline_result)
340                 kfree(result);
341         return 0;
342 }
343
344 /*
345  * we can't consider a given block up to date unless the transid of the
346  * block matches the transid in the parent node's pointer.  This is how we
347  * detect blocks that either didn't get written at all or got written
348  * in the wrong place.
349  */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351                                  struct extent_buffer *eb, u64 parent_transid,
352                                  int atomic)
353 {
354         struct extent_state *cached_state = NULL;
355         int ret;
356         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359                 return 0;
360
361         if (atomic)
362                 return -EAGAIN;
363
364         if (need_lock) {
365                 btrfs_tree_read_lock(eb);
366                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367         }
368
369         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370                          &cached_state);
371         if (extent_buffer_uptodate(eb) &&
372             btrfs_header_generation(eb) == parent_transid) {
373                 ret = 0;
374                 goto out;
375         }
376         btrfs_err_rl(eb->fs_info,
377                 "parent transid verify failed on %llu wanted %llu found %llu",
378                         eb->start,
379                         parent_transid, btrfs_header_generation(eb));
380         ret = 1;
381
382         /*
383          * Things reading via commit roots that don't have normal protection,
384          * like send, can have a really old block in cache that may point at a
385          * block that has been freed and re-allocated.  So don't clear uptodate
386          * if we find an eb that is under IO (dirty/writeback) because we could
387          * end up reading in the stale data and then writing it back out and
388          * making everybody very sad.
389          */
390         if (!extent_buffer_under_io(eb))
391                 clear_extent_buffer_uptodate(eb);
392 out:
393         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394                              &cached_state, GFP_NOFS);
395         if (need_lock)
396                 btrfs_tree_read_unlock_blocking(eb);
397         return ret;
398 }
399
400 /*
401  * Return 0 if the superblock checksum type matches the checksum value of that
402  * algorithm. Pass the raw disk superblock data.
403  */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405                                   char *raw_disk_sb)
406 {
407         struct btrfs_super_block *disk_sb =
408                 (struct btrfs_super_block *)raw_disk_sb;
409         u16 csum_type = btrfs_super_csum_type(disk_sb);
410         int ret = 0;
411
412         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413                 u32 crc = ~(u32)0;
414                 const int csum_size = sizeof(crc);
415                 char result[csum_size];
416
417                 /*
418                  * The super_block structure does not span the whole
419                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420                  * is filled with zeros and is included in the checksum.
421                  */
422                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424                 btrfs_csum_final(crc, result);
425
426                 if (memcmp(raw_disk_sb, result, csum_size))
427                         ret = 1;
428         }
429
430         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432                                 csum_type);
433                 ret = 1;
434         }
435
436         return ret;
437 }
438
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
444                                           struct extent_buffer *eb,
445                                           u64 parent_transid)
446 {
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455         while (1) {
456                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458                                                btree_get_extent, mirror_num);
459                 if (!ret) {
460                         if (!verify_parent_transid(io_tree, eb,
461                                                    parent_transid, 0))
462                                 break;
463                         else
464                                 ret = -EIO;
465                 }
466
467                 num_copies = btrfs_num_copies(fs_info,
468                                               eb->start, eb->len);
469                 if (num_copies == 1)
470                         break;
471
472                 if (!failed_mirror) {
473                         failed = 1;
474                         failed_mirror = eb->read_mirror;
475                 }
476
477                 mirror_num++;
478                 if (mirror_num == failed_mirror)
479                         mirror_num++;
480
481                 if (mirror_num > num_copies)
482                         break;
483         }
484
485         if (failed && !ret && failed_mirror)
486                 repair_eb_io_failure(fs_info, eb, failed_mirror);
487
488         return ret;
489 }
490
491 /*
492  * checksum a dirty tree block before IO.  This has extra checks to make sure
493  * we only fill in the checksum field in the first page of a multi-page block
494  */
495
496 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
497 {
498         u64 start = page_offset(page);
499         u64 found_start;
500         struct extent_buffer *eb;
501
502         eb = (struct extent_buffer *)page->private;
503         if (page != eb->pages[0])
504                 return 0;
505
506         found_start = btrfs_header_bytenr(eb);
507         /*
508          * Please do not consolidate these warnings into a single if.
509          * It is useful to know what went wrong.
510          */
511         if (WARN_ON(found_start != start))
512                 return -EUCLEAN;
513         if (WARN_ON(!PageUptodate(page)))
514                 return -EUCLEAN;
515
516         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
517                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
518
519         return csum_tree_block(fs_info, eb, 0);
520 }
521
522 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
523                                  struct extent_buffer *eb)
524 {
525         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
526         u8 fsid[BTRFS_FSID_SIZE];
527         int ret = 1;
528
529         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
530         while (fs_devices) {
531                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
532                         ret = 0;
533                         break;
534                 }
535                 fs_devices = fs_devices->seed;
536         }
537         return ret;
538 }
539
540 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
541                                       u64 phy_offset, struct page *page,
542                                       u64 start, u64 end, int mirror)
543 {
544         u64 found_start;
545         int found_level;
546         struct extent_buffer *eb;
547         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
548         struct btrfs_fs_info *fs_info = root->fs_info;
549         int ret = 0;
550         int reads_done;
551
552         if (!page->private)
553                 goto out;
554
555         eb = (struct extent_buffer *)page->private;
556
557         /* the pending IO might have been the only thing that kept this buffer
558          * in memory.  Make sure we have a ref for all this other checks
559          */
560         extent_buffer_get(eb);
561
562         reads_done = atomic_dec_and_test(&eb->io_pages);
563         if (!reads_done)
564                 goto err;
565
566         eb->read_mirror = mirror;
567         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
568                 ret = -EIO;
569                 goto err;
570         }
571
572         found_start = btrfs_header_bytenr(eb);
573         if (found_start != eb->start) {
574                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
575                              found_start, eb->start);
576                 ret = -EIO;
577                 goto err;
578         }
579         if (check_tree_block_fsid(fs_info, eb)) {
580                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
581                              eb->start);
582                 ret = -EIO;
583                 goto err;
584         }
585         found_level = btrfs_header_level(eb);
586         if (found_level >= BTRFS_MAX_LEVEL) {
587                 btrfs_err(fs_info, "bad tree block level %d",
588                           (int)btrfs_header_level(eb));
589                 ret = -EIO;
590                 goto err;
591         }
592
593         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
594                                        eb, found_level);
595
596         ret = csum_tree_block(fs_info, eb, 1);
597         if (ret)
598                 goto err;
599
600         /*
601          * If this is a leaf block and it is corrupt, set the corrupt bit so
602          * that we don't try and read the other copies of this block, just
603          * return -EIO.
604          */
605         if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
606                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
607                 ret = -EIO;
608         }
609
610         if (found_level > 0 && btrfs_check_node(root, eb))
611                 ret = -EIO;
612
613         if (!ret)
614                 set_extent_buffer_uptodate(eb);
615 err:
616         if (reads_done &&
617             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
618                 btree_readahead_hook(eb, ret);
619
620         if (ret) {
621                 /*
622                  * our io error hook is going to dec the io pages
623                  * again, we have to make sure it has something
624                  * to decrement
625                  */
626                 atomic_inc(&eb->io_pages);
627                 clear_extent_buffer_uptodate(eb);
628         }
629         free_extent_buffer(eb);
630 out:
631         return ret;
632 }
633
634 static int btree_io_failed_hook(struct page *page, int failed_mirror)
635 {
636         struct extent_buffer *eb;
637
638         eb = (struct extent_buffer *)page->private;
639         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
640         eb->read_mirror = failed_mirror;
641         atomic_dec(&eb->io_pages);
642         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
643                 btree_readahead_hook(eb, -EIO);
644         return -EIO;    /* we fixed nothing */
645 }
646
647 static void end_workqueue_bio(struct bio *bio)
648 {
649         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
650         struct btrfs_fs_info *fs_info;
651         struct btrfs_workqueue *wq;
652         btrfs_work_func_t func;
653
654         fs_info = end_io_wq->info;
655         end_io_wq->status = bio->bi_status;
656
657         if (bio_op(bio) == REQ_OP_WRITE) {
658                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
659                         wq = fs_info->endio_meta_write_workers;
660                         func = btrfs_endio_meta_write_helper;
661                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
662                         wq = fs_info->endio_freespace_worker;
663                         func = btrfs_freespace_write_helper;
664                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
665                         wq = fs_info->endio_raid56_workers;
666                         func = btrfs_endio_raid56_helper;
667                 } else {
668                         wq = fs_info->endio_write_workers;
669                         func = btrfs_endio_write_helper;
670                 }
671         } else {
672                 if (unlikely(end_io_wq->metadata ==
673                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
674                         wq = fs_info->endio_repair_workers;
675                         func = btrfs_endio_repair_helper;
676                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
677                         wq = fs_info->endio_raid56_workers;
678                         func = btrfs_endio_raid56_helper;
679                 } else if (end_io_wq->metadata) {
680                         wq = fs_info->endio_meta_workers;
681                         func = btrfs_endio_meta_helper;
682                 } else {
683                         wq = fs_info->endio_workers;
684                         func = btrfs_endio_helper;
685                 }
686         }
687
688         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
689         btrfs_queue_work(wq, &end_io_wq->work);
690 }
691
692 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
693                         enum btrfs_wq_endio_type metadata)
694 {
695         struct btrfs_end_io_wq *end_io_wq;
696
697         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
698         if (!end_io_wq)
699                 return BLK_STS_RESOURCE;
700
701         end_io_wq->private = bio->bi_private;
702         end_io_wq->end_io = bio->bi_end_io;
703         end_io_wq->info = info;
704         end_io_wq->status = 0;
705         end_io_wq->bio = bio;
706         end_io_wq->metadata = metadata;
707
708         bio->bi_private = end_io_wq;
709         bio->bi_end_io = end_workqueue_bio;
710         return 0;
711 }
712
713 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
714 {
715         unsigned long limit = min_t(unsigned long,
716                                     info->thread_pool_size,
717                                     info->fs_devices->open_devices);
718         return 256 * limit;
719 }
720
721 static void run_one_async_start(struct btrfs_work *work)
722 {
723         struct async_submit_bio *async;
724         blk_status_t ret;
725
726         async = container_of(work, struct  async_submit_bio, work);
727         ret = async->submit_bio_start(async->private_data, async->bio,
728                                       async->mirror_num, async->bio_flags,
729                                       async->bio_offset);
730         if (ret)
731                 async->status = ret;
732 }
733
734 static void run_one_async_done(struct btrfs_work *work)
735 {
736         struct btrfs_fs_info *fs_info;
737         struct async_submit_bio *async;
738         int limit;
739
740         async = container_of(work, struct  async_submit_bio, work);
741         fs_info = async->fs_info;
742
743         limit = btrfs_async_submit_limit(fs_info);
744         limit = limit * 2 / 3;
745
746         /*
747          * atomic_dec_return implies a barrier for waitqueue_active
748          */
749         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
750             waitqueue_active(&fs_info->async_submit_wait))
751                 wake_up(&fs_info->async_submit_wait);
752
753         /* If an error occurred we just want to clean up the bio and move on */
754         if (async->status) {
755                 async->bio->bi_status = async->status;
756                 bio_endio(async->bio);
757                 return;
758         }
759
760         async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
761                                async->bio_flags, async->bio_offset);
762 }
763
764 static void run_one_async_free(struct btrfs_work *work)
765 {
766         struct async_submit_bio *async;
767
768         async = container_of(work, struct  async_submit_bio, work);
769         kfree(async);
770 }
771
772 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
773                                  int mirror_num, unsigned long bio_flags,
774                                  u64 bio_offset, void *private_data,
775                                  extent_submit_bio_hook_t *submit_bio_start,
776                                  extent_submit_bio_hook_t *submit_bio_done)
777 {
778         struct async_submit_bio *async;
779
780         async = kmalloc(sizeof(*async), GFP_NOFS);
781         if (!async)
782                 return BLK_STS_RESOURCE;
783
784         async->private_data = private_data;
785         async->fs_info = fs_info;
786         async->bio = bio;
787         async->mirror_num = mirror_num;
788         async->submit_bio_start = submit_bio_start;
789         async->submit_bio_done = submit_bio_done;
790
791         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
792                         run_one_async_done, run_one_async_free);
793
794         async->bio_flags = bio_flags;
795         async->bio_offset = bio_offset;
796
797         async->status = 0;
798
799         atomic_inc(&fs_info->nr_async_submits);
800
801         if (op_is_sync(bio->bi_opf))
802                 btrfs_set_work_high_priority(&async->work);
803
804         btrfs_queue_work(fs_info->workers, &async->work);
805
806         while (atomic_read(&fs_info->async_submit_draining) &&
807               atomic_read(&fs_info->nr_async_submits)) {
808                 wait_event(fs_info->async_submit_wait,
809                            (atomic_read(&fs_info->nr_async_submits) == 0));
810         }
811
812         return 0;
813 }
814
815 static blk_status_t btree_csum_one_bio(struct bio *bio)
816 {
817         struct bio_vec *bvec;
818         struct btrfs_root *root;
819         int i, ret = 0;
820
821         ASSERT(!bio_flagged(bio, BIO_CLONED));
822         bio_for_each_segment_all(bvec, bio, i) {
823                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
824                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
825                 if (ret)
826                         break;
827         }
828
829         return errno_to_blk_status(ret);
830 }
831
832 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
833                                              int mirror_num, unsigned long bio_flags,
834                                              u64 bio_offset)
835 {
836         /*
837          * when we're called for a write, we're already in the async
838          * submission context.  Just jump into btrfs_map_bio
839          */
840         return btree_csum_one_bio(bio);
841 }
842
843 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
844                                             int mirror_num, unsigned long bio_flags,
845                                             u64 bio_offset)
846 {
847         struct inode *inode = private_data;
848         blk_status_t ret;
849
850         /*
851          * when we're called for a write, we're already in the async
852          * submission context.  Just jump into btrfs_map_bio
853          */
854         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
855         if (ret) {
856                 bio->bi_status = ret;
857                 bio_endio(bio);
858         }
859         return ret;
860 }
861
862 static int check_async_write(unsigned long bio_flags)
863 {
864         if (bio_flags & EXTENT_BIO_TREE_LOG)
865                 return 0;
866 #ifdef CONFIG_X86
867         if (static_cpu_has(X86_FEATURE_XMM4_2))
868                 return 0;
869 #endif
870         return 1;
871 }
872
873 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
874                                           int mirror_num, unsigned long bio_flags,
875                                           u64 bio_offset)
876 {
877         struct inode *inode = private_data;
878         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
879         int async = check_async_write(bio_flags);
880         blk_status_t ret;
881
882         if (bio_op(bio) != REQ_OP_WRITE) {
883                 /*
884                  * called for a read, do the setup so that checksum validation
885                  * can happen in the async kernel threads
886                  */
887                 ret = btrfs_bio_wq_end_io(fs_info, bio,
888                                           BTRFS_WQ_ENDIO_METADATA);
889                 if (ret)
890                         goto out_w_error;
891                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
892         } else if (!async) {
893                 ret = btree_csum_one_bio(bio);
894                 if (ret)
895                         goto out_w_error;
896                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
897         } else {
898                 /*
899                  * kthread helpers are used to submit writes so that
900                  * checksumming can happen in parallel across all CPUs
901                  */
902                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
903                                           bio_offset, private_data,
904                                           __btree_submit_bio_start,
905                                           __btree_submit_bio_done);
906         }
907
908         if (ret)
909                 goto out_w_error;
910         return 0;
911
912 out_w_error:
913         bio->bi_status = ret;
914         bio_endio(bio);
915         return ret;
916 }
917
918 #ifdef CONFIG_MIGRATION
919 static int btree_migratepage(struct address_space *mapping,
920                         struct page *newpage, struct page *page,
921                         enum migrate_mode mode)
922 {
923         /*
924          * we can't safely write a btree page from here,
925          * we haven't done the locking hook
926          */
927         if (PageDirty(page))
928                 return -EAGAIN;
929         /*
930          * Buffers may be managed in a filesystem specific way.
931          * We must have no buffers or drop them.
932          */
933         if (page_has_private(page) &&
934             !try_to_release_page(page, GFP_KERNEL))
935                 return -EAGAIN;
936         return migrate_page(mapping, newpage, page, mode);
937 }
938 #endif
939
940
941 static int btree_writepages(struct address_space *mapping,
942                             struct writeback_control *wbc)
943 {
944         struct btrfs_fs_info *fs_info;
945         int ret;
946
947         if (wbc->sync_mode == WB_SYNC_NONE) {
948
949                 if (wbc->for_kupdate)
950                         return 0;
951
952                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
953                 /* this is a bit racy, but that's ok */
954                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
955                                              BTRFS_DIRTY_METADATA_THRESH,
956                                              fs_info->dirty_metadata_batch);
957                 if (ret < 0)
958                         return 0;
959         }
960         return btree_write_cache_pages(mapping, wbc);
961 }
962
963 static int btree_readpage(struct file *file, struct page *page)
964 {
965         struct extent_io_tree *tree;
966         tree = &BTRFS_I(page->mapping->host)->io_tree;
967         return extent_read_full_page(tree, page, btree_get_extent, 0);
968 }
969
970 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
971 {
972         if (PageWriteback(page) || PageDirty(page))
973                 return 0;
974
975         return try_release_extent_buffer(page);
976 }
977
978 static void btree_invalidatepage(struct page *page, unsigned int offset,
979                                  unsigned int length)
980 {
981         struct extent_io_tree *tree;
982         tree = &BTRFS_I(page->mapping->host)->io_tree;
983         extent_invalidatepage(tree, page, offset);
984         btree_releasepage(page, GFP_NOFS);
985         if (PagePrivate(page)) {
986                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
987                            "page private not zero on page %llu",
988                            (unsigned long long)page_offset(page));
989                 ClearPagePrivate(page);
990                 set_page_private(page, 0);
991                 put_page(page);
992         }
993 }
994
995 static int btree_set_page_dirty(struct page *page)
996 {
997 #ifdef DEBUG
998         struct extent_buffer *eb;
999
1000         BUG_ON(!PagePrivate(page));
1001         eb = (struct extent_buffer *)page->private;
1002         BUG_ON(!eb);
1003         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1004         BUG_ON(!atomic_read(&eb->refs));
1005         btrfs_assert_tree_locked(eb);
1006 #endif
1007         return __set_page_dirty_nobuffers(page);
1008 }
1009
1010 static const struct address_space_operations btree_aops = {
1011         .readpage       = btree_readpage,
1012         .writepages     = btree_writepages,
1013         .releasepage    = btree_releasepage,
1014         .invalidatepage = btree_invalidatepage,
1015 #ifdef CONFIG_MIGRATION
1016         .migratepage    = btree_migratepage,
1017 #endif
1018         .set_page_dirty = btree_set_page_dirty,
1019 };
1020
1021 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1022 {
1023         struct extent_buffer *buf = NULL;
1024         struct inode *btree_inode = fs_info->btree_inode;
1025
1026         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1027         if (IS_ERR(buf))
1028                 return;
1029         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1030                                  buf, WAIT_NONE, btree_get_extent, 0);
1031         free_extent_buffer(buf);
1032 }
1033
1034 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1035                          int mirror_num, struct extent_buffer **eb)
1036 {
1037         struct extent_buffer *buf = NULL;
1038         struct inode *btree_inode = fs_info->btree_inode;
1039         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1040         int ret;
1041
1042         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1043         if (IS_ERR(buf))
1044                 return 0;
1045
1046         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1047
1048         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1049                                        btree_get_extent, mirror_num);
1050         if (ret) {
1051                 free_extent_buffer(buf);
1052                 return ret;
1053         }
1054
1055         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1056                 free_extent_buffer(buf);
1057                 return -EIO;
1058         } else if (extent_buffer_uptodate(buf)) {
1059                 *eb = buf;
1060         } else {
1061                 free_extent_buffer(buf);
1062         }
1063         return 0;
1064 }
1065
1066 struct extent_buffer *btrfs_find_create_tree_block(
1067                                                 struct btrfs_fs_info *fs_info,
1068                                                 u64 bytenr)
1069 {
1070         if (btrfs_is_testing(fs_info))
1071                 return alloc_test_extent_buffer(fs_info, bytenr);
1072         return alloc_extent_buffer(fs_info, bytenr);
1073 }
1074
1075
1076 int btrfs_write_tree_block(struct extent_buffer *buf)
1077 {
1078         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1079                                         buf->start + buf->len - 1);
1080 }
1081
1082 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1083 {
1084         filemap_fdatawait_range(buf->pages[0]->mapping,
1085                                 buf->start, buf->start + buf->len - 1);
1086 }
1087
1088 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1089                                       u64 parent_transid)
1090 {
1091         struct extent_buffer *buf = NULL;
1092         int ret;
1093
1094         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1095         if (IS_ERR(buf))
1096                 return buf;
1097
1098         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1099         if (ret) {
1100                 free_extent_buffer(buf);
1101                 return ERR_PTR(ret);
1102         }
1103         return buf;
1104
1105 }
1106
1107 void clean_tree_block(struct btrfs_fs_info *fs_info,
1108                       struct extent_buffer *buf)
1109 {
1110         if (btrfs_header_generation(buf) ==
1111             fs_info->running_transaction->transid) {
1112                 btrfs_assert_tree_locked(buf);
1113
1114                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1115                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1116                                                  -buf->len,
1117                                                  fs_info->dirty_metadata_batch);
1118                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1119                         btrfs_set_lock_blocking(buf);
1120                         clear_extent_buffer_dirty(buf);
1121                 }
1122         }
1123 }
1124
1125 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1126 {
1127         struct btrfs_subvolume_writers *writers;
1128         int ret;
1129
1130         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1131         if (!writers)
1132                 return ERR_PTR(-ENOMEM);
1133
1134         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1135         if (ret < 0) {
1136                 kfree(writers);
1137                 return ERR_PTR(ret);
1138         }
1139
1140         init_waitqueue_head(&writers->wait);
1141         return writers;
1142 }
1143
1144 static void
1145 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1146 {
1147         percpu_counter_destroy(&writers->counter);
1148         kfree(writers);
1149 }
1150
1151 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1152                          u64 objectid)
1153 {
1154         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1155         root->node = NULL;
1156         root->commit_root = NULL;
1157         root->state = 0;
1158         root->orphan_cleanup_state = 0;
1159
1160         root->objectid = objectid;
1161         root->last_trans = 0;
1162         root->highest_objectid = 0;
1163         root->nr_delalloc_inodes = 0;
1164         root->nr_ordered_extents = 0;
1165         root->name = NULL;
1166         root->inode_tree = RB_ROOT;
1167         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1168         root->block_rsv = NULL;
1169         root->orphan_block_rsv = NULL;
1170
1171         INIT_LIST_HEAD(&root->dirty_list);
1172         INIT_LIST_HEAD(&root->root_list);
1173         INIT_LIST_HEAD(&root->delalloc_inodes);
1174         INIT_LIST_HEAD(&root->delalloc_root);
1175         INIT_LIST_HEAD(&root->ordered_extents);
1176         INIT_LIST_HEAD(&root->ordered_root);
1177         INIT_LIST_HEAD(&root->logged_list[0]);
1178         INIT_LIST_HEAD(&root->logged_list[1]);
1179         spin_lock_init(&root->orphan_lock);
1180         spin_lock_init(&root->inode_lock);
1181         spin_lock_init(&root->delalloc_lock);
1182         spin_lock_init(&root->ordered_extent_lock);
1183         spin_lock_init(&root->accounting_lock);
1184         spin_lock_init(&root->log_extents_lock[0]);
1185         spin_lock_init(&root->log_extents_lock[1]);
1186         mutex_init(&root->objectid_mutex);
1187         mutex_init(&root->log_mutex);
1188         mutex_init(&root->ordered_extent_mutex);
1189         mutex_init(&root->delalloc_mutex);
1190         init_waitqueue_head(&root->log_writer_wait);
1191         init_waitqueue_head(&root->log_commit_wait[0]);
1192         init_waitqueue_head(&root->log_commit_wait[1]);
1193         INIT_LIST_HEAD(&root->log_ctxs[0]);
1194         INIT_LIST_HEAD(&root->log_ctxs[1]);
1195         atomic_set(&root->log_commit[0], 0);
1196         atomic_set(&root->log_commit[1], 0);
1197         atomic_set(&root->log_writers, 0);
1198         atomic_set(&root->log_batch, 0);
1199         atomic_set(&root->orphan_inodes, 0);
1200         refcount_set(&root->refs, 1);
1201         atomic_set(&root->will_be_snapshotted, 0);
1202         atomic64_set(&root->qgroup_meta_rsv, 0);
1203         root->log_transid = 0;
1204         root->log_transid_committed = -1;
1205         root->last_log_commit = 0;
1206         if (!dummy)
1207                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1208
1209         memset(&root->root_key, 0, sizeof(root->root_key));
1210         memset(&root->root_item, 0, sizeof(root->root_item));
1211         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1212         if (!dummy)
1213                 root->defrag_trans_start = fs_info->generation;
1214         else
1215                 root->defrag_trans_start = 0;
1216         root->root_key.objectid = objectid;
1217         root->anon_dev = 0;
1218
1219         spin_lock_init(&root->root_item_lock);
1220 }
1221
1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1223                 gfp_t flags)
1224 {
1225         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1226         if (root)
1227                 root->fs_info = fs_info;
1228         return root;
1229 }
1230
1231 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1232 /* Should only be used by the testing infrastructure */
1233 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1234 {
1235         struct btrfs_root *root;
1236
1237         if (!fs_info)
1238                 return ERR_PTR(-EINVAL);
1239
1240         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1241         if (!root)
1242                 return ERR_PTR(-ENOMEM);
1243
1244         /* We don't use the stripesize in selftest, set it as sectorsize */
1245         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1246         root->alloc_bytenr = 0;
1247
1248         return root;
1249 }
1250 #endif
1251
1252 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253                                      struct btrfs_fs_info *fs_info,
1254                                      u64 objectid)
1255 {
1256         struct extent_buffer *leaf;
1257         struct btrfs_root *tree_root = fs_info->tree_root;
1258         struct btrfs_root *root;
1259         struct btrfs_key key;
1260         int ret = 0;
1261         uuid_le uuid;
1262
1263         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1264         if (!root)
1265                 return ERR_PTR(-ENOMEM);
1266
1267         __setup_root(root, fs_info, objectid);
1268         root->root_key.objectid = objectid;
1269         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270         root->root_key.offset = 0;
1271
1272         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1273         if (IS_ERR(leaf)) {
1274                 ret = PTR_ERR(leaf);
1275                 leaf = NULL;
1276                 goto fail;
1277         }
1278
1279         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1280         btrfs_set_header_bytenr(leaf, leaf->start);
1281         btrfs_set_header_generation(leaf, trans->transid);
1282         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1283         btrfs_set_header_owner(leaf, objectid);
1284         root->node = leaf;
1285
1286         write_extent_buffer_fsid(leaf, fs_info->fsid);
1287         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1288         btrfs_mark_buffer_dirty(leaf);
1289
1290         root->commit_root = btrfs_root_node(root);
1291         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1292
1293         root->root_item.flags = 0;
1294         root->root_item.byte_limit = 0;
1295         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1296         btrfs_set_root_generation(&root->root_item, trans->transid);
1297         btrfs_set_root_level(&root->root_item, 0);
1298         btrfs_set_root_refs(&root->root_item, 1);
1299         btrfs_set_root_used(&root->root_item, leaf->len);
1300         btrfs_set_root_last_snapshot(&root->root_item, 0);
1301         btrfs_set_root_dirid(&root->root_item, 0);
1302         uuid_le_gen(&uuid);
1303         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1304         root->root_item.drop_level = 0;
1305
1306         key.objectid = objectid;
1307         key.type = BTRFS_ROOT_ITEM_KEY;
1308         key.offset = 0;
1309         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1310         if (ret)
1311                 goto fail;
1312
1313         btrfs_tree_unlock(leaf);
1314
1315         return root;
1316
1317 fail:
1318         if (leaf) {
1319                 btrfs_tree_unlock(leaf);
1320                 free_extent_buffer(root->commit_root);
1321                 free_extent_buffer(leaf);
1322         }
1323         kfree(root);
1324
1325         return ERR_PTR(ret);
1326 }
1327
1328 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329                                          struct btrfs_fs_info *fs_info)
1330 {
1331         struct btrfs_root *root;
1332         struct extent_buffer *leaf;
1333
1334         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1335         if (!root)
1336                 return ERR_PTR(-ENOMEM);
1337
1338         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1339
1340         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1341         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1342         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1343
1344         /*
1345          * DON'T set REF_COWS for log trees
1346          *
1347          * log trees do not get reference counted because they go away
1348          * before a real commit is actually done.  They do store pointers
1349          * to file data extents, and those reference counts still get
1350          * updated (along with back refs to the log tree).
1351          */
1352
1353         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1354                         NULL, 0, 0, 0);
1355         if (IS_ERR(leaf)) {
1356                 kfree(root);
1357                 return ERR_CAST(leaf);
1358         }
1359
1360         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1361         btrfs_set_header_bytenr(leaf, leaf->start);
1362         btrfs_set_header_generation(leaf, trans->transid);
1363         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1365         root->node = leaf;
1366
1367         write_extent_buffer_fsid(root->node, fs_info->fsid);
1368         btrfs_mark_buffer_dirty(root->node);
1369         btrfs_tree_unlock(root->node);
1370         return root;
1371 }
1372
1373 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1374                              struct btrfs_fs_info *fs_info)
1375 {
1376         struct btrfs_root *log_root;
1377
1378         log_root = alloc_log_tree(trans, fs_info);
1379         if (IS_ERR(log_root))
1380                 return PTR_ERR(log_root);
1381         WARN_ON(fs_info->log_root_tree);
1382         fs_info->log_root_tree = log_root;
1383         return 0;
1384 }
1385
1386 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1387                        struct btrfs_root *root)
1388 {
1389         struct btrfs_fs_info *fs_info = root->fs_info;
1390         struct btrfs_root *log_root;
1391         struct btrfs_inode_item *inode_item;
1392
1393         log_root = alloc_log_tree(trans, fs_info);
1394         if (IS_ERR(log_root))
1395                 return PTR_ERR(log_root);
1396
1397         log_root->last_trans = trans->transid;
1398         log_root->root_key.offset = root->root_key.objectid;
1399
1400         inode_item = &log_root->root_item.inode;
1401         btrfs_set_stack_inode_generation(inode_item, 1);
1402         btrfs_set_stack_inode_size(inode_item, 3);
1403         btrfs_set_stack_inode_nlink(inode_item, 1);
1404         btrfs_set_stack_inode_nbytes(inode_item,
1405                                      fs_info->nodesize);
1406         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1407
1408         btrfs_set_root_node(&log_root->root_item, log_root->node);
1409
1410         WARN_ON(root->log_root);
1411         root->log_root = log_root;
1412         root->log_transid = 0;
1413         root->log_transid_committed = -1;
1414         root->last_log_commit = 0;
1415         return 0;
1416 }
1417
1418 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1419                                                struct btrfs_key *key)
1420 {
1421         struct btrfs_root *root;
1422         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1423         struct btrfs_path *path;
1424         u64 generation;
1425         int ret;
1426
1427         path = btrfs_alloc_path();
1428         if (!path)
1429                 return ERR_PTR(-ENOMEM);
1430
1431         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1432         if (!root) {
1433                 ret = -ENOMEM;
1434                 goto alloc_fail;
1435         }
1436
1437         __setup_root(root, fs_info, key->objectid);
1438
1439         ret = btrfs_find_root(tree_root, key, path,
1440                               &root->root_item, &root->root_key);
1441         if (ret) {
1442                 if (ret > 0)
1443                         ret = -ENOENT;
1444                 goto find_fail;
1445         }
1446
1447         generation = btrfs_root_generation(&root->root_item);
1448         root->node = read_tree_block(fs_info,
1449                                      btrfs_root_bytenr(&root->root_item),
1450                                      generation);
1451         if (IS_ERR(root->node)) {
1452                 ret = PTR_ERR(root->node);
1453                 goto find_fail;
1454         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1455                 ret = -EIO;
1456                 free_extent_buffer(root->node);
1457                 goto find_fail;
1458         }
1459         root->commit_root = btrfs_root_node(root);
1460 out:
1461         btrfs_free_path(path);
1462         return root;
1463
1464 find_fail:
1465         kfree(root);
1466 alloc_fail:
1467         root = ERR_PTR(ret);
1468         goto out;
1469 }
1470
1471 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1472                                       struct btrfs_key *location)
1473 {
1474         struct btrfs_root *root;
1475
1476         root = btrfs_read_tree_root(tree_root, location);
1477         if (IS_ERR(root))
1478                 return root;
1479
1480         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1481                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1482                 btrfs_check_and_init_root_item(&root->root_item);
1483         }
1484
1485         return root;
1486 }
1487
1488 int btrfs_init_fs_root(struct btrfs_root *root)
1489 {
1490         int ret;
1491         struct btrfs_subvolume_writers *writers;
1492
1493         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1494         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1495                                         GFP_NOFS);
1496         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1497                 ret = -ENOMEM;
1498                 goto fail;
1499         }
1500
1501         writers = btrfs_alloc_subvolume_writers();
1502         if (IS_ERR(writers)) {
1503                 ret = PTR_ERR(writers);
1504                 goto fail;
1505         }
1506         root->subv_writers = writers;
1507
1508         btrfs_init_free_ino_ctl(root);
1509         spin_lock_init(&root->ino_cache_lock);
1510         init_waitqueue_head(&root->ino_cache_wait);
1511
1512         ret = get_anon_bdev(&root->anon_dev);
1513         if (ret)
1514                 goto fail;
1515
1516         mutex_lock(&root->objectid_mutex);
1517         ret = btrfs_find_highest_objectid(root,
1518                                         &root->highest_objectid);
1519         if (ret) {
1520                 mutex_unlock(&root->objectid_mutex);
1521                 goto fail;
1522         }
1523
1524         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1525
1526         mutex_unlock(&root->objectid_mutex);
1527
1528         return 0;
1529 fail:
1530         /* the caller is responsible to call free_fs_root */
1531         return ret;
1532 }
1533
1534 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1535                                         u64 root_id)
1536 {
1537         struct btrfs_root *root;
1538
1539         spin_lock(&fs_info->fs_roots_radix_lock);
1540         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1541                                  (unsigned long)root_id);
1542         spin_unlock(&fs_info->fs_roots_radix_lock);
1543         return root;
1544 }
1545
1546 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1547                          struct btrfs_root *root)
1548 {
1549         int ret;
1550
1551         ret = radix_tree_preload(GFP_NOFS);
1552         if (ret)
1553                 return ret;
1554
1555         spin_lock(&fs_info->fs_roots_radix_lock);
1556         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1557                                 (unsigned long)root->root_key.objectid,
1558                                 root);
1559         if (ret == 0)
1560                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1561         spin_unlock(&fs_info->fs_roots_radix_lock);
1562         radix_tree_preload_end();
1563
1564         return ret;
1565 }
1566
1567 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1568                                      struct btrfs_key *location,
1569                                      bool check_ref)
1570 {
1571         struct btrfs_root *root;
1572         struct btrfs_path *path;
1573         struct btrfs_key key;
1574         int ret;
1575
1576         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1577                 return fs_info->tree_root;
1578         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579                 return fs_info->extent_root;
1580         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581                 return fs_info->chunk_root;
1582         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1583                 return fs_info->dev_root;
1584         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1585                 return fs_info->csum_root;
1586         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587                 return fs_info->quota_root ? fs_info->quota_root :
1588                                              ERR_PTR(-ENOENT);
1589         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1590                 return fs_info->uuid_root ? fs_info->uuid_root :
1591                                             ERR_PTR(-ENOENT);
1592         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593                 return fs_info->free_space_root ? fs_info->free_space_root :
1594                                                   ERR_PTR(-ENOENT);
1595 again:
1596         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1597         if (root) {
1598                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1599                         return ERR_PTR(-ENOENT);
1600                 return root;
1601         }
1602
1603         root = btrfs_read_fs_root(fs_info->tree_root, location);
1604         if (IS_ERR(root))
1605                 return root;
1606
1607         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1608                 ret = -ENOENT;
1609                 goto fail;
1610         }
1611
1612         ret = btrfs_init_fs_root(root);
1613         if (ret)
1614                 goto fail;
1615
1616         path = btrfs_alloc_path();
1617         if (!path) {
1618                 ret = -ENOMEM;
1619                 goto fail;
1620         }
1621         key.objectid = BTRFS_ORPHAN_OBJECTID;
1622         key.type = BTRFS_ORPHAN_ITEM_KEY;
1623         key.offset = location->objectid;
1624
1625         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1626         btrfs_free_path(path);
1627         if (ret < 0)
1628                 goto fail;
1629         if (ret == 0)
1630                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1631
1632         ret = btrfs_insert_fs_root(fs_info, root);
1633         if (ret) {
1634                 if (ret == -EEXIST) {
1635                         free_fs_root(root);
1636                         goto again;
1637                 }
1638                 goto fail;
1639         }
1640         return root;
1641 fail:
1642         free_fs_root(root);
1643         return ERR_PTR(ret);
1644 }
1645
1646 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1647 {
1648         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1649         int ret = 0;
1650         struct btrfs_device *device;
1651         struct backing_dev_info *bdi;
1652
1653         rcu_read_lock();
1654         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1655                 if (!device->bdev)
1656                         continue;
1657                 bdi = device->bdev->bd_bdi;
1658                 if (bdi_congested(bdi, bdi_bits)) {
1659                         ret = 1;
1660                         break;
1661                 }
1662         }
1663         rcu_read_unlock();
1664         return ret;
1665 }
1666
1667 /*
1668  * called by the kthread helper functions to finally call the bio end_io
1669  * functions.  This is where read checksum verification actually happens
1670  */
1671 static void end_workqueue_fn(struct btrfs_work *work)
1672 {
1673         struct bio *bio;
1674         struct btrfs_end_io_wq *end_io_wq;
1675
1676         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1677         bio = end_io_wq->bio;
1678
1679         bio->bi_status = end_io_wq->status;
1680         bio->bi_private = end_io_wq->private;
1681         bio->bi_end_io = end_io_wq->end_io;
1682         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1683         bio_endio(bio);
1684 }
1685
1686 static int cleaner_kthread(void *arg)
1687 {
1688         struct btrfs_root *root = arg;
1689         struct btrfs_fs_info *fs_info = root->fs_info;
1690         int again;
1691         struct btrfs_trans_handle *trans;
1692
1693         do {
1694                 again = 0;
1695
1696                 /* Make the cleaner go to sleep early. */
1697                 if (btrfs_need_cleaner_sleep(fs_info))
1698                         goto sleep;
1699
1700                 /*
1701                  * Do not do anything if we might cause open_ctree() to block
1702                  * before we have finished mounting the filesystem.
1703                  */
1704                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1705                         goto sleep;
1706
1707                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1708                         goto sleep;
1709
1710                 /*
1711                  * Avoid the problem that we change the status of the fs
1712                  * during the above check and trylock.
1713                  */
1714                 if (btrfs_need_cleaner_sleep(fs_info)) {
1715                         mutex_unlock(&fs_info->cleaner_mutex);
1716                         goto sleep;
1717                 }
1718
1719                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1720                 btrfs_run_delayed_iputs(fs_info);
1721                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1722
1723                 again = btrfs_clean_one_deleted_snapshot(root);
1724                 mutex_unlock(&fs_info->cleaner_mutex);
1725
1726                 /*
1727                  * The defragger has dealt with the R/O remount and umount,
1728                  * needn't do anything special here.
1729                  */
1730                 btrfs_run_defrag_inodes(fs_info);
1731
1732                 /*
1733                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1734                  * with relocation (btrfs_relocate_chunk) and relocation
1735                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1736                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1737                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1738                  * unused block groups.
1739                  */
1740                 btrfs_delete_unused_bgs(fs_info);
1741 sleep:
1742                 if (!again) {
1743                         set_current_state(TASK_INTERRUPTIBLE);
1744                         if (!kthread_should_stop())
1745                                 schedule();
1746                         __set_current_state(TASK_RUNNING);
1747                 }
1748         } while (!kthread_should_stop());
1749
1750         /*
1751          * Transaction kthread is stopped before us and wakes us up.
1752          * However we might have started a new transaction and COWed some
1753          * tree blocks when deleting unused block groups for example. So
1754          * make sure we commit the transaction we started to have a clean
1755          * shutdown when evicting the btree inode - if it has dirty pages
1756          * when we do the final iput() on it, eviction will trigger a
1757          * writeback for it which will fail with null pointer dereferences
1758          * since work queues and other resources were already released and
1759          * destroyed by the time the iput/eviction/writeback is made.
1760          */
1761         trans = btrfs_attach_transaction(root);
1762         if (IS_ERR(trans)) {
1763                 if (PTR_ERR(trans) != -ENOENT)
1764                         btrfs_err(fs_info,
1765                                   "cleaner transaction attach returned %ld",
1766                                   PTR_ERR(trans));
1767         } else {
1768                 int ret;
1769
1770                 ret = btrfs_commit_transaction(trans);
1771                 if (ret)
1772                         btrfs_err(fs_info,
1773                                   "cleaner open transaction commit returned %d",
1774                                   ret);
1775         }
1776
1777         return 0;
1778 }
1779
1780 static int transaction_kthread(void *arg)
1781 {
1782         struct btrfs_root *root = arg;
1783         struct btrfs_fs_info *fs_info = root->fs_info;
1784         struct btrfs_trans_handle *trans;
1785         struct btrfs_transaction *cur;
1786         u64 transid;
1787         unsigned long now;
1788         unsigned long delay;
1789         bool cannot_commit;
1790
1791         do {
1792                 cannot_commit = false;
1793                 delay = HZ * fs_info->commit_interval;
1794                 mutex_lock(&fs_info->transaction_kthread_mutex);
1795
1796                 spin_lock(&fs_info->trans_lock);
1797                 cur = fs_info->running_transaction;
1798                 if (!cur) {
1799                         spin_unlock(&fs_info->trans_lock);
1800                         goto sleep;
1801                 }
1802
1803                 now = get_seconds();
1804                 if (cur->state < TRANS_STATE_BLOCKED &&
1805                     (now < cur->start_time ||
1806                      now - cur->start_time < fs_info->commit_interval)) {
1807                         spin_unlock(&fs_info->trans_lock);
1808                         delay = HZ * 5;
1809                         goto sleep;
1810                 }
1811                 transid = cur->transid;
1812                 spin_unlock(&fs_info->trans_lock);
1813
1814                 /* If the file system is aborted, this will always fail. */
1815                 trans = btrfs_attach_transaction(root);
1816                 if (IS_ERR(trans)) {
1817                         if (PTR_ERR(trans) != -ENOENT)
1818                                 cannot_commit = true;
1819                         goto sleep;
1820                 }
1821                 if (transid == trans->transid) {
1822                         btrfs_commit_transaction(trans);
1823                 } else {
1824                         btrfs_end_transaction(trans);
1825                 }
1826 sleep:
1827                 wake_up_process(fs_info->cleaner_kthread);
1828                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1829
1830                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1831                                       &fs_info->fs_state)))
1832                         btrfs_cleanup_transaction(fs_info);
1833                 set_current_state(TASK_INTERRUPTIBLE);
1834                 if (!kthread_should_stop() &&
1835                                 (!btrfs_transaction_blocked(fs_info) ||
1836                                  cannot_commit))
1837                         schedule_timeout(delay);
1838                 __set_current_state(TASK_RUNNING);
1839         } while (!kthread_should_stop());
1840         return 0;
1841 }
1842
1843 /*
1844  * this will find the highest generation in the array of
1845  * root backups.  The index of the highest array is returned,
1846  * or -1 if we can't find anything.
1847  *
1848  * We check to make sure the array is valid by comparing the
1849  * generation of the latest  root in the array with the generation
1850  * in the super block.  If they don't match we pitch it.
1851  */
1852 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1853 {
1854         u64 cur;
1855         int newest_index = -1;
1856         struct btrfs_root_backup *root_backup;
1857         int i;
1858
1859         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1860                 root_backup = info->super_copy->super_roots + i;
1861                 cur = btrfs_backup_tree_root_gen(root_backup);
1862                 if (cur == newest_gen)
1863                         newest_index = i;
1864         }
1865
1866         /* check to see if we actually wrapped around */
1867         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1868                 root_backup = info->super_copy->super_roots;
1869                 cur = btrfs_backup_tree_root_gen(root_backup);
1870                 if (cur == newest_gen)
1871                         newest_index = 0;
1872         }
1873         return newest_index;
1874 }
1875
1876
1877 /*
1878  * find the oldest backup so we know where to store new entries
1879  * in the backup array.  This will set the backup_root_index
1880  * field in the fs_info struct
1881  */
1882 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1883                                      u64 newest_gen)
1884 {
1885         int newest_index = -1;
1886
1887         newest_index = find_newest_super_backup(info, newest_gen);
1888         /* if there was garbage in there, just move along */
1889         if (newest_index == -1) {
1890                 info->backup_root_index = 0;
1891         } else {
1892                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1893         }
1894 }
1895
1896 /*
1897  * copy all the root pointers into the super backup array.
1898  * this will bump the backup pointer by one when it is
1899  * done
1900  */
1901 static void backup_super_roots(struct btrfs_fs_info *info)
1902 {
1903         int next_backup;
1904         struct btrfs_root_backup *root_backup;
1905         int last_backup;
1906
1907         next_backup = info->backup_root_index;
1908         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1909                 BTRFS_NUM_BACKUP_ROOTS;
1910
1911         /*
1912          * just overwrite the last backup if we're at the same generation
1913          * this happens only at umount
1914          */
1915         root_backup = info->super_for_commit->super_roots + last_backup;
1916         if (btrfs_backup_tree_root_gen(root_backup) ==
1917             btrfs_header_generation(info->tree_root->node))
1918                 next_backup = last_backup;
1919
1920         root_backup = info->super_for_commit->super_roots + next_backup;
1921
1922         /*
1923          * make sure all of our padding and empty slots get zero filled
1924          * regardless of which ones we use today
1925          */
1926         memset(root_backup, 0, sizeof(*root_backup));
1927
1928         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1929
1930         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1931         btrfs_set_backup_tree_root_gen(root_backup,
1932                                btrfs_header_generation(info->tree_root->node));
1933
1934         btrfs_set_backup_tree_root_level(root_backup,
1935                                btrfs_header_level(info->tree_root->node));
1936
1937         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1938         btrfs_set_backup_chunk_root_gen(root_backup,
1939                                btrfs_header_generation(info->chunk_root->node));
1940         btrfs_set_backup_chunk_root_level(root_backup,
1941                                btrfs_header_level(info->chunk_root->node));
1942
1943         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1944         btrfs_set_backup_extent_root_gen(root_backup,
1945                                btrfs_header_generation(info->extent_root->node));
1946         btrfs_set_backup_extent_root_level(root_backup,
1947                                btrfs_header_level(info->extent_root->node));
1948
1949         /*
1950          * we might commit during log recovery, which happens before we set
1951          * the fs_root.  Make sure it is valid before we fill it in.
1952          */
1953         if (info->fs_root && info->fs_root->node) {
1954                 btrfs_set_backup_fs_root(root_backup,
1955                                          info->fs_root->node->start);
1956                 btrfs_set_backup_fs_root_gen(root_backup,
1957                                btrfs_header_generation(info->fs_root->node));
1958                 btrfs_set_backup_fs_root_level(root_backup,
1959                                btrfs_header_level(info->fs_root->node));
1960         }
1961
1962         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1963         btrfs_set_backup_dev_root_gen(root_backup,
1964                                btrfs_header_generation(info->dev_root->node));
1965         btrfs_set_backup_dev_root_level(root_backup,
1966                                        btrfs_header_level(info->dev_root->node));
1967
1968         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1969         btrfs_set_backup_csum_root_gen(root_backup,
1970                                btrfs_header_generation(info->csum_root->node));
1971         btrfs_set_backup_csum_root_level(root_backup,
1972                                btrfs_header_level(info->csum_root->node));
1973
1974         btrfs_set_backup_total_bytes(root_backup,
1975                              btrfs_super_total_bytes(info->super_copy));
1976         btrfs_set_backup_bytes_used(root_backup,
1977                              btrfs_super_bytes_used(info->super_copy));
1978         btrfs_set_backup_num_devices(root_backup,
1979                              btrfs_super_num_devices(info->super_copy));
1980
1981         /*
1982          * if we don't copy this out to the super_copy, it won't get remembered
1983          * for the next commit
1984          */
1985         memcpy(&info->super_copy->super_roots,
1986                &info->super_for_commit->super_roots,
1987                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1988 }
1989
1990 /*
1991  * this copies info out of the root backup array and back into
1992  * the in-memory super block.  It is meant to help iterate through
1993  * the array, so you send it the number of backups you've already
1994  * tried and the last backup index you used.
1995  *
1996  * this returns -1 when it has tried all the backups
1997  */
1998 static noinline int next_root_backup(struct btrfs_fs_info *info,
1999                                      struct btrfs_super_block *super,
2000                                      int *num_backups_tried, int *backup_index)
2001 {
2002         struct btrfs_root_backup *root_backup;
2003         int newest = *backup_index;
2004
2005         if (*num_backups_tried == 0) {
2006                 u64 gen = btrfs_super_generation(super);
2007
2008                 newest = find_newest_super_backup(info, gen);
2009                 if (newest == -1)
2010                         return -1;
2011
2012                 *backup_index = newest;
2013                 *num_backups_tried = 1;
2014         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2015                 /* we've tried all the backups, all done */
2016                 return -1;
2017         } else {
2018                 /* jump to the next oldest backup */
2019                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2020                         BTRFS_NUM_BACKUP_ROOTS;
2021                 *backup_index = newest;
2022                 *num_backups_tried += 1;
2023         }
2024         root_backup = super->super_roots + newest;
2025
2026         btrfs_set_super_generation(super,
2027                                    btrfs_backup_tree_root_gen(root_backup));
2028         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2029         btrfs_set_super_root_level(super,
2030                                    btrfs_backup_tree_root_level(root_backup));
2031         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2032
2033         /*
2034          * fixme: the total bytes and num_devices need to match or we should
2035          * need a fsck
2036          */
2037         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2038         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2039         return 0;
2040 }
2041
2042 /* helper to cleanup workers */
2043 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2044 {
2045         btrfs_destroy_workqueue(fs_info->fixup_workers);
2046         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2047         btrfs_destroy_workqueue(fs_info->workers);
2048         btrfs_destroy_workqueue(fs_info->endio_workers);
2049         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2050         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2051         btrfs_destroy_workqueue(fs_info->rmw_workers);
2052         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2053         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2054         btrfs_destroy_workqueue(fs_info->submit_workers);
2055         btrfs_destroy_workqueue(fs_info->delayed_workers);
2056         btrfs_destroy_workqueue(fs_info->caching_workers);
2057         btrfs_destroy_workqueue(fs_info->readahead_workers);
2058         btrfs_destroy_workqueue(fs_info->flush_workers);
2059         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2060         btrfs_destroy_workqueue(fs_info->extent_workers);
2061         /*
2062          * Now that all other work queues are destroyed, we can safely destroy
2063          * the queues used for metadata I/O, since tasks from those other work
2064          * queues can do metadata I/O operations.
2065          */
2066         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2067         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2068 }
2069
2070 static void free_root_extent_buffers(struct btrfs_root *root)
2071 {
2072         if (root) {
2073                 free_extent_buffer(root->node);
2074                 free_extent_buffer(root->commit_root);
2075                 root->node = NULL;
2076                 root->commit_root = NULL;
2077         }
2078 }
2079
2080 /* helper to cleanup tree roots */
2081 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2082 {
2083         free_root_extent_buffers(info->tree_root);
2084
2085         free_root_extent_buffers(info->dev_root);
2086         free_root_extent_buffers(info->extent_root);
2087         free_root_extent_buffers(info->csum_root);
2088         free_root_extent_buffers(info->quota_root);
2089         free_root_extent_buffers(info->uuid_root);
2090         if (chunk_root)
2091                 free_root_extent_buffers(info->chunk_root);
2092         free_root_extent_buffers(info->free_space_root);
2093 }
2094
2095 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2096 {
2097         int ret;
2098         struct btrfs_root *gang[8];
2099         int i;
2100
2101         while (!list_empty(&fs_info->dead_roots)) {
2102                 gang[0] = list_entry(fs_info->dead_roots.next,
2103                                      struct btrfs_root, root_list);
2104                 list_del(&gang[0]->root_list);
2105
2106                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2107                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2108                 } else {
2109                         free_extent_buffer(gang[0]->node);
2110                         free_extent_buffer(gang[0]->commit_root);
2111                         btrfs_put_fs_root(gang[0]);
2112                 }
2113         }
2114
2115         while (1) {
2116                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2117                                              (void **)gang, 0,
2118                                              ARRAY_SIZE(gang));
2119                 if (!ret)
2120                         break;
2121                 for (i = 0; i < ret; i++)
2122                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2123         }
2124
2125         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2126                 btrfs_free_log_root_tree(NULL, fs_info);
2127                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2128         }
2129 }
2130
2131 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2132 {
2133         mutex_init(&fs_info->scrub_lock);
2134         atomic_set(&fs_info->scrubs_running, 0);
2135         atomic_set(&fs_info->scrub_pause_req, 0);
2136         atomic_set(&fs_info->scrubs_paused, 0);
2137         atomic_set(&fs_info->scrub_cancel_req, 0);
2138         init_waitqueue_head(&fs_info->scrub_pause_wait);
2139         fs_info->scrub_workers_refcnt = 0;
2140 }
2141
2142 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2143 {
2144         spin_lock_init(&fs_info->balance_lock);
2145         mutex_init(&fs_info->balance_mutex);
2146         atomic_set(&fs_info->balance_running, 0);
2147         atomic_set(&fs_info->balance_pause_req, 0);
2148         atomic_set(&fs_info->balance_cancel_req, 0);
2149         fs_info->balance_ctl = NULL;
2150         init_waitqueue_head(&fs_info->balance_wait_q);
2151 }
2152
2153 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2154 {
2155         struct inode *inode = fs_info->btree_inode;
2156
2157         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2158         set_nlink(inode, 1);
2159         /*
2160          * we set the i_size on the btree inode to the max possible int.
2161          * the real end of the address space is determined by all of
2162          * the devices in the system
2163          */
2164         inode->i_size = OFFSET_MAX;
2165         inode->i_mapping->a_ops = &btree_aops;
2166
2167         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2168         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2169         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2170         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2171
2172         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2173
2174         BTRFS_I(inode)->root = fs_info->tree_root;
2175         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2176         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2177         btrfs_insert_inode_hash(inode);
2178 }
2179
2180 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2181 {
2182         fs_info->dev_replace.lock_owner = 0;
2183         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2184         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2185         rwlock_init(&fs_info->dev_replace.lock);
2186         atomic_set(&fs_info->dev_replace.read_locks, 0);
2187         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2188         init_waitqueue_head(&fs_info->replace_wait);
2189         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2190 }
2191
2192 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2193 {
2194         spin_lock_init(&fs_info->qgroup_lock);
2195         mutex_init(&fs_info->qgroup_ioctl_lock);
2196         fs_info->qgroup_tree = RB_ROOT;
2197         fs_info->qgroup_op_tree = RB_ROOT;
2198         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2199         fs_info->qgroup_seq = 1;
2200         fs_info->qgroup_ulist = NULL;
2201         fs_info->qgroup_rescan_running = false;
2202         mutex_init(&fs_info->qgroup_rescan_lock);
2203 }
2204
2205 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2206                 struct btrfs_fs_devices *fs_devices)
2207 {
2208         int max_active = fs_info->thread_pool_size;
2209         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2210
2211         fs_info->workers =
2212                 btrfs_alloc_workqueue(fs_info, "worker",
2213                                       flags | WQ_HIGHPRI, max_active, 16);
2214
2215         fs_info->delalloc_workers =
2216                 btrfs_alloc_workqueue(fs_info, "delalloc",
2217                                       flags, max_active, 2);
2218
2219         fs_info->flush_workers =
2220                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2221                                       flags, max_active, 0);
2222
2223         fs_info->caching_workers =
2224                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2225
2226         /*
2227          * a higher idle thresh on the submit workers makes it much more
2228          * likely that bios will be send down in a sane order to the
2229          * devices
2230          */
2231         fs_info->submit_workers =
2232                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2233                                       min_t(u64, fs_devices->num_devices,
2234                                             max_active), 64);
2235
2236         fs_info->fixup_workers =
2237                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2238
2239         /*
2240          * endios are largely parallel and should have a very
2241          * low idle thresh
2242          */
2243         fs_info->endio_workers =
2244                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2245         fs_info->endio_meta_workers =
2246                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2247                                       max_active, 4);
2248         fs_info->endio_meta_write_workers =
2249                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2250                                       max_active, 2);
2251         fs_info->endio_raid56_workers =
2252                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2253                                       max_active, 4);
2254         fs_info->endio_repair_workers =
2255                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2256         fs_info->rmw_workers =
2257                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2258         fs_info->endio_write_workers =
2259                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2260                                       max_active, 2);
2261         fs_info->endio_freespace_worker =
2262                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2263                                       max_active, 0);
2264         fs_info->delayed_workers =
2265                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2266                                       max_active, 0);
2267         fs_info->readahead_workers =
2268                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2269                                       max_active, 2);
2270         fs_info->qgroup_rescan_workers =
2271                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2272         fs_info->extent_workers =
2273                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2274                                       min_t(u64, fs_devices->num_devices,
2275                                             max_active), 8);
2276
2277         if (!(fs_info->workers && fs_info->delalloc_workers &&
2278               fs_info->submit_workers && fs_info->flush_workers &&
2279               fs_info->endio_workers && fs_info->endio_meta_workers &&
2280               fs_info->endio_meta_write_workers &&
2281               fs_info->endio_repair_workers &&
2282               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2283               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2284               fs_info->caching_workers && fs_info->readahead_workers &&
2285               fs_info->fixup_workers && fs_info->delayed_workers &&
2286               fs_info->extent_workers &&
2287               fs_info->qgroup_rescan_workers)) {
2288                 return -ENOMEM;
2289         }
2290
2291         return 0;
2292 }
2293
2294 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2295                             struct btrfs_fs_devices *fs_devices)
2296 {
2297         int ret;
2298         struct btrfs_root *log_tree_root;
2299         struct btrfs_super_block *disk_super = fs_info->super_copy;
2300         u64 bytenr = btrfs_super_log_root(disk_super);
2301
2302         if (fs_devices->rw_devices == 0) {
2303                 btrfs_warn(fs_info, "log replay required on RO media");
2304                 return -EIO;
2305         }
2306
2307         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2308         if (!log_tree_root)
2309                 return -ENOMEM;
2310
2311         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2312
2313         log_tree_root->node = read_tree_block(fs_info, bytenr,
2314                                               fs_info->generation + 1);
2315         if (IS_ERR(log_tree_root->node)) {
2316                 btrfs_warn(fs_info, "failed to read log tree");
2317                 ret = PTR_ERR(log_tree_root->node);
2318                 kfree(log_tree_root);
2319                 return ret;
2320         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2321                 btrfs_err(fs_info, "failed to read log tree");
2322                 free_extent_buffer(log_tree_root->node);
2323                 kfree(log_tree_root);
2324                 return -EIO;
2325         }
2326         /* returns with log_tree_root freed on success */
2327         ret = btrfs_recover_log_trees(log_tree_root);
2328         if (ret) {
2329                 btrfs_handle_fs_error(fs_info, ret,
2330                                       "Failed to recover log tree");
2331                 free_extent_buffer(log_tree_root->node);
2332                 kfree(log_tree_root);
2333                 return ret;
2334         }
2335
2336         if (sb_rdonly(fs_info->sb)) {
2337                 ret = btrfs_commit_super(fs_info);
2338                 if (ret)
2339                         return ret;
2340         }
2341
2342         return 0;
2343 }
2344
2345 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2346 {
2347         struct btrfs_root *tree_root = fs_info->tree_root;
2348         struct btrfs_root *root;
2349         struct btrfs_key location;
2350         int ret;
2351
2352         BUG_ON(!fs_info->tree_root);
2353
2354         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2355         location.type = BTRFS_ROOT_ITEM_KEY;
2356         location.offset = 0;
2357
2358         root = btrfs_read_tree_root(tree_root, &location);
2359         if (IS_ERR(root))
2360                 return PTR_ERR(root);
2361         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362         fs_info->extent_root = root;
2363
2364         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2365         root = btrfs_read_tree_root(tree_root, &location);
2366         if (IS_ERR(root))
2367                 return PTR_ERR(root);
2368         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2369         fs_info->dev_root = root;
2370         btrfs_init_devices_late(fs_info);
2371
2372         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2373         root = btrfs_read_tree_root(tree_root, &location);
2374         if (IS_ERR(root))
2375                 return PTR_ERR(root);
2376         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377         fs_info->csum_root = root;
2378
2379         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2380         root = btrfs_read_tree_root(tree_root, &location);
2381         if (!IS_ERR(root)) {
2382                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2383                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2384                 fs_info->quota_root = root;
2385         }
2386
2387         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2388         root = btrfs_read_tree_root(tree_root, &location);
2389         if (IS_ERR(root)) {
2390                 ret = PTR_ERR(root);
2391                 if (ret != -ENOENT)
2392                         return ret;
2393         } else {
2394                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2395                 fs_info->uuid_root = root;
2396         }
2397
2398         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2399                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2400                 root = btrfs_read_tree_root(tree_root, &location);
2401                 if (IS_ERR(root))
2402                         return PTR_ERR(root);
2403                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404                 fs_info->free_space_root = root;
2405         }
2406
2407         return 0;
2408 }
2409
2410 int open_ctree(struct super_block *sb,
2411                struct btrfs_fs_devices *fs_devices,
2412                char *options)
2413 {
2414         u32 sectorsize;
2415         u32 nodesize;
2416         u32 stripesize;
2417         u64 generation;
2418         u64 features;
2419         struct btrfs_key location;
2420         struct buffer_head *bh;
2421         struct btrfs_super_block *disk_super;
2422         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2423         struct btrfs_root *tree_root;
2424         struct btrfs_root *chunk_root;
2425         int ret;
2426         int err = -EINVAL;
2427         int num_backups_tried = 0;
2428         int backup_index = 0;
2429         int max_active;
2430         int clear_free_space_tree = 0;
2431
2432         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2433         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2434         if (!tree_root || !chunk_root) {
2435                 err = -ENOMEM;
2436                 goto fail;
2437         }
2438
2439         ret = init_srcu_struct(&fs_info->subvol_srcu);
2440         if (ret) {
2441                 err = ret;
2442                 goto fail;
2443         }
2444
2445         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2446         if (ret) {
2447                 err = ret;
2448                 goto fail_srcu;
2449         }
2450         fs_info->dirty_metadata_batch = PAGE_SIZE *
2451                                         (1 + ilog2(nr_cpu_ids));
2452
2453         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2454         if (ret) {
2455                 err = ret;
2456                 goto fail_dirty_metadata_bytes;
2457         }
2458
2459         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2460         if (ret) {
2461                 err = ret;
2462                 goto fail_delalloc_bytes;
2463         }
2464
2465         fs_info->btree_inode = new_inode(sb);
2466         if (!fs_info->btree_inode) {
2467                 err = -ENOMEM;
2468                 goto fail_bio_counter;
2469         }
2470
2471         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2472
2473         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2474         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2475         INIT_LIST_HEAD(&fs_info->trans_list);
2476         INIT_LIST_HEAD(&fs_info->dead_roots);
2477         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2478         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2479         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2480         spin_lock_init(&fs_info->delalloc_root_lock);
2481         spin_lock_init(&fs_info->trans_lock);
2482         spin_lock_init(&fs_info->fs_roots_radix_lock);
2483         spin_lock_init(&fs_info->delayed_iput_lock);
2484         spin_lock_init(&fs_info->defrag_inodes_lock);
2485         spin_lock_init(&fs_info->tree_mod_seq_lock);
2486         spin_lock_init(&fs_info->super_lock);
2487         spin_lock_init(&fs_info->qgroup_op_lock);
2488         spin_lock_init(&fs_info->buffer_lock);
2489         spin_lock_init(&fs_info->unused_bgs_lock);
2490         rwlock_init(&fs_info->tree_mod_log_lock);
2491         mutex_init(&fs_info->unused_bg_unpin_mutex);
2492         mutex_init(&fs_info->delete_unused_bgs_mutex);
2493         mutex_init(&fs_info->reloc_mutex);
2494         mutex_init(&fs_info->delalloc_root_mutex);
2495         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2496         seqlock_init(&fs_info->profiles_lock);
2497
2498         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2499         INIT_LIST_HEAD(&fs_info->space_info);
2500         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2501         INIT_LIST_HEAD(&fs_info->unused_bgs);
2502         btrfs_mapping_init(&fs_info->mapping_tree);
2503         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2504                              BTRFS_BLOCK_RSV_GLOBAL);
2505         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2506                              BTRFS_BLOCK_RSV_DELALLOC);
2507         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2508         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2509         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2510         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2511                              BTRFS_BLOCK_RSV_DELOPS);
2512         atomic_set(&fs_info->nr_async_submits, 0);
2513         atomic_set(&fs_info->async_delalloc_pages, 0);
2514         atomic_set(&fs_info->async_submit_draining, 0);
2515         atomic_set(&fs_info->nr_async_bios, 0);
2516         atomic_set(&fs_info->defrag_running, 0);
2517         atomic_set(&fs_info->qgroup_op_seq, 0);
2518         atomic_set(&fs_info->reada_works_cnt, 0);
2519         atomic64_set(&fs_info->tree_mod_seq, 0);
2520         fs_info->sb = sb;
2521         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2522         fs_info->metadata_ratio = 0;
2523         fs_info->defrag_inodes = RB_ROOT;
2524         atomic64_set(&fs_info->free_chunk_space, 0);
2525         fs_info->tree_mod_log = RB_ROOT;
2526         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2527         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2528         /* readahead state */
2529         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2530         spin_lock_init(&fs_info->reada_lock);
2531
2532         fs_info->thread_pool_size = min_t(unsigned long,
2533                                           num_online_cpus() + 2, 8);
2534
2535         INIT_LIST_HEAD(&fs_info->ordered_roots);
2536         spin_lock_init(&fs_info->ordered_root_lock);
2537         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2538                                         GFP_KERNEL);
2539         if (!fs_info->delayed_root) {
2540                 err = -ENOMEM;
2541                 goto fail_iput;
2542         }
2543         btrfs_init_delayed_root(fs_info->delayed_root);
2544
2545         btrfs_init_scrub(fs_info);
2546 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2547         fs_info->check_integrity_print_mask = 0;
2548 #endif
2549         btrfs_init_balance(fs_info);
2550         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2551
2552         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2553         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2554
2555         btrfs_init_btree_inode(fs_info);
2556
2557         spin_lock_init(&fs_info->block_group_cache_lock);
2558         fs_info->block_group_cache_tree = RB_ROOT;
2559         fs_info->first_logical_byte = (u64)-1;
2560
2561         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2562         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2563         fs_info->pinned_extents = &fs_info->freed_extents[0];
2564         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2565
2566         mutex_init(&fs_info->ordered_operations_mutex);
2567         mutex_init(&fs_info->tree_log_mutex);
2568         mutex_init(&fs_info->chunk_mutex);
2569         mutex_init(&fs_info->transaction_kthread_mutex);
2570         mutex_init(&fs_info->cleaner_mutex);
2571         mutex_init(&fs_info->volume_mutex);
2572         mutex_init(&fs_info->ro_block_group_mutex);
2573         init_rwsem(&fs_info->commit_root_sem);
2574         init_rwsem(&fs_info->cleanup_work_sem);
2575         init_rwsem(&fs_info->subvol_sem);
2576         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2577
2578         btrfs_init_dev_replace_locks(fs_info);
2579         btrfs_init_qgroup(fs_info);
2580
2581         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2582         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2583
2584         init_waitqueue_head(&fs_info->transaction_throttle);
2585         init_waitqueue_head(&fs_info->transaction_wait);
2586         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2587         init_waitqueue_head(&fs_info->async_submit_wait);
2588
2589         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2590
2591         /* Usable values until the real ones are cached from the superblock */
2592         fs_info->nodesize = 4096;
2593         fs_info->sectorsize = 4096;
2594         fs_info->stripesize = 4096;
2595
2596         ret = btrfs_alloc_stripe_hash_table(fs_info);
2597         if (ret) {
2598                 err = ret;
2599                 goto fail_alloc;
2600         }
2601
2602         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2603
2604         invalidate_bdev(fs_devices->latest_bdev);
2605
2606         /*
2607          * Read super block and check the signature bytes only
2608          */
2609         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2610         if (IS_ERR(bh)) {
2611                 err = PTR_ERR(bh);
2612                 goto fail_alloc;
2613         }
2614
2615         /*
2616          * We want to check superblock checksum, the type is stored inside.
2617          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2618          */
2619         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2620                 btrfs_err(fs_info, "superblock checksum mismatch");
2621                 err = -EINVAL;
2622                 brelse(bh);
2623                 goto fail_alloc;
2624         }
2625
2626         /*
2627          * super_copy is zeroed at allocation time and we never touch the
2628          * following bytes up to INFO_SIZE, the checksum is calculated from
2629          * the whole block of INFO_SIZE
2630          */
2631         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2632         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2633                sizeof(*fs_info->super_for_commit));
2634         brelse(bh);
2635
2636         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2637
2638         ret = btrfs_check_super_valid(fs_info);
2639         if (ret) {
2640                 btrfs_err(fs_info, "superblock contains fatal errors");
2641                 err = -EINVAL;
2642                 goto fail_alloc;
2643         }
2644
2645         disk_super = fs_info->super_copy;
2646         if (!btrfs_super_root(disk_super))
2647                 goto fail_alloc;
2648
2649         /* check FS state, whether FS is broken. */
2650         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2651                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2652
2653         /*
2654          * run through our array of backup supers and setup
2655          * our ring pointer to the oldest one
2656          */
2657         generation = btrfs_super_generation(disk_super);
2658         find_oldest_super_backup(fs_info, generation);
2659
2660         /*
2661          * In the long term, we'll store the compression type in the super
2662          * block, and it'll be used for per file compression control.
2663          */
2664         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2665
2666         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2667         if (ret) {
2668                 err = ret;
2669                 goto fail_alloc;
2670         }
2671
2672         features = btrfs_super_incompat_flags(disk_super) &
2673                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2674         if (features) {
2675                 btrfs_err(fs_info,
2676                     "cannot mount because of unsupported optional features (%llx)",
2677                     features);
2678                 err = -EINVAL;
2679                 goto fail_alloc;
2680         }
2681
2682         features = btrfs_super_incompat_flags(disk_super);
2683         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2684         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2685                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2686         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2687                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2688
2689         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2690                 btrfs_info(fs_info, "has skinny extents");
2691
2692         /*
2693          * flag our filesystem as having big metadata blocks if
2694          * they are bigger than the page size
2695          */
2696         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2697                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2698                         btrfs_info(fs_info,
2699                                 "flagging fs with big metadata feature");
2700                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2701         }
2702
2703         nodesize = btrfs_super_nodesize(disk_super);
2704         sectorsize = btrfs_super_sectorsize(disk_super);
2705         stripesize = sectorsize;
2706         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2707         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2708
2709         /* Cache block sizes */
2710         fs_info->nodesize = nodesize;
2711         fs_info->sectorsize = sectorsize;
2712         fs_info->stripesize = stripesize;
2713
2714         /*
2715          * mixed block groups end up with duplicate but slightly offset
2716          * extent buffers for the same range.  It leads to corruptions
2717          */
2718         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2719             (sectorsize != nodesize)) {
2720                 btrfs_err(fs_info,
2721 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2722                         nodesize, sectorsize);
2723                 goto fail_alloc;
2724         }
2725
2726         /*
2727          * Needn't use the lock because there is no other task which will
2728          * update the flag.
2729          */
2730         btrfs_set_super_incompat_flags(disk_super, features);
2731
2732         features = btrfs_super_compat_ro_flags(disk_super) &
2733                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2734         if (!sb_rdonly(sb) && features) {
2735                 btrfs_err(fs_info,
2736         "cannot mount read-write because of unsupported optional features (%llx)",
2737                        features);
2738                 err = -EINVAL;
2739                 goto fail_alloc;
2740         }
2741
2742         max_active = fs_info->thread_pool_size;
2743
2744         ret = btrfs_init_workqueues(fs_info, fs_devices);
2745         if (ret) {
2746                 err = ret;
2747                 goto fail_sb_buffer;
2748         }
2749
2750         sb->s_bdi->congested_fn = btrfs_congested_fn;
2751         sb->s_bdi->congested_data = fs_info;
2752         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2753         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2754         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2755         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2756
2757         sb->s_blocksize = sectorsize;
2758         sb->s_blocksize_bits = blksize_bits(sectorsize);
2759
2760         mutex_lock(&fs_info->chunk_mutex);
2761         ret = btrfs_read_sys_array(fs_info);
2762         mutex_unlock(&fs_info->chunk_mutex);
2763         if (ret) {
2764                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2765                 goto fail_sb_buffer;
2766         }
2767
2768         generation = btrfs_super_chunk_root_generation(disk_super);
2769
2770         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2771
2772         chunk_root->node = read_tree_block(fs_info,
2773                                            btrfs_super_chunk_root(disk_super),
2774                                            generation);
2775         if (IS_ERR(chunk_root->node) ||
2776             !extent_buffer_uptodate(chunk_root->node)) {
2777                 btrfs_err(fs_info, "failed to read chunk root");
2778                 if (!IS_ERR(chunk_root->node))
2779                         free_extent_buffer(chunk_root->node);
2780                 chunk_root->node = NULL;
2781                 goto fail_tree_roots;
2782         }
2783         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2784         chunk_root->commit_root = btrfs_root_node(chunk_root);
2785
2786         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2787            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2788
2789         ret = btrfs_read_chunk_tree(fs_info);
2790         if (ret) {
2791                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2792                 goto fail_tree_roots;
2793         }
2794
2795         /*
2796          * keep the device that is marked to be the target device for the
2797          * dev_replace procedure
2798          */
2799         btrfs_close_extra_devices(fs_devices, 0);
2800
2801         if (!fs_devices->latest_bdev) {
2802                 btrfs_err(fs_info, "failed to read devices");
2803                 goto fail_tree_roots;
2804         }
2805
2806 retry_root_backup:
2807         generation = btrfs_super_generation(disk_super);
2808
2809         tree_root->node = read_tree_block(fs_info,
2810                                           btrfs_super_root(disk_super),
2811                                           generation);
2812         if (IS_ERR(tree_root->node) ||
2813             !extent_buffer_uptodate(tree_root->node)) {
2814                 btrfs_warn(fs_info, "failed to read tree root");
2815                 if (!IS_ERR(tree_root->node))
2816                         free_extent_buffer(tree_root->node);
2817                 tree_root->node = NULL;
2818                 goto recovery_tree_root;
2819         }
2820
2821         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2822         tree_root->commit_root = btrfs_root_node(tree_root);
2823         btrfs_set_root_refs(&tree_root->root_item, 1);
2824
2825         mutex_lock(&tree_root->objectid_mutex);
2826         ret = btrfs_find_highest_objectid(tree_root,
2827                                         &tree_root->highest_objectid);
2828         if (ret) {
2829                 mutex_unlock(&tree_root->objectid_mutex);
2830                 goto recovery_tree_root;
2831         }
2832
2833         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2834
2835         mutex_unlock(&tree_root->objectid_mutex);
2836
2837         ret = btrfs_read_roots(fs_info);
2838         if (ret)
2839                 goto recovery_tree_root;
2840
2841         fs_info->generation = generation;
2842         fs_info->last_trans_committed = generation;
2843
2844         ret = btrfs_recover_balance(fs_info);
2845         if (ret) {
2846                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2847                 goto fail_block_groups;
2848         }
2849
2850         ret = btrfs_init_dev_stats(fs_info);
2851         if (ret) {
2852                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2853                 goto fail_block_groups;
2854         }
2855
2856         ret = btrfs_init_dev_replace(fs_info);
2857         if (ret) {
2858                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2859                 goto fail_block_groups;
2860         }
2861
2862         btrfs_close_extra_devices(fs_devices, 1);
2863
2864         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2865         if (ret) {
2866                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2867                                 ret);
2868                 goto fail_block_groups;
2869         }
2870
2871         ret = btrfs_sysfs_add_device(fs_devices);
2872         if (ret) {
2873                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2874                                 ret);
2875                 goto fail_fsdev_sysfs;
2876         }
2877
2878         ret = btrfs_sysfs_add_mounted(fs_info);
2879         if (ret) {
2880                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2881                 goto fail_fsdev_sysfs;
2882         }
2883
2884         ret = btrfs_init_space_info(fs_info);
2885         if (ret) {
2886                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2887                 goto fail_sysfs;
2888         }
2889
2890         ret = btrfs_read_block_groups(fs_info);
2891         if (ret) {
2892                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2893                 goto fail_sysfs;
2894         }
2895
2896         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
2897                 btrfs_warn(fs_info,
2898                 "writeable mount is not allowed due to too many missing devices");
2899                 goto fail_sysfs;
2900         }
2901
2902         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2903                                                "btrfs-cleaner");
2904         if (IS_ERR(fs_info->cleaner_kthread))
2905                 goto fail_sysfs;
2906
2907         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2908                                                    tree_root,
2909                                                    "btrfs-transaction");
2910         if (IS_ERR(fs_info->transaction_kthread))
2911                 goto fail_cleaner;
2912
2913         if (!btrfs_test_opt(fs_info, NOSSD) &&
2914             !fs_info->fs_devices->rotating) {
2915                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2916         }
2917
2918         /*
2919          * Mount does not set all options immediately, we can do it now and do
2920          * not have to wait for transaction commit
2921          */
2922         btrfs_apply_pending_changes(fs_info);
2923
2924 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2925         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2926                 ret = btrfsic_mount(fs_info, fs_devices,
2927                                     btrfs_test_opt(fs_info,
2928                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2929                                     1 : 0,
2930                                     fs_info->check_integrity_print_mask);
2931                 if (ret)
2932                         btrfs_warn(fs_info,
2933                                 "failed to initialize integrity check module: %d",
2934                                 ret);
2935         }
2936 #endif
2937         ret = btrfs_read_qgroup_config(fs_info);
2938         if (ret)
2939                 goto fail_trans_kthread;
2940
2941         /* do not make disk changes in broken FS or nologreplay is given */
2942         if (btrfs_super_log_root(disk_super) != 0 &&
2943             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2944                 ret = btrfs_replay_log(fs_info, fs_devices);
2945                 if (ret) {
2946                         err = ret;
2947                         goto fail_qgroup;
2948                 }
2949         }
2950
2951         ret = btrfs_find_orphan_roots(fs_info);
2952         if (ret)
2953                 goto fail_qgroup;
2954
2955         if (!sb_rdonly(sb)) {
2956                 ret = btrfs_cleanup_fs_roots(fs_info);
2957                 if (ret)
2958                         goto fail_qgroup;
2959
2960                 mutex_lock(&fs_info->cleaner_mutex);
2961                 ret = btrfs_recover_relocation(tree_root);
2962                 mutex_unlock(&fs_info->cleaner_mutex);
2963                 if (ret < 0) {
2964                         btrfs_warn(fs_info, "failed to recover relocation: %d",
2965                                         ret);
2966                         err = -EINVAL;
2967                         goto fail_qgroup;
2968                 }
2969         }
2970
2971         location.objectid = BTRFS_FS_TREE_OBJECTID;
2972         location.type = BTRFS_ROOT_ITEM_KEY;
2973         location.offset = 0;
2974
2975         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2976         if (IS_ERR(fs_info->fs_root)) {
2977                 err = PTR_ERR(fs_info->fs_root);
2978                 goto fail_qgroup;
2979         }
2980
2981         if (sb_rdonly(sb))
2982                 return 0;
2983
2984         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2985             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2986                 clear_free_space_tree = 1;
2987         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2988                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2989                 btrfs_warn(fs_info, "free space tree is invalid");
2990                 clear_free_space_tree = 1;
2991         }
2992
2993         if (clear_free_space_tree) {
2994                 btrfs_info(fs_info, "clearing free space tree");
2995                 ret = btrfs_clear_free_space_tree(fs_info);
2996                 if (ret) {
2997                         btrfs_warn(fs_info,
2998                                    "failed to clear free space tree: %d", ret);
2999                         close_ctree(fs_info);
3000                         return ret;
3001                 }
3002         }
3003
3004         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3005             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3006                 btrfs_info(fs_info, "creating free space tree");
3007                 ret = btrfs_create_free_space_tree(fs_info);
3008                 if (ret) {
3009                         btrfs_warn(fs_info,
3010                                 "failed to create free space tree: %d", ret);
3011                         close_ctree(fs_info);
3012                         return ret;
3013                 }
3014         }
3015
3016         down_read(&fs_info->cleanup_work_sem);
3017         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3018             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3019                 up_read(&fs_info->cleanup_work_sem);
3020                 close_ctree(fs_info);
3021                 return ret;
3022         }
3023         up_read(&fs_info->cleanup_work_sem);
3024
3025         ret = btrfs_resume_balance_async(fs_info);
3026         if (ret) {
3027                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3028                 close_ctree(fs_info);
3029                 return ret;
3030         }
3031
3032         ret = btrfs_resume_dev_replace_async(fs_info);
3033         if (ret) {
3034                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3035                 close_ctree(fs_info);
3036                 return ret;
3037         }
3038
3039         btrfs_qgroup_rescan_resume(fs_info);
3040
3041         if (!fs_info->uuid_root) {
3042                 btrfs_info(fs_info, "creating UUID tree");
3043                 ret = btrfs_create_uuid_tree(fs_info);
3044                 if (ret) {
3045                         btrfs_warn(fs_info,
3046                                 "failed to create the UUID tree: %d", ret);
3047                         close_ctree(fs_info);
3048                         return ret;
3049                 }
3050         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3051                    fs_info->generation !=
3052                                 btrfs_super_uuid_tree_generation(disk_super)) {
3053                 btrfs_info(fs_info, "checking UUID tree");
3054                 ret = btrfs_check_uuid_tree(fs_info);
3055                 if (ret) {
3056                         btrfs_warn(fs_info,
3057                                 "failed to check the UUID tree: %d", ret);
3058                         close_ctree(fs_info);
3059                         return ret;
3060                 }
3061         } else {
3062                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3063         }
3064         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3065
3066         /*
3067          * backuproot only affect mount behavior, and if open_ctree succeeded,
3068          * no need to keep the flag
3069          */
3070         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3071
3072         return 0;
3073
3074 fail_qgroup:
3075         btrfs_free_qgroup_config(fs_info);
3076 fail_trans_kthread:
3077         kthread_stop(fs_info->transaction_kthread);
3078         btrfs_cleanup_transaction(fs_info);
3079         btrfs_free_fs_roots(fs_info);
3080 fail_cleaner:
3081         kthread_stop(fs_info->cleaner_kthread);
3082
3083         /*
3084          * make sure we're done with the btree inode before we stop our
3085          * kthreads
3086          */
3087         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3088
3089 fail_sysfs:
3090         btrfs_sysfs_remove_mounted(fs_info);
3091
3092 fail_fsdev_sysfs:
3093         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3094
3095 fail_block_groups:
3096         btrfs_put_block_group_cache(fs_info);
3097
3098 fail_tree_roots:
3099         free_root_pointers(fs_info, 1);
3100         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3101
3102 fail_sb_buffer:
3103         btrfs_stop_all_workers(fs_info);
3104         btrfs_free_block_groups(fs_info);
3105 fail_alloc:
3106 fail_iput:
3107         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3108
3109         iput(fs_info->btree_inode);
3110 fail_bio_counter:
3111         percpu_counter_destroy(&fs_info->bio_counter);
3112 fail_delalloc_bytes:
3113         percpu_counter_destroy(&fs_info->delalloc_bytes);
3114 fail_dirty_metadata_bytes:
3115         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3116 fail_srcu:
3117         cleanup_srcu_struct(&fs_info->subvol_srcu);
3118 fail:
3119         btrfs_free_stripe_hash_table(fs_info);
3120         btrfs_close_devices(fs_info->fs_devices);
3121         return err;
3122
3123 recovery_tree_root:
3124         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3125                 goto fail_tree_roots;
3126
3127         free_root_pointers(fs_info, 0);
3128
3129         /* don't use the log in recovery mode, it won't be valid */
3130         btrfs_set_super_log_root(disk_super, 0);
3131
3132         /* we can't trust the free space cache either */
3133         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3134
3135         ret = next_root_backup(fs_info, fs_info->super_copy,
3136                                &num_backups_tried, &backup_index);
3137         if (ret == -1)
3138                 goto fail_block_groups;
3139         goto retry_root_backup;
3140 }
3141
3142 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3143 {
3144         if (uptodate) {
3145                 set_buffer_uptodate(bh);
3146         } else {
3147                 struct btrfs_device *device = (struct btrfs_device *)
3148                         bh->b_private;
3149
3150                 btrfs_warn_rl_in_rcu(device->fs_info,
3151                                 "lost page write due to IO error on %s",
3152                                           rcu_str_deref(device->name));
3153                 /* note, we don't set_buffer_write_io_error because we have
3154                  * our own ways of dealing with the IO errors
3155                  */
3156                 clear_buffer_uptodate(bh);
3157                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3158         }
3159         unlock_buffer(bh);
3160         put_bh(bh);
3161 }
3162
3163 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3164                         struct buffer_head **bh_ret)
3165 {
3166         struct buffer_head *bh;
3167         struct btrfs_super_block *super;
3168         u64 bytenr;
3169
3170         bytenr = btrfs_sb_offset(copy_num);
3171         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3172                 return -EINVAL;
3173
3174         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3175         /*
3176          * If we fail to read from the underlying devices, as of now
3177          * the best option we have is to mark it EIO.
3178          */
3179         if (!bh)
3180                 return -EIO;
3181
3182         super = (struct btrfs_super_block *)bh->b_data;
3183         if (btrfs_super_bytenr(super) != bytenr ||
3184                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3185                 brelse(bh);
3186                 return -EINVAL;
3187         }
3188
3189         *bh_ret = bh;
3190         return 0;
3191 }
3192
3193
3194 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3195 {
3196         struct buffer_head *bh;
3197         struct buffer_head *latest = NULL;
3198         struct btrfs_super_block *super;
3199         int i;
3200         u64 transid = 0;
3201         int ret = -EINVAL;
3202
3203         /* we would like to check all the supers, but that would make
3204          * a btrfs mount succeed after a mkfs from a different FS.
3205          * So, we need to add a special mount option to scan for
3206          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3207          */
3208         for (i = 0; i < 1; i++) {
3209                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3210                 if (ret)
3211                         continue;
3212
3213                 super = (struct btrfs_super_block *)bh->b_data;
3214
3215                 if (!latest || btrfs_super_generation(super) > transid) {
3216                         brelse(latest);
3217                         latest = bh;
3218                         transid = btrfs_super_generation(super);
3219                 } else {
3220                         brelse(bh);
3221                 }
3222         }
3223
3224         if (!latest)
3225                 return ERR_PTR(ret);
3226
3227         return latest;
3228 }
3229
3230 /*
3231  * Write superblock @sb to the @device. Do not wait for completion, all the
3232  * buffer heads we write are pinned.
3233  *
3234  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3235  * the expected device size at commit time. Note that max_mirrors must be
3236  * same for write and wait phases.
3237  *
3238  * Return number of errors when buffer head is not found or submission fails.
3239  */
3240 static int write_dev_supers(struct btrfs_device *device,
3241                             struct btrfs_super_block *sb, int max_mirrors)
3242 {
3243         struct buffer_head *bh;
3244         int i;
3245         int ret;
3246         int errors = 0;
3247         u32 crc;
3248         u64 bytenr;
3249         int op_flags;
3250
3251         if (max_mirrors == 0)
3252                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3253
3254         for (i = 0; i < max_mirrors; i++) {
3255                 bytenr = btrfs_sb_offset(i);
3256                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3257                     device->commit_total_bytes)
3258                         break;
3259
3260                 btrfs_set_super_bytenr(sb, bytenr);
3261
3262                 crc = ~(u32)0;
3263                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3264                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3265                 btrfs_csum_final(crc, sb->csum);
3266
3267                 /* One reference for us, and we leave it for the caller */
3268                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3269                               BTRFS_SUPER_INFO_SIZE);
3270                 if (!bh) {
3271                         btrfs_err(device->fs_info,
3272                             "couldn't get super buffer head for bytenr %llu",
3273                             bytenr);
3274                         errors++;
3275                         continue;
3276                 }
3277
3278                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3279
3280                 /* one reference for submit_bh */
3281                 get_bh(bh);
3282
3283                 set_buffer_uptodate(bh);
3284                 lock_buffer(bh);
3285                 bh->b_end_io = btrfs_end_buffer_write_sync;
3286                 bh->b_private = device;
3287
3288                 /*
3289                  * we fua the first super.  The others we allow
3290                  * to go down lazy.
3291                  */
3292                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3293                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3294                         op_flags |= REQ_FUA;
3295                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3296                 if (ret)
3297                         errors++;
3298         }
3299         return errors < i ? 0 : -1;
3300 }
3301
3302 /*
3303  * Wait for write completion of superblocks done by write_dev_supers,
3304  * @max_mirrors same for write and wait phases.
3305  *
3306  * Return number of errors when buffer head is not found or not marked up to
3307  * date.
3308  */
3309 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3310 {
3311         struct buffer_head *bh;
3312         int i;
3313         int errors = 0;
3314         u64 bytenr;
3315
3316         if (max_mirrors == 0)
3317                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3318
3319         for (i = 0; i < max_mirrors; i++) {
3320                 bytenr = btrfs_sb_offset(i);
3321                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3322                     device->commit_total_bytes)
3323                         break;
3324
3325                 bh = __find_get_block(device->bdev,
3326                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3327                                       BTRFS_SUPER_INFO_SIZE);
3328                 if (!bh) {
3329                         errors++;
3330                         continue;
3331                 }
3332                 wait_on_buffer(bh);
3333                 if (!buffer_uptodate(bh))
3334                         errors++;
3335
3336                 /* drop our reference */
3337                 brelse(bh);
3338
3339                 /* drop the reference from the writing run */
3340                 brelse(bh);
3341         }
3342
3343         return errors < i ? 0 : -1;
3344 }
3345
3346 /*
3347  * endio for the write_dev_flush, this will wake anyone waiting
3348  * for the barrier when it is done
3349  */
3350 static void btrfs_end_empty_barrier(struct bio *bio)
3351 {
3352         complete(bio->bi_private);
3353 }
3354
3355 /*
3356  * Submit a flush request to the device if it supports it. Error handling is
3357  * done in the waiting counterpart.
3358  */
3359 static void write_dev_flush(struct btrfs_device *device)
3360 {
3361         struct request_queue *q = bdev_get_queue(device->bdev);
3362         struct bio *bio = device->flush_bio;
3363
3364         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3365                 return;
3366
3367         bio_reset(bio);
3368         bio->bi_end_io = btrfs_end_empty_barrier;
3369         bio_set_dev(bio, device->bdev);
3370         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3371         init_completion(&device->flush_wait);
3372         bio->bi_private = &device->flush_wait;
3373
3374         btrfsic_submit_bio(bio);
3375         device->flush_bio_sent = 1;
3376 }
3377
3378 /*
3379  * If the flush bio has been submitted by write_dev_flush, wait for it.
3380  */
3381 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3382 {
3383         struct bio *bio = device->flush_bio;
3384
3385         if (!device->flush_bio_sent)
3386                 return BLK_STS_OK;
3387
3388         device->flush_bio_sent = 0;
3389         wait_for_completion_io(&device->flush_wait);
3390
3391         return bio->bi_status;
3392 }
3393
3394 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3395 {
3396         if (!btrfs_check_rw_degradable(fs_info))
3397                 return -EIO;
3398         return 0;
3399 }
3400
3401 /*
3402  * send an empty flush down to each device in parallel,
3403  * then wait for them
3404  */
3405 static int barrier_all_devices(struct btrfs_fs_info *info)
3406 {
3407         struct list_head *head;
3408         struct btrfs_device *dev;
3409         int errors_wait = 0;
3410         blk_status_t ret;
3411
3412         /* send down all the barriers */
3413         head = &info->fs_devices->devices;
3414         list_for_each_entry_rcu(dev, head, dev_list) {
3415                 if (dev->missing)
3416                         continue;
3417                 if (!dev->bdev)
3418                         continue;
3419                 if (!dev->in_fs_metadata || !dev->writeable)
3420                         continue;
3421
3422                 write_dev_flush(dev);
3423                 dev->last_flush_error = BLK_STS_OK;
3424         }
3425
3426         /* wait for all the barriers */
3427         list_for_each_entry_rcu(dev, head, dev_list) {
3428                 if (dev->missing)
3429                         continue;
3430                 if (!dev->bdev) {
3431                         errors_wait++;
3432                         continue;
3433                 }
3434                 if (!dev->in_fs_metadata || !dev->writeable)
3435                         continue;
3436
3437                 ret = wait_dev_flush(dev);
3438                 if (ret) {
3439                         dev->last_flush_error = ret;
3440                         btrfs_dev_stat_inc_and_print(dev,
3441                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3442                         errors_wait++;
3443                 }
3444         }
3445
3446         if (errors_wait) {
3447                 /*
3448                  * At some point we need the status of all disks
3449                  * to arrive at the volume status. So error checking
3450                  * is being pushed to a separate loop.
3451                  */
3452                 return check_barrier_error(info);
3453         }
3454         return 0;
3455 }
3456
3457 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3458 {
3459         int raid_type;
3460         int min_tolerated = INT_MAX;
3461
3462         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3463             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3464                 min_tolerated = min(min_tolerated,
3465                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3466                                     tolerated_failures);
3467
3468         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3469                 if (raid_type == BTRFS_RAID_SINGLE)
3470                         continue;
3471                 if (!(flags & btrfs_raid_group[raid_type]))
3472                         continue;
3473                 min_tolerated = min(min_tolerated,
3474                                     btrfs_raid_array[raid_type].
3475                                     tolerated_failures);
3476         }
3477
3478         if (min_tolerated == INT_MAX) {
3479                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3480                 min_tolerated = 0;
3481         }
3482
3483         return min_tolerated;
3484 }
3485
3486 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3487 {
3488         struct list_head *head;
3489         struct btrfs_device *dev;
3490         struct btrfs_super_block *sb;
3491         struct btrfs_dev_item *dev_item;
3492         int ret;
3493         int do_barriers;
3494         int max_errors;
3495         int total_errors = 0;
3496         u64 flags;
3497
3498         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3499
3500         /*
3501          * max_mirrors == 0 indicates we're from commit_transaction,
3502          * not from fsync where the tree roots in fs_info have not
3503          * been consistent on disk.
3504          */
3505         if (max_mirrors == 0)
3506                 backup_super_roots(fs_info);
3507
3508         sb = fs_info->super_for_commit;
3509         dev_item = &sb->dev_item;
3510
3511         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3512         head = &fs_info->fs_devices->devices;
3513         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3514
3515         if (do_barriers) {
3516                 ret = barrier_all_devices(fs_info);
3517                 if (ret) {
3518                         mutex_unlock(
3519                                 &fs_info->fs_devices->device_list_mutex);
3520                         btrfs_handle_fs_error(fs_info, ret,
3521                                               "errors while submitting device barriers.");
3522                         return ret;
3523                 }
3524         }
3525
3526         list_for_each_entry_rcu(dev, head, dev_list) {
3527                 if (!dev->bdev) {
3528                         total_errors++;
3529                         continue;
3530                 }
3531                 if (!dev->in_fs_metadata || !dev->writeable)
3532                         continue;
3533
3534                 btrfs_set_stack_device_generation(dev_item, 0);
3535                 btrfs_set_stack_device_type(dev_item, dev->type);
3536                 btrfs_set_stack_device_id(dev_item, dev->devid);
3537                 btrfs_set_stack_device_total_bytes(dev_item,
3538                                                    dev->commit_total_bytes);
3539                 btrfs_set_stack_device_bytes_used(dev_item,
3540                                                   dev->commit_bytes_used);
3541                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3542                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3543                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3544                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3545                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3546
3547                 flags = btrfs_super_flags(sb);
3548                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3549
3550                 ret = write_dev_supers(dev, sb, max_mirrors);
3551                 if (ret)
3552                         total_errors++;
3553         }
3554         if (total_errors > max_errors) {
3555                 btrfs_err(fs_info, "%d errors while writing supers",
3556                           total_errors);
3557                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3558
3559                 /* FUA is masked off if unsupported and can't be the reason */
3560                 btrfs_handle_fs_error(fs_info, -EIO,
3561                                       "%d errors while writing supers",
3562                                       total_errors);
3563                 return -EIO;
3564         }
3565
3566         total_errors = 0;
3567         list_for_each_entry_rcu(dev, head, dev_list) {
3568                 if (!dev->bdev)
3569                         continue;
3570                 if (!dev->in_fs_metadata || !dev->writeable)
3571                         continue;
3572
3573                 ret = wait_dev_supers(dev, max_mirrors);
3574                 if (ret)
3575                         total_errors++;
3576         }
3577         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3578         if (total_errors > max_errors) {
3579                 btrfs_handle_fs_error(fs_info, -EIO,
3580                                       "%d errors while writing supers",
3581                                       total_errors);
3582                 return -EIO;
3583         }
3584         return 0;
3585 }
3586
3587 /* Drop a fs root from the radix tree and free it. */
3588 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3589                                   struct btrfs_root *root)
3590 {
3591         spin_lock(&fs_info->fs_roots_radix_lock);
3592         radix_tree_delete(&fs_info->fs_roots_radix,
3593                           (unsigned long)root->root_key.objectid);
3594         spin_unlock(&fs_info->fs_roots_radix_lock);
3595
3596         if (btrfs_root_refs(&root->root_item) == 0)
3597                 synchronize_srcu(&fs_info->subvol_srcu);
3598
3599         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3600                 btrfs_free_log(NULL, root);
3601                 if (root->reloc_root) {
3602                         free_extent_buffer(root->reloc_root->node);
3603                         free_extent_buffer(root->reloc_root->commit_root);
3604                         btrfs_put_fs_root(root->reloc_root);
3605                         root->reloc_root = NULL;
3606                 }
3607         }
3608
3609         if (root->free_ino_pinned)
3610                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3611         if (root->free_ino_ctl)
3612                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3613         free_fs_root(root);
3614 }
3615
3616 static void free_fs_root(struct btrfs_root *root)
3617 {
3618         iput(root->ino_cache_inode);
3619         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3620         btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3621         root->orphan_block_rsv = NULL;
3622         if (root->anon_dev)
3623                 free_anon_bdev(root->anon_dev);
3624         if (root->subv_writers)
3625                 btrfs_free_subvolume_writers(root->subv_writers);
3626         free_extent_buffer(root->node);
3627         free_extent_buffer(root->commit_root);
3628         kfree(root->free_ino_ctl);
3629         kfree(root->free_ino_pinned);
3630         kfree(root->name);
3631         btrfs_put_fs_root(root);
3632 }
3633
3634 void btrfs_free_fs_root(struct btrfs_root *root)
3635 {
3636         free_fs_root(root);
3637 }
3638
3639 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3640 {
3641         u64 root_objectid = 0;
3642         struct btrfs_root *gang[8];
3643         int i = 0;
3644         int err = 0;
3645         unsigned int ret = 0;
3646         int index;
3647
3648         while (1) {
3649                 index = srcu_read_lock(&fs_info->subvol_srcu);
3650                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3651                                              (void **)gang, root_objectid,
3652                                              ARRAY_SIZE(gang));
3653                 if (!ret) {
3654                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3655                         break;
3656                 }
3657                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3658
3659                 for (i = 0; i < ret; i++) {
3660                         /* Avoid to grab roots in dead_roots */
3661                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3662                                 gang[i] = NULL;
3663                                 continue;
3664                         }
3665                         /* grab all the search result for later use */
3666                         gang[i] = btrfs_grab_fs_root(gang[i]);
3667                 }
3668                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3669
3670                 for (i = 0; i < ret; i++) {
3671                         if (!gang[i])
3672                                 continue;
3673                         root_objectid = gang[i]->root_key.objectid;
3674                         err = btrfs_orphan_cleanup(gang[i]);
3675                         if (err)
3676                                 break;
3677                         btrfs_put_fs_root(gang[i]);
3678                 }
3679                 root_objectid++;
3680         }
3681
3682         /* release the uncleaned roots due to error */
3683         for (; i < ret; i++) {
3684                 if (gang[i])
3685                         btrfs_put_fs_root(gang[i]);
3686         }
3687         return err;
3688 }
3689
3690 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3691 {
3692         struct btrfs_root *root = fs_info->tree_root;
3693         struct btrfs_trans_handle *trans;
3694
3695         mutex_lock(&fs_info->cleaner_mutex);
3696         btrfs_run_delayed_iputs(fs_info);
3697         mutex_unlock(&fs_info->cleaner_mutex);
3698         wake_up_process(fs_info->cleaner_kthread);
3699
3700         /* wait until ongoing cleanup work done */
3701         down_write(&fs_info->cleanup_work_sem);
3702         up_write(&fs_info->cleanup_work_sem);
3703
3704         trans = btrfs_join_transaction(root);
3705         if (IS_ERR(trans))
3706                 return PTR_ERR(trans);
3707         return btrfs_commit_transaction(trans);
3708 }
3709
3710 void close_ctree(struct btrfs_fs_info *fs_info)
3711 {
3712         struct btrfs_root *root = fs_info->tree_root;
3713         int ret;
3714
3715         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3716
3717         /* wait for the qgroup rescan worker to stop */
3718         btrfs_qgroup_wait_for_completion(fs_info, false);
3719
3720         /* wait for the uuid_scan task to finish */
3721         down(&fs_info->uuid_tree_rescan_sem);
3722         /* avoid complains from lockdep et al., set sem back to initial state */
3723         up(&fs_info->uuid_tree_rescan_sem);
3724
3725         /* pause restriper - we want to resume on mount */
3726         btrfs_pause_balance(fs_info);
3727
3728         btrfs_dev_replace_suspend_for_unmount(fs_info);
3729
3730         btrfs_scrub_cancel(fs_info);
3731
3732         /* wait for any defraggers to finish */
3733         wait_event(fs_info->transaction_wait,
3734                    (atomic_read(&fs_info->defrag_running) == 0));
3735
3736         /* clear out the rbtree of defraggable inodes */
3737         btrfs_cleanup_defrag_inodes(fs_info);
3738
3739         cancel_work_sync(&fs_info->async_reclaim_work);
3740
3741         if (!sb_rdonly(fs_info->sb)) {
3742                 /*
3743                  * If the cleaner thread is stopped and there are
3744                  * block groups queued for removal, the deletion will be
3745                  * skipped when we quit the cleaner thread.
3746                  */
3747                 btrfs_delete_unused_bgs(fs_info);
3748
3749                 ret = btrfs_commit_super(fs_info);
3750                 if (ret)
3751                         btrfs_err(fs_info, "commit super ret %d", ret);
3752         }
3753
3754         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3755             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3756                 btrfs_error_commit_super(fs_info);
3757
3758         kthread_stop(fs_info->transaction_kthread);
3759         kthread_stop(fs_info->cleaner_kthread);
3760
3761         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3762
3763         btrfs_free_qgroup_config(fs_info);
3764         ASSERT(list_empty(&fs_info->delalloc_roots));
3765
3766         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3767                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3768                        percpu_counter_sum(&fs_info->delalloc_bytes));
3769         }
3770
3771         btrfs_sysfs_remove_mounted(fs_info);
3772         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3773
3774         btrfs_free_fs_roots(fs_info);
3775
3776         btrfs_put_block_group_cache(fs_info);
3777
3778         /*
3779          * we must make sure there is not any read request to
3780          * submit after we stopping all workers.
3781          */
3782         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3783         btrfs_stop_all_workers(fs_info);
3784
3785         btrfs_free_block_groups(fs_info);
3786
3787         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3788         free_root_pointers(fs_info, 1);
3789
3790         iput(fs_info->btree_inode);
3791
3792 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3793         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3794                 btrfsic_unmount(fs_info->fs_devices);
3795 #endif
3796
3797         btrfs_close_devices(fs_info->fs_devices);
3798         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3799
3800         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3801         percpu_counter_destroy(&fs_info->delalloc_bytes);
3802         percpu_counter_destroy(&fs_info->bio_counter);
3803         cleanup_srcu_struct(&fs_info->subvol_srcu);
3804
3805         btrfs_free_stripe_hash_table(fs_info);
3806
3807         __btrfs_free_block_rsv(root->orphan_block_rsv);
3808         root->orphan_block_rsv = NULL;
3809
3810         while (!list_empty(&fs_info->pinned_chunks)) {
3811                 struct extent_map *em;
3812
3813                 em = list_first_entry(&fs_info->pinned_chunks,
3814                                       struct extent_map, list);
3815                 list_del_init(&em->list);
3816                 free_extent_map(em);
3817         }
3818 }
3819
3820 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3821                           int atomic)
3822 {
3823         int ret;
3824         struct inode *btree_inode = buf->pages[0]->mapping->host;
3825
3826         ret = extent_buffer_uptodate(buf);
3827         if (!ret)
3828                 return ret;
3829
3830         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3831                                     parent_transid, atomic);
3832         if (ret == -EAGAIN)
3833                 return ret;
3834         return !ret;
3835 }
3836
3837 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3838 {
3839         struct btrfs_fs_info *fs_info;
3840         struct btrfs_root *root;
3841         u64 transid = btrfs_header_generation(buf);
3842         int was_dirty;
3843
3844 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3845         /*
3846          * This is a fast path so only do this check if we have sanity tests
3847          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3848          * outside of the sanity tests.
3849          */
3850         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3851                 return;
3852 #endif
3853         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3854         fs_info = root->fs_info;
3855         btrfs_assert_tree_locked(buf);
3856         if (transid != fs_info->generation)
3857                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3858                         buf->start, transid, fs_info->generation);
3859         was_dirty = set_extent_buffer_dirty(buf);
3860         if (!was_dirty)
3861                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3862                                          buf->len,
3863                                          fs_info->dirty_metadata_batch);
3864 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3865         /*
3866          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3867          * but item data not updated.
3868          * So here we should only check item pointers, not item data.
3869          */
3870         if (btrfs_header_level(buf) == 0 &&
3871             btrfs_check_leaf_relaxed(root, buf)) {
3872                 btrfs_print_leaf(buf);
3873                 ASSERT(0);
3874         }
3875 #endif
3876 }
3877
3878 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3879                                         int flush_delayed)
3880 {
3881         /*
3882          * looks as though older kernels can get into trouble with
3883          * this code, they end up stuck in balance_dirty_pages forever
3884          */
3885         int ret;
3886
3887         if (current->flags & PF_MEMALLOC)
3888                 return;
3889
3890         if (flush_delayed)
3891                 btrfs_balance_delayed_items(fs_info);
3892
3893         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3894                                      BTRFS_DIRTY_METADATA_THRESH,
3895                                      fs_info->dirty_metadata_batch);
3896         if (ret > 0) {
3897                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3898         }
3899 }
3900
3901 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3902 {
3903         __btrfs_btree_balance_dirty(fs_info, 1);
3904 }
3905
3906 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3907 {
3908         __btrfs_btree_balance_dirty(fs_info, 0);
3909 }
3910
3911 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3912 {
3913         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3914         struct btrfs_fs_info *fs_info = root->fs_info;
3915
3916         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3917 }
3918
3919 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3920 {
3921         struct btrfs_super_block *sb = fs_info->super_copy;
3922         u64 nodesize = btrfs_super_nodesize(sb);
3923         u64 sectorsize = btrfs_super_sectorsize(sb);
3924         int ret = 0;
3925
3926         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3927                 btrfs_err(fs_info, "no valid FS found");
3928                 ret = -EINVAL;
3929         }
3930         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3931                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3932                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3933                 ret = -EINVAL;
3934         }
3935         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3936                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3937                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3938                 ret = -EINVAL;
3939         }
3940         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3941                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3942                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3943                 ret = -EINVAL;
3944         }
3945         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3946                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
3947                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3948                 ret = -EINVAL;
3949         }
3950
3951         /*
3952          * Check sectorsize and nodesize first, other check will need it.
3953          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3954          */
3955         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3956             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3957                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3958                 ret = -EINVAL;
3959         }
3960         /* Only PAGE SIZE is supported yet */
3961         if (sectorsize != PAGE_SIZE) {
3962                 btrfs_err(fs_info,
3963                         "sectorsize %llu not supported yet, only support %lu",
3964                         sectorsize, PAGE_SIZE);
3965                 ret = -EINVAL;
3966         }
3967         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3968             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3969                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3970                 ret = -EINVAL;
3971         }
3972         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3973                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3974                           le32_to_cpu(sb->__unused_leafsize), nodesize);
3975                 ret = -EINVAL;
3976         }
3977
3978         /* Root alignment check */
3979         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3980                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3981                            btrfs_super_root(sb));
3982                 ret = -EINVAL;
3983         }
3984         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3985                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3986                            btrfs_super_chunk_root(sb));
3987                 ret = -EINVAL;
3988         }
3989         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3990                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3991                            btrfs_super_log_root(sb));
3992                 ret = -EINVAL;
3993         }
3994
3995         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3996                 btrfs_err(fs_info,
3997                            "dev_item UUID does not match fsid: %pU != %pU",
3998                            fs_info->fsid, sb->dev_item.fsid);
3999                 ret = -EINVAL;
4000         }
4001
4002         /*
4003          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4004          * done later
4005          */
4006         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4007                 btrfs_err(fs_info, "bytes_used is too small %llu",
4008                           btrfs_super_bytes_used(sb));
4009                 ret = -EINVAL;
4010         }
4011         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4012                 btrfs_err(fs_info, "invalid stripesize %u",
4013                           btrfs_super_stripesize(sb));
4014                 ret = -EINVAL;
4015         }
4016         if (btrfs_super_num_devices(sb) > (1UL << 31))
4017                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4018                            btrfs_super_num_devices(sb));
4019         if (btrfs_super_num_devices(sb) == 0) {
4020                 btrfs_err(fs_info, "number of devices is 0");
4021                 ret = -EINVAL;
4022         }
4023
4024         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4025                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4026                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4027                 ret = -EINVAL;
4028         }
4029
4030         /*
4031          * Obvious sys_chunk_array corruptions, it must hold at least one key
4032          * and one chunk
4033          */
4034         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4035                 btrfs_err(fs_info, "system chunk array too big %u > %u",
4036                           btrfs_super_sys_array_size(sb),
4037                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4038                 ret = -EINVAL;
4039         }
4040         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4041                         + sizeof(struct btrfs_chunk)) {
4042                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4043                           btrfs_super_sys_array_size(sb),
4044                           sizeof(struct btrfs_disk_key)
4045                           + sizeof(struct btrfs_chunk));
4046                 ret = -EINVAL;
4047         }
4048
4049         /*
4050          * The generation is a global counter, we'll trust it more than the others
4051          * but it's still possible that it's the one that's wrong.
4052          */
4053         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4054                 btrfs_warn(fs_info,
4055                         "suspicious: generation < chunk_root_generation: %llu < %llu",
4056                         btrfs_super_generation(sb),
4057                         btrfs_super_chunk_root_generation(sb));
4058         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4059             && btrfs_super_cache_generation(sb) != (u64)-1)
4060                 btrfs_warn(fs_info,
4061                         "suspicious: generation < cache_generation: %llu < %llu",
4062                         btrfs_super_generation(sb),
4063                         btrfs_super_cache_generation(sb));
4064
4065         return ret;
4066 }
4067
4068 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4069 {
4070         /* cleanup FS via transaction */
4071         btrfs_cleanup_transaction(fs_info);
4072
4073         mutex_lock(&fs_info->cleaner_mutex);
4074         btrfs_run_delayed_iputs(fs_info);
4075         mutex_unlock(&fs_info->cleaner_mutex);
4076
4077         down_write(&fs_info->cleanup_work_sem);
4078         up_write(&fs_info->cleanup_work_sem);
4079 }
4080
4081 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4082 {
4083         struct btrfs_ordered_extent *ordered;
4084
4085         spin_lock(&root->ordered_extent_lock);
4086         /*
4087          * This will just short circuit the ordered completion stuff which will
4088          * make sure the ordered extent gets properly cleaned up.
4089          */
4090         list_for_each_entry(ordered, &root->ordered_extents,
4091                             root_extent_list)
4092                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4093         spin_unlock(&root->ordered_extent_lock);
4094 }
4095
4096 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4097 {
4098         struct btrfs_root *root;
4099         struct list_head splice;
4100
4101         INIT_LIST_HEAD(&splice);
4102
4103         spin_lock(&fs_info->ordered_root_lock);
4104         list_splice_init(&fs_info->ordered_roots, &splice);
4105         while (!list_empty(&splice)) {
4106                 root = list_first_entry(&splice, struct btrfs_root,
4107                                         ordered_root);
4108                 list_move_tail(&root->ordered_root,
4109                                &fs_info->ordered_roots);
4110
4111                 spin_unlock(&fs_info->ordered_root_lock);
4112                 btrfs_destroy_ordered_extents(root);
4113
4114                 cond_resched();
4115                 spin_lock(&fs_info->ordered_root_lock);
4116         }
4117         spin_unlock(&fs_info->ordered_root_lock);
4118 }
4119
4120 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4121                                       struct btrfs_fs_info *fs_info)
4122 {
4123         struct rb_node *node;
4124         struct btrfs_delayed_ref_root *delayed_refs;
4125         struct btrfs_delayed_ref_node *ref;
4126         int ret = 0;
4127
4128         delayed_refs = &trans->delayed_refs;
4129
4130         spin_lock(&delayed_refs->lock);
4131         if (atomic_read(&delayed_refs->num_entries) == 0) {
4132                 spin_unlock(&delayed_refs->lock);
4133                 btrfs_info(fs_info, "delayed_refs has NO entry");
4134                 return ret;
4135         }
4136
4137         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4138                 struct btrfs_delayed_ref_head *head;
4139                 struct btrfs_delayed_ref_node *tmp;
4140                 bool pin_bytes = false;
4141
4142                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4143                                 href_node);
4144                 if (!mutex_trylock(&head->mutex)) {
4145                         refcount_inc(&head->node.refs);
4146                         spin_unlock(&delayed_refs->lock);
4147
4148                         mutex_lock(&head->mutex);
4149                         mutex_unlock(&head->mutex);
4150                         btrfs_put_delayed_ref(&head->node);
4151                         spin_lock(&delayed_refs->lock);
4152                         continue;
4153                 }
4154                 spin_lock(&head->lock);
4155                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4156                                                  list) {
4157                         ref->in_tree = 0;
4158                         list_del(&ref->list);
4159                         if (!list_empty(&ref->add_list))
4160                                 list_del(&ref->add_list);
4161                         atomic_dec(&delayed_refs->num_entries);
4162                         btrfs_put_delayed_ref(ref);
4163                 }
4164                 if (head->must_insert_reserved)
4165                         pin_bytes = true;
4166                 btrfs_free_delayed_extent_op(head->extent_op);
4167                 delayed_refs->num_heads--;
4168                 if (head->processing == 0)
4169                         delayed_refs->num_heads_ready--;
4170                 atomic_dec(&delayed_refs->num_entries);
4171                 head->node.in_tree = 0;
4172                 rb_erase(&head->href_node, &delayed_refs->href_root);
4173                 spin_unlock(&head->lock);
4174                 spin_unlock(&delayed_refs->lock);
4175                 mutex_unlock(&head->mutex);
4176
4177                 if (pin_bytes)
4178                         btrfs_pin_extent(fs_info, head->node.bytenr,
4179                                          head->node.num_bytes, 1);
4180                 btrfs_put_delayed_ref(&head->node);
4181                 cond_resched();
4182                 spin_lock(&delayed_refs->lock);
4183         }
4184
4185         spin_unlock(&delayed_refs->lock);
4186
4187         return ret;
4188 }
4189
4190 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4191 {
4192         struct btrfs_inode *btrfs_inode;
4193         struct list_head splice;
4194
4195         INIT_LIST_HEAD(&splice);
4196
4197         spin_lock(&root->delalloc_lock);
4198         list_splice_init(&root->delalloc_inodes, &splice);
4199
4200         while (!list_empty(&splice)) {
4201                 struct inode *inode = NULL;
4202                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4203                                                delalloc_inodes);
4204                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4205                 spin_unlock(&root->delalloc_lock);
4206
4207                 /*
4208                  * Make sure we get a live inode and that it'll not disappear
4209                  * meanwhile.
4210                  */
4211                 inode = igrab(&btrfs_inode->vfs_inode);
4212                 if (inode) {
4213                         invalidate_inode_pages2(inode->i_mapping);
4214                         iput(inode);
4215                 }
4216                 spin_lock(&root->delalloc_lock);
4217         }
4218         spin_unlock(&root->delalloc_lock);
4219 }
4220
4221 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4222 {
4223         struct btrfs_root *root;
4224         struct list_head splice;
4225
4226         INIT_LIST_HEAD(&splice);
4227
4228         spin_lock(&fs_info->delalloc_root_lock);
4229         list_splice_init(&fs_info->delalloc_roots, &splice);
4230         while (!list_empty(&splice)) {
4231                 root = list_first_entry(&splice, struct btrfs_root,
4232                                          delalloc_root);
4233                 root = btrfs_grab_fs_root(root);
4234                 BUG_ON(!root);
4235                 spin_unlock(&fs_info->delalloc_root_lock);
4236
4237                 btrfs_destroy_delalloc_inodes(root);
4238                 btrfs_put_fs_root(root);
4239
4240                 spin_lock(&fs_info->delalloc_root_lock);
4241         }
4242         spin_unlock(&fs_info->delalloc_root_lock);
4243 }
4244
4245 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4246                                         struct extent_io_tree *dirty_pages,
4247                                         int mark)
4248 {
4249         int ret;
4250         struct extent_buffer *eb;
4251         u64 start = 0;
4252         u64 end;
4253
4254         while (1) {
4255                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4256                                             mark, NULL);
4257                 if (ret)
4258                         break;
4259
4260                 clear_extent_bits(dirty_pages, start, end, mark);
4261                 while (start <= end) {
4262                         eb = find_extent_buffer(fs_info, start);
4263                         start += fs_info->nodesize;
4264                         if (!eb)
4265                                 continue;
4266                         wait_on_extent_buffer_writeback(eb);
4267
4268                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4269                                                &eb->bflags))
4270                                 clear_extent_buffer_dirty(eb);
4271                         free_extent_buffer_stale(eb);
4272                 }
4273         }
4274
4275         return ret;
4276 }
4277
4278 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4279                                        struct extent_io_tree *pinned_extents)
4280 {
4281         struct extent_io_tree *unpin;
4282         u64 start;
4283         u64 end;
4284         int ret;
4285         bool loop = true;
4286
4287         unpin = pinned_extents;
4288 again:
4289         while (1) {
4290                 /*
4291                  * The btrfs_finish_extent_commit() may get the same range as
4292                  * ours between find_first_extent_bit and clear_extent_dirty.
4293                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4294                  * the same extent range.
4295                  */
4296                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4297                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4298                                             EXTENT_DIRTY, NULL);
4299                 if (ret) {
4300                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4301                         break;
4302                 }
4303
4304                 clear_extent_dirty(unpin, start, end);
4305                 btrfs_error_unpin_extent_range(fs_info, start, end);
4306                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4307                 cond_resched();
4308         }
4309
4310         if (loop) {
4311                 if (unpin == &fs_info->freed_extents[0])
4312                         unpin = &fs_info->freed_extents[1];
4313                 else
4314                         unpin = &fs_info->freed_extents[0];
4315                 loop = false;
4316                 goto again;
4317         }
4318
4319         return 0;
4320 }
4321
4322 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4323 {
4324         struct inode *inode;
4325
4326         inode = cache->io_ctl.inode;
4327         if (inode) {
4328                 invalidate_inode_pages2(inode->i_mapping);
4329                 BTRFS_I(inode)->generation = 0;
4330                 cache->io_ctl.inode = NULL;
4331                 iput(inode);
4332         }
4333         btrfs_put_block_group(cache);
4334 }
4335
4336 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4337                              struct btrfs_fs_info *fs_info)
4338 {
4339         struct btrfs_block_group_cache *cache;
4340
4341         spin_lock(&cur_trans->dirty_bgs_lock);
4342         while (!list_empty(&cur_trans->dirty_bgs)) {
4343                 cache = list_first_entry(&cur_trans->dirty_bgs,
4344                                          struct btrfs_block_group_cache,
4345                                          dirty_list);
4346                 if (!cache) {
4347                         btrfs_err(fs_info, "orphan block group dirty_bgs list");
4348                         spin_unlock(&cur_trans->dirty_bgs_lock);
4349                         return;
4350                 }
4351
4352                 if (!list_empty(&cache->io_list)) {
4353                         spin_unlock(&cur_trans->dirty_bgs_lock);
4354                         list_del_init(&cache->io_list);
4355                         btrfs_cleanup_bg_io(cache);
4356                         spin_lock(&cur_trans->dirty_bgs_lock);
4357                 }
4358
4359                 list_del_init(&cache->dirty_list);
4360                 spin_lock(&cache->lock);
4361                 cache->disk_cache_state = BTRFS_DC_ERROR;
4362                 spin_unlock(&cache->lock);
4363
4364                 spin_unlock(&cur_trans->dirty_bgs_lock);
4365                 btrfs_put_block_group(cache);
4366                 spin_lock(&cur_trans->dirty_bgs_lock);
4367         }
4368         spin_unlock(&cur_trans->dirty_bgs_lock);
4369
4370         while (!list_empty(&cur_trans->io_bgs)) {
4371                 cache = list_first_entry(&cur_trans->io_bgs,
4372                                          struct btrfs_block_group_cache,
4373                                          io_list);
4374                 if (!cache) {
4375                         btrfs_err(fs_info, "orphan block group on io_bgs list");
4376                         return;
4377                 }
4378
4379                 list_del_init(&cache->io_list);
4380                 spin_lock(&cache->lock);
4381                 cache->disk_cache_state = BTRFS_DC_ERROR;
4382                 spin_unlock(&cache->lock);
4383                 btrfs_cleanup_bg_io(cache);
4384         }
4385 }
4386
4387 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4388                                    struct btrfs_fs_info *fs_info)
4389 {
4390         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4391         ASSERT(list_empty(&cur_trans->dirty_bgs));
4392         ASSERT(list_empty(&cur_trans->io_bgs));
4393
4394         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4395
4396         cur_trans->state = TRANS_STATE_COMMIT_START;
4397         wake_up(&fs_info->transaction_blocked_wait);
4398
4399         cur_trans->state = TRANS_STATE_UNBLOCKED;
4400         wake_up(&fs_info->transaction_wait);
4401
4402         btrfs_destroy_delayed_inodes(fs_info);
4403         btrfs_assert_delayed_root_empty(fs_info);
4404
4405         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4406                                      EXTENT_DIRTY);
4407         btrfs_destroy_pinned_extent(fs_info,
4408                                     fs_info->pinned_extents);
4409
4410         cur_trans->state =TRANS_STATE_COMPLETED;
4411         wake_up(&cur_trans->commit_wait);
4412 }
4413
4414 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4415 {
4416         struct btrfs_transaction *t;
4417
4418         mutex_lock(&fs_info->transaction_kthread_mutex);
4419
4420         spin_lock(&fs_info->trans_lock);
4421         while (!list_empty(&fs_info->trans_list)) {
4422                 t = list_first_entry(&fs_info->trans_list,
4423                                      struct btrfs_transaction, list);
4424                 if (t->state >= TRANS_STATE_COMMIT_START) {
4425                         refcount_inc(&t->use_count);
4426                         spin_unlock(&fs_info->trans_lock);
4427                         btrfs_wait_for_commit(fs_info, t->transid);
4428                         btrfs_put_transaction(t);
4429                         spin_lock(&fs_info->trans_lock);
4430                         continue;
4431                 }
4432                 if (t == fs_info->running_transaction) {
4433                         t->state = TRANS_STATE_COMMIT_DOING;
4434                         spin_unlock(&fs_info->trans_lock);
4435                         /*
4436                          * We wait for 0 num_writers since we don't hold a trans
4437                          * handle open currently for this transaction.
4438                          */
4439                         wait_event(t->writer_wait,
4440                                    atomic_read(&t->num_writers) == 0);
4441                 } else {
4442                         spin_unlock(&fs_info->trans_lock);
4443                 }
4444                 btrfs_cleanup_one_transaction(t, fs_info);
4445
4446                 spin_lock(&fs_info->trans_lock);
4447                 if (t == fs_info->running_transaction)
4448                         fs_info->running_transaction = NULL;
4449                 list_del_init(&t->list);
4450                 spin_unlock(&fs_info->trans_lock);
4451
4452                 btrfs_put_transaction(t);
4453                 trace_btrfs_transaction_commit(fs_info->tree_root);
4454                 spin_lock(&fs_info->trans_lock);
4455         }
4456         spin_unlock(&fs_info->trans_lock);
4457         btrfs_destroy_all_ordered_extents(fs_info);
4458         btrfs_destroy_delayed_inodes(fs_info);
4459         btrfs_assert_delayed_root_empty(fs_info);
4460         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4461         btrfs_destroy_all_delalloc_inodes(fs_info);
4462         mutex_unlock(&fs_info->transaction_kthread_mutex);
4463
4464         return 0;
4465 }
4466
4467 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4468 {
4469         struct inode *inode = private_data;
4470         return btrfs_sb(inode->i_sb);
4471 }
4472
4473 static const struct extent_io_ops btree_extent_io_ops = {
4474         /* mandatory callbacks */
4475         .submit_bio_hook = btree_submit_bio_hook,
4476         .readpage_end_io_hook = btree_readpage_end_io_hook,
4477         /* note we're sharing with inode.c for the merge bio hook */
4478         .merge_bio_hook = btrfs_merge_bio_hook,
4479         .readpage_io_failed_hook = btree_io_failed_hook,
4480         .set_range_writeback = btrfs_set_range_writeback,
4481         .tree_fs_info = btree_fs_info,
4482
4483         /* optional callbacks */
4484 };